WO2019229919A1 - 長尺シート材の品質計測方法および品質計測装置 - Google Patents

長尺シート材の品質計測方法および品質計測装置 Download PDF

Info

Publication number
WO2019229919A1
WO2019229919A1 PCT/JP2018/020910 JP2018020910W WO2019229919A1 WO 2019229919 A1 WO2019229919 A1 WO 2019229919A1 JP 2018020910 W JP2018020910 W JP 2018020910W WO 2019229919 A1 WO2019229919 A1 WO 2019229919A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet material
infrared
long sheet
measurement
camera
Prior art date
Application number
PCT/JP2018/020910
Other languages
English (en)
French (fr)
Inventor
設楽久敬
Original Assignee
株式会社PSM International
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社PSM International filed Critical 株式会社PSM International
Priority to CN201880093760.8A priority Critical patent/CN112189133B/zh
Priority to EP18921132.9A priority patent/EP3805733B1/en
Priority to FIEP18921132.9T priority patent/FI3805733T3/fi
Priority to CA3101951A priority patent/CA3101951C/en
Priority to PCT/JP2018/020910 priority patent/WO2019229919A1/ja
Priority to US17/059,629 priority patent/US11231363B2/en
Publication of WO2019229919A1 publication Critical patent/WO2019229919A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content
    • G01N21/3559Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content in sheets, e.g. in paper
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/86Investigating moving sheets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/34Paper
    • G01N33/346Paper sheets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/86Investigating moving sheets
    • G01N2021/8663Paper, e.g. gloss, moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/86Investigating moving sheets
    • G01N2021/869Plastics or polymeric material, e.g. polymers orientation in plastic, adhesive imprinted band
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details
    • G01N2021/8908Strip illuminator, e.g. light tube
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • G01N2201/0626Use of several LED's for spatial resolution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • G01N2201/0627Use of several LED's for spectral resolution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/065Integrating spheres
    • G01N2201/0655Hemispheres

