WO2019230459A1 - 半導体発光素子および半導体発光素子の製造方法 - Google Patents

半導体発光素子および半導体発光素子の製造方法 Download PDF

Info

Publication number
WO2019230459A1
WO2019230459A1 PCT/JP2019/019775 JP2019019775W WO2019230459A1 WO 2019230459 A1 WO2019230459 A1 WO 2019230459A1 JP 2019019775 W JP2019019775 W JP 2019019775W WO 2019230459 A1 WO2019230459 A1 WO 2019230459A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
protective layer
type semiconductor
semiconductor layer
side opening
Prior art date
Application number
PCT/JP2019/019775
Other languages
English (en)
French (fr)
Inventor
紀隆 丹羽
哲彦 稲津
Original Assignee
日機装株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日機装株式会社 filed Critical 日機装株式会社
Priority to KR1020227034228A priority Critical patent/KR20220137809A/ko
Priority to KR1020197032335A priority patent/KR102480037B1/ko
Priority to KR1020247001594A priority patent/KR20240011257A/ko
Priority to US16/668,335 priority patent/US11217728B2/en
Publication of WO2019230459A1 publication Critical patent/WO2019230459A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings

Definitions

  • the present invention relates to a semiconductor light emitting device and a method for manufacturing the semiconductor light emitting device.
  • a light emitting element for deep ultraviolet light has an aluminum gallium nitride (AlGaN) -based n-type cladding layer, an active layer, and a p-type cladding layer that are sequentially stacked on a substrate.
  • An n-side electrode is formed on a partial region of the n-type cladding layer exposed by etching, and a p-side electrode is formed on the p-type cladding layer.
  • a protective insulating film such as silicon oxide (SiO 2 ) or aluminum oxide (Al 2 O 3 ) is provided on the exposed surfaces of the n-type cladding layer, the active layer, and the p-type cladding layer (see, for example, Patent Document 1). ).
  • silicon oxide SiO 2
  • Al 2 O 3 aluminum oxide
  • the semiconductor layer may be damaged in the process of removing the protective layer and forming the opening for the electrode. As a result, the output characteristics of the element may be degraded.
  • the present invention has been made in view of such problems, and one of exemplary purposes thereof is to improve the reliability and output characteristics of a semiconductor light emitting device.
  • a semiconductor light emitting device includes an n-type semiconductor layer of an n-type aluminum gallium nitride (AlGaN) -based semiconductor material provided on a substrate and an AlGaN-based semiconductor material provided in a first region on the n-type semiconductor layer.
  • AlGaN aluminum gallium nitride
  • Active layer a p-type semiconductor layer of p-type AlGaN-based semiconductor material provided on the active layer, and provided on the p-type semiconductor layer and made of silicon oxide (SiO 2 ) or silicon oxynitride (SiON)
  • An aluminum oxide (Al 2 O 3) is provided so as to cover the first protective layer, the first protective layer, the second region different from the first region on the n-type semiconductor layer, and the side surface of the active layer.
  • a second protective layer made of aluminum oxynitride (AlON) or aluminum nitride (AlN), and a p-type half at a p-side opening penetrating the first protective layer and the second protective layer on the p-type semiconductor layer
  • Guidance A p-side electrode provided in contact with the layer, and an n-side electrode provided in contact with the n-type semiconductor layer at an n-side opening penetrating the second protective layer in the second region on the n-type semiconductor layer.
  • the p-type semiconductor layer and the first protective layer are provided by providing the first protective layer having a low refractive index composed of silicon oxide (SiO 2 ) or silicon oxynitride (SiON) on the p-type semiconductor layer. More ultraviolet light can be totally reflected at the interface. As a result, more ultraviolet light can be totally reflected and directed toward the substrate having the light extraction surface, and the external quantum efficiency can be increased. Further, by covering with a second protective layer composed of a side surface of the aluminum oxide of the active layer (Al 2 O 3) or aluminum nitride (AlN), it is possible to improve the moisture resistance.
  • a second protective layer composed of a side surface of the aluminum oxide of the active layer (Al 2 O 3) or aluminum nitride (AlN)
  • the second protective layer may be provided so as to further cover the side surfaces of the n-type semiconductor layer and the p-type semiconductor layer.
  • the thickness of the second protective layer may be 50 nm or less.
  • a part of each of the n-side electrode and the p-side electrode may be provided on the second protective layer.
  • Another aspect of the present invention is a method for manufacturing a semiconductor light emitting device.
  • an n-type semiconductor layer of an n-type aluminum gallium nitride (AlGaN) -based semiconductor material, an active layer of an AlGaN-based semiconductor material on an n-type semiconductor layer, and a p-type AlGaN-based semiconductor material on an active layer are formed on a substrate.
  • AlGaN aluminum gallium nitride
  • a first protective layer made of silicon oxide (SiO 2 ) or silicon oxynitride (SiON)
  • the p-type semiconductor layer is made of aluminum oxide (Al 2 O 3 ), aluminum oxynitride (AlON), or aluminum nitride (AlN) that is a difficult-to-etch material while protecting the first protective layer.
  • the second protective layer can be removed to form an n-side opening and a p-side opening.
  • a second protective layer composed of a side surface of the aluminum oxide of the active layer (Al 2 O 3) or aluminum nitride (AlN), it is possible to improve the moisture resistance.
  • the second protective layer may be removed by dry etching.
  • the first protective layer may be removed by wet etching.
  • the second protective layer may be formed by an atomic layer deposition method.
  • the reliability and output characteristics of the semiconductor light emitting device can be improved.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of a semiconductor light emitting element according to an embodiment. It is a figure which shows schematically the manufacturing process of a semiconductor light-emitting device. It is a figure which shows schematically the manufacturing process of a semiconductor light-emitting device. It is a figure which shows schematically the manufacturing process of a semiconductor light-emitting device. It is a figure which shows schematically the manufacturing process of a semiconductor light-emitting device. It is a figure which shows schematically the manufacturing process of a semiconductor light-emitting device. It is a figure which shows schematically the manufacturing process of a semiconductor light-emitting device. It is a figure which shows schematically the manufacturing process of a semiconductor light-emitting device. It is a figure which shows schematically the manufacturing process of a semiconductor light-emitting device. It is a figure which shows schematically the manufacturing process of a semiconductor light-emitting device.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of a semiconductor light emitting element 10 according to an embodiment.
  • the semiconductor light emitting device 10 is an LED (Light Emitting Diode) chip configured to emit “deep ultraviolet light” having a center wavelength ⁇ of about 360 nm or less.
  • the semiconductor light emitting device 10 is made of an aluminum gallium nitride (AlGaN) -based semiconductor material having a band gap of about 3.4 eV or more.
  • AlGaN aluminum gallium nitride
  • AlGaN-based semiconductor material refers to a semiconductor material mainly containing aluminum nitride (AlN) and gallium nitride (GaN), and a semiconductor containing other materials such as indium nitride (InN). Including material. Therefore, the “AlGaN-based semiconductor material” referred to in the present specification has, for example, a composition of In 1-xy Al x Ga y N (0 ⁇ x + y ⁇ 1, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1). And include AlN, GaN, AlGaN, indium aluminum nitride (InAlN), indium gallium nitride (InGaN), and indium aluminum gallium nitride (InAlGaN).
  • AlGaN-based semiconductor materials in order to distinguish materials that do not substantially contain AlN, they may be referred to as “GaN-based semiconductor materials”.
  • the “GaN-based semiconductor material” mainly includes GaN and InGaN, and includes a material containing a small amount of AlN.
