WO2019230541A1 - 熱可塑性ポリウレタン樹脂、光学用ポリウレタン樹脂、ディスプレイパネル用カバー板、アイウェア材料、アイウェアレンズ、アイウェアフレーム、自動車内外装材用部品、および、熱可塑性ポリウレタン樹脂の製造方法 - Google Patents

熱可塑性ポリウレタン樹脂、光学用ポリウレタン樹脂、ディスプレイパネル用カバー板、アイウェア材料、アイウェアレンズ、アイウェアフレーム、自動車内外装材用部品、および、熱可塑性ポリウレタン樹脂の製造方法 Download PDF

Info

Publication number
WO2019230541A1
WO2019230541A1 PCT/JP2019/020372 JP2019020372W WO2019230541A1 WO 2019230541 A1 WO2019230541 A1 WO 2019230541A1 JP 2019020372 W JP2019020372 W JP 2019020372W WO 2019230541 A1 WO2019230541 A1 WO 2019230541A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane resin
thermoplastic polyurethane
eyewear
mass
mol
Prior art date
Application number
PCT/JP2019/020372
Other languages
English (en)
French (fr)
Inventor
直樹 篠原
正和 景岡
山崎 聡
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to CN201980030972.6A priority Critical patent/CN112424252B/zh
Priority to JP2020522131A priority patent/JP7268015B2/ja
Priority to KR1020207032953A priority patent/KR102577971B1/ko
Priority to US17/054,703 priority patent/US20210079216A1/en
Priority to EP19810755.9A priority patent/EP3805287B1/en
Publication of WO2019230541A1 publication Critical patent/WO2019230541A1/ja
Priority to JP2023025052A priority patent/JP2023059934A/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6603Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D12/00Producing frames
    • B29D12/02Spectacle frames
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/244Catalysts containing metal compounds of tin tin salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3218Polyhydroxy compounds containing cyclic groups having at least one oxygen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/4808Mixtures of two or more polyetherdiols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/721Two or more polyisocyanates not provided for in one single group C08G18/73 - C08G18/80
    • C08G18/722Combination of two or more aliphatic and/or cycloaliphatic polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/757Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the cycloaliphatic ring by means of an aliphatic group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/524Esters of phosphorous acids, e.g. of H3PO3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/08Polyurethanes from polyethers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/04Thermoplastic elastomer

