WO2019230543A1 - ジピコリルアミン構造を有するポリマー、その製造方法、抗微生物剤および抗菌方法 - Google Patents

ジピコリルアミン構造を有するポリマー、その製造方法、抗微生物剤および抗菌方法 Download PDF

Info

Publication number
WO2019230543A1
WO2019230543A1 PCT/JP2019/020388 JP2019020388W WO2019230543A1 WO 2019230543 A1 WO2019230543 A1 WO 2019230543A1 JP 2019020388 W JP2019020388 W JP 2019020388W WO 2019230543 A1 WO2019230543 A1 WO 2019230543A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
group
dipicolylamine
above formula
picolyl
Prior art date
Application number
PCT/JP2019/020388
Other languages
English (en)
French (fr)
Inventor
嘉 山本
主馬 安原
Original Assignee
長瀬産業株式会社
国立大学法人 奈良先端科学技術大学院大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 長瀬産業株式会社, 国立大学法人 奈良先端科学技術大学院大学 filed Critical 長瀬産業株式会社
Priority to JP2020522132A priority Critical patent/JPWO2019230543A1/ja
Publication of WO2019230543A1 publication Critical patent/WO2019230543A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N61/00Biocides, pest repellants or attractants, or plant growth regulators containing substances of unknown or undetermined composition, e.g. substances characterised only by the mode of action
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/74Synthetic polymeric materials
    • A61K31/785Polymers containing nitrogen
    • A61K31/787Polymers containing nitrogen containing heterocyclic rings having nitrogen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics

