WO2019227940A1 - 柔性显示装置的制作方法和柔性显示装置 - Google Patents

柔性显示装置的制作方法和柔性显示装置 Download PDF

Info

Publication number
WO2019227940A1
WO2019227940A1 PCT/CN2019/071163 CN2019071163W WO2019227940A1 WO 2019227940 A1 WO2019227940 A1 WO 2019227940A1 CN 2019071163 W CN2019071163 W CN 2019071163W WO 2019227940 A1 WO2019227940 A1 WO 2019227940A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
display device
flexible
base layer
flexible base
Prior art date
Application number
PCT/CN2019/071163
Other languages
English (en)
French (fr)
Inventor
宫奎
崔显西
段献学
张志海
Original Assignee
京东方科技集团股份有限公司
合肥京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/473,402 priority Critical patent/US11316136B2/en
Publication of WO2019227940A1 publication Critical patent/WO2019227940A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/877Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8794Arrangements for heating and cooling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present disclosure relates to a method for manufacturing a flexible display device and a flexible display device.
  • a widely used flexible display manufacturing process is as follows: a flexible substrate layer having water and oxygen blocking properties is fabricated on a rigid substrate, and then a thin film transistor (Thin Film Transistor, referred to as: TFT) circuit and organic electroluminescence display device (Organic Electron Display) (OLED) device, and then use the encapsulation packaging technology to encapsulate the flexible display from the rigid substrate by laser scanning the bottom of the rigid substrate after the production of the display product is completed Take off.
  • TFT Thin Film Transistor
  • OLED organic electroluminescence display device
  • An embodiment of the present disclosure provides a method for manufacturing a flexible display device, including: forming a conductive heating layer having a first microstructure pattern on a rigid substrate; forming a flexible base layer on the conductive heating layer; and A display device is prepared on a flexible substrate layer; the conductive heating layer is subjected to a heating treatment to separate the flexible substrate layer from the conductive heating layer, and the separated flexible substrate layer is away from a side of the display device Has a second microstructure pattern.
  • the forming a conductive heating layer having a first microstructure pattern on a rigid substrate includes: forming a conductive heating film layer on the rigid substrate; and performing a patterning process on the conductive heating film layer, Forming the conductive heating layer having the first microstructure pattern.
  • the forming the flexible base layer on the conductive heating layer includes: sequentially forming a first flexible base layer, a heat dissipation layer, and a second flexible base layer on the conductive heating layer.
  • a side of the first flexible base layer remote from the display device has the second microstructure pattern.
  • the first flexible base layer and the second flexible base layer are made of polyimide fiber; the thickness of the first flexible base layer and the second flexible base layer are both between 10 and 50 microns.
  • the heat dissipation layer is a transparent graphene layer, and the transparent graphene layer is composed of a plurality of transparent graphene films; the thickness of the heat dissipation layer is between 5 and 25 microns.
  • the display device is an organic light emitting diode device
  • preparing the display device on the flexible base layer includes: sequentially preparing a thin film transistor layer, an organic light emitting diode layer, and a packaging layer on the second flexible base layer.
  • the encapsulation layer and the flexible base layer form a covering space, and the covering space covers the thin film transistor layer and the organic light emitting diode layer.
  • the second microstructure pattern on a side of the flexible substrate layer remote from the display device and the first microstructure pattern of the conductive heating layer are complementary patterns.
  • the material of the conductive heating layer includes at least one of the following: iron chromium alloy and nickel chromium alloy.
  • the first microstructure pattern of the conductive heating layer is a grid pattern or a dot matrix pattern.
  • An embodiment of the present disclosure provides a flexible display device including a flexible substrate layer and a display device disposed on the flexible substrate layer; wherein a side of the flexible substrate layer remote from the display device is provided with a microstructure. Graphics.
  • the microstructure pattern is a grid-like pattern or a lattice-like pattern protruding on the surface of the flexible base layer.
  • the flexible base layer includes: sequentially setting a second flexible base layer, a heat dissipation layer, and a first flexible base layer in a direction from close to the display device and away from the display device; wherein the microstructure pattern is provided On a side of the first flexible base layer away from the display device.
  • the first flexible base layer and the second flexible base layer are made of polyimide fiber; the thickness of the first flexible base layer and the second flexible base layer are both between 10 and 50 microns.
  • the heat dissipation layer is a transparent graphene layer, and the transparent graphene layer is composed of a plurality of transparent graphene films; the thickness of the heat dissipation layer is between 5 and 25 microns.
  • the display device is an organic light emitting diode device
  • the organic light emitting diode device includes a thin film transistor layer, an organic light emitting diode layer, and a packaging layer which are sequentially disposed away from the second flexible base layer.
  • the encapsulation layer and the flexible base layer form a covering space, and the covering space covers the thin film transistor layer and the organic light emitting diode layer.
  • the microstructure pattern is generated when the flexible base layer is separated from the patterned conductive heating layer provided on the rigid substrate, and the patterned conductive heating layer is heated and separated.
  • the microstructure pattern on the side of the flexible substrate layer remote from the display device and the pattern of the conductive heating layer are complementary patterns.
  • FIG. 1 is a flowchart of a method for manufacturing a flexible display device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a conductive heating layer in a method for manufacturing a flexible display device according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a process in a method for manufacturing a flexible display device according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a process in a method for manufacturing a flexible display device according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a process in a method for manufacturing a flexible display device according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a process in a method for manufacturing a flexible display device according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a process in a method for manufacturing a flexible display device according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of a process in a method for manufacturing a flexible display device according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of a flexible display device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another flexible display device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of still another flexible display device according to an embodiment of the present disclosure.
  • FIG. 1 is a flowchart of a method for manufacturing a flexible display device according to an embodiment of the present disclosure.
  • the method provided in this embodiment may be applied to the process of manufacturing a flexible display device.
  • the method for manufacturing a flexible display device provided in this embodiment may include the following steps S110-S130.
  • a conductive heating layer having a microstructure pattern is formed on a rigid substrate.
  • a flexible base layer is formed on the conductive heating layer, and a display device is prepared on the flexible base layer.
  • the method for manufacturing a flexible display device can manufacture a flexible display device on a rigid substrate of an ordinary display device, and the flexible display device has a flexible base layer, so that the prepared flexible display device has a stretchable function. , Can form a curved surface or other three-dimensional display effect display device.
  • the flexible base layer has high stretchability, it is difficult to directly fabricate a display device on the flexible base layer. Therefore, the flexible base layer can be firstly fabricated on a rigid substrate, so that it can be used in the manufacturing process. Has a high stability, and subsequently, a display device is fabricated on a flexible base layer with a fixed structure.