Definitions

  • the present invention relates to a thermoplastic polyurethane resin, an optical polyurethane resin, a display panel cover plate, an eyewear material, an eyewear lens, an eyewear frame, parts for automobile interior and exterior materials, and a method for producing a thermoplastic polyurethane resin.
  • Thermoplastic polyurethane resin is generally a rubber elastic body obtained by reaction of polyisocyanate, high molecular weight polyol and low molecular weight polyol, and comprises a hard segment formed by reaction of polyisocyanate and low molecular weight polyol, And a soft segment formed by the reaction of an isocyanate and a high molecular weight polyol.
  • a thermoplastic polyurethane resin By molding such a thermoplastic polyurethane resin, a molded product made of the polyurethane resin can be obtained.
  • thermoplastic polyurethane resin for example, a thermoplastic polyurethane obtained by reacting 4,4′-methylenediphenyl diisocyanate, polytetramethylene ether glycol having a molecular weight of 1000, isosorbide, and butanediol is used.
  • a thermoplastic polyurethane resin obtained by reacting 4,4′-methylenediphenyl diisocyanate, polytetramethylene ether glycol having a molecular weight of 1000, isosorbide, and butanediol is used.
  • thermoplastic polyurethane resin examples include 1,3- and 1,4-bis (isocyanatomethyl) cyclohexane, cyclohexanedimethanol (CHDM-D), 1,6-hexanediol, and polytetramethylene ether.
  • CHDM-D cyclohexanedimethanol
  • 1,6-hexanediol 1,6-hexanediol
  • polytetramethylene ether examples of the thermoplastic polyurethane resin.
  • a rigid thermoplastic polyurethane obtained by reacting with glycol has been proposed (see, for example, Patent Document 1 (Example 2)).
  • thermoplastic polyurethane molded products are required to have various physical properties depending on the application. For example, in the fields of smart device covers, appearance, transparency, mechanical properties (hardness, etc.) and durability (impact resistance). , Heat resistance, chemical resistance, solvent resistance, etc.).
  • thermoplastic polyurethanes described in Patent Documents 1 and 2 are not sufficient in appearance, transparency, mechanical properties (hardness, etc.) and durability (impact resistance, heat resistance, chemical resistance, solvent resistance, etc.). There is a case.
  • the present invention relates to a thermoplastic polyurethane resin, optical polyurethane resin, display panel cover plate, eyewear material, eyewear lens, eyewear frame, and automotive interior / exterior parts having both appearance, transparency, mechanical properties and durability. And a method for producing a thermoplastic polyurethane resin.
  • the present invention [1] includes a polyisocyanate component containing an isocyanate group of 1,4-bis (isocyanatomethyl) cyclohexane in a proportion of 50 mol% or more based on the total number of moles of isocyanate groups, a macropolyol, isosorbide, And a reaction product with a polyol component containing an aliphatic diol having 3 to 8 carbon atoms, and the isosorbide content is 60 mol% or more and 95 mol with respect to the total number of moles of the isosorbide and the aliphatic diol. % Of thermoplastic polyurethane resin is contained.
  • the 1,4-bis (isocyanatomethyl) cyclohexane contains trans-1,4-bis (isocyanatomethyl) cyclohexane in a proportion of 70 mol% to 95 mol%.
  • the thermoplastic polyurethane resin according to [1] is included.
  • the present invention [3] is the above [1] or [2], wherein the aliphatic diol is a linear alkanediol having 3 to 5 carbon atoms and / or a cyclic alkanediol having 6 to 8 carbon atoms. Contains thermoplastic polyurethane resin.
  • the present invention [4] is the above [1] to [3], wherein the macropolyol contains a polyoxy linear alkylene (carbon number 2 to 4) polyol having a number average molecular weight of 600 or more and 1300 or less.
  • the thermoplastic polyurethane resin described is included.
  • the present invention [5] contains the phosphorous acid antioxidant in a proportion of 0.1 to 0.8 parts by mass with respect to 100 parts by mass of the reaction product.
  • the thermoplastic polyurethane resin as described in any one of these is included.
  • the present invention [6] includes an optical polyurethane resin including the thermoplastic polyurethane resin according to any one of [1] to [5] above.
  • the present invention [7] is a cover plate for a display panel of a smart device, and includes a display panel cover plate containing the optical polyurethane resin described in [6] above.
  • the present invention [8] includes an eyewear material including the thermoplastic polyurethane resin according to any one of [1] to [5] above.
  • the present invention [9] includes an eyewear lens including the eyewear material described in [8] above.
  • the present invention [10] is characterized by comprising a lens body containing the eyewear material, and a hard coat layer and / or an antireflection layer formed on at least one surface of the lens body.
  • the present invention [11] includes an eyewear frame including the eyewear material described in [8] above.
  • the present invention [12] includes an automotive interior / exterior component including the thermoplastic polyurethane resin according to any one of [1] to [5] above.
  • the present invention [13] comprises at least a polyisocyanate component containing an isocyanate group of 1,4-bis (isocyanatomethyl) cyclohexane in a proportion of 50 mol% or more with respect to the total number of moles of isocyanate groups, and at least a macropolyol. Reacting and curing at least the isocyanate group-terminated prepolymer, isosorbide, and an aliphatic diol having 3 to 8 carbon atoms to obtain a thermoplastic polyurethane resin.
  • the present invention [14] includes the method for producing a thermoplastic polyurethane resin according to the above [13], wherein the curing temperature in the chain extension step is 150 ° C or higher and 240 ° C or lower.
  • thermoplastic polyurethane resin, optical polyurethane resin, display panel cover plate, eyewear material, eyewear lens, eyewear frame, and automotive interior / exterior material parts of the present invention have a predetermined ratio of 1,4- Since it contains bis (isocyanatomethyl) cyclohexane, macropolyol, and aliphatic diols and isosorbides having a predetermined ratio of 3 to 8 carbon atoms, it has appearance, transparency, mechanical properties and durability.
  • thermoplastic polyurethane resin of the present invention a thermoplastic polyurethane resin having both appearance, transparency, mechanical properties and durability can be easily obtained.
  • thermoplastic polyurethane resin of the present invention is obtained by reacting (described later) raw material components including a polyisocyanate component and a polyol component.
  • thermoplastic polyurethane resin contains a reaction product of a polyisocyanate component and a polyol component as a main component.
  • a main component shows that it is 90 mass% or more with respect to the total amount of a thermoplastic polyurethane resin (thermoplastic polyurethane resin composition), for example, Preferably it occupies 95 mass% or more.
  • the polyisocyanate component contains 1,4-bis (isocyanatomethyl) cyclohexane (1,4-H 6 XDI) as an essential component.
  • the polyisocyanate component contains 50 mol% or more, preferably 70 mol% or more of 1,4-bis (isocyanatomethyl) cyclohexane isocyanate groups, based on the total number of moles of isocyanate groups. More preferably, it is 80 mol% or more, more preferably 90 mol% or more, and particularly preferably 100 mol%.
  • 1,4-bis (isocyanatomethyl) cyclohexane includes cis-1,4-bis (isocyanatomethyl) cyclohexane (hereinafter referred to as cis 1,4 form) and trans-, 4-bis (isocyanate). There is a stereoisomer of natomethyl) cyclohexane (hereinafter referred to as trans 1,4).
  • 1,4-bis (isocyanatomethyl) cyclohexane is trans 1,4, for example, 60 mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more, and further preferably Is contained in a proportion of 85 mol% or more, for example, 99.8 mol% or less, preferably 99 mol% or less, more preferably 95 mol% or less, and still more preferably 90 mol% or less.
  • the total amount of trans 1,4 and cis 1,4 is 100 mol%.
  • 1,4-bis (isocyanatomethyl) cyclohexane has a cis 1,4 form, for example, 0.2 mol% or more, preferably 1 mol% or more, more preferably 5 mol% or more, and still more preferably. Is contained in a proportion of 10 mol% or more, for example, 40 mol% or less, preferably 30 mol% or less, more preferably 20 mol% or less, and still more preferably 15 mol% or less.
  • 1,4-bis (isocyanatomethyl) cyclohexane can be produced, for example, by the method described in International Publication WO2009 / 051114 Pamphlet.
  • 1,4-bis (isocyanatomethyl) cyclohexane can also be prepared as a modified product within a range not inhibiting the excellent effects of the present invention.
  • modified form of 1,4-bis (isocyanatomethyl) cyclohexane examples include, for example, multimers of bis (isocyanatomethyl) cyclohexane (for example, dimer (for example, uretdione modified form), trimer (for example, isocyanurate modified form, imino form).
  • polyisocyanate component can contain other polyisocyanates as optional components as long as the excellent effects of the present invention are not impaired.
  • polyisocyanates examples include aliphatic polyisocyanates, aromatic polyisocyanates, and araliphatic polyisocyanates.
  • aliphatic polyisocyanate examples include ethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate (PDI), hexamethylene diisocyanate (HDI), octamethylene diisocyanate, nonamethylene diisocyanate, and 2,2′-dimethylpentane diisocyanate.
  • 2,2,4-trimethylhexane diisocyanate decamethylene diisocyanate, butene diisocyanate, 1,3-butadiene-1,4-diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, 1,6,11-undecamethylene Triisocyanate, 1,3,6-hexamethylene triisocyanate, 1,8-diisocyanate-4-isocyanatomethi Octane, 2,5,7-trimethyl-1,8-diisocyanate-5-isocyanatomethyloctane, bis (isocyanatoethyl) carbonate, bis (isocyanatoethyl) ether, 1,4-butylene glycol dipropyl ether- ⁇ , ⁇ '-diisocyanate, lysine isocyanatomethyl ester, lysine triisocyanate, 2-isocyanatoethyl-2,6-diisocyanatohexanoate
  • the aliphatic polyisocyanate includes alicyclic polyisocyanates (excluding 1,4-bis (isocyanatomethyl) cyclohexane).
  • alicyclic polyisocyanates examples include, for example, isophorone diisocyanate (IPDI), trans, trans-, trans, cis-, and cis, cis-dicyclohexylmethane diisocyanate.
  • aromatic polyisocyanates examples include 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate, and isomer mixtures of these tolylene diisocyanates (TDI), 4,4′-diphenylmethane diisocyanate, 2,4 Examples include '-diphenylmethane diisocyanate and 2,2'-diphenylmethane diisocyanate, and any isomer mixture of these diphenylmethane diisocyanates (MDI), toluidine diisocyanate (TODI), paraphenylene diisocyanate, naphthalene diisocyanate (NDI), and the like.
  • MDI diphenylmethane diisocyanates
  • TODI toluidine diisocyanate
  • NDI naphthalene diisocyanate
  • araliphatic polyisocyanate examples include 1,3- or 1,4-xylylene diisocyanate or a mixture thereof (XDI), 1,3- or 1,4-tetramethylxylylene diisocyanate or a mixture thereof (TMXDI), etc. Is mentioned.
  • These other polyisocyanates can be used alone or in combination of two or more.
  • polyisocyanates can be prepared as modified products within a range that does not impair the excellent effects of the present invention.
  • polyisocyanate modified products examples include other polyisocyanate multimers (dimers, trimers, etc.), biuret modified products, allophanate modified products, polyol modified products, oxadiazine trione modified products, carbodiimide modified products, and the like. Can be mentioned.
  • polyisocyanates that is, polyisocyanates that can be used in combination with 1,4-bis (isocyanatomethyl) cyclohexane
  • polyisocyanates are preferably aliphatic polyisocyanates and (including alicyclic polyisocyanates), more preferably.
  • hexamethylene diisocyanate isophorone diisocyanate, dicyclohexylmethane diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, diisocyanatomethylbicyclo [2,2,1] -heptane, and more preferably hexamethylene diisocyanate.
  • Dicyclohexylmethane diisocyanate, and diisocyanatomethylbicyclo [2,2,1] -heptane particularly preferably hexamethylene diisocyanate.
  • the content ratio of other polyisocyanates is, for example, 50% by mass or less, preferably 30% by mass or less, more preferably 20% by mass or less, with respect to the total amount of the polyisocyanate component.
  • the ratio of the isocyanate groups of other polyisocyanates is, for example, 50 mol% or less, preferably 30 mol% or less, more preferably 20 mol% or less, relative to the total number of isocyanate groups of the polyisocyanate component. More preferably, it is 10 mol% or less, and particularly preferably 0 mol%.
  • 1,4-bis (isocyanatomethyl) cyclohexane is particularly preferably used alone.
  • the polyol component is a composition containing a compound containing two or more hydroxyl groups in the molecule.
  • the polyol component is a macropolyol, isosorbide, a fatty acid having 3 to 8 carbon atoms. It preferably comprises a macropolyol, isosorbide, and an aliphatic diol having 3 to 8 carbon atoms.
  • the macropolyol is an organic compound (polymer) having two or more hydroxyl groups and having a number average molecular weight of 400 or more, preferably 500 or more, for example, polyether polyol, polyester polyol, polycarbonate polyol, polyurethane polyol, epoxy Polyols, vegetable oil polyols, polyolefin polyols, acrylic polyols, vinyl monomer-modified polyols and the like can be mentioned, and polyether polyols, polyester polyols, and polycarbonate polyols are preferable.
  • polyether polyols examples include polyoxy linear alkylene (2 to 4 carbon atoms) polyol, polyoxy branched alkylene (3 to 4 carbon atoms) polyol, polyoxy linear and branched alkylene (2 to 4 carbon atoms). ) Polyol and the like.
  • the polyoxy linear alkylene (carbon number 2 to 4) polyol has a linear oxyalkylene unit, does not have a branched oxyalkylene unit, and the oxyalkylene unit has 2 to 4 carbon atoms. It is a polyoxyalkylene polyol.
  • examples of the polyoxy linear alkylene (carbon number 2 to 4) polyol include polyoxyethylene polyol, polytrimethylene ether glycol, polytetramethylene ether glycol, and the like.
  • polyoxyethylene polyol examples include addition polymers of ethylene oxide starting from a low molecular weight polyol or a known low molecular weight polyamine.
  • Examples of the low molecular weight polyol include organic compounds having two or more hydroxyl groups in the molecule and a molecular weight of 50 or more and less than 400, preferably 300 or less.
  • low molecular weight polyol examples include 1,2-ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,3-butanediol, 1,2, and the like.
  • These low molecular weight polyols can be used alone or in combination of two or more.
  • Preferred examples of the low molecular weight polyol include dihydric alcohols and trihydric alcohols, and more preferred are dihydric alcohols.
  • polyoxyethylene polyols include polyoxyethylene glycol and polyoxyethylene triol, and preferably polyoxyethylene glycol.
  • polytrimethylene ether glycol examples include glycol obtained by a polycondensation reaction of 1,3-propanediol derived from plant components.
  • polytetramethylene ether polyol examples include ring-opened polymers obtained by cationic polymerization of tetrahydrofuran (polytetramethylene ether glycol (crystalline)), polymerized units such as tetrahydrofuran, alkyl-substituted tetrahydrofuran, and the above-described divalent compounds. Examples thereof include amorphous (non-crystalline) polytetramethylene ether glycol copolymerized with alcohol.
  • the polyoxy branched alkylene (3 to 4 carbon atoms) polyol has a branched oxyalkylene unit, does not have a linear oxyalkylene unit, and the oxyalkylene unit has 3 to 4 carbon atoms. It is a polyoxyalkylene polyol.
  • examples of the polyoxy branched alkylene (3 to 4 carbon atoms) polyol include addition of propylene oxide and butylene oxide using the above-described low molecular weight polyols and known low molecular weight polyamines as initiators. Examples include polymers.
  • the polyoxy branched alkylene (3 to 4 carbon atoms) polyol includes polyoxypropylene polyol (polyoxy-1,2-propylene polyol), polyoxybutylene polyol (polyoxy-1,2- or -1, 3-butylene polyol) and the like.
  • polyoxy branched alkylene (carbon number 3 to 4) polyol polyoxypropylene polyol is preferable.
  • a polyoxy linear / branched alkylene (2 to 4 carbon atoms) polyol has both a linear oxyalkylene unit and a branched oxyalkylene unit, and the oxyalkylene unit has 2 to 4 carbon atoms. Is a polyoxyalkylene polyol.
  • polyoxy linear / branched alkylene (2 to 4 carbon atoms) polyol for example, propylene oxide and ethylene starting from the above-mentioned low molecular weight polyols, known low molecular weight polyamines, and the like. Examples thereof include random and / or block copolymers with oxides.
  • polyether polyols can be used alone or in combination of two or more.
  • the polyether polyol is preferably a polyoxy linear alkylene (2 to 4 carbon atoms) polyol from the viewpoint of appearance, mechanical properties and durability, and more preferably a polyoxy linear alkylene (2 to 2 carbon atoms).
  • Glycol is mentioned, More preferably, polytrimethylene ether glycol and polytetramethylene ether glycol are mentioned.
  • polyester polyols include polycondensates obtained by reacting low molecular weight polyols and polybasic acids under known conditions.
  • low molecular weight polyol examples include the low molecular weight polyol described above, preferably a dihydric alcohol, and more preferably propylene glycol and neopentyl glycol.
  • polybasic acid examples include oxalic acid, malonic acid, succinic acid, methyl succinic acid, glutaric acid, adipic acid, 1,1-dimethyl-1,3-dicarboxypropane, 3-methyl-3-ethylglutaric acid
  • Saturated aliphatic dicarboxylic acids (C11-13) such as azelaic acid and sebacic acid
  • unsaturated aliphatic dicarboxylic acids such as maleic acid, fumaric acid and itaconic acid, such as phthalic acid, isophthalic acid, terephthalic acid, toluene
  • Aromatic dicarboxylic acids such as dicarboxylic acid and naphthalenedicarboxylic acid, for example, alicyclic dicarboxylic acids such as hexahydrophthalic acid, for example, other carboxylic acids such as dimer acid, hydrogenated dimer acid, and het acid, and carboxylic acids thereof Acid anhydrides derived
  • polybasic acids can be used alone or in combination of two or more.
  • Preferred examples of the polybasic acid include saturated aliphatic dicarboxylic acids, aromatic dicarboxylic acids, and acid anhydrides, more preferred examples include adipic acid, phthalic acid, and phthalic anhydride, and even more preferred are adipic acid. Can be mentioned.
  • polyester polyol for example, a plant-derived polyester polyol, specifically, a hydroxyl group-containing vegetable oil fatty acid (for example, castor oil fatty acid containing ricinoleic acid, 12-hydroxystearic acid, using the above-described low molecular weight polyol as an initiator, And a vegetable oil-based polyester polyol obtained by subjecting a hydroxycarboxylic acid such as hydrogenated castor oil fatty acid and the like to a condensation reaction under known conditions.
  • a plant-derived polyester polyol specifically, a hydroxyl group-containing vegetable oil fatty acid (for example, castor oil fatty acid containing ricinoleic acid, 12-hydroxystearic acid, using the above-described low molecular weight polyol as an initiator
  • a vegetable oil-based polyester polyol obtained by subjecting a hydroxycarboxylic acid such as hydrogenated castor oil fatty acid and the like to a condensation reaction under known conditions.
  • the polyester polyol for example, the above-described low molecular weight polyol (preferably dihydric alcohol) is used as an initiator, for example, lactones such as ⁇ -caprolactone and ⁇ -valerolactone, for example, L-lactide, D- Lactone-based polyester polyols such as polycaprolactone polyols, polyvalerolactone polyols obtained by ring-opening polymerization of lactides such as lactide, and alcohol-modified lactone polyols obtained by copolymerizing the above dihydric alcohols with them.
  • lactones such as ⁇ -caprolactone and ⁇ -valerolactone
  • L-lactide L-lactide
  • D- Lactone-based polyester polyols such as polycaprolactone polyols, polyvalerolactone polyols obtained by ring-opening polymerization of lactides such as lactide, and alcohol-modified lactone polyols obtained by cop
  • polyester polyols can be used alone or in combination of two or more.
  • the polyester polyol is preferably a lactone-based polyester polyol, more preferably a polycaprolactone polyol.
  • polycarbonate polyol for example, a ring-opening polymer of ethylene carbonate (crystalline polycarbonate polyol) using the above-described low molecular weight polyol (preferably, the above dihydric alcohol) as an initiator, for example, 2 having 4 to 6 carbon atoms.
  • crystalline polycarbonate polyol preferably, the above dihydric alcohol
  • examples thereof include amorphous polycarbonate polyols obtained by copolymerizing a monohydric alcohol and a ring-opening polymer.
  • polycarbonate polyols can be used alone or in combination of two or more.
  • These macropolyols can be used alone or in combination of two or more.
  • the macropolyol is preferably a polyether polyol, more preferably a polyoxy linear alkylene (2 to 4 carbon atoms) polyol, and still more preferably.
  • polyoxy linear alkylene (carbon number 2 to 4) glycols and particularly preferred are polytrimethylene ether glycol and polytetramethylene ether glycol.
  • the average hydroxyl value of the macropolyol is, for example, 10 mgKOH / g or more, preferably 20 mgKOH / g or more, more preferably 40 mgKOH / g or more, for example, 500 mgKOH. / G or less, preferably 300 mgKOH / g or less, more preferably 100 mgKOH / g or less.
  • the number average molecular weight (polystyrene equivalent molecular weight by GPC measurement) of the macropolyol is 400 or more, preferably 500 or more, more preferably 600 or more, and still more preferably 800.
  • it is 5000 or less, preferably 3000 or less, more preferably 1300 or less, and still more preferably 1200 or less.
  • Isosorbide is a compound having two hydroxyl groups (diol compound), specifically 1,4: 3,6-dianhydroglucitol (also known as 1,4: 3,6-dianhydrosorbitol). is there.
  • Isosorbide can be produced by a known method, and can also be obtained as a commercial product.
  • the aliphatic diol having 3 to 8 carbon atoms (hereinafter sometimes referred to as C3 to 8 aliphatic diol) is a compound having a hydrocarbon group having 3 to 8 carbon atoms and two hydroxyl groups, for example, And a chain alkanediol having 3 to 8 carbon atoms and a cyclic alkanediol having 3 to 8 carbon atoms.
  • Examples of the chain alkanediol having 3 to 8 carbon atoms include 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, C3-C8 linear alkanediols such as 1,8-octanediol, such as 1,2-propylene glycol, 1,3-butylene glycol, 1,2-butylene glycol, neopentyl glycol, 3-methyl And branched chain alkanediols having 3 to 8 carbon atoms such as -1,5-pentanediol and 2,2,2-trimethylpentanediol.
  • chain alkanediols having 3 to 8 carbon atoms can be used alone or in combination of two or more.
  • the linear alkanediol having 3 to 8 carbon atoms is preferably a linear alkanediol having 3 to 8 carbon atoms, and more preferably a linear alkane diol having 3 to 5 carbon atoms. Diols are mentioned.
  • Examples of the cyclic alkanediol having 3 to 8 carbon atoms include 1,2-cyclopropanediol, 1,2- or 1,3-cyclobutanediol, 1,2- or 1,3-cyclopentanediol, 1,2 -, 1,3- or 1,4-cyclohexanediol, 1,2-, 1,3- or 1,4-cycloheptanediol, 1,2-, 1,3-, 1,4- or 1,5
  • the cyclic alkanediol having 3 to 8 carbon atoms is preferably a cyclic alkanediol having 6 to 8 carbon atoms, more preferably an alicyclic dimethanol having 6 to 8 carbon atoms.
  • C3-8 aliphatic diols can be used alone or in combination of two or more.
  • an aliphatic diol having 2 carbon atoms such as ethylene glycol
  • the appearance and transparency are poor.
  • an aliphatic diol having 9 or more carbon atoms such as decane diol
  • the mechanical properties and durability are poor. Therefore, an aliphatic diol having 3 to 8 carbon atoms is used as the aliphatic diol.
  • the C3-8 aliphatic diol is preferably a linear alkanediol having 3 to 5 carbon atoms and / or a cyclic alkanediol having 6 to 8 carbon atoms from the viewpoints of appearance, transparency, mechanical properties and durability. More preferred are 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,4-cyclohexanedimethanol, and more preferred are 1,3-propanediol, 1 , 4-butanediol.
  • the ratio of the high molecular weight polyol, isosorbide and C3-8 aliphatic diol is adjusted within the range of the reaction equivalent ratio described later.
  • the content ratio of the high molecular weight polyol is, for example, 35 parts by mass or more, preferably 45 parts by mass or more, for example, 75 parts by mass or less, preferably 65 parts by mass with respect to 100 parts by mass of the total amount of polyol components.
  • the content of isosorbide is, for example, 20 parts by mass or more, preferably 30 parts by mass or more, for example, 55 parts by mass or less, preferably 45 parts by mass or less, and C3-8 aliphatic.
  • the content rate of diol is 2 mass parts or more, for example, Preferably, it is 5 mass parts or more, for example, is 30 mass parts or less, Preferably, it is 20 mass parts or less.
  • the content ratio of isosorbide is, for example, 40 parts by mass or more, preferably 50 parts by mass or more, for example, 100 parts by mass or less, preferably 90 parts by mass or less with respect to 100 parts by mass of the high molecular weight polyol. is there.
  • the content ratio of the C3-8 aliphatic diol with respect to 100 parts by mass of the high molecular weight polyol is, for example, 3 parts by mass or more, preferably 5 parts by mass or more, for example, 30 parts by mass or less, preferably 20 parts by mass or less.
  • the content of isosorbide is, for example, 200 mol or more, preferably 250 mol or more, for example, 800 mol or less, preferably 700 mol or less with respect to 100 mol of the high molecular weight polyol.
  • the content ratio of the C3-8 aliphatic diol is, for example, 30 mol or more, preferably 50 mol or more, for example, 350 mol or less, preferably 250 mol or less.
  • the total proportion of isosorbide and C3-8 aliphatic diol is, for example, 230 mol or more, preferably 300 mol or more, for example, 1150 mol or less, preferably 950 mol, relative to 100 mol of high molecular weight polyol. It is as follows.
  • the content of isosorbide is 60 mol% or more, preferably 65 mol% with respect to the total number of moles of isosorbide and C3-8 aliphatic diol. Or more, more preferably 70 mol% or more, still more preferably 75 mol% or more, particularly preferably 78 mol% or more, 95 mol% or less, preferably 90 mol% or less, more preferably 88 mol%. % Or less, more preferably 85 mol% or less, and particularly preferably 83 mol% or less.
  • the content ratio of the C3-8 aliphatic diol is, for example, 5 mol% or more, preferably 10 mol% or more, more preferably 12 mol% or more, still more preferably 15 mol% or more, and particularly preferably 17 mol% or more, for example, 40 mol% or less, preferably 35 mol% or less, more preferably 30 mol% or less, still more preferably 25 mol% or less, and particularly preferably 22 mol% or less.
  • the content of isosorbide is, for example, 70% by mass or more, preferably 75% by mass or more, more preferably 78% by mass or more, based on the total mass of isosorbide and C3-8 aliphatic diol.
  • the amount is preferably 80% by mass or more, for example, 98% by mass or less, preferably 93% by mass or less, more preferably 90% by mass or less, and still more preferably 88% by mass or less.
  • the content ratio of the C3-8 aliphatic diol is, for example, 2% by mass or more, preferably 5% by mass or more, more preferably 8% by mass or more, and further preferably 10% by mass or more. 30% by mass or less, preferably 25% by mass or less, more preferably 23% by mass or less, and still more preferably 20% by mass or less.
  • thermoplastic polyurethane resin having both appearance, transparency, mechanical properties and durability can be obtained.
  • thermoplastic polyurethane resin is manufactured by making said raw material component react.
  • a known method such as a one-shot method or a prepolymer method is employed. From the viewpoint of improving appearance, transparency, mechanical properties and durability, a prepolymer method is preferably employed.
  • prepolymer synthesis step first, a polyisocyanate component and a macropolyol are reacted to synthesize an isocyanate-terminated prepolymer (prepolymer synthesis step).
  • the polyisocyanate component and the macropolyol are reacted by a polymerization method such as bulk polymerization or solution polymerization.
  • the reaction temperature of the polyisocyanate component and the macropolyol is 50 ° C. or higher, for example, 250 ° C. or lower, preferably 200 ° C. or lower, for example, 0.5 hour or longer in a nitrogen stream.
  • the reaction is performed for 15 hours or less.
  • a polyisocyanate component and a macropolyol are added to an organic solvent, and the reaction temperature is, for example, 50 ° C. or higher, for example, 120 ° C. or lower, preferably 100 ° C. or lower, for example, 0.5 hour or longer, For example, the reaction is performed for 15 hours or less.
  • organic solvent examples include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, nitriles such as acetonitrile, alkyl esters such as methyl acetate, ethyl acetate, butyl acetate, and isobutyl acetate, such as n- Aliphatic hydrocarbons such as hexane, n-heptane and octane, for example, alicyclic hydrocarbons such as cyclohexane and methylcyclohexane, for example, aromatic hydrocarbons such as toluene, xylene and ethylbenzene, such as methyl cellosolve acetate , Ethyl cellosolve acetate, methyl carbitol acetate, ethyl carbitol acetate, ethylene glycol ethyl ether acetate, propy
  • a known urethanization catalyst such as amines and organometallic compounds can be added as necessary.