Definitions

  • the present invention relates to a polymer having a dipicolylamine structure, a production method thereof, an antimicrobial agent, and an antibacterial method.
  • Antibiotics are a powerful tool against bacterial infections.
  • various antibiotics targeting proteins synthesized by bacteria have been developed.
  • bacteria have been reported that acquire drug resistance to conventional antibiotics by methods such as changing the structure of the targeted protein. For this reason, conventional antibiotics that target proteins are not sufficient to cope with infectious diseases.
  • Non-Patent Document 1 reports a technique for producing a polymer having antimicrobial activity by polymerizing a methacrylate monomer having a dipicolylamine (DPA) structure.
  • DPA dipicolylamine
  • Non-Patent Document 1 described above, many steps are required to produce a polymer having antimicrobial activity. For this reason, from the viewpoint of obtaining the target polymer by a simple synthesis method, it is not sufficient, and there is room for further improvement.
  • One embodiment of the present invention has been made in view of the above problems, and the object thereof is a novel polymer that can be synthesized by a simple procedure and has antimicrobial activity, a method for producing the polymer, As well as providing technology for its use.
  • R is independently selected from the group consisting of a hydrogen atom, a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 6 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms. And may be the same or different, and the dipicolylamine structure may form a complex with the metal M).
  • An antimicrobial agent comprising the polymer according to ⁇ 1>.
  • R is independently selected from the group consisting of a hydrogen atom, a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 6 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms. And may be the same or different, and the dipicolylamine structure may form a complex with the metal M).
  • An antibacterial method including a treatment step of treating an object using the antimicrobial agent according to ⁇ 2>.
  • (A) is a diagram showing 1 H-NMR spectrum of the polymer SP-003-A according to an embodiment of the present invention, (b) the first polymer SP-003-B according to an embodiment of the present invention It is a figure which shows a H-NMR spectrum.
  • (A) is a diagram showing 1 H-NMR spectrum of the polymer SP-003-C according to an embodiment of the present invention, (b) the 1 H- polymer SP-018 according to an embodiment of the present invention It is a figure which shows a NMR spectrum.
  • FIG. 1 H-NMR spectrum of polymer PAA-3L is a diagram showing a 1 H-NMR spectrum of polymer PAA-3L according to an embodiment of the present invention.
  • (A) shows a polymer according to one embodiment of the present invention.
  • 2 is a graph showing the evaluation results of antimicrobial activity against E. coli, and
  • (b) shows the S. coli for a polymer according to an embodiment of the present invention. It is a graph which shows the evaluation result of the antimicrobial activity with respect to aureus.
  • (A) shows a polymer according to one embodiment of the present invention.
  • 2 is a graph showing the evaluation results of antimicrobial activity against E. coli
  • (b) shows the S. coli for a polymer according to an embodiment of the present invention. It is a graph which shows the evaluation result of the antimicrobial activity with respect to aureus.
  • the polymer according to an embodiment of the present invention is a polymer having an amino group, which has a DPA structure represented by the above formula (1), wherein the amino group is modified with two molecules of ⁇ -picolyl group.
  • the DPA structure of the formula (1) may be a structure that forms a complex with the metal M.
  • the polymer according to an embodiment of the present invention has the above-described configuration, so that it can be synthesized by a simple procedure and has excellent antimicrobial activity.
  • the antimicrobial activity will be described in more detail as follows.
  • the surface of the microorganism that is, the outer surface of the cell membrane (lipid membrane) of the microorganism is negatively charged.
  • the polymer according to an embodiment of the present invention may exist as a polycation in water. For this reason, the present polymer selectively recognizes the cell membrane on the surface of the microorganism and selectively binds to the negatively charged lipid, thereby disturbing the structure of the cell membrane of the microorganism. As a result, it is considered that the biological activity of the microorganism is suppressed.
  • R in the formula (1) is preferably a hydrogen atom, but is not limited thereto, a halogen atom, a nitro group, a cyano group, an amino group, an alkyl group having 1 to 6 carbon atoms, and an alkyl group having 1 to 6 carbon atoms Each may be independently selected from the group consisting of alkoxy groups.
  • the halogen atom that can be R in the formula (1) is not particularly limited.
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the alkyl group having 1 to 6 carbon atoms that can be R in the formula (1) is not particularly limited.
  • Examples of the alkyl group having 1 to 6 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, sec-butyl, n-pentyl, neopentyl, n-hexyl, isohexyl, Examples include 3-methylpentyl group.
  • the alkoxy group having 1 to 6 carbon atoms that can be R in the formula (1) is not particularly limited.
  • Examples of the alkoxy group having 1 to 6 carbon atoms include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, tert-butoxy, sec-butoxy, n-pentoxy, neopentoxy, n-hexyloxy, Examples include isohexyloxy and 3-methylpentoxy group.
  • the DPA structure represented by the formula (1) preferably forms a complex with the metal M. If it is the said structure, since the positive charge of a polymer increases, the selective recognition and binding property to the microorganism of a polymer may increase. Therefore, the polymer has an advantage that it can exhibit excellent antimicrobial activity.
  • the metal M is not particularly limited as long as it can form a complex with a dipicolylamine structure. Examples of the metal M include a divalent metal, and more specifically include Zn, Cu, Mg, Ca, Ni, Fe, Co, Mn, and the like. Among these, Zn is more preferable. Zn can be abundant in living organisms. Therefore, in the case where the metal M is Zn, it is possible to suppress the toxicity of the polymer to the organism even when the polymer is taken into an organism that is not intended for application of the polymer.
  • any polymer having —NH 2 and / or —NH 3 + may be used.
  • the raw material polymer having an amino group can be said to be a raw material polymer having a primary amine.
  • the raw material polymer include polyethyleneimine, polyallylamine, polylysine, side chain amino-modified silicone oil, polymethacrylate, polyacrylate, polyacrylamide, polynorbornene, polysilane, and copolymers thereof.
  • a dendrimer such as polyamidamin (PAMM) as a raw material polymer.
  • PAMM polyamidamin
  • One of these polymers and dendrimers may be used as a raw material polymer, or two or more thereof may be mixed and used.
  • the raw material polymer is preferably polyethyleneimine or polyallylamine.
  • Polyethyleneimine that can be used as a raw material polymer is not a linear polymer, but may be a polymer having a branched structure containing primary, secondary, and / or tertiary amines.
  • the raw material polymer is preferably a water-soluble polymer. According to the said structure, since the polymer obtained becomes water-soluble, there exists an advantage that the utilization as an antimicrobial agent becomes easy and a use spreads.
  • the polymer according to an embodiment of the present invention preferably has a repeating unit represented by the above formula (2) or the above formula (3).
  • m and n are integers independently and arbitrarily selected.
  • m is preferably 1 to 1000, more preferably 1 to 500, still more preferably 1 to 50, and particularly preferably 1 to 10.
  • n is preferably 1 to 1000, more preferably 5 to 500, still more preferably 7 to 100, and particularly preferably 10 to 39.
  • the repeating unit having the repetition number m has a tertiary amine.
  • an ⁇ -picolyl group may be introduced into H of the tertiary amine.
  • the ⁇ -picolyl group introduced into the tertiary amine cannot form a DPA structure. Therefore, the raw material polymer preferably has a smaller number of the repeating units (repeating units in which the number of repetitions is m in the above formula (2)).
  • n is an integer selected arbitrarily.
  • n is preferably 1 to 500, more preferably 5 to 300, still more preferably 10 to 100, and particularly preferably 20 to 40.
  • X is a spacer that connects the polymer and the DPA structure.
  • X is a linear alkyl group having 1 to 5 carbon atoms.
  • X is preferably a linear alkyl group having 1 to 4 carbon atoms, more preferably a linear alkyl group having 1 to 3 carbon atoms, and a linear alkyl group having 1 or 2 carbon atoms.
  • a linear alkyl group having 1 carbon atom is particularly preferable.
  • the polymer having a repeating unit represented by the above formula (2) can be obtained by using polyethyleneimine as a raw material polymer. Moreover, the polymer which has a repeating unit shown by the said Formula (3) can be obtained by using polyallylamine as a raw material polymer.
  • the polymer according to an embodiment of the present invention is preferably the above formula (4) or the above formula (5).
  • the above formula (4) can be obtained by using polyethyleneimine as a raw material polymer.
  • the above formula (5) can be obtained by using polyallylamine as a raw material polymer.
  • n is an integer selected arbitrarily.
  • n is preferably 1 to 500, more preferably 5 to 300, still more preferably 10 to 100, and particularly preferably 20 to 40.
  • the molecular weight of the polymer according to one embodiment of the present invention is not particularly limited and may be set as appropriate. For example, it is preferably from 250 to 100,000, more preferably from 300 to 10,000, still more preferably from 500 to 5000, and particularly preferably from 750 to 3000.
  • the polymer according to one embodiment of the present invention when the polymer according to one embodiment of the present invention is obtained using polyethyleneimine as a raw material polymer, the polymer according to one embodiment of the present invention preferably has a number average molecular weight.
  • the molecular weight of the polymer according to one embodiment of the present invention is preferably a weight average molecular weight.
  • the number average molecular weight may be a number average molecular weight calculated by a viscosity method, or may be a number average molecular weight calculated based on an increase in boiling point.
  • a method for producing a polymer having a dipicolylamine structure represented by the above formula (6) reacts an ⁇ -picolyl group with a polymer having an amino group at a terminal and / or side chain. Including a reaction step.
  • the polymer having an amino group at the terminal and / or side chain used in the reaction step is the above [1.
  • the raw material polymer described in the section “Polymer” can be preferably used.
  • the compound having an ⁇ -picolyl group (hereinafter also referred to as a picolyl group-containing compound) that can be used in the reaction step is not particularly limited as long as it has an ⁇ -picolyl group.
  • a picolyl group-containing compound for example, 2-picolyl chloride hydrochloride (2-picolyl chloride hydrochloride) and the like can be mentioned.
  • the polymer according to an embodiment of the present invention can also be produced by the following methods (i) and (ii): (i) Reaction of raw material polymer with 2-pyridinecarboxyaldehyde And (ii) forming a dipicolylamine structure by converting the imine to an amine using a reducing agent.
  • Reaction conditions such as temperature, pH, and time in the reaction step are not particularly limited, depending on the kind and amount of the starting polymer and the picolyl group-containing compound, and depending on the synthesis efficiency and yield of the polymer, as appropriate. Can be set. For example, the conditions of the Example mentioned later can be illustrated.
  • the reaction step it is preferable to heat the mixture of the raw material polymer and the picolyl group-containing compound in order to promote the reaction.
  • the mixture is heated to 30 ° C. to 100 ° C., more preferably 35 ° C. to 90 ° C., further preferably 40 ° C. to 80 ° C., further preferably 50 ° C. to A temperature of 70 ° C. is particularly preferable.
  • the reaction step it is preferable to adjust the pH of the mixture of the raw material polymer and the picolyl group-containing compound in order to promote the reaction.
  • the pH of the mixture is adjusted so that the pH is preferably 10 to 18, more preferably 11 to 16, and still more preferably 12 to 14.
  • the time for the reaction step in other words, the time for bringing the raw material polymer into contact with the picolyl group-containing compound is preferably 8 hours to 16 hours, It is more preferably 9 hours to 15 hours, further preferably 10 hours to 14 hours, and particularly preferably 11 hours to 13 hours.
  • reaction step it is preferable to stir the mixture of the raw material polymer and the picolyl group-containing compound in order to promote the reaction.
  • the amount of ⁇ -picolyl group introduced into the raw polymer can be adjusted by changing the amount of the picolyl group-containing compound to be reacted with the raw polymer. From the viewpoint of the amount of ⁇ -picolyl group introduced into the raw material polymer and the production cost, it is preferable to react the picolyl group-containing compound with two equivalents of the raw material polymer.
  • the picolyl group-containing compound reacts with the amino group (—NH 2 and / or —NH 3 + ) of the starting polymer. Therefore, reacting 1 equivalent of the picolyl group-containing compound with the raw material polymer means reacting the same molar amount of the picolyl group-containing compound with respect to the molar amount of the primary amine of the raw material polymer. .
  • the raw material polymer is often colorless and the picolyl group-containing compound is often brown.
  • the polymer obtained by manufacture shows a red color.
  • the color of the solution can change from colorless and brown to reddish brown (brown).
  • the polymer obtained by manufacture has a lower solubility in water than the starting polymer. Therefore, the solution before the reaction step is transparent, and the solution after the reaction step can be a suspension. Therefore, it can be inferred from the color of the solution and the degree of suspension of the solution after the reaction step whether the polymer having the DPA structure has been synthesized or how much DPA structure has been introduced into the polymer. There is also a possibility.
  • the ratio of hydrogen atoms substituted with ⁇ -picolyl groups in the hydrogen atoms (H) of the amino groups (—NH 2 or —NH 3 + ) in the raw material polymer is expressed in terms of conversion rate (%).
  • the conversion rate can be determined from the number of hydrogen atoms of the amino group of the raw material polymer and the number of ⁇ -picolyl groups introduced into the polymer obtained after the production.
  • the number of hydrogen atoms possessed by the amino group of the polymer is known from the catalog of the vendor.
  • the number of ⁇ -picolyl groups introduced into the polymer obtained after production can be determined by using 1 H-NMR.
  • the conversion rate is preferably 10% or more, more preferably 15% or more, and more preferably 20% or more. According to the said structure, the obtained polymer has sufficient antimicrobial activity.
  • the conversion rate may be 30% or more, 40% or more, 50% or more, 65% or more, 80% or more, 90% or more, or 100%. However, it is also possible to set the upper limit value of the conversion rate low. As shown in the examples described later, when the conversion rate is increased, the antimicrobial activity of the polymer according to one embodiment of the present invention is sufficient to suppress the growth of microorganisms, fungi, spoilage fungi, spoilage fungi and the like. Or improve to a degree sufficient to kill them. When the conversion rate reaches a specific value A, even if the conversion rate is further increased, the antimicrobial activity of the polymer according to an embodiment of the present invention is not greatly improved.
  • the upper limit of the conversion rate is set to, for example, the value A, the amount of the raw material (picolyl group-containing compound) used for the production of the polymer can be suppressed while giving sufficient antimicrobial activity to the polymer.
  • the advantage that the production cost of the polymer can be reduced is obtained.
  • the upper limit value of the conversion rate is not particularly limited, and may be 90%, 80%, 70%, 60%, 50%, 40%, 30%, or 20%, for example.
  • the upper limit value can be appropriately set according to the type of the target microorganism and / or the presence or absence of the metal M.
  • the method for producing a polymer according to an embodiment of the present invention may further include an extraction step after the reaction step.
  • the polymer synthesized in the reaction step can be in solution.
  • the synthesized polymer can be obtained as a solid.
  • the extraction step may be a step of performing an extraction operation using, for example, chloroform (CHCl 3 ).
  • CHCl 3 chloroform
  • the polymer can be obtained from the solution into the organic layer. Thereafter, for example, the polymer can be obtained as a solid by distilling off the organic solvent under reduced pressure from the organic layer containing the polymer.
  • the organic layer containing the polymer may be washed (a) using, for example, saturated aqueous sodium hydrogen carbonate, and (b) filtered using liquid phase separation filter paper before the organic solvent is distilled off under reduced pressure. Also good.
  • the organic layer containing the polymer is filtered using liquid phase separation filter paper, the polymer can be obtained as a solid by distilling off the organic solvent under reduced pressure from the obtained filtrate.
  • the method for producing a polymer according to an embodiment of the present invention may further include a mixing step in which the polymer obtained in the reaction step and the metal M are mixed after the reaction step.
  • the mixing step can be performed before or after the extraction step described above. According to this configuration, a polymer having a structure in which the dipicolylamine structure represented by the formula (1) forms a complex with the metal M can be produced.
  • the polymer according to an embodiment of the present invention can obtain a desired effect even if it does not form a complex with the metal M. Moreover, if the metal M exists in the environment where the polymer according to an embodiment of the present invention is used, the polymer according to an embodiment of the present invention can form a complex with the metal M. Therefore, the method for producing a polymer according to an embodiment of the present invention may not include a mixing step.
  • the order of the extraction step and the mixing step is not particularly limited.
  • antimicrobial agent The antimicrobial agent which concerns on one Embodiment of this invention is said [1.
  • the polymer described in the section of “polymer” is included.