  • the display device in the embodiment of the present disclosure is formed on the flexible base layer, based on the deformation characteristics of the flexible base layer, the display device also has a certain deformation performance.
  • the display device may be, for example, a TFT circuit and an OLED device.
  • the embodiment of the present disclosure firstly forms the flexible base layer on the rigid substrate before fabricating the flexible base layer.
  • the conductive heating layer is not a flat layer with a uniform thickness, but a heatable metal layer with a microstructure pattern.
  • This conductive heating layer with a microstructure pattern not only plays a role in heat dissipation in the subsequent , Also has great significance for the light-emitting effect of the flexible display device.
  • a flexible base layer may be fabricated on the conductive heating layer.
  • the pattern of the conductive heating layer may be, for example, a grid pattern.
  • the conductive heating layer having a grid pattern is, for example, a conductive heating layer having a plurality of openings arranged in an array.
  • FIG. 2 is a schematic structural diagram of a conductive heating layer in a method for manufacturing a flexible display device according to an embodiment of the present disclosure.
  • the unfilled area in FIG. 2 is a rigid substrate 110 exposed by a grid-shaped conductive heating layer, and a filled grid.
  • the pattern is a conductive heating layer 120.
  • the filled portion inside the conductive heating layer 120 may be a raised structure, and the unfilled portion inside the conductive heating layer 120 is a recessed structure.
  • the conductive heating layer 120 has a structure protruding from the surface of the rigid substrate 110.
  • the conductive heating layer according to an embodiment of the present disclosure is a conductive heating layer including a partially hollowed-out structure.
  • the ratio of the area of the hollow portion to the area of the conductive heating layer itself is not particularly limited.
  • the above ratio can be adjusted according to the ease of peeling of the flexible base layer.
  • the ratio of the area of the hollow portion to the area of the conductive heating layer itself may be 1/2 to 1.
  • the characteristic size of the hollow portion (for example, when the hollow portion is a square opening, its side length is the characteristic size; or when the hollow structure is a circular opening, its diameter is the characteristic size; or when the hollow structure is a strip structure, its The width is the characteristic size) can also be adjusted as needed.
  • the characteristic size of the hollow structure is 5-30 ⁇ m.
  • the characteristic size of the hollow structure is less than 1/3 of the thickness of the flexible base layer.
  • the characteristic size of the hollow structure is less than 1/4 or 1/5 of the thickness of the flexible base layer and the like.
  • FIG. 2 only illustrates one possible structural feature of the conductive heating layer, and the pattern of the conductive heating layer may also be a dot pattern or other shapes, as long as the conductive heating layer that satisfies the microstructure pattern It is not a flat layer with a uniform thickness, but has a concave-convex pattern structure, and the formed concave-convex pattern structure can provide a good heat dissipation effect when separating a rigid substrate, and can be used as the microstructure pattern of the conductive heating layer in the embodiment of the present disclosure .
  • the conductive heating layer is heated to separate the flexible base layer from the conductive heating layer, and the separated flexible base layer has a microstructure pattern on a side far from the display device.
  • the rigid substrate needs to be peeled off from the entire display device, that is, the rigid substrate and the rigid substrate are separated.
  • Flexible base layer based on the structural characteristics of the conductive heating layer that has been formed on the rigid substrate, and the conductive heating layer is disposed on the side of the rigid substrate close to the flexible base layer, The heating layer is energized for heating, so that the conductive heating layer generates enough heat to separate the conductive heating layer from the flexible base layer, that is, the effect of separating the rigid substrate from the flexible base layer is achieved.
  • the heat generated by the conductive heating layer peels the flexible base layer from the conductive heating layer at the interface between the flexible base layer and the conductive heating layer.
  • the concave-convex structure on the microstructure pattern has the effect of uniform heating, and the heating time and temperature are easy to control, thereby avoiding the influence of excessive local heat on the performance of the display device, and improving the manufacturing quality of the flexible display device to a certain extent. rate.
  • the separated flexible substrate layer has a microstructure pattern on a side remote from the display device.
  • the flexible substrate layer is remote from the display device with a microstructure pattern. It is complementary to the microstructure pattern of the conductive heating layer.
  • the microstructure pattern of the conductive heating layer can be complementary to the microstructure pattern of the flexible base layer.
  • the grid pattern shown in FIG. 2 is taken as an example for illustration.
  • the matrix pattern is a pattern structure of an unfilled portion inside the conductive heating layer 120 shown in FIG. 2.
  • the side of the flexible substrate layer remote from the display device has a dot-matrix-bump structure.
  • the microstructure pattern formed on the side of the flexible base layer away from the display device after the conductive heating layer is separated is beneficial to improving the light extraction efficiency, thereby further improving the service life of the display device.
  • the flexible display device is separated from the rigid substrate, that is, the bottom of the rigid substrate is scanned by laser scanning to separate the flexible display device from the rigid substrate.
  • the rigid substrate is heated to realize the separation between the rigid substrate and the flexible base layer.
  • the degree of damage to the flexible substrate layer and the TFT circuit is large, resulting in an increase in the defective rate of the product.
  • laser scanning is used to separate the rigid substrate and the flexible display, which makes the process difficult to control and the cost is high.
  • a conductive heating layer having a microstructure pattern is formed on a rigid substrate, and a flexible base layer is formed on the conductive heating layer.
  • the flexible base layer is separated from the conductive heating layer through a heat treatment of the conductive heating layer, and the separated flexible base layer has a microstructure pattern on a side far from the display device.
  • the manufacturing method of the flexible display device provided by the present disclosure can not only avoid the damage to the display device caused by the laser energy in the traditional separation process, thereby improving the service life of the display device, and the prepared flexible base layer has a side far from the display device.
  • the microstructure pattern can improve the light extraction efficiency, thereby further improving the service life of the display device.
  • a conductive heating separation method is adopted, the process controllability is high, and the cost is low.
  • the manufacturing method of the conductive heating layer having the microstructure pattern may include the following steps 1-2.
  • Step 1 A conductive heating film layer is formed on a rigid substrate.
  • FIG. 3 is a schematic diagram of a process in a method for manufacturing a flexible display device according to an embodiment of the present disclosure.
  • the material of the rigid substrate 110 in the embodiment of the present disclosure may be a transparent hard material, such as glass or quartz.
  • the conductive heating film layer 120a can be made on the rigid substrate 110 by a film forming method such as magnetron sputtering.
  • the material of the conductive heating film layer 120a can be iron-chromium alloy or nickel-chromium alloy.
  • the material of the prepared conductive heating layer having a microstructure pattern is an iron-chromium alloy or a nickel-chromium alloy to form a thin film layer having an electric heating capability, and the thickness is, for example, 10 to 500 nanometers (nm).