Definitions

  • the present invention relates to a quality measurement method for a long sheet material such as a paper web (winding paper) or a plastic film manufactured by a paper machine or the like, and more particularly to a quality measurement method and a quality measurement device performed in a non-scanning manner. .
  • a long sheet material such as a paper web generated by a paper machine is wound on a reel spool.
  • paper webs contain cellulose fibers, which are raw materials, and fillers and moisture that connect them, increase their strength, and cause light scattering. Looking at the cross section, the gap is also quite large (see Figure 1).
  • QCS Quality Control System
  • a moisture sensor using infrared rays and an ash sensor using X-rays are used.
  • the use of various sensors for measuring the paper web, compared to other long sheet materials is the moisture, especially when it comes into and out of the paper web after it is formed into a sheet. This is because there is an element that can do this, which makes measurement and quality control difficult.
  • a scanner in a paper machine that produces paper of various brands with a paper width of 1m to 10m and a production speed of several m to 2000m per minute. It is housed in the sensor head and measures paper weight (basis weight), moisture, thickness (caliper), ash, etc.
  • the paper web scanning sensor is used immediately before the reel and is used as a production control standard. Depending on the process, a scanning sensor may be provided even before coating on the paper surface.
  • the quality parameters of these papers can be controlled, and the basis weight, moisture, and ash are controlled in the flow direction (perpendicular to the width of the paper, the direction toward the reel), and the basis weight, moisture, and thickness are profiled in the width direction ( The unevenness or flatness along the width direction of the paper) is controlled.
  • Fig. 6 (a) shows an outline of the grammage sensor for measuring the weight of the paper web W, which is mounted on almost all of the existing quality measurement control system (referred to as QCS).
  • the basis weight sensor uses a ⁇ -ray source (radioisotope) as the source, measures the attenuation of ⁇ -rays absorbed by the mass, and compares it with a calibration curve pre-calibrated with a reference sample.
  • the weight of the paper web W is measured by calculating backward from the ratio of the ⁇ -ray transmission signal captured in step 1 to the signal when there is no paper web W.
  • the quality parameters based on these measured values are controlled by a device called an actuator.
  • the flow direction is controlled by adjusting the concentration of cellulose fiber introduced by the seed valve control, and the moisture is controlled by the vapor pressure control of the dryer.
  • the basis weight is adjusted by adjusting the concentration when discharged from the head box with diluted water (for example, the diluted water actuator in FIG. 2), and the moisture is controlled by adding water or humidification, heat drying with steam, drying with infrared rays, etc.
  • the thickness (caliper) is controlled toward the target value by changing the roll diameter by heating or cooling the roll of the calendar and changing the pressure at the calendar.
  • Fig. 3 shows how the sensor head of the scanner scans the paper web and performs sampling measurement.
  • the compositional variation factors of paper of several millimeters size called the paper texture
  • the fluctuation of the quality parameter measurement position due to the cleaning failure and meandering contraction that occur randomly in the width direction and the rotation at high speed Variations in quality parameters due to the failure of tools such as wires, press rolls, felts, canvases (not shown) that rotate at several to tens of meters are measured as noise (disturbance)
  • the measurement representative value is calculated by removing the measured value by the technique of dulling.
  • the processed data represents the average measured value of the entire width of the paper and the profile in the width direction, the difference from the control target value is calculated, and the quality parameter is controlled and corrected using a device called an actuator.
  • Fig. 8 shows a photograph of the unevenness (weight variation) of the paper, which is the texture that is the biggest feature of paper, and a conceptual diagram of an existing moisture sensor.
  • Reference numeral 813 denotes a sampling trajectory of a sensor traveling (scanning) on the paper web W, and one point is a spot of 10 mm ⁇ and measured every 1 msec.
  • the texture is a state in which the fiber is thickened like 801 and thickened and the part thinned like 802 is alternately uneven, and there is a thing close to the spot size of the sensor. If this weight ratio is large, it becomes a dozen percent, which causes a fatal error in one-point measurement of the sampling method.
  • an existing moisture meter uses an infinite scattering method using a scattering reflector such as 807 in (b) and an integrating sphere scattering method such as 810 in (c).
  • 808, 812 are light source halogen lamps, and 803, 804, 805, 809 are light receiving elements.
  • (b) uses a beam splitter such as 806 to measure 3 wavelengths simultaneously using a bandpass filter in front of the light receiving element.
  • (c) rotates the rotary filter 810 to the light source side, and measures three wavelengths with one light receiving element. The difference is whether the machine difference of the three light receiving elements is measured at the same spot at the same time or the light receiving elements are stabilized at the same time.
  • FIG. 4 a scan-type sensor that is filtered and not left as data by a scan sensor, and a short-cycle repeat fluctuation derived from a machine (paper machine) tool and a fixed-position continuous change that remains as data after filtering on a paper web. Show how it appears.
  • the dotted line shows the trajectory scanned by the sensor head of the scanner. On a high-speed machine (paper machine), the trajectory is several hundred meters in one way.
  • the points a and c in the figure are points that are always measured by the sensor (not shown) of the sensor head during continuous fixed position fluctuations, and the points b and d are repeated fluctuations that always exist in the paper. Since the measurement position of the sensor to be changed changes, it becomes a fluctuation removed by the filter and is not measured.
  • the sudden fluctuation has a low probability of being measured by the sensor, and even if it is measured in the same manner as the repeated fluctuation, it is filtered as a spike fluctuation.
  • the constant position continuous variation measured by the sensor must be filtered as described below because the flow direction variation is added to the change in the measurement interval at the same point as shown in FIG.
  • Figure 5 shows how the moving average method and the exponential response appear when filtering is performed in order to suppress the spike fluctuation measurement and separate the width and flow direction errors.
  • This is expressed by the filter method. Normally, an exponential filter is used, and a suppression value of 0.2 is often used.
  • the number of samples on the horizontal axis indicates the number of scans (number of crossings), and one scan is about 20 to 30 seconds.
  • the step response is a response when measured without scanning. Looking at the step response, it takes about 10 scans (several minutes) to get 90% response, and controllability is significantly lost. Also, high-speed errors derived from machine tools cannot be observed because they are removed as random noise by a filter with a measurement rate of 0.17% even if they occur repeatedly.
  • Infrared rays emitted from the light source pass through the paper web to be measured and enter the infrared line camera, but there are multiple infrared line cameras, and the infrared rays separated by the beam splitter are Divided into cameras.
  • This is a general method for eliminating errors due to measurement points caused by the fiber mass distribution ranging from several millimeters to several tens of millimeters of the paper web called the texture and the weight ratio of several percent. This is called single point time measurement. What was intended was to perform quick quality parameter control by high-speed measurement, to improve paper quality and to minimize energy loss in the manufacturing process, which was a purposeful system.
  • the rolled-up products range from thousands to tens of thousands of meters from thick to thin, and usually one is produced in about one hour.
  • the average value of the quality parameter of each winding roll is compared, it is within a relatively small error range and it seems that good measurement control is performed at first glance.
  • fluctuations of ⁇ 1% to several percent are usually included, and it is difficult to say that the control result is good if viewed in units of small copy paper level (referred to as sheet) actually used by the user.
  • sheet small copy paper level
  • QCS Quality Control System
  • Kr85 and Pm147 is used to measure the basic weight (g / m 2 ).
  • a source ⁇ -ray
  • ⁇ -ray Since ⁇ rays are absorbed by all masses, air is no exception, and the gap distance between the source and receiver and the temperature of each zone of air are measured and the air layer weight is calculated and corrected.
  • the measurement time is approximately 1 millisecond sampling, and the measurement spot size is about 10 mm ⁇ .
  • the currently used measurement methods are all sequential sampling measurement of the sensor mounted on the scanner, and in this method, the web flow direction variation factor and the width direction variation factor are included in the measurement value. Also, even within a short measurement time of 1 millisecond, for example, it takes 20-30 seconds for a 6m ⁇ ⁇ wide paper machine to cross the web, and only 0.2% or less of the web is measured for a paper machine exceeding 1000m per minute. Not done.
  • the present invention improves the infrared camera system described in Patent Document 2 and measures the paper quality parameter by separating the flow direction component and the width direction component without scanning type sequential sampling as in the existing system.
  • Non-scanning and non-filtering methods that do not require conventional radiation ( ⁇ -rays) and X-rays, and can be applied to small paper machines, improving accuracy and measuring the quality of long sheet materials with high economic effects It is an object to provide a method and a quality measuring device.
  • the ash sensor that measures the ash (titanium oxide, calcium carbonate, clay, etc.) that is used to prevent the characters on the back side of the paper from being seen through can be seen through the light. It is considered as a sensor and aims to provide a new quality measurement method by optical measurement and an improvement method of the current control method that can be achieved because of the non-scan method.
  • an infrared LED light source having a wavelength necessary for paper quality measurement is arranged on the opposite side of the long sheet material with respect to the infrared camera.
  • the weight of the object can be calibrated in advance. This is the method obtained from the measurement formula.
  • the measurement object include cellulose, which is the main component of paper, and moisture, as well as substances to be coated such as fillers, resins, binders, and silicon that are usually measured by an infrared absorption method.
  • films such as plastic films such as PP (polypropylene), PE (polyethylene), and PET (polyester) and coating agents.
  • an InGaAs area sensor is used for the infrared camera serving as the light receiving unit, and the required number of channels of the infrared LED light source corresponding to each absorption wavelength band is prepared (see, for example, FIG. 7).
  • light sources such as 1.45 ⁇ , 1.57 ⁇ , and 1.3 ⁇ as shown in Patent Document 2 are arranged in the flow direction so as not to be affected (do not interfere with each other) on the paper web for measuring moisture and fiber. . This makes it possible to measure the same point at the same time by measuring with an offset, and if sufficient averaging is performed in consideration of the distribution of the texture of the paper web, fine noise that cannot be achieved with the current sampling method can be achieved. Can be removed.
  • the long sheet material quality measuring method may measure the reflected light amount instead of the transmitted light amount by arranging the infrared camera and the infrared light source on the same side with respect to the long sheet material.
  • it is used for measuring the amount of coating on the surface (see, for example, FIG. 12).
  • This method cannot be used to measure the fiber that occupies most of the entire web, but measures the attenuation rate of the absorption wavelength relative to the comparative wavelength, such as the moisture content and the thickness / weight of the coating layer, which are entangled with the fiber.
  • the measurement is based on the same principle as the reflection type moisture meter as the prior art, but an infrared area sensor and an infrared LED are used without scanning.
  • the above-mentioned infrared camera uses an area sensor and uses an infrared LED as a light source for each wavelength.
  • a camera focused on the surface of a paper web measures light transmitted through scattering, absorption, and reflection in the web.
  • the light incident on the camera from the surface as viewed from the camera is attenuated by the fiber amount and moisture content of the paper web, which follows Beer's law (Equation 1).
  • the line sensor is arranged so that the measurement point of the line sensor comes to approximately the center of the light band on the web, but the width of the light band irradiated on the paper depends on the size of the line sensor device.
  • the width must be designed so that the measurement point does not deviate from the band due to fluttering (waving the paper web being wound).
  • the transmission type if the light source and the light receiving part are perpendicular to the paper surface, only the difference in distance is required.
  • the reflection type the observation plane changes due to fluttering because it cannot be placed on the same perpendicular line.
  • the area sensor picks up all of the transmitted light amount, such influence is minimized. For example, even if the size of the light source is 20 mm ⁇ , the size of the surface received by the area sensor is designed to be 50 mm ⁇ or more.
  • LED light source (1) is a type in which a lens is directly attached to the LED sphere or a cylindrical lens on a turret type LED sphere to converge the light so that sufficient light flux can be obtained on the measurement surface It is. This works as if a ⁇ -ray beam emitted from a radiation source of a normal basis weight sensor, and after passing through a paper web, captures all the transmitted light with an area sensor in the same manner as an ionization chamber. In this case, it is an image in which a large number of basis weight or infrared weight sensors are arranged on the entire surface of the paper web.
  • Usage as an LED light source (2) is a method in which light converged in the flow direction with a cylindrical lens is diffused only in the width direction with a special film, making it look like a single band of light, splitting in the width direction (A measurement value is taken for each divided section) is a method of dividing an arbitrary range within the camera field of view by software (see FIG. 10).
  • the advantage of this light source is that the boundary of the LED sphere is eliminated, and the measurement accuracy such as the shrinkage rate of the paper web, which will be described later, increases. Practically, a linear light source of 10 mm to 20 mm is used, and a slice corresponding to a control actuator such as a mini slice with a minimum slice (division width) of 10 mm or 65 mm is used.
  • the long sheet material quality measuring method of the present invention uses an infrared camera (generally a near-infrared wavelength band using InGaAs, but other devices may be used) and an infrared LED light source, and the light receiving unit is an area sensor.
  • an infrared camera generally a near-infrared wavelength band using InGaAs, but other devices may be used
  • an infrared LED light source and the light receiving unit is an area sensor.
  • the principle is the same as that of a normal scanning type sampling moisture meter or gravimetric meter, but a standard sample is used over the entire width, and measurement and calibration are performed offline for each slice (or for each LED bulb). Are very different.
  • the dark current measurement on the camera side or a pseudo sample that is not absorbed can be used as a standard sample by measuring the maximum intensity and the like that is scattered but does not absorb cellulose. This corresponds to the shutter open state (open count) and the shutter closed state (closed count) of the radiation source in the grammimeter described above. These are the reference values (time zero count) in the offline state.
  • calibration is performed by providing a real sample prepared for each required brand on the actual paper web pass line, and scanning in order to obtain a sufficient average value uniformly. Measure the number of photons. If there 100 pixels if the area where one pixel observes the irradiation area as a 10 mm 2 and 1 mm 2, the total number of counts since each pixel Moteru than 1024 gradation resolution is better than 13-bit ADC will range from 0 to 102,400.
  • Calibration covers the entire width with a slice width determined according to the purpose, standard sample (pseudo paper sample not absorbed by any wavelength), actual sample for each brand actually manufactured (fiber weight, moisture weight and ash content) Rate) for each. It is important to take a uniform averaging method that does not depend on the device or texture for scanning the sample in full width.
  • this calibration device is a device that scans and measures the pass line through the paper web over its entire width, and has the function of cleaning the light source when changing the frame when online.
  • the sample folder is arranged so that actual samples and standard samples can be measured on-line on both-end path lines.
  • the data of each calibrated slice (for example, every 10 mm) is obtained by measuring the amount of light emitted from the surface through the paper web and normalizing the distance from the light receiving element (the median is 1 and the distance is 2 Calculated as being inversely proportional to the power). Since the weight of the sample is known, a plurality of pieces of data sandwiching the target value for each brand are taken and applied to the formula, and converted to the weight calculated according to Beer's law. This calibration method is not different from existing systems, but it is necessary to pay attention to the handling of samples such as the difference in distance depending on the field of view of the camera, the difference in characteristics of each pixel of the light receiving element, and the difference in ash content.
  • the important point of the present invention is that calibration is carried out by incorporating various factors such as the sensitivity and device size difference of each pixel of the InGaAs area sensor of the camera internal element, the LED intensity difference of the light emitting part, and the wavelength band pattern difference (for example, half width). It is assumed that these differences have repeatability with a predetermined slice width. Measurement value shift (change in dark current area) of the entire camera, attenuation of light intensity due to dust on the light source, and light intensity fluctuation due to power supply fluctuation of the light source appear in the entire camera or system, not in slice units. Or it can be excluded from measurement as an abnormality.
  • the existing scanning sensor moves the sensor head to the off-line position at regular intervals, and performs the open count, closed count, and standard sample measurement described above, and measures the time between the light emitting side and the light receiving side of the sensor at zero time. Correct the difference.
  • the measurement difference is composed of various factors such as dirt adhesion between the source and receiver, aging of the light source on the source side, ambient temperature, gap change due to thermal distortion, and is indispensable for maintaining sensor accuracy. Do it once. In a process with a lot of dirt, such as a tissue machine, even if it needs to be done frequently, even a small measurement ratio will fall there again.
  • the improvement over the prior art of the present invention is to achieve the stability and long life of this light source with an infrared LED, and to solve the problem on the light source side that requires automatic calibration.
  • source (light source) and receiver (camera) status checks can be made by comparing measured values in the overlap area of adjacent cameras, and dirt and other online effects are off the sheet.
  • a necessary correction coefficient can be obtained by measuring and comparing an actual sample or a standard sample within the field of view. In this way, it is possible to know the change from time zero in accordance with automatic calibration without bringing the camera and light source to an off-line position.
  • the quality measurement method for a long sheet material includes an infrared light source that irradiates the long sheet material with a quality parameter of the long sheet material flowing toward the winder, and the long sheet material.