  • AlN-based semiconductor materials in order to distinguish materials that do not substantially contain GaN, they may be referred to as “AlN-based semiconductor materials”.
  • AlN-based semiconductor material mainly includes AlN and InAlN, and includes a material containing a small amount of GaN.
  • the semiconductor light emitting device 10 includes a substrate 20, a buffer layer 22, an n-type cladding layer 24, an active layer 26, an electron blocking layer 28, a p-type cladding layer 30, an n-side electrode 32, and a p-side electrode 34. And a first protective layer 36 and a second protective layer 38.
  • the substrate 20 is a substrate having translucency with respect to deep ultraviolet light emitted from the semiconductor light emitting element 10, and is, for example, a sapphire (Al 2 O 3 ) substrate.
  • the substrate 20 has a first main surface 20a and a second main surface 20b opposite to the first main surface 20a.
  • the first major surface 20 a is one major surface that serves as a crystal growth surface for growing each layer above the buffer layer 22.
  • the second main surface 20b is one main surface serving as a light extraction surface for extracting deep ultraviolet light emitted from the active layer 26 to the outside.
  • the substrate 20 may be an aluminum nitride (AlN) substrate or an aluminum gallium nitride (AlGaN) substrate.
  • the buffer layer 22 is formed on the first main surface 20a of the substrate 20.
  • the buffer layer 22 is a base layer (template layer) for forming each layer above the n-type cladding layer 24.
  • the buffer layer 22 is, for example, an undoped AlN layer, specifically, an AlN (HT-AlN; High Temperature AlN) layer grown at a high temperature.
  • the buffer layer 22 may include an undoped AlGaN layer formed on the AlN layer.
  • the buffer layer 22 may be composed of only an undoped AlGaN layer. That is, the buffer layer 22 includes at least one of an undoped AlN layer and an AlGaN layer.
  • the n-type cladding layer 24 is an n-type semiconductor layer formed on the buffer layer 22.
  • the n-type cladding layer 24 is an n-type AlGaN-based semiconductor material layer, for example, an AlGaN layer doped with silicon (Si) as an n-type impurity.
  • the composition ratio of the n-type cladding layer 24 is selected so as to transmit deep ultraviolet light emitted from the active layer 26.
  • the molar fraction of AlN is 25% or more, preferably 40% or more or 50% or more. Formed as follows.
  • the n-type cladding layer 24 has a band gap larger than the wavelength of deep ultraviolet light emitted from the active layer 26, and is formed, for example, so that the band gap is 4.3 eV or more.
  • the n-type cladding layer 24 is preferably formed so that the mole fraction of AlN is 80% or less, that is, the band gap is 5.5 eV or less, and the mole fraction of AlN is 70% or less (that is, the band gap). It is more desirable that the gap be formed to be 5.2 eV or less.
  • the n-type cladding layer 24 has a thickness of about 1 ⁇ m to 3 ⁇ m, for example, a thickness of about 2 ⁇ m.
  • the n-type cladding layer 24 is formed so that the concentration of silicon (Si) as an impurity is 1 ⁇ 10 18 / cm 3 or more and 5 ⁇ 10 19 / cm 3 or less.
  • the n-type cladding layer 24 is preferably formed so that the Si concentration is 5 ⁇ 10 18 / cm 3 or more and 3 ⁇ 10 19 / cm 3 or less, and is 7 ⁇ 10 18 / cm 3 or more and 2 ⁇ 10 19 /. It is preferably formed so as to be cm 3 or less.
  • the Si concentration of the n-type cladding layer 24 is around 1 ⁇ 10 19 / cm 3 and is in the range of 8 ⁇ 10 18 / cm 3 to 1.5 ⁇ 10 19 / cm 3 .
  • the active layer 26 is made of an AlGaN-based semiconductor material, and is sandwiched between the n-type cladding layer 24 and the electron block layer 28 to form a double heterojunction structure.
  • the active layer 26 may have a single-layer or multi-layer quantum well structure. For example, a stack of a barrier layer formed of an undoped AlGaN-based semiconductor material and a well layer formed of an undoped AlGaN-based semiconductor material. It may consist of a body.
  • the active layer 26 is configured to have a band gap of 3.4 eV or more in order to output deep ultraviolet light having a wavelength of 355 nm or less.
  • the AlN composition ratio is selected so that deep ultraviolet light having a wavelength of 310 nm or less can be output.
  • the active layer 26 is formed on the first upper surface 24a of the n-type cladding layer 24, and is not formed on the second upper surface 24b adjacent to the first upper surface 24a.
  • the active layer 26 is not formed on the entire surface of the n-type cladding layer 24 but is formed only in a partial region (first region W1) of the n-type cladding layer 24.
  • the electron block layer 28 is formed on the active layer 26.
  • the electron blocking layer 28 is an undoped AlGaN-based semiconductor material layer, and is formed, for example, so that the molar fraction of AlN is 40% or more, preferably 50% or more.
  • the electron block layer 28 may be formed so that the molar fraction of AlN is 80% or more, or may be formed of an AlN-based semiconductor material that does not substantially contain GaN.
  • the electron blocking layer has a thickness of about 1 nm to 10 nm, for example, a thickness of about 2 nm to 5 nm.
  • the electron block layer 28 may be a p-type AlGaN-based semiconductor material layer.
  • the p-type cladding layer 30 is a p-type semiconductor layer formed on the electron block layer 28.
  • the p-type cladding layer 30 is a p-type AlGaN-based semiconductor material layer, for example, an AlGaN layer doped with magnesium (Mg) as a p-type impurity.
  • the p-type cladding layer 30 has a thickness of about 300 nm to 700 nm, for example, a thickness of about 400 nm to 600 nm.
  • the p-type cladding layer 30 may be formed of a p-type GaN-based semiconductor material that does not substantially contain AlN.
  • the first protective layer 36 is provided on the p-type cladding layer 30.
  • the first protective layer 36 is made of silicon oxide (SiO 2 ) or silicon oxynitride (SiON).
  • the first protective layer 36 is made of a material having a lower refractive index with respect to deep ultraviolet light output from the active layer 26 than the p-type cladding layer 30.
  • the refractive index of the AlGaN-based semiconductor material constituting the p-type cladding layer 30 is about 2.1 to 2.56 depending on the composition ratio.
  • the refractive index of SiO 2 constituting the first protective layer 36 is about 1.4
  • the refractive index of SiON is about 1.4 to 2.1.
  • the first protective layer 36 With a low refractive index, more of the ultraviolet light from the active layer 26 is totally reflected at the interface between the p-type cladding layer 30 and the first protective layer 36, and the substrate 20 which is the light extraction surface. To the second main surface 20b.
  • SiO 2 has a large refractive index difference from the p-type cladding layer 30, the reflection characteristics can be further improved.
  • the thickness of the 1st protective layer 36 is 50 nm or more, for example, can be 100 nm or more.
  • the first protective layer 36 is provided with a first p-side opening 48 for forming the p-side electrode 34.
  • the first p-side opening 48 is provided on the p-type cladding layer 30 and is formed so as to penetrate the first protective layer 36 and expose the p-type cladding layer 30.
  • the second protective layer 38 covers the first protective layer 36, the second upper surface 24 b of the n-type cladding layer 24, and the side surfaces of the n-type cladding layer 24, the active layer 26, and the electron blocking layer 28. It is provided as follows.
  • the second protective layer 38 may cover the side surface of the buffer layer 22 and a part of the side surface of the substrate 20 as shown in the figure.
  • the second protective layer 38 is made of aluminum oxide (Al 2 O 3 ), aluminum oxynitride (AlON), or aluminum nitride (AlN).
  • Aluminum oxide (Al 2 O 3 ), aluminum oxynitride (AlON) and aluminum nitride (AlN) constituting the second protective layer 38 are silicon oxide (SiO 2 ) or silicon oxynitride (silicon oxynitride (SiO 2 ) constituting the first protective layer 36. Excellent moisture resistance compared to SiON). Therefore, by covering the entire upper surface and side surfaces of the element structure with the second protective layer 38, a protective function with excellent moisture resistance can be provided.
  • the thickness of the second protective layer 38 can be 50 nm or less, for example, about 10 nm to 30 nm.
  • the second protective layer 38 is provided with an n-side opening 40 for forming the n-side electrode 32.