  • step 2 a patterning process is performed on the conductive heating film layer to form a conductive heating layer having a microstructure pattern.
  • the step of patterning the conductive heating film layer may include steps 11-12.
  • a conductive heating film layer is processed by a mask process to form a mask pattern layer above the conductive heating film layer.
  • FIG. 4 is a schematic diagram of a process in a method for manufacturing a flexible display device according to an embodiment of the present disclosure.
  • a photoresist mask pattern layer 120b is formed on the conductive heating film layer 120a through a photolithography process such as coating, exposure, and development.
  • step 12 the structure (the conductive heating film layer with a mask pattern) in step 11 is etched to form a conductive heating layer with a microstructure pattern.
  • FIG. 5 is a schematic diagram of a process in a method for manufacturing a flexible display device according to an embodiment of the present disclosure.
  • the conductive heating film layer 120a having a mask pattern is etched using a dry method or a wet etching method to produce a conductive heating layer 120 having a microstructure pattern.
  • FIG. 5 shows a side view structure of the conductive heating layer 120.
  • the heating layer 120 must be a grid-like pattern structure, or a dot-matrix pattern structure or other pattern structure, as long as it can achieve uniform heating and can effectively separate the effect of the rigid substrate and the flexible base layer.
  • an implementation manner of forming a flexible base layer on the conductive heating layer may include: sequentially forming a first flexible base layer, a heat dissipation layer, and a second flexible base layer on the conductive heating layer.
  • FIG. 6 is a schematic diagram of a process in a method for manufacturing a flexible display device according to an embodiment of the present disclosure.
  • the flexible base layer 130 in the embodiment of the present disclosure is a multilayer structure.
  • the multilayer structure may include, for example, a first flexible base layer 131, a heat dissipation layer 132, and a second flexible base layer 133.
  • the side of the first flexible base layer 131 close to the rigid substrate 110 is bonded to the conductive heating layer 120 (or the conductive heating layer 120 and the rigid substrate 110), and the display device is prepared, for example, on the second flexible base layer 133 away from the first flexible base layer 131.
  • the side is a schematic diagram of a process in a method for manufacturing a flexible display device according to an embodiment of the present disclosure.
  • the flexible base layer 130 in the embodiment of the present disclosure is a multilayer structure.
  • the multilayer structure may include, for example, a first flexible base layer 131, a heat dissipation layer 132, and
  • a heat dissipation layer 132 is provided on a side of the second flexible base layer 133 away from the display device, and the heat dissipation layer 132 is used to effectively dissipate the flexible display device when the power is applied to heat and separate the flexible display device, thereby reducing local thermal effects, thereby It can block the influence of high temperature on the display device and improve the product yield of the flexible display device.
  • the first flexible base layer 131 is attached to the rigid substrate 110 and the conductive heating layer 120 on the rigid substrate 110, and the flexibility after separation is flexible.
  • the outermost layer at the bottom of the display device (that is, the outermost layer facing away from the display device in the flexible display device) is the first flexible base layer 131. Therefore, in the separated flexible base layer 130, the first flexible base layer 131 is far from the display device.
  • There is a microstructure pattern on one side, and the microstructure pattern on the side of the first flexible base layer 131 away from the display device and the microstructure pattern of the conductive heating layer 120 are complementary patterns, and reference can be made to the filled and unfilled regions in FIG. 2. .
  • a manufacturing method for manufacturing the multilayer structure of the flexible base layer 130 may include the following steps 10-30.
  • a first flexible base layer 131 is fabricated on the conductive heating layer 120 having a microstructure pattern by spraying or coating.
  • the first flexible base layer 131 in the embodiment of the present disclosure may be made of polyimide fiber (Polyimide Film, abbreviated as: PI) material.
  • PI Polyimide Film
  • the thickness of the first flexible base layer 131 may be between 10 and 50 micrometers (um).
  • the formed PI is planarized to form the upper surface of the first flexible base layer 131, and the structure shown in FIG. 6 is referred to.
  • step 20 a heat dissipation layer 132 is prepared on the first flexible base layer 131.
  • the heat dissipation layer 132 may be made of a material with strong heat conduction and heat dissipation performance, so as to achieve a good heat dissipation effect.
  • the heat dissipation layer 132 may be a transparent graphene layer.
  • the transparent graphene layer can be composed of, for example, a multilayer transparent graphene film sequentially attached to the first flexible base layer 131.
  • Transparent graphene is currently the thinnest but also the hardest nanomaterial, which is almost completely Transparent, thermal conductivity up to 5300 watts / meter-degree (W / m ⁇ K), higher than carbon nanotubes and diamond, so it has high thermal conductivity and heat dissipation performance.
  • the thickness of the transparent graphene layer may be between 5 and 25 ⁇ m.
  • the heat dissipation layer 132 may include approximately 14900 to 74600 transparent graphene films.
  • a transparent graphene material with a thickness of 5 to 25 ⁇ m can be uniformly deposited on the first flexible base layer 131 to obtain the heat dissipation layer 132.
  • a second flexible base layer 133 is fabricated on the upper surface of the heat dissipation layer 132 by spraying or coating.
  • the manufacturing process, material selection, and thickness of the second flexible base layer 133 may be the same as those of the first flexible base layer 131, that is, the PI material may also be used, and the thickness may be between 10 and 50um.
  • the material selection and thickness of the first flexible base layer 131 and the second flexible base layer 133 are, for example, formulated according to the structure and performance requirements of the flexible base layer 130.
  • FIG. 7 is a schematic diagram of a process in a method for manufacturing a flexible display device according to an embodiment of the present disclosure.
  • the flexible display device in the embodiment of the present disclosure may be, for example, a flexible OLED display device, and the display device 140 is, for example, an OLED device 140.
  • the OLED device 140 may include a TFT layer 141, an OLED layer 142, and an encapsulation layer 143. Therefore, an implementation manner of preparing a display device on the flexible base layer 130 in the embodiment of the present disclosure may include: sequentially preparing TFTs on the second flexible base layer 133 The layer 141, the OLED layer 142, and the encapsulation layer 143.
  • the flexible display device may be of different types. Different types of display devices have different manufacturing processes and processes. Based on the multilayer structure of the flexible base layer 130 shown in FIG. 6, the display device 140 in the embodiment of the present disclosure is fabricated on the second flexible base layer 133, for example. It should be noted that the TFT layer 141 is a TFT array in the internal structure of the OLED device and is disposed on the second flexible base layer 133. The preparation process of the TFT layer 141 is chemical vapor deposition (Chemical Vapor Deposition, CVD for short), spray coating (Sputter), photolithography, and etching.