  • the quality parameter measurement method of the long sheet material that is measured using an infrared camera that receives the infrared rays that have passed through, using the infrared light source and the infrared camera, the full width of the long sheet material is simultaneously measured, It is characterized in that the state of the infrared light source and the infrared camera is grasped online, and the measurement value is corrected online based on the state.
  • infrared rays includes “near infrared rays”.
  • “Via” means transmission or reflection, and includes scattering and reflection inside the long sheet material at the time of transmission.
  • the entire width of the long sheet material taken up by a paper machine or the like is measured at the same time. Therefore, the quality parameter can be measured so as to cover almost 100% of the long sheet material. Easy to determine the cause of fluctuation.
  • a plurality of infrared light sources and infrared cameras may be arranged in the width direction. Since the obtained measurement value is separated from the fluctuation in the flow direction and the fluctuation in the width direction, it is not necessary to perform filtering, and the cause of the variation in the quality parameter can be quickly and appropriately removed.
  • the status of the infrared light source and the infrared camera can be ascertained online, and the measurement values can be corrected online based on the status, so the accuracy of the measurement values can be improved and as a result the quality of the long sheet material can be improved. To do.
  • a quality parameter measurement method for a long sheet material according to the invention includes a plurality of the above infrared cameras arranged in the width direction of the long sheet material, overlapping the fields of view of adjacent infrared cameras, By obtaining the difference between the measurement values obtained by the respective cameras from the same location, the difference is added to the measurement value of each camera.
  • the consistency of the measurement values of multiple cameras used to measure the entire width at the same time can be confirmed by comparing the measurement values in the overlap area where the fields of view of adjacent infrared cameras overlap. . Since the difference is added to the measured value of the camera in which the difference is confirmed based on the comparison result, the measurement accuracy of the quality parameter can be maintained even if the measurement is performed with a plurality of cameras. Also, if 50% of each camera's field of view overlaps, even if one camera breaks down, it can be backed up by the adjacent camera.
  • the method for measuring the quality parameter of a long sheet material according to the present invention is such that a comparative sample is installed in the vicinity of the long sheet material, and the long sheet material and the comparative sample are irradiated with infrared rays from the same infrared light source.
  • the measurement value obtained by simultaneously measuring the entire width of the long sheet material by simultaneously measuring the infrared rays respectively passing through the long sheet material and the comparative sample with the same infrared camera.
  • calibration refers to obtaining a difference by comparing the measurement value of the comparative sample and the paper web
  • correction refers to adding the difference to the measurement value of the paper web.
  • the comparative sample includes, for example, a standard sample using pseudo paper that does not absorb moisture absorption wavelength or pseudo paper that does not absorb any wavelength.
  • the necessary correction coefficient is obtained by measuring the actual sample and standard sample with the same camera at the same time as the long sheet material within the field of view away from the long sheet material, and comparing each measured value. Can be obtained.
  • the consistency of multiple cameras placed across the entire width of the paper web can be maintained, and the quality parameters of the sample for comparison can be measured simultaneously with the quality parameters of the long sheet material. It is possible to confirm the state of the light source and the camera (without stopping) and calibrate the measured value according to the result to make correction. Therefore, measurement value fluctuations caused by things other than quality parameter fluctuations can be removed, leading to an improvement in product quality.
  • an infrared area camera may be used as the infrared camera. Since the field of view of the infrared camera covers an area rather than a line, even if the observation surface changes due to fluttering of the long sheet material, all the transmitted and reflected infrared rays can be picked up.
  • the quality parameter measurement method for a long sheet material includes a plurality of infrared light sources that irradiate infrared rays having different wavelengths, respectively, in the flow direction of the long sheet material, and the infrared rays that pass through the long sheet material described above.
  • the same infrared camera measures at the same time.
  • Infrared light sources having different wavelengths are arranged with a minimum (for example, 50 mm) interval so as not to interfere with each other's irradiation area.
  • this measurement method by selecting the number of channels and the wavelength required for measurement, it is possible to measure a plurality of quality parameters at the same point and the same time by measuring with an offset (for example, fiber absorption wavelength, Wavelength not absorbed, moisture absorption wavelength, comparative wavelength from reflection direction, etc.).
  • an offset for example, fiber absorption wavelength, Wavelength not absorbed, moisture absorption wavelength, comparative wavelength from reflection direction, etc.
  • the quality parameter measurement method for a long sheet material according to the invention is such that a transmitted infrared ray and a reflected infrared ray irradiated from the infrared light source and passed through the long sheet material are received by the infrared camera, and the received transmitted infrared light amount And the light scattering degree of the long sheet material is measured from the transmittance obtained from the amount of reflected infrared rays.
  • the “light scattering degree” refers to “the degree of light penetration” which is a quality related to the light transmittance of paper.
  • the light scattering degree can be measured only with a light source and a camera used for measuring other quality parameters without measuring the amount of ash that has been conventionally performed. There is no need to prepare a separate measurement device, and it is not necessary to use the radiation (basis meter) and X-ray (ash meter) that were required in the past.
  • the quality control method of the long sheet material according to the invention is based on the light scattering degree obtained by the above measurement method, and determines whether the attenuation of the transmitted infrared ray is due to fiber or ash, and the amount of fiber, the amount of moisture, etc. It is characterized in that a correction relating to the optical path length of the quality parameter or a change in process conditions is judged.
  • Optical path length refers to the length of the path where infrared rays are scattered and reflected inside the long sheet material.
  • Process condition change includes, in addition to the above-described quality parameter control, control change such as thickness. According to this control method, it becomes possible to determine with the conventional ash content measurement, which leads to an improvement in product quality.
  • the quality control method for the long sheet material according to the invention is such that the quality parameters such as the fiber amount and the moisture amount are changed by a predetermined amount at a predetermined control point in the width direction in synchronization with the frame change of the winding roll in the winder. While measuring the quality parameter by the measurement method described above, based on the measured value obtained, the measurement point and basis weight control changed due to shrinkage or meandering in the width direction of the wound long sheet material And the positional relationship with the width direction control point of the moisture amount control. This is a so-called bump test (output response test).
  • quality parameters can be measured in a short time, so in the short time of frame change, shrinkage in the width direction for each frame change without using paper that is not made into a product and generating waste paper. You can update the pattern. Since it is possible to correctly determine at which slice position of the head box the basis weight and water content should be controlled, it is possible to prevent the spread of the error in the width direction.
  • the long sheet material quality parameter measuring device measures the quality parameter of the long sheet material flowing toward the winder using an infrared light source and an infrared camera that receives infrared light.
  • a plurality of infrared light sources and infrared cameras are arranged in the width direction so as to cover the entire width of the long sheet material, It is characterized in that the fields of view of adjacent infrared cameras overlap.
  • the long sheet material quality parameter measuring device has a sample for comparison,
  • the infrared camera in which the comparative sample and the long sheet material are irradiated with infrared rays from the same infrared light source, and the infrared rays through the comparative sample and the long sheet material are the same.
  • the comparison sample is arranged in a plane extending in the width direction of the long sheet material so as to be simultaneously measured in the above.
  • the comparative sample may be fixed at the above position, or a plurality of comparative samples may be rotated and come to the above position. With this measurement apparatus, the above measurement method of obtaining a highly accurate measurement value by calibration and correction of the measurement value can be performed.
  • the infrared camera is an infrared area camera
  • a plurality of infrared light sources that irradiate infrared rays of different wavelengths are arranged in the flow direction
  • the infrared light sources are arranged so that the irradiation areas do not interfere with each other in a range in which the infrared rays from the respective light sources are measured at the same time by the same infrared area camera via the long sheet material. It is characterized by being.
  • this measuring device all the transmitted and reflected infrared rays can be received by the camera, and infrared rays of a plurality of wavelengths as required can be measured at the same point and the same time by measuring with an offset.
  • the main points of the invention are (1) Improvement of light source, (2) Improvement from line sensor to area sensor, (3) Consistency check of overlap area, (4) Standard and actual at off-sheet position Online calibration and correction by sample check, and (5) other measurement control improvements by simultaneous measurement of the entire length of long sheet material.
  • the quality measurement method for a long sheet material of the present invention a) high-speed fluctuation due to paper machine tools and the like, which has been difficult to measure conventionally, due to the quality measurement of paper fiber weight, moisture weight, etc. by non-scanning / non-filtering This makes it possible to improve controllability and control of cause elimination. b) This improves productivity, saves energy, and saves labor. c) An alternative to ⁇ -ray basis weight sensors and X-ray ash content sensors, and it has become possible to introduce into the thin paper field such as tissue and toilet paper, where measurement control has been difficult in the past. Operation management becomes possible.
  • FIG. 6 (a) is a structural diagram of a paper weight sensor (called a basis weight sensor) using an existing ⁇ -ray source, and Fig.
  • FIG. 6 (b) shows a basis weight attenuation curve according to Beer's law. It is a graph. It is a conceptual diagram of the sensor using the near infrared rays applied by this invention.
  • FIG. 7A shows a sensor 700 in which a light source 705 is arranged for one channel
  • FIG. 7B shows a sensor 710 in which a light source 715 is arranged in the flow direction for three channels.
  • 8 (a) is a photograph of the texture of the paper web W
  • FIG. 8 (b) is a structural diagram of an infinite scattering type moisture meter
  • FIG. 8 (c) is a structural diagram of an integrating sphere type moisture meter. It is.
  • FIGS. 10 (a) and (a ′) are side views and plan views of the linear light source 1002 and FIG. 10 (b) is a diagram showing a structure for producing a linear light source using an infrared LED light source that is a point light source.
  • FIG. 10 (b ') are a side view and a plan view of an assembly of point light sources 1003 converged in the flow direction, and
  • FIGS. 10 (c) and (c') are points arranged at regular intervals in the width direction.
  • FIG. 6 is a side view and a plan view of an assembly of light sources 1005.
  • FIG. 10 (a) and (a ′) are side views and plan views of the linear light source 1002
  • FIG. 10 (b) is a diagram showing a structure for producing a linear light source using an infrared LED light source that is a point light source.
  • (b ') are a side view and a plan view of an assembly of point light sources 1003 converged in the flow direction
  • FIG. 11 (a) is a schematic diagram of a quality measuring apparatus 1100 according to an embodiment of the invention
  • FIG. 11 (b) is a side view of a light source 1112 when using a three-channel wavelength
  • FIG. It is a side view of the light source 1113 when the channel wavelength is used.
  • FIG. 12 (a) is a schematic view showing a quality measuring device 1200 according to another embodiment of the invention
  • FIG. 12 (b) is a side view thereof.
  • FIGS. 13A and 13B are diagrams showing the concept of the measurement values of the overlap area of the camera field of view.
  • FIG. 13A is a view of the light source 1320 and the paper web W as viewed from above
  • FIG. 13B shows the measurement values 1308 and 1309. The graph, FIG.
  • FIG. 13C is a graph of the measured values 1305, 1306 and 1307, 1308 after standardization when calibrated.
  • 14A and 14B are diagrams for explaining confirmation of measurement values using a comparative sample.
  • FIG. 14A is a plan view of the paper web W and samples 1401 and 1402, and
  • FIG. 14B is a graph showing the measurement value 1405.
  • FIG. FIG. 6 is a schematic diagram showing a quality measuring device 1500 according to still another embodiment of the invention.
  • FIG. 10 is a schematic diagram showing a quality measuring apparatus 1600 according to still another embodiment of the invention.
  • FIG. 17A is a conceptual diagram for measuring a paper web 1706 with a low ash content
  • FIG. 17B is a conceptual diagram for measuring a paper web 1716 with a high ash content.
  • 2 is a conceptual diagram of a method for testing shrinkage and meandering of a paper web W.
  • FIG. 2 is a conceptual diagram of a general paper machine.
  • the apparatus outline at the measurement location and the measurement concept are the same.
  • the same measurement technology can be provided when the raw material is only a single substance such as PP, PET, PE, and when silicon or other mixture or coating is applied.
  • the form of the present invention is illustrated with a paper web containing the troublesome substances.
  • FIG. 1 is a cross-sectional view of a paper web to be measured by the present invention.
  • the paper web is composed of the main cellulose fibers constituting it, filler particles having a role such as light scattering, dyeing and adhesion, water content and many voids. If a coating process is added, chemical substances that improve printability may be applied to the surface together with calcium carbonate, clay, talc, and the like. A starch coating for increasing the surface strength may be incorporated into the papermaking process as a base sheet.
  • FIG. 2 shows a general configuration of a paper machine, and the quality measuring device according to the invention is arranged in such a dry section and a calendar section of such a paper machine (for example, at the position of the scanning sensor in the figure).
  • a headbox that distributes the material in the width direction and discharges it flatly, with an actuator for dilution water in each slice zone (division in the width direction).
  • a raw material with a concentration of about 0.5% enters and is discharged.
  • This raw material state is called slurry (turbid liquid) and is discharged onto the wire from the head box.
  • the discharged slurry is dehydrated by 30 to 40% on a wire rotating at the same speed to form a paper web.
  • the forming section This part is called the forming section.
  • the press section Next, the water contained in the paper web is greatly squeezed between the press roll and the felt. This is called the press section.
  • the paper web enters a drying process (dry section) and is controlled to a moisture content of about 5%, which is a target moisture value.
  • dry section There is a calendar section before winding, and the paper web may be crushed at the same time as the surface is polished to control the thickness.
  • Each section has an actuator for controlling the quality in the width direction, and performs concentration control for each slice with diluted water, water spray, moisture profile control by steam heating, thickness profile control by calendar roll heating, etc. .
  • the flow direction is controlled by controlling the total weight of the slurry and the temperature in the dry section to control the basis weight and moisture.
  • FIG. 7 (a) is a conceptual diagram of a non-scanning sensor 700 using an infrared camera applied to the quality parameter measuring apparatus 1100 (see FIG. 11) of the present invention.
  • the infrared camera 702 is equipped with an InGaAs area sensor 701 that is a light receiving element that supplements infrared rays that have passed through the paper web W, like an ionization chamber. The received infrared rays are received and measured as the total amount of light.
  • On the light source side is an infrared LED light source 705 having a half width of about 50 nanometers selected as an absorption wavelength.
  • the infrared LED light source 705 is a semiconductor element that can be expected to emit a stable near-infrared light 709, such as a ⁇ -ray source such as a ⁇ -ray source Kr85 or Pm245.
  • a stable near-infrared light 709 such as a ⁇ -ray source such as a ⁇ -ray source Kr85 or Pm245.
  • the amount of luminescence falls to about 70% over several years, but it does not fluctuate so much that a recalibration is required at the time of machine shutdown once a month, for example.
  • Patent Document 2 it is presumed that high accuracy could not be maintained because a halogen lamp having a short lifetime of about 3 months was used.
  • the development of infrared cameras and near-infrared light-emitting LED elements is progressing, and the generalization is progressing to the point that sufficient economic effects can be produced in terms of price. Since the present invention is based on a measurement method and a measurement device that have been reviewed in
  • reference numeral 705 denotes an infrared LED light source
  • reference numeral 703 denotes a camera field of view for measuring the paper web W.
  • Irradiated infrared rays 709 are prepared singly or in plural depending on the substance to be measured.
  • the device of the present invention is considered to be 1.57 ⁇ , 1.73 ⁇ , 2.1 ⁇ , etc. as the cellulose fiber absorption wavelengths used in the prior art and existing scanning sensors, 1.45 ⁇ , 1.94 ⁇ as the water absorption wavelengths, and the comparison wavelength The non-absorbing wavelength in the vicinity is selected.
  • Films and surface coating agents have other characteristic absorption wavelength bands, and the number of channels and light-emitting LEDs are selected according to the target process.
  • the infrared camera 712 includes an InGaAs area sensor 711 that is a light receiving element that supplements the infrared light 719 transmitted from the light source 715 through the paper web W.
  • Reference numeral 717 denotes a visual field in the flow direction of the visual field 713 of the infrared camera 712, and the infrared light sources 715 of a plurality of channels (here, three channels) can be arranged within this width.
  • the light sources 715 have an offset in the flow direction and are arranged so as not to interfere with each other's measurement area.
  • the light source 705 is a type in which a lens is attached to an LED sphere
  • the emitted near-infrared light 709 is observed through the paper web W as a spot attenuated after transmission as in 708, and is an area sensor as a light receiving unit.
  • the total amount of light is measured by image processing.
  • image on an InGaAs element divided in the width direction and the flow direction as in 706, for example, when expressed in 10-bit 4096 gray scale, the vertical scale gray scale is 4096, and the total amount of light falls within the irradiation area.
  • the volume of the image represented by 707 is measured with the signal amount of each element in the area as a maximum of 4096 gray scale.
  • the total amount of signal to be measured is the total amount of infrared transmission by the light source by periodically observing the background (dark current signal amount) when the light source is turned off in the same measurement area and subtracting the sum from the measured value. Is required.
  • a plurality of wavelengths are used, they are arranged in the state of FIG. 7B with a certain offset in the flow direction 717 at the same width direction (arrow 718) position as the other wavelengths to be compared in the measurement visual field 713.