  • the n-side opening 40 is provided on the second upper surface 24 b of the n-type cladding layer 24 and is formed so as to penetrate the second protective layer 38 and expose the n-type cladding layer 24.
  • the second protective layer 38 is provided with a second p-side opening 42 for forming the p-side electrode 34.
  • the second p-side opening 42 is provided on the p-type cladding layer 30 or the first protective layer 36 and is formed so as to penetrate the second protective layer 38 and expose the first protective layer 36 or the p-type cladding layer 30. Is done.
  • the n-side electrode 32 is provided in the n-side opening 40 and is formed so as to be in contact with the second upper surface 24 b of the n-type cladding layer 24.
  • the n-side electrode 32 is a Ti / Al-based electrode, and has at least a Ti layer provided in contact with the n-type cladding layer 24 and an Al layer provided in contact with the Ti layer.
  • the thickness of the Ti layer is about 1 nm to 10 nm
  • the thickness of the Al layer is about 20 nm to 1000 nm.
  • the n-side electrode 32 also functions as a reflective electrode that reflects the ultraviolet light from the n-type cladding layer 24 and directs it toward the second major surface 20 b of the substrate 20.
  • a part of the n-side electrode 32 is also formed on the second protective layer 38 in the second region W2.
  • the formation region of the reflective electrode is widened, and more substrate 20 that is a light extraction surface can receive more ultraviolet light. It can be reflected toward the second main surface 20b.
  • the sealing function by the combination with the second protective layer 38 can be enhanced.
  • the p-side electrode 34 is provided in the first p-side opening 48 and the second p-side opening 42 and is formed so as to be in contact with the p-type cladding layer 30.
  • the p-side electrode 34 is made of a conductive oxide such as indium tin oxide (ITO; Indium Tin Oxide).
  • ITO indium tin oxide
  • the p-side electrode 34 may be a metal electrode, and may be formed of a laminated structure of nickel (Ni) / gold (Au), for example.
  • a part of the p-side electrode 34 is also formed on the first protective layer 36 and the second protective layer 38 in the first region W1.
  • the sealing function in combination with the second protective layer 38 can be enhanced.
  • FIG. 2 to 8 are diagrams schematically showing a manufacturing process of the semiconductor light emitting device 10. As shown in FIG. In FIG. 2, first, a buffer layer 22, an n-type cladding layer 24, an active layer 26, an electron blocking layer 28, a p-type cladding layer 30, and a first protective layer 36 are sequentially formed on the first major surface 20a of the substrate 20. Is done.
  • the substrate 20 is a sapphire (Al 2 O 3 ) substrate and is a growth substrate for forming an AlGaN-based semiconductor material.
  • the buffer layer 22 is formed on the (0001) plane of the sapphire substrate.
  • the buffer layer 22 includes, for example, an AlN (HT-AlN) layer grown at a high temperature and an undoped AlGaN (u-AlGaN) layer.
  • the n-type cladding layer 24, the active layer 26, the electron blocking layer 28, and the p-type cladding layer 30 are layers formed of an AlGaN-based semiconductor material, an AlN-based semiconductor material, or a GaN-based semiconductor material, and are subjected to metal organic chemical vapor deposition.
  • the first protective layer 36 is made of SiO 2 or SiON, and can be formed using a known technique such as chemical vapor deposition (CVD).
  • the thickness of the first protective layer 36 is 50 nm or more, for example, 100 nm or more.
  • the mask 12 is formed on the first protective layer 36, and the first protective layer 36, the p-type cladding layer 30, and the electron block layer in the exposed region 13 where the mask 12 is not formed.
  • the active layer 26 and a part of the n-type cladding layer 24 are removed.
  • the second upper surface 24 b (exposed surface) of the n-type cladding layer 24 is formed in the exposed region 13.
  • each layer can be removed by dry etching 14.
  • reactive ion etching using plasma of an etching gas can be used.
  • ICP inductively coupled plasma
  • the first protective layer 36, the p-type cladding layer 30, the electron blocking layer 28, the active layer 26 and the n-type cladding layer 24 in the outer peripheral region 17 where the mask 16 is not formed are removed by the dry etching 18.
  • the outer peripheral region 17 is a separation region between elements when a plurality of light emitting elements are formed on one substrate.
  • the buffer layer 22 may be partially removed, or the buffer layer 22 may be completely removed to expose the substrate 20.
  • a part of the substrate 20 may be removed to expose the outer peripheral surface 20c of the substrate 20 having a height different from that of the first main surface 20a.
  • a second protective layer 38 is formed so as to cover the entire upper surface of the element structure.
  • the second protective layer 38 is made of Al 2 O 3 , AlON, or AlN. It is formed so as to cover the first protective layer 36, the second upper surface 24b of the n-type cladding layer 24, and the side surfaces of the n-type cladding layer 24, the active layer 26, the electron blocking layer 28, and the p-type cladding layer 30.
  • the first protective layer 36 may cover the side surface of the buffer layer 22 or may cover at least a part of the side surface of the substrate 20.
  • the second protective layer 38 is in contact with the side surface of the active layer 26 and protects the active layer 26.
  • the second protective layer 38 is preferably excellent in moisture resistance, and preferably has a dense structure with a high film density.
  • the second protective layer 38 having an excellent protective function can be formed by forming the second protective layer 38 using an atomic layer deposition (ALD) method. Further, by forming the second protective layer 38 by the ALD method, the film thickness necessary and sufficient for the protective function can be reduced.
  • the thickness of the second protective layer 38 can be 50 nm or less, for example, about 10 nm to 30 nm.
  • an n-side opening 40 and a p-side opening (second p-side opening) 42 are formed in the second protective layer 38.
  • the n-side opening 40 is provided in a partial region of the second region W2 on the second upper surface 24b of the n-type cladding layer 24, and the second p-side opening 42 is a part of the first region W1 on the first protective layer 36. It is provided in the partial area.
  • the n-side opening 40 and the second p-side opening 42 can be formed by forming a mask outside these opening regions and dry-etching the second protective layer 38.
  • the n-side opening 40 and the second p-side opening 42 are formed so as to penetrate the second protective layer 38. Therefore, the second upper surface 24 b of the n-type cladding layer 24 is exposed in the n-side opening 40, and the first protective layer 36 is exposed in the second p-side opening 42.
  • the second protective layer 38 is preferably removed so that the p-type cladding layer 30 is not exposed when the second p-side opening 42 is formed. Therefore, after the formation of the second p-side opening 42, the first protective layer 36 remains on the p-type cladding layer 30, and the entire state of the p-type cladding layer 30 covered with the first protective layer 36 is maintained. It is preferable.
  • the n-side electrode 32 is formed in the n-side opening 40.
  • the n-side electrode 32 can be formed by forming a Ti layer on the second upper surface 24b of the n-type cladding layer 24 exposed in the n-side opening 40 and then forming an Al layer on the Ti layer.
  • the Ti / Al layer of the n-side electrode 32 is preferably formed by a sputtering method. Although these layers can be formed by an electron beam (EB) vapor deposition method, a metal layer having a low film density can be formed by using a sputtering method, and a suitable contact resistance can be realized at a relatively low annealing temperature.
  • EB electron beam
  • the n-side electrode 32 may be formed not only inside the n-side opening 40 but also outside the n-side opening 40. That is, a part of the n-side electrode 32 may be formed on the second protective layer 38 in the second region W2.
  • the covering area of the n-side electrode 32 functioning as a reflective electrode can be increased and the output characteristics can be improved.
  • the whole n side opening 40 can be coat
  • the n-side electrode 32 is annealed.
  • the n-side electrode 32 is preferably annealed at a temperature lower than the melting point of Al (about 660 ° C.) and annealed at a temperature of 560 ° C. or higher and 650 ° C. or lower.