  • CVD chemical Vapor Deposition
  • Sputter spray coating
  • photolithography and etching.
  • the OLED layer 142 includes an OLED anode layer, a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, an electron transport layer, an electron injection layer, and an OLED cathode layer, etc .; the encapsulation layer 143 is disposed on the OLED layer Above 142, the encapsulation layer 143 and the second flexible base layer 133 form a covering space, and the covering space covers the TFT layer 141 and the OLED layer 142. As shown in FIG. 7, the cladding space is a sealed structure, and the TFT layer 141 and the OLED layer 142 are wrapped therein to prevent air and moisture from entering to ensure the performance of the TFT array and the OLED light emitting structure.
  • FIG. 8 is a schematic diagram of a process in a method for manufacturing a flexible display device according to an embodiment of the present invention.
  • FIG. 8 illustrates a process of separating the rigid substrate 110 and the first flexible base layer 131 by heating the conductive heating layer 120. Since the conductive heating layer 120 is located on a side of the rigid substrate 110 close to the first flexible base layer 131, the conductive heating layer 120 having a microstructure pattern before the separation is adhered to the first flexible base layer 131.
  • the heat generated by the conductive heating layer 120 peels off the first flexible base layer 131 from the conductive heating layer 120 at the boundary between the first flexible base layer 131 and the conductive heating layer 120, thereby realizing the rigid substrate 110 and
  • the first flexible base layer 131 is separated, and the conductive heating layer 120 is also separated from the first flexible base layer 131.
  • the separated conductive heating layer 120 is located on the rigid substrate 110.
  • the highly thermally conductive transparent graphene layer (radiation layer 132) can effectively transfer heat and reduce local thermal effects, thereby blocking the high temperature from affecting the performance of the TFT layer 141 and the OLED layer 142. Influence, to a certain extent, improve the product yield of flexible display devices.
  • the transparent graphene layer has high specific modulus, high toughness and other excellent mechanical properties, it is added as a heat dissipation layer 132 to the flexible base layer, that is, to the first flexible base layer 131 and the second flexible base layer 133 In this way, the mechanical properties of the flexible base layer are effectively improved, and the display device of the flexible display device has better ductility, and the flexible display device has higher thermal conductivity, which further improves the service life of the flexible display device. .
  • the uneven shape formed on the side of the first flexible base layer 131 away from the display device 140 Microstructure graphics.
  • the uneven microstructure pattern can effectively improve light extraction efficiency.
  • an embodiment of the present disclosure further provides a flexible display device.
  • the flexible display device is manufactured by using the manufacturing method provided by any one of the above embodiments of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a flexible display device according to an embodiment of the present disclosure.
  • the flexible display device 10 provided in this embodiment may include a flexible substrate layer 130 and a display device 140 disposed on the flexible substrate layer 130.
  • a microstructure pattern 130a is disposed on a side of the flexible base layer 130 away from the display device 140 in the embodiment of the present disclosure.
  • the microstructure pattern 130a is generated when the flexible base layer 130 is separated from the conductive heating layer on the rigid substrate near the flexible base layer 130, and the conductive heating layer having the microstructure pattern is heated and separated.
  • the flexible display device provided in the embodiment of the present disclosure is manufactured by a manufacturing method shown in FIG. 1. Since the flexible display device 10 has a flexible base layer 130, the display device 140 disposed on the flexible base layer 130 can have a stretchable function and can form a curved surface or other three-dimensional display effect display device. In addition, since the flexible base layer 130 has high stretchability, it is difficult to directly fabricate the display device 140 on the flexible base layer 130. Therefore, the flexible base layer 130 may be first fabricated on a rigid substrate, so that It has high stability during the manufacturing process. Subsequently, a display device 140 is fabricated on the flexible base layer 130 having a fixed structure.
  • the process of separating the flexible display device 10 from the rigid substrate is, for example, a process of separating the flexible base layer 130 from the conductive heating layer on the side of the rigid substrate close to the flexible base layer 130, and the separation method is:
  • the conductive heating layer is heated by being energized, so that the conductive heating layer generates sufficient heat so that the flexible base layer 130 is peeled from the conductive heating layer.
  • the heat generated by the conductive heating layer peels the flexible base layer 130 from the conductive heating layer at the interface between the flexible base layer 130 and the conductive heating layer, and the rigid substrate is separated from the flexible base layer 130.
  • the heating time and temperature are easy to control, which is beneficial to avoiding the influence of excessive local heat on the performance of the display device, and to a certain extent, improving the yield rate of the flexible display device.
  • the microstructure pattern on the side of the flexible base layer 130 away from the display device 140 in the embodiment of the present disclosure is generated after the conductive heating layer is separated.
  • the conductive heating layer attached to the flexible base layer 130 has a pattern that forms a complementary shape to the microstructure diagram on the side of the flexible base layer 130 away from the display device 140, and the grid pattern shown in FIG. 2 is Examples to illustrate.
  • the grid pattern in FIG. 2 is a microstructure pattern of the conductive heating layer 120, and the dot matrix pattern inside the grid pattern is a microstructure pattern on the side of the flexible base layer 130 away from the display device 140.
  • the microstructure pattern formed on the side of the flexible base layer 130 away from the display device 140 is conducive to improving light extraction efficiency, thereby further improving the service life of the display device.
  • the microstructure pattern on the side of the flexible base layer 130 away from the display device 140 in the embodiment of the present disclosure may also be a grid pattern.
  • the microstructure pattern of the conductive heating layer is a dot matrix pattern.
  • the embodiment of the present disclosure does not limit the specific shape of the microstructure pattern on the side of the flexible base layer 130 away from the display device 140, as long as the side of the separated flexible base layer 130 away from the display device 140 is not a flat structure, but has a concave-convex shape.
  • the pattern structure and the formed concave-convex pattern structure can improve the light extraction efficiency of the flexible display device, that is, it can be used as the microstructure pattern on the side of the flexible base layer 130 away from the display device 140 in the embodiment of the present invention.
  • the flexible display device is separated from the rigid substrate, that is, the bottom of the rigid substrate is scanned by laser scanning to separate the flexible display device from the rigid substrate.
  • the rigid substrate is heated to realize the separation between the rigid substrate and the flexible base layer.
  • the damage to the flexible base layer and the TFT circuit is relatively large, resulting in an increase in the defective rate of the product.
  • laser scanning is used to separate the rigid substrate and the flexible display, and the process is not easy to control and the cost is high.
  • a flexible display device provided by an embodiment of the present disclosure includes a flexible substrate layer and a display device, and a microstructure pattern is disposed on a side of the flexible substrate layer remote from the display device.