  • amines include tertiary amines such as triethylamine, triethylenediamine, bis- (2-dimethylaminoethyl) ether, N-methylmorpholine, and quaternary ammonium salts such as tetraethylhydroxylammonium, such as imidazole, And imidazoles such as 2-ethyl-4-methylimidazole.
  • tertiary amines such as triethylamine, triethylenediamine, bis- (2-dimethylaminoethyl) ether, N-methylmorpholine
  • quaternary ammonium salts such as tetraethylhydroxylammonium, such as imidazole, And imidazoles such as 2-ethyl-4-methylimidazole.
  • organometallic compounds include tin acetate, tin octylate (stannous octylate), tin oleate, tin laurate, dibutyltin diacetate, dimethyltin dilaurate, dibutyltin dilaurate, dibutyltin dimercaptide, and dibutyltin maleate.
  • Organic tin compounds such as dibutyltin dineodecanoate, dioctyltin dimercaptide, dioctyltin dilaurate, dibutyltin dichloride, organic lead compounds such as lead octoate and lead naphthenate, organic nickel such as nickel naphthenate, etc.
  • Preferred examples include organic cobalt compounds such as cobalt naphthenate, organic copper compounds such as copper octenoate, and organic bismuth compounds such as bismuth octoate (bismuth octylate) and bismuth neodecanoate. It includes tin octylate, octyl bismuth.
  • examples of the urethanization catalyst include potassium salts such as potassium carbonate, potassium acetate, and potassium octylate.
  • urethanization catalysts can be used alone or in combination of two or more.
  • the addition ratio of the urethanization catalyst is, for example, 0.001 part by mass or more, preferably 0.01 part by mass or more, for example, 1 part by mass with respect to the total amount of 10,000 parts by mass of the polyisocyanate component and the macropolyol. Hereinafter, it is preferably 0.5 parts by mass or less.
  • the unreacted polyisocyanate component and, when an organic solvent is used, the organic solvent can be removed by a known removing means such as distillation or extraction.
  • the mixing ratio of each component is, for example, 1.3 or more, preferably 1, as the equivalent ratio of isocyanate groups in the polyisocyanate component to the hydroxyl groups in the macropolyol (isocyanate group / hydroxyl group). It is 5 or more, for example, 20 or less, preferably 15 or less, more preferably 10 or less, and still more preferably 8 or less.
  • the blending ratio of each component in the prepolymer synthesis step is such that the polyisocyanate component is, for example, 10 parts by mass or more, preferably 20 parts by mass or more with respect to 100 parts by mass of the macropolyol. , 200 parts by mass or less, preferably 150 parts by mass or less.
  • the isocyanate group content is, for example, 5.0% by mass or more, more preferably 10.0% by mass or more, for example, 30.0% by mass or less, preferably 25.0% by mass or less.
  • the above ingredients are allowed to react until reaching Thereby, an isocyanate group terminal prepolymer can be obtained.
  • the isocyanate group content (isocyanate group content) can be determined by a known method such as titration with di-n-butylamine or FT-IR analysis.
  • the isocyanate group-terminated prepolymer obtained above is subjected to a chain extension reaction (curing reaction) with isosorbide and a C3-8 aliphatic diol to obtain a reaction product of the polyisocyanate component and the polyol component.
  • chain extension reaction curing reaction
  • isosorbide and C3-8 aliphatic diol are chain extenders.
  • the isocyanate group-terminated prepolymer is reacted with isosorbide and C3-8 aliphatic diol by, for example, a polymerization method such as bulk polymerization or solution polymerization described above.
  • the blending ratio of each component is the equivalent ratio of isocyanate groups in the isocyanate group-terminated prepolymer (isocyanate groups / hydroxyl groups) to the total amount of hydroxyl groups in isosorbide and hydroxyl groups in the C3-8 aliphatic diol.
  • it is 0.75 or more, preferably 0.9 or more, for example 1.3 or less, preferably 1.1 or less.
  • the blending ratio of each component in the chain extension step is such that the total amount of isosorbide and C3-8 aliphatic diol is, for example, 1.0 part by mass or more with respect to 100 parts by mass of the isocyanate group-terminated prepolymer.
  • it is 2.0 mass parts or more, More preferably, it is 3.0 mass parts or more, for example, 50 mass parts or less, Preferably, it is 40 mass parts or less, More preferably, it is 30 mass parts or less.
  • a macropolyol in addition to isosorbide and C3-8 aliphatic diol, a macropolyol can be blended in an appropriate ratio.
  • the above urethanization catalyst can be added as necessary.
  • the urethanization catalyst can be blended with the isocyanate group-terminated prepolymer, isosorbide and / or C3-8 aliphatic diol, or can be blended separately when mixing them.
  • the curing temperature (reaction temperature) in the chain extension step is, for example, room temperature (23 ° C.) or higher, preferably 100 ° C. or higher, more preferably 150 ° C. or higher, for example, 300 ° C. or lower, preferably 260 It is 240 degrees C or less, More preferably, it is 240 degrees C or less.
  • reaction time is, for example, 30 minutes or more, preferably 1 hour or more, for example, 48 hours or less, preferably 24 hours or less.
  • thermoplastic polyurethane resin having both appearance, transparency, mechanical properties and durability can be obtained.
  • the reaction can be completed by performing secondary heating after the above-described curing reaction (primary heating) as necessary.
  • the secondary heating temperature is, for example, room temperature (23 ° C.) or more, preferably 50 ° C. or more, more preferably 80 ° C. or more, for example, 200 ° C. or less, preferably 160 ° C. or less, more preferably 140 It is below °C.
  • the secondary heating time is, for example, 3 hours or more, preferably 5 hours or more, for example, 72 hours or less, preferably 48 hours or less.
  • the chain extension reaction can be completed, the reaction product of the polyisocyanate component and the polyol component can be obtained, and a thermoplastic polyurethane resin can be obtained.
  • thermoplastic polyurethane resin can be cured, for example, at room temperature (23 ° C.) to 40 ° C., for example, for 1 to 7 days, if necessary.
  • thermoplastic polyurethane resin comprises, as raw material components, a predetermined proportion of 1,4-bis (isocyanatomethyl) cyclohexane, a macropolyol, a predetermined proportion of an aliphatic diol having 3 to 8 carbon atoms and isosorbide. Therefore, it has appearance, transparency, mechanical properties and durability.
  • thermoplastic polyurethane resin having both appearance, transparency, mechanical properties and durability can be easily obtained.
  • a polyisocyanate component and a polyol component are contained in the polyol component.
  • the equivalent ratio of isocyanate groups in the polyisocyanate component to the hydroxyl groups is, for example, 0.9 or more, preferably 0.95 or more, more preferably 0.98 or more, for example, 1. They are mixed and stirred and mixed at a ratio of 2 or less, preferably 1.1 or less, more preferably 1.08 or less.
  • the stirring and mixing is performed, for example, in an inert gas (for example, nitrogen) atmosphere at a reaction temperature of, for example, 40 ° C. or more, preferably 100 ° C. or more, for example, 280 ° C. or less, preferably 260 ° C. or less.
  • the reaction time is, for example, 30 seconds or longer and 1 hour or shorter.
  • the above-mentioned urethanization catalyst and organic solvent can be added at an appropriate ratio, if necessary.
  • thermoplastic polyurethane resin can be obtained.
  • thermoplastic polyurethane resin can contain a phosphorous acid-based antioxidant, if necessary, in addition to the reaction product of the polyisocyanate component and the polyol component.
  • Phosphite antioxidants include, for example, triphenyl phosphite, trisnonylphenyl phosphite, tricresyl phosphite, triethyl phosphite, tris (2-ethylhexyl) phosphite, tridecyl phosphite, trilauryl phosphite.
  • phosphorous acid antioxidants can be used alone or in combination of two or more.
  • phosphite antioxidant phosphites are preferable, and bis (decyl) pentaerythritol diphosphite is more preferable.
  • the phosphorous acid antioxidant may be added to, for example, the polyisocyanate component and / or the polyol component, may be added simultaneously with the blending thereof, and further added after the blending thereof. May be.
  • the content ratio of the phosphite antioxidant is, for example, 0.05 parts by mass of the phosphite antioxidant with respect to 100 parts by mass of the reaction product of the polyisocyanate component and the polyol component.
  • it is 0.10 mass part or more, More preferably, it is 0.30 mass part or more, for example, 2.0 mass part or less, Preferably, it is 1.0 mass part or less, More preferably, it is 0.00. 8 parts by mass or less.
  • thermoplastic polyurethane resin having excellent appearance and transparency, mechanical properties and durability can be obtained.
  • the raw material components can contain other known additives as required.
  • additives include heat stabilizers, ultraviolet absorbers, light stabilizers, antioxidants (excluding phosphite antioxidants), hydrolysis inhibitors, plasticizers, and blocking agents.
  • Inhibitors, release agents, pigments, dyes, lubricants, fillers, rust inhibitors, fillers, and the like can be added. These additives can be added at the time of mixing each component, at the time of synthesis, or after the synthesis.
  • the heat stabilizer is not particularly limited, and may be a known heat stabilizer (for example, described in the catalog made by BASF Japan). More specifically, for example, phosphorus-based processing heat stabilizer, lactone-based processing heat stability. Agents, sulfur processing heat stabilizers and the like.
  • the ultraviolet absorber is not particularly limited, and includes known ultraviolet absorbers (for example, described in the catalog made by BASF Japan). More specifically, for example, benzotriazole ultraviolet absorbers, triazine ultraviolet absorbers. And benzophenone ultraviolet absorbers.
  • the light-resistant stabilizer is not particularly limited, and examples thereof include known light-resistant stabilizers (for example, described in the catalog made by ADEKA), and more specifically, for example, benzoate-based light stabilizers, hindered amine-based light stabilizers, and the like. Can be mentioned.
  • the additive may be added to, for example, the polyisocyanate component and / or the polyol component, may be added at the time of blending them, and may be added after blending them. .
  • thermoplastic polyurethane resin is used as various molded articles by being molded by a known molding method.
  • the molded product of the thermoplastic polyurethane resin is, for example, the above-mentioned thermoplastic polyurethane resin by a known molding method, for example, thermal compression molding and injection molding using a specific mold, or sheet winding.
  • a thermoforming method such as melt spinning, for example, pellets, plates, fibers, strands, films, sheets, pipes, hollows, boxes, etc. It can be obtained by molding into various shapes.
  • the obtained molded product can have appearance, transparency, mechanical properties and durability. Therefore, the molded product can be suitably used in the fields where the above various physical properties are required.
  • thermoplastic polyurethane resin is preferably used in an optical polyurethane resin.
  • the optical polyurethane resin containing the thermoplastic polyurethane resin described above has the appearance, transparency, mechanical properties and durability, and therefore satisfies the desired optical characteristics and is also excellent in practicality.
  • the optical polyurethane resin is suitably used as a display panel cover plate, for example.
  • Examples of the display panel include display panels of various information processing terminals such as smart devices (smart phones, tablet computers (tablet PCs), slate computers (slate PCs), etc.), tower computers, and notebook computers. These display panels are usually provided with an image display panel such as a liquid crystal panel, and in order to protect the image display panel, a translucent cover plate (display panel cover plate) is provided on the surface of the image display panel. Are stacked.
  • Such a display panel cover plate is required to have excellent appearance, transparency, mechanical properties and durability. Therefore, the molded product of the above-described optical polyurethane resin is suitable as a display panel cover plate.
  • the display cover plate obtained by using the above-described optical polyurethane resin has excellent appearance, transparency, mechanical properties and durability.
  • thermoplastic polyurethane resin is suitably used as an eyewear material, for example.
  • the eyewear material is a material for forming an eyewear lens, an eyewear frame, and the like in eyewear such as correction glasses, protective glasses, sunglasses, and goggles.
  • the eyewear lens and eyewear frame may be required to have excellent appearance, transparency, mechanical properties, and durability.
  • thermoplastic polyurethane resin described above is suitably used as an eyewear material, and the molded product of the thermoplastic polyurethane is suitably used as an eyewear lens, an eyewear frame or the like.
  • the eyewear material containing the thermoplastic polyurethane resin is formed into a lens shape by a known method to form a lens body. Thereafter, a hard coat layer and / or an antireflection layer is preferably laminated on at least one surface of the lens body. Thereby, an eyewear lens is obtained.
  • the hard coat layer may have a known configuration, and examples thereof include a Si coat layer containing silicon oxide, trimethoxymethylsilane, and a hydrolyzate thereof.
  • the antireflection layer may have a known configuration, and examples thereof include a metal vapor deposition layer of metal oxide (silicon oxide, zirconium oxide, etc.). Each of the hard coat layer and the antireflection layer may be a single layer or a multilayer.
  • the eyewear material including the thermoplastic polyurethane resin is formed into each part shape of the eyewear frame by a known method.
  • the parts of the eyewear frame include, for example, a lens, a nose pad (nose pad part), a modern (ear pad part), a temple (slip part), a rim (lens peripheral part), a bridge (rim connecting part), and an armor (front). End portions), hinges (connection portions between armor and temple), and the like.
  • the eyewear frame and eyewear lens contain the thermoplastic polyurethane resin described above, the eyewear frame and eyewear lens combine appearance, transparency, mechanical properties, and durability.
  • thermoplastic polyurethane resin is suitably used as an automotive interior / exterior material part.
  • automobile interior / exterior materials examples include known automobile interior / exterior materials such as automobile bumpers, headlamps, tail lamps, instrument panels, shift levers, and handles.
  • thermoplastic polyurethane resin is suitably used as a part for automobile interior and exterior materials.
  • thermoplastic polyurethane resin is molded into various shapes of automotive interior / exterior material parts by a known method. As a result, an automotive interior / exterior material part is obtained.
  • Such automotive interior / exterior parts include the thermoplastic polyurethane resin described above, and thus have appearance, transparency, mechanical properties, and durability.
  • thermoplastic polyurethane resin can be widely used industrially.
  • transparent hard plastic coating material, adhesive, adhesive, waterproofing material, etc. , Potting agents, inks, binders, films, sheets, bands (for example, bands such as watch bands, such as belts for automobile transmission belts, various industrial conveyor belts, etc.), tubes (for example, medical tubes)
  • tubes for example, medical tubes
  • parts such as catheters, air tubes, hydraulic tubes, tubes such as electric wire tubes, for example, hoses such as fire hoses), blades, speakers, sensors, LED sealants for high brightness, organic EL members, sunlight Power generation member, robot member, android member, wearable member, clothing article, sanitary article, cosmetics , Food packaging materials, sporting goods, leisure goods, medical supplies, nursing care products, housing materials, acoustic materials, lighting materials, chandeliers, outdoor lights, sealing materials, sealing materials, cork, packing, anti-vibration / damping / isolation Members, soundproofing members
  • the above-mentioned molded products include coating materials (films, sheets, belts, wires, electric wires, metal rotating devices, wheels, drills, etc.), yarns and fibers (tubes, tights, spats, sportswear, Threads and composite fibers used in swimwear, etc.), extrusion applications (extrusion applications such as tennis and badminton guts and their converging materials), slush molding products in powder form by micropelletization, artificial leather, skin, Covers or core materials (golf balls, basketballs, tennis balls, volleyballs, softballs, bats, etc.) or core materials such as sheets, coating rolls (coating rolls such as steel), sealants, rollers, gears, balls, bats
  • the form which carried out the foaming molding of the thermoplastic polyurethane resin may be sufficient.
  • 1,4-bis (isocyanatomethyl) cyclohexane (1,4-H 6 XDI)> Production Example 1 Production Method of 1,4-Bis (isocyanatomethyl) cyclohexane (1) (hereinafter referred to as 1,4-BIC (1)) Conforms to the description of Production Example 6 of JP 2014-55229 A As a result, 1,4-bis (aminomethyl) cyclohexane having a purity of 99.5% or more and a trans isomer / cis isomer ratio of 98/2 was obtained in a yield of 92%.
  • the purity of the obtained 1,4-BIC (1) as measured by gas chromatography was 99.9%, and the trans isomer / cis isomer ratio as determined by 13 C-NMR was 98/2.
  • 1,4-BIC (2) 1,4-Bis (isocyanatomethyl) cyclohexane (2)
  • 1,4-BIC (2) 1,4-Bis (isocyanatomethyl) cyclohexane (2)
  • a stirrer, a thermometer, a reflux tube, and a nitrogen introduction tube The prepared four-necked flask was charged with 789 parts by mass of 1,4-BIC (1) of Production Example 1 and 211 parts by mass of 1,4-BIC (4) of Production Example 4 to be described later under a nitrogen atmosphere. And stirred at room temperature for 1 hour.
  • the purity of the obtained 1,4-BIC (2) as measured by gas chromatography was 99.9%, and the trans / cis ratio as determined by 13 C-NMR was 86/14.
  • 1,4-BIC (3) Production Method of 1,4-Bis (isocyanatomethyl) cyclohexane (3) (hereinafter referred to as 1,4-BIC (3))
  • 1,4-BIC (3) A stirrer, a thermometer, a reflux tube, and a nitrogen introduction tube
  • the prepared four-necked flask was charged with 474 parts by mass of 1,4-BIC (1) of Production Example 1 and 526 parts by mass of 1,4-BIC (4) of Production Example 4 to be described later, and was placed in a nitrogen atmosphere. And stirred at room temperature for 1 hour.
  • the purity of the obtained 1,4-BIC (3) as measured by gas chromatography was 99.9%, and the trans / cis ratio as determined by 13 C-NMR was 68/32.
  • 1,4-Bis (isocyanatomethyl) cyclohexane (4) (hereinafter referred to as 1,4-BIC (4)) 13
  • the trans isomer / cis isomer ratio determined by C-NMR measurement was 41 / 59, 1,4-bis (aminomethyl) cyclohexane (manufactured by Tokyo Chemical Industry Co., Ltd.) as a raw material, in accordance with the description in Production Example 1 of JP2014-55229A, 388 parts by mass of 1,4-BIC (4) was obtained.
  • the purity of the obtained 1,4-BIC (4) as measured by gas chromatography was 99.9%, and the trans isomer / cis isomer ratio as determined by 13 C-NMR was 41/59.
  • Example 1 In a four-necked flask equipped with a stirrer, a thermometer, a reflux tube and a nitrogen introduction tube, PTG1000SN (P) (Hodogaya Chemical Co., Ltd., polytetramethylene ether glycol using biomass raw material, number average molecular weight 1000) 51 parts by mass were charged, and then 41.89 parts by mass of 1,4-BIC (2) having a trans / cis ratio of 86/14 so that the equivalent ratio (NCO / OH) was 6.50. I was charged. And it was made to react until an isocyanate group content became 20.32 mass%, and the isocyanate group terminal prepolymer (henceforth abbreviated as prepolymer) was obtained.
  • PTG1000SN P
  • 1,4-BIC (2) having a trans / cis ratio of 86/14 so that the equivalent ratio (NCO / OH) was 6.50.
  • the mixture was sufficiently stirred for about 10 minutes until the whole became uniform. After the stirring was stopped, the uniformity of the reaction mixture was confirmed, and then the Teflon (SUS) on the SUS (stainless steel) pad that had been temperature-controlled at 180 ° C.
  • the reaction mixture was poured into a (registered trademark) sheet and reacted at 180 ° C. for 2 hours and then at 100 ° C. for 20 hours to obtain a thermoplastic polyurethane resin.
  • thermoplastic polyurethane resin was removed from the vat and cured under constant temperature and humidity conditions of room temperature 23 ° C. and relative humidity 50% for 3 days.
  • thermoplastic polyurethane was cut into a dice with a bale cutter, and the dice-like resin was pulverized with a pulverizer.
  • the pulverized pellets were dried overnight at 80 ° C. under a nitrogen stream.
  • a single screw extruder model: SZW40-28MG, manufactured by Technobel
  • a strand was extruded at a cylinder temperature in the range of 185 to 250 ° C. and cut to obtain thermoplastic polyurethane pellets.
  • the obtained pellets were further dried overnight at 80 ° C. under a nitrogen stream.
  • pellets are injection molded at a cylinder temperature of 185 to 250 ° C. and a nozzle temperature of 185 to 245 ° C., and a sheet of thermoplastic polyurethane resin (Thickness 2.0 mm), lens body (thickness 2.0 mm, diameter 75 mm, plano, 4 curve) and block (10 cm ⁇ 10 cm ⁇ thickness 12 mm) were obtained.
  • a hard coat layer and an antireflection layer were laminated on the lens body by the following treatment.
  • the lens body was annealed at 120 ° C. for 3 hours, then washed with a 10% aqueous sodium hydroxide solution at 50 ° C. for 10 minutes in an ultrasonic cleaning tank, and then washed with isopropanol.
  • the surface was dried with
  • the lens body was immersed in a hard coat composition containing silicon oxide, trimethoxymethylsilane and a hydrolyzate thereof, and pulled up at a speed of 150 mm / min. Thereafter, the hard coat composition was preheated at 80 ° C. for 10 minutes and then heated at 120 ° C. for 6 hours to be cured. As a result, a hard coat layer was formed on the surface of the lens body.
  • an eyewear lens provided with a lens body, a hard coat layer, and an antireflection layer was obtained.
  • Example 2 PTG1000SN (P) of Example 1 was changed to 33.51 parts by mass and 1,4-BIC (2) to 42.20 parts by mass, and the molar ratio of isosorbide and 1,4-butanediol (isosorbide: 1,4 A thermoplastic polyurethane resin was produced in the same manner as in Example 1 except that -BD) was changed to 75:25, and sheets, blocks, and eyewear lenses were molded.
  • Example 1 The PTG1000SN (P) of Example 1 was changed to 33.51 parts by mass and 1,4-BIC (2) was changed to 43.27 parts by mass, and the molar ratio of isosorbide and 1,4-butanediol (isosorbide: 1,4 A thermoplastic polyurethane resin was produced in the same manner as in Example 1 except that -BD) was changed to 58:42, and sheets, blocks, and eyewear lenses were molded.
  • Comparative Example 5 The PTG1000SN (P) of Example 1 was changed to 33.51 parts by mass, 1,4-BIC (2) was changed to 40.73 parts by mass, and the mixture of isosorbide and 1,4-butanediol was replaced with 25 parts of isosorbide.
  • a thermoplastic polyurethane resin was produced in the same manner as in Example 1 except that .76 parts by mass was used, and a sheet, a block, and an eyewear lens were molded.
  • Example 3 The PTG1000SN (P) of Example 1 was changed to 33.51 parts by mass, and instead of 1,4-BIC (2), 1,4-BIC (1) 41.89 having a trans / cis ratio of 98/2 was used.
  • a thermoplastic polyurethane resin was produced in the same manner as in Example 1 except that the parts by mass were used, and a sheet, a block, and an eyewear lens were molded.
  • Example 4 The PTG1000SN (P) of Example 1 was changed to 33.51 parts by mass, and instead of 1,4-BIC (2), 1,4-BIC (3) 41.89 having a trans / cis ratio of 68/32 was used.
  • a thermoplastic polyurethane resin was produced in the same manner as in Example 1 except that the parts by mass were used, and a sheet, a block, and an eyewear lens were molded.
  • a polyurethane resin was produced, and sheets, blocks, and eyewear lenses were molded.
  • CHDM-D 4-cyclohexanedimethanol
  • Example 9 The PTG1000SN (P) of Example 1 was changed to 33.51 parts by mass and 1,4-BIC (2) was changed to 41.30 parts by mass, and the molar ratio of isosorbide and 1,4-butanediol (isosorbide: 1,4 A thermoplastic polyurethane resin was produced in the same manner as in Example 1 except that -BD) was changed to 90:10, and sheets, blocks, and eyewear lenses were molded.
  • Example 10 The PTG1000SN (P) of Example 1 was changed to 33.51 parts by mass and 1,4-BIC (2) was changed to 43.14 parts by mass, and the molar ratio of isosorbide and 1,4-butanediol (isosorbide: 1,4 A thermoplastic polyurethane resin was produced in the same manner as in Example 1 except that -BD) was changed to 60:40, and sheets, blocks, and eyewear lenses were molded.
  • a thermoplastic polyurethane resin was produced, and a sheet, a block and an eyewear lens were molded.
  • Example 12 instead of PTG1000SN (P) of Example 1, PTG1000SN (P) 12.04 parts by mass and PTG2000SN (P) (Hodogaya Chemical Co., Ltd., polytetramethylene ether glycol using biomass raw material, number average molecular weight 2000)
  • a thermoplastic polyurethane resin was used in the same manner as in Example 1 except that a mixture (1: 1 by molar ratio) with 23.30 parts by mass was used and 1,4-BIC (2) was changed to 40.06 parts by mass. And molded sheets, blocks and eyewear lenses.
  • Example 13 PTG1000SN (P) of Example 1 was changed to 33.51 parts by mass of PO3GH1000 (manufactured by ALLESSA, poly (trimethylene) ether glycol, number average molecular weight 1000), and 41.89 masses of 1,4-BIC (2).
  • a thermoplastic polyurethane resin was produced in the same manner as in Example 1 except for changing to parts, and a sheet, a block, and an eyewear lens were molded.
  • Example 14 PTG1000SN (P) of Example 1 was changed to 33.47 parts by mass of PLACEL 210N (manufactured by Daicel, polycaprolactone diol, number average molecular weight 1000), and 1,4-BIC (2) was changed to 41.94 parts by mass. Except for the change, a thermoplastic polyurethane resin was produced in the same manner as in Example 1, and a sheet, a block, and an eyewear lens were molded.
  • Example 15 The PTG1000SN (P) of Example 1 was changed to 33.52 parts by mass of UH-100 (manufactured by Ube Industries, polycarbonate diol, number average molecular weight 1000), and 41.88 parts by mass of 1,4-BIC (2).
  • a thermoplastic polyurethane resin was produced in the same manner as in Example 1, except that the sheet, block, and eyewear lens were molded.
  • Example 16 A thermoplastic polyurethane resin was produced in the same manner as in Example 1 except that JPE-10 in Example 1 was changed to 0.08 parts by mass, and a sheet, a block, and an eyewear lens were molded.
  • Example 17 A thermoplastic polyurethane resin was produced in the same manner as in Example 1 except that JPE-10 in Example 1 was changed to 1.50 parts by mass, and sheets, blocks, and eyewear lenses were molded.
  • HDI hexamethylene diisocyanate
  • Example 19 A thermoplastic polyurethane resin was produced in the same manner as in Example 1 except that the raw material components of the formulation of Example 1 were reacted by a known one-shot method, and sheets, blocks, and eyewear lenses were molded. .
  • Example 20 In the method of Example 1, the reaction mixture was poured into a Teflon (registered trademark) sheet and then reacted at 100 ° C. for 2 hours and then at 100 ° C. for 20 hours. A thermoplastic polyurethane resin was produced, and sheets, blocks and eyewear lenses were molded.
  • Teflon registered trademark
  • Example 21 In the method of Example 1, the reaction mixture was poured into a Teflon (registered trademark) sheet and then reacted at 280 ° C. for 2 hours and then at 100 ° C. for 20 hours. A thermoplastic polyurethane resin was produced, and sheets, blocks and eyewear lenses were molded.
  • Teflon registered trademark
  • thermoplastic polyurethane resin sheets, blocks, and eyewear lenses obtained in each Example and each Comparative Example were evaluated as follows. The results are shown in Tables 1 to 3.
  • Tables 1 to 3 also show the formulation (molar basis) in each example and each comparative example.
  • Nichiban tape (Nichiban CT-408AP-18) was applied to the grid, and peeling was repeated 5 times.
  • the eyewear lenses obtained in each example and each comparative example were fixed to a 40 mm diameter cradle according to JIS K7211-2 (2006), and a striker with a diameter of 20 mm was 4.4 m / mm.
  • the fracture energy (J) generated at the time of impact was measured by abutting and penetrating at a speed of seconds. The above test was repeated three times, and the fracture energy was calculated as the average value.
  • 1,4-BIC (1) 1,4-bis (isocyanatomethyl) cyclohexane of Preparation Example 1 (trans isomer / cis isomer ratio is 98/2)
  • 1,4-BIC (2) 1,4-bis (isocyanatomethyl) cyclohexane of Preparation Example 2 (trans / cis ratio is 86/14)
  • 1,4-BIC (3) 1,4-bis (isocyanatomethyl) cyclohexane of Production Example 3 (trans isomer / cis isomer ratio is 68/32)
  • HDI hexamethylene diisocyanate, manufactured by Mitsui Chemicals, trade name Takenate 700
  • NBDI diisocyanatomethylbicyclo [2,2,1] -heptane
  • PTG1000SN P
  • P polytetramethylene ether glycol
  • thermoplastic polyurethane resin and optical polyurethane resin of the present invention are suitably used in display panel cover plates, eyewear materials, eyewear lenses, eyewear frames, automotive interior and exterior parts, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Eyeglasses (AREA)