  • the contact resistance of the n-side electrode 32 can be made 0.1 ⁇ ⁇ cm 2 or less. Further, by setting the annealing temperature to 560 ° C. or more and 650 ° C.
  • the flatness of the n-side electrode 32 after annealing can be improved and the ultraviolet light reflectance can be made 30% or more.
  • a suitable contact resistance can be obtained even if an annealing treatment for 1 minute or longer, for example, an annealing treatment for about 5 minutes to 30 minutes.
  • the annealing time is lengthened (1 minute or longer) to improve the temperature uniformity in the substrate during annealing, and a semiconductor light emitting device with little variation in characteristics Multiple simultaneous formations are possible.
  • a mask 44 is formed over the first protective layer 36 and the second protective layer 38 in the first region W1 and over the first protective layer 36 and the n-side electrode 32 in the second region W2.
  • the mask 44 has an opening 46 at a position corresponding to the second p-side opening 42 of the second protective layer 38 in the first region W1.
  • the opening 46 of the mask 44 is provided to form a first p-side opening 48 that penetrates the first protective layer 36, and is positioned inside the second p-side opening 42 of the second protective layer 38. Accordingly, the side surface of the second protective layer 38 in the second p-side opening 42 is covered with the mask 44.
  • the first protective layer 36 in the opening 46 of the mask 44 is removed, and a first p-side opening 48 is formed in the first protective layer 36.
  • the first p-side opening 48 is formed so as to penetrate the first protective layer 36, and the first protective layer 36 is removed so that the p-type cladding layer 30 is exposed in the first p-side opening 48.
  • the first protective layer 36 is preferably removed by wet etching.
  • the first protective layer 36 can be removed using, for example, buffered hydrofluoric acid (BHF) which is a mixed liquid of hydrofluoric acid (HF) and ammonium fluoride (NH 4 F).
  • BHF buffered hydrofluoric acid
  • NH 4 F ammonium fluoride
  • the p-side electrode 34 is formed in the first p-side opening 48 and the second p-side opening 42.
  • the p-side electrode 34 is provided in contact with the p-type cladding layer 30 exposed at the first p-side opening 48.
  • a part of the p-side electrode 34 is also formed on the first protective layer 36 exposed at the second p-side opening 42 and also on the second protective layer 38.
  • the first p-side opening 48 and the second p-side opening 42 are entirely covered with the second protective layer 38.
  • FIG. 10 schematically shows a configuration of a semiconductor light emitting device 60 according to a comparative example.
  • the protective layer 58 of the comparative example includes the p-type cladding layer 30 in the first region W1, the n-type cladding layer 24 in the second region W2, the n-type cladding layer 24, the active layer 26, the electron blocking layer 28, and the p-type layer. It is provided in contact with the side surface of the mold cladding layer 30.
  • the protective layer 58 when the protective layer 58 includes silicon (Si), that is, when it is composed of SiO 2 , SiON, silicon nitride (SiN x ), or the like, it is included in the protective layer 58 when the semiconductor light emitting device 60 is energized and used. Si may diffuse into the active layer 26. If Si diffuses into the active layer 26, the AlGaN-based semiconductor material constituting the active layer 26 may be n-type, leading to a decrease in output characteristics of the active layer 26. In addition, since silicon nitride absorbs ultraviolet light output from the active layer 26, it leads to a decrease in light output from the second main surface 20b of the substrate 20 that is a light extraction surface.
  • Si silicon
  • SiN x silicon nitride
  • the protective layer 58 when the protective layer 58 is made of Al 2 O 3 , AlON, or AlN, the protective layer 58 does not contain Si, so that the effect of Si diffusing into the active layer 26 when the semiconductor light emitting device 60 is energized is affected. Can be prevented.
  • the protective layer 58 since aluminum oxynitride is difficult to wet-etch, the protective layer 58 needs to be dry-etched when the p-side opening for exposing the p-type cladding layer 30 is formed. It is practically impossible to remove only the protective layer 58 by dry etching, and at least partially the upper surface of the p-type cladding layer 30 is dry etched. Then, damage effects remain on the p-type cladding layer 30 with which the p-side electrode 34 contacts, and the contact resistance of the p-side electrode 34 can increase. As a result, the light output of the semiconductor light emitting device 60 is reduced.
  • the side surface of the active layer 26 is covered with the second protective layer 38 made of Al 2 O 3 , AlON, or AlN, thereby preventing the influence of Si diffusion into the active layer 26. be able to. Since the second protective layer 38 made of Al 2 O 3 , AlON or AlN is excellent in moisture resistance, the function of sealing the active layer 26 can be enhanced. Further, since the first protective layer 36 made of SiO 2 or SiON is provided on the p-type cladding layer 30, the first protective layer 36 can function as a stop layer during dry etching of the second protective layer 38. . Thereby, it is possible to prevent the exposed surface of the p-type cladding layer 30 from being damaged by dry etching. Thereby, an increase in contact resistance of the p-side electrode 34 can be prevented, and the light output of the semiconductor light emitting element 10 can be improved.
  • the first protective layer 36 is made of SiO 2 (refractive index 1.4), which is a low refractive index material, so that the refractive index difference from the p-type cladding layer 30 is increased, and p 1 More of the ultraviolet light incident on the interface between the mold cladding layer 30 and the first protective layer 36 can be totally reflected. Thereby, more of the ultraviolet light output from the active layer 26 can be directed to the second main surface 20b of the substrate 20 that is the light extraction surface, and the light output of the semiconductor light emitting element 10 can be improved.
  • FIG. 11 is a cross-sectional view schematically showing a configuration of a semiconductor light emitting element 10 according to a modification.
  • This modification differs from the above-described embodiment in that the side surface 50 of the semiconductor layer covered with the second protective layer 38 is an inclined mesa surface.
  • the inclination angle ⁇ of the side surface 50 of the semiconductor layer is, for example, 60 degrees or less, and can be, for example, about 15 degrees to 50 degrees.
  • this modification by inclining the mesa surface of the active layer 26, the ultraviolet light emitted from the active layer 26 in the horizontal direction can be reflected toward the second main surface 20b of the substrate 20, and the light The extraction efficiency can be increased.
  • the side surfaces of the masks 12 and 16 used in the steps of FIGS. 3 and 4 described above may be inclined. Also in this modified example, since the mesa surface is formed by etching the semiconductor layer after the first protective layer 36 is formed, the inclined side surface is also formed in the first protective layer 36.
  • a further protective layer different from the first protective layer 36 and the second protective layer 38 described above may be provided.
  • a third protective layer that covers the upper surface and side surfaces of the n-side electrode 32, the p-side electrode 34, and the second protective layer 38 may be further provided.
  • the third protective layer may be composed of the same material as the first protective layer 36 or may be composed of the same material as the second protective layer 38.
  • the third protective layer may have a stacked structure of a plurality of layers made of different materials.
  • the reliability and output characteristics of the semiconductor light emitting device can be improved.
  • DESCRIPTION OF SYMBOLS 10 Semiconductor light emitting element, 20 ... Substrate, 24 ... N-type clad layer, 26 ... Active layer, 28 ... Electron block layer, 30 ... P-type clad layer, 32 ... N-side electrode, 34 ... P-side electrode, 36 ... No. DESCRIPTION OF SYMBOLS 1 protective layer, 38 ... 2nd protective layer, 40 ... n side opening, 42 ... 2nd p side opening, 48 ... 1st p side opening, W1 ... 1st area