  • an attenuation curve is drawn with respect to the optical path length.
  • the absorption wavelength is a fiber
  • it is scattered in the paper web as shown in Fig. 1 such as the fiber amount, air gap, and filler. Since the amount of light transmitted after being measured is measured, it is not known whether this signal is an increase / decrease in fiber, an increase / decrease in volume (ratio of voids), or an increase / decrease in filler. Therefore, the fiber weight is determined by obtaining the ratio to the signal called the comparative wavelength that is not absorbed by the fiber at approximately the same wavelength.
  • ⁇ rays must correct the weight of air, and correction sensors and correction tools such as temperature / gap distance and sensor support frame distortion that change the air layer weight are necessary. However, in this apparatus, sensors for such correction are not necessary.
  • FIG. 9 shows a measurement trajectory of a non-scan sensor (for example, 700), which is a feature of the present invention.
  • the flow direction of the paper web W is indicated by an arrow.
  • the infrared camera captures infrared rays that pass through the textured paper web W, but as described above, a position partition (slice) 902 is attached in the width direction by software slices.
  • Reference numeral 901 indicates the length of the measurement area of the paper web at the time of measurement, which is determined by the shutter time of the camera and the traveling speed of the paper web. In any case, if sufficient exposure time is taken and measured, for example, even a 100 millisecond will be 2 m long on a high-speed machine, and the influence of the texture can be sufficiently eliminated.
  • the scan sensor measures 100 samples in this 100 milliseconds, but the movement in the width direction is only 2 cm, and with the device of the present invention, the entire width is measured simultaneously.
  • 300 sensors in the width direction It is equivalent to arranging.
  • Reference numeral 903 denotes a measurement trajectory at a certain time of the camera, and reference numeral 904 denotes a next measurement trajectory. Although there are some non-measurement areas, this area can be made zero by high-speed image processing.
  • the basis weight based on ⁇ rays used by an existing measuring device using an infrared camera and an infrared light source, and moisture measurement by infrared rays are combined into cellulose fiber, which is a main component of a paper web, and moisture content.
  • cellulose fiber which is a main component of a paper web, and moisture content.
  • a paper web using virgin pulp (pure chemical pulp) such as tissue is an optimal sensor because it does not contain a filler.
  • FIG. 10 shows an outline of an infrared LED light source 705 used in the present invention.
  • the structure is a three-layer structure, and the side view is (a) light diffusion film 1001, (b) cylindrical lens 1004, (c) infrared LED base and heat sink 1006, each part viewed from above
  • the figures are (a '), (b'), (c ').
  • 1005 is an infrared LED sphere whose wavelength band varies depending on the measurement purpose.
  • the LED base 1006 is designed to be easily exchanged in a modular form.
  • the LED bulbs 1005 are arranged at intervals of 10 mm, but the space varies depending on the application. In addition, the arrangement of the arrangement may change depending on the reflection method and the transmission method.
  • the cylindrical lens 1004 produces collimated light as shown in the side view.
  • the light is condensed in the flow direction to produce light that is close to parallel light.
  • the LED spheres are irradiated in a separated form as indicated by 1003 in (b ').
  • a film 1001 that diffuses only in the width direction is used as shown in the diagram (a ')
  • uniform linear light 1002 that is condensed in the flow direction but shuffled in the width direction can be produced.
  • the separation in the width direction is performed by the software with a position within the camera field of view.
  • 1001 is a cross-shuffle film, and 1002 which has become linear light is measured in units of software-delimited slices.
  • Such a light source has a standard structure in a defect inspection system using a line CCD camera, and the LED bulb is simply changed from a white LED to an infrared LED. Although it is easier to handle with a film with arbitrary slices divided by software and uniform in the width direction, when measuring the film itself, there is a device to cause uniform scattering of the entire surface such as frosted glass instead. . This is because in the case of a clear film, there may be no scattering material that increases the path length compared to transmission absorption.
  • FIG. 11 is a schematic diagram showing an arrangement relationship of the infrared cameras 1102 to 1106, the infrared LED light sources 1112 and 1113, the on-line calibration / correction sample 1107 and the like when measured by the transmission quality parameter measuring device 1100.
  • the camera beam 1101 five cameras 1102 to 1106 are arranged as an example.
  • one pixel has a measurement width of 1 mm
  • one camera has a field of view of 600 mm or more (for example, 600 pixels x 400 pixels).
  • a few to about 20 can cover the full width of the paper web W with most paper machines.
  • 1109 is an infrared LED light source frame
  • 1110 shows an image of an LED sphere
  • 1107 is an on-line calibration / correction sample placed at the same height as the paper web W at a position outside the paper web W. Details will be described later.
  • the light source is changed from the multi-wavelength light source 1112 as shown in FIG. 11B to the single channel light source 1113 as shown in FIG.
  • FIG. 12 shows a configuration of a reflection type quality parameter measuring apparatus 1200 according to another embodiment.
  • the reflection type surface coating, surface moisture, etc. are measured. Although the total fiber amount and moisture amount cannot be measured due to the configuration, the moisture average and coating amount existing on the surface portion can be accurately measured by calibration.
  • the absolute dry basis weight before coating (the weight in the dry state without water) is subtracted from the absolute dry basis weight after coating. The accuracy will be better. Even with surface moisture, there is a lot of moisture distribution after coating near the surface, so in particular in the case of double coating, it is not impregnated to the inside, so it is measured with no difference between the front and back of a normal transmission moisture meter.
  • a light source 1203 having a water absorption wavelength and a light source 1204 having a comparative wavelength that is not absorbed by water are used in combination. Similar to the transmissive type, a standard sample as shown in 1207 can be prepared at the off-sheet position on the paper web pass line and used as a reference for automatic calibration and correction.
  • Figures 13 and 14 show the basis of the present invention in a non-scan type measurement system, handling of the camera overlap area that maintains accuracy and performs automatic calibration and correction online, and actual and standard samples at both end offline positions, etc.
  • W indicates a paper web
  • 1301 indicates the field of view of a camera (for example, 1103 in FIG. 11)
  • 1302 indicates the field of view of an adjacent camera (for example, 1104 in FIG. 11).
  • the overlapping overlap area is indicated by 1303, and the arrangement of LED spheres or software slice breaks within the area are indicated by 1321 to 1326.
  • 1320 shows the light source behind the paper web W, the figure is a view from the top of the paper web (a), the light quantity pattern graph when calibrated at that position and the standardized graph (c), online (B) is an example of the light quantity graph when measured in step (b).
  • Reference numeral 1304 denotes a vertical axis of the graph, which indicates a value of transmitted light amount. The horizontal axis is the same slice position in the width direction as the visual fields 1301 and 1302 of the camera shown in (a).
  • 1305 is a signal graph of the left camera (eg, 1103 in FIG. 11)
  • 1306 is a signal graph of the right camera (eg, 1104 in FIG. 11).
  • Reference numerals 1307 and 1308 in (c) are graphs obtained by normalizing the curve with respect to the center position of the camera (the maximum value is indicated by the shortest distance), and are corrected in pixel units or slice units so as to form a straight line.
  • each slice must have the same sample measurement value. Therefore, each slice of each camera is applied to the same sample in consideration of the signal relationship with other cameras. Record the offset that gives the same measured value.
  • (b) shows the offset 1310 of the measurement value of the overlap area online.Check if this value is the same as the offset 1311 at the time of calibration. Are also corrected by comparing whether or not they show the same offset. This determination is made by the offset of each camera, an estimated value from the measured values of the samples at both ends, a dark count (dark current measurement) by online calibration that is periodically performed, and the like.
  • the camera shift due to electrical shift, camera differences, dirt accumulated on the light source at the time of online, thermal distortion, etc. occur uniformly in the camera unit. Aside from this, it is premised that dirt deposition occurs uniformly over the entire width.
  • the signal pattern in the camera changes, so another diagnosis can be made. For example, when dirt is deposited only on a part of the light source, it appears as a sudden change in the signal in the camera or a projection. It is also possible to recognize when a part of the LED light source is broken and does not emit light.
  • FIG. 14 shows a method of confirming measured values using an actual sample 1401 and a standard sample 1402 (corresponding to 1107 in FIG. 11) arranged at both ends of the paper web W.
  • Each sample 1401 and 1402 is installed at the same height as the pass line of the paper web W, and is always measured online by cameras at both ends (for example, 1102 and 1106 in FIG. 11).
  • the actual sample 1401 is an actual sample paper for each brand
  • the standard sample 1402 is a sample that has different fiber weight, moisture content, ash content, etc. depending on the application. All reference samples using synthetic paper that can be compared with the initial state of the relationship and do not cause deterioration such as moisture evaporation are selected as necessary.
  • the sensors are measured periodically to check whether the sensor (eg 700) is measuring correctly. For example, if the measured value is a fiber, the total average values 1404 and 1406 of the measurement range are measured. Since the same sample is used for calibration, changing this value means that there is a change on the camera side or the light source side, or dirt such as dirt or paper dust exists between the camera and the light source. Can be guessed. Therefore, for example, if there is a difference of 1 g, an offset of 1 g is given to the measured value 1405 of each camera as an online dynamic correction value. As long as the cameras confirmed with actual samples at both ends (eg 1102 and 1106 in FIG. 11) are in good condition, they overlap with the adjacent cameras (eg 1103 and 1105 in FIG.
  • FIG. 15 is a schematic diagram showing a quality parameter measuring device 1500 according to another embodiment, and shows an overlap area 1501 of the camera field of view necessary for the non-scan measurement of the present invention to maintain accuracy, and an adjacent camera field of view. This is the case of the full duplex specification that can measure the field of view of the entire paper web W with two adjacent cameras. However, it is not necessary to duplicate both ends.
  • FIG. 16 is a schematic diagram showing a quality parameter measurement device 1600 according to another embodiment, in which a reflection infrared light source 1601 is arranged in a part of an area of a transmission type measurement device (for example, the measurement device 1100 in FIG. 11) and is the same.
  • the area camera 1603 measures the infrared light reflected from the light source 1601 as the reflected wavelength simultaneously with the transmitted infrared light from the three-wavelength light source 1602, and compares the signal ratio of transmission, the total light amount for each wavelength, and the total light amount of the reflected light source to determine the ash content ratio. Measure the difference.
  • the reference is, of course, the ratio of transmission to reflection at the time of calibration.
  • a light source 1602 is an infrared LED light source having a fiber, a moisture absorption wavelength, and a comparative wavelength
  • 1601 is an infrared LED light source having a comparative wavelength that is not absorbed by the material constituting the paper web.
  • the camera 1603 that performs this measurement arranges the transmitted light 3 light source and the reflected light 1 light source within the same field of view, and sends each measured value to a system computer (not shown).
  • a system computer not shown.
  • Fig. 17 shows the concept of measuring the ash content.
  • Paper web W manufactured as the same brand will have an ash content that will change if the blending ratio of pulp containing ash that has been returned to the raw material due to poor blending ratio or other factors is changed.
  • the ratio of the amount of transmitted light and the amount of reflected light changes.
  • these ash contents are controlled by measuring with an X-ray sensor using the same principle as that of a grammage meter.
  • X-rays are sensitive to ash, which is an inorganic substance, and not very sensitive to organic fibers.
  • the original purpose of ash is to prevent an optical weakness called back-through, where characters printed on the back of paper can be seen through.
  • Ash is added as an additive to increase the light scattering and block the light from the front side from passing through, and to prevent the light from the back side from transmitting to the front side. It is something to be made. Nevertheless, the reason why the weight ratio of ash is measured using X-rays is that there is no good sensor other than this indirect method.
  • the ash content is measured by comparing the transmitted component, the reflected component and the fiber absorbed component as an application of a fiber / moisture measuring device using infrared rays. Measurement is performed by calibration with samples collected in different states in advance. In FIG.
  • 1706 is a paper web with a low ash content
  • the irradiated infrared wavelength 1701 is repeatedly scattered and reflected in the paper web 1706, and the transmitted light 1703 that is not absorbed by the fiber is sent to the camera 1704 and the light source 1705.
  • the reflected light 1702 that is irradiated and reflected and returned is also measured through the camera 1704.
  • 1716 in FIG. 17 (b) is a paper web with a lot of ash, and the same infrared comparison wavelength 1701 irradiated was more scattered and reflected in the paper web 1716, and was reflected from the transmitted light 1713 and the light source 1705.
  • the reflected light 1712 is measured by the camera 1704 in the same manner.
  • the amount of transmitted light decreases and the reflected light increases when there is a lot of ash (1702 ⁇ 1703 ⁇ 1712 ⁇ 1713).
  • the value obtained by dividing each measurement value by that of the standard sample represents the degree of influence of ash on the amount of transmitted / reflected light due to the difference in the mixing ratio. If calibration is performed using standard values of various ash contents in advance using these measurement values, it is possible to measure the optimal light penetration level without measuring the amount of ash. In light of the current usage status of the ash content sensor, it is rather more economical to measure the optical characteristics with this sensor and lower the input amount to the last minute by roughly controlling the amount of ash content, and instead increase the fiber amount.
  • Recent paper machines as specialized paper machines, are constantly producing the same brand or brands with slightly different basis weights, such as tissue, newspaper, copy paper, printing paper, surface liner, and core paper. . This is mainly due to major companies such as a strategy for consolidating machines to improve production efficiency. Conversely, SMEs have many special paper machines. The ability to make any paper complicates the machine, reduces the efficiency of pulp blending, chemical blending, etc. In addition, it complicates operating conditions and increases human error. Therefore, in the latest machine that uses DCS for brand management, the blending ratio of pulp and the blending ratio of chemicals and fillers are also measured and controlled and kept within a certain range.
  • the present invention arranges the sensor before the surface coating as upstream as possible (the position of the base sheet in which the additive is mixed and only the internal addition). It would be easy to use the final quality check with the existing QCS while suppressing fluctuations with high-speed measurement control in the width direction. In this case, it is desirable to perform cascade control (upstream control) on long-period fluctuations by leaving the accuracy of the final measurement value to the existing basis weight sensor and moisture sensor.
  • cascade control upstream control
  • FIG. 18 shows each slice position of a head box as a control point and a camera as a measurement point when the non-scan type measurement apparatus (for example, the measurement apparatus 1100 in FIG. 11) is used in a paper machine (see FIG. 2).
  • a method for reconciling slice positions in 1805 is shown.
  • the edge portion 1811 is cut off by a water shower (not shown). Since the edge portion 1811 is not uniform, such a process is indispensable. Accordingly, the width of the slurry discharged from the head box is cut off from several centimeters to several tens of centimeters after forming, and the press and drying process is entered.
  • the width of the paper is different from the upstream side after the head box and paper edge trimming and before winding after the drying process.
  • the shrinkage pattern is usually not uniform in the width direction but a bowl shape.
  • meandering it will be impossible to know exactly what number of actuators in the headbox corresponds to the point measured before winding, and a new error will be created by feedback control. A well-known sawtooth profile is thus caused.
  • the infrared camera 1805 measures the fiber weight of the paper web W within a visual field indicated by 1806. Assuming that the rewinding frame change is about to begin, dozens of meters before the frame change will be rolled up, and several to a dozen or more sheets will be picked up for inspection and visually inspected. The In addition, since it is a lower roll in the next process and does not become a product with wrinkles, it is treated as waste paper for these two reasons. Therefore, for this portion, there is no problem even if a test called a bump test (output response test) for changing the weight of the paper by changing the output of the actuator in the paper width direction is performed.
  • a bump test output response test
  • this method can be performed only at the opportunity of taking a tens of minutes of changing the brand name and all of which is lost. During this brand change, the shrinkage and meandering of the paper changed and it did not meet the original purpose, but because of the scanning method, it took more than ten minutes from step response to sensor feedback, so there was no way .
  • the measurement for the step response has only a machine delay, the result can be obtained in about 10 seconds, and the high speed measurement which is the greatest advantage of the non-scan method enables it.
  • the measurement control system 1820 connected to the camera 1805 records the measured values of the camera 1805 before changing the frame, and the actuator controller 1821 has a plurality of actuators such as slices 1822, 1823, 1824, 1825 as shown in the figure.
  • the camera measures and records the fluctuations 1807, 1808, 1809, and 1810 corresponding to the increase / decrease signal. This is called a bump test, and the peak values before and after the output change are measured, and the position of the actuator, the pattern that shrinks in the drying process, and the offset of the meandering are measured.
  • filtering which is a fatal defect of the scanning sensor, is not necessary, and the operator action can be visually recognized in several tens of seconds, and the weak moisture fluctuation that appears due to the malfunction of the machine tool that rotates at high speed can be observed.
  • These confirmations do not need to be converted into engineering units, that is, basis weight g / m 2 or moisture content, and it is only necessary to show basic changes in light intensity distribution. Therefore, if the measurement is performed at a high speed without having a sufficient exposure time (803 in FIG. 8) in the measurement mode and the seamless light quantity is used as a map, a moisture unevenness map can be obtained. If it is synchronized with the rotational speed of each tool, the tool causing the problem can be identified.
  • a camera dedicated to high-speed measurement that monitors only a specific range is arranged, a high-speed fluctuation monitoring mode is created, and only a raw signal is logged for a few minutes and then subjected to a fast Fourier transform (FFT) to obtain a power spectrum of high-speed flow fluctuation.
  • FFT fast Fourier transform