  • the display device is fabricated on a flexible substrate layer, the flexible substrate layer is fabricated on a rigid substrate layer, and the microstructure pattern on the side of the flexible substrate layer away from the display device is formed by approaching the rigid substrate to the flexible substrate when the flexible substrate layer is peeled off.
  • the conductive heating layer on the bottom side is formed by heating.
  • the microstructure pattern on the side of the flexible base layer away from the display device is beneficial to improve the light extraction efficiency, thereby improving the service life of the display device.
  • the separation method for forming the microstructure pattern can avoid the traditional separation process.
  • the damage of the laser energy to the display device further improves the service life of the display device.
  • FIG. 10 is a schematic structural diagram of another flexible display device according to an embodiment of the present disclosure.
  • the flexible base layer 130 includes: a second flexible base layer 133 disposed in close contact with the display device 140, and sequentially disposed The heat dissipation layer 132 and the first flexible base layer 131 on the side of the second flexible base layer 133 away from the display device 140.
  • the microstructure pattern 130a is disposed on a side of the first flexible base layer 131 away from the display device 140, for example.
  • the flexible base layer 130 in the embodiment of the present disclosure is a multilayer structure, and the multilayer structure may include a first flexible base layer 131, a heat dissipation layer 132, and a second flexible base layer 133 as shown in FIG.
  • the first flexible base layer 131 is disposed on the outermost side of the flexible display device 10 (ie, the outermost side of the flexible display device 10 facing away from the display device 140).
  • the display device 140 is prepared on the second flexible base layer 133, for example.
  • a heat dissipation layer 132 is provided on a side of the second flexible base layer 133 away from the display device 140.
  • the first flexible base layer 131 is disposed on the outermost side of the flexible display device 10 (that is, the side of the flexible display device 10 facing away from the display device 140 ).
  • the outermost layer on the bottom of the flexible display device 10 (that is, the flexible display device) is attached to the conductive heating layer (or the conductive heating layer and the rigid substrate) before the flexible display device 10 is separated.
  • the outermost layer on the side facing away from the display device 140 in 10) is the first flexible base layer 131. Therefore, in the separated flexible base layer 130, the uneven flexible micro-layer formed on the side of the first flexible base layer 131 away from the display device 140 Structure graphics.
  • the heat dissipation layer 132 may be a material with strong heat conduction and heat dissipation performance, so as to achieve a good heat dissipation effect.
  • the heat dissipation layer 132 may be a transparent graphene layer.
  • the thickness of the transparent graphene layer may be between 5 and 25 ⁇ m.
  • the heat dissipation layer 132 may include approximately 14900 to 74600 transparent graphene films.
  • a 5 to 25 ⁇ m transparent graphene material can be uniformly deposited on the first flexible base layer 131 to obtain the heat dissipation layer 132.