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

半導体発光素子10は、基板20上に設けられるn型半導体層24と、n型半導体層24上の第1領域W1に設けられるAlGaN系半導体材料の活性層26と、活性層26上に設けられるp型半導体層30と、p型半導体層30上に設けられ、酸化シリコン(SiO)または酸窒化シリコン(SiON)で構成される第1保護層36と、第1保護層36上と、n型半導体層24上の第1領域W1とは異なる第2領域W2と、活性層26の側面とを被覆するように設けられ、酸化アルミニウム(Al)、酸窒化アルミニウム(AlON)または窒化アルミニウム(AlN)で構成される第2保護層38と、p型半導体層30上に接して設けられるp側電極34と、n型半導体層24上に接して設けられるn側電極32と、を備える。

Description

半導体発光素子および半導体発光素子の製造方法
 本発明は、半導体発光素子および半導体発光素子の製造方法に関する。
 深紫外光用の発光素子は、基板上に順に積層される窒化アルミニウムガリウム(AlGaN)系のn型クラッド層、活性層、p型クラッド層を有する。エッチングにより露出させたn型クラッド層の一部領域上にn側電極が形成され、p型クラッド層上にはp側電極が形成される。n型クラッド層、活性層およびp型クラッド層の露出した表面上には、酸化シリコン(SiO)や酸化アルミニウム(Al)等の保護絶縁膜が設けられる(例えば、特許文献1参照)。
特許第5985782号公報
 酸化シリコン(SiO)は、耐湿性に乏しい材料であるため、保護機能を適切に持たせるためには厚みを大きくする必要がある。一方、酸化アルミニウム(Al)は、耐湿性に優れるものの、難エッチング材料であるため、保護層を除去して電極用の開口を形成する工程において半導体層にダメージを与えるおそれがある。その結果、素子の出力特性が低下するおそれがある。
 本発明はこうした課題に鑑みてなされたものであり、その例示的な目的のひとつは、半導体発光素子の信頼性および出力特性を向上させることにある。
 本発明のある態様の半導体発光素子は、基板上に設けられるn型窒化アルミニウムガリウム(AlGaN)系半導体材料のn型半導体層と、n型半導体層上の第1領域に設けられるAlGaN系半導体材料の活性層と、活性層上に設けられるp型AlGaN系半導体材料のp型半導体層と、p型半導体層上に設けられ、酸化シリコン(SiO)または酸窒化シリコン(SiON)で構成される第1保護層と、第1保護層上と、n型半導体層上の第1領域とは異なる第2領域と、活性層の側面とを被覆するように設けられ、酸化アルミニウム(Al)、酸窒化アルミニウム(AlON)または窒化アルミニウム(AlN)で構成される第2保護層と、p型半導体層上の第1保護層および第2保護層を貫通するp側開口にてp型半導体層上に接して設けられるp側電極と、n型半導体層上の第2領域の第2保護層を貫通するn側開口にてn型半導体層上に接して設けられるn側電極と、を備える。
 この態様によると、p型半導体層上に酸化シリコン(SiO)または酸窒化シリコン(SiON)で構成される低屈折率の第1保護層を設けることで、p型半導体層と第1保護層の界面にてより多くの紫外光を全反射させることができる。これにより、より多くの紫外光を全反射させて光取出面を有する基板に向かわせることができ、外部量子効率を高めることができる。また、活性層の側面を酸化アルミニウム(Al)または窒化アルミニウム(AlN)で構成される第2保護層で被覆することで、耐湿性を向上させることができる。
 第2保護層は、n型半導体層およびp型半導体層の側面をさらに被覆するように設けられてもよい。
 第2保護層の厚みは、50nm以下であってもよい。
 n側電極およびp側電極のそれぞれの一部は、第2保護層上に設けられてもよい。
 本発明の別の態様は、半導体発光素子の製造方法である。この方法は、基板上に、n型窒化アルミニウムガリウム(AlGaN)系半導体材料のn型半導体層、n型半導体層上のAlGaN系半導体材料の活性層、活性層上のp型AlGaN系半導体材料のp型半導体層、p型半導体層上の酸化シリコン(SiO)または酸窒化シリコン(SiON)で構成される第1保護層を順に積層する工程と、n型半導体層の一部が露出するように第1保護層、p型半導体層、活性層およびn型半導体層の一部を除去する工程と、第1保護層上と、n型半導体層の露出領域上と、活性層の側面とを被覆するように、酸化アルミニウム(Al)、酸窒化アルミニウム(AlON)または窒化アルミニウム(AlN)で構成される第2保護層を形成する工程と、第1保護層上の第2保護層を部分的に除去して第1保護層が露出するp側開口を形成し、n型半導体層上の第2保護層を部分的に除去してn型半導体層が露出するn側開口を形成する工程と、n側開口にてn型半導体層上に接するn側電極を形成する工程と、p側開口にて第1保護層を除去してp型半導体層を露出させる工程と、p側開口にてp型半導体層上に接するp側電極を形成する工程と、を備える。
 この態様によると、p型半導体層上を第1保護層を保護しながら、難エッチング材料である酸化アルミニウム(Al)、酸窒化アルミニウム(AlON)または窒化アルミニウム(AlN)で構成される第2保護層を除去してn側開口およびp側開口を形成できる。その結果、p型半導体層上のp側電極が接する部分へのエッチングによるダメージを抑制し、p側電極のコンタクト抵抗の悪化を防ぐことができる。また、活性層の側面を酸化アルミニウム(Al)または窒化アルミニウム(AlN)で構成される第2保護層で被覆することで、耐湿性を向上させることができる。
 p側開口およびn側開口を形成する工程は、ドライエッチングにより第2保護層を除去してもよい。p型半導体層を露出させる工程は、ウェットエッチングにより第1保護層を除去してもよい。
 第2保護層は、原子層堆積法により形成されてもよい。
 本発明によれば、半導体発光素子の信頼性および出力特性を向上できる。
実施の形態に係る半導体発光素子の構成を概略的に示す断面図である。 半導体発光素子の製造工程を概略的に示す図である。 半導体発光素子の製造工程を概略的に示す図である。 半導体発光素子の製造工程を概略的に示す図である。 半導体発光素子の製造工程を概略的に示す図である。 半導体発光素子の製造工程を概略的に示す図である。 半導体発光素子の製造工程を概略的に示す図である。 半導体発光素子の製造工程を概略的に示す図である。 半導体発光素子の製造工程を概略的に示す図である。 比較例に係る半導体発光素子の構成を概略的に示す断面図である。 変形例に係る半導体発光素子の構成を概略的に示す断面図である。
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。また、説明の理解を助けるため、各図面における各構成要素の寸法比は、必ずしも実際の発光素子の寸法比と一致しない。
 図1は、実施の形態に係る半導体発光素子10の構成を概略的に示す断面図である。半導体発光素子10は、中心波長λが約360nm以下となる「深紫外光」を発するように構成されるLED(Light Emitting Diode)チップである。このような波長の深紫外光を出力するため、半導体発光素子10は、バンドギャップが約3.4eV以上となる窒化アルミニウムガリウム(AlGaN)系半導体材料で構成される。本実施の形態では、特に、中心波長λが約240nm~350nmの深紫外光を発する場合について示す。
 本明細書において、「AlGaN系半導体材料」とは、主に窒化アルミニウム(AlN)と窒化ガリウム(GaN)を含む半導体材料のことをいい、窒化インジウム(InN)などの他の材料を含有する半導体材料を含むものとする。したがって、本明細書にいう「AlGaN系半導体材料」は、例えば、In1-x-yAlGaN(0≦x+y≦1、0≦x≦1、0≦y≦1)の組成で表すことができ、AlN、GaN、AlGaN、窒化インジウムアルミニウム(InAlN)、窒化インジウムガリウム(InGaN)、窒化インジウムアルミニウムガリウム(InAlGaN)を含むものとする。
 また「AlGaN系半導体材料」のうち、AlNを実質的に含まない材料を区別するために「GaN系半導体材料」ということがある。「GaN系半導体材料」には、主にGaNやInGaNが含まれ、これらに微量のAlNを含有する材料も含まれる。同様に、「AlGaN系半導体材料」のうち、GaNを実質的に含まない材料を区別するために「AlN系半導体材料」ということがある。「AlN系半導体材料」には、主にAlNやInAlNが含まれ、これらに微量のGaNが含有される材料も含まれる。
 半導体発光素子10は、基板20と、バッファ層22と、n型クラッド層24と、活性層26と、電子ブロック層28と、p型クラッド層30と、n側電極32と、p側電極34と、第1保護層36と、第2保護層38とを備える。
 基板20は、半導体発光素子10が発する深紫外光に対して透光性を有する基板であり、例えば、サファイア(Al)基板である。基板20は、第1主面20aと、第1主面20aの反対側の第2主面20bを有する。第1主面20aは、バッファ層22より上の各層を成長させるための結晶成長面となる一主面である。第2主面20bは、活性層26が発する深紫外光を外部に取り出すための光取出面となる一主面である。変形例において、基板20は、窒化アルミニウム(AlN)基板であってもよいし、窒化アルミニウムガリウム(AlGaN)基板であってもよい。
 バッファ層22は、基板20の第1主面20aの上に形成される。バッファ層22は、n型クラッド層24より上の各層を形成するための下地層(テンプレート層)である。バッファ層22は、例えば、アンドープのAlN層であり、具体的には高温成長させたAlN(HT-AlN;High Temperature AlN)層である。バッファ層22は、AlN層上に形成されるアンドープのAlGaN層を含んでもよい。変形例において、基板20がAlN基板またはAlGaN基板である場合、バッファ層22は、アンドープのAlGaN層のみで構成されてもよい。つまり、バッファ層22は、アンドープのAlN層およびAlGaN層の少なくとも一方を含む。