Abstract

熱可塑性ポリウレタン樹脂は、イソシアネート基の総モル数に対して1,4-ビス(イソシアナトメチル)シクロヘキサンのイソシアネート基を50モル%以上の割合で含有するポリイソシアネート成分と、マクロポリオール、イソソルビド、および、炭素数3~8の脂肪族ジオールを含むポリオール成分との反応生成物を含む。イソソルビドおよび脂肪族ジオールの総モル数に対して、イソソルビドの含有割合が60モル%以上95モル%以下である。

Description

熱可塑性ポリウレタン樹脂、光学用ポリウレタン樹脂、ディスプレイパネル用カバー板、アイウェア材料、アイウェアレンズ、アイウェアフレーム、自動車内外装材用部品、および、熱可塑性ポリウレタン樹脂の製造方法
 本発明は、熱可塑性ポリウレタン樹脂、光学用ポリウレタン樹脂、ディスプレイパネル用カバー板、アイウェア材料、アイウェアレンズ、アイウェアフレーム、自動車内外装材用部品、および、熱可塑性ポリウレタン樹脂の製造方法に関する。
 熱可塑性ポリウレタン樹脂(TPU)は、一般に、ポリイソシアネート、高分子量ポリオールおよび低分子量ポリオールの反応により得られるゴム弾性体であって、ポリイソシアネートおよび低分子量ポリオールの反応により形成されるハードセグメントと、ポリイソシアネートおよび高分子量ポリオールの反応により形成されるソフトセグメントとを備えている。このような熱可塑性ポリウレタン樹脂を溶融成形することにより、ポリウレタン樹脂からなる成形品を得ることができる。
 熱可塑性ポリウレタン樹脂として、より具体的には、例えば、4,4’-メチレンジフェニルジイソシアネートと、分子量1000のポリテトラメチレンエーテルグリコールと、イソソルビドと、ブタンジオールとを反応させて得られる熱可塑性ポリウレタンが、提案されている(例えば、特許文献2(実施例2A)参照。)。
 また、熱可塑性ポリウレタン樹脂として、例えば、1,3-および1,4-ビス(イソシアナトメチル)シクロヘキサンと、シクロヘキサンジメタノール(CHDM-D)と、1,6-ヘキサンジオールと、ポリテトラメチレンエーテルグリコールとを反応させて得られる硬質熱可塑性ポリウレタンが、提案されている(例えば、特許文献1(実施例2)参照。)。
特表2017-519052号公報 特表2010-528158号公報
 一方、熱可塑性ポリウレタンの成形品は、用途に応じて各種物性が要求され、例えば、スマートデバイスのカバーなどの分野においては、外観、透明性、機械物性(硬度など)および耐久性(耐衝撃性、耐熱性、耐薬品性、耐溶剤性など)を兼ね備えることが要求される。
 しかし、特許文献1および2に記載の熱可塑性ポリウレタンは、外観、透明性、機械物性(硬度など)および耐久性(耐衝撃性、耐熱性、耐薬品性、耐溶剤性など)が十分ではない場合がある。
 本発明は、外観、透明性、機械物性および耐久性を兼ね備える熱可塑性ポリウレタン樹脂、光学用ポリウレタン樹脂、ディスプレイパネル用カバー板、アイウェア材料、アイウェアレンズ、アイウェアフレーム、自動車内外装材用部品、および、熱可塑性ポリウレタン樹脂の製造方法である。
 本発明[1]は、イソシアネート基の総モル数に対して1,4-ビス(イソシアナトメチル)シクロヘキサンのイソシアネート基を50モル%以上の割合で含有するポリイソシアネート成分と、マクロポリオール、イソソルビド、および、炭素数3~8の脂肪族ジオールを含むポリオール成分との反応生成物を含み、前記イソソルビドおよび前記脂肪族ジオールの総モル数に対して、前記イソソルビドの含有割合が60モル%以上95モル%以下である、熱可塑性ポリウレタン樹脂を含んでいる。
 本発明[2]は、前記1,4-ビス(イソシアナトメチル)シクロヘキサンが、トランス-1,4-ビス(イソシアナトメチル)シクロヘキサンを70モル%以上95モル%以下の割合で含有する、上記[1]に記載の熱可塑性ポリウレタン樹脂を含んでいる。
 本発明[3]は、前記脂肪族ジオールが、炭素数3~5の直鎖状アルカンジオールおよび/または炭素数6~8の環状アルカンジオールである、上記[1]または[2]に記載の熱可塑性ポリウレタン樹脂を含んでいる。
 本発明[4]は、前記マクロポリオールが、数平均分子量600以上1300以下のポリオキシ直鎖状アルキレン(炭素数2~4)ポリオールを含む、上記[1]~[3]のいずれか一項に記載の熱可塑性ポリウレタン樹脂を含んでいる。
 本発明[5]は、前記反応生成物100質量部に対して、亜リン酸系酸化防止剤を、0.1~0.8質量部の割合で含有する、上記[1]~[4]のいずれか一項に記載の熱可塑性ポリウレタン樹脂を含んでいる。
 本発明[6]は、上記[1]~[5]のいずれか一項に記載の熱可塑性ポリウレタン樹脂を含む、光学用ポリウレタン樹脂を含んでいる。
 本発明[7]は、スマートデバイスのディスプレイパネルのカバー板であり、上記[6]に記載の光学用ポリウレタン樹脂を含む、ディスプレイパネル用カバー板を含んでいる。
 本発明[8]は、上記[1]~[5]のいずれか一項に記載の熱可塑性ポリウレタン樹脂を含む、アイウェア材料を含んでいる。
 本発明[9]は、上記[8]に記載のアイウェア材料を含む、アイウェアレンズを含んでいる。
 本発明[10]は、前記アイウェア材料を含むレンズ本体と、前記レンズ本体の少なくとも一方面に形成されるハードコート層および/または反射防止層とを備えることを特徴とする、上記[9]に記載のアイウェアレンズ。
 本発明[11]は、上記[8]に記載のアイウェア材料を含む、アイウェアフレームを含んでいる。
 本発明[12]は、上記[1]~[5]のいずれか一項に記載の熱可塑性ポリウレタン樹脂を含む、自動車内外装材用部品を含んでいる。
 本発明[13]は、イソシアネート基の総モル数に対して1,4-ビス(イソシアナトメチル)シクロヘキサンのイソシアネート基を50モル%以上の割合で含有するポリイソシアネート成分と、マクロポリオールとを少なくとも反応させ、イソシアネート基末端プレポリマーを得るプレポリマー合成工程と、前記イソシアネート基末端プレポリマーと、イソソルビド、および、炭素数3~8の脂肪族ジオールとを少なくとも反応および硬化させ、熱可塑性ポリウレタン樹脂を得る鎖伸長工程とを備える、熱可塑性ポリウレタン樹脂の製造方法を含んでいる。
 本発明[14]は、前記鎖伸長工程における硬化温度が、150℃以上240℃以下である、上記[13]に記載の熱可塑性ポリウレタン樹脂の製造方法を含んでいる。
 本発明の熱可塑性ポリウレタン樹脂、光学用ポリウレタン樹脂、ディスプレイパネル用カバー板、アイウェア材料、アイウェアレンズ、アイウェアフレームおよび自動車内外装材用部品は、原料成分として、所定割合の1,4-ビス(イソシアナトメチル)シクロヘキサンと、マクロポリオールと、所定割合の炭素数3~8の脂肪族ジオールおよびイソソルビドとを含有しているため、外観、透明性、機械物性および耐久性を兼ね備える。
 また、本発明の熱可塑性ポリウレタン樹脂の製造方法によれば、外観、透明性、機械物性および耐久性を兼ね備える熱可塑性ポリウレタン樹脂を、簡易に得ることができる。
 本発明の熱可塑性ポリウレタン樹脂は、ポリイソシアネート成分とポリオール成分とを含む原料成分を、反応(後述)させることによって得られる。
 換言すれば、熱可塑性ポリウレタン樹脂は、ポリイソシアネート成分とポリオール成分との反応生成物を、主成分として含んでいる。なお、主成分とは、熱可塑性ポリウレタン樹脂(熱可塑性ポリウレタン樹脂組成物)の総量に対して、例えば、90質量%以上、好ましくは、95質量%以上を占めることを示す。
 ポリイソシアネート成分は、必須成分として、1,4-ビス(イソシアナトメチル)シクロヘキサン(1,4-HXDI)を含有している。
 より具体的には、ポリイソシアネート成分は、イソシアネート基の総モル数に対して、1,4-ビス(イソシアナトメチル)シクロヘキサンのイソシアネート基を、50モル%以上、好ましくは、70モル%以上、より好ましくは、80モル%以上、さらに好ましくは、90モル%以上、とりわけ好ましくは、100モル%含有している。
 1,4-ビス(イソシアナトメチル)シクロヘキサンには、シス-1,4-ビス(イソシアナトメチル)シクロヘキサン(以下、シス1,4体とする。)、および、トランス-,4-ビス(イソシアナトメチル)シクロヘキサン(以下、トランス1,4体とする。)の立体異性体がある。
 本発明では、1,4-ビス(イソシアナトメチル)シクロヘキサンは、トランス1,4体を、例えば、60モル%以上、好ましくは、70モル%以上、より好ましくは、80モル%以上、さらに好ましくは、85モル%以上、例えば、99.8モル%以下、好ましくは、99モル%以下、より好ましくは、95モル%以下、さらに好ましくは、90モル%以下の割合で、含有している。
 また、トランス1,4体およびシス1,4体の総量が100モル%である。
 すなわち、1,4-ビス(イソシアナトメチル)シクロヘキサンは、シス1,4体を、例えば、0.2モル%以上、好ましくは、1モル%以上、より好ましくは、5モル%以上、さらに好ましくは、10モル%以上、例えば、40モル%以下、好ましくは、30モル%以下、より好ましくは、20モル%以下、さらに好ましくは、15モル%以下の割合で、含有している。
 トランス1,4体の含有割合が上記範囲であれば、透明性、機械物性および耐久性の向上を図ることができる。
 1,4-ビス(イソシアナトメチル)シクロヘキサンは、例えば、国際公開WO2009/051114パンフレットに記載の方法などにより、製造することができる。
 また、1,4-ビス(イソシアナトメチル)シクロヘキサンは、本発明の優れた効果を阻害しない範囲において、変性体として調製することもできる。
 1,4-ビス(イソシアナトメチル)シクロヘキサンの変性体としては、例えば、ビス(イソシアナトメチル)シクロヘキサンの多量体(ダイマー(例えば、ウレトジオン変性体など)、トリマー(例えば、イソシアヌレート変性体、イミノオキサジアジンジオン変性体など)など)、ビウレット変性体(例えば、ビス(イソシアナトメチル)シクロヘキサンと水との反応により生成するビウレット変性体など)、アロファネート変性体(例えば、ビス(イソシアナトメチル)シクロヘキサンと1価アルコールまたは2価アルコールとの反応より生成するアロファネート変性体など)、ポリオール変性体(例えば、ビス(イソシアナトメチル)シクロヘキサンと3価アルコールとの反応より生成するポリオール変性体(付加体)など)、オキサジアジントリオン変性体(例えば、ビス(イソシアナトメチル)シクロヘキサンと炭酸ガスとの反応により生成するオキサジアジントリオンなど)、カルボジイミド変性体(例えば、ビス(イソシアナトメチル)シクロヘキサンの脱炭酸縮合反応により生成するカルボジイミド変性体など)などが挙げられる。
 また、ポリイソシアネート成分は、本発明の優れた効果を阻害しない範囲で、その他のポリイソシアネートを、任意成分として含有することができる。
 その他のポリイソシアネートとしては、例えば、脂肪族ポリイソシアネート、芳香族ポリイソシアネート、芳香脂肪族ポリイソシアネートなどが挙げられる。
 脂肪族ポリイソシアネートとしては、例えば、エチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート(PDI)、ヘキサメチレンジイソシアネート(HDI)、オクタメチレンジイソシアネート、ノナメチレンジイソシアネート、2,2’-ジメチルペンタンジイソシアネート、2,2,4-トリメチルヘキサンジイソシアネート、デカメチレンジイソシアネート、ブテンジイソシアネート、1,3-ブタジエン-1,4-ジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、1,6,11-ウンデカメチレントリイソシアネート、1,3,6-ヘキサメチレントリイソシアネート、1,8-ジイソシアネート-4-イソシアナトメチルオクタン、2,5,7-トリメチル-1,8-ジイソシアネート-5-イソシアナトメチルオクタン、ビス(イソシアナトエチル)カーボネート、ビス(イソシアナトエチル)エーテル、1,4-ブチレングリコールジプロピルエーテル-ω、ω’-ジイソシアネート、リジンイソシアナトメチルエステル、リジントリイソシアネート、2-イソシアナトエチル-2,6-ジイソシアネートヘキサノエート、2-イソシアナトプロピル-2,6-ジイソシアネートヘキサノエート、ビス(4-イソシアネート-n-ブチリデン)ペンタエリスリトール、2,6-ジイソシアネートメチルカプロエートなどが挙げられる。
 また、脂肪族ポリイソシアネートには、脂環族ポリイソシアネート(1,4-ビス(イソシアナトメチル)シクロヘキサンを除く。)が含まれる。
 脂環族ポリイソシアネート(1,4-ビス(イソシアナトメチル)シクロヘキサンを除く。)としては、例えば、イソホロンジイソシアネート(IPDI)、トランス,トランス-、トランス,シス-、およびシス,シス-ジシクロヘキシルメタンジイソシアネートおよびこれらの混合物(H12MDI)、1,3-または1,4-シクロヘキサンジイソシアネートおよびこれらの混合物、1,3-ビス(イソシアナトメチル)シクロヘキサン(1,3-HXDI)、1,3-または1,4-ビス(イソシアナトエチル)シクロヘキサン、メチルシクロヘキサンジイソシアネート、2,2’-ジメチルジシクロヘキシルメタンジイソシアネート、ダイマー酸ジイソシアネート、2,5-ジイソシアナトメチルビシクロ〔2,2,1〕-ヘプタン、その異性体である2,6-ジイソシアナトメチルビシクロ〔2,2,1〕-ヘプタン(NBDI)、2-イソシアナトメチル2-(3-イソシアナトプロピル)-5-イソシアナトメチルビシクロ-〔2,2,1〕-ヘプタン、2-イソシアナトメチル-2-(3-イソシアナトプロピル)-6-イソシアナトメチルビシクロ-〔2,2,1〕-ヘプタン、2-イソシアナトメチル3-(3-イソシアナトプロピル)-5-(2-イソシアナトエチル)-ビシクロ-〔2,2,1〕-ヘプタン、2-イソシアナトメチル3-(3-イソシアナトプロピル)-6-(2-イソシアナトエチル)-ビシクロ-〔2,2,1〕-ヘプタン、2-イソシアナトメチル2-(3-イソシアナトプロピル)-5-(2-イソシアナトエチル)-ビシクロ-〔2,2,1〕-ヘプタン、2-イソシアナトメチル2-(3-イソシアナトプロピル)-6-(2-イソシアナトエチル)-ビシクロ-〔2,2,1〕-ヘプタンなどが挙げられる。
 芳香族ポリイソシアネートとしては、例えば、2,4-トリレンジイソシアネートおよび2,6-トリレンジイソシアネート、ならびに、これらトリレンジイソシアネートの異性体混合物(TDI)、4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネートおよび2,2’-ジフェニルメタンジイソシアネート、ならびに、これらジフェニルメタンジイソシアネートの任意の異性体混合物(MDI)、トルイジンジイソシアネート(TODI)、パラフェニレンジイソシアネート、ナフタレンジイソシアネート(NDI)などが挙げられる。
 芳香脂肪族ポリイソシアネートとしては、例えば、1,3-または1,4-キシリレンジイソシアネートもしくはその混合物(XDI)、1,3-または1,4-テトラメチルキシリレンジイソシアネートもしくはその混合物(TMXDI)などが挙げられる。
 これらその他のポリイソシアネートは、単独使用または2種類以上併用することができる。
 また、その他のポリイソシアネートは、本発明の優れた効果を阻害しない範囲において、変性体として調製することもできる。
 その他のポリイソシアネートの変性体としては、例えば、その他のポリイソシアネートの多量体(ダイマー、トリマーなど)、ビウレット変性体、アロファネート変性体、ポリオール変性体、オキサジアジントリオン変性体、カルボジイミド変性体などが挙げられる。
 その他のポリイソシアネート(すなわち、1,4-ビス(イソシアナトメチル)シクロヘキサンと併用できるポリイソシアネート)として、好ましくは、脂肪族ポリイソシアネートおよび(脂環族ポリイソシアネートを含む。)が挙げられ、より好ましくは、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、ジイソシアナトメチルビシクロ〔2,2,1〕-ヘプタンが挙げられ、さらに好ましくは、ヘキサメチレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、ジイソシアナトメチルビシクロ〔2,2,1〕-ヘプタンが挙げられ、とりわけ好ましくは、ヘキサメチレンジイソシアネートが挙げられる。
 その他のポリイソシアネートの含有割合は、ポリイソシアネート成分の総量に対して、例えば、50質量%以下、好ましくは、30質量%以下、より好ましくは、20質量%以下である。
 また、ポリイソシアネート成分のイソシアネート基の総モル数に対して、その他のポリイソシアネートのイソシアネート基の割合が、例えば、50モル%以下、好ましくは、30モル%以下、より好ましくは、20モル%以下、さらに好ましくは、10モル%以下、とりわけ好ましくは、0モル%である。
 ポリイソシアネート成分として、とりわけ好ましくは、1,4-ビス(イソシアナトメチル)シクロヘキサンを単独で用いる。
 本発明において、ポリオール成分は、分子中に水酸基を2つ以上含有する化合物を含有する組成物であり、具体的には、ポリオール成分は、マクロポリオールと、イソソルビドと、炭素数3~8の脂肪族ジオールとを含有し、好ましくは、マクロポリオールと、イソソルビドと、炭素数3~8の脂肪族ジオールとからなる。
 マクロポリオールは、水酸基を2つ以上有し、数平均分子量400以上、好ましくは、500以上の有機化合物(重合物)であって、例えば、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ポリウレタンポリオール、エポキシポリオール、植物油ポリオール、ポリオレフィンポリオール、アクリルポリオール、ビニルモノマー変性ポリオールなどが挙げられ、好ましくは、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオールが挙げられる。
 ポリエーテルポリオールとしては、例えば、ポリオキシ直鎖状アルキレン(炭素数2~4)ポリオール、ポリオキシ分岐鎖状アルキレン(炭素数3~4)ポリオール、ポリオキシ直鎖・分岐鎖状アルキレン(炭素数2~4)ポリオールなどが挙げられる。
 ポリオキシ直鎖状アルキレン(炭素数2~4)ポリオールは、直鎖状オキシアルキレン単位を有し、分岐鎖状オキシアルキレン単位を有さず、かつ、オキシアルキレン単位の炭素数が2~4であるポリオキシアルキレンポリオールである。
 より具体的には、ポリオキシ直鎖状アルキレン(炭素数2~4)ポリオールとしては、例えば、ポリオキシエチレンポリオール、ポリトリメチレンエーテルグリコール、ポリテトラメチレンエーテルグリコールなどが挙げられる。
 ポリオキシエチレンポリオールは、例えば、低分子量ポリオールや、公知の低分子量ポリアミンなどを開始剤とする、エチレンオキサイドの付加重合物が挙げられる。
 低分子量ポリオールとしては、例えば、分子中に水酸基を2つ以上有し、分子量50以上400未満、好ましくは、300以下の有機化合物が挙げられる。
 低分子量ポリオールとして、具体的には、例えば、1,2-エチレングリコール、1,2-プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,3-ブタンジオール、1,2-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2,2,2-トリメチルペンタンジオール、3,3-ジメチロールヘプタン、アルカン(C7~20)ジオール、1,3-または1,4-シクロヘキサンジメタノールおよびそれらの混合物、1,3-または1,4-シクロヘキサンジオールおよびそれらの混合物、水素化ビスフェノールA、1,4-ジヒドロキシ-2-ブテン、2,6-ジメチル-1-オクテン-3,8-ジオール、ビスフェノールA、炭素数4~6のエーテルジオール(ジエチレングリコール、トリエチレングリコール、ジプロピレングリコールなど)などの2価アルコール、例えば、グリセリン、トリメチロールプロパン、トリイソプロパノールアミンなどの3価アルコール、例えば、テトラメチロールメタン(ペンタエリスリトール)、ジグリセリンなどの4価アルコール、例えば、キシリトールなどの5価アルコール、例えば、ソルビトール、マンニトール、アリトール、イジトール、ダルシトール、アルトリトール、イノシトール、ジペンタエリスリトールなどの6価アルコール、例えば、ペルセイトールなどの7価アルコール、例えば、ショ糖などの8価アルコールなどが挙げられる。
 これら低分子量ポリオールは、単独使用または2種類以上併用することができる。