  • the antimicrobial agent means an agent that has an effect of suppressing the growth of microorganisms such as bacteria, fungi, and algae or killing these microorganisms.
  • the antifungal agent means an agent having an effect of suppressing the growth of fungi or killing them.
  • the antiseptic / antifungal agent intends a drug having an effect of suppressing or killing the growth of spoilage bacteria and rot fungi.
  • the antimicrobial agent according to one embodiment of the present invention can be used for various applications. For example, (a) use as business supplies such as antiseptics for metalworking oils and antibacterial treatments for water treatment membranes, (b) use as consumer goods such as antibacterial soaps, antibacterial coatings, cosmetics, preservatives and sanitary products (C) Use for medical devices such as antibacterial surface processing of medical catheters, and (d) Use as pharmaceuticals such as antibiotics and disinfectants.
  • business supplies such as antiseptics for metalworking oils and antibacterial treatments for water treatment membranes
  • consumer goods such as antibacterial soaps, antibacterial coatings, cosmetics, preservatives and sanitary products
  • C Use for medical devices such as antibacterial surface processing of medical catheters
  • pharmaceuticals such as antibiotics and disinfectants.
  • the antimicrobial agent according to an embodiment of the present invention is a component other than a polymer (for example, a buffer, a pH adjuster, an isotonic agent, an antiseptic, an antioxidant, a high molecular weight polymer, an excipient, a carrier, Diluent, solvent, solubilizer, stabilizer, filler, binder, surfactant, stabilizer, etc.).
  • a polymer for example, a buffer, a pH adjuster, an isotonic agent, an antiseptic, an antioxidant, a high molecular weight polymer, an excipient, a carrier, Diluent, solvent, solubilizer, stabilizer, filler, binder, surfactant, stabilizer, etc.
  • the amount of the polymer contained in the antimicrobial agent according to an embodiment of the present invention is not particularly limited.
  • the amount is 0.001% to 100% by weight. It may be 0.01 wt% to 100 wt%, 0.1 wt% to 100 wt%, 0.1 wt% to 95 wt%, It may be 0.1% to 90% by weight, 0.1% to 80% by weight, 0.1% to 70% by weight, 0.1% by weight May be ⁇ 60 wt%, may be 0.1 wt% ⁇ 50 wt%, may be 0.1 wt% ⁇ 40 wt%, may be 0.1 wt% ⁇ 30 wt% It may be 0.1 wt% to 20 wt%, or 0.1 wt% to 10 wt%.
  • the amount of components other than the polymer contained in the antimicrobial agent according to one embodiment of the present invention is not particularly limited.
  • the antimicrobial agent is 100% by weight, 0% by weight to 99.999%.
  • % By weight, 0% to 99.99% by weight, 0% to 99.9% by weight, 5% to 99.9% by weight, 10 wt% to 99.9 wt%, 20 wt% to 99.9 wt%, 30 wt% to 99.9 wt%, or 40 wt%.
  • % To 99.9% by weight, 50% to 99.9% by weight, 60% to 99.9% by weight, and 70% to 99.9% by weight.
  • % By weight, 80% to 99.9% by weight, 90% to 99.9% by weight It may be.
  • the antibacterial method which concerns on one Embodiment of this invention is said [3.
  • the antimicrobial activity derived from an antimicrobial agent can be provided with respect to a desired target object.
  • an antimicrobial agent is prepared as a solution and the object is treated (eg, coating) using the solution, antimicrobial activity can be imparted to any object. Therefore, in the present invention, an object to which antimicrobial activity is imparted is not limited.
  • the object is not particularly limited.
  • business supplies such as metal processing oil and water treatment film
  • consumer products such as soap, paint and cosmetics
  • medical care such as medical catheters. Equipment, and (d) pharmaceuticals.
  • the treatment performed in the treatment step may be, for example, (i) a treatment of mixing the object and the antimicrobial agent, or (ii) a treatment of applying the antimicrobial agent to the object.
  • One embodiment of the present invention may include the following inventions: (I) The above-mentioned [1. Use of the polymer described in the section "Polymer”.
  • One embodiment of the present invention can be configured as follows.
  • a polymer having an amino group a polymer having a dipicolylamine structure represented by the following formula (1), wherein the amino group is modified with two molecules of ⁇ -picolyl group:
  • R is independently selected from the group consisting of a hydrogen atom, a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 6 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms. And may be the same or different, and the dipicolylamine structure may form a complex with the metal M).
  • n and n are integers independently and arbitrarily selected, X is a linear alkyl group having 1 to 5 carbon atoms, and Y is represented by the above formula (1). Dipicolylamine structure.
  • n is an integer selected arbitrarily, X is a linear alkyl group having 1 to 5 carbon atoms, and Y is a dipicolylamine structure represented by the above formula (1). is there.)
  • n is an integer selected arbitrarily.
  • the polymer having the dipicolylamine structure has a conversion rate of 10% or more shown as a ratio of hydrogen atoms substituted by ⁇ -picolyl groups among hydrogen atoms of amino groups of the raw material polymer. , [1] to [3].
  • An antimicrobial agent comprising the polymer according to any one of [1] to [6].
  • R is independently selected from the group consisting of a hydrogen atom, a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 6 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms. And may be the same or different, and the dipicolylamine structure may form a complex with the metal M).
  • An antibacterial method including a treatment step of treating an object using the antimicrobial agent according to [7].
  • the apparatuses used are as follows. ⁇ Nuclear magnetic resonance spectrometer (hereinafter abbreviated as 1 H-NMR); ECX-400P (400 MHz), manufactured by JEOL Ltd. ⁇ Matrix-assisted laser desorption / ionization time-of-flight mass spectrometer (hereinafter, MALDI-TOF / MS) Autoflex II, manufactured by Bruker.
  • 1 H-NMR Nuclear magnetic resonance spectrometer
  • ECX-400P 400 MHz
  • MALDI-TOF / MS Matrix-assisted laser desorption / ionization time-of-flight mass spectrometer
  • (I) Raw material polymer ⁇ Polyethyleneimine; Epomin SP-003 (Molecular weight 300 (Number average molecular weight due to increase in boiling point)) and Epomin SP-018 (Molecular weight 1,800 (Number average molecular weight due to increase in boiling point) manufactured by Nippon Shokubai )) ⁇ Polyallylamine: PAA-HCL-01 (molecular weight 1,600 (weight average molecular weight)), PAA-HCL-05 (molecular weight 5,000 (weight average molecular weight)), and PAA-HCL-3L manufactured by Nittobo Co., Ltd. (Molecular weight 15,000 (weight average molecular weight)).
  • the 1 H-NMR spectrum was measured based on the instruction manual of the apparatus. Specific measurement conditions are as follows. As the solvent, CD3OD was used for Synthesis Examples 1 to 4, and CDCl 3 was used for Synthesis Examples 5 to 7. The number of scans was eight. TMS (0.03% by volume) was used as a reference material.
  • the synthesized polymer was subjected to matrix-assisted laser desorption / ionization time-of-flight mass spectrometry by the following method.
  • MALDI-TOF / MS measurement was performed based on the instruction manual of the apparatus. Specific measurement conditions are as follows. As the matrix, sinapinic acid was used for Synthesis Examples 1 to 4, and ⁇ -cyano-4-hydroxycinnamic acid was used for Synthesis Examples 5 to 7. The measurement was performed in the reflector mode.
  • SP-003-A which is a polymer according to an embodiment of the present invention, was synthesized by a reaction process based on the following procedure: (1) 5.296 g (as primary amine amount) of polyethyleneimine (epomine, SP-003) 50 mmol) was dissolved in 60 mL of distilled water to prepare a polyethyleneimine solution. In addition, 16.3 g (100 mmol, 2 equivalents to polyethyleneimine) of 2-picolyl chloride hydrochloride was dissolved in 60 mL of distilled water to prepare a 2-picolyl chloride hydrochloride solution.
  • SP-003-A was obtained by an extraction process based on the following procedure: (1) The temperature of the second mixed solution was brought to room temperature, and then extracted three times with CHCl 3 to obtain an organic layer. (2) The organic layer obtained was washed with saturated aqueous sodium bicarbonate; (3) The washed organic layer was filtered using liquid phase separation filter paper to obtain a filtrate; (4) obtained In the filtrate, the solvent in the filtrate was distilled off under reduced pressure to obtain a brown oily substance as SP-003-A.
  • N there is one N per a + b peak (corresponding to 4H).
  • N1 it is assumed that primary amines, secondary amines, and tertiary amines are present, and the ratio of these amines is as described in the product catalog.
  • the primary amino group has two hydrogen atoms (active point) and the secondary amino group has one hydrogen atom (active point), and the sum of these hydrogen atoms is determined.
  • the number of pyridine present at the terminal is determined using any one of the peaks d to g, and this is defined as the number of ⁇ -picolyl groups introduced.
  • the conversion rate in the synthesis example 1 was 92.3%.
  • MALDI-TOF / MS was performed on the obtained SP-003-A. The results are shown in Table 1. The results of MALDI-TOF / MS show only the peaks observed (the same applies to the following).
  • SP-003-B a polymer according to an embodiment of the present invention, was synthesized by a reaction process based on the following procedure: (1) 2.645 g of polyethyleneimine (epomine, SP-003) (as primary amine amount) 25 mmol) was dissolved in 20 mL of distilled water to prepare a polyethyleneimine solution.
  • SP-003-B was obtained by an extraction step based on the following procedure: (1) The temperature of the second mixed solution was brought to room temperature, and then extracted with CHCl 3 .
  • TLC thin layer chromatography
  • the aqueous layer was collected; (2) NaOH was added to the aqueous layer, The pH of the mixture was 13 or more.
  • the organic layer was filtered to obtain a filtrate; (5) In the obtained filtrate, the solvent in the filtrate was distilled off under reduced pressure to obtain a brown oily substance as SP-003-B.
  • SP-003-C which is a polymer according to one embodiment of the present invention, was synthesized by a reaction process based on the following procedure: (1) 2.645 g of polyethyleneimine (epomine, SP-003) (as primary amine amount) 25 mmol) was dissolved in 20 mL of distilled water to prepare a polyethyleneimine solution.
  • 2-picolyl chloride hydrochloride (12.5 mmol, 0.5 equivalent to polyethyleneimine) was dissolved in 20 mL of distilled water to prepare a 2-picolyl chloride hydrochloride solution; (2) The total amount of polyethyleneimine solution was slowly added dropwise to the 2-picolyl chloride hydrochloride solution to make a first mixed solution; (3) the first mixed solution was stirred while warming to 60 ° C; (4) A NaOH solution prepared by dissolving NaOH (25 mmol) in 40 mL of distilled water was slowly added dropwise to the first mixed solution to prepare a second mixed solution; (5) second SP-003-C was synthesized by stirring the mixed solution at 60 ° C. overnight (12 hours).
  • SP-003-C was obtained by an extraction process based on the following procedure: (1) The temperature of the second mixed solution was brought to room temperature, and then extracted with CHCl 3 .
  • the aqueous layer was collected; (2) NaOH was added to the aqueous layer to adjust the pH of the aqueous layer to 13 or more.
  • the organic layer was filtered to obtain a filtrate; (5) In the obtained filtrate, the solvent in the filtrate was distilled off under reduced pressure to obtain a brown oily substance as SP-003-C.
  • SP-018 a polymer according to one embodiment of the present invention, was synthesized by a reaction step based on the following procedure: (1) 7.520 g of polyethyleneimine (epomine, SP-018) (50 mmol as primary amine amount) was dissolved in 20 mL of distilled water to prepare a polyethyleneimine solution.
  • SP-018 was obtained by an extraction process based on the following procedure: (1) After the temperature of the second mixed solution was brought to room temperature, CHCl 3 was added. Here, after adding CHCl 3 , it was visually confirmed that the second mixed solution was emulsified; (2) a certain amount of the emulsified second mixed solution was collected, and the collected second mixed solution was collected at 2000 rpm. (3) The organic layer was collected after centrifugation (4) The organic layer was filtered using liquid phase separation filter paper to obtain a filtrate; (5) In the obtained filtrate, the filtrate The solvent therein was distilled off under reduced pressure to obtain a brown oily substance as SP-003-C.
  • PAA-01 which is a polymer according to an embodiment of the present invention, was synthesized by a reaction step based on the following procedure: (1) Polyallylamine (PAA-HCL-01) corresponding to 25 mmol as an amine amount was added to 20 mL of distilled water. To obtain a polyallylamine solution. In addition, 8.2 g (50 mmol) of 2-picolyl chloride hydrochloride was dissolved in 60 mL of distilled water to prepare a 2-picolyl chloride hydrochloride solution.
  • PAA-01 was obtained by an extraction step based on the following procedure: (1) The temperature of the second mixed solution was brought to room temperature, and then extracted three times with CHCl 3 to obtain an organic layer; 2) The obtained organic layer was washed with saturated aqueous sodium bicarbonate; (3) The washed organic layer was filtered using liquid phase separation filter paper to obtain a filtrate; (4) In the obtained filtrate The solvent in the filtrate was distilled off under reduced pressure to obtain a brown oily substance as PAA-01. A 1 H-NMR spectrum of the obtained PAA-01 was measured. The results are shown in FIG. From the result of the 1 H-NMR spectrum shown in FIG. 3A, the conversion rate in Synthesis Example 5 was determined. Specifically, it is as follows.
  • the peak at ⁇ 2.377 ppm was taken as the peak of the polymer main chain. There is one N per ⁇ 2.377 ppm peak (corresponding to 2H). Regarding the N1, it is assumed that primary amines, secondary amines, and tertiary amines are present, and the ratio of these amines is as described in the product catalog. Here, the primary amino group has two hydrogen atoms (active point) and the secondary amino group has one hydrogen atom (active point), and the sum of these hydrogen atoms is determined. On the other hand, the number of pyridine present at the terminal is determined using any one of the peaks d to g, and this is defined as the number of ⁇ -picolyl groups introduced.
  • the conversion rate is obtained.
  • the conversion rate in the synthesis example 5 was 79%.
  • PAA-05 was synthesized by the same method as in Synthesis Example 5, except that PAA-HCL-05 was used instead of PAA-HCL-01 as the polyallylamine, and PAA-05 was obtained. With respect to the obtained PAA-05, a 1 H-NMR spectrum was measured. The results are shown in FIG. From the result of the 1 H-NMR spectrum shown in (b) of FIG. The conversion rate was 68%.
  • PAA-3L was synthesized by the same method as in Synthesis Example 5 except that PAA-HCL-3L was used as the polyallylamine instead of PAA-HCL-01, and PAA-3L was obtained. With respect to the obtained PAA-3L, a 1 H-NMR spectrum was measured. The results are shown in FIG. From the result of the 1 H-NMR spectrum shown in FIG. The conversion rate was 63%.
  • a mixing step was performed using a part of the polymer obtained by the above-described method. Specifically, a part of the obtained polymer was mixed with a 0.25 mM zinc aqueous solution to obtain a polymer having a DPA structure forming a complex with zinc. Similarly, Maginin-2 was mixed with a 0.25 mM zinc aqueous solution.
  • SP-018 (sample numbers 1 to 8)
  • SP-018 (sample numbers 1 to 8) was obtained by the same method as in Synthesis Example 4 except that the amount of 2-picolyl chloride hydrochloride used in the reaction was changed.
  • MH-broth solution which is a medium used for bacterial culture
  • an MH-broth solution which is a medium used for bacterial culture
  • 22 g of powdered MH-broth was dissolved in ultrapure water (1 L) to prepare an MH-broth solution (undissolved).
  • 1N sodium hydroxide The pH of the MH-broth solution (undissolved) was adjusted to 7.3 using the solution and 1N hydrochloric acid solution, and then (iii) the MH-broth solution (undissolved) after pH adjustment was autoclaved (121 ° C., Treatment was performed for 20 minutes to prepare an MH-broth solution.
  • an agar medium (also referred to as Agar plate) used for bacterial culture was prepared. Specifically, an agar medium was prepared by the following procedure.
  • the obtained bacterial suspension was diluted with an MH-broth solution so that the OD600 was 0.1.
  • the diluted suspension was incubated at 37 ° C. for 90 minutes. At this time, the MH-broth solution was stirred at a speed of 180 rpm.
  • the concentration of the polymer in the polymer solution or the concentration of Maginin-2 in the Magainin solution is 500 ⁇ g ⁇ mL ⁇ 1 , 250 ⁇ g ⁇ mL ⁇ 1 , 125 ⁇ g ⁇ mL ⁇ 1 , 62.5 ⁇ g ⁇ mL ⁇ 1 , 31.3 ⁇ g • mL ⁇ 1 , 15.6 ⁇ g ⁇ mL ⁇ 1 , 7.8 ⁇ g ⁇ mL ⁇ 1 , and 3.9 ⁇ g ⁇ mL ⁇ 1 .
  • Each 10 ⁇ L / well of the prepared sample solution was added to 8 wells of a 96-well plate manufactured by Corning. As controls, a well added with 10 ⁇ L of water and a well added with 100 ⁇ L of MH-Broth were prepared.
  • FIG. 5 (a) shows the E.D. of the polymer according to one embodiment of the present invention. 6 is a graph showing the evaluation results of antimicrobial activity against E. coli, and FIG. It is a graph which shows the evaluation result of the antimicrobial activity with respect to aureus.
  • the numbers described above each bar graph indicate the MIC ( ⁇ g ⁇ mL ⁇ 1 ) value on the vertical axis.
  • FIG. 5 (a) shows that SP-003-A, SP-018, PAA-05, and PAA-3L, which are polymers according to an embodiment of the present invention, do not contain zinc.
  • E. coli have antimicrobial activity.
  • SP-018, PAA-01, PAA-05, and PAA-3L exhibited higher antimicrobial activity against Escherichia coli than Maginin-2, which is a known antibacterial substance, in the presence of zinc.
  • the polymers according to one embodiment of the present invention are S. aureus. It can be seen that it has antimicrobial activity against.
  • SP-003-A, SP-018, PAA-01, PAA-05, and PAA-3L are more effective against Staphylococcus aureus than Maginin-2 in the presence of zinc. It showed high antimicrobial activity.
  • the antimicrobial activity improves as the conversion rate increases, and when the conversion rate reaches a specific value, the antimicrobial activity is increased even if the conversion rate is further increased. There was no significant improvement. This indicates that it is not necessary to increase the conversion rate in the polymer to the maximum value, and sufficient antimicrobial activity can be obtained as long as the conversion rate in the polymer reaches a specific value.
  • the polymer according to one embodiment of the present invention can be synthesized by a simple procedure and has antimicrobial activity. Therefore, the polymer can be suitably used for business supplies, consumer products, medical devices, pharmaceuticals, and the like as antimicrobial agents, antibacterial agents, antifungal agents, antiseptics, fungicides, and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Organic Chemistry (AREA)
  • Oncology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Communicable Diseases (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Epidemiology (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