 n型クラッド層24は、バッファ層22の上に形成されるn型半導体層である。n型クラッド層24は、n型のAlGaN系半導体材料層であり、例えば、n型の不純物としてシリコン(Si)がドープされるAlGaN層である。n型クラッド層24は、活性層26が発する深紫外光を透過するように組成比が選択され、例えば、AlNのモル分率が25%以上、好ましくは、40%以上または50%以上となるように形成される。n型クラッド層24は、活性層26が発する深紫外光の波長よりも大きいバンドギャップを有し、例えば、バンドギャップが4.3eV以上となるように形成される。n型クラッド層24は、AlNのモル分率が80%以下、つまり、バンドギャップが5.5eV以下となるように形成されることが好ましく、AlNのモル分率が70%以下(つまり、バンドギャップが5.2eV以下)となるように形成されることがより望ましい。n型クラッド層24は、1μm~3μm程度の厚さを有し、例えば、2μm程度の厚さを有する。
 n型クラッド層24は、不純物であるシリコン(Si)の濃度が1×1018/cm以上5×1019/cm以下となるように形成される。n型クラッド層24は、Si濃度が5×1018/cm以上3×1019/cm以下となるように形成されることが好ましく、7×1018/cm以上2×1019/cm以下となるように形成されることが好ましい。ある実施例において、n型クラッド層24のSi濃度は、1×1019/cm前後であり、8×1018/cm以上1.5×1019/cm以下の範囲である。
 活性層26は、AlGaN系半導体材料で構成され、n型クラッド層24と電子ブロック層28の間に挟まれてダブルへテロ接合構造を形成する。活性層26は、単層または多層の量子井戸構造を有してもよく、例えば、アンドープのAlGaN系半導体材料で形成されるバリア層と、アンドープのAlGaN系半導体材料で形成される井戸層の積層体で構成されてもよい。活性層26は、波長355nm以下の深紫外光を出力するためにバンドギャップが3.4eV以上となるように構成され、例えば、波長310nm以下の深紫外光を出力できるようにAlN組成比が選択される。活性層26は、n型クラッド層24の第1上面24aに形成され、第1上面24aの隣の第2上面24bには形成されない。活性層26は、n型クラッド層24の全面に形成されず、n型クラッド層24の一部領域(第1領域W1)にのみ形成される。
 電子ブロック層28は、活性層26の上に形成される。電子ブロック層28は、アンドープのAlGaN系半導体材料層であり、例えば、AlNのモル分率が40%以上、好ましくは、50%以上となるように形成される。電子ブロック層28は、AlNのモル分率が80%以上となるように形成されてもよく、実質的にGaNを含まないAlN系半導体材料で形成されてもよい。電子ブロック層は、1nm~10nm程度の厚さを有し、例えば、2nm~5nm程度の厚さを有する。電子ブロック層28は、p型のAlGaN系半導体材料層であってもよい。
 p型クラッド層30は、電子ブロック層28の上に形成されるp型半導体層である。p型クラッド層30は、p型のAlGaN系半導体材料層であり、例えば、p型の不純物としてマグネシウム(Mg)がドープされるAlGaN層である。p型クラッド層30は、300nm~700nm程度の厚さを有し、例えば、400nm~600nm程度の厚さを有する。p型クラッド層30は、実質的にAlNを含まないp型GaN系半導体材料で形成されてもよい。
 第1保護層36は、p型クラッド層30の上に設けられる。第1保護層36は、酸化シリコン(SiO)または酸窒化シリコン(SiON)で構成される。第1保護層36は、p型クラッド層30に比べて活性層26から出力される深紫外光に対する屈折率が低い材料で構成される。p型クラッド層30を構成するAlGaN系半導体材料の屈折率は組成比によるが2.1~2.56程度である。一方、第1保護層36を構成するSiOの屈折率は1.4程度であり、SiONの屈折率は1.4~2.1程度である。低屈折率の第1保護層36を設けることで、p型クラッド層30と第1保護層36の界面で活性層26からの紫外光のより多くを全反射させ、光取出面である基板20の第2主面20bに向かわせることができる。特に、SiOはp型クラッド層30との屈折率差が大きいため、反射特性をより高めることができる。第1保護層36の厚みは、50nm以上であり、例えば、100nm以上とすることができる。
 第1保護層36には、p側電極34を形成するための第1p側開口48が設けられる。第1p側開口48は、p型クラッド層30上に設けられ、第1保護層36を貫通してp型クラッド層30を露出させるように形成される。
 第2保護層38は、第1保護層36の上と、n型クラッド層24の第2上面24bの上と、n型クラッド層24、活性層26および電子ブロック層28の側面とを被覆するように設けられる。第2保護層38は、図示されるように、バッファ層22の側面や基板20の側面の一部を被覆してもよい。第2保護層38は、酸化アルミニウム(Al)、酸窒化アルミニウム(AlON)または窒化アルミニウム(AlN)で構成される。第2保護層38を構成する酸化アルミニウム(Al)、酸窒化アルミニウム(AlON)および窒化アルミニウム(AlN)は、第1保護層36を構成する酸化シリコン(SiO)または酸窒化シリコン(SiON)に比べて耐湿性に優れる。そのため、素子構造の上面および側面の全体を第2保護層38で被覆することで、耐湿性に優れた保護機能を提供できる。第2保護層38の厚みは、50nm以下とすることができ、例えば、10nm~30nm程度とすることができる。
 第2保護層38には、n側電極32を形成するためのn側開口40が設けられる。n側開口40は、n型クラッド層24の第2上面24b上に設けられ、第2保護層38を貫通してn型クラッド層24を露出させるように形成される。第2保護層38には、p側電極34を形成するための第2p側開口42が設けられる。第2p側開口42は、p型クラッド層30上または第1保護層36上に設けられ、第2保護層38を貫通して第1保護層36またはp型クラッド層30を露出させるように形成される。
 n側電極32は、n側開口40に設けられ、n型クラッド層24の第2上面24bに接するように形成される。n側電極32は、Ti/Al系の電極であり、n型クラッド層24上に接して設けられるTi層と、Ti層上に接して設けられるAl層とを少なくとも有する。Ti層の厚みは1nm~10nm程度であり、Al層の厚みは20nm~1000nm程度である。n側電極32は、n型クラッド層24からの紫外光を反射させて基板20の第2主面20bに向かわせる反射電極としても機能する。
 n側電極32の一部は、第2領域W2の第2保護層38上にも形成される。n側電極32をn側開口40内のみならず、第2保護層38の上にも形成することで、反射電極の形成領域を広くし、より多くの紫外光を光取出面である基板20の第2主面20bに向けて反射させることができる。また、n側開口40の全体を被覆するようにn側電極32を形成することで、第2保護層38との組み合わせによる封止機能を高めることができる。
 p側電極34は、第1p側開口48および第2p側開口42に設けられ、p型クラッド層30上に接するように形成される。p側電極34は、インジウム錫酸化物(ITO;Indium Tin Oxide)などの導電性酸化物で構成される。p側電極34は、金属電極であってもよく、例えば、ニッケル(Ni)/金(Au)の積層構造により形成されてもよい。
 p側電極34の一部は、第1領域W1の第1保護層36上や第2保護層38にも形成される。第1p側開口48および第2p側開口42の全体を被覆するようにp側電極34を形成することで、第2保護層38との組み合わせによる封止機能を高めることができる。
 つづいて、半導体発光素子10の製造方法について説明する。図2~図8は、半導体発光素子10の製造工程を概略的に示す図である。図2において、まず、基板20の第1主面20aの上にバッファ層22、n型クラッド層24、活性層26、電子ブロック層28、p型クラッド層30、第1保護層36が順に形成される。
 基板20は、サファイア(Al)基板であり、AlGaN系半導体材料を形成するための成長基板である。例えば、サファイア基板の(0001)面上にバッファ層22が形成される。バッファ層22は、例えば、高温成長させたAlN(HT-AlN)層と、アンドープのAlGaN(u-AlGaN)層とを含む。n型クラッド層24、活性層26、電子ブロック層28およびp型クラッド層30は、AlGaN系半導体材料、AlN系半導体材料またはGaN系半導体材料で形成される層であり、有機金属化学気相成長(MOVPE)法や、分子線エピタキシ(MBE)法などの周知のエピタキシャル成長法を用いて形成できる。第1保護層36は、SiOまたはSiONで構成され、化学気相成長(CVD)法などの周知の技術を用いて形成できる。第1保護層36の厚みは、50nm以上であり、例えば100nm以上である。
 次に、図3に示すように、第1保護層36の上にマスク12が形成され、マスク12が形成されていない露出領域13の第1保護層36、p型クラッド層30、電子ブロック層28、活性層26およびn型クラッド層24の一部が除去される。これにより、露出領域13にn型クラッド層24の第2上面24b(露出面)が形成される。n型クラッド層24の露出面を形成する工程では、ドライエッチング14により各層を除去できる。例えば、エッチングガスのプラズマ化による反応性イオンエッチングを用いることができ、例えば、誘導結合型プラズマ(ICP;Inductive Coupled Plasma)エッチングを用いることができる。
 次に、図4に示すように、第1保護層36の上およびn型クラッド層24の第2上面24b上に別のマスク16が形成される。その後、マスク16が形成されていない外周領域17の第1保護層36、p型クラッド層30、電子ブロック層28、活性層26およびn型クラッド層24がドライエッチング18により除去される。外周領域17は、1枚の基板上に複数の発光素子を形成する場合の素子間の分離領域である。外周領域17において、バッファ層22が部分的に除去されてもよいし、バッファ層22が完全に除去されて基板20が露出してもよい。外周領域17において、基板20の一部が除去されて第1主面20aとは高さの異なる基板20の外周面20cが露出してもよい。
 つづいて、マスク16を除去した後、図5に示すように、素子構造の上面の全体を被覆するように第2保護層38を形成する。第2保護層38は、Al、AlONまたはAlNで構成される。第1保護層36上と、n型クラッド層24の第2上面24b上と、n型クラッド層24、活性層26、電子ブロック層28およびp型クラッド層30の側面を被覆するように形成される。第1保護層36は、バッファ層22の側面を被覆してもよいし、基板20の側面の少なくとも一部を被覆してもよい。