 低分子量ポリオールとして、好ましくは、2価アルコール、3価アルコールが挙げられ、より好ましくは、2価アルコールが挙げられる。
 このようなポリオキシエチレンポリオールとして、具体的には、ポリオキシエチレングリコール、ポリオキシエチレントリオールなどが挙げられ、好ましくは、ポリオキシエチレングリコールが挙げられる。
 ポリトリメチレンエーテルグリコールとしては、例えば、植物成分由来の1,3-プロパンジオールの重縮合反応により得られるグリコールなどが挙げられる。
 ポリテトラメチレンエーテルポリオールとしては、例えば、テトラヒドロフランのカチオン重合により得られる開環重合物(ポリテトラメチレンエーテルグリコール(結晶性))や、テトラヒドロフランなどの重合単位に、アルキル置換テトラヒドロフランや、上記した2価アルコールを共重合した非晶性(非結晶性)ポリテトラメチレンエーテルグリコールなどが挙げられる。
 ポリオキシ分岐鎖状アルキレン(炭素数3~4)ポリオールは、分岐鎖状オキシアルキレン単位を有し、直鎖状オキシアルキレン単位を有さず、かつ、オキシアルキレン単位の炭素数が3~4であるポリオキシアルキレンポリオールである。
 より具体的には、ポリオキシ分岐鎖状アルキレン(炭素数3~4)ポリオールとしては、例えば、上記の低分子量ポリオールや、公知の低分子量ポリアミンなどを開始剤とする、プロピレンオキサイド、ブチレンオキサイドの付加重合物が挙げられる。
 換言すれば、ポリオキシ分岐鎖状アルキレン(炭素数3~4)ポリオールとしては、ポリオキシプロピレンポリオール(ポリオキシ-1,2-プロピレンポリオール)、ポリオキシブチレンポリオール(ポリオキシ-1,2-または-1,3-ブチレンポリオール)などが挙げられる。ポリオキシ分岐鎖状アルキレン(炭素数3~4)ポリオールとして、好ましくは、ポリオキシプロピレンポリオールが挙げられる。
 ポリオキシ直鎖・分岐鎖状アルキレン(炭素数2~4)ポリオールは、直鎖状オキシアルキレン単位と、分岐鎖状オキシアルキレン単位とを併有し、かつ、オキシアルキレン単位の炭素数が2~4であるポリオキシアルキレンポリオールである。
 より具体的には、ポリオキシ直鎖・分岐鎖状アルキレン(炭素数2~4)ポリオールとしては、例えば、上記の低分子量ポリオールや、公知の低分子量ポリアミンなどを開始剤とする、プロピレンオキサイドとエチレンオキサイドとのランダムおよび/またはブロック共重合体などが挙げられる。
 これらポリエーテルポリオールは、単独使用または2種類以上併用することができる。
 ポリエーテルポリオールとして、外観、機械物性および耐久性の観点から、好ましくは、ポリオキシ直鎖状アルキレン(炭素数2~4)ポリオールが挙げられ、より好ましくは、ポリオキシ直鎖状アルキレン(炭素数2~4)グリコールが挙げられ、さらに好ましくは、ポリトリメチレンエーテルグリコール、ポリテトラメチレンエーテルグリコールが挙げられる。
 ポリエステルポリオールとしては、例えば、低分子量ポリオールと多塩基酸とを、公知の条件下、反応させて得られる重縮合物が挙げられる。
 低分子量ポリオールとしては、上記した低分子量ポリオールが挙げられ、好ましくは、2価アルコールが挙げられ、より好ましくは、プロピレングリコール、ネオペンチルグリコールが挙げられる。
 多塩基酸としては、例えば、シュウ酸、マロン酸、コハク酸、メチルコハク酸、グルタール酸、アジピン酸、1,1-ジメチル-1,3-ジカルボキシプロパン、3-メチル-3-エチルグルタール酸、アゼライン酸、セバシン酸などの飽和脂肪族ジカルボン酸(C11~13)、例えば、マレイン酸、フマル酸、イタコン酸などの不飽和脂肪族ジカルボン酸、例えば、フタル酸、イソフタル酸、テレフタル酸、トルエンジカルボン酸、ナフタレンジカルボン酸などの芳香族ジカルボン酸、例えば、ヘキサヒドロフタル酸などの脂環族ジカルボン酸、例えば、ダイマー酸、水添ダイマー酸、ヘット酸などのその他のカルボン酸、および、それらカルボン酸から誘導される酸無水物、例えば、無水シュウ酸、無水コハク酸、無水マレイン酸、無水フタル酸、無水2-アルキル(C12~C18)コハク酸、無水テトラヒドロフタル酸、無水トリメリット酸、さらには、これらのカルボン酸などから誘導される酸ハライド、例えば、シュウ酸ジクロライド、アジピン酸ジクロライド、セバシン酸ジクロライドなどが挙げられる。
 これら多塩基酸は、単独使用または2種類以上併用することができる。
 多塩基酸として、好ましくは、飽和脂肪族ジカルボン酸、芳香族ジカルボン酸、酸無水物が挙げられ、より好ましくは、アジピン酸、フタル酸、無水フタル酸が挙げられ、さらに好ましくは、アジピン酸が挙げられる。
 また、ポリエステルポリオールとして、例えば、植物由来のポリエステルポリオール、具体的には、上記した低分子量ポリオールを開始剤として、ヒドロキシル基含有植物油脂肪酸(例えば、リシノレイン酸を含有するひまし油脂肪酸、12-ヒドロキシステアリン酸を含有する水添ひまし油脂肪酸など)などのヒドロキシカルボン酸を、公知の条件下、縮合反応させて得られる植物油系ポリエステルポリオールなども挙げられる。
 また、ポリエステルポリオールとして、例えば、上記した低分子量ポリオール(好ましくは、2価アルコール)を開始剤として、例えば、ε-カプロラクトン、γ-バレロラクトンなどのラクトン類や、例えば、L-ラクチド、D-ラクチドなどのラクチド類などを開環重合して得られる、ポリカプロラクトンポリオール、ポリバレロラクトンポリオール、さらには、それらに上記2価アルコールを共重合したアルコール変性ラクトンポリオールなどの、ラクトンベースポリエステルポリオールなどが挙げられる。
 これらポリエステルポリオールは、単独使用または2種類以上併用することができる。
 ポリエステルポリオールとして、好ましくは、ラクトンベースポリエステルポリオール、より好ましくは、ポリカプロラクトンポリオールが挙げられる。
 ポリカーボネートポリオールとしては、例えば、上記した低分子量ポリオール(好ましくは、上記2価アルコール)を開始剤とするエチレンカーボネートの開環重合物(結晶性ポリカーボネートポリオール)や、例えば、炭素数4~6の2価アルコールと、開環重合物とを共重合した非晶性ポリカーボネートポリオールなどが挙げられる。
 これらポリカーボネートポリオールは、単独使用または2種類以上併用することができる。
 これらマクロポリオールは、単独使用または2種類以上併用することができる。
 マクロポリオールとして、機械物性および耐久性の向上を図る観点から、好ましくは、ポリエーテルポリオールが挙げられ、より好ましくは、ポリオキシ直鎖状アルキレン(炭素数2~4)ポリオールが挙げられ、さらに好ましくは、ポリオキシ直鎖状アルキレン(炭素数2~4)グリコールが挙げられ、とりわけ好ましくは、ポリトリメチレンエーテルグリコール、ポリテトラメチレンエーテルグリコールが挙げられる。
 マクロポリオールの平均水酸基価(JIS K 1557-1(2007年)に準拠)は、例えば、10mgKOH/g以上、好ましくは、20mgKOH/g以上、より好ましくは、40mgKOH/g以上であり、例えば、500mgKOH/g以下、好ましくは、300mgKOH/g以下、より好ましくは、100mgKOH/g以下である。
 また、外観、機械物性および耐久性の観点から、マクロポリオールの数平均分子量(GPC測定によるポリスチレン換算分子量)は、400以上、好ましくは、500以上、より好ましくは、600以上、さらに好ましくは、800以上であり、例えば、5000以下、好ましくは、3000以下、より好ましくは、1300以下、さらに好ましくは、1200以下である。
 イソソルビドは、水酸基を2つ有する化合物(ジオール化合物)であって、具体的には、1,4:3,6-ジアンヒドログルシトール(別名1,4:3,6-ジアンヒドロソルビトール)である。
 イソソルビドは、公知の方法で製造することができ、また、市販品として入手することもできる。
 炭素数3~8の脂肪族ジオール(以下、C3~8脂肪族ジオールと称する場合がある。)は、炭素数3~8の炭化水素基と、2つの水酸基とを有する化合物であって、例えば、炭素数3~8の鎖状アルカンジオール、炭素数3~8の環状アルカンジオールなどが挙げられる。
 炭素数3~8の鎖状アルカンジオールとしては、例えば、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオールなどの炭素数3~8の直鎖状アルカンジオール、例えば、1,2-プロピレングリコール、1,3-ブチレングリコール、1,2-ブチレングリコール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2,2,2-トリメチルペンタンジオールなどの炭素数3~8の分岐鎖状アルカンジオールなどが挙げられる。
 これら炭素数3~8の鎖状アルカンジオールは、単独使用または2種類以上併用することができる。
 炭素数3~8の鎖状アルカンジオールとして、耐久性の観点から、好ましくは、炭素数3~8の直鎖状アルカンジオールが挙げられ、より好ましくは、炭素数3~5の直鎖状アルカンジオールが挙げられる。
 炭素数3~8の環状アルカンジオールとしては、例えば、1,2-シクロプロパンジオール、1,2-または1,3-シクロブタンジオール、1,2-または1,3-シクロペンタンジオール、1,2-、1,3-または1,4-シクロヘキサンジオール、1,2-、1,3-または1,4-シクロヘプタンジオール、1,2-、1,3-、1,4-または1,5-シクロオクタンジオール、2,2,4,4-テトラメチル-1,3-シクロブタンジオールなどの総炭素数6~8の脂環状ジオール、例えば、1,2-シクロプロパンジメタノール、1,2-または1,3-シクロブタンジメタノール、1,2-または1,3-シクロペンタンジメタノール、1,2-、1,3-または1,4-シクロヘキサンジメタノールなどの総炭素数6~8の脂環状ジメタノール、例えば、1,2-シクロプロパンジエタノール、1,2-または1,3-シクロブタンジエタノールなどの総炭素数6~8の脂環状ジエタノールなどが挙げられる。
 炭素数3~8の環状アルカンジオールとして、好ましくは、炭素数6~8の環状アルカンジオールが挙げられ、より好ましくは、炭素数6~8の脂環状ジメタノールが挙げられる。
 これらC3~8脂肪族ジオールは、単独使用または2種類以上併用することができる。
 なお、脂肪族ジオールとして、炭素数2の脂肪族ジオール(エチレングリコールなど)を用いると、外観および透明性に劣る。また、炭素数9以上の脂肪族ジオール(デカンジオールなど)を用いると、機械物性および耐久性に劣る。そのため、脂肪族ジオールとしては、炭素数3~8の脂肪族ジオールが用いられる。
 C3~8脂肪族ジオールとして、外観、透明性、機械物性および耐久性の観点から、好ましくは、炭素数3~5の直鎖状アルカンジオールおよび/または炭素数6~8の環状アルカンジオールが挙げられ、より好ましくは、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,4-シクロヘキサンジメタノールが挙げられ、さらに好ましくは、1,3-プロパンジオール、1,4-ブタンジオールが挙げられる。
 ポリオール成分において、高分子量ポリオール、イソソルビドおよびC3~8脂肪族ジオールの割合は、後述する反応当量比の範囲において、調整される。
 例えば、ポリオール成分の総量100質量部に対して、高分子量ポリオールの含有割合が、例えば、35質量部以上、好ましくは、45質量部以上であり、例えば、75質量部以下、好ましくは、65質量部以下であり、イソソルビドの含有割合が、例えば、20質量部以上、好ましくは、30質量部以上であり、例えば、55質量部以下、好ましくは、45質量部以下であり、C3~8脂肪族ジオールの含有割合が、例えば、2質量部以上、好ましくは、5質量部以上であり、例えば、30質量部以下、好ましくは、20質量部以下である。
 また、高分子量ポリオール100質量部に対して、イソソルビドの含有割合が、例えば、40質量部以上、好ましくは、50質量部以上であり、例えば、100質量部以下、好ましくは、90質量部以下である。
 また、高分子量ポリオール100質量部に対して、C3~8脂肪族ジオールの含有割合が、例えば、3質量部以上、好ましくは、5質量部以上であり、例えば、30質量部以下、好ましくは、20質量部以下である。
 また、高分子量ポリオール100モルに対して、イソソルビドの含有割合が、例えば、200モル以上、好ましくは、250モル以上であり、例えば、800モル以下、好ましくは、700モル以下である。また、C3~8脂肪族ジオールの含有割合が、例えば、30モル以上、好ましくは、50モル以上であり、例えば、350モル以下、好ましくは、250モル以下である。
 さらに、高分子量ポリオール100モルに対して、イソソルビドおよびC3~8脂肪族ジオールの合計割合が、例えば、230モル以上、好ましくは、300モル以上であり、例えば、1150モル以下、好ましくは、950モル以下である。
 そして、外観、透明性、機械物性および耐久性を兼ね備える観点から、イソソルビドおよびC3~8脂肪族ジオールの総モル数に対して、イソソルビドの含有割合が、60モル%以上、好ましくは、65モル%以上、より好ましくは、70モル%以上、さらに好ましくは、75モル%以上、とりわけ好ましくは、78モル%以上であり、95モル%以下、好ましくは、90モル%以下、より好ましくは、88モル%以下、さらに好ましくは、85モル%以下、とりわけ好ましくは、83モル%以下である。また、C3~8脂肪族ジオールの含有割合が、例えば、5モル%以上、好ましくは、10モル%以上、より好ましくは、12モル%以上、さらに好ましくは、15モル%以上、とりわけ好ましくは、17モル%以上であり、例えば、40モル%以下、好ましくは、35モル%以下、より好ましくは、30モル%以下、さらに好ましくは、25モル%以下、とりわけ好ましくは、22モル%以下である。
 質量基準では、イソソルビドおよびC3~8脂肪族ジオールの総質量に対して、イソソルビドの含有割合が、例えば、70質量%以上、好ましくは、75質量%以上、より好ましくは、78質量%以上、さらに好ましくは、80質量%以上であり、例えば、98質量%以下、好ましくは、93質量%以下、より好ましくは、90質量%以下、さらに好ましくは、88質量%以下である。また、C3~8脂肪族ジオールの含有割合が、例えば、2質量%以上、好ましくは、5質量%以上、より好ましくは、8質量%以上、さらに好ましくは、10質量%以上であり、例えば、30質量%以下、好ましくは、25質量%以下、より好ましくは、23質量%以下、さらに好ましくは、20質量%以下である。
 イソソルビドおよびC3~8脂肪族ジオールの割合が上記範囲であれば、外観、透明性、機械物性および耐久性を兼ね備える熱可塑性ポリウレタン樹脂を得ることができる。
 そして、熱可塑性ポリウレタン樹脂は、上記の原料成分を反応させることによって、製造される。原料成分の反応では、例えば、ワンショット法、プレポリマー法などの公知の方法が採用される。外観、透明性、機械物性および耐久性を向上させる観点から、好ましくは、プレポリマー法が採用される。
 プレポリマー法では、まず、ポリイソシアネート成分とマクロポリオールとを反応させて、イソシアネート末端プレポリマーを合成する(プレポリマー合成工程)。
 より具体的には、プレポリマー合成工程では、ポリイソシアネート成分と、マクロポリオールとを、例えば、バルク重合や溶液重合などの重合方法により反応させる。
 バルク重合では、例えば、窒素気流下において、ポリイソシアネート成分およびマクロポリオールを、反応温度が、例えば、50℃以上、例えば、250℃以下、好ましくは、200℃以下で、例えば、0.5時間以上、例えば、15時間以下反応させる。
 溶液重合では、有機溶剤に、ポリイソシアネート成分およびマクロポリオールを加えて、反応温度が、例えば、50℃以上、例えば、120℃以下、好ましくは、100℃以下で、例えば、0.5時間以上、例えば、15時間以下反応させる。
 有機溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類、例えば、アセトニトリルなどのニトリル類、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチルなどのアルキルエステル類、例えば、n-ヘキサン、n-ヘプタン、オクタンなどの脂肪族炭化水素類、例えば、シクロヘキサン、メチルシクロヘキサンなどの脂環族炭化水素類、例えば、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素類、例えば、メチルセロソルブアセテート、エチルセロソルブアセテート、メチルカルビトールアセテート、エチルカルビトールアセテート、エチレングリコールエチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、3-メチル-3-メトキシブチルアセテート、エチル-3-エトキシプロピオネートなどのグリコールエーテルエステル類、例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、例えば、塩化メチル、塩化メチレン、クロロホルム、四塩化炭素、臭化メチル、ヨウ化メチレン、ジクロロエタンなどのハロゲン化脂肪族炭化水素類、例えば、N-メチルピロリドン、ジメチルホルムアミド、N,N’-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホニルアミドなどの極性非プロトン類などが挙げられる。
 また、上記の重合反応では、必要に応じて、例えば、アミン類や有機金属化合物などの公知のウレタン化触媒を添加することができる。
 アミン類としては、例えば、トリエチルアミン、トリエチレンジアミン、ビス-(2-ジメチルアミノエチル)エーテル、N-メチルモルホリンなどの3級アミン類、例えば、テトラエチルヒドロキシルアンモニウムなどの4級アンモニウム塩、例えば、イミダゾール、2-エチル-4-メチルイミダゾールなどのイミダゾール類などが挙げられる。
 有機金属化合物としては、例えば、酢酸錫、オクチル酸錫(オクチル酸第一スズ)、オレイン酸錫、ラウリル酸錫、ジブチル錫ジアセテート、ジメチル錫ジラウレート、ジブチル錫ジラウレート、ジブチル錫ジメルカプチド、ジブチル錫マレエート、ジブチル錫ジネオデカノエート、ジオクチル錫ジメルカプチド、ジオクチル錫ジラウリレート、ジブチル錫ジクロリドなどの有機錫化合物、例えば、オクタン酸鉛、ナフテン酸鉛などの有機鉛化合物、例えば、ナフテン酸ニッケルなどの有機ニッケル化合物、例えば、ナフテン酸コバルトなどの有機コバルト化合物、例えば、オクテン酸銅などの有機銅化合物、例えば、オクタン酸ビスマス(オクチル酸ビスマス)、ネオデカン酸ビスマスなどの有機ビスマス化合物などが挙げられ、好ましくは、オクチル酸スズ、オクチル酸ビスマスが挙げられる。
 さらに、ウレタン化触媒として、例えば、炭酸カリウム、酢酸カリウム、オクチル酸カリウムなどのカリウム塩が挙げられる。
 これらウレタン化触媒は、単独使用または2種類以上併用することができる。
 ウレタン化触媒の添加割合は、ポリイソシアネート成分およびマクロポリオールとの総量10000質量部に対して、例えば、0.001質量部以上、好ましくは、0.01質量部以上であり、例えば、1質量部以下、好ましくは、0.5質量部以下である。
 また、上記重合反応においては、未反応のポリイソシアネート成分や、有機溶剤を用いた場合には有機溶剤を、例えば、蒸留や抽出などの公知の除去手段により除去することができる。
 プレポリマー合成工程において、各成分の配合割合は、マクロポリオール中の水酸基に対する、ポリイソシアネート成分中のイソシアネート基の当量比(イソシアネート基/水酸基)として、例えば、1.3以上、好ましくは、1.5以上であり、例えば、20以下、好ましくは、15以下、より好ましくは、10以下、さらに好ましくは、8以下である。
 より具体的には、プレポリマー合成工程における各成分の配合割合は、マクロポリオール100質量部に対して、ポリイソシアネート成分が、例えば、10質量部以上、好ましくは、20質量部以上であり、例えば、200質量部以下、好ましくは、150質量部以下である。
 そして、この方法では、イソシアネート基含有率が、例えば、5.0質量%以上、より好ましくは、10.0質量%以上、例えば、30.0質量%以下、好ましくは、25.0質量%以下に達するまで上記成分を反応させる。これにより、イソシアネート基末端プレポリマーを得ることができる。
 なお、イソシアネート基含有量(イソシアネート基含有率)は、ジ-n-ブチルアミンによる滴定法や、FT-IR分析などの公知の方法によって求めることができる。