簡易な手順で合成することができ、かつ、抗微生物活性を有する新規のポリマー、当該ポリマーの製造方法、並びにその利用技術を提供するために、アミノ基を有するポリマーにおいて、当該アミノ基にα-ピコリル基2分子を修飾してなる、ジピコリルアミン構造を有するポリマーを用いる。

Description

ジピコリルアミン構造を有するポリマー、その製造方法、抗微生物剤および抗菌方法
 本発明は、ジピコリルアミン構造を有するポリマー、その製造方法、抗微生物剤および抗菌方法に関する。
 抗生物質は、細菌の感染症に対する強力なツールである。従来、細菌が合成するタンパク質を標的とした様々な抗生物質が開発されてきた。しかしながら、標的とされたタンパク質の構造を変えるなどの方法により、従来の抗生物質に対して薬剤耐性を獲得する細菌が報告されている。そのため、タンパク質を標的とした従来の抗生物質では、感染症への対応としては十分ではなかった。
 このような理由から、近年、タンパク質以外の物質を標的とした抗生物質の開発が求められている。
 本発明者らは、これまでに、細菌の細胞膜を標的とした、抗微生物活性を有するポリマーを開発している。例えば、非特許文献1において、ジピコリルアミン(Dipicolylamine:DPA)構造を有するメタクリレートモノマーを重合して、抗微生物活性を有するポリマーを製造する技術を報告している。
Kazuma Yasuahara et. al.,Polymer Preprints 2012, 53(1), 554
 しかしながら、上述した非特許文献1では、抗微生物活性を有するポリマーを製造するにあたり、多くの工程が必要であった。このため、目的のポリマーを簡易な合成方法によって得るという観点からは、十分なものでなく、さらなる改善の余地があった。
 本発明の一実施形態は、上記問題点に鑑みなされたものであり、その目的は、簡易な手順で合成することができ、かつ、抗微生物活性を有する新規のポリマー、当該ポリマーの製造方法、並びにその利用技術を提供することである。
 <1>アミノ基を有するポリマーにおいて、当該アミノ基にα-ピコリル基2分子を修飾してなる、下記式(1)で表されるジピコリルアミン構造を有するポリマー:
Figure JPOXMLDOC01-appb-C000007
 (上記式(1)中、Rは、水素原子、ハロゲン原子、ニトロ基、シアノ基、炭素数1~6のアルキル基、および炭素数1~6のアルコキシ基からなる群からそれぞれ独立して選択され、同一であってもよく、または異なっていてもよい。また、当該ジピコリルアミン構造は、金属Mと錯体を形成していてもよい。)。
 <2><1>に記載のポリマーを含む、抗微生物剤。
 <3>末端および/または側鎖にアミノ基を有するポリマーに、α-ピコリル基を反応させる反応工程を含む、下記式(6)で表されるジピコリルアミン構造を有するポリマーの製造方法:
Figure JPOXMLDOC01-appb-C000008
 (上記式(6)中、Rは、水素原子、ハロゲン原子、ニトロ基、シアノ基、炭素数1~6のアルキル基、および炭素数1~6のアルコキシ基からなる群からそれぞれ独立して選択され、同一であってもよく、または異なっていてもよい。また、当該ジピコリルアミン構造は、金属Mと錯体を形成していてもよい。)。
 <4><2>に記載の抗微生物剤を用いて対象物を処理する処理工程を含む、抗菌方法。
 本発明の一実施形態によれば、優れた抗微生物活性を有する新規なポリマーを、簡易な手順で取得し得るという効果を奏する。
(a)は本発明の一実施形態に係るポリマーSP-003-AのH-NMRスペクトルを示す図であり、(b)は本発明の一実施形態に係るポリマーSP-003-BのH-NMRスペクトルを示す図である。 (a)は本発明の一実施形態に係るポリマーSP-003-CのH-NMRスペクトルを示す図であり、(b)は本発明の一実施形態に係るポリマーSP-018のH-NMRスペクトルを示す図である。 (a)は本発明の一実施形態に係るポリマーPAA-01のH-NMRスペクトルを示す図であり、(b)は本発明の一実施形態に係るポリマーPAA-05のH-NMRスペクトルを示す図である。 本発明の一実施形態に係るポリマーPAA-3LのH-NMRスペクトルを示す図である。 (a)は本発明の一実施形態に係るポリマーについてE.coliに対する抗微生物活性の評価結果を示すグラフであり、(b)は本発明の一実施形態に係るポリマーについてS.aureusに対する抗微生物活性の評価結果を示すグラフである。 (a)は本発明の一実施形態に係るポリマーについてE.coliに対する抗微生物活性の評価結果を示すグラフであり、(b)は本発明の一実施形態に係るポリマーについてS.aureusに対する抗微生物活性の評価結果を示すグラフである。
 本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、請求の範囲に示した範囲で種々の変更が可能である。また、異なる実施形態または実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態または実施例についても、本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。なお、本明細書中に記載された学術文献の全てが、本明細書中において参考文献として援用される。
 〔1.ポリマー〕
 本発明の一実施形態に係るポリマーは、アミノ基を有するポリマーにおいて、当該アミノ基にα-ピコリル基2分子を修飾してなる、上記式(1)で表されるDPA構造を有するものである。なお、式(1)のDPA構造は、金属Mと錯体を形成している構造であってもよい。
 本発明の一実施形態に係るポリマーは、上記構成を有することにより、簡易な手順で合成することができ、かつ、優れた抗微生物活性を有する。抗微生物活性についてより詳細に説明すると次のとおりである。微生物の表面、すなわち微生物の細胞膜(脂質膜)の外側表面は、負に帯電している。本発明の一実施形態に係るポリマーは水中でポリカチオンとして存在し得る。このため、本ポリマーは微生物の表面の細胞膜を選択的に認識し、負電荷脂質に対して選択的に結合することで、微生物の細胞膜の構造が撹乱される。その結果、微生物の生物活性が抑制されるものと考えられる。
 式(1)のRは、水素原子であることが好ましいが、これに限られず、ハロゲン原子、ニトロ基、シアノ基、アミノ基、炭素数1~6のアルキル基、および炭素数1~6のアルコキシ基からなる群からそれぞれ独立して選択され得る。
 式(1)のRとなり得るハロゲン原子は、特に限定されない。当該ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 式(1)のRとなり得る炭素数1~6のアルキル基は、特に限定されない。当該炭素数1~6のアルキル基としては、例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、tert-ブチル、sec-ブチル、n-ペンチル、ネオペンチル、n-ヘキシル、イソヘキシル、3-メチルペンチル基等が挙げられる。
 式(1)のRとなり得る炭素数1~6のアルコキシ基は、特に限定されない。当該炭素数1~6のアルコキシ基としては、例えば、メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ、イソブトキシ、tert-ブトキシ、sec-ブトキシ、n-ペントキシ、ネオペントキシ、n-ヘキシルオキシ、イソヘキシルオキシ、3-メチルペントキシ基等が挙げられる。
 本発明の一実施形態に係るポリマーにおいて、式(1)で表されるDPA構造は、金属Mと錯体を形成していることが好ましい。上記構成であれば、ポリマーの正電荷が増加するため、ポリマーの微生物への選択的な認識・結合性が増加し得る。そのため、ポリマーが優れた抗微生物活性を発揮し得るという利点を有する。金属Mは、ジピコリルアミン構造と錯体を形成し得る限り特に限定されない。金属Mとしては、例えば、2価金属を挙げることができ、より具体的に、Zn、Cu、Mg、Ca、Ni、Fe、Co、Mn等を挙げることができる。これらの中でも、Znであることがより好ましい。Znは生物の生体内に豊富に存在し得る。そのため、金属MがZnである場合には、ポリマーの適用を意図しない生物にポリマーが取り込まれた場合であっても、当該生物に対するポリマーの毒性を抑えることが可能となる。
 本発明の一実施形態に係るポリマーの原料となるポリマー(以下、原料ポリマーとも称する)、すなわちアミノ基を有するポリマーとしては、-NHおよび/または-NH を有するものであればよく、特に限定されない。アミノ基を有する原料ポリマーは、換言すれば、第1級アミンを有する原料ポリマーともいえる。原料ポリマーとしては、例えば、ポリエチレンイミン、ポリアリルアミン、ポリリジン、側鎖型アミノ変性シリコーンオイル、ポリメタクリレート、ポリアクリレート、ポリアクリルアミド、ポリノルボルネン、ポリシラン、およびそれらの共重合体、等が挙げられる。また、ポリアミドアミン(polyamidamin;PAMM)などのデンドリマーを原料ポリマーとして用いることも可能である。これらのポリマーおよびデンドリマーは、原料ポリマーとして1種を用いてもよく、2種以上を混合して用いてもよい。また、これらポリマーおよびデンドリマーの中でも、原料ポリマーとしては、ポリエチレンイミンまたはポリアリルアミンが好ましい。
 原料ポリマーとして使用可能なポリエチレンイミンは、直鎖高分子でなく、第1級、第2級、および/または第3級アミンを含む分岐構造を有するポリマーであり得る。
 原料ポリマーは水溶性ポリマーであることが好ましい。上記構成によれば、得られるポリマーが水溶性となるため、抗微生物剤としての利用が容易となり、用途が広がるという利点を有する。
 本発明の一実施形態に係るポリマーは、上記式(2)または上記式(3)で示される繰り返し単位を有することが好ましい。
 上記式(2)中、mおよびnは、それぞれ独立して任意に選択される整数である。例えば、mは1~1000であることが好ましく、1~500であることがより好ましく、1~50であることが更に好ましく、1~10であることが特に好ましい。また、nは、1~1000であることが好ましく、5~500であることがより好ましく、7~100であることが更に好ましく、10~39であることが特に好ましい。
 また、上記式(2)において、繰り返し回数がmである繰り返し単位は、第3級アミンを有している。このような繰り返し単位を有するポリマーを原料ポリマーとして用いた場合、第3級アミンのHにα-ピコリル基が導入される場合がある。第3級アミンに導入されたα-ピコリル基は、DPA構造を形成できない。故に、原料ポリマーが有する当該繰り返し単位(上記式(2)において繰り返し回数がmである繰り返し単位)の数は、少ない方が好ましい。
 上記式(3)中、nは任意に選択される整数である。例えば、nは、1~500であることが好ましく、5~300であることがより好ましく、10~100であることが更に好ましく、20~40であることが特に好ましい。
 上記式(2)および(3)中、XはポリマーとDPA構造とをつなぐスペーサーを意図している。Xは炭素数1~5の直鎖アルキル基である。またXは、炭素数1~4の直鎖アルキル基であることが好ましく、炭素数1~3の直鎖アルキル基であることがより好ましく、炭素数1または2の直鎖アルキル基であることがさらに好ましく、炭素数1の直鎖アルキル基であることが特に好ましい。
 上記式(2)で示される繰り返し単位を有するポリマーは、ポリエチレンイミンを原料ポリマーとして用いることにより得ることができる。また、上記式(3)で示される繰り返し単位を有するポリマーは、ポリアリルアミンを原料ポリマーとして用いることにより得ることができる。
 本発明の一実施形態に係るポリマーは、上記式(4)または上記式(5)であることが好ましい。上記式(4)は、ポリエチレンイミンを原料ポリマーとして用いることにより得ることができる。また、上記式(5)は、ポリアリルアミンを原料ポリマーとして用いることにより得ることができる。
 上記式(5)中、nは任意に選択される整数である。例えば、nは、1~500であることが好ましく、5~300であることがより好ましく、10~100であることが更に好ましく、20~40であることが特に好ましい。
 本発明の一実施形態に係るポリマーの分子量は、特に限定されず、適宜設定され得る。例えば、250~10万であることが好ましく、300~1万であることがより好ましく、500~5000であることが更に好ましく、750~3000であることが特に好ましい。例えば、本発明の一実施形態に係るポリマーが、ポリエチレンイミンを原料ポリマーとして得られるものである場合、本発明の一実施形態に係るポリマーの分子量は、数平均分子量であることが好ましい。一方、本発明の一実施形態に係るポリマーが、ポリアリルアミンを原料ポリマーとして得られるものである場合、本発明の一実施形態に係るポリマーの分子量は、重量平均分子量であることが好ましい。上記数平均分子量は、粘度法によって算出される数平均分子量であってもよいし、沸点上昇に基づいて算出される数平均分子量であってもよい。