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Signal Processing (AREA)
  • Textile Engineering (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Paper (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】流れ方向成分と幅方向成分とを分離して紙ウェブの品質を計測し、従来の放射線やX線を使用した坪量計・灰分計を必要としない、非スキャン、非フィルタリング方式で、小さな低速抄紙機から大きな高速抄紙機まで適用が可能であり、経済効果の高い長尺材の安定したオンライン精度確認法と補正法を持った品質計測システムを提供する。 【解決手段】長尺シート材Wの品質計測方法は、赤外線受光素子を持つエリアカメラ1102~1106と赤外線発光LED素子を持つ光源1100で、紙ウェブWのセルロースファイバー、水分、灰分などを計測する。オーバーラップエリアの隣接カメラによる同一点計測値の整合性と、両端に配備したオフシート位置での比較用サンプル1107により、全幅に渡る赤外線カメラ1102~1106の性能確認と計測値の補正を行う。

Description

長尺シート材の品質計測方法および品質計測装置
 本発明は、抄紙機などで製造される紙ウェブ(巻取り紙)やプラスチックフィルムなど長尺シート材の品質計測方法に関し、とくに非スキャン方式で行われる品質計測方法および品質計測装置に関するものである。 
 抄紙機で生成された紙ウェブなどの長尺シート材は、リールスプールに巻き取られる。金属シートやプラスチックフィルムなど原料が一様になっているウェブと違い、紙ウェブは原料であるセルロースファイバー、それらを繋いだり強度を上げたり光散乱を起こす填料と水分が混在しており、紙の断面図を見ると空隙部分もかなり大きい(図1参照)。紙の販売は主に重量にて売買される為、殆どの抄紙機にはQCS(Quality Control System;品質計測制御システム)が使用され、品質を計測するセンサとして放射線源を用いた坪量センサ・赤外線を用いた水分率センサ・エックス線を用いた灰分センサが使用される。他の長尺シート材が厚み管理であるのに対して紙ウェブの計測が様々なセンサを使用するのは、中でも水分と言う、シート状に形成された後も自由に紙ウェブから出入りすることができる要素があるからであり、これが計測と品質制御を難しくしていると言える。 
 紙の幅が1m から10m、製造速度が毎分数m から 2000m にもなる様々な銘柄の紙を製造する抄紙機において、品質パラメータを計測するセンサは、ほとんど全てがスキャナーと呼ばれる装置に搭載されたセンサヘッドに収納され、紙の重さ(坪量)、水分、厚み(キャリパー)、灰分などを計測する。図2の一般的な抄紙機や特許文献1に記載の抄紙機のように、紙ウェブのスキャニングセンサはリールの直前におかれ、製造の管理基準として使われている。プロセスによっては紙の表面に塗工する前にもスキャニングセンサを装備することもある。これらの紙の品質パラメータは制御が可能であり、坪量・水分・灰分は流れ方向(紙の幅と直交する、リールに向かう方向)制御がなされ、坪量・水分・厚みは幅方向プロファイル(紙の幅方向に沿った凹凸または平らさ)制御がなされる。
 図6(a)は、既存の品質計測制御システム(QCSと言う)でほぼすべてに搭載される、紙ウェブWの重量を計測する坪量センサの概略を示す。坪量センサはソースにβ線源(放射性同位元素)を使用し、質量によって吸収されるβ線の減衰を計測して予め基準サンプルでキャリブレーションした検量線と比較して、レシーバ(電離箱)で捉えたβ線の透過信号と紙ウェブWが無い時の信号の比率から逆算して紙ウェブWの重量を計測する。
 上記β線の減衰は、図6(b)に示すようにベールの法則による坪量減衰曲線に従い、次の式が成り立つ。
 (数1)
   I=I*e-μ*t
 ここで、I:透過信号量、I:入射信号量、μ:吸収係数、t:質量(厚み)である。
 これらの計測値に基づく品質パラメータの制御は、アクチュエータと呼ばれる機器により行われる。一般に、流れ方向の制御は種口弁制御で投入するセルロースファイバーの濃度を調節し、水分はドライヤーの蒸気圧力制御で乾燥状態を制御する。幅方向については、坪量は希釈水でヘッドボックスから吐出されるときの濃度を調整し(例えば図2の希釈水アクチュエータ)、水分は加水又は加湿及びスチームによる加熱乾燥・赤外線による乾燥などにより制御し、厚み(キャリパー)はキャレンダーのロールを加熱又は冷却してロール径を変化させキャレンダーでの圧力を変化させることで目標値に向けて制御される。
 図3は、スキャナーのセンサヘッドが、紙ウェブの上をスキャンしてサンプリング計測する様子を示す。このスキャニングによるサンプリング法では、紙の地合いと称される数ミリサイズの紙の構成変動要素や、幅方向にランダムに発生する洗浄不良や蛇行収縮などによる品質パラメータ計測位置の変動、及び高速で回転する抄紙機の用具即ち、ワイヤー、プレスロール、フェルト、カンヴァス(図示せず)など数mから数十mで回転する用具の不良による品質パラメータの変動は、ノイズ(外乱)として計測され、フィルタリングと言う計測値を鈍らせる手法にて除かれ、計測代表値が算出される。その加工されたデータで紙の全幅の平均測定値や幅方向のプロファイルが表され、制御の目標値との差が計算され、アクチュエータと呼ばれる装置を使い品質パラメータが制御・是正される。
 図8には、紙の最大の特徴である地合いと言う紙の凹凸(重量バラツキ)の写真と、既存の水分センサの概念図を示す。813は紙ウェブW上を走行する(スキャンする)センサのサンプリング軌跡を表し一つの点は10mmφのスポットで1m秒毎の計測とする。地合いとは801のようにファイバーがかたまり厚くなったところと802のように薄くなったところが交互にムラになった状態を言い、センサのスポットサイズに近いものもある。この重量比は大きいと十数パーセントになり、サンプリング方式の1点の計測の致命的なエラーを引き起こす。その為に既存の水分計では、(b)の807のような散乱反射板を用いた無限散乱法及び(c)の810のような積分球型散乱法などが用いられる。それぞれ808,812は光源のハロゲンランプであり、803,804,805,809は受光素子である。(b)は、806のようなビームスプリッターを用いて受光素子前にバンドパスフィルターを使い、3波長同時計測をしている。(c)は光源側に回転フィルター810を回して3波長を一つの受光素子で計測する。同時刻同一スポットで3受光素子の機差最小を計るか、同時刻ではないが受光素子の安定化を図るかの違いである。
 図4に、スキャン型センサではフィルタリングされデータとしては残されないスキャン突発変動及びマシン(抄紙機)用具由来の短周期繰り返し変動とフィルタリングされた後もデータとして残る定位置連続変動の紙ウェブ上での現れ方を示す。点線は、スキャナーのセンサヘッドがスキャンした軌跡を示しており、高速マシン(抄紙機)では片道で数100メートルの軌跡となる。図中のa,c点は定位置連続変動の中でセンサヘッドのセンサ(図示せず)に常に計測される点であり、b,d点は繰り返し変動で常に紙の中に存在するもののスキャンするセンサの計測位置が変わる為フィルターで除去される変動となり計測されない。又、当然突発変動はセンサに計測される確率が小さく、繰り返し変動と同様に計測されてもスパイク変動としてフィルターされる。センサに計測される定位置連続変動も、図3に示すように同一点の計測間隔が変化する上に流れ方向変動が加わる為に以下に説明するようにフィルタリングしなければならない。
 図5は、スパイク変動計測に抑制をかけ、幅方向と流れ方向のエラーを分離計測する為に、フィルタリングを行った場合のステップ応答がどのように表れるかを、ムービングアベレージ法とイクポーネンシャルフィルター法で表したものである。通常はイクスポーネンシャルフィルターが使用され、抑制値は0.2が多く用いられる。横軸のサンプル数はスキャン回数(横断回数)を示し、1スキャンは約20秒から30秒である。ステップ応答はスキャンしないで計測したときの応答である。ステップ応答をみると90%応答を得るのには10スキャンほど(数分)要することになり、可制御性は著しく失われる。また、マシン用具由来の高速エラーはたとえ繰り返し起こっていても計測率0.17%からしてランダムノイズとしてフィルターで除去され観察することはできない。
 このように、スキャンニング方式では、センサヘッドが紙ウェブの幅を横断するのに数十秒以上を要し、計測値のフィルタリングなどの時間を含めると可制御性は数分から十数分かかることになり、抄紙機用具のように高速に回転する用具によるエラーは計測できない。
 これを解決すべく、特許文献2のように、紙ウェブの全幅を一度に計測できる、赤外線カメラによる非スキャン方式でのファイバー測定や水分測定が試みられた。この赤外線カメラ方式は、InGaAs赤外線リニアアレイ(ラインセンサ)を使用したもので、計測原理はスキャン方式と同様に水分吸収波長、セルロースファイバー吸収波長、どちらにも吸収されない比較波長の3波長を使って重量を導き出す方式である。光源(ハロゲンランプ)から照射された赤外線は、計測対象である紙ウェブを透過して赤外線ラインカメラに入るのだが、赤外線ラインカメラは複数用意されており、ビームスプリッターで分けられた赤外線はそれぞれのカメラに分けられる。この事は、地合いと呼ばれる紙ウェブの数mmから十数mmに及ぶファイバーの塊分布とその重量比が数%に及ぶ為に生じる測定点による誤差を無くすための一般的な方法であり、同一点同一時刻測定と呼ばれる。意図したことは、高速な計測による素早い品質パラメータ制御を行い、紙の品質向上及び製造工程でのエネルギー損失を最小化する事であり、目的にかなった方式であった。
特開2004-277899号公報 米国特許第6,355,931号
 上述したとおり図2や特許文献1に記載の抄紙機では、これらの計測値は高速で走る紙を走査して斜め横断して計測する為に、幅方向成分と流れ方向成分の両方を含む計測値となり(図3、図4参照)、その成分を分けるために計測値に重いフィルターが掛けられている(図5参照)。それゆえオペレータが品質パラメータの制御のためにマシンの調整をしたときに、十数分待たなければ結果が見られないと言う大きな欠点がある。 
 また、巻き取られた製品(紙)は厚いものから薄いものまで長さ数千メートルから数万メートルまであり、通常は1時間前後で1本が生産される。この時、各巻取ロールの品質パラメータの計測平均値を比べれば比較的少ない誤差範囲に入っており一見良好な計測制御がなされているように思われるが、一本の巻取ロール数万メートルの中では通常で±1%から数%の変動が含まれており、実際にユーザーが使用する例えばコピー用紙レベル(枚葉と言う)の小さい単位で見れば良い制御結果であるとは言い難い。結果として印刷機やコピーマシンで紙詰まりや紙切れを起こすことになる。
 さらに、現状では紙の品質計測制御にはQCS(Quality Control System)と言われるシステムが通常使用されるが、基本パラメータである坪量(g/m2)の計測にはKr85、Pm147などの放射線源(β線)が必要であり、それを使用する許可と放射線管理者が必要になる。β線は全ての質量に吸収されるので空気も例外ではなく、ソースとレシーバ間のギャップ距離と空気の各ゾーン温度を計測して空気層重量を計算して補正している。計測時間はおよそ1ミリ秒毎サンプリングが主流であり、計測スポットサイズは10mmφ程度である。計測時間と共にソースとレシーバ間に積層するダートを補正する為の基準サンプルなどを内蔵していて(図6参照)、定期的にオフシート状態の位置までセンサを移動させ、シャッターを開閉させオープンカウント、クローズドカウント、内部基準サンプルカウントの少なくとも3点計測をして、キャリブレーション時の減衰曲線とのずれを補正する。これを標準化と言い、数十分に一回行う。ティッシュなどのダートの多いところでは頻繁に行われ、ギャップ内に紙粉が入り込むのを防ぐ手立てなども必要となる。この空気の重量をどう補正するかが既存計測装置の問題点でもある。このようにβ線源を用いた計測には様々な補正が必要となり、精度を保つためのメンテナンスも多大な負荷である。従って、中小企業の小さな抄紙機では未だにそのような計測制御はなされていないことも現状である。また、ごく薄いティッシュペーパーや逆に厚い板紙では、これらβ線源の補正の限界や水分量の把握の難しさから状態監視に目的が移り、絶対値計測制御と言うにはほど遠い状態である。
 上記のように現在使われている計測方法は、全てスキャナー搭載のセンサの逐次サンプリング計測であり、この方法ではウェブの流れ方向変動及び幅方向変動要素が計測値に含まれる。又、1ミリ秒の計測時間と言う短い間にあっても、例えばウェブを横断するのに6m 幅の抄紙機では20-30秒掛かり、分速1000mを超える抄紙機ではウェブの0.2%以下しか計測をしていない。
 上記した外乱を鈍らせるためのフィルタリングにより、短周期の外乱すなわち抄紙機用具による変動は、フィルターされてオペレータには見えなくなり、結果的にはかなり長周期の巻取レベルでの平均値が目標値にあれば良いと言う事になる。この事は、計測値の誤差がどこから生じているかを判定せずに、外部機器で強制的に紙に負荷を与えつつ仕上がりの辻褄だけを合わせることになっており、ある時は他のセンサへの外乱となりフィードバック制御の理論上悪影響を与えている。この事は現状の計測技術上致し方なく、おそらく誤差の原因が抄紙機用具の不良、つまり洗浄の不具合やロールの偏芯、偏りなどから来るとしてもフィルターされてその高速な計測が不可能な故に起こるのである。
 特許文献2に記載の赤外線カメラによる手法は、これらスキャンニング手法による計測制御の問題点を根底から変える、非スキャン方式による全幅計測を取ったことである。しかしながら、スキャニングセンサと違い固定センサの宿命として、オンラインから(紙ウェブの外側にセンサを移動させて)オフラインにして精度を保つための校正が出来ないと言う欠点があり、精度を保つことができなかった。この方法単独では既存のシステムに取って代わることができないが、センサの精度について改善し欠点であった精度の向上が図れれば、この問題を解決に導くことができるうえに、大きな経済効果と品質向上又、製造技術・操業技術の転換が図られることになる。
 本発明は、特許文献2に記載の赤外線カメラ方式を改良して、既存システムのようなスキャニング型逐次サンプリングをしないで、流れ方向成分と幅方向成分とを分離して紙の品質パラメータを計測し、従来の放射線(β線)やエックス線を必要としない、非スキャン、非フィルタリング方式で、小さな抄紙機にも適用が可能であり、精度が向上した、経済効果の高い長尺シート材の品質計測方法および品質計測装置を提供することを目的とする。
 併せて、現在紙の裏側の文字が透けて見えないようにするために投入している灰分(酸化チタン、炭酸カルシウム、クレイなど)を計測する灰分センサを本来の目的である光の裏抜け度センサとして考え、光学的な計測による新しい品質計測方法及び、非スキャン方式故に成しえる現在の制御方法の改善法なども提供することを目的とする。
 本発明に係る長尺シート材の品質計測方法は、赤外線カメラに対して、紙の品質測定に必要な波長の赤外線LED光源を長尺シート材の反対側に配して、長尺シート材に含まれる下記の測定対象物に吸収され減衰した透過光量と対象物に吸収されない比較の為の近傍の波長の透過光量とを測定して、その対象物の重量を、予めキャリブレーションしてえられた計測式より得る方法である。測定対象物としては、紙の主成分であるセルロース、水分の他、赤外線吸収法で通常計測される填料・レジン・バインダー・シリコンなどコーティングされる物質も含む。
 尚、プラスチックフィルムなどの例えばPP(ポリプロピレン)、PE(ポリエチレン)、PET(ポリエステル)などのフィルムとコーティング剤の計測にも応用できる。
 本発明では、受光部たる赤外線カメラにはInGaAsエリアセンサを使い、光源はそれぞれの吸収波長帯域に合わせた赤外LED光源を必要なチャンネル数用意する(例えば図7参照)。例として、水分とファイバー測定用には特許文献2が示すような1.45μ、1.57μ、1.3μなどの光源を、紙ウェブ上で影響されない(互いに干渉しない)程度に流れ方向に離して配置する。これにより、同一点同一時刻測定はオフセットを持たせた測定で達成可能になりまた、紙ウェブの地合いの分布を考慮して十分な平均化を行えば、現在のサンプリング方式では達成できない細かいノイズを除去できる。
 本発明に係る長尺シート材の品質計測方法は、赤外線カメラと赤外線光源とを長尺シート材に対して同じ側に配して、透過光量ではなく反射光量を計測してもよく、例えば厚い板紙などの水分値計測に使用される他、表面の塗工量計測などに使用する(例えば図12参照)。この方式はウェブ全体のほとんどを占めるファイバーの測定などには使えないが、そのファイバーに絡んだ例えば水分率や塗工層の厚み/重量など比較波長に対する吸収波長の減衰率で測定を行う。先行技術としての反射型水分計と同じ原理で測定するが、スキャンしないで赤外線エリアセンサと赤外線LEDを使うものである。
 上述した赤外線カメラについてはエリアセンサを使い、波長毎に赤外線LEDを光源とすると述べたが、赤外線LED光源の使い方について述べる。特許文献2のラインセンサを使う方法では、紙ウェブ表面に焦点を合わせたカメラはウェブの中で散乱・吸収・反射を経て透過してきた光を計測する。カメラから見て表面からカメラに入射する光は紙ウェブのファイバー量や水分量などにより減衰されており、それはベールの法則(数1)に従う。ラインセンサはウェブ上の光の帯内のほぼ中心にラインセンサの計測点が来るように配置するが、ラインセンサのデバイスの大きさに合わせて、紙に照射する光の帯の幅は紙のフラッタリング(巻き取られる紙ウェブが波打つこと)などの影響で帯から計測点が外れないような幅に設計しなければならない。透過型の場合、光源と受光部を紙面に対して直角にすれば距離の違いだけで済むが、反射型の場合は同一垂線上に置くことができない為にフラッタリングにより観察面が変化する。一方、エリアセンサは透過してきた光量全てを拾うため、このような影響は最小限となる。例えば光源の大きさが20mmφであるとしてもエリアセンサで受ける面の大きさは50mmφ以上に設計される。
 本発明に係る光源と受光部(カメラ)の配置関係は上記したとおりであるが、光源のLED球の配置及び照射の方法について述べる。LED光源としての使い方(1)は、LED球に直接レンズが付くタイプ又は砲台型LED球の上にシリンドリカルレンズを配して光を収束させ計測面にて十分な光束が得られるようにすることである。これはあたかも通常の坪量センサの放射線源から照射されたβ線ビームのように働き、紙ウェブを通過後に電離箱と同様にエリアセンサにて透過後の光を全て捉えることである。この場合は坪量あるいは赤外線重量センサが紙ウェブの全面に多数配してあるイメージである。
 LED光源としての使い方(2)は、シリンドリカルレンズで流れ方向に収束した光を特殊フィルムにて幅方向にだけ拡散させる方法で、あたかも一本の光の帯のようにすることで、幅方向分割(分割された区画ごとに計測値を取る)はソフトウェアにてカメラ視野内の任意の範囲で分割する方法である(図10参照)。この光源の利点はLED球の境界がなくなることであり、のちに説明する紙ウェブの収縮率などの測定精度が増す。実用的には10mm~20mmの線状光源にして最小スライス(分割幅)を10mmとしたミニスライスや65mmなどの制御アクチュエータに合わせたスライスにする。
 本発明の長尺シート材の品質計測方法は、赤外線カメラ(一般的にはInGaAsを使用する近赤外線波長帯域であるがその他のデバイスでも構わない)と赤外線LED光源を使用し受光部をエリアセンサにして発光部に測定対象物で吸収される狭帯域なLED光源を用意して、受光素子側にバンドパスフィルターなどを持たせずに捉えたフォトンの総数を計測して、予めキャリブレーションした数式により重量に変換する方法である。通常のスキャン型のサンプリング方式赤外線水分計や坪量計と原理は同じであるが、全幅に渡り標準サンプルを使い各スライス毎(あるいはLED球毎)にオフラインで計測・キャリブレーションをしている所が大きく異なる。当然ながら赤外線LEDの発光強度や受光素子のピクセル単位の特性が違うので、計測範囲毎の計測演算式が必要である。キャリブレーション時には、カメラ側の暗電流計測や吸収されない疑似サンプル例えば合成紙やアラミド紙など、散乱するがセルロース吸収が起きないもので最大強度などを計測して、標準サンプルとなすことができる。これは上記した坪量計での放射線源のシャッター開状態(オープンカウント)とシャッター閉状態(クローズドカウント)に相当する。これらはオフライン状態の基準値(タイムゼロカウント)となる。又、キャリブレーションは既存システムと同様に、必要な銘柄毎に用意した実サンプルを実際の紙ウェブのパスライン上に設け、満遍なく十分な平均値を得る為にスキャンさせ、各赤外線チャンネルの信号=フォトン数を計測する。仮に照射面積を10mm2として1ピクセルが観測するエリアを1mm2とすれば100ピクセル分あり、各ピクセルは1024諧調以上持てるので総カウント数は0~102,400の範囲になり13Bit ADCより分解能が良い。
 このタイムゼロのキャリブレーション時のカメラ(受光素子)、サンプル(紙ウェブ)、赤外線LED(発光素子)の関係から、紙ウェブ中のファイバー重量、水分重量などを逆計算する計測用の演算式が得られる。同時に、タイムゼロとのバランスの違いを見つけて光源エラー、カメラ素子エラー、その他オンラインエラー(運転中の抄紙機に起因するエラー)などを見つけ出し、オンライン補正すべき誤差、例えば全体の光源の汚れによる光量減衰などと、各LED、カメラの故障などによる部分減衰などを区別する。
 キャリブレーションは、目的に応じて決められたスライス幅で全幅に渡り、標準サンプル(どの波長にも吸収されない疑似紙サンプル)、実際に製造される銘柄毎の実サンプル(ファイバー重量、水分重量及び灰分率)それぞれについて行う。サンプルを全幅でスキャンさせて計測する為の装置や地合いに左右されない満遍なく平均化する方法を取ることが肝要である。このキャリブレーションをする装置は図に示さないが、紙ウェブの通過するパスラインを全幅に渡り走査して計測する装置で、オンライン時は枠替え時などに光源をクリーニングする機能を持ち合わせる。サンプルフォルダーは、両端パスライン上で実サンプルや標準サンプルをオンライン時に計測できるように配置する。