 次いで、この方法では、上記により得られたイソシアネート基末端プレポリマーと、イソソルビドおよびC3~8脂肪族ジオールとを鎖伸長反応(硬化反応)させて、ポリイソシアネート成分とポリオール成分との反応生成物を得る(鎖伸長工程)。
 すなわち、この方法において、イソソルビドおよびC3~8脂肪族ジオールは、鎖伸長剤である。
 そして、鎖伸長工程では、イソシアネート基末端プレポリマーと、イソソルビドおよびC3~8脂肪族ジオールとを、例えば、上記したバルク重合や上記した溶液重合などの重合方法により反応させる。
 鎖伸長工程において、各成分の配合割合は、イソソルビド中の水酸基およびC3~8脂肪族ジオール中の水酸基の総量に対する、イソシアネート基末端プレポリマー中のイソシアネート基の当量比(イソシアネート基/水酸基)として、例えば、0.75以上、好ましくは、0.9以上、例えば、1.3以下、好ましくは、1.1以下である。
 より具体的には、鎖伸長工程における各成分の配合割合は、イソシアネート基末端プレポリマー100質量部に対して、イソソルビドおよびC3~8脂肪族ジオールの総量が、例えば、1.0質量部以上、好ましくは、2.0質量部以上、より好ましくは、3.0質量部以上であり、例えば、50質量部以下、好ましくは、40質量部以下、より好ましくは、30質量部以下である。
 また、鎖伸長工程において、得られる熱可塑性ポリウレタン樹脂のハードセグメント濃度を調整するために、イソソルビドおよびC3~8脂肪族ジオールの他に、マクロポリオールを、適宜の割合で配合することもできる。
 さらに、この反応においては、必要に応じて、上記したウレタン化触媒を添加することができる。ウレタン化触媒は、イソシアネート基末端プレポリマー、イソソルビドおよび/またはC3~8脂肪族ジオールに配合することができ、また、それらの混合時に別途配合することもできる。
 また、鎖伸長工程における硬化温度(反応温度)は、例えば、室温(23℃)以上、好ましくは、100℃以上、より好ましくは、150℃以上であり、例えば、300℃以下、好ましくは、260℃以下、より好ましくは、240℃以下である。
 また、硬化時間(反応時間)が、例えば、30分以上、好ましくは、1時間以上、例えば、48時間以下、好ましくは、24時間以下である。
 硬化温度および硬化時間が上記範囲であれば、外観、透明性、機械物性および耐久性を兼ね備える熱可塑性ポリウレタン樹脂が得られる。
 また、鎖伸長工程では、必要に応じて、上記した硬化反応(一次加熱)の後、二次加熱して、反応を完結させることができる。
 二次加熱温度は、例えば、室温(23℃)以上、好ましくは、50℃以上、より好ましくは、80℃以上であり、例えば、200℃以下、好ましくは、160℃以下、より好ましくは、140℃以下である。
 また、二次加熱時間が、例えば、3時間以上、好ましくは、5時間以上、例えば、72時間以下、好ましくは、48時間以下である。
 このような二次加熱により、鎖伸長反応を完結させ、上記ポリイソシアネート成分および上記ポリオール成分の反応生成物を得ることができ、熱可塑性ポリウレタン樹脂を得ることができる。
 さらに、得られた熱可塑性ポリウレタン樹脂を、必要に応じて、例えば、室温(23℃)~40℃で、例えば、1~7日間、養生することもできる。
 そして、このような熱可塑性ポリウレタン樹脂は、原料成分として、所定割合の1,4-ビス(イソシアナトメチル)シクロヘキサンと、マクロポリオールと、所定割合の炭素数3~8の脂肪族ジオールおよびイソソルビドとを含有しているため、外観、透明性、機械物性および耐久性を兼ね備える。
 また、上記の熱可塑性ポリウレタン樹脂の製造方法によれば、外観、透明性、機械物性および耐久性を兼ね備える熱可塑性ポリウレタン樹脂を、簡易に得ることができる。
 また、上記の反応生成物を得る方法として、ワンショット法を採用する場合には、ポリイソシアネート成分と、ポリオール成分(マクロポリオール、イソソルビドおよびC3~8脂肪族ジオールを含む)とを、ポリオール成分中の水酸基に対する、ポリイソシアネート成分中のイソシアネート基の当量比(イソシアネート基/水酸基)が、例えば、0.9以上、好ましくは、0.95以上、より好ましくは、0.98以上、例えば、1.2以下、好ましくは、1.1以下、より好ましくは、1.08以下となる割合で、同時に配合して撹拌混合する。
 また、この撹拌混合は、例えば、不活性ガス(例えば、窒素)雰囲気下、反応温度が、例えば、40℃以上、好ましくは、100℃以上、例えば、280℃以下、好ましくは、260℃以下で、反応時間が、例えば、30秒以上1時間以下で実施する。
 また、撹拌混合時には、必要により、上記したウレタン化触媒や有機溶剤を、適宜の割合で添加することができる。
 このような方法でも、上記ポリイソシアネート成分および上記ポリオール成分の反応生成物を得ることができ、熱可塑性ポリウレタン樹脂を得ることができる。
 また、熱可塑性ポリウレタン樹脂は、上記ポリイソシアネート成分および上記ポリオール成分の反応生成物の他、必要に応じて、亜リン酸系酸化防止剤を含むことができる。
 亜リン酸系酸化防止剤としては、例えば、トリフェニルホスファイト、トリスノニルフェニルホスファイト、トリクレジルホスファイト、トリエチルホスファイト、トリス(2-エチルヘキシル)ホスファイト、トリデシルホスファイト、トリラウリルホスファイト、トリス(トリデシル)ホスファイト、トリオレイルホスファイト、ジフェニルモノ(2-エチルヘキシル)ホスファイト、ジフェニルモノデシルホスファイト、ジフェニルモノ(トリデシル)ホスファイト、トリラウリルトリチオホスファイト、ジエチルハイドロゲンホスファイト、テトラフェニルジプロピレングリコールジホスファイト、テトラフェニル(テトラトリデシル)ペンタエリスリトールテトラホスファイト、フタル酸ビス(2-エチルヘキシル)、テトラ(C12~C15アルキル)-4,4’-イソプロピリデンジフェニルジホスファイト、ビス(トリデシル)ペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(デシル)ペンタエリスリトールジホスファイト、ビス(トリデシル)ペンタエリスリトールジホスファイト、トリステアリルホスファイト、ジステアリルペンタエリスリトールジホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、水添ビスフェノールA・ペンタエリスリトールホスファイトポリマー、水添ビスフェノールAホスファイトポリマーなどの亜リン酸エステル類などが挙げられる。
 これら亜リン酸系酸化防止剤は、単独使用または2種類以上併用することができる。
 亜リン酸系酸化防止剤として、好ましくは、亜リン酸エステル類が挙げられ、より好ましくは、ビス(デシル)ペンタエリスリトールジホスファイトが挙げられる。
 亜リン酸系酸化防止剤は、例えば、上記ポリイソシアネート成分および/または上記ポリオール成分に添加されていてもよく、それらの配合時に同時に添加されていてもよく、さらに、それらの配合後に添加されていてもよい。
 亜リン酸系酸化防止剤の含有割合は、例えば、上記ポリイソシアネート成分と上記ポリオール成分との反応生成物100質量部に対して、亜リン酸系酸化防止剤が、例えば、0.05質量部以上、好ましくは、0.10質量部以上、より好ましくは、0.30質量部以上であり、例えば、2.0質量部以下、好ましくは、1.0質量部以下、より好ましくは、0.8質量部以下である。
 亜リン酸系酸化防止剤の含有割合が上記の範囲であれば、とりわけ、外観に優れ、また、透明性、機械物性および耐久性を兼ね備える熱可塑性ポリウレタン樹脂を得ることができる。
 また、原料成分は、必要に応じて、その他の公知の添加剤を含むことができる。そのような添加剤としては、例えば、耐熱安定剤、紫外線吸収剤、耐光安定剤、さらには、酸化防止剤(亜リン酸系酸化防止剤を除く。)、加水分解防止剤、可塑剤、ブロッキング防止剤、離型剤、顔料、染料、滑剤、フィラー、防錆剤、充填剤などを添加することができる。これら添加剤は、各成分の混合時、合成時または合成後に添加することができる。
 耐熱安定剤としては、特に制限されず、公知の耐熱安定剤(例えば、BASFジャパン製カタログに記載)が挙げられ、より具体的には、例えば、リン系加工熱安定剤、ラクトン系加工熱安定剤、イオウ系加工熱安定剤などが挙げられる。
 紫外線吸収剤としては、特に制限されず、公知の紫外線吸収剤(例えば、BASFジャパン製カタログに記載)が挙げられ、より具体的には、例えば、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤などが挙げられる。
 耐光安定剤としては、特に制限されず、公知の耐光安定剤(例えば、ADEKA製カタログに記載)が挙げられ、より具体的には、例えば、ベンゾエート系光安定剤、ヒンダードアミン系光安定剤などが挙げられる。
 これら添加剤の添加量は、目的および用途に応じて、適宜設定される。
 また、添加剤は、例えば、上記ポリイソシアネート成分および/または上記ポリオール成分に添加されていてもよく、それらの配合時に同時に添加されていてもよく、さらに、それらの配合後に添加されていてもよい。
 そして、このような熱可塑性ポリウレタン樹脂は、公知の成形方法により成形されることにより、各種成形品として用いられる。
 より具体的には、熱可塑性ポリウレタン樹脂の成形品は、例えば、上記の熱可塑性ポリウレタン樹脂を、公知の成形方法、例えば、特定の金型を用いた熱圧縮成形および射出成形や、シート巻き取り装置を用いた押出成形、例えば、溶融紡糸成形などの熱成形加工方法により、例えば、ペレット状、板状、繊維状、ストランド状、フィルム状、シート状、パイプ状、中空状、箱状などの各種形状に成形することにより、得ることができる。
 そして、得られた成形品は、外観、透明性、機械物性および耐久性を兼ね備えることができる。そのため、成形品は、上記の各種物性が要求される分野において好適に用いることができる。
 より具体的には、上記の熱可塑性ポリウレタン樹脂は、光学用ポリウレタン樹脂において、好適に用いられる。
 上記の熱可塑性ポリウレタン樹脂を含む光学用ポリウレタン樹脂は、外観、透明性、機械物性および耐久性を兼ね備えるため、所望の光学特性を満足し、さらに、実用性にも優れる。
 そのため、光学用ポリウレタン樹脂は、例えば、ディスプレイパネル用カバー板として、好適に用いられる。
 ディスプレイパネルとしては、例えば、スマートデバイス(スマートフォン、タブレットコンピュータ(タブレットPC)、スレートコンピュータ(スレートPC)など)や、タワー型コンピュータ、ノート型コンピュータなどの各種情報処理端末のディスプレイパネルが挙げられる。これらディスプレイパネルは、通常、液晶パネルなどの画像表示パネルを備えており、また、その画像表示パネルを保護するために、画像表示パネルの表面に透光性のカバー板(ディスプレイパネル用カバー板)が積層されている。
 このようなディスプレイパネル用カバー板には、優れた外観、透明性、機械物性および耐久性が要求される。そのため、上記した光学用ポリウレタン樹脂の成形品は、ディスプレイパネル用カバー板として、好適である。
 換言すれば、上記した光学用ポリウレタン樹脂を用いて得られるディスプレイ用カバー板は、優れた外観、透明性、機械物性および耐久性を兼ね備える。
 また、上記の熱可塑性ポリウレタン樹脂は、例えば、アイウェア材料として好適に用いられる。
 アイウェア材料は、例えば、矯正眼鏡、保護眼鏡、サングラス、ゴーグルなどのアイウェアにおいて、アイウェアレンズ、アイウェアフレームなどを成形するための材料である。
 すなわち、アイウェアレンズおよびアイウェアフレームには、優れた外観、透明性、機械物性および耐久性が要求される場合がある。
 そのため、上記した熱可塑性ポリウレタン樹脂は、アイウェア材料として好適に用いられ、また、熱可塑性ポリウレタンの成形品は、アイウェアレンズ、アイウェアフレームなどとして、好適に用いられる。
 具体的には、アイウェアレンズの製造においては、上記の熱可塑性ポリウレタン樹脂を含むアイウェア材料を、公知の方法により、レンズ形状に成形し、レンズ本体を成形する。その後、好ましくは、レンズ本体の少なくとも一方面に、ハードコート層および/または反射防止層を積層する。これにより、アイウェアレンズを得る。
 なお、ハードコート層としては、公知の構成でよく、例えば、酸化ケイ素、トリメトキシメチルシランおよびその加水分解物などを含む、Siコート層などが挙げられる。また、反射防止層としては、公知の構成でよく、例えば、金属酸化物(酸化ケイ素、酸化ジルコニウムなど)の金属蒸着層などが挙げられる。これらハードコート層および反射防止層は、それぞれ、単層であってもよく、多層であってもよい。
 また、アイウェアフレームの製造においては、上記の熱可塑性ポリウレタン樹脂を含むアイウェア材料を、公知の方法により、アイウェアフレームの各パーツ形状に成形する。
アイウェアフレームのパーツとしては、例えば、レンズ、ノーズパッド(鼻あて部分)、モダン(耳あて部分)、テンプル(つる部分)、リム(レンズ周辺部分)、ブリッジ(リム接続部分)、ヨロイ(フロント両端部分)、ヒンジ(ヨロイとテンプルとの接続部分)などが挙げられる。
 このようなアイウェアフレームおよびアイウェアレンズは、上記の熱可塑性ポリウレタン樹脂を含むため、外観、透明性、機械物性および耐久性を兼ね備える。
 さらに、上記の熱可塑性ポリウレタン樹脂は、自動車内外装材用部品として、好適に用いられる。
 自動車内外装材としては、例えば、自動車のバンパー、ヘッドランプ、テールランプ、インストルメントパネル、シフトレバー、ハンドルなどの公知の自動車内外装材が挙げられる。
 このような自動車内外装材を構成する各種部品(例えば、ヘッドランプカバー、テールランプカバー、インストルメントパネルカバー、シフトレバーの取手、ハンドルのグリップ部など)には、優れた外観、透明性、機械物性および耐久性が要求される場合がある。
 そのため、上記した熱可塑性ポリウレタン樹脂の成形品は、自動車内外装材用部品として、好適に用いられる。
 具体的には、自動車内外装材用部品の製造においては、上記の熱可塑性ポリウレタン樹脂を、公知の方法により、自動車内外装材用部品の各種形状に成形する。これにより、自動車内外装材用部品を得る。
 このような自動車内外装材用部品は、上記の熱可塑性ポリウレタン樹脂を含むため、外観、透明性、機械物性および耐久性を兼ね備える。
 また、熱可塑性ポリウレタン樹脂の成形品は、上記の用途の他、工業的に広範に使用可能であり、具体的には、例えば、透明性硬質プラスチック、コーティング材料、粘着剤、接着剤、防水材、ポッティング剤、インク、バインダー、フィルム、シート、バンド(例えば、時計バンドなどのバンド、例えば、自動車用伝動ベルト、各種産業用搬送ベルト(コンベアベルト)などのベルト)、チューブ(例えば、医療用チューブ、カテーテルなどの部品の他、エアーチューブ、油圧チューブ、電線チューブなどのチューブ、例えば、消防ホースなどのホース)、ブレード、スピーカー、センサー類、高輝度用LED封止剤、有機EL部材、太陽光発電部材、ロボット部材、アンドロイド部材、ウェアラブル部材、衣料用品、衛生用品、化粧用品、食品包装部材、スポーツ用品、レジャー用品、医療用品、介護用品、住宅用部材、音響部材、照明部材、シャンデリア、外灯、シール材、封止材、コルク、パッキン、防振・制震・免震部材、防音部材、日用品、雑貨、クッション、寝具、応力吸収材、応力緩和材、自動車の内外装部品、鉄道部材、航空機部材、光学部材、OA機器用部材、雑貨表面保護部材、半導体封止材、自己修復材料、健康器具、メガネレンズ、玩具、ケーブルシース、ワイヤーハーネス、電気通信ケーブル、自動車配線、コンピューター配線、カールコードなど工業用品、シート、フィルムなどの介護用品、スポーツ用品、レジャー用品、各種雑貨、防振・免振材料、衝撃吸収材、光学材料、導光フィルムなどのフィルム、自動車部品、表面保護シート、化粧シート、転写シート、半導体保護テープなどのテープ部材、ゴルフボール部材、テニスラケット用ストリング、農業用フィルム、壁紙、防曇付与剤、不織布、マットレスやソファーなどの家具用品、ブラジャーや肩パッドなどの衣料用品、紙おむつ、ナプキン、メディカルテープの緩衝材などの医療用品、化粧品、洗顔パフや枕などのサニタリー用品、靴底(アウトソール)、ミッドソール、カバー材などの靴用品、さらには、車両用のパッドやクッションなどの体圧分散用品、ドアトリム、インスツルメントパネル、ギアノブなどの手で触れる部材、電気冷蔵庫や建築物の断熱材、ショックアブソーバーなどの衝撃吸収材、充填材、化学機械研磨(CMP)パッドなどの半導体製造用品などにおいて、好適に用いられる。
 さらには、上記の成形品は、被覆材(フィルム、シート、ベルト、ワイヤー、電線、金属製の回転機器、ホイール、ドリルなどの被覆材)、糸や繊維(チューブ、タイツ、スパッツ、スポーツウエア、水着などに用いられる糸や複合繊維)、押出成形用途(テニス、バトミントンなどのガットおよびその収束材などの押出成形用途)、マイクロペレット化などによるパウダー形状でのスラッシュ成形品、人造皮革、表皮、シート、被覆ロール(鉄鋼などの被覆ロール)、シーラント、ローラー、ギアー、ボール、バットのカバーあるいはコア材(ゴルフボール、バスケットボール、テニスボール、バレーボール、ソフトボール、バットなどのカバーあるいはコア材(これらは熱可塑性ポリウレタン樹脂を発泡成形した形態であってもよい。))、マット、スキー用品、ブーツ、テニス用品、ブリップ(ゴルフクラブや二輪車などのグリップ)、ラックブーツ、ワイパー、シートクッション部材、介護製品のフィルム、3Dプリンター成形品、繊維強化材料(炭素繊維、リグニン、ケナフ、ナノセルロースファイバー、ガラス繊維などの繊維の強化材料)、安全ゴーグル、サングラス、メガネフレーム、スキーゴーグル、水泳ゴーグル、コンタクトレンズ、ガスアシストの発泡成形品、ショックアブソーバー、CMP研磨パッド、ダンバー、ベアリング、ダストカバー、切削バルブ、チッピングロール、高速回転ローラー、タイヤ、時計、ウエアブルバンドなど、繰返し伸縮、圧縮変形などによる回復性や耐摩耗が要求される用途において、好適に使用される。
 次に、本発明を、製造例、合成例、実施例および比較例に基づいて説明するが、本発明は、これらによって限定されるものではない。なお、「部」および「%」は、特に言及がない限り、質量基準である。また、以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。
<1,4-ビス(イソシアナトメチル)シクロヘキサン(1,4-HXDI)の製造>
  製造例1 1,4-ビス(イソシアナトメチル)シクロヘキサン(1)(以下、1,4-BIC(1)とする。)の製造方法
 特開2014-55229号公報の製造例6の記載に準拠して、純度99.5%以上のトランス体/シス体比98/2の1,4-ビス(アミノメチル)シクロヘキサンを92%の収率で得た。
 その後、特開2014-55229号公報の製造例1の記載に準拠して、この1,4-ビス(アミノメチル)シクロヘキサンを原料として、冷熱2段ホスゲン化法を加圧下で実施して、1,4-BIC(1)を382質量部得た。
 得られた1,4-BIC(1)のガスクロマトグラフィー測定による純度は99.9%、13C-NMR測定によるトランス体/シス体比は98/2であった。
  製造例2 1,4-ビス(イソシアナトメチル)シクロヘキサン(2)(以下、1,4-BIC(2)とする。)の製造方法
 撹拌機、温度計、還流管、および、窒素導入管を備えた4つ口フラスコに、製造例1の1,4-BIC(1)を789質量部、後述の製造例4の1,4-BIC(4)を211質量部装入し、窒素雰囲気下、室温にて1時間撹拌した。得られた1,4-BIC(2)のガスクロマトグラフィー測定による純度は99.9%、13C-NMR測定によるトランス/シス比は86/14であった。
  製造例3 1,4-ビス(イソシアナトメチル)シクロヘキサン(3)(以下、1,4-BIC(3)とする。)の製造方法
 撹拌機、温度計、還流管、および、窒素導入管を備えた4つ口フラスコに、製造例1の1,4-BIC(1)を474質量部、後述の製造例4の1,4-BIC(4)を526質量部装入し、窒素雰囲気下、室温にて1時間撹拌した。得られた1,4-BIC(3)のガスクロマトグラフィー測定による純度は99.9%、13C-NMR測定によるトランス/シス比は68/32であった。
  製造例4 1,4-ビス(イソシアナトメチル)シクロヘキサン(4)(以下、1,4-BIC(4)とする。)の製造方法
 13C-NMR測定によるトランス体/シス体比が41/59の1,4-ビス(アミノメチル)シクロヘキサン(東京化成工業社製)を原料として、特開2014-55229号公報の製造例1の記載に準拠して、388質量部の1,4-BIC(4)を得た。