 〔2.ポリマーの製造方法〕
 本発明の一実施形態に係る、上記式(6)で表されるジピコリルアミン構造を有するポリマーの製造方法は、末端および/または側鎖にアミノ基を有するポリマーに、α-ピコリル基を反応させる、反応工程を含むものである。
 反応工程に用いられる、末端および/または側鎖にアミノ基を有するポリマーは、上記〔1.ポリマー〕の項で説明した原料ポリマーを好適に用いることができる。
 上記反応工程は、原料ポリマーとα-ピコリル基を有する化合物とを混合して接触させることによって、上記〔1.ポリマー〕を製造する工程である。
 反応工程に用いられ得る、α-ピコリル基を有する化合物(以下、ピコリル基含有化合物とも称する)としては、α-ピコリル基を有する限り、特に限定されない。例えば、2-ピコリルクロリド塩酸塩(2-picolylchloridehydrochloride)等が挙げられる。
 本発明の一実施形態に係るポリマーは、以下の(i)および(ii)の方法により製造することも可能である:(i)原料ポリマーと2-ピリジンカルボキシアルデヒド(2-pyridinecarboxyaldehyde)とを反応させてイミンを形成させる;(ii)還元剤を使用してイミンをアミンとすることにより、ジピコリルアミン構造を形成させる。
 反応工程における、温度、pH、時間などの反応条件は、特に限定されず、原料ポリマーおよびピコリル基含有化合物の種類並びに量に依存して、かつ、ポリマーの合成効率および収量に依存して、適宜設定され得る。例えば、後述する実施例の条件を例示し得る。
 反応工程では、反応を促進させるために、原料ポリマーとピコリル基含有化合物との混合物を、加温することが好ましい。反応工程では、当該混合物を加温して、30℃~100℃にすることが好ましく、35℃~90℃にすることがより好ましく、40℃~80℃にすることがさらに好ましく、50℃~70℃にすることが特に好ましい。
 反応工程では、反応を促進させるために、原料ポリマーとピコリル基含有化合物との混合物のpHを調製することが好ましい。反応工程では、当該混合物のpHを調製して、pHを10~18にすることが好ましく、11~16にすることがより好ましく、12~14にすることがさらに好ましい。
 反応工程の時間、換言すれば、原料ポリマーとピコリル基含有化合物とを接触させる時間は、本発明の一実施形態に係るポリマーを十分量得るために、8時間~16時間であることが好ましく、9時間~15時間であることがより好ましく、10時間~14時間であることがさらに好ましく、11時間~13時間であることが特に好ましい。
 反応工程では、反応を促進させるために、原料ポリマーとピコリル基含有化合物との混合物を撹拌することが好ましい。
 反応工程では、原料ポリマーに対して反応させるピコリル基含有化合物の量を変化させることにより、原料ポリマーに対するα-ピコリル基の導入量を調整することができる。原料ポリマーに対するα-ピコリル基の導入量および製造費用の観点からは、原料ポリマーに対して、ピコリル基含有化合物を2当量反応させることが好ましい。ピコリル基含有化合物は、原料ポリマーのアミノ基(-NHおよび/または-NH )と反応する。従って、原料ポリマーに対して、ピコリル基含有化合物を1当量反応させるということは、原料ポリマーが有する1級アミンのモル量に対して、同じモル量のピコリル基含有化合物を反応させることを意味する。
 原料ポリマーは無色であることが多く、ピコリル基含有化合物は茶色であることが多い。一方、製造により得られたポリマーは、赤色を示す。故に、反応工程の前後で、溶液の色は無色および茶色から赤茶色(茶褐色)に変化し得る。また、原料ポリマーと比較して、製造により得られたポリマーは、水に対する溶解度が低下する。故に、反応工程前の溶液は透明であり、反応工程後の溶液は懸濁液となり得る。従って、DPA構造を有するポリマーが合成されたか否か、またはどのくらいの量のDPA構造がポリマーに導入されたかについて、反応工程後の、溶液の色および溶液の懸濁度から推測することができる場合もあり得る。
 本明細書において、原料ポリマーにおけるアミノ基(-NHまたは-NH )が有する水素原子(H)のうち、α-ピコリル基により置換された水素原子の割合を、変換率(%)で表す。変換率は、原料ポリマーのアミノ基が有する水素原子の数、および、製造後に得られたポリマーに導入されたα-ピコリル基の数、から求めることができる。原料ポリマーとして市販のポリマーを用いる場合には、販売元のカタログなどから当該ポリマーのアミノ基が有する水素原子の数が分かる。製造後に得られたポリマーに導入されたα-ピコリル基の数は、H-NMRを用いることにより求めることができる。
 本発明の一実施形態に係るポリマーの製造方法では、変換率は、10%以上であることが好ましく、15%以上であることがより好ましく、20%以上であることがより好ましい。上記構成によれば、得られるポリマーは、十分な抗微生物活性を有する。
 本発明の一実施形態に係るポリマーの製造方法では、変換率は30%以上、40%以上、50%以上、65%以上、80%以上、90%以上、または、100%であってもよいが、変換率の上限値を低く設定することも可能である。後述する実施例にも示すように、変換率を上昇させると本発明の一実施形態に係るポリマーの抗微生物活性が、微生物、真菌類、腐敗菌および腐朽菌などの、増殖を抑制するに十分、または、これらを死滅させるに十分な程度にまで向上する。変換率が特定の値Aに達すると、それ以上変換率を上昇させたとしても、本発明の一実施形態に係るポリマーの抗微生物活性が大きく向上することはない。それ故に、変換率の上限値を例えば値Aに設定すれば、ポリマーに十分な抗微生物活性を付与した上で、ポリマーの製造に用いる原料(ピコリル基含有化合物)の量を抑制でき、その結果、ポリマーの製造コストを低減できるという利点が得られる。変換率の上限値は、特に限定されないが、例えば、90%、80%、70%、60%、50%、40%、30%または20%であってもよい。当該上限値は、対象とする微生物の種類、および/または、金属Mの有無などに応じて、適宜、設定され得る。
 本発明の一実施形態に係るポリマーの製造方法は、反応工程の後に、さらに抽出工程を含んでいてもよい。反応工程で合成されたポリマーは、溶液中に存在し得る。本発明の一実施形態に係るポリマーの製造方法が抽出工程を含むことにより、合成されたポリマーを、固形物として得ることが可能となる。
 上記抽出工程は、従来公知の方法を用いることができ、特に限定されない。抽出工程は、例えば、クロロホルム(CHCl)を用いた、抽出操作を行う工程であってもよい。当該抽出操作によって、溶液中から、ポリマーを有機層中に得ることができる。その後、例えば、ポリマーを含む有機層から、有機溶媒を減圧留去することにより、ポリマーを、固形物として得ることができる。ここで、ポリマーを含む有機層は、有機溶媒の減圧留去前に、(a)例えば飽和重曹水を用いて、洗浄されてもよく、さらに(b)液相分離濾紙を用いて濾過されてもよい。ポリマーを含む有機層を、液相分離濾紙を用いて濾過する場合には、得られた濾液から有機溶媒を減圧留去することにより、ポリマーを、固形物として得ることができる。
 本発明の一実施形態に係るポリマーの製造方法は、反応工程の後に、反応工程にて得られたポリマーと、金属Mとを混合する、混合工程をさらに含んでいてもよい。当該混合工程は、上述した抽出工程の前または後に行うことも可能である。当該構成によれば、式(1)で表されるジピコリルアミン構造が金属Mと錯体を形成している構造を有するポリマーを製造することができる。
 本発明の一実施形態に係るポリマーは、金属Mと錯体を形成していなくても、所望の効果を得ることができる。また、本発明の一実施形態に係るポリマーを使用する環境に金属Mが存在すれば、本発明の一実施形態に係るポリマーは、当該金属Mと錯体を形成することも可能である。それ故に、本発明の一実施形態に係るポリマーの製造方法は、混合工程を含んでいなくてもよい。
 本発明の一実施形態に係るポリマーの製造方法が抽出工程および混合工程を含む場合、抽出工程および混合工程の順番は特に限定されない。
 〔3.抗微生物剤〕
 本発明の一実施形態に係る抗微生物剤は、上記〔1.ポリマー〕の項で説明したポリマーを含むものである。
 本発明の一実施形態に係る抗微生物剤とは、細菌、真菌、藻類などの微生物の増殖を抑制またはこれら微生物を死滅させる効果を有する薬剤を意味する。抗真菌剤とは、真菌類の増殖を抑制またはこれらを死滅させる効果を有する薬剤を意味する。また、防腐・防かび剤とは、腐敗菌および腐朽菌の増殖を抑制またはこれらを死滅させる効果を有する薬剤を意図する。
 本発明の一実施形態に係る抗微生物剤は、様々な用途に利用可能である。例えば、(a)金属加工油用防腐剤および水処理膜用抗菌処理剤等の業務用品としての利用、(b)抗菌石鹸、抗菌塗装、化粧品、防腐剤および衛生用品等の民生品としての利用、(c)医療用カテーテルの抗菌性表面加工等の医療機器への利用、並びに(d)抗生物質および消毒剤等の医薬品としての利用、が挙げられる。
 本発明の一実施形態に係る抗微生物剤は、ポリマー以外の成分(例えば、緩衝剤、pH調整剤、等張化剤、防腐剤、抗酸化剤、高分子量重合体、賦形剤、担体、希釈剤、溶媒、可溶化剤、安定剤、充填剤、結合剤、界面活性剤、安定化剤等)を含んでいてもよい。
 本発明の一実施形態に係る抗微生物剤に含有されているポリマーの量は、特に限定されず、例えば、抗微生物剤を100重量%とした場合に、0.001重量%~100重量%であってもよく、0.01重量%~100重量%であってもよく、0.1重量%~100重量%であってもよく、0.1重量%~95重量%であってもよく、0.1重量%~90重量%であってもよく、0.1重量%~80重量%であってもよく、0.1重量%~70重量%であってもよく、0.1重量%~60重量%であってもよく、0.1重量%~50重量%であってもよく、0.1重量%~40重量%であってもよく、0.1重量%~30重量%であってもよく、0.1重量%~20重量%であってもよく、0.1重量%~10重量%であってもよい。
 本発明の一実施形態に係る抗微生物剤に含有されているポリマー以外の成分の量は、特に限定されず、例えば、抗微生物剤を100重量%とした場合に、0重量%~99.999重量%であってもよく、0重量%~99.99重量%であってもよく、0重量%~99.9重量%であってもよく、5重量%~99.9重量%であってもよく、10重量%~99.9重量%であってもよく、20重量%~99.9重量%であってもよく、30重量%~99.9重量%であってもよく、40重量%~99.9重量%であってもよく、50重量%~99.9重量%であってもよく、60重量%~99.9重量%であってもよく、70重量%~99.9重量%であってもよく、80重量%~99.9重量%であってもよく、90重量%~99.9重量%であってもよい。
 〔4.抗菌方法〕
 本発明の一実施形態に係る抗菌方法は、上記〔3.抗微生物剤〕の項で説明した抗微生物剤を用いて対象物を処理する処理工程を含む。当該構成であれば、所望の対象物に対して、抗微生物剤に由来する抗微生物活性を付与することができる。例えば、抗微生物剤を溶液として調製し、当該溶液を用いて対象物を処理(例えば、コーティング等)すれば、あらゆる対象物に対して抗微生物活性を付与することができる。それ故に、本発明において、抗微生物活性が付与される対象物は限定さない。
 上記対象物としては、特に限定されず、例えば、(a)金属加工油および水処理膜等の業務用品、(b)石鹸、塗装および化粧品等の民生品、(c)医療用カテーテル等の医療機器、並びに(d)医薬品、が挙げられる。
 上記処理工程にて行われる処理は、例えば、(i)対象物と抗微生物剤とを混合する処理、または(ii)対象物に抗微生物剤を塗布する処理であってもよい。
 〔その他の態様〕
 本発明の一実施形態には、以下の発明が包含され得る:
 (i)抗微生物剤を製造するための、上記〔1.ポリマー〕の項で説明したポリマーの使用。
 (ii)上記〔1.ポリマー〕の項で説明したポリマーを用いて、抗微生物剤を製造する抗微生物剤の製造方法。
 本発明の一実施形態は、以下のように構成することができる。
 〔1〕アミノ基を有するポリマーにおいて、当該アミノ基にα-ピコリル基2分子を修飾してなる、下記式(1)で表されるジピコリルアミン構造を有するポリマー:
Figure JPOXMLDOC01-appb-C000009
 (上記式(1)中、Rは、水素原子、ハロゲン原子、ニトロ基、シアノ基、炭素数1~6のアルキル基、および炭素数1~6のアルコキシ基からなる群からそれぞれ独立して選択され、同一であってもよく、または異なっていてもよい。また、当該ジピコリルアミン構造は、金属Mと錯体を形成していてもよい。)。