  • FIG. 11 is a schematic structural diagram of another flexible display device according to an embodiment of the present disclosure.
  • the flexible display The device 10 is a flexible OLED display device.
  • the display device 140 is, for example, an OLED device 140.
  • the OLED device 140 includes a TFT layer 141, an OLED layer 142, and an encapsulation layer 143, which are sequentially disposed away from the second flexible base layer 133.
  • the flexible display device 10 may have different types, and the display device 140 may have different types and specific structures.
  • the display device 140 in the embodiment of the present disclosure is disposed on the second flexible base layer 133, for example.
  • the TFT layer 141 in the display device 140 is a TFT array in the internal structure of the OLED device, and is disposed on the second flexible base layer 133.
  • the OLED layer 142 includes an OLED anode layer, a hole injection layer, a hole transport layer, and an electron.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种柔性显示装置的制作方法和柔性显示装置。该柔性显示装置的制作方法包括:在硬性基板(110)上形成具有第一微结构图形的导电加热层(120);在所述导电加热层(120)上形成柔性基底层(130),并且在所述柔性基底层(130)上制备显示器件(140);对所述导电加热层(130)进行加热处理,将所述柔性基底层(130)从所述导电加热层(120)上分离,且分离后的所述柔性基底层(130)远离所述显示器件(140)的一侧具有第二微结构图形。可以避免激光能量对显示器件的损伤,从而提高显示器件的使用寿命;并且制备出的柔性基底层远离显示器件的一侧具有微结构图形,有利于提高光提取效率。

Description

柔性显示装置的制作方法和柔性显示装置
本申请要求于2018年5月28日递交的中国专利申请第201810523678.6号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及一种柔性显示装置的制作方法和柔性显示装置。
背景技术
随着显示器技术发展和人们对产品要求的不断提高,在追求高分辨率的同时,也在追求轻、薄、窄边框。除此之外,对显示装置的要求不再仅局限于平面显示的需求,而是希望有曲面和更立体的显示效果,因此,柔性显示技术顺应而生。
现有显示技术中,应用比较广泛的柔性显示器的制作工艺为:在硬性基板上制作一层具有阻水氧性能的柔性基板层,然后在柔性基板上制作薄膜晶体管(Thin Film Transistor,简称为:TFT)电路和有机电致发光显示器件(Organic Electroluminance Display,简称为:OLED)器件,然后采用包膜封装技术进行封装,待显示器产品制作完成后通过激光扫描硬性基板的底部将柔性显示器从硬性基板上取下。然而,由于激光扫描的工艺不易控制,在将柔性显示器从硬性基板上取下时产生较大热量,且散热效果不佳,对柔性基板和TFT电路损坏程度较大,导致产品不良率增加。另一方面,采用激光扫描分离硬性基板和柔性显示器的方式,成本较高。
发明内容
根据本公开的实施例提供一种柔性显示装置的制作方法,包括:在硬性基板上形成具有第一微结构图形的导电加热层;在所述导电加热层上形成柔性基底层,并且在所述柔性基底层上制备显示器件;对所述导电加热层进行加热处理,将所述柔性基底层从所述导电加热层上分离,且分离后的所述柔 性基底层远离所述显示器件的一侧具有第二微结构图形。
在一些示例中,所述在硬性基板上形成具有第一微结构图形的导电加热层,包括:在所述硬性基板上形成导电加热膜层;对所述导电加热膜层进行图形化工艺处理,形成所述具有第一微结构图形的导电加热层。
在一些示例中,所述在所述导电加热层上形成所述柔性基底层,包括:在所述导电加热层上依次形成第一柔性基层、散热层和第二柔性基层。
在一些示例中,分离后的所述柔性基底层中,所述第一柔性基层远离所述显示器件的一侧具有所述第二微结构图形。
在一些示例中,所述第一柔性基层和所述第二柔性基层为聚酰亚胺纤维材质;所述第一柔性基层和所述第二柔性基层的厚度均在10到50微米之间。
在一些示例中,所述散热层为透明石墨烯层,所述透明石墨烯层由多层透明石墨烯膜构成;所述散热层的厚度在5到25微米之间。
在一些示例中,所述显示器件为有机发光二极管器件,在所述柔性基底层上制备显示器件包括:在所述第二柔性基层上依次制备薄膜晶体管层、有机发光二极管层和封装层。
在一些示例中,所述封装层与所述柔性基底层形成包覆空间,所述包覆空间中包覆所述薄膜晶体管层和所述有机发光二极管层。
在一些示例中,所述柔性基底层远离所述显示器件的一侧的所述第二微结构图形与所述导电加热层的所述第一微结构图形为互补的图形。
在一些示例中,所述导电加热层的材质包括以下至少一项:铁铬合金和镍铬合金。
在一些示例中,所述导电加热层的所述第一微结构图形为网格状图形或点阵状图形。
根据本公开的实施例提供一种柔性显示装置,包括:柔性基底层和设置于所述柔性基底层上的显示器件;其中,所述柔性基底层远离所述显示器件的一侧设置有微结构图形。
在一些示例中,所述微结构图形为所述柔性基底层的表面上凸出的网格状图形或点阵状图形。
在一些示例中,所述柔性基底层包括:从靠近所述显示器件向远离所述显示器件的方向上依次设置第二柔性基层、散热层和第一柔性基层;其中, 所述微结构图形设置于所述第一柔性基层远离所述显示器件的一侧。
在一些示例中,所述第一柔性基层和所述第二柔性基层为聚酰亚胺纤维材质;所述第一柔性基层和所述第二柔性基层的厚度均在10到50微米之间。
在一些示例中,所述散热层为透明石墨烯层,所述透明石墨烯层由多层透明石墨烯膜构成;所述散热层的厚度在5到25微米之间。
在一些示例中,所述显示器件为有机发光二极管器件,所述有机发光二极管器件包括远离所述第二柔性基层依次设置的薄膜晶体管层、有机发光二极管层和封装层。
在一些示例中,所述封装层与所述柔性基底层形成包覆空间,所述包覆空间中包覆所述薄膜晶体管层和所述有机发光二极管层。
在一些示例中,所述微结构图形为将所述柔性基底层从硬性基板上设置的图形化的导电加热层上分离时,对所述图形化的导电加热层进行加热且分离后产生的。
在一些示例中,所述柔性基底层远离所述显示器件的一侧的微结构图形与所述导电加热层的图形为互补的图形。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本公开实施例提供的一种柔性显示装置的制作方法的流程图;
图2为本公开实施例提供的柔性显示装置的制作方法中一种导电加热层的结构示意图;
图3为本公开实施例提供的柔性显示装置的制作方法中一个工艺过程的示意图;
图4为本公开实施例提供的柔性显示装置的制作方法中一个工艺过程的示意图;