 得られた1,4-BIC(4)のガスクロマトグラフィー測定による純度は99.9%、13C-NMR測定によるトランス体/シス体比は41/59であった。
 <熱可塑性ポリウレタン樹脂の製造および成形>
  実施例1
 撹拌機、温度計、還流管および窒素導入管を備えた4つ口フラスコに、PTG1000SN(P)(保土ヶ谷化学工業社製、バイオマス原料を用いたポリテトラメチレンエーテルグリコール、数平均分子量1000)33.51質量部を装入し、次いで、当量比(NCO/OH)が6.50になるように、トランス/シス比が86/14である1,4-BIC(2) 41.89質量部を装入した。そして、イソシアネート基含量が20.32質量%になるまで反応させ、イソシアネート基末端プレポリマー(以下、プレポリマーと略する場合がある。)を得た。
 予め80℃に調製したプレポリマー75.71質量部と、イルガノックス245(BASFジャパン製 耐熱安定剤)0.30質量部と、チヌビン234(BASFジャパン社製 紫外線吸収剤)0.25質量部と、アデカスタブLA-72(ADEKA社製 光安定剤)0.09質量部と、JPE-10(城北化学工業社製 亜リン酸系酸化防止剤)0.5質量部と、スタノクト(APIコーポレーション社製 オクチル酸第一スズ)をDINA(ジェイ・プラス社製 ジイソノニルアジペート)により4質量%に希釈した触媒液を0.013質量部とを、ステンレス容器に入れ、高速ディスパーを使用して、800rpmの撹拌下、約2分間撹拌混合した。
 次いで、鎖伸長剤としてのイソソルビド(ROQUETTE社製、POLYSORB P)および1,4-ブタンジオール(1,4-BD、三菱化学社製)の混合物(イソソルビド:1,4-BD=80:20(モル比))を80℃に調整し、その混合物をプレポリマーに、当量比(NCO/OH)が1.00になるように添加した。
 その後、約10分間全体が均一になるまで充分に撹拌し、撹拌停止後すぐに反応混合液の均一性を確認した後、予め180℃に温調したSUS(ステンレス鋼)製バッド上のテフロン(登録商標)シートに反応混合液を流し込み、180℃にて2時間、次いで、100℃にて20時間反応させ、熱可塑性ポリウレタン樹脂を得た。
 バットから熱可塑性ポリウレタン樹脂を取り外し、室温23℃、相対湿度50%の恒温恒湿条件下にて、3日間養生した。
 その後、熱可塑性ポリウレタンをベールカッターによりサイコロ状に切断し、粉砕機にてサイコロ状の樹脂を粉砕した。この粉砕ペレットを窒素気流下、80℃にて一昼夜乾燥した。単軸押出機(型式:SZW40-28MG、テクノベル社製)を用いてシリンダー温度185~250℃の範囲でストランドを押出し、それをカットすることによって、熱可塑性ポリウレタンのペレットを得た。得られたペレットをさらに窒素気流下、80℃にて一昼夜乾燥した。
 次いで、射出成型機(型式:SE-180DU、住友重機械工業社製)を用いてシリンダー温度185~250℃、ノズル温度185~245℃の範囲でペレットを射出成型し、熱可塑性ポリウレタン樹脂のシート(厚さ2.0mm)、レンズ本体(厚さ2.0mm、直径75mm、プラノ、4カーブ)およびブロック(10cm×10cm×厚み12mm)を得た。
 また、レンズ本体には、以下の処理により、ハードコート層および反射防止層を積層した。
 すなわち、レンズ本体を120℃で3時間アニール処理をした後、10%水酸化ナトリウム水溶液にて50℃、10分間、超音波洗浄槽にて洗浄し、その後、イソプロパノールにて洗浄して、50℃にて表面を乾燥させた。
 次いで、酸化ケイ素、トリメトキシメチルシランおよびその加水分解物を含有するハードコート組成物に、レンズ本体を浸漬し、150mm/minの速度で引き上げた。その後、ハードコート組成物を、80℃で10分間予備加熱した後に、120℃で6時間加熱して硬化させた。これにより、レンズ本体の表面に、ハードコート層を形成させた。
 その後、ハードコート層が形成されたレンズ本体に、ハードコート層の上から、真空蒸着装置を用いて、酸化ケイ素および酸化ジルコニウムからなる5層の多層反射防止層を形成した。
 これにより、レンズ本体、ハードコート層および反射防止層を備えるアイウェアレンズを得た。
  実施例2
 実施例1のPTG1000SN(P)を33.51質量部、1,4-BIC(2)を42.20質量部に変更し、イソソルビドおよび1,4-ブタンジオールのモル比(イソソルビド:1,4-BD)を75:25に変更した以外は、実施例1と同様にして熱可塑性ポリウレタン樹脂を製造し、シート、ブロックおよびアイウェアレンズを成形した。
  比較例1
 実施例1のPTG1000SN(P)を33.51質量部、1,4-BIC(2)を43.27質量部に変更し、イソソルビドおよび1,4-ブタンジオールのモル比(イソソルビド:1,4-BD)を58:42に変更した以外は、実施例1と同様にして熱可塑性ポリウレタン樹脂を製造し、シート、ブロックおよびアイウェアレンズを成形した。
  比較例2
 実施例1のPTG1000SN(P)を33.51質量部、1,4-BIC(2)を40.90質量部に変更し、イソソルビドおよび1,4-ブタンジオールのモル比(イソソルビド:1,4-BD)を97:3に変更した以外は、実施例1と同様にして熱可塑性ポリウレタン樹脂を製造し、シート、ブロックおよびアイウェアレンズを成形した。
  比較例3
 実施例1のPTG1000SN(P)を32.21質量部に変更し、1,4-BIC(2)に代えて、1,4-BIC(2)16.66質量部およびジイソシアナトメチルビシクロ〔2,2,1〕-ヘプタン(NBDI、三井化学社製)26.53質量部の混合物(1,4-BIC:NBDI=40:60(モル比))を用いた以外は、実施例1と同様にして熱可塑性ポリウレタン樹脂を製造し、シート、ブロックおよびアイウェアレンズを成形した。
  比較例4
 実施例1のPTG1000SN(P)を33.51質量部、1,4-BIC(2)を42.06質量部に変更し、イソソルビドおよび1,4-ブタンジオールの混合物に代えて、1,4-シクロヘキサンジメタノール(長瀬産業社製、CHDM-D)および1,4-ブタンジオールの混合物(CHDM-D:1,4-BD=80:20(モル比))を用いた以外は、実施例1と同様にして熱可塑性ポリウレタン樹脂を製造し、シート、ブロックおよびアイウェアレンズを成形した。
  比較例5
 実施例1のPTG1000SN(P)を33.51質量部、1,4-BIC(2)を40.73質量部に変更し、イソソルビドおよび1,4-ブタンジオールの混合物に代えて、イソソルビドを25.76質量部用いた以外は、実施例1と同様にして熱可塑性ポリウレタン樹脂を製造し、シート、ブロックおよびアイウェアレンズを成形した。
  実施例3
 実施例1のPTG1000SN(P)を33.51質量部に変更し、1,4-BIC(2)に代えて、トランス/シス比が98/2の1,4-BIC(1)41.89質量部を用いた以外は、実施例1と同様にして熱可塑性ポリウレタン樹脂を製造し、シート、ブロックおよびアイウェアレンズを成形した。
  実施例4
 実施例1のPTG1000SN(P)を33.51質量部に変更し、1,4-BIC(2)に代えて、トランス/シス比が68/32の1,4-BIC(3)41.89質量部を用いた以外は、実施例1と同様にして熱可塑性ポリウレタン樹脂を製造し、シート、ブロックおよびアイウェアレンズを成形した。
  実施例5
 実施例1のPTG1000SN(P)を33.51質量部、1,4-BIC(2)を41.59質量部に変更し、イソソルビドおよび1,4-ブタンジオールの混合物に代えて、イソソルビドおよび1,5-ペンタンジオール(1,5-PeD 宇部興産社製)の混合物(イソソルビド:1,5-PeD=80:20(モル比))に変更した以外は、実施例1と同様にして熱可塑性ポリウレタン樹脂を製造し、シート、ブロックおよびアイウェアレンズを成形した。
  実施例6
 実施例1のPTG1000SN(P)を33.51質量部、1,4-BIC(2)を41.89質量部に変更し、イソソルビドおよび1,4-ブタンジオールの混合物に代えて、イソソルビドおよび1,3-ブタンジオール(1,3-BD和光純薬工業製)の混合物(イソソルビド:1,3-BD=80:20(モル比))に変更した以外は、実施例1と同様にして熱可塑性ポリウレタン樹脂を製造し、シート、ブロックおよびアイウェアレンズを成形した。
  実施例7
 実施例1のPTG1000SN(P)を33.51質量部、1,4-BIC(2)を42.20質量部に変更し、イソソルビドおよび1,4-ブタンジオールの混合物に代えて、イソソルビドおよび1,3-プロパンジオール(1,3-PrD、デュポン社製、Susterra、登録商標、バイオマス原料を用いた1,3-プロパンジオール)の混合物(イソソルビド:1,3-PrD=80:20(モル比))に変更した以外は、実施例1と同様にして熱可塑性ポリウレタン樹脂を製造し、シート、ブロックおよびアイウェアレンズを成形した。
  実施例8
 実施例1のPTG1000SN(P)を33.51質量部、1,4-BIC(2)を40.77質量部に変更し、イソソルビドおよび1,4-ブタンジオールの混合物に代えて、イソソルビドおよび1,4-シクロヘキサンジメタノール(長瀬産業社製、CHDM-D)の混合物(イソソルビド:CHDM-D=80:20(モル比))に変更した以外は、実施例1と同様にして熱可塑性ポリウレタン樹脂を製造し、シート、ブロックおよびアイウェアレンズを成形した。
  実施例9
 実施例1のPTG1000SN(P)を33.51質量部、1,4-BIC(2)を41.30質量部に変更し、イソソルビドおよび1,4-ブタンジオールのモル比(イソソルビド:1,4-BD)を90:10に変更した以外は、実施例1と同様にして熱可塑性ポリウレタン樹脂を製造し、シート、ブロックおよびアイウェアレンズを成形した。
  実施例10
 実施例1のPTG1000SN(P)を33.51質量部、1,4-BIC(2)を43.14質量部に変更し、イソソルビドおよび1,4-ブタンジオールのモル比(イソソルビド:1,4-BD)を60:40に変更した以外は、実施例1と同様にして熱可塑性ポリウレタン樹脂を製造し、シート、ブロックおよびアイウェアレンズを成形した。
  実施例11
 実施例1のPTG1000SN(P)を33.51質量部、1,4-BIC(2)を41.30質量部に変更し、イソソルビドおよび1,4-ブタンジオールの混合物に代えて、イソソルビドおよび1,6-ヘキサンジオール(1,6-HD、和光純薬工業社製)の混合物(イソソルビド:1,6-HD=80:20(モル比))に変更した以外は、実施例1と同様にして熱可塑性ポリウレタン樹脂を製造し、シート、ブロックおよびアイウェアレンズを成形した。
  比較例6
 実施例1のPTG1000SN(P)を33.51質量部、1,4-BIC(2)を42.51質量部に変更し、イソソルビドおよび1,4-ブタンジオールの混合物に代えて、イソソルビドおよび1,2-エチレングリコール(1,2-ED、和光純薬工業社製)の混合物(イソソルビド:1,2-ED=80:20(モル比))に変更した以外は、実施例1と同様にして熱可塑性ポリウレタン樹脂を製造し、シート、ブロックおよびアイウェアレンズを成形した。
  実施例12
 実施例1のPTG1000SN(P)に代えて、PTG1000SN(P)12.04質量部と、PTG2000SN(P)(保土ヶ谷化学工業社製、バイオマス原料を用いたポリテトラメチレンエーテルグリコール、数平均分子量2000)23.30質量部との混合物(モル比で1:1)を用い、1,4-BIC(2)を40.06質量部に変更した以外は、実施例1と同様にして熱可塑性ポリウレタン樹脂を製造し、シート、ブロックおよびアイウェアレンズを成形した。
  実施例13
 実施例1のPTG1000SN(P)を、PO3G H1000(ALLESSA製、ポリ(トリメチレン)エーテルグリコール、数平均分子量1000)33.51質量部に変更し、1,4-BIC(2)を41.89質量部に変更した以外は、実施例1と同様にして熱可塑性ポリウレタン樹脂を製造し、シート、ブロックおよびアイウェアレンズを成形した。
  実施例14
 実施例1のPTG1000SN(P)を、PLACCEL 210N(ダイセル社製、ポリカプロラクトンジオール、数平均分子量1000)33.47質量部に変更し、1,4-BIC(2)を41.94質量部に変更した以外は、実施例1と同様にして熱可塑性ポリウレタン樹脂を製造し、シート、ブロックおよびアイウェアレンズを成形した。
  実施例15
 実施例1のPTG1000SN(P)を、UH-100(宇部興産社製、ポリカーボネートジオール、数平均分子量1000)33.52質量部に変更し、1,4-BIC(2)を41.88質量部に変更した以外は、実施例1と同様にして熱可塑性ポリウレタン樹脂を製造し、シート、ブロックおよびアイウェアレンズを成形した。
  実施例16
 実施例1のJPE-10を0.08質量部に変更した以外は、実施例1と同様にして熱可塑性ポリウレタン樹脂を製造し、シート、ブロックおよびアイウェアレンズを成形した。
  実施例17
 実施例1のJPE-10を1.50質量部に変更した以外は、実施例1と同様にして熱可塑性ポリウレタン樹脂を製造し、シート、ブロックおよびアイウェアレンズを成形した。
  実施例18
 実施例1のPTG1000SN(P)を35.41質量部に変更し、1,4-BIC(2)に代えて、1,4-BIC(2)25.36質量部およびヘキサメチレンジイソシアネート(HDI、三井化学社製、商品名タケネート700)14.64質量部の混合(1,4-BIC:HDI=60:40(モル比))に変更した以外は、実施例1と同様にして熱可塑性ポリウレタン樹脂を製造し、シート、ブロックおよびアイウェアレンズを成形した。
  実施例19
 実施例1の処方の原料成分を、公知の方法であるワンショット法で反応させた以外は、実施例1と同様にして熱可塑性ポリウレタン樹脂を製造し、シート、ブロックおよびアイウェアレンズを成形した。
  実施例20
 実施例1の方法において、テフロン(登録商標)シートに反応混合液を流し込んだ後、100℃にて2時間、次いで、100℃にて20時間反応させた以外は、実施例1と同様にして熱可塑性ポリウレタン樹脂を製造し、シート、ブロックおよびアイウェアレンズを成形した。
  実施例21
 実施例1の方法において、テフロン(登録商標)シートに反応混合液を流し込んだ後、280℃にて2時間、次いで、100℃にて20時間反応させた以外は、実施例1と同様にして熱可塑性ポリウレタン樹脂を製造し、シート、ブロックおよびアイウェアレンズを成形した。
  <評価>
 各実施例および各比較例で得られた熱可塑性ポリウレタン樹脂のシート、ブロックおよびアイウェアレンズについて、以下の通り評価した。その結果を、表1~表3に示す。
 なお、表1~表3には、各実施例および各比較例における配合処方(モル基準)を併せて示す。
 1)外観
 各実施例および各比較例で得られたシートを目視で確認し、濁り、着色、ブルーム、ブリードの有無を確認した。これらの外観不良がないものについては「3」、やや不良があるものについては「2」、著しい不良があるものは「1」とした。
 2)透過率およびヘイズ
 測定機器として、日本電色工業社製 HAZE METER NDH-5000を使用し、各実施例および各比較例で得られたシートの透過率およびヘイズを測定した。
 3)硬度
 JIS K7311(1995)に従って、各実施例および各比較例で得られたブロックに、ASKER D硬度計を水平に押し付け、15秒後の針の安定値を読み取った。
 4)耐衝撃性(アイゾッド衝撃)
 各実施例および各比較例で得られたシートを、JIS K7110(1999)のノッチ有(A法)に適したダンベルで打ち抜き、23℃にてアイゾッド試験を実施した。
 5)耐熱性
 各実施例および各比較例で得られたシートから、巾10mmの短冊状の試験片を切り出し、動的粘弾性測定装置(アイティー計測制御社製、型式:DVA-220)を用いて、測定開始温度-100℃、昇温速度5℃/min、引張モード、標線間長20mm、静/動応力比1.8、測定周波数10Hzの条件で、動的粘弾性スペクトルを測定した。そして、70℃における貯蔵弾性率E’を測定した。
 6)耐薬品性
 各実施例および各比較例で得られたシートから、ダンベルを用いて、74.4mmx66.5mmの各板を打ち抜き、片面にニベアクリーム(商品名、ニベア花王社製)を0.5g塗布した後、80℃に加熱したオーブン内に24時間保温した。
 保温後、表面のクリームを水で洗い流し、外観の変化を確認した。各板の外観を確認した。
 外観に変化が見られないものについては「3」、表面の荒れが確認されたものは「2」、各板の著しい表面荒れや寸法変化、反りが見られたものは「1」とした。
 7)耐溶剤性
 各実施例および各比較例で得られたシートから、ダンベルを用いて、直径30mmの円板を打ち抜き、室温のイソプロピルアルコールに5日間浸漬した。イソプロピルアルコールから取り出し後、円板表面をウエスなどで拭き取り、外観の変化を確認した。
 円板の外観に変化が見られないものについては「3」、表面の荒れが確認されたものは「2」、円板の著しい表面荒れや寸法変化、反りが見られたものは「1」とした。
 8)屈折率(nd)およびアッベ数(νd)
 各実施例および各比較例で得られたレンズ本体の屈折率およびアッベ数を、プルフリッヒ屈折計を用い、20℃で測定した。
 9)レンズ外観
 各実施例および各比較例で得られたレンズ本体を目視で確認し、濁り、着色、ブルーム、ブリードの有無を確認した。
 これらの外観不良がないものについては「3」、やや不良があるものについては「2」、著しい不良があるものは「1」とした。
 10)コート密着性
 各実施例および各比較例で得られたアイウェアレンズにおいて、レンズ本体、ハードコート層および反射防止層の密着性を、以下の通り評価した。
 すなわち、アイウェアレンズの1cm×1cm領域中に、1mm×1mmマスの碁盤目を100個作成した。
 その領域に、ニチバンテープ(ニチバン製CT-408AP-18)を碁盤目に貼り付け、引き剥がしを5回繰り返した。
 このときの、ハードコート層および反射防止層のレンズ本体からの剥離の有無を確認した。
 剥離が10個以下のものについては「3」、11個~20個のものについては「2」、21個以上のものについては「1」とした。
 11)レンズ破壊エネルギー
 島津製作所製自動落錘衝撃試験機「HYDROSHOT」(型式HITS-P10)を用いて、アイウェアレンズの耐高速衝撃性を評価した。
 具体的には、各実施例および各比較例で得られたアイウェアレンズを、JIS K7211-2(2006)に準じて、直径40mmの受台に固定し、直径20mmのストライカーを4.4m/秒の速度で突き当てて貫通させ、衝撃時に発生する破壊エネルギー(J)を計測した。上記試験を3回繰り返し、その平均値として破壊エネルギーを算出した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 なお、表中の略号の詳細を下記する。
1,4-BIC(1):製造例1の1,4-ビス(イソシアナトメチル)シクロヘキサン(トランス体/シス体比は98/2)
1,4-BIC(2):製造例2の1,4-ビス(イソシアナトメチル)シクロヘキサン(トランス体/シス体比は86/14)
1,4-BIC(3):製造例3の1,4-ビス(イソシアナトメチル)シクロヘキサン(トランス体/シス体比は68/32)
HDI:ヘキサメチレンジイソシアネート、三井化学社製、商品名タケネート700
NBDI:ジイソシアナトメチルビシクロ〔2,2,1〕-ヘプタン、三井化学社製
PTG1000SN(P):保土ヶ谷化学工業社製、バイオマス原料を用いたポリテトラメチレンエーテルグリコール(PTMEG)、数平均分子量1000
PTG2000SN(P):保土ヶ谷化学工業社製、バイオマス原料を用いたポリテトラメチレンエーテルグリコール(PTMEG)、数平均分子量2000
PO3G H1000:ALLESSA製、ポリ(トリメチレン)エーテルグリコール、数平均分子量1000)
PLACCEL 210N:ダイセル社製、ポリカプロラクトンジオール(PCL)、数平均分子量1000
UH-100:宇部興産社製、ポリカーボネートジオール(PCD)、数平均分子量1000)
CHDM:シクロヘキサンジメタノール
1,4-BD:1,4-ブタンジオール
1,5-PeD:1,5-ペンタンジオール
1,6-HD:1,6-ヘキサンジオール
1,3-BD:1,3-ブタンジオール
1,3-PrD:1,3-プロパンジオール
1,2-EG:1,2-エチレングリコール
 本発明の熱可塑性ポリウレタン樹脂および光学用ポリウレタン樹脂は、ディスプレイパネル用カバー板、アイウェア材料、アイウェアレンズ、アイウェアフレーム、自動車内外装材用部品などにおいて、好適に用いられる。