 〔2〕
Figure JPOXMLDOC01-appb-C000010
 (上記式(2)中、mおよびnはそれぞれ独立して任意に選択される整数であり、Xは炭素数1~5の直鎖アルキル基であり、Yは上記式(1)で表されるジピコリルアミン構造である。)
または、
Figure JPOXMLDOC01-appb-C000011
 (上記式(3)中、nは任意に選択される整数であり、Xは炭素数1~5の直鎖アルキル基であり、Yは上記式(1)で表されるジピコリルアミン構造である。)
で示される繰り返し単位を有する〔1〕に記載のポリマー。
 〔3〕
Figure JPOXMLDOC01-appb-C000012
または、
Figure JPOXMLDOC01-appb-C000013
 (上記式(5)中、nは任意に選択される整数である。)
である、〔1〕または〔2〕に記載のポリマー。
 〔4〕上記ジピコリルアミン構造を有するポリマーは、原料ポリマーのアミノ基が有する水素原子のうちα-ピコリル基に置換された水素原子の割合として示される変換率が、10%以上のものである、〔1〕~〔3〕のいずれか1つに記載のポリマー。
 〔5〕上記金属Mは、二価金属である、〔1〕~〔4〕のいずれか1つに記載のポリマー。
 〔6〕上記ジピコリルアミン構造を有するポリマーは、重量平均分子量または数平均分子量が250以上100000以下のものである、〔1〕~〔5〕のいずれか1つに記載のポリマー。
 〔7〕〔1〕~〔6〕のいずれか1つに記載のポリマーを含む、抗微生物剤。
 〔8〕末端および/または側鎖にアミノ基を有するポリマーに、α-ピコリル基を反応させる反応工程を含む、下記式(6)で表されるジピコリルアミン構造を有するポリマーの製造方法:
Figure JPOXMLDOC01-appb-C000014
 (上記式(6)中、Rは、水素原子、ハロゲン原子、ニトロ基、シアノ基、炭素数1~6のアルキル基、および炭素数1~6のアルコキシ基からなる群からそれぞれ独立して選択され、同一であってもよく、または異なっていてもよい。また、当該ジピコリルアミン構造は、金属Mと錯体を形成していてもよい。)。
 〔9〕〔7〕に記載の抗微生物剤を用いて対象物を処理する処理工程を含む、抗菌方法。
 本発明の一実施例について以下に説明するが、本発明はこれらに限定されない。
 (装置)
 以下の実施例および比較例において、使用した装置は以下の通りである。
○核磁気共鳴スペクトル装置(以下、1H-NMRと略記する);ECX-400P(400MHz)、日本電子社製
○マトリックス支援レーザー脱離イオン化飛行時間型質量分析装置(以下、MALDI-TOF/MSと略記する);Autoflex II、Bruker社製。
 (化合物)
 以下の実施例および比較例において、使用した主な化合物は以下の通りである。
 (i)原料ポリマー
 ○ポリエチレンイミン;日本触媒株式会社製のエポミンSP-003(分子量300(沸点上昇による数平均分子量))、および、エポミンSP-018(分子量1,800(沸点上昇による数平均分子量))
 ○ポリアリルアミン;日東紡株式会社製のPAA-HCL-01(分子量1,600(重量平均分子量))、PAA-HCL-05(分子量5,000(重量平均分子量))、およびPAA-HCL-3L(分子量15,000(重量平均分子量))。
 (ii)ペプチド
 ○Magainin-2。
 (iii)細菌
 ○E.coli(大腸菌);ATCC25922
 ○S.aureus(黄色ブドウ球菌);ATCC25923。
 (測定方法)
 <H-NMR>
 合成したポリマーについて、下記方法によってH-NMRスペクトルを測定した。
 H-NMRスペクトルの測定は、装置の説明書に基づき行った。具体的な測定条件は以下の通りである。溶媒は、合成例1~4についてはCD3ODを使用し、合成例5~7についてはCDClを使用した。スキャン回数は8回とした。基準物質は、TMS(0.03体積%)を用いた。
 <MALDI-TOF/MS>
 合成したポリマーについて、下記方法によってマトリックス支援レーザー脱離イオン化飛行時間型質量分析を行った。
 MALDI-TOF/MSの測定は、装置の説明書に基づき行った。具体的な測定条件は以下の通りである。マトリックスは、合成例1~4についてはシナピン酸を使用し、合成例5~7についてはα-シアノ-4-ヒドロキシケイ皮酸を使用した。測定は、リフレクターモードにて行った。
 (合成例)
 (合成例1:SP-003-A)
 以下の手順に基づく反応工程により、本発明の一実施形態に係るポリマーであるSP-003-Aを合成した:(1)ポリエチレンイミン(エポミン、SP-003)5.296g(1級アミン量として50mmol)を蒸留水60mLに溶解させ、ポリエチレンイミン溶液を作製した。また、2-ピコリルクロリド塩酸塩16.3g(100mmol、ポリエチレンイミンに対して2当量)を蒸留水60mLに溶解させ、2-ピコリルクロリド塩酸塩溶液を作製した。;(2)2-ピコリルクロリド塩酸塩溶液に、ポリエチレンイミン溶液の全量をゆっくり滴下することで添加し、第1の混合溶液を作製した;(3)第1の混合溶液を60℃に温めながら撹拌した;(4)NaOH(200mmol)を蒸留水40mLに溶解させて作製したNaOH溶液を、第1の混合溶液にゆっくり滴下することで添加し、第2の混合溶液を作製した;(5)第2の混合溶液を60℃で一晩(12時間)、攪拌することにより、SP-003-Aを合成した。
 次に、以下の手順に基づく抽出工程により、SP-003-Aを得た:(1)第2の混合溶液の温度を室温にした後、CHClで3回抽出し、有機層を得た;(2)飽和重曹水を用いて得られた有機層を洗浄した;(3)液相分離濾紙を用いて、洗浄後の有機層を濾過し、濾液を得た;(4)得られた濾液において、濾液中の溶媒を減圧留去することにより、SP-003-Aとして、茶褐色の油状物質を得た。
 得られたSP-003-Aについて、H-NMRスペクトルを測定した。結果を図1の(a)に示す。H-NMRスペクトルの結果において、各ピーク近傍に記載した数字は、各ピークの積分比を示しており、上部に記載した数字は、各ピークの位置(ppm)を示しており、各ピーク近傍に記載したアルファベット(a~g)は、構造式のアルファベットの位置の水素に対応している。ピーク近傍に記載したアルファベットのうち、xは溶媒中の水に対応し、yは溶媒中のメタノールに対応する。H-NMRスペクトルの結果に関する説明は、以降も同様である。図1の(a)に示したH-NMRスペクトルの結果から、合成例1における変換率を求めた。具体的には次の通りである。a+bのピーク(4Hに相当)1つあたり、1つのNが存在する。当該N1つに関して、第1級アミン、第2級アミン、第3級アミンがそれぞれ存在することが想定され、それらアミンの比率は、製品カタログに記載の通りとする。ここで、1級アミノ基は2つの水素原子(活性点)を、2級アミノ基は1つの水素原子(活性点)を有するものであり、これらの水素原子の和を求める。一方、d~gの何れか1つのピークを用いて、末端に存在するピリジンの個数を決定し、これを、導入されたα-ピコリル基の数とする。得られた導入されたα-ピコリル基の数を分子、水素原子の和を分母として、変換率を求める。このようにして変換率を求めたところ、合成例1における変換率は、92.3%であった。
 得られたSP-003-Aについて、MALDI-TOF/MSを行った。結果を表1に示す。なお、MALDI-TOF/MSの結果は、ピークが観察されたもののみ示している(以下も同様)。
Figure JPOXMLDOC01-appb-T000015
 (合成例2:SP-003-B)
 以下の手順に基づく反応工程により、本発明の一実施形態に係るポリマーであるSP-003-Bを合成した:(1)ポリエチレンイミン(エポミン、SP-003)2.645g(1級アミン量として25mmol)を蒸留水20mLに溶解させ、ポリエチレンイミン溶液を作製した。また、2-ピコリルクロリド塩酸塩4.10g(25mmol、ポリエチレンイミンに対して1当量)を蒸留水20mLに溶解させ、2-ピコリルクロリド塩酸塩溶液を作製した;(2)2-ピコリルクロリド塩酸塩溶液に、ポリエチレンイミン溶液の全量をゆっくり滴下することで添加し、第1の混合溶液を作製した;(3)第1の混合溶液を60℃に温めながら撹拌した;(4)NaOH(50mmol)を蒸留水40mLに溶解させて作製したNaOH溶液を、第1の混合溶液にゆっくり滴下することで添加し、第2の混合溶液を作製した;(5)第2の混合溶液を60℃で一晩(12時間)、攪拌することにより、SP-003-Bを合成した。
 次に、以下の手順に基づく抽出工程により、SP-003-Bを得た:(1)第2の混合溶液の温度を室温にした後、CHClで抽出した。ここで、薄層クロマトグラフィー(thin layer chromatography;TLC)により、SP-003-Bが水層にあることを確認したため、水層を採取した;(2)水層にNaOHを加えて、水層のpHを13以上とした。ここで、目視により、油状物質が分離したことを確認した;(3)水層にCHClを加えて、CHClで抽出し、有機層を得た;(4)液相分離濾紙を用いて、有機層を濾過し、濾液を得た;(5)得られた濾液において、濾液中の溶媒を減圧留去することにより、SP-003-Bとして、茶褐色の油状物質を得た。
 得られたSP-003-Bについて、H-NMRスペクトルを測定した。結果を図1の(b)に示す。図1の(b)に示したH-NMRスペクトルの結果から、合成例1と同様に、合成例2における変換率を求めた。合成例2における変換率は、23.67%であった。
 (合成例3:SP-003-C)
 以下の手順に基づく反応工程により、本発明の一実施形態に係るポリマーであるSP-003-Cを合成した:(1)ポリエチレンイミン(エポミン、SP-003)2.645g(1級アミン量として25mmol)を蒸留水20mLに溶解させ、ポリエチレンイミン溶液を作製した。また、2-ピコリルクロリド塩酸塩2.05g(12.5mmol、ポリエチレンイミンに対して0.5当量)を蒸留水20mLに溶解させ、2-ピコリルクロリド塩酸塩溶液を作製した;(2)2-ピコリルクロリド塩酸塩溶液に、ポリエチレンイミン溶液の全量をゆっくり滴下することで添加し、第1の混合溶液を作製した;(3)第1の混合溶液を60℃に温めながら撹拌した;(4)NaOH(25mmol)を蒸留水40mLに溶解させて作製したNaOH溶液を、第1の混合溶液にゆっくり滴下することで添加し、第2の混合溶液を作製した;(5)第2の混合溶液を60℃で一晩(12時間)、攪拌することにより、SP-003-Cを合成した。
 次に、以下の手順に基づく抽出工程により、SP-003-Cを得た:(1)第2の混合溶液の温度を室温にした後、CHClで抽出した。ここで、TLCにより、SP-003-Bが水層にあることを確認したため、水層を採取した;(2)水層にNaOHを加えて、水層のpHを13以上とした。ここで、目視により、油状物質が分離したことを確認した;(3)水層にCHClを加えて、CHClで抽出し、有機層を得た;(4)液相分離濾紙を用いて、有機層を濾過し、濾液を得た;(5)得られた濾液において、濾液中の溶媒を減圧留去することにより、SP-003-Cとして、茶褐色の油状物質を得た。
 得られたSP-003-Cについて、H-NMRスペクトルを測定した。結果を図2の(a)に示す。図2の(a)に示したH-NMRスペクトルの結果から、合成例1と同様に、合成例3における変換率を求めた。合成例3における変換率は、17.97%であった。
 (合成例4:SP-018)
 以下の手順に基づく反応工程により、本発明の一実施形態に係るポリマーであるSP-018を合成した:(1)ポリエチレンイミン(エポミン、SP-018)7.520g(1級アミン量として50mmol)を蒸留水20mLに溶解させ、ポリエチレンイミン溶液を作製した。また、2-ピコリルクロリド塩酸塩16.3g(100mmol、ポリエチレンイミンに対して2当量)を蒸留水60mLに溶解させ、2-ピコリルクロリド塩酸塩溶液を作製した;(2)2-ピコリルクロリド塩酸塩溶液に、ポリエチレンイミン溶液の全量をゆっくり滴下することで添加し、第1の混合溶液を作製した;(3)第1の混合溶液を60℃に温めながら撹拌した;(4)NaOH(25mmol)を蒸留水40mLに溶解させて作製したNaOH溶液を、第1の混合溶液にゆっくり滴下することで添加し、第2の混合溶液を作製した;(5)第2の混合溶液を60℃で一晩(12時間)、攪拌することにより、SP-018を合成した。
 次に、以下の手順に基づく抽出工程により、SP-018を得た:(1)第2の混合溶液の温度を室温にした後、CHClを加えた。ここで、CHClを添加後に、第2の混合溶液が乳化したことを目視で確認した;(2)乳化した第2の混合溶液を一定量採取し、採取した第2の混合溶液を2000rpmで5分間遠心分離した;(3)遠心分離後に、有機層を採取した(4)液相分離濾紙を用いて、有機層を濾過し、濾液を得た;(5)得られた濾液において、濾液中の溶媒を減圧留去することにより、SP-003-Cとして、茶褐色の油状物質を得た。