 キャリブレーションされた各スライス(例えば10mm毎)のデータは、紙ウェブを透過して表面から放出された光量を計測して、受光素子からの距離をノーマライズして(中央値を1として距離の2乗に反比例するものとして計算)換算する。サンプルの重量が分かっているので銘柄毎の目標値を挟んだ複数枚のデータを取り数式に当てはめてベールの法則に従って求める重量に換算する。このキャリブレーション法は既存システムと何ら変わらないが、カメラの視野による距離の違いと受光素子のピクセル毎の特徴の違い、灰分率の違いなど、サンプルの扱いなどに注意が必要である。 
 本発明の重要な点は、カメラ内部素子のInGaAsエリアセンサのピクセル毎の感度やディバイスサイズ差、発光部のLED強度差、波長帯域パターン差(例えば半値幅)などの様々な要素を取り込んでキャリブレーションすることであり、決められたスライス幅ではこれらの差は繰り返し精度があることが前提である。カメラ全体の計測値シフト(暗電流地の変動)、光源上のダストによる光量減衰、光源の電源変動による光量変動などは、スライス単位ではなくカメラ全体あるいはシステム全体に現れる為、補正あるいはアラームとして補正ないしは異常として計測対象外とすることができる。 
 次に重要なのは、オンラインでの自動校正あるいはそれに準じた形としてのセンサの状態の把握であり、必要に応じた補正を施すことである。既存のスキャニングセンサは一定時間毎にオフライン位置にセンサヘッドを動かして、先に述べたオープンカウント、クローズドカウント、標準サンプル計測をしてセンサの発光側と受光側の間のタイムゼロ時との計測差を補正する。計測差はソースとレシーバ間のダート付着、ソース側光源の時経年変化、周囲温度、熱歪みによるギャップ変化など様々な要素からなり、センサ精度を保つために必要不可欠なもので数十分に一回行う。ティッシュマシンなどダート量の多いプロセスでは頻繁に行う必要がありただでさえ少ない計測比率がそこでまた落ちることになる。
 特許文献2のラインセンサを使ったシステムにはこの自動校正について記述がなく、実際、精度が保てなかったと思われる。先にあげた要素のうち光源にハロゲンランプを使っているのがある意味致命的である。ハロゲンランプの寿命は2-3か月であり、抄紙機は通常数週間は停止しないのでタイムゼロのキャリブレーション時との誤差はかなり大きくなる。本発明が赤外線LEDを光源にしているのは、寿命が数年と長い為であり又半導体ゆえの繰り返し精度の安定性があるからである。カメラを使い全幅測定に必要なのは、オフラインの機会が無い為にどうすれば自動校正に準じたカメラと光源間の状態チェックが可能であるかに掛かっていると言える。 
 本発明の先行技術に対する改良点は、この光源の安定性と長寿命を赤外線LEDにて達成することであり、自動校正が必要になるうちの光源側の問題を解決したことである。さらに、ソース(光源)とレシーバ(カメラ)の状態チェックについては、隣接するカメラのオーバーラップエリアでの計測値の比較をすることで可能となり、ダートやその他のオンラインにおける影響は、シートから外れた視野内で実際のサンプルや標準サンプルを計測比較することで、必要な補正係数を得ることができる。こうして、カメラと光源をオフラインの位置に持っていくことなく、自動校正に準拠してタイムゼロとの変化を知ることができる。
 本発明にかかる長尺シート材の品質計測方法は、巻取機に向かって流れている長尺シート材の品質パラメータを、当該長尺シート材に照射する赤外線光源と、当該長尺シート材を経由した赤外線を受光する赤外線カメラとを用いて計測する長尺シート材の品質パラメータ計測方法において、当該赤外線光源と当該赤外線カメラとを用いて、当該長尺シート材の全幅を同時に計測するとともに、オンラインで当該赤外線光源と赤外線カメラとの状態を把握し、その状態に基づいてオンラインで計測値を補正することを特徴とする。ここでいう「赤外線」には「近赤外線」も含む。また「経由」とは、透過または反射をいい、透過の際の、長尺シート材内部における散乱、反射も含む。
 この品質パラメータ計測方法によれば、抄紙機などで巻き取られる長尺シート材の全幅を同時に計測するので、長尺シート材のほぼ100%をカバーするように品質パラメータを計測でき、品質パラメータの変動の原因を判断しやすい。長尺シート材の全幅をカバーするために、複数の赤外線光源と赤外線カメラをそれぞれ幅方向に並べてもよい。得られた計測値は、流れ方向の変動と幅方向の変動とが分離しているので、フィルタリングする必要がなく、品質パラメータの変動の原因除去を迅速に、適切に行うことにつながる。さらに、オンラインで当該赤外線光源と赤外線カメラとの状態を把握し、その状態に基づいてオンラインで計測値を補正するので、計測値の精度が高められ、その結果として長尺シート材の品質が向上する。
 発明に係る長尺シート材の品質パラメータ計測方法は、上記の赤外線カメラを長尺シート材の幅方向に複数配置し、隣り合う赤外線カメラの視野同士をオーバーラップさせ、上記の長尺シート材の同一箇所からそれぞれのカメラで得られた計測値の差異を取得することにより、各カメラの計測値にその差異を加えることを特徴とする。
 この計測方法では、全幅を同時に計測するために使用する複数のカメラによる計測値の整合性は、隣り合う赤外線カメラの視野同士が重なったオーバーラップエリアでの計測値の比較をすることで確認できる。比較した結果に基づいて差異の確認されたカメラの計測値にその差異を加えるので、複数のカメラで計測しても品質パラメータの計測精度が維持できる。また、それぞれのカメラの視野の50%をオーバーラップさせると、1台のカメラが故障しても隣接するカメラによりバックアップが可能である。
 発明に係る長尺シート材の品質パラメータ計測方法は、上記の長尺シート材の近傍に比較用サンプルを設置し、当該長尺シート材と比較用サンプルとに同一の上記赤外線光源から赤外線を照射し、当該長尺シート材と比較用サンプルとをそれぞれ経由した赤外線を、同一の上記赤外線カメラで同時に計測することにより、当該長尺シート材の全幅を同時に測定して得られた計測値の校正と補正を行うことを特徴とする。ここでいう「校正」とは、比較用サンプルと紙ウェブの計測値を比較して差異を取得することをいい、「補正」とは、紙ウェブの計測値にその差異を加えることをいう。比較用サンプルには、実際に製造される銘柄ごとの実サンプルのほかに、例えば水分吸収波長が吸収されない疑似紙やどの波長も吸収されない疑似紙などを用いた標準サンプルを含む。
 この計測方法によれば、長尺シート材から外れた視野内で長尺シート材と同時に実サンプルや標準サンプルを同一のカメラで計測し、それぞれの計測値を比較することで、必要な補正係数を得ることができる。上記したように紙ウェブの全幅に配置された複数のカメラの整合性がとれるうえ、長尺シート材の品質パラメータ計測と同時に比較用サンプルの品質パラメータ計測も行うことにより、オンラインで(抄紙機を停止させずに)光源とカメラの状態を確認し、その結果に従い計測値を校正して補正を加えることができる。従って、品質パラメータの変動以外のことに起因する計測値変動を除去でき、製品の品質向上につながる。
 発明に係る長尺シート材の品質パラメータ計測方法は、上記の赤外線カメラとして、赤外線エリアカメラを用いるとよい。赤外線カメラの視野がラインではなくエリアをカバーするので、長尺シート材のフラッタリングによる観察面の変化が生じても、透過・反射してきた赤外線全てを拾える。
 発明に係る長尺シート材の品質パラメータ計測方法は、それぞれ異なる波長の赤外線を照射する複数の赤外線光源を長尺シート材の流れ方向に配置し、上記の長尺シート材を経由した当該赤外線を同一の上記赤外線カメラで同一時刻に計測することを特徴とする。波長の異なる赤外線光源同士は、互いの照射エリアには干渉しないように、最小限(例えば50mm)の間隔をあけて配置する。
 この計測方法によれば、計測に必要なチャンネル数と波長を選択することにより、オフセットを持たせた測定で、同一点同一時刻での複数の品質パラメータ計測が可能になる(例えばファイバー吸収波長、吸収されない波長、水分吸収波長、反射方向からの比較波長等)。
 発明に係る長尺シート材の品質パラメータ計測方法は、上記の赤外線光源から照射されて長尺シート材を経由した透過赤外線と反射赤外線とを、上記の赤外線カメラで受光し、受光した透過赤外線量と反射赤外線量とから得られた透過率から当該長尺シート材の光散乱度を測定することを特徴とする。「光散乱度」とは、紙の光透過性に関する品質である「光の裏抜け度合い」をいう。
 この計測方法によれば、従来行っていた灰分量の計測をしなくても、他の品質パラメータ計測に用いる光源とカメラのみで光散乱度が測定できる。別途計測機器を用意する必要がないうえ、従来必要としていた放射線(坪量計)・エックス線(灰分量計)も使用しなくてすむ。
 発明に係る長尺シート材の品質制御方法は、上記の計測方法により求めた光散乱度から、透過赤外線量の減衰がファイバーによるものか灰分によるものかを判定して、ファイバー量・水分量などの品質パラメータの光経路長に関する補正ないしはプロセス条件変化を判断することを特徴とする。「光経路長」とは、赤外線が長尺シート材の内部で散乱・反射した経路の長さをいう。「プロセス条件変化」とは、上記の品質パラメータ制御以外に、厚みなどの制御の変化も含む。
 この制御方法によれば、従来の灰分量計測では判定できなかったことが可能になるため、製品の品質向上につながる。
 発明に係る長尺シート材の品質制御方法は、巻取機における巻取ロールの枠替えに同期させて、ファイバー量や水分量などの品質パラメータを所定の幅方向制御点で所定の量だけ変動させながら、上記した計測方法により当該品質パラメータの計測を行い、得られた計測値に基づき、巻き取られる長尺シート材の幅方向の収縮や蛇行などにより変化した、計測点と、坪量制御や水分量制御の幅方向制御点との位置関係を確認することを特徴とする。いわゆるバンプテスト(出力応答テスト)のことである。
 この品質制御方法によれば、品質パラメータの計測が短時間で行えるので、枠替えという短い時間に、本来商品にされない紙を利用して損紙を発生させずに、枠替え毎の幅方向収縮パターンを更新できる。ヘッドボックスのどのスライス位置で坪量や水分量を制御すべきかを正しく判断できるので、幅方向エラーの拡散を防止できる。
 発明にかかる長尺シート材の品質パラメータ計測装置は、巻取機に向かって流れている長尺シート材の品質パラメータを、赤外線光源と赤外線を受光する赤外線カメラとを用いて計測する長尺シート材の品質パラメータ計測装置において、
 上記の長尺シート材の全幅をカバーするよう上記の赤外線光源と赤外線カメラとが幅方向に複数配置されているとともに、
 隣り合う当該赤外線カメラの視野同士がオーバーラップしていること
 を特徴とする。
 この計測装置であれば、スキャンしないため複数のカメラを必要とする場合においても、精度の高い計測値を得るという上記の品質計測方法を実施可能である。
 発明にかかる長尺シート材の品質パラメータ計測装置は、比較用サンプルを有し、
 当該比較用サンプルと上記の長尺シート材とが同一の上記赤外線光源からの赤外線を照射されるよう、かつ、当該比較用サンプルと長尺シート材とをそれぞれ経由した赤外線が同一の上記赤外線カメラで同時に計測されるよう、当該比較用サンプルが当該長尺シート材の幅方向延長平面内に配置されていることを特徴とする。比較用サンプルは、上記の位置に固定させてもよいし、複数の比較用サンプルをローテーションさせて上記の位置にくるようにしてもよい。
 この計測装置であれば、計測値の校正と補正により精度の高い計測値を得るという上記の計測方法を実施可能である。
 発明にかかる長尺シート材の品質パラメータ計測装置は、上記の赤外線カメラが赤外線エリアカメラであることと、
 それぞれ異なる波長の赤外線を照射する複数の上記赤外線光源が流れ方向に配置されているとともに、
 当該赤外線光源が、当該各光源からの赤外線が上記の長尺シート材を経由して同一の上記赤外線エリアカメラで同一時刻に計測される範囲において、互いの照射エリアが干渉しないように配置されていること
 を特徴とする。
 この計測装置であれば、透過・反射した赤外線を全てカメラで受光できるうえ、必要に応じた複数の波長の赤外線を、オフセットを持たせた測定で、同一点同一時刻に計測できる。
 上記したように発明の要点は、(1)光源の改善、(2)ラインセンサからエリアセンサへの改善、(3)オーバーラップエリアの整合性確認、(4)オフシート位置での標準、実サンプルチェックによるオンライン校正と補正、(5)長尺シート材の全面同時測定によるその他の計測制御上の改善である。
 本発明の長尺シート材の品質計測方法によれば、a)非スキャン・非フィルタリングによる紙のファイバー重量、水分重量などの品質測定により、従来計測が困難であった抄紙機用具などによる高速変動が確認でき、制御性向上と原因排除の制御が可能になる。b)これにより、生産性向上、省エネルギー化、省力化がなされる。c)β線坪量センサ・エックス線灰分率センサの代替になり、従来このような計測制御が難しかったティッシュ、トイレットペーパーなどの薄紙分野への導入が可能になり、感覚で操業していた現場の操業管理が可能になる。d)新指標として灰分率センサから光散乱度センサへの移行や、e)全幅同時測定(100%計測)を活かしたオンライン紙ウェブ収縮測定、f)水分吸収波長カラーマップなどの用具変調表示が可能となり既存の操業では不可能であった細かなマシン状態の変動を把握できる。
 本方法による計測とそれを前提にした新制御戦略で、既存のスキャニングセンサがカバーする80%以上の既存計測制御システムマーケットと、放射線源を経済的理由などで使えないQCS使用未経験の小規模プロセス向けに導入することができる。業界全体に多大な経済効果を生み、エネルギー消費を削減し原料を削減し品質を向上し、放射線などの危険物を使用せず、今後ともパッケージ用板紙や衛生用紙などの生産量が増加する新興国家などにも多大な寄与を可能とする。
本発明を適用する長尺シート材の中で最も製造が難しい紙の断面構造を示す。 従来のスキャンニングセンサを備えた一般的な抄紙機の概略図である。 従来の品質制御システムのスキャン方式による計測の概念を示す図である。 (TAPPI PRESS 発行 Paper Machine Quality Control Systems(QCS) より) 従来のスキャン型センサで計測できる変動とできない変動の例を示す図である。 フィルタリングによる計測応答性を示すグラフである。(上記と同じ出典) 図6(a)は、既存のβ線源を使用した紙の重量センサ(坪量センサと言う)の構造図であり、図6(b)は、ベールの法則に従った坪量減衰曲線のグラフである。 本発明で適用する近赤外線を使用したセンサの概念図である。図7(a)は1チャンネル用に光源705を配置したセンサ700を示し、図7(b)は、3チャンネル用に光源715を流れ方向に配置したセンサ710を示す。 図8(a)は、紙ウェブWの地合いの写真であり、図8(b)は、無限散乱方式水分計の構造図であり、図8(c)は、積分球型水分計の構造図である。 紙ウェブWを赤外線カメラで計測する場合の計測エリアの軌跡を示す図である。 点光源である赤外線LED光源を用いて線状光源を作る構造を示す図で、図10(a)・(a')は、線状光源1002の側面図と平面図であり、図10(b)・(b')は、流れ方向に収束させた点光源1003の集合体の側面図と平面図であり、図10(c)・(c')は、幅方向に一定間隔で配置した点光源1005の集合体の側面図と平面図である。 図11(a)は、発明の一実施形態による品質計測装置1100の概略図であり、図11(b)は、3チャンネル波長使用時の光源1112の側面図、図11(c)は、1チャンネル波長使用時の光源1113の側面図である。 図12(a)は、発明の別の実施形態による品質計測装置1200を示す概略図であり、図12(b)は、その側面図である。 カメラ視野のオーバーラップエリアの計測値の概念を示す図で、図13(a)は光源1320と紙ウェブWを上から見た図であり、図13(b)は計測値1308,1309を示すグラフ、図13(c)はキャリブレーションした時の計測値1305,1306と標準化後1307,1308のグラフである。 比較用サンプルを用いた計測値の確認を説明する図で、図14(a)は紙ウェブWとサンプル1401,1402の平面図、図14(b)は計測値1405を示すグラフである。 発明のまた別の実施形態による品質計測装置1500を示す概略図である。 発明のさらに別の実施形態による品質計測装置1600を示す概略図である。 図17(a)は、灰分の少ない紙ウェブ1706を計測する概念図、17(b)は、灰分の多い紙ウェブ1716を計測する概念図である。 紙ウェブWの収縮や蛇行を、テストする方法の概念図である。
 以下、図面を参照して本発明による長尺シート材の品質パラメータの、赤外線カメラによる非スキャン計測方法の一実施形態について詳細に説明する。尚、図中、同一の要素は同一の符号で示し、本発明に関係のない部分については図示を省略する。
 まず初めに、本発明の計測方法が適用される長尺シート材の製造工程において紙ウェブを代表として取り上げる。図2は一般的な抄紙機の概念図であるが、同様にプラスチックフィルムや不織布などについても計測場所における装置概略と計測の概念は同じと考える。フィルムでは、原料が例えばPP、PET、PEなど単一物質だけの場合とシリコンやその他混ぜ物やコーティングがなされている場合などで同様な計測技術が提供できるので、製造工程中に蒸発する水分と言う厄介な物質を含む紙ウェブで本発明の形態を説明する。
 図1は本発明が計測の対象とする紙ウェブの断面図である。紙ウェブはそれを構成する主たるセルロース繊維、光を散乱させたり染色したり接着などの役割を持った充填剤粒子、含有水分と多くの空隙とで構成される。塗布工程を加えれば表面に印刷適性を向上させる化学物質が炭酸カルシウム、クレイ、タルクなどと共に塗られたりする。表面強度を上げるためのでんぷん塗布などもベースシートとしての抄紙工程に組み込まれることもある。
 図2は抄紙機の一般的な構成を示したもので、発明による品質計測装置は、このような抄紙機のドライセクションやキャレンダーセクションなど(例えば図中のスキャニングセンサの位置に)配置される。上流から説明すると、まず初めにスライスゾーン(幅方向の区切り)毎に希釈水用のアクチュエータを持った、ヘッドボックスと言われる原料を幅方向に分配し平らに吐出する為の装置があり、この中に0.5%ほどの濃度の原料が入って吐出される。この原料状態をスラリー(混濁液)と言い、ヘッドボックスからワイヤー上に吐出される。吐出されたスラリーは同速度で回転するワイヤー上で3~4割脱水され紙ウェブが形成される。この部分をフォーミングセクションと言う。 次にプレスロールとフェルトの間に抱かれ、紙ウェブに含まれる水が大きく搾られる。ここをプレスセクションと言う。その後紙ウェブは乾燥工程(ドライセクション)に入り、目標水分値である5%前後の水分率に制御される。巻き取りの前にキャレンダーセクションがあり、表面を磨くのと同時に紙ウェブをつぶして厚みを制御する場合もある。いずれのセクションにも幅方向の品質を制御する為のアクチュエータがあり、それぞれ希釈水によるスライス毎濃度制御、水スプレイ、スチーム加温による水分プロファイル制御、キャレンダーロール加熱などによる厚みプロファイル制御などを行う。尚、流れ方向の制御はスラリーの全体濃度制御とドライセクションでの温度制御で坪量と水分を制御する。
 図7(a)は、本発明の品質パラメータ計測装置1100(図11参照)に適用する赤外線カメラによる非スキャン型センサ700の概念図である。前述した既存の坪量センサの概念に置き換えて考えてみると、赤外線カメラ702は電離箱のように、紙ウェブWを透過してきた赤外線を補足する受光素子であるInGaAsエリアセンサ701を備え、透過した赤外線を受光して総光量として計測する。光源側は、吸収波長として選ばれた半値幅50ナノメートルほどの赤外線LED光源705である。赤外線LED光源705は、β線源Kr85やPm245などのβ線のように安定した近赤外線709の発光量を期待できる半導体素子である。発光量は数年かかって7割ほどに落ちるが、例えば月に一度のマシンシャットダウン時に再検量をしなければならないほどには変動しない。特許文献2では、寿命が約3か月と短いハロゲンランプを使用していた為に高精度を保つことが出来なかったのではないかと推測する。また、赤外線カメラや近赤外発光LED素子などの開発が進み、価格的にも十分経済効果を生み出せるまでに汎用化が進んでいる。本発明は、特許文献2のInGaAs赤外線カメラや光源に問題があった点を、価格面と技術面で見直しをした計測方法および計測装置を前提とするのでその詳細を述べる。
 図7(a)のうち、705は赤外線LED光源であり703は紙ウェブWを計測するカメラ視野を表す。照射される赤外線709は計測する物質により単独又は複数用意される。因みに本発明の装置として考えるのは、先行技術や既存のスキャニングセンサで使用するセルロースファイバー吸収波長として1.57μ、1.73μ、2.1μなどが、水分吸収波長として1.45μ、1.94μが、及び比較波長としてその近隣の非吸収波長が選定される。フィルムや表面コーティング剤などは他に特徴的な吸収波長帯があり、対象プロセスによりチャンネル数や発光LEDを選択する。図7(b)に紙ウェブ用の3チャンネル計測センサ710を示す。センサ700と同様に、赤外線カメラ712は、光源715から紙ウェブWを透過してきた赤外線719を補足する受光素子であるInGaAsエリアセンサ711を備えている。717は、赤外線カメラ712の視野713のうち流れ方向の視野を示しており、この幅内に複数チャンネル(ここでは3チャンネル)の赤外線光源715を並べることができる。光源715は流れ方向にオフセットを持ち、互いの計測エリアには干渉しないように配置する。