 第2保護層38は、活性層26の側面に接して活性層26を保護する。第2保護層38は、耐湿性が優れていることが好ましく、膜密度の高い緻密な構造であることが好ましい。例えば、第2保護層38を原子層堆積(ALD)法を用いて形成することにより、保護機能に優れた第2保護層38を形成できる。また、ALD法により第2保護層38を形成することで、保護機能に必要十分となる膜厚を小さくできる。第2保護層38の厚みは、50nm以下とすることができ、例えば、10nm~30nm程度とすることができる。
 次に、図6に示すように、第2保護層38にn側開口40およびp側開口(第2p側開口)42を形成する。n側開口40は、n型クラッド層24の第2上面24b上の第2領域W2の一部領域に設けられ、第2p側開口42は、第1保護層36上の第1領域W1の一部領域に設けられる。n側開口40および第2p側開口42は、これらの開口領域以外にマスクを形成し、第2保護層38をドライエッチングすることにより形成できる。n側開口40および第2p側開口42は、第2保護層38を貫通するように形成される。したがって、n側開口40においてn型クラッド層24の第2上面24bが露出し、第2p側開口42において第1保護層36が露出する。
 なお、第2p側開口42の形成時にp型クラッド層30が露出しないように第2保護層38を除去することが好ましい。したがって、第2p側開口42の形成後において、p型クラッド層30上に第1保護層36が残り、p型クラッド層30上の全体が第1保護層36により被覆された状態が維持されることが好ましい。
 次に、図7に示すように、n側開口40にn側電極32を形成する。n側電極32は、n側開口40にて露出するn型クラッド層24の第2上面24b上にTi層を形成し、次にTi層上にAl層を形成することで形成できる。n側電極32のTi/Al層は、スパッタリング法により形成することが好ましい。これらの層を電子ビーム(EB)蒸着法で形成することもできるが、スパッタリング法を用いることで膜密度の低い金属層を形成でき、相対的に低いアニール温度で好適なコンタクト抵抗を実現できる。
 n側電極32は、n側開口40の内側のみならず、n側開口40の外側に形成されてもい。つまり、n側電極32の一部は、第2領域W2の第2保護層38の上に形成されてもよい。n側電極32の形成領域をn側開口40よりも広くすることで、反射電極として機能するn側電極32の被覆面積を広くし、出力特性を向上させることができる。また、n側開口40の全体をn側電極32で被覆することができ、封止機能を高めることができる。
 次に、n側電極32にアニール処理を施す。n側電極32のアニール処理は、Alの融点(約660℃)未満の温度で実行され、560℃以上650℃以下の温度でアニールすることが好ましい。Al層の膜密度を2.7g/cm未満とし、アニール温度を560℃以上650℃以下とすることで、n側電極32のコンタクト抵抗を0.1Ω・cm以下にすることができる。また、アニール温度を560℃以上650℃以下とすることで、アニール後のn側電極32の平坦性を高め、紫外光反射率を30%以上にすることができる。さらに、Alの融点未満の温度でアニールすることにより、1分以上のアニール処理、例えば、5分~30分程度のアニール処理をしても好適なコンタクト抵抗が得られる。一枚の基板上に複数の素子部分が形成される場合、アニール時間を長く(1分以上に)することでアニール時の基板内の温度均一性を高め、特性のばらつきの少ない半導体発光素子を複数同時形成できる。
 次に、図8に示すように、第1領域W1の第1保護層36および第2保護層38上と、第2領域W2の第1保護層36およびn側電極32上とにわたるマスク44を形成する。マスク44は、第1領域W1の第2保護層38の第2p側開口42に対応する位置に開口46を有する。マスク44の開口46は、第1保護層36を貫通する第1p側開口48を形成するために設けられ、第2保護層38の第2p側開口42の内側に位置する。したがって、第2保護層38の第2p側開口42における側面は、マスク44により被覆される。
 次に、図9に示すように、マスク44の開口46内の第1保護層36を除去し、第1保護層36に第1p側開口48を形成する。第1p側開口48は、第1保護層36を貫通するように形成され、第1p側開口48にてp型クラッド層30が露出するように第1保護層36が除去される。第1保護層36は、ウェットエッチングにより除去されることが好ましい。第1保護層36は、例えば、フッ化水素酸(HF)とフッ化アンモニウム(NHF)の混合液であるバッファードフッ酸(BHF)を用いて除去できる。第1保護層36をウェットエッチングすることで、ドライエッチングする場合に比べて、第1保護層36の除去後に露出するp型クラッド層30へのダメージ影響を低減できる。
 つづいて、マスク44を除去した後、第1p側開口48および第2p側開口42内にp側電極34を形成する。p側電極34は、第1p側開口48にて露出するp型クラッド層30上に接するように設けられる。また、p側電極34の一部は、第2p側開口42にて露出する第1保護層36上にも形成され、第2保護層38上にも形成される。これにより、第1p側開口48および第2p側開口42の全体が第2保護層38により被覆される。以上の工程により、図1に示す半導体発光素子10ができあがる。
 以下、本実施の形態の作用効果について、比較例を参照しながら説明する。図10は、比較例に係る半導体発光素子60の構成を概略的に示す。比較例では、上述の第2保護層38と同様の保護層58のみが設けられ、第1保護層36が設けられていない。比較例の保護層58は、第1領域W1のp型クラッド層30上と、第2領域W2のn型クラッド層24上と、n型クラッド層24、活性層26、電子ブロック層28およびp型クラッド層30の側面とに接するように設けられる。
 比較例において、保護層58がシリコン(Si)を含む場合、つまり、SiO、SiON、窒化シリコン(SiN)などで構成される場合、半導体発光素子60の通電使用時に保護層58に含まれるSiが活性層26に拡散するおそれがある。活性層26にSiが拡散すると、活性層26を構成するAlGaN系半導体材料がn型化し、活性層26の出力特性の低下につながるおそれがある。また、窒化シリコンは、活性層26から出力される紫外光を吸収するため、光取出面である基板20の第2主面20bからの光出力の低下にもつながる。
 比較例において、保護層58がAl、AlONまたはAlNで構成される場合、保護層58がSiを含まないため、半導体発光素子60の通電使用時に活性層26にSiが拡散する影響を防ぐことができる。しかしながら、アルミニウムの酸窒化物はウェットエッチングが困難であるため、p型クラッド層30を露出させるためのp側開口の形成時に保護層58をドライエッチングする必要がある。保護層58のみをドライエッチングにより除去することは事実上不可能であり、少なくとも部分的にp型クラッド層30の上面がドライエッチングされる。そうすると、p側電極34が接触するp型クラッド層30にダメージ影響が残り、p側電極34のコンタクト抵抗が増大しうる。そうすると、半導体発光素子60の光出力の低下につながる。
 一方、本実施の形態によれば、活性層26の側面がAl、AlONまたはAlNで構成される第2保護層38で被覆されるため、活性層26にSiが拡散する影響を防ぐことができる。Al、AlONまたはAlNで構成される第2保護層38は、耐湿性に優れるため、活性層26を封止する機能を高めることもできる。また、p型クラッド層30上にSiOまたはSiONで構成される第1保護層36が設けられるため、第2保護層38をドライエッチング時に第1保護層36をストップ層として機能させることができる。これにより、p型クラッド層30の露出面がドライエッチングにより損傷するのを防ぐことができる。これにより、p側電極34のコンタクト抵抗の増大を防止し、半導体発光素子10の光出力を向上させることができる。
 本実施の形態によれば、第1保護層36を低屈折率の材料であるSiO(屈折率1.4)とすることで、p型クラッド層30との屈折率差を大きくし、p型クラッド層30と第1保護層36の界面に入射する紫外光のより多くを全反射させることができる。これにより、活性層26から出力される紫外光のより多くを光取出面である基板20の第2主面20bに向かわせることができ、半導体発光素子10の光出力を向上させることができる。
 以上、本発明を実施例にもとづいて説明した。本発明は上記実施の形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。
 図11は、変形例に係る半導体発光素子10の構成を概略的に示す断面図である。本変形例では、第2保護層38により被覆される半導体層の側面50が傾斜したメサ面となっている点で上述の実施の形態と相違する。半導体層の側面50の傾斜角θは、例えば60度以下であり、例えば15度~50度程度とすることができる。本変形例によれば、活性層26のメサ面を傾斜させることにより、活性層26から水平方向に出射される紫外光を基板20の第2主面20bに向けて反射させることができ、光取出効率を高めることができる。
 本変形例に係る半導体発光素子10を製造するためには、上述の図3および図4の工程で用いるマスク12,16の側面を傾斜させればよい。本変形例においても、第1保護層36の形成後に半導体層をエッチングしてメサ面を形成するため、第1保護層36にも傾斜した側面が形成される。
 別の変形例では、上述の第1保護層36および第2保護層38とは別のさらなる保護層を備えてもよい。例えば、n側電極32、p側電極34および第2保護層38の上面および側面を被覆するような第3保護層がさらに設けられてもよい。第3保護層は、第1保護層36と同様の材料で構成されてもよいし、第2保護層38と同様の材料で構成されてもよい。第3保護層は、材料が異なる複数の層の積層構造であってもよい。
 本発明によれば、半導体発光素子の信頼性および出力特性を向上できる。
 10…半導体発光素子、20…基板、24…n型クラッド層、26…活性層、28…電子ブロック層、30…p型クラッド層、32…n側電極、34…p側電極、36…第1保護層、38…第2保護層、40…n側開口、42…第2p側開口、48…第1p側開口、W1…第1領域、W2…第2領域。