 得られたSP-018について、H-NMRスペクトルを測定した。結果を図2の(b)に示す。図2の(b)において、ピーク近傍に記載したアルファベットのうち、zは、抽出工程の減圧留去後に残ったCHClに対応する。図2の(b)に示したH-NMRスペクトルの結果から、合成例1と同様に、合成例4における変換率を求めた。合成例4における変換率は、68.8%であった。
 得られたSP-018について、MALDI-TOF/MSを行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000016
 (合成例5:PAA-01)
 以下の手順に基づく反応工程により、本発明の一実施形態に係るポリマーであるPAA-01を合成した:(1)アミン量として25mmolに相当するポリアリルアミン(PAA-HCL-01)を蒸留水20mLに溶解させ、ポリアリルアミン溶液を作製した。また、2-ピコリルクロリド塩酸塩8.2g(50mmol)を蒸留水60mLに溶解させ、2-ピコリルクロリド塩酸塩溶液を作製した。;(2)2-ピコリルクロリド塩酸塩溶液に、ポリアリルアミン溶液の全量をゆっくり滴下することで添加し、第1の混合溶液を作製した;(3)第1の混合溶液を60℃に温めながら撹拌した;(4)NaOH(6g、150mmol)を蒸留水40mLに溶解させて作製したNaOH溶液を、第1の混合溶液にゆっくり滴下することで添加し、第2の混合溶液を作製した;(5)第2の混合溶液を60℃で一晩(12時間)、攪拌することにより、PAA-01を合成した。
 次に、以下の手順に基づく抽出工程により、PAA-01を得た:(1)第2の混合溶液の温度を室温にした後、CHClで3回抽出し、有機層を得た;(2)飽和重曹水を用いて得られた有機層を洗浄した;(3)液相分離濾紙を用いて、洗浄後の有機層を濾過し、濾液を得た;(4)得られた濾液において、濾液中の溶媒を減圧留去することにより、PAA-01として、茶褐色の油状物質を得た。
得られたPAA-01について、H-NMRスペクトルを測定した。結果を図3の(a)に示す。図3の(a)に示したH-NMRスペクトルの結果から、合成例5における変換率を求めた。具体的には次の通りである。δ2.377ppmのピークを、ポリマーの主鎖のピークとした。δ2.377ppmのピーク(2Hに相当する)1つあたり、1つのNが存在する。当該N1つに関して、第1級アミン、第2級アミン、第3級アミンがそれぞれ存在することが想定され、それらアミンの比率は、製品カタログに記載の通りとする。ここで、1級アミノ基は2つの水素原子(活性点)を、2級アミノ基は1つの水素原子(活性点)を有するものであり、これらの水素原子の和を求める。一方、d~gの何れか1つのピークを用いて、末端に存在するピリジンの個数を決定し、これを、導入されたα-ピコリル基の数とする。得られた導入されたα-ピコリル基の数を分子、水素原子の和を分母として、変換率を求める。このようにして変換率を求めたところ、合成例5における変換率は、79%であった。
 得られたPAA-01について、MALDI-TOF/MSを行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000017
 (合成例6:PAA-05)
 ポリアリルアミンとして、PAA-HCL-01に替えて、PAA-HCL-05を用いた以外は、合成例5と同一の方法により、PAA-05を合成し、PAA-05を得た。得られたPAA-05について、H-NMRスペクトルを測定した。結果を図3の(b)に示す。図3の(b)に示したH-NMRスペクトルの結果から、合成例6における変換率を求めた。変換率は、68%であった。
 (合成例7:PAA-3L)
 ポリアリルアミンとして、PAA-HCL-01に替えて、PAA-HCL-3Lを用いた以外は、合成例5と同一の方法により、PAA-3Lを合成し、PAA-3Lを得た。得られたPAA-3Lについて、H-NMRスペクトルを測定した。結果を図4に示す。図4に示したH-NMRスペクトルの結果から、合成例7における変換率を求めた。変換率は、63%であった。
 亜鉛と錯体を形成しているDPA構造を有するポリマーを得るために、上述した方法により得られたポリマーの一部を用いて、混合工程を行った。具体的には、得られたポリマーの一部と、0.25mMの亜鉛水溶液とを混合し、亜鉛と錯体を形成しているDPA構造を有するポリマーを得た。Magainin-2についても、同様に、0.25mMの亜鉛水溶液と混合した。
 (合成例8:SP-018(サンプル番号1~8))
 反応に用いる2-ピコリルクロリド塩酸塩の量を変えた以外は、上述した合成例4と同様の方法によって、SP-018(サンプル番号1~8)を得た。
 得られたSP-018(サンプル番号1~8)について、H-NMRスペクトルを測定した。H-NMRスペクトルの結果から、合成例1と同様に、合成例8における変換率を求めた。表4に示すように、サンプル番号1~8における変換率は、各々、14%、16%、19%、20%、32%、56%、64%および93%であった。
 (評価方法)
 <抗微生物活性の評価>
 微生物として、細菌(E.coliおよびS.aureus)を用いて、合成したポリマーの抗微生物活性の評価を行った。具体的には、細菌に対するポリマーの最小阻止濃度(minimum inhibitory concentration、MIC、μg・mL-1)を測定することにより、ポリマーの抗微生物活性の評価を行った。抗微生物活性の評価の手順は、NCCLS,ApprovedstandardsM7-A3に従った。抗微生物活性の評価の一連の操作は、測定試料の汚染を防ぐために、(a)手袋を着用し、(b)70%エタノールで手を消毒し、かつ、(c)ガスバーナーの火の下で行った。具体的な手順の内容を下記に説明する。
 (1.Mueller Hinton-broth(以下、MH-brothとも称する)溶液の調製)
 まず、細菌の培養に用いる培地である、MH-broth溶液を調製した。具体的には、(i)粉末状のMH-brothの22gを超純水(1L)に溶解し、MH-broth溶液(未溶解)を作製し、(ii)次に、1Nの水酸化ナトリウム溶液および1Nの塩酸溶液を用いて、MH-broth溶液(未溶解)のpHを7.3に調整した後、(iii)pH調製後のMH-broth溶液(未溶解)をオートクレーブ(121℃、20分間)処理を行い、MH-broth溶液を調製した。
 (2.寒天培地の作製)
 次に、作製したMH-broth溶液を用いて、細菌の培養に用いる寒天培地(Agar plateとも称する)を作製した。具体的には、以下の手順で寒天培地を作製した。
 (i)作製されたMH-broth溶液40mLに、0.6gの寒天を添加し、オートクレーブ(121℃、20分間)処理を行いMH-agar溶液を調製した。
 (ii)次に、(i)で得られたMH-agar溶液10mLをシャーレに流し込み、室温に静置することでMH-agar溶液を冷却および固化し、寒天培地を作製した。
 (3.細菌の培養)
 作製したMH-broth溶液および寒天培地を用いて、細菌を培養する方法について、具体的に説明する。
 (i)凍結している細菌、E.coliまたはS.aureusをマイクロチップでほんの少しだけ取り、採取した細菌をマイクロチップごと、5~7mLのMH-broth溶液に加え、当該MH-broth溶液を37℃、180rpmで18時間培養した。
 (ii)18時間培養後、10μLの細菌溶液を寒天培地に滴下した。
 (iii)その後、滴下した細菌溶液を、白金耳を用いて寒天培地全体に引き伸ばした。
 (iv)細菌溶液を塗布した寒天培地を、シャーレの蓋を下にして、37℃のインキュベーターの中で18時間静置することによって、細菌を培養した。
 (4.MICの測定)
 寒天培地上の培養された細菌を用いて、以下の手順によって、合成したポリマーの抗微生物活性を評価した。
 (i)寒天培地上の、培養された細菌(バクテリア)のコロニー1つを、ピペットチップを用いて採取し、採取した細菌を、7mLのMH-broth溶液中にピペットチップごと入れ、37℃で12~18時間、培養した。このとき、180rpmの速度でMH-broth溶液を攪拌した。
 (ii)得られた細菌の懸濁液を、OD600が0.1となるように、MH-broth溶液を用いて希釈した。希釈後の懸濁液を、37℃で90分間、培養した。このとき、180rpmの速度でMH-broth溶液を攪拌した。
 (iii)上記(ii)で得られた細菌の懸濁液をOD600が0.1となるように、MH-broth溶液を用いて懸濁液を希釈した。その後、希釈後の懸濁液を、OD600が0.001となるように、MH-broth溶液を用いてさらに希釈した。最終的に得られた細菌の懸濁液は、OD600が0.001であり、9.4×10CFU/30mLであった。CFUは、コロニー形成単位(Colony forming unit)を表す。
 (iv)合成したポリマー(SP-003-A、SP-018、PAA-01、PAA-05、PAA-3L、またはSP-018(サンプル番号1~8))、もしくはMagainin-2、または、上述した方法で作製した亜鉛と錯体を形成しているポリマー、もしくは亜鉛と混合したMagainin-2、を下記の濃度となるように水に溶解した試料溶液を調製した。ポリマー溶液中のポリマーの濃度、または、Magainin溶液中のMagainin-2の濃度は、500μg・mL-1、250μg・mL-1、125μg・mL-1、62.5μg・mL-1、31.3μg・mL-1、15.6μg・mL-1、7.8μg・mL-1、および3.9μg・mL-1とした。調製した試料溶液を、それぞれ、10μL/ウェルずつ、コーニング社製の96ウェルプレートの8ウェルに添加した。コントロールとして、水10μLを加えたウェル、および、MH-Broth100μLを加えたウェル、をそれぞれ用意した。
 (v)上記(iii)で得られた細菌の懸濁液を、上記(iv)で調整した96ウェルプレートの各ウェルに、90μLずつ添加した。その後、96ウェルプレートに蓋をし、37℃のインキュベーターにて、18時間静置した。
 (vi)18時間の培養後、ウェルにおけるコロニー形成の有無を確認した。コロニー形成の有無の結果から、合成したポリマーまたはMagainin-2のMICを決定した。
 (評価結果-1)
 抗微生物活性の評価の結果を、図5に示す。図5の(a)は本発明の一実施形態に係るポリマーの、E.coliに対する抗微生物活性の評価結果を示すグラフであり、図5の(b)は本発明の一実施形態に係るポリマーの、S.aureusに対する抗微生物活性の評価結果を示すグラフである。図5において、各棒グラフの上に記載した数字は、縦軸のMIC(μg・mL-1)の値を示している。
 図5の(a)より、本発明の一実施形態に係るポリマーである、SP-003-A、SP-018、PAA-05、およびPAA-3Lは、亜鉛を含まない場合、大腸菌(E.coli)に対して抗微生物活性を有することが分かる。また、SP-018、PAA-01、PAA-05、およびPAA-3Lは、亜鉛の存在下において、大腸菌に対して、既知の抗菌物質であるMagainin-2よりも高い抗微生物活性を示した。
 図5の(b)より、本発明の一実施形態に係るポリマーである、SP-003-A、SP-018、およびPAA-05は、亜鉛を含まない場合、黄色ブドウ球菌(S.aureus)に対して抗微生物活性を有することが分かる。また、SP-003-A、SP-018、PAA-01、PAA-05、およびPAA-3Lは、亜鉛の存在下において、黄色ブドウ球菌に対して、既知の抗菌物質であるMagainin-2よりも高い抗微生物活性を示した。
 (評価結果-2)
 SP-018(サンプル番号1~8)の試験結果を、下記の表4および図6に示す。なお、図6は、表4の数値データをグラフ化したものである。本試験では、亜鉛を用いた試験(+Znと表記)では、亜鉛の濃度を0.25mMとした。
Figure JPOXMLDOC01-appb-T000018
 表4および図6から明らかなように、変換率が上昇するにしたがって抗微生物活性が向上し、変換率が特定の値に達すると、それ以上変換率を上昇させたとしても、抗微生物活性が大きく向上することがなかった。このことは、ポリマーにおける変換率を最大値にまで上昇させる必要は無く、ポリマーにおける変換率が特定の値に達してさえいれば、十分な抗微生物活性が得られることを示している。
 本発明の一実施形態に係るポリマーは、簡易な手順で合成することができ、かつ、抗微生物活性を有する。そのため、当該ポリマーは、抗微生物剤、抗細菌剤、抗真菌剤、防腐剤および防カビ剤等として、業務用品、民生品、医療機器および医薬品などに好適に利用することができる。