 計測の原理は図7(a)を使用して説明する。光源705がLED球にレンズが付いたタイプであれば、発光された近赤外線709が紙ウェブWを通して観測されるのは708のように透過後減衰されたスポットであり、受光部であるエリアセンサ701では画像処理によりその総光量を測定する。イメージ的には706のように幅方向と流れ方向に分割されたInGaAs素子上で例えば10ビット4096諧調で表されると縦軸のグレイスケールは4096で光量の総和は照射エリアが十分に入る領域をあらかじめ決めてエリア内の各素子の信号量を最大4096グレイスケールとして707で表したイメージの体積を計測することになる。計測される総信号量は光源をオフにした時のバックグランド(暗電流信号量)を同一計測エリアで定期的に観測してその総和を計測値から引くことにより、光源による赤外線の透過量総和が求められる。複数波長を使う場合は、この計測視野713内で他の比較する波長と同じ幅方向(矢印718)位置で流れ方向717に一定のオフセットがある図7(b)の状態で配置される。β線とは違い光の経路長に対して減衰曲線が描かれ、これは例えば吸収波長がファイバーの場合は、ファイバー量・空隙・充填剤など、図1で示したような紙ウェブ内で散乱された後に透過した光の量を計測することになるので、これだけの信号ではファイバーの増減なのか嵩の増減(空隙の割合)なのか充填剤の増減なのかはわからない。従って、ほぼ同じ波長でファイバーに吸収されない比較波長と言われる信号との比を得ることにより、ファイバー重量を決定する。先に述べたように、β線は空気の重さを補正しなければならず、その空気層重量を変化させる温度・ギャップ間距離、センササポートフレーム歪みなどの補正センサや補正道具が必要であるが、本装置ではそのような補正の為のセンサ類は必要ない。
 図9は、本発明の特徴である非スキャンセンサ(例えば700)の計測軌跡を表す。紙ウェブWの流れ方向を矢印で示す。赤外線カメラは地合いのある紙ウェブWを透過してくる赤外線を捉えるのだが、先に説明したとおり幅方向にはソフトウェアスライスで位置区切り(スライス)902をつけてある。901は計測時の紙ウェブの計測エリアの長さを示しておりこれはカメラのシャッター時間と紙ウェブの走行速度で決まる。いずれにしても十分な露光時間を取り計測すれば、例えば100ミリ秒でも高速マシンでは2mの長さになり十分に地合いの影響を消すことができる。スキャンセンサはこの100ミリ秒で100サンプルを計測しているが幅方向移動はわずか2cmしかなく、本発明の装置では全幅同時計測であり例えば3m幅の方式で言えば幅方向に300台のセンサを並べたのに等しい。903はカメラのある時刻の計測軌跡であり、904はその次の計測軌跡である。若干の非計測エリアがあるが、高速画像処理でこのエリアはゼロにもできる。
 次に、本発明に使用する光源、赤外線カメラ、オンラインサンプルなどの配置及びコンフィグレーションを説明する。本発明は、上に述べた通り赤外線カメラと赤外線光源を使い既存の計測装置が用いるβ線による坪量と、赤外線による水分計測を一つにして紙ウェブの主たる成分であるセルロースファイバーと水分値を計測する。特にティッシュなどのバージンパルプ(純粋なケミカルパルプ)を使う紙ウェブでは充填剤などが配合されていないのでまさに最適なセンサとなる。
 図10は本発明で使用する赤外線LED光源705の概要を示すものである。光源は2種類のタイプで使い分けをする。構造は3層構造になっており、側面から見た図が(a)光拡散フィルム1001、(b)シリンドリカルレンズ1004、(c)赤外線LED基盤とヒートシンク1006であり、各部分を上から見た図が(a’), (b’), (c’)である。1005は赤外線LED球であり計測目的により波長帯が違う。LED基盤1006はモジュール形式で交換が容易に設計されている。LED球1005は10mm間隔などで配置されているが用途によりスペースは変わる。又、反射方式と透過方式で配置のアレンジは変わることもある。シリンドリカルレンズ1004は、側面図にあるようにコリメートな光を作る。光は流れ方向に集光され平行光に近いものが作られる。これを上から見ると(b’)の1003のように、LED球一つ一つが分離された形で照射される。図(a’)にあるように幅方向だけに拡散させるフィルム1001を使うと、流れ方向には集光されるが幅方向にはシャッフルされた均一な線状光1002を作ることができる。この場合は幅方向の区切りはソフトウェアでカメラ視野内の位置を持ってスライス区切りを行う。1001はクロスシャッフルフィルムで、線状光となった1002はソフトウェア区切りのスライス単位で計測される。このような光源はラインCCDカメラを使う欠陥検査システムでは標準的な構造であり、LED球を白色LEDから赤外線LEDに変えただけである。ソフトウェアで任意のスライスが区切れて幅方向に一様になるフィルム付きの方が扱いはしやすいが、フィルム自体を計測する場合にはこの代わりに曇りガラス等の全面均等散乱を起こす工夫がいる。何故ならばクリアフィルムの場合には透過吸収に比べて経路長を増加させる散乱物質が存在しない場合があるからである。
 図11は、透過型品質パラメータ計測装置1100で計測する時の赤外線カメラ1102~1106、赤外線LED光源1112,1113、オンラインでの校正・補正用サンプル1107などの配置関係を示す概略図である。カメラビーム1101内には例として5個のカメラ1102~1106を配した。カメラ内のInGaAs素子数によるが、1ピクセルの計測幅を1mmとすれば1台のカメラの視野は600mm以上(例えば600ピクセル×400ピクセルなど)取れるものが市販されているので、それらを使えば数台から20台くらいまででほとんどの抄紙機で紙ウェブWの全幅をカバーできる。1109は赤外線LED光源フレームであり、1110はLED球のイメージを示し、1107は紙ウェブWから外れた所で紙ウェブWと同じ高さに置くオンライン校正・補正用のサンプルで、詳細は後述する。光源は、図11(b)のような多波長用途の光源1112から図11(c)のようなシングルチャネル用光源1113まで、適用する計測用途により替える。
 図12は、別の実施形態による反射型品質パラメータ計測装置1200のコンフィグレーションを示す。反射型の場合には表面コーティングや表面水分などを計測する。全体のファイバー量や水分量などは構成上計測できないが、表面部分に存在する水分平均や塗工量などは、キャリブレーションで精度良く計測できる。また、抄紙機において元来使用されている塗工量計測のうち塗工前の絶乾坪量(水分を無くしてドライ状態の重量)を塗工後の絶乾坪量から差し引いて計測するよりも精度は良くなる。また表面水分にしても、塗工後の水分分布は表面に近いところに多く存在するので、特にダブル塗工などの場合には内部まで含浸しないので通常の透過型水分計よりも表裏差なく計測できると言う利点がある。ただし絶対水分量を計測することはできない。例えば水分吸収波長の光源1203と水分に吸収されない比較波長の光源1204と言う組み合わせで使用される。透過型と同様に1207に示すような標準サンプルを紙ウェブパスライン上のオフシート位置に用意して自動校正や補正の為の基準とすることができる。
 図13,14 は、非スキャン型計測システムにおける本発明の根幹を成す、精度を維持しオンラインにて自動校正と補正を行うカメラオーバーラップエリアの取り扱いと、両端オフライン位置における実サンプルと標準サンプルなどを用いて確認補正をすることができるオンライン検定法を示す。図中Wは紙ウェブを示し、1301はカメラ(例えば図11の1103)の視野、1302は隣のカメラ(例えば図11の1104)の視野を示す。重なったオーバーラップエリアを1303で示し、そのエリア内のLED球の配置又はソフトウェアスライス区切りを1321~1326で示す。1320は紙ウェブWの背後にある光源を示し、図は紙ウェブの上から見た図が(a)、その位置でキャリブレーションした時の光量パターングラフと標準化後のグラフが(c)、オンラインで計測した時の光量グラフの例が(b)である。1304はグラフの縦軸を示しそれぞれ透過光量の値を示す。横軸は(a)に示すカメラの視野1301,1302と同じ幅方向スライス位置である。(c)で、1305は左のカメラ(例えば図11の1103)の信号グラフで、1306は右側のカメラ(例えば図11の1104)の信号グラフである。通常散乱された透過光は、紙ウェブWの表面からあらゆる方向に発光するのでカメラからの距離の2乗で減衰する為、カメラの視野の端に向かって減衰した2次曲線グラフになる。(c)の1307,1308はその曲線をカメラの中心位置(最短距離で最大値を示す)に対して正規化したグラフで、一直線になるようにピクセル単位あるいはスライス単位で補正する。当然同じサンプルを使ってキャリブレーションしているので、各スライスでは同じサンプル計測値にならねばならないので、他のカメラとの信号関係を考慮した上でそれぞれのカメラの各スライスが同じサンプルに対して同じ計測値になるようなオフセットを記録しておく。(b)ではオンラインでのオーバーラップエリアの計測値のオフセット1310を示しており、この値がキャリブレーション時のオフセット1311と同じであるかを確認し、また違う場合は他の隣接カメラに対しても同じオフセットを示すかどうかを比較して補正をする。この判定は各カメラのオフセット、両端のサンプルの計測値からの推測値、定期的に行われるオンラインでの自動校正によるダークカウント(暗電流計測)などで判定する。
 この校正・補正方法は、カメラ単位の電気的なシフト、機差、オンライン時の光源に堆積したダート、熱歪みなどによるカメラ視野のズレなどがカメラ単位で一様に起こることや、光源側に置いてはダート堆積が同じく全幅に渡り一様に起きることが前提である。ただし、一部に起きた変化についてはカメラ内信号パターンが変わる為、別の診断ができる。例えば光源の一部だけにダートが堆積している場合は、カメラ内信号の急変化や突起部などとして現れる。また、LED光源の一部が壊れて発光しない場合なども認識できる。
 図14は、紙ウェブWの両端に配した実サンプル1401と標準サンプル1402(図11の1107に相当)を使用して、計測値を確認する方法を示す。それぞれのサンプル1401,1402は紙ウェブWのパスラインと同じ高さに設置され、オンラインで両端のカメラ(例えば図11の1102,1106)で常に計測されている。実サンプル1401は銘柄毎の実際のサンプル紙であり、標準サンプル1402は、用途によりファイバー重量、水分率、灰分率などの違いのあるサンプル、また逆に、どの赤外線波長も吸収しないで光源とカメラ関係の初期状態との違いを比較でき水分蒸発などの劣化を引き起こさない合成紙などを使用したすべての基準となるサンプルを必要に応じて選択したものである。それらを定期的に計測し、センサ(例えば700)の状態が正しい計測をしているかを確認する。計測値は例えばファイバーであれば計測範囲の総平均値1404,1406などを計測する。同じサンプルを使用してキャリブレーションしているので、この値が変化すると言う事はカメラ側か、光源側に変化があるか、あるいはカメラと光源間にダートや紙粉などのごみが存在するなどが推測できる。従って例えば1gの違いがあれば、オンラインダイナミック補正値として各カメラの計測値1405に1gのオフセットを与えることになる。この両端で実際のサンプルで確認されたカメラ(例えば図11の1102,1106)は良好な状態である限りそのウェブの中心に向かって隣接するカメラ(例えば図11の1103,1105)とのオーバーラップエリアの確認を通して残りの全カメラ(例えば図11の1103~1105)に対する確認を間接に為したとみなすことができる。これにより従来法では取り上げられなかった精度を確立する為のオンラインでの自動校正と補正が可能となる。固定センサ故にオフラインにて自動校正が出来ずに、マシン停止や紙切れによるオフシート状態以外にセンサの状態確認ができないでいた非スキャンカメラ方式に、新たな道をつけることができる。先行技術が行き詰ったのは既に述べたように、赤外線カメラが高価であることに加え赤外線LEDがまだ汎用製品化がなされずに寿命の短いハロゲンランプを使っていて頻繁にセンサの校正が必要であったのが一因であることからも、この方法はラインセンサを使用する場合でも同様な方法が使用でき、従来法に対しても適用が可能であり、ハロゲンを使用しなければならない場合にも適用が可能である。
 図15は、別の実施形態による品質パラメータ計測装置1500を示す概略図で、本発明の非スキャン計測をして精度を保つために必要なカメラの視野のオーバーラップエリア1501を、隣のカメラ視野のセンターまで重ねて、紙ウェブW全体の視野を隣接するカメラ2台ずつにて計測できる完全2重化仕様の場合である。ただし両端は2重化の必要はない。
 図16はまた別の実施形態による品質パラメータ計測装置1600を示す概略図で、透過型計測装置(例えば図11の計測装置1100)の一部のエリアに反射用赤外線光源1601を配置して、同一エリアカメラ1603で3波長光源1602からの透過赤外線と同時に反射波長として光源1601から反射した赤外線を計測し、透過の信号比、波長毎の総光量及び反射光源の総光量を比較して灰分比の違いを計測する。基準になるのは当然キャリブレーションした際の透過と反射の比率である。光源1602はファイバー、水分吸収波長及び比較波長をもった赤外線LED光源であり、1601は紙ウェブを構成する物質に吸収されない比較波長をもった赤外線LED光源である。この計測をするカメラ1603は、透過光3光源と反射光1光源を同一視野内に収めるように配置して、それぞれの計測値を図示しないシステムコンピュータに送る。逆に、反射用赤外線光源を設けずにカメラを1台、紙ウェブWに対して透過用赤外線光源と同じ側に加えて、反射面から常時計測する方法もあるが、現場のスペースなどを考慮して決定する。
 図17は灰分率の計測概念を示す。同じ銘柄として製造される紙ウェブWは、配合比の不良あるいは他の要因で損紙となって原料に戻された灰分を含むパルプの配合比率などが変わった場合は、結果的に灰分率が変化して光の透過分と反射分の比率が変わる。既存の計測装置ではこれら灰分についてはX線を使用して坪量計と同じ原理のセンサで計測して制御を行っている。X線は無機物質である灰分に良く感応して、有機物であるファイバーにはあまり感応しないという性質を使っている。灰分の本来の目的は、紙の裏面に印刷された文字が表から透けて見えるという裏抜けと呼ばれる光学的な弱点を防ぐことにある。灰分は添加剤として加えられ、光の散乱を増加させて表からの光が裏抜けしないようにブロックしまた、裏からの光が表側に透過しないようにするという、そもそもは光学的性質を変化させるものである。それにもかかわらずX線を使用して灰分の重量比を計測するのは、間接的なこの方法以外に良いセンサが無い為である。本発明の計測方法では、本来の光学的性質を計測する為に、赤外線を使ったファイバー・水分計測装置の応用として透過分と反射分及びファイバー吸収分で比較して灰分率を計測する。予めそれぞれ違う状態で集めたサンプルとのキャリブレーションにより計測する。図17(a)の1706は灰分の少ない紙ウェブであり、照射された赤外線比較波長1701は紙ウェブ1706の中で散乱・反射を繰り返し、ファイバーに吸収されない透過光1703はカメラ1704に、光源1705から照射され反射して返ってくる反射光1702も同様にカメラ1704を通して計測される。図17(b)の1716は灰分の多い紙ウェブであり、照射された同じ赤外線比較波長1701は紙ウェブ1716中でより散乱・反射を繰り返し、透過光1713と光源1705から照射されて反射された反射光1712とは同様にカメラ1704で計測される。矢印の太さで光量をイメージしたとおり、灰分の多い場合の透過光は少なくなり反射光は増えることになる(1702÷1703<1712÷1713)。各計測値を標準サンプルのそれで除した値は、配合比の違いによる透過・反射光量への灰分の影響度を表している。あらかじめ様々な灰分率の標準サンプルでこれらの計測値を使ってキャリブレーションしておけば、灰分量を計測せずに最適な光裏抜け度計測が可能となる。現在の灰分センサの使用状況からするとむしろこのセンサで光学的特徴を計測して大まかな灰分投入量制御でギリギリまで投入量を下げ、その代わりファイバー量を増やす方が経済効果も上がることになる。
 最近の抄紙機は専抄マシンとして例えばティッシュ、新聞紙、コピー用紙、印刷用紙、表層ライナー、中芯用紙など、常時同じ銘柄あるいはわずかに坪量の違う銘柄を製造していることが多くなっている。これは生産効率向上の為のマシンの集約戦略など主に大手企業によるものだが、逆に中小企業は特殊紙の専抄マシンが多い。どんな紙も作れるというのは機械も複雑になり、パルプの配合、薬品の配合など効率を下げる方向に向かい、そればかりでなく操業条件が複雑になり人的エラーも増える。従って最新のマシンでDCSにより銘柄管理がされているマシンでは、パルプの配合や薬品・填料の配合比も計測制御されて一定の変動下に収められている。このように銘柄管理された紙を使いキャリブレーションすることで、配合比による光の経路長変化(計測値変化を起こす)は最小限であることを前提として、上記したファイバー計測や水分計測を可能にしている。従来はそれらの配合比が未知の要素で十分な変動があると言う事で、無限散乱法・積分球法(図8参照)など光経路長を無限にするなどの方法がこの配合比変動に対して取られてきた。光の透過量による補正法なども、先行技術としてこのような直読式赤外線センサの為の補正センサとして50年前に特許されている。本発明では上述した透過と反射光の各総光量・各比率・標準サンプルとの比較などを使い定期的な補正を施す方法も使用するが、ティッシュなどのヴァージンパルプ使用の紙には添加物が一切入っていないのでこれらの補正は必要ない。しかしながら灰分やリサイクルパルプ使用の紙では単独センサとして絶対値精度を向上させるためには必要となる技術である。
 一方現在既にQCSを導入している現場においては、本発明はできるだけ上流の表面塗工前にセンサを配置して(添加剤がミキシングされて内部添加だけのベースシートの位置)主に流れ方向と幅方向の高速計測制御で変動を抑え、既存のQCSでの最終品質確認をするのが使いやすいだろう。この場合の最終計測値精度は既存の坪量センサと水分センサに任せて長周期変動に対するカスケード制御(上流での制御)を行うことが望ましい。スキャンさせずに固定センサでの計測で本計測装置との場所の付け合わせをして全幅に展開すれ方法もコストダウンになり、今後はそういった既存技術との融合も考えた設計が必要である。
 図18は、上記非スキャン型計測装置(例えば図11の計測装置1100)を抄紙機(図2参照)で使用した時の、制御点であるヘッドボックスの各スライス位置と、計測点であるカメラ1805内のスライス位置とを付け合わせるための方法を示す。紙ウェブWはワイヤーでフォーミングされた後、エッジ部分1811が図示しない水シャワーで切り落とされる。エッジ部分1811は均一性が無い為このような工程が必ず必要である。従って、ヘッドボックスから吐出されたスラリー幅はフォーミング後に両端数cmから十数cm切り落とされてプレスと乾燥工程に入る。乾燥工程では紙が収縮するので、上流からヘッドボックス、紙端トリミング後、乾燥工程後の巻取前ではそれぞれ紙の幅が違ってくる。その上収縮のパターンは幅方向に均一ではなくお椀型になるのが普通である。加えて蛇行が入ると、巻取前で計測した点が果たしてヘッドボックスのアクチュエータの何番に相当するのかが正確にわからなくなり、新たなるエラーをフィードバック制御で作ってしまう。よく知られた鋸歯状波プロファイルはこうして引き起こされる。
 赤外線カメラ1805は、紙ウェブWのファイバー重量を1806で示す視野内で計測している。今まさに巻取りの枠替えが始まろうとしていると仮定すると、枠替え前の数十メートルは巻取の上巻きになり、検査のため数枚~十数枚?きとられて目視検査がされる。また次工程の下巻きになり皺が入り製品にはならないので、この2つの理由から損紙として扱われる。従ってこの部分に対しては、バンプテスト(出力応答テスト)という紙の幅方向のアクチュエータの出力を変化させて紙の重量変化を起こさせるテストを行っても問題ない。既存の計測制御システムでは、この方法を銘柄変更という数十分の時間を要し全て損紙となる機会にしか行うことができない。この銘柄変更中は紙の収縮も蛇行も変化しており本来の目的には合わないのだが、スキャニング方式の為ステップ応答からセンサのフィードバックを取るまでに十数分以上かかる為に致し方がなかった。本発明の方式ではステップ応答に対する計測にはマシン遅れしかないため十秒ほどで結果が得られ、非スキャン方式の最大の利点である高速計測がそれを可能にする。カメラ1805の計測値を枠替え前に記録して、カメラ1805に接続した計測制御システム1820が、アクチュエータ制御装置1821に対して図にあるように例えばスライス1822,1823,1824,1825など複数のアクチュエータに増減信号を送る。マシン遅れ分の時間後には、カメラはその増減信号に応じた変動分1807,1808,1809,1810を計測して記録する。これをバンプテストと言うが、この出力変更前と後のピーク値を計測して、アクチュエータの位置と乾燥工程で収縮する分のパターンと蛇行分のオフセットを計測する。
 これにより、計測点と制御点の不一致による幅方向制御の不良とエラー拡散が完全に防止でき、より均一な紙ウェブが製造できる。既存システムの最大の弱点である計測応答時間の遅さとアクチュエータピッチの不揃いが起こす位置ずれによるエラーの拡散は、現在の抄紙技術の限界点であり、これを打破できることは全ての品質と生産性向上に寄与する。
 本発明により、スキャニングセンサの致命的欠点であるフィルタリングが必要なくなり、オペレータアクションが数十秒で視認できる事と、高速回転するマシン用具の不具合により現れる微弱水分変動などが観測できる。これらの確認にはわざわざエンジニアリングユニットすなわち坪量であるg/m2や水分率などに変換する必要はなく、基礎的な光量分布変化を示せばよい。従って、計測モードでの十分な露光時間(図8の803)を持たせずに高速で計測し、シームレスな光量をマップにすれば水分ムラマップができる。それを、用具毎の回転速度に同期させれば、不具合を起こしている用具が特定できる。又特定な範囲だけをモニタリングする高速測定専用カメラを配置し、高速変動モニタリングモードを作って数分間生信号だけをロギングして高速フーリエ変換(FFT)に掛ければ、高速流れ変動のパワースペクトルが得られプロセス解析ができる。
 このように、現在ではマシンの用具である、ワイヤー(数メートルから数十メートル)、プレスロール(周囲長2m~3m)、フェルト(数メートルから数十メートル)、カンヴァス(数メートルから数十メートル)などのパフォーマンスを、スキャニングセンサでは見ることができないが本発明の高速計測法にてその変化を知ることができ、素早い対処が可能となる。この事は余計なエネルギーの削減と紙切断の防止、薬品の削減、生産性向上、メンテナンス性向上、用具替え周期の延長など様々な経済的効果を期待できる。
W 紙ウェブ(長尺シート材)
700 非スキャン型センサ
702 赤外線カメラ
705 赤外線光源
1100 品質計測装置
1107 実サンプル
1108 標準サンプル