Claims (7)

  1.  基板上に設けられるn型窒化アルミニウムガリウム(AlGaN)系半導体材料のn型半導体層と、
     前記n型半導体層上の第1領域に設けられるAlGaN系半導体材料の活性層と、
     前記活性層上に設けられるp型AlGaN系半導体材料のp型半導体層と、
     前記p型半導体層上に設けられ、酸化シリコン(SiO)または酸窒化シリコン(SiON)で構成される第1保護層と、
     前記第1保護層上と、前記n型半導体層上の前記第1領域とは異なる第2領域と、前記活性層の側面とを被覆するように設けられ、酸化アルミニウム(Al)、酸窒化アルミニウム(AlON)または窒化アルミニウム(AlN)で構成される第2保護層と、
     前記p型半導体層上の前記第1保護層および前記第2保護層を貫通するp側開口にて前記p型半導体層上に接して設けられるp側電極と、
     前記n型半導体層上の前記第2領域の前記第2保護層を貫通するn側開口にて前記n型半導体層上に接して設けられるn側電極と、を備えることを特徴とする半導体発光素子。
  2.  前記第2保護層は、前記n型半導体層および前記p型半導体層の側面をさらに被覆するように設けられることを特徴とする請求項1に記載の半導体発光素子。
  3.  前記第2保護層の厚みは、50nm以下であることを特徴とする請求項1または2に記載の半導体発光素子。
  4.  前記n側電極および前記p側電極のそれぞれの一部は、前記第2保護層上に設けられることを特徴とする請求項1から3のいずれか一項に記載の半導体発光素子。
  5.  基板上に、n型窒化アルミニウムガリウム(AlGaN)系半導体材料のn型半導体層、n型半導体層上のAlGaN系半導体材料の活性層、活性層上のp型AlGaN系半導体材料のp型半導体層、p型半導体層上の酸化シリコン(SiO)または酸窒化シリコン(SiON)で構成される第1保護層を順に積層する工程と、
     前記n型半導体層の一部が露出するように前記第1保護層、前記p型半導体層、前記活性層および前記n型半導体層の一部を除去する工程と、
     前記第1保護層上と、前記n型半導体層の露出領域上と、前記活性層の側面とを被覆するように、酸化アルミニウム(Al)、酸窒化アルミニウム(AlON)または窒化アルミニウム(AlN)で構成される第2保護層を形成する工程と、
     前記第1保護層上の前記第2保護層を部分的に除去して前記第1保護層が露出するp側開口を形成し、前記n型半導体層上の前記第2保護層を部分的に除去して前記n型半導体層が露出するn側開口を形成する工程と、
     前記n側開口にて前記n型半導体層上に接するn側電極を形成する工程と、
     前記p側開口にて前記第1保護層を除去して前記p型半導体層を露出させる工程と、 前記p側開口にて前記p型半導体層上に接するp側電極を形成する工程と、を備えることを特徴とする半導体発光素子の製造方法。
  6.  前記p側開口および前記n側開口を形成する工程は、ドライエッチングにより前記第2保護層を除去し、
     前記p型半導体層を露出させる工程は、ウェットエッチングにより前記第1保護層を除去することを特徴とする請求項5に記載の半導体発光素子の製造方法。
  7.  前記第2保護層は、原子層堆積法により形成されることを特徴とする請求項5または6に記載の半導体発光素子の製造方法。
PCT/JP2019/019775 2018-05-29 2019-05-17 半導体発光素子および半導体発光素子の製造方法 WO2019230459A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227034228A KR20220137809A (ko) 2018-05-29 2019-05-17 반도체 발광 소자 및 반도체 발광 소자의 제조 방법
KR1020197032335A KR102480037B1 (ko) 2018-05-29 2019-05-17 반도체 발광 소자 및 반도체 발광 소자의 제조 방법
KR1020247001594A KR20240011257A (ko) 2018-05-29 2019-05-17 반도체 발광 소자
US16/668,335 US11217728B2 (en) 2018-05-29 2019-10-30 Semiconductor light emitting element and method of manufacturing semiconductor light emitting element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018102460A JP6570702B1 (ja) 2018-05-29 2018-05-29 半導体発光素子および半導体発光素子の製造方法
JP2018-102460 2018-05-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/668,335 Continuation US11217728B2 (en) 2018-05-29 2019-10-30 Semiconductor light emitting element and method of manufacturing semiconductor light emitting element

Publications (1)

Publication Number Publication Date
WO2019230459A1 true WO2019230459A1 (ja) 2019-12-05

Family

ID=67844790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019775 WO2019230459A1 (ja) 2018-05-29 2019-05-17 半導体発光素子および半導体発光素子の製造方法

Country Status (5)

Country Link
US (1) US11217728B2 (ja)
JP (1) JP6570702B1 (ja)
KR (3) KR20220137809A (ja)
TW (1) TWI720493B (ja)
WO (1) WO2019230459A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6902569B2 (ja) * 2019-04-17 2021-07-14 日機装株式会社 半導体発光素子および半導体発光素子の製造方法
JP7307662B2 (ja) 2019-10-31 2023-07-12 日機装株式会社 半導体発光素子および半導体発光素子の製造方法
CN112993138B (zh) * 2020-10-22 2022-02-25 重庆康佳光电技术研究院有限公司 芯片基板及其制作方法
CN113594326B (zh) * 2021-07-29 2022-12-20 厦门三安光电有限公司 一种发光二极管、发光模块及显示装置
JP7269414B1 (ja) 2022-04-28 2023-05-08 日機装株式会社 半導体発光素子および半導体発光素子の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028381A (ja) * 2010-07-20 2012-02-09 Sharp Corp 半導体発光素子およびその製造方法
JP2015023073A (ja) * 2013-07-17 2015-02-02 豊田合成株式会社 半導体装置
JP2015082612A (ja) * 2013-10-23 2015-04-27 旭化成株式会社 窒化物発光素子および窒化物発光素子の製造方法
US20170263816A1 (en) * 2016-03-11 2017-09-14 Samsung Electronics Co., Ltd. Light-emitting device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5985782U (ja) 1982-12-01 1984-06-09 株式会社クボタ 作業車の操向用操作部
JP2001339121A (ja) 2000-05-29 2001-12-07 Sharp Corp 窒化物半導体発光素子とそれを含む光学装置
US6858882B2 (en) * 2000-09-08 2005-02-22 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting device and optical device including the same
JP4547933B2 (ja) * 2003-02-19 2010-09-22 日亜化学工業株式会社 窒化物半導体素子
KR100862453B1 (ko) 2004-11-23 2008-10-08 삼성전기주식회사 GaN 계 화합물 반도체 발광소자
JP2009164423A (ja) 2008-01-08 2009-07-23 Nichia Corp 発光素子
JP2011233783A (ja) 2010-04-28 2011-11-17 Mitsubishi Heavy Ind Ltd 半導体発光素子、半導体発光素子の保護膜及びその作製方法
KR101746004B1 (ko) * 2010-10-29 2017-06-27 엘지이노텍 주식회사 발광소자
KR101900276B1 (ko) * 2012-01-04 2018-09-20 엘지이노텍 주식회사 발광 소자 및 이를 구비한 발광 장치
CN108807635A (zh) * 2012-07-18 2018-11-13 世迈克琉明有限公司 半导体发光器件
CN107408604B (zh) 2015-04-03 2019-07-09 创光科学株式会社 氮化物半导体紫外线发光元件以及氮化物半导体紫外线发光装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028381A (ja) * 2010-07-20 2012-02-09 Sharp Corp 半導体発光素子およびその製造方法
JP2015023073A (ja) * 2013-07-17 2015-02-02 豊田合成株式会社 半導体装置
JP2015082612A (ja) * 2013-10-23 2015-04-27 旭化成株式会社 窒化物発光素子および窒化物発光素子の製造方法
US20170263816A1 (en) * 2016-03-11 2017-09-14 Samsung Electronics Co., Ltd. Light-emitting device

Also Published As

Publication number Publication date
KR102480037B1 (ko) 2022-12-21
KR20220137809A (ko) 2022-10-12
JP6570702B1 (ja) 2019-09-04
JP2019207944A (ja) 2019-12-05
US11217728B2 (en) 2022-01-04
KR20210010291A (ko) 2021-01-27
KR20240011257A (ko) 2024-01-25
TW202005110A (zh) 2020-01-16
US20200066941A1 (en) 2020-02-27
TWI720493B (zh) 2021-03-01

Similar Documents

Publication Publication Date Title
JP6570702B1 (ja) 半導体発光素子および半導体発光素子の製造方法
JP7307662B2 (ja) 半導体発光素子および半導体発光素子の製造方法
US11705538B2 (en) Semiconductor light emitting element
US11777060B2 (en) Semiconductor light-emitting element and method of manufacturing semiconductor light-emitting element
JP7312056B2 (ja) 半導体発光素子および半導体発光素子の製造方法
JP7146589B2 (ja) 半導体発光素子および半導体発光素子の製造方法
JP6640815B2 (ja) 半導体発光素子の製造方法
JP7146562B2 (ja) 半導体発光素子および半導体発光素子の製造方法
TW202147638A (zh) 半導體發光元件以及半導體發光元件的製造方法
KR102075286B1 (ko) 심자외 발광 소자
JP7023899B2 (ja) 半導体発光素子
US20220045243A1 (en) Semiconductor light-emitting element and method of manufacturing semiconductor light-emitting element
US20200266320A1 (en) Semiconductor light emitting element and method of manufacturing semiconductor light emitting element
JP7296002B2 (ja) 半導体発光素子および半導体発光素子の製造方法
JP7339994B2 (ja) 半導体発光素子および半導体発光素子の製造方法
JP7296001B2 (ja) 半導体発光素子および半導体発光素子の製造方法
JP7295924B2 (ja) 半導体発光素子および半導体発光素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810319

Country of ref document: EP

Kind code of ref document: A1