图5为本公开实施例提供的柔性显示装置的制作方法中一个工艺过程的示意图;
图6为本公开实施例提供的柔性显示装置的制作方法中一个工艺过程的 示意图;
图7为本公开实施例提供的柔性显示装置的制作方法中一个工艺过程的示意图;
图8为本公开实施例提供的柔性显示装置的制作方法中一个工艺过程的示意图;
图9为本公开实施例提供的一种柔性显示装置的结构示意图;
图10为本公开实施例提供的另一种柔性显示装置的结构示意图;
图11为本公开实施例提供的又一种柔性显示装置的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供以下几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图1为本公开实施例提供的一种柔性显示装置的制作方法的流程图。本实施例提供的方法可以应用于制作柔性显示装置的工艺中,本实施例提供的柔性显示装置的制作方法,可以包括如下步骤S110-S130。
S110,在硬性基板上形成具有微结构图形的导电加热层。
S120,在导电加热层上形成柔性基底层,并且在该柔性基底层上制备显示器件。
本公开实施例提供的柔性显示装置的制作方法,可以在普通显示装置的硬性基板上制作柔性显示装置,并且该柔性显示装置具有柔性基底层,使得制备出的柔性显示装置具有可拉伸的功能,可以形成曲面或其它立体显示效果的显示装置。另外,由于柔性基底层的自身的可拉伸性能较高,难以直接在该柔性基底层上直接制作显示器件,因此,可以先将该柔性基底层制作于硬性基板之上,使其在制作过程中具有较高的稳固性,随后,在结构固定的柔性基底层上制作出显示器件。由于本公开实施例中的显示器件形成于该柔 性基底层上,基于柔性基底层的形变特征,该显示器件也具有一定的形变性能。该显示器件例如可以为TFT电路和OLED器件。
需要说明的是,考虑到相关技术中将柔性显示装置从硬性基板上分离的过程中,由于散热效果对柔性显示装置造成的影响,本公开实施例在制作柔性基底层之前,先在硬性基板上制作一层导电加热层,并且该导电加热层并非一层厚度一致的平面层,而是具有微结构图形的可发热金属层,这层具有微结构图形的导电加热层在后续不仅起到散热效果,还对柔性显示装置的发光效果具有重大意义。
在本公开实施例中,在硬性基板上制作出具有微结构图形的导电加热层后,可以在该导电加热层上制作柔性基底层。导电加热层的图形例如可以是网格状图形。如图2所示,具有网格状图形的导电加热层例如是具有阵列排布的多个开口的导电加热层。图2为本公开实施例提供的柔性显示装置的制作方法中一种导电加热层的结构示意图,图2中未填充的区域为被网格状导电加热层露出的硬性基板110,填充的网格状图形为导电加热层120。导电加热层120内部具有填充的部分可以为导电加热层120凸起的结构,导电加热层120内部没有填充的部分则为凹陷的结构。例如,导电加热层120为从硬性基板110的表面突出的结构。
例如,根据本公开实施例的导电加热层是包括部分镂空结构的导电加热层。镂空部分的面积与导电加热层本身的面积之比没有特别限定。例如,可以根据柔性基底层剥离的难易程度来调节上述比例。例如,镂空部分与导电加热层本身的面积之比可以为1/2~1。此外,镂空部分的特征尺寸(例如,当镂空部分为正方形开口时,其边长为特征尺寸;或者镂空结构为圆形开口时,其直径为特征尺寸;或者镂空结构为条形结构时,其宽度为特征尺寸)也可以根据需要进行调节。例如,镂空结构的特征尺寸为5-30μm。例如,镂空结构的特征尺寸为小于柔性基底层的厚度的1/3。在一些示例中,镂空结构的特征尺寸为小于柔性基底层的厚度的1/4或1/5等。
需要说明的是,图2仅示意出导电加热层的一种可能的结构特征,该导电加热层的图形也可以是点阵状图形,或其它形状的图形,只要满足微结构图形的导电加热层并非厚度一致的平面层,而是具有凹凸状的图形结构,并且形成的凹凸状图形结构在分离硬性基板时可以提供良好的散热效果,即可 作为本公开实施例中导电加热层的微结构图形。
S130,对导电加热层进行加热处理,将柔性基底层从导电加热层上分离,且分离后的柔性基底层远离显示器件的一侧具有微结构图形。
本公开实施例提供的柔性显示装置的制作方法,在完成显示器件的制作后,为了使显示装置具有可拉伸的柔性性能,需要将硬性基板从整个显示装置上剥离下来,即分离硬性基板和柔性基底层。本公开实施例提供的制作方法中,基于上述已经在硬性基板上形成导电加热层的结构特征,且该导电加热层设置于硬性基板接近柔性基底层的一侧,可以通过对硬性基板上的导电加热层通电进行加热,使得该导电加热层产生足够的热量以便使得导电加热层与柔性基底层分离,即实现了硬性基板与柔性基底层分离的效果。在加热分离的过程中,导电加热层产生的热量在柔性基底层与和导电加热层的交界处,将柔性基底层从导电加热层上剥离。微结构图形上的凹凸状结构具有均匀加热的效果,并且加热的时间和温度易于控制,从而避免因局部热量过高对显示器件性能的影响,在一定程度上提高了柔性显示装置的制成良率。
在本公开实施例中,分离后的柔性基底层远离显示器件的一侧具有微结构图形,参考图2所示导电加热层的微结构图形,柔性基底层远离显示器件的一侧的微结构图形与导电加热层的微结构图形为互补的图形。例如,在图形化的导电加热层上形成柔性基底层时,柔性基底层会填充到没有导电加热层图案的位置,因此,导电加热层的微结构图形可以与柔性基底层的微结构图形互补。以图2所示网格状图形为例予以说明,在图2所示导电加热层上形成的柔性基底层,与导电加热层分离后柔性基底层远离显示器件的一侧的微结构图形为点阵状图形,即图2所示导电加热层120内部未填充部分的图形结构。例如,柔性基底层远离显示器件的一侧具有点阵分布的凸点结构。另外,分离导电加热层后在柔性基底层远离显示器件的一侧形成的微结构图形,有利于提高光提取效率,从而进一步提高显示器件的使用寿命。
相关技术中将柔性显示装置从硬性基板上分离的方式,即通过激光扫描硬性基板的底部将柔性显示装置从硬性基板上分离,实际就是对硬性基板进行加热以实现硬性基板和柔性基底层的分离,然而,该分离技术中由于散热效果不佳,对柔性基底层和TFT电路损坏程度较大,导致产品不良率增加。另外,采用激光扫描分离硬性基板和柔性显示器的方式,工艺不易控制且成 本较高。
本公开实施例提供的柔性显示装置的制作方法,通过在硬性基板上形成具有微结构图形的导电加热层,并且柔性基底层形成于该导电加热层之上,在柔性基底层上制备显示器件后,通过对导电加热层的加热处理,将柔性基底层从导电加热层上分离,且分离后的柔性基底层远离显示器件的一侧具有微结构图形。本公开提供的柔性显示装置的制作方法,不仅可以避免传统分离工艺中的激光能量对显示器件造成的损伤,从而提高显示器件的使用寿命,并且制备出的柔性基底层远离显示器件的一侧具有微结构图形,可以提高光提取效率,从而进一步提高显示器件的使用寿命。
进一步地,本公开实施例中采用导电加热的分离方式,工艺可控制性较高,且成本低。
可选地,在本公开实施例中,上述具有微结构图形的导电加热层的制作方式可以包括如下步骤1-2。
步骤1,在硬性基板上形成导电加热膜层。
图3为本公开实施例提供的柔性显示装置的制作方法中一个工艺过程的示意图。本公开实施例中的硬性基板110的材质可以为透明的硬质材料,例如为玻璃或石英等材料。可以利用磁控溅射等成膜方式在硬性基板110上制作导电加热膜层120a,导电加热膜层120a的材质可以选用铁铬合金或镍铬合金。例如,制备成的具有微结构图形的导电加热层的材质为铁铬合金或镍铬合金,以形成具有电加热能力的薄膜层,厚度例如为10~500纳米(nm)。
步骤2,对导电加热膜层进行图形化工艺处理,形成具有微结构图形的导电加热层。
对导电加热膜层进行图形化工艺处理的步骤可以包括步骤11-12。
步骤11,通过掩膜工艺对导电加热膜层进行处理,形成该导电加热膜层上方的掩膜图形层。
图4为本公开实施例提供的柔性显示装置的制作方法中一个工艺过程的示意图。通过涂胶、曝光、显影等光刻工艺制程,在导电加热膜层120a上方形成光刻胶掩膜图形层120b。
步骤12,对步骤11中的结构(具有掩膜图形的导电加热膜层)进行刻蚀,形成具有微结构图形的导电加热层。