Claims (11)

  1.  巻取機に向かって流れている長尺シート材の品質パラメータを、当該長尺シート材に照射する赤外線光源と、当該長尺シート材を経由した赤外線を受光する赤外線カメラとを用いて計測する長尺シート材の品質パラメータ計測方法において、
     当該赤外線光源と当該赤外線カメラとを用いて、当該長尺シート材の全幅を同時に計測するとともに、オンラインで当該赤外線光源と赤外線カメラとの状態を把握し、その状態に基づいてオンラインで計測値を補正することを特徴とする長尺シート材の品質パラメータ計測方法。
  2.  上記の赤外線カメラを長尺シート材の幅方向に複数配置し、隣り合う赤外線カメラの視野同士をオーバーラップさせ、上記の長尺シート材の同一箇所からそれぞれのカメラで得られた計測値の差異を取得することにより、各カメラの計測値にその差異を加えることを特徴とする請求項1に記載した長尺シート材の品質パラメータ計測方法。
  3.  上記の長尺シート材の近傍に比較用サンプルを設置し、当該長尺シート材と比較用サンプルとに同一の上記赤外線光源から赤外線を照射し、当該長尺シート材と比較用サンプルとをそれぞれ経由した赤外線を、同一の上記赤外線カメラで同時に計測することにより、当該長尺シート材の全幅を同時に測定して得られた計測値の校正と補正を行うことを特徴とする請求項1または2に記載した長尺シート材の品質パラメータ計測方法。
  4.  上記の赤外線カメラとして、赤外線エリアカメラを用いることを特徴とする請求項1~3のいずれかに記載した長尺シート材の品質パラメータ計測方法。
  5.  それぞれ異なる波長の赤外線を照射する複数の赤外線光源を長尺シート材の流れ方向に配置し、上記の長尺シート材を経由した当該赤外線を同一の上記赤外線カメラで同一時刻に計測することを特徴とする請求項1~4に記載した長尺シート材の品質パラメータ計測方法。
  6.  上記の赤外線光源から照射されて長尺シート材を経由した透過赤外線と反射赤外線とを、上記の赤外線カメラで受光し、受光した透過赤外線量と反射赤外線量とから得られた透過率から当該長尺シート材の光散乱度を測定することを特徴とする請求項1~5のいずれかに記載した長尺シート材の品質パラメータ計測方法。
  7.  請求項6に記載した計測方法により求めた光散乱度から、透過赤外線量の減衰がファイバーによるものか灰分によるものかを判定して、ファイバー量・水分量などの品質パラメータの光経路長に関する補正ないしはプロセス条件変化を判断することを特徴とする長尺シート材の品質制御方法。
  8.  巻取機における巻取ロールの枠替えに同期させて、ファイバー量や水分量などの品質パラメータを所定の幅方向制御点で所定の量だけ変動させながら、請求項1~7に記載した計測方法により当該品質パラメータの計測を行い、得られた計測値に基づき、巻き取られる長尺シート材の幅方向の収縮や蛇行などにより変化した、計測点と、坪量制御や水分量制御の幅方向制御点との位置関係を確認することを特徴とする長尺シート材の品質制御方法。
  9.  巻取機に向かって流れている長尺シート材の品質パラメータを、赤外線光源と赤外線を受光する赤外線カメラとを用いて計測する長尺シート材の品質パラメータ計測装置において、
     上記の長尺シート材の全幅をカバーするよう上記の赤外線光源と赤外線カメラとが幅方向に複数配置されているとともに、
     隣り合う当該赤外線カメラの視野同士がオーバーラップしていること
     を特徴とする長尺シート材の品質パラメータ計測装置。
  10.  比較用サンプルを有し、
     当該比較用サンプルと上記の長尺シート材とが同一の上記赤外線光源からの赤外線を照射されるよう、かつ、当該比較用サンプルと長尺シート材とをそれぞれ経由した赤外線が同一の上記赤外線カメラで同時に計測されるよう、当該比較用サンプルが当該長尺シート材の幅方向延長平面内に配置されていること
     を特徴とする請求項9に記載した長尺シート材の品質パラメータ計測装置。
  11.  上記の赤外線カメラが赤外線エリアカメラであることと、
     それぞれ異なる波長の赤外線を照射する複数の上記赤外線光源が流れ方向に配置されているとともに、
     当該赤外線光源が、当該各光源からの赤外線が上記の長尺シート材を経由して同一の上記赤外線エリアカメラで同一時刻に計測される範囲において、互いの照射エリアが干渉しないように配置されていること
     を特徴とする請求項9または10に記載した長尺シート材の品質パラメータ計測装置。
PCT/JP2018/020910 2018-05-31 2018-05-31 長尺シート材の品質計測方法および品質計測装置 WO2019229919A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880093760.8A CN112189133B (zh) 2018-05-31 2018-05-31 长尺寸片材的质量测量方法及质量测量装置
EP18921132.9A EP3805733B1 (en) 2018-05-31 2018-05-31 Quality measuring method and quality measuring device for long sheet material
FIEP18921132.9T FI3805733T3 (fi) 2018-05-31 2018-05-31 Laadunmittausmenetelmä ja laadunmittauslaite pitkää levymateriaalia varten
CA3101951A CA3101951C (en) 2018-05-31 2018-05-31 Quality measuring method and quality measuring device for long sheet material
PCT/JP2018/020910 WO2019229919A1 (ja) 2018-05-31 2018-05-31 長尺シート材の品質計測方法および品質計測装置
US17/059,629 US11231363B2 (en) 2018-05-31 2018-05-31 Quality measurement method and quality measurement device for long sheet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/020910 WO2019229919A1 (ja) 2018-05-31 2018-05-31 長尺シート材の品質計測方法および品質計測装置

Publications (1)

Publication Number Publication Date
WO2019229919A1 true WO2019229919A1 (ja) 2019-12-05

Family

ID=68696910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020910 WO2019229919A1 (ja) 2018-05-31 2018-05-31 長尺シート材の品質計測方法および品質計測装置

Country Status (6)

Country Link
US (1) US11231363B2 (ja)
EP (1) EP3805733B1 (ja)
CN (1) CN112189133B (ja)
CA (1) CA3101951C (ja)
FI (1) FI3805733T3 (ja)
WO (1) WO2019229919A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2769794C1 (ru) * 2020-03-06 2022-04-06 Айбиэс Оф Америка Система определения формования и способ управления
EP4067885A1 (en) * 2021-03-29 2022-10-05 Honeywell International Inc. Correlate thermographic image data to online scanning basis weight measurement

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113834445A (zh) * 2021-10-04 2021-12-24 东北大学 铸坯火焰切割熔渣和毛刺尺寸检测方法
CN114397151B (zh) * 2021-12-03 2023-12-12 首钢集团有限公司 一种板材表面质量控制方法、装置、设备及存储介质
US11816893B1 (en) 2022-08-03 2023-11-14 Industrial Video Solutions Inc. Systems and methods for monitoring and controlling industrial processes
US11932991B2 (en) 2022-08-03 2024-03-19 Industrial Video Solutions Inc. Systems and methods for monitoring and controlling industrial processes

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6355931B1 (en) 1998-10-02 2002-03-12 The Regents Of The University Of California System and method for 100% moisture and basis weight measurement of moving paper
JP2002544475A (ja) * 1999-05-10 2002-12-24 メトソ・ペーパー・オートメーション・オイ 紙表面を測定するための方法および測定装置
JP2004277899A (ja) 2003-03-13 2004-10-07 Mitsubishi Paper Mills Ltd 抄紙機における紙ウェブの厚さプロファイル制御方法
JP2004294129A (ja) * 2003-03-25 2004-10-21 Fujitsu Ltd 撮影装置
JP2008064686A (ja) * 2006-09-08 2008-03-21 Dainippon Printing Co Ltd 検査画像取得方法
JP2013130529A (ja) * 2011-12-22 2013-07-04 Sharp Corp 検査装置、検査システム、検査方法、コンピュータを検査装置として機能させるためのプログラム、コンピュータを検査システムとして機能させるためのプログラム、当該プログラムを格納したコンピュータ読み取り可能な不揮発性のデータ記録媒体
WO2013147038A1 (ja) * 2012-03-28 2013-10-03 横河電機株式会社 物質特性測定装置
JP2015002241A (ja) * 2013-06-14 2015-01-05 日置電機株式会社 基板撮像装置、及び基板撮像方法
US20150292155A1 (en) * 2014-04-15 2015-10-15 Georgia-Pacific Consumer Products Lp Methods and apparatuses for controlling a manufacturing line used to convert a paper web into paper products by reading marks on the paper web
WO2017191363A1 (en) * 2016-05-06 2017-11-09 Procemex Oy A machine vision method and system for monitoring manufacturing processes
JP2018104838A (ja) * 2016-12-26 2018-07-05 株式会社PSM International 長尺シート材の品質計測方法および品質計測装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2038704C (en) * 1990-04-26 1996-01-30 Ryuji Chiba Infrared ray moisture meter
DE69324557T2 (de) 1992-12-31 1999-09-23 Zellweger Uster Inc Kontinuierliche zweidimensionale Überwachung von dünnem Gewebe textilen Materials
FI115558B (fi) * 2002-03-27 2005-05-31 Metso Automation Oy Menetelmä havainnointialueen mittakaavan määrittämiseksi
JP2004003925A (ja) * 2002-03-29 2004-01-08 Mitsubishi Paper Mills Ltd 同時多点測定装置及び制御装置
JP2004361149A (ja) 2003-06-02 2004-12-24 Tdk Corp 含水量測定装置
DE10361018C9 (de) * 2003-12-23 2021-03-04 QUISS Qualitäts-Inspektionssysteme und Service GmbH Verfahren zum Erkennen einer auf einem Substrat aufzubringenden Struktur mit mehreren Kameras sowie eine Vorrichtung hierfür
JP5695935B2 (ja) * 2011-02-24 2015-04-08 横河電機株式会社 赤外線分析装置
JP5261540B2 (ja) * 2011-06-24 2013-08-14 シャープ株式会社 欠陥検査装置及び欠陥検査方法
CN202166619U (zh) * 2011-07-26 2012-03-14 武汉点线科技有限公司 一种钢板表面质量检测装置
JP6468482B2 (ja) * 2014-11-26 2019-02-13 株式会社リコー 撮像装置、物体検出装置及び移動体機器制御システム
WO2017047553A1 (ja) * 2015-09-18 2017-03-23 独立行政法人労働者健康安全機構 撮像方法、撮像装置、撮像システム、手術支援システム、及び制御プログラム
WO2017060105A1 (en) * 2015-10-08 2017-04-13 Koninklijke Philips N.V. Particle sensor for particle detection
CN112714858A (zh) * 2018-07-13 2021-04-27 拉布拉多系统公司 能够在不同环境照明条件下操作的移动设备的视觉导航
JP7194025B2 (ja) * 2019-01-08 2022-12-21 三星電子株式会社 ウェハ検査装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6355931B1 (en) 1998-10-02 2002-03-12 The Regents Of The University Of California System and method for 100% moisture and basis weight measurement of moving paper
JP2002544475A (ja) * 1999-05-10 2002-12-24 メトソ・ペーパー・オートメーション・オイ 紙表面を測定するための方法および測定装置
JP2004277899A (ja) 2003-03-13 2004-10-07 Mitsubishi Paper Mills Ltd 抄紙機における紙ウェブの厚さプロファイル制御方法
JP2004294129A (ja) * 2003-03-25 2004-10-21 Fujitsu Ltd 撮影装置
JP2008064686A (ja) * 2006-09-08 2008-03-21 Dainippon Printing Co Ltd 検査画像取得方法
JP2013130529A (ja) * 2011-12-22 2013-07-04 Sharp Corp 検査装置、検査システム、検査方法、コンピュータを検査装置として機能させるためのプログラム、コンピュータを検査システムとして機能させるためのプログラム、当該プログラムを格納したコンピュータ読み取り可能な不揮発性のデータ記録媒体
WO2013147038A1 (ja) * 2012-03-28 2013-10-03 横河電機株式会社 物質特性測定装置
JP2015002241A (ja) * 2013-06-14 2015-01-05 日置電機株式会社 基板撮像装置、及び基板撮像方法
US20150292155A1 (en) * 2014-04-15 2015-10-15 Georgia-Pacific Consumer Products Lp Methods and apparatuses for controlling a manufacturing line used to convert a paper web into paper products by reading marks on the paper web
WO2017191363A1 (en) * 2016-05-06 2017-11-09 Procemex Oy A machine vision method and system for monitoring manufacturing processes
JP2018104838A (ja) * 2016-12-26 2018-07-05 株式会社PSM International 長尺シート材の品質計測方法および品質計測装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Paper Machine Quality Control Systems (QCS", TAPPI PRESS
SHITARA HISATAKA: "Newly developed coating weight/moisture sensor and CD coating weight control", JAPANESE JOURNAL OF PAPER TECHNOLOGY, no. 8, 1 August 1994 (1994-08-01), pages 9 - 14, XP009524647, ISSN: 0453-1507 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2769794C1 (ru) * 2020-03-06 2022-04-06 Айбиэс Оф Америка Система определения формования и способ управления
US11920299B2 (en) 2020-03-06 2024-03-05 Ibs Of America Formation detection system and a process of controlling
EP4067885A1 (en) * 2021-03-29 2022-10-05 Honeywell International Inc. Correlate thermographic image data to online scanning basis weight measurement
JP2022153299A (ja) * 2021-03-29 2022-10-12 ハネウェル・インターナショナル・インコーポレーテッド サーモグラフィック画像データのオンライン走査坪量測定への相関
JP7247395B2 (ja) 2021-03-29 2023-03-28 ハネウェル・インターナショナル・インコーポレーテッド サーモグラフィック画像データのオンライン走査坪量測定への相関

Also Published As

Publication number Publication date
CN112189133B (zh) 2023-04-18
CA3101951C (en) 2024-04-23
CN112189133A (zh) 2021-01-05
US20210223171A1 (en) 2021-07-22
CA3101951A1 (en) 2019-12-05
EP3805733A4 (en) 2021-12-29
FI3805733T3 (fi) 2024-01-18
EP3805733B1 (en) 2023-10-25
US11231363B2 (en) 2022-01-25
EP3805733A1 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
WO2019229919A1 (ja) 長尺シート材の品質計測方法および品質計測装置
JP6667429B2 (ja) 長尺シート材の品質計測方法および品質計測装置
FI108218B (fi) Moninkertaisen päällysteen mittaus ja valvonta
US7880156B2 (en) System and method for z-structure measurements using simultaneous multi-band tomography
US7812947B2 (en) Apparatus and method for measuring and/or controlling paper pulp properties
JP6479706B2 (ja) 長尺シート材の厚み計測方法および厚み計測システム
EP0882945A1 (en) "Coating weight measuring and control apparatus and method"
JPH02247528A (ja) コーティング重量測定および制御装置とその方法
CZ300817B6 (cs) Kontrolní stanice, systém pro optickou detekci vlastnosti papíru, systém výroby cigaretového papíru a zpusob kontroly papíru obsahujícího proužkové oblasti a podkladové oblasti bez proužku
FI115163B (fi) Spektrierottelevaan mittaukseen perustuva laadun- ja kunnonvalvonta
CA2355621C (en) Latex coat thickness measuring and control apparatus
JP6771498B2 (ja) 近赤外線水分センサのための較正基準としての酸化ホルミウムガラス
EP2914954B1 (en) Method and apparatus for measuring gloss
CA2874690C (en) Sheet measurement
US20110132561A1 (en) Method and device for detecting at least one variable at least indirectly characterizing the properties of a surface in a material web treatment device and method for optimizing the operating method of a material web treatment device
DE102022107497A1 (de) Messvorrichtung und Messverfahren
WO2011135179A1 (en) Web measurement
EP3502637A1 (en) Method and system for real-time web manufacturing supervision
Waller On-line papermaking sensors: An historical perspective

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921132

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3101951

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018921132

Country of ref document: EP

Effective date: 20210111

NENP Non-entry into the national phase

Ref country code: JP