Claims (9)

  1.  アミノ基を有するポリマーにおいて、当該アミノ基にα-ピコリル基2分子を修飾してなる、下記式(1)で表されるジピコリルアミン構造を有するポリマー:
    Figure JPOXMLDOC01-appb-C000001
     (上記式(1)中、Rは、水素原子、ハロゲン原子、ニトロ基、シアノ基、炭素数1~6のアルキル基、および炭素数1~6のアルコキシ基からなる群からそれぞれ独立して選択され、同一であってもよく、または異なっていてもよい。また、当該ジピコリルアミン構造は、金属Mと錯体を形成していてもよい。)。
  2. Figure JPOXMLDOC01-appb-C000002
     (上記式(2)中、mおよびnはそれぞれ独立して任意に選択される整数であり、Xは炭素数1~5の直鎖アルキル基であり、Yは上記式(1)で表されるジピコリルアミン構造である。)
    または、
    Figure JPOXMLDOC01-appb-C000003
     (上記式(3)中、nは任意に選択される整数であり、Xは炭素数1~5の直鎖アルキル基であり、Yは上記式(1)で表されるジピコリルアミン構造である。)
    で示される繰り返し単位を有する請求項1に記載のポリマー。
  3. Figure JPOXMLDOC01-appb-C000004
    または、
    Figure JPOXMLDOC01-appb-C000005
     (上記式(5)中、nは任意に選択される整数である。)
    である、請求項1または2に記載のポリマー。
  4.  上記ジピコリルアミン構造を有するポリマーは、原料ポリマーのアミノ基が有する水素原子のうちα-ピコリル基に置換された水素原子の割合として示される変換率が、10%以上のものである、請求項1~3のいずれか1項に記載のポリマー。
  5.  上記金属Mは、二価金属である、請求項1~4のいずれか1項に記載のポリマー。
  6.  上記ジピコリルアミン構造を有するポリマーは、重量平均分子量または数平均分子量が250以上100000以下のものである、請求項1~5のいずれか1項に記載のポリマー。
  7.  請求項1~6のいずれか1項に記載のポリマーを含む、抗微生物剤。
  8.  末端および/または側鎖にアミノ基を有するポリマーに、α-ピコリル基を反応させる反応工程を含む、下記式(6)で表されるジピコリルアミン構造を有するポリマーの製造方法:
    Figure JPOXMLDOC01-appb-C000006
     (上記式(6)中、Rは、水素原子、ハロゲン原子、ニトロ基、シアノ基、炭素数1~6のアルキル基、および炭素数1~6のアルコキシ基からなる群からそれぞれ独立して選択され、同一であってもよく、または異なっていてもよい。また、当該ジピコリルアミン構造は、金属Mと錯体を形成していてもよい。)。
  9.  請求項7に記載の抗微生物剤を用いて対象物を処理する処理工程を含む、抗菌方法。
PCT/JP2019/020388 2018-05-31 2019-05-23 ジピコリルアミン構造を有するポリマー、その製造方法、抗微生物剤および抗菌方法 WO2019230543A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020522132A JPWO2019230543A1 (ja) 2018-05-31 2019-05-23 ジピコリルアミン構造を有するポリマー、その製造方法、抗微生物剤および抗菌方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-105592 2018-05-31
JP2018105592 2018-05-31

Publications (1)

Publication Number Publication Date
WO2019230543A1 true WO2019230543A1 (ja) 2019-12-05

Family

ID=68698750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020388 WO2019230543A1 (ja) 2018-05-31 2019-05-23 ジピコリルアミン構造を有するポリマー、その製造方法、抗微生物剤および抗菌方法

Country Status (2)

Country Link
JP (1) JPWO2019230543A1 (ja)
WO (1) WO2019230543A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022034880A1 (ja) * 2020-08-12 2022-02-17
WO2022250116A1 (ja) 2021-05-26 2022-12-01 長瀬産業株式会社 逆浸透複合膜
CN117695290A (zh) * 2024-02-06 2024-03-15 江西科技师范大学 一种具有烷基链修饰的铜配合物的制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04502574A (ja) * 1988-12-30 1992-05-14 エクスプロアテリングス・アクチボラゲット・テー・ベー・エフ 金属イオン、蛋白質及びその他の無機あるいは有機物質用吸着剤
JP2009024171A (ja) * 2007-07-23 2009-02-05 Lanxess Deutschland Gmbh 単分散キレート樹脂を製造する方法
KR20120097794A (ko) * 2011-02-25 2012-09-05 이화여자대학교 산학협력단 납 이온 선택성을 갖는 폴리아세틸렌 초분자체, 이의 제조방법 및 이를 이용한 납 이온 검출방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04502574A (ja) * 1988-12-30 1992-05-14 エクスプロアテリングス・アクチボラゲット・テー・ベー・エフ 金属イオン、蛋白質及びその他の無機あるいは有機物質用吸着剤
JP2009024171A (ja) * 2007-07-23 2009-02-05 Lanxess Deutschland Gmbh 単分散キレート樹脂を製造する方法
KR20120097794A (ko) * 2011-02-25 2012-09-05 이화여자대학교 산학협력단 납 이온 선택성을 갖는 폴리아세틸렌 초분자체, 이의 제조방법 및 이를 이용한 납 이온 검출방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GRAHAM R. C. HAMILTON ET AL.: "A ratiometric fluorescent hydrogel sensor for zinc(II) based on a two fluorophore approach", NEW JOURNAL OF CHEMISTRY, vol. 38, no. 7, 1 April 2014 (2014-04-01) - 1 July 2014 (2014-07-01), pages 2823 - 2830, XP055662441, ISSN: 1144-0546 *
STUART A. MC NELLES ET AL.: "Rapid Synthesis of Functionalized High-Generation Polyester Dendrimers via Strain-Promoted Alkyne–Azide Cycloaddition", MACROMOLECULES, vol. 50, no. 20, 2 October 2017 (2017-10-02), pages 7993 - 8001, XP055662446, ISSN: 0024-9297 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022034880A1 (ja) * 2020-08-12 2022-02-17
WO2022034880A1 (ja) * 2020-08-12 2022-02-17 学校法人東京理科大学 細胞培養系、細胞培養方法、及び培地添加剤
WO2022250116A1 (ja) 2021-05-26 2022-12-01 長瀬産業株式会社 逆浸透複合膜
CN117695290A (zh) * 2024-02-06 2024-03-15 江西科技师范大学 一种具有烷基链修饰的铜配合物的制备方法和应用
CN117695290B (zh) * 2024-02-06 2024-04-30 江西科技师范大学 一种具有烷基链修饰的铜配合物的制备方法和应用

Also Published As

Publication number Publication date
JPWO2019230543A1 (ja) 2021-07-15

Similar Documents

Publication Publication Date Title
WO2019230543A1 (ja) ジピコリルアミン構造を有するポリマー、その製造方法、抗微生物剤および抗菌方法
Hossain et al. Synthesis and anti-microbial activity of hydroxylammonium ionic liquids
CN102020675B (zh) 一种季鏻盐及其制备方法与应用
CN103980233B (zh) 一种高丝氨酸内酯类衍生物、其制备方法和用途
US8436083B2 (en) Multifunctional self-decontaminating surface coating
US10398142B2 (en) Polycationic amphiphiles as antimicrobial agents
Liu et al. Synthesis, characterization and properties of new lauryl amidopropyl trimethyl ammoniums
KR101488701B1 (ko) 항균성 이미다졸륨 화합물, 이를 포함하는 광경화성 코팅 조성물 및 항균성 고분자 코팅
CN101933522A (zh) 十二烷基胍盐酸盐杀菌灭藻剂
CN1286878C (zh) 一种高分子杀菌剂及其制备方法
CN115073517B (zh) 一种季鏻季铵盐杀菌剂及其合成方法
US10709130B2 (en) Clickable antimicrobial molecules and polymers
CN107397961B (zh) 一种提高聚乙烯亚胺抗大肠杆菌性能的方法
Łęgosz et al. Quaternary ammonium nonanoate-based ionic liquids as chemicals for crop protection
CN110227167A (zh) 壳聚糖接枝脂质纳米囊包载大黄素在抑制病原菌生物被膜中的用途
CN115104607A (zh) 一种非对称双季铵盐杀菌剂及其制备方法
WO2022097580A1 (ja) ジピコリルアミン部分を有する化合物およびその製造方法ならびにそれを用いた抗菌組成物
CN113234017A (zh) 一种具有抗菌作用的咪唑盐类化合物及其制备方法和应用
CN105017036A (zh) 具有杀菌活性的2-(芳氨基乙基氨基)苯甲醇类化合物及其用途
CN105503642B (zh) N‑取代‑2‑(2‑羟基苄基)氨基乙酰胺类化合物及其制备和用途
Shcherbakov et al. Synthesis of N-Alkyl Enamino Ketones Based on 3-Acyl-4 H-polyfluorochromen-4-ones and Their Antimicrobial Activity
KR100748041B1 (ko) 항균성 이미다졸륨 염 유도체 및 이를 이용한 항균성고분자 재료
CN110218314A (zh) 聚六亚甲基双胍盐酸盐的合成工艺
RU2272045C1 (ru) Полидиаллиламины и содержащее их дезинфицирующее средство
CN102093252A (zh) 2、4-二氯苯氧二酰胺衍生物的制备与抗稻瘟菌活性

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812358

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020522132

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19812358

Country of ref document: EP

Kind code of ref document: A1