Claims (14)

  1.  イソシアネート基の総モル数に対して1,4-ビス(イソシアナトメチル)シクロヘキサンのイソシアネート基を50モル%以上の割合で含有するポリイソシアネート成分と、
     マクロポリオール、イソソルビド、および、炭素数3~8の脂肪族ジオールを含むポリオール成分と
    の反応生成物を含み、
     前記イソソルビドおよび前記脂肪族ジオールの総モル数に対して、前記イソソルビドの含有割合が60モル%以上95モル%以下である
    ことを特徴とする、熱可塑性ポリウレタン樹脂。
  2.  前記1,4-ビス(イソシアナトメチル)シクロヘキサンが、トランス-1,4-ビス(イソシアナトメチル)シクロヘキサンを70モル%以上95モル%以下の割合で含有する
    ことを特徴とする、請求項1に記載の熱可塑性ポリウレタン樹脂。
  3.  前記脂肪族ジオールが、
     炭素数3~5の直鎖状アルカンジオールおよび/または炭素数6~8の環状アルカンジオールである
    ことを特徴とする、請求項1に記載の熱可塑性ポリウレタン樹脂。
  4.  前記マクロポリオールが、数平均分子量600以上1300以下のポリオキシ直鎖状アルキレン(炭素数2~4)ポリオールを含む
    ことを特徴とする、請求項1に記載の熱可塑性ポリウレタン樹脂。
  5.  前記反応生成物100質量部に対して、亜リン酸系酸化防止剤を、0.1~0.8質量部の割合で含有する
    ことを特徴とする、請求項1に記載の熱可塑性ポリウレタン樹脂。
  6.  請求項1に記載の熱可塑性ポリウレタン樹脂を含む
    ことを特徴とする、光学用ポリウレタン樹脂。
  7.  スマートデバイスのディスプレイパネルのカバー板であり、
     請求項6に記載の光学用ポリウレタン樹脂を含む
    ことを特徴とする、ディスプレイパネル用カバー板。
  8.  請求項1に記載の熱可塑性ポリウレタン樹脂を含む
    ことを特徴とする、アイウェア材料。
  9.  請求項8に記載のアイウェア材料を含む
    ことを特徴とする、アイウェアレンズ。
  10.  前記アイウェア材料を含むレンズ本体と、
     前記レンズ本体の少なくとも一方面に形成されるハードコート層および/または反射防止層と
    を備えることを特徴とする、請求項9に記載のアイウェアレンズ。
  11.  請求項8に記載のアイウェア材料を含む
    ことを特徴とする、アイウェアフレーム。
  12.  請求項1に記載の熱可塑性ポリウレタン樹脂を含む
    ことを特徴とする、自動車内外装材用部品。
  13.  イソシアネート基の総モル数に対して1,4-ビス(イソシアナトメチル)シクロヘキサンのイソシアネート基を50モル%以上の割合で含有するポリイソシアネート成分と、
     マクロポリオールとを少なくとも反応させ、イソシアネート基末端プレポリマーを得るプレポリマー合成工程と、
     前記イソシアネート基末端プレポリマーと、イソソルビド、および、炭素数3~8の脂肪族ジオールとを少なくとも反応および硬化させ、熱可塑性ポリウレタン樹脂を得る鎖伸長工程と
    を備えることを特徴とする、熱可塑性ポリウレタン樹脂の製造方法。
  14.  前記鎖伸長工程における硬化温度が、150℃以上240℃以下である
    ことを特徴とする、請求項13に記載の熱可塑性ポリウレタン樹脂の製造方法。
PCT/JP2019/020372 2018-05-30 2019-05-23 熱可塑性ポリウレタン樹脂、光学用ポリウレタン樹脂、ディスプレイパネル用カバー板、アイウェア材料、アイウェアレンズ、アイウェアフレーム、自動車内外装材用部品、および、熱可塑性ポリウレタン樹脂の製造方法 WO2019230541A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201980030972.6A CN112424252B (zh) 2018-05-30 2019-05-23 热塑性聚氨酯树脂、其用途及制造方法
JP2020522131A JP7268015B2 (ja) 2018-05-30 2019-05-23 光学用ポリウレタン樹脂、ディスプレイパネル用カバー板、アイウェア材料、アイウェアレンズ、アイウェアフレーム、自動車内外装材用部品、および、光学用ポリウレタン樹脂の製造方法
KR1020207032953A KR102577971B1 (ko) 2018-05-30 2019-05-23 열가소성 폴리유레테인 수지, 광학용 폴리유레테인 수지, 디스플레이 패널용 커버판, 아이웨어 재료, 아이웨어 렌즈, 아이웨어 프레임, 자동차 내외장재용 부품, 및 열가소성 폴리유레테인 수지의 제조 방법
US17/054,703 US20210079216A1 (en) 2018-05-30 2019-05-23 Thermoplastic polyurethane resin, optical polyurethane resin, display panel cover plate, eyewear material, eyewear lens, eyewear frame, automobile interior/exterior component, and method for producing thermoplastic polyurethane resin
EP19810755.9A EP3805287B1 (en) 2018-05-30 2019-05-23 Thermoplastic polyurethane resin, optical polyurethane resin, cover plate for display panel, eyewear material, eyewear lens, eyewear frame, automotive interior and exterior components, and method for producing thermoplastic polyurethane resin
JP2023025052A JP2023059934A (ja) 2018-05-30 2023-02-21 光学用ポリウレタン樹脂、ディスプレイパネル用カバー板、アイウェア材料、アイウェアレンズ、アイウェアフレーム、自動車内外装材用部品、および、光学用ポリウレタン樹脂の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018103190 2018-05-30
JP2018-103190 2018-05-30

Publications (1)

Publication Number Publication Date
WO2019230541A1 true WO2019230541A1 (ja) 2019-12-05

Family

ID=68698141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020372 WO2019230541A1 (ja) 2018-05-30 2019-05-23 熱可塑性ポリウレタン樹脂、光学用ポリウレタン樹脂、ディスプレイパネル用カバー板、アイウェア材料、アイウェアレンズ、アイウェアフレーム、自動車内外装材用部品、および、熱可塑性ポリウレタン樹脂の製造方法

Country Status (6)

Country Link
US (1) US20210079216A1 (ja)
EP (1) EP3805287B1 (ja)
JP (2) JP7268015B2 (ja)
KR (1) KR102577971B1 (ja)
CN (1) CN112424252B (ja)
WO (1) WO2019230541A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022045245A1 (ja) * 2020-08-27 2022-03-03
JP7057858B1 (ja) 2021-09-22 2022-04-20 三井化学株式会社 ポリウレタン樹脂の製造方法、および、ポリウレタン樹脂
WO2022260101A1 (ja) * 2021-06-09 2022-12-15 東ソー株式会社 ウレタン樹脂形成性組成物、接着剤、硬化物、及び硬化物の製造方法
WO2023140229A1 (ja) * 2022-01-18 2023-07-27 三井化学株式会社 プレポリマー組成物、ポリウレタン樹脂、弾性成形品、および、プレポリマー組成物の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020236855A1 (en) * 2019-05-20 2020-11-26 Basf Se Improved thermoplastic polyurethanes
CN113093313A (zh) * 2021-04-13 2021-07-09 杭州安誉科技有限公司 光学透镜、其制备方法及其在分叉光纤装置中的应用
CN113444220B (zh) * 2021-06-25 2022-03-04 宁波昌亚新材料科技股份有限公司 一种异山梨醇基抗菌型自愈合聚氨酯及其制备方法与应用
WO2024064070A1 (en) * 2022-09-22 2024-03-28 Lubrizol Advanced Materials, Inc. Non-softening thermoplastic polyurethanes
WO2024151543A2 (en) * 2023-01-13 2024-07-18 Abbott Diabetes Care Inc. Biosensors with hydrophilic polyurethane membranes
KR102623531B1 (ko) * 2023-03-17 2024-01-12 에스케이엔펄스 주식회사 연마패드 및 이의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051114A1 (ja) 2007-10-15 2009-04-23 Mitsui Chemicals Polyurethanes, Inc. ポリウレタン樹脂
JP2014055229A (ja) 2012-09-12 2014-03-27 Mitsui Chemicals Inc 硬質熱可塑性ポリウレタン樹脂、その製造方法および成形品
WO2015046370A1 (ja) * 2013-09-26 2015-04-02 三井化学株式会社 アイウェア材料、アイウェアフレームおよびアイウェア
JP2017519052A (ja) * 2015-04-01 2017-07-13 サムヤン コーポレイション ポリウレタン、その製造方法及び用途

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6140422A (en) * 1998-04-23 2000-10-31 E.I. Dupont De Nemours And Company Polyesters including isosorbide as a comonomer blended with other thermoplastic polymers
US20040087754A1 (en) * 2002-10-31 2004-05-06 Paul Foley Polyurethane compounds and articles prepared therefrom
US6939939B2 (en) * 2003-02-24 2005-09-06 Younger Mfg. Polyurea/urethane optical material and method for making it
EP2049612A4 (en) * 2006-08-07 2009-08-26 Henkel Corp 2-COMPONENT NON-SOLVENT POLYURETHANE LAMINATE ADHESIVES BASED ON 1,4: 3,6-DIANHYDROHEXITOLS
KR101466071B1 (ko) 2007-05-21 2014-11-27 루브리졸 어드밴스드 머티어리얼스, 인코포레이티드 폴리우레탄 중합체
US8178644B2 (en) * 2008-01-02 2012-05-15 Polyplexx, Llc Impact-resistant polyurethane
JP5566701B2 (ja) * 2010-01-12 2014-08-06 住友化学株式会社 位相差フィルム
US9822212B2 (en) * 2012-07-31 2017-11-21 Mitsui Chemicals, Inc. Polyisocyanate composition, solar cell member covering material, solar cell member with cover layer, microcapsule, and binder for ink
EP3061778B1 (en) * 2013-10-21 2020-05-20 Mitsui Chemicals, Inc. Polymerizable composition for optical material and optical material
US20170342193A1 (en) * 2014-12-15 2017-11-30 Mitsui Chemicals, Inc. Self-repairing polyurethane resin material, self-repairing polyurethane resin, self-repairing coating material, self-repairing elastomer material, method for producing self-repairing polyurethane resin material, and method for producing self-repairing polyurethane resin
WO2017116798A1 (en) * 2015-12-31 2017-07-06 Lubrizol Advanced Materials, Inc. Thermoplastic polyurethane composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051114A1 (ja) 2007-10-15 2009-04-23 Mitsui Chemicals Polyurethanes, Inc. ポリウレタン樹脂
JP2014055229A (ja) 2012-09-12 2014-03-27 Mitsui Chemicals Inc 硬質熱可塑性ポリウレタン樹脂、その製造方法および成形品
WO2015046370A1 (ja) * 2013-09-26 2015-04-02 三井化学株式会社 アイウェア材料、アイウェアフレームおよびアイウェア
WO2015046369A1 (ja) * 2013-09-26 2015-04-02 三井化学株式会社 1,4-ビス(イソシアナトメチル)シクロヘキサン、ポリイソシアネート組成物、ポリウレタン樹脂、成形品、アイウェア材料、アイウェアフレームおよびレンズ
JP2017519052A (ja) * 2015-04-01 2017-07-13 サムヤン コーポレイション ポリウレタン、その製造方法及び用途

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022045245A1 (ja) * 2020-08-27 2022-03-03
WO2022045245A1 (ja) * 2020-08-27 2022-03-03 三井化学株式会社 ポリウレタン樹脂、合成擬革およびインク
JP7522838B2 (ja) 2020-08-27 2024-07-25 三井化学株式会社 ポリウレタン水分散液、合成擬革およびインク
WO2022260101A1 (ja) * 2021-06-09 2022-12-15 東ソー株式会社 ウレタン樹脂形成性組成物、接着剤、硬化物、及び硬化物の製造方法
JP7057858B1 (ja) 2021-09-22 2022-04-20 三井化学株式会社 ポリウレタン樹脂の製造方法、および、ポリウレタン樹脂
WO2023048033A1 (ja) * 2021-09-22 2023-03-30 三井化学株式会社 ポリウレタン樹脂の製造方法、および、ポリウレタン樹脂
JP2023046116A (ja) * 2021-09-22 2023-04-03 三井化学株式会社 ポリウレタン樹脂の製造方法、および、ポリウレタン樹脂
WO2023140229A1 (ja) * 2022-01-18 2023-07-27 三井化学株式会社 プレポリマー組成物、ポリウレタン樹脂、弾性成形品、および、プレポリマー組成物の製造方法

Also Published As

Publication number Publication date
JP7268015B2 (ja) 2023-05-02
EP3805287A4 (en) 2022-03-02
US20210079216A1 (en) 2021-03-18
KR20200143472A (ko) 2020-12-23
KR102577971B1 (ko) 2023-09-12
JP2023059934A (ja) 2023-04-27
CN112424252B (zh) 2023-04-21
EP3805287B1 (en) 2024-01-10
CN112424252A (zh) 2021-02-26
EP3805287A1 (en) 2021-04-14
JPWO2019230541A1 (ja) 2021-07-08

Similar Documents

Publication Publication Date Title
JP7268015B2 (ja) 光学用ポリウレタン樹脂、ディスプレイパネル用カバー板、アイウェア材料、アイウェアレンズ、アイウェアフレーム、自動車内外装材用部品、および、光学用ポリウレタン樹脂の製造方法
JP6946447B2 (ja) ポリウレタン樹脂、成形品、および、ポリウレタン樹脂の製造方法
CN109906241B (zh) 聚氨酯树脂的制造方法、聚氨酯树脂及成型品
CN110582524B (zh) 聚氨酯树脂、聚氨酯树脂的制造方法及成型品
JP7257541B2 (ja) 熱可塑性ポリウレタン樹脂およびフィルム
JP7280954B2 (ja) ポリウレタン樹脂組成物および成形品
JP7296249B2 (ja) 熱可塑性ポリウレタン樹脂
JP7246910B2 (ja) 熱可塑性ポリウレタン樹脂、成形品、および、熱可塑性ポリウレタン樹脂の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810755

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020522131

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207032953

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019810755

Country of ref document: EP

Effective date: 20210111