图5为本公开实施例提供的柔性显示装置的制作方法中一个工艺过程的示意图。对具有掩膜图形的导电加热膜层120a的采用干法或湿法刻蚀等刻蚀方式,制作出具有微结构图形的导电加热层120。图5中示出了导电加热层120的侧视结构,导电加热层120的俯视结构可以参照图2所示,图2所示的导电加热层120的结构只是示意性说明,并不表示该导电加热层120一定是网格状图形结构,也可以是点阵状图形结构或其它图形结构,只要能达到均匀加热,且可以有效分离硬性基板和柔性基底层的效果即可。
可选地,在本公开实施例中,在导电加热层上形成柔性基底层的实现方式,可以包括:在导电加热层上依次形成第一柔性基层、散热层和第二柔性基层。
图6为本公开实施例提供的柔性显示装置的制作方法中一个工艺过程的示意图。本公开实施例中的柔性基底层130为多层结构。该多层结构例如可以包括第一柔性基层131、散热层132和第二柔性基层133。例如,第一柔性基层131接近硬性基板110的一侧与导电加热层120(或导电加热层120和硬性基板110)相贴合,显示器件例如制备于第二柔性基层133远离第一柔性基层131的一侧。在一些示例中,在第二柔性基层133远离显示器件的一侧具有散热层132,该散热层132用于在通电加热分离柔性显示装置时,进行有效地散热,减小局部的热影响,从而阻隔高温对显示器件的造成的影响,提高柔性显示装置的产品良率。
需要说明的是,基于图6所示柔性基底层130的多层结构可以看出,第一柔性基层131与硬性基板110和该硬性基板110上的导电加热层120相贴合,分离后的柔性显示装置底部的最外层(即柔性显示装置中背离显示器件一侧的最外层)为第一柔性基层131,因此,分离后的柔性基底层130中,该第一柔性基层131远离显示器件的一侧具有微结构图形,且该第一柔性基层131远离显示器件一侧的微结构图形与导电加热层120的微结构图形为互补的图形,可以参考图2中的填充区域和未填充区域。
在一些示例中,制作柔性基底层130的多层结构的制作方式可以包括如下步骤10-30。
步骤10,通过喷涂或者涂布的方式在具有微结构图形的导电加热层120上制作出第一柔性基层131。
可选地,本公开实施例中的第一柔性基层131可以选用聚酰亚胺纤维(Polymide Film,简称为:PI)材料。例如,该第一柔性基层131的厚度可以在10~50微米(um)之间。对成膜后的PI进行平坦化形成第一柔性基层131的上表面,参照图6所示结构。
步骤20,在第一柔性基层131上制备散热层132。
在本公开实施例中,散热层132可以由具有较强导热散热性能的材料制备而成,从而达到良好的散热效果。可选地,若柔性显示装置为双面发光或者是底发光型的OLED显示器,则该散热层132可以选用透明石墨烯层。
在一些示例中,该透明石墨烯层例如可以由依次贴附在第一柔性基层131上的多层透明石墨烯膜构成,透明石墨烯是目前最薄却也是最坚硬的纳米材料,几乎是完全透明的,导热系数高达5300瓦/米·度(W/m·K),高于碳纳米管和金刚石,因此具有高导热散热性能。
在本公开实施例的一种实现方式中,该透明石墨烯层的厚度可以在5~25um之间。根据透明石墨烯膜的厚度计算,散热层132大概可以包括14900~74600层透明石墨烯膜。
在本公开实施例的另一种实现方式中,可以在第一柔性基层131上均匀地沉积5~25um的透明石墨烯材质,以得到散热层132。
步骤30,通过喷涂或者涂布的方式在散热层132的上表面制作出第二柔性基层133。
本公开实施例中第二柔性基层133的制作工艺、材料选取和厚度可以与第一柔性基层131相同,即同样可以采用PI材料,且厚度可以在10~50um之间,具体结构位置参照图6所示。第一柔性基层131和第二柔性基层133的材料选取和厚度,例如为依据对柔性基底层130的结构和性能要求制定的。
可选地,图7为本公开实施例提供的柔性显示装置的制作方法中一个工艺过程的示意图。本公开实施例中的柔性显示装置例如可以为柔性OLED显示装置,其中的显示器件140例如为OLED器件140。该OLED器件140可以包括TFT层141、OLED层142和封装层143,因此,本公开实施例中在柔性基底层130上制备显示器件的实现方式可以包括:在第二柔性基层133上依次制备TFT层141、OLED层142和封装层143。
在本公开实施例中,柔性显示装置可以为不同的类型。显示器件的类型 不同,则制作过程和工艺也不同。基于图6所示柔性基底层130的多层结构,本公开实施例中的显示器件140例如制作于第二柔性基层133上。需要说明的是,TFT层141为OLED器件内部结构中的TFT阵列,设置于第二柔性基层133上,TFT层141的制备工艺以化学气相淀积(Chemical Vapor Deposition,简称为:CVD)、喷涂(Sputter)、光刻和刻蚀等为主。OLED层142包括OLED阳极层、空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层和OLED阴极层等;封装层143设置于OLED层142之上,该封装层143与第二柔性基层133形成包覆空间,该包覆空间中包覆TFT层141和OLED层142。如图7所示,包覆空间为密封结构,将TFT层141和OLED层142包裹于其中,防止空气、水分进入,以保证TFT阵列和OLED发光结构的性能。
图8为本发明实施例提供的柔性显示装置的制作方法中一个工艺过程的示意图。图8中示意出了通过加热导电加热层120,分离硬性基板110与第一柔性基层131的过程。由于导电加热层120位于硬性基板110接近第一柔性基层131的一侧,分离前具有微结构图形的导电加热层120与第一柔性基层131相贴合。在该分离过程中,导电加热层120产生的热量在该第一柔性基层131与导电加热层120的交界处,将第一柔性基层131从导电加热层120上剥离,即实现了硬性基板110与第一柔性基层131的分离,并且导电加热层120也与第一柔性基层131的分离。分离后的导电加热层120位于硬性基板110上,高导热的透明石墨烯层(散热层132)可以有效传递热量,减小局部的热影响,从而阻隔高温对TFT层141和OLED层142性能的影响,在一定程度上提高了柔性显示装置的产品良率。另外,由于透明石墨烯层具有较高的比模量,高韧性等优异的机械性能,将其作为散热层132添加到柔性基底层中,即加入到第一柔性基层131与第二柔性基层133之间,有效地改善了柔性基底层的机械性能,并且使得柔性显示装置的显示器件具有较好的延展性,还使得柔性显示装置具有较高的导热性能,进一步提高了柔性显示装置的使用寿命。
需要说明的是,基于图6所示柔性基底层130的多层结构,将第一柔性基层131从导电加热层120上剥离后,第一柔性基层131远离显示器件140的一侧形成的凹凸状的微结构图形。对于双面发光或者底发光型的OLED显 示器来说,该凹凸状的微结构图形能够有效地提高光提取效率。
基于本公开上述各实施例提供的柔性显示装的制作方法,本公开实施例还提供一种柔性显示装置。该柔性显示装置为通过本公开上述任一实施例提供的制作方法制作得到的。
图9为本公开实施例提供的一种柔性显示装置的结构示意图。本实施例提供的柔性显示装置10可以包括:柔性基底层130和设置于该柔性基底层130上的显示器件140。
本公开实施例中的柔性基底层130远离显示器件140的一侧设置有微结构图形130a。该微结构图形130a为将柔性基底层130从硬性基板接近柔性基底层130一侧的导电加热层上分离时,对具有微结构图形的导电加热层进行加热且分离后产生的。
本公开实施例提供的柔性显示装置,为通过图1所示制作方法的工艺方式制得的。由于该柔性显示装置10具有柔性基底层130,可以使得设置于柔性基底层130上的显示器件140具有可拉伸的功能,可以形成曲面或其它立体显示效果的显示装置。另外,由于柔性基底层130的自身的可拉伸性能较高,难以直接在该柔性基底层130上直接制作显示器件140,因此,可以先将该柔性基底层130制作于硬性基板之上,使其在制作过程中具有较高的稳固性,随后,在结构固定的柔性基底层130上制作出显示器件140。
在本公开实施例中,将柔性显示装置10从硬性基板上分离的过程,例如为将柔性基底层130从硬性基板接近柔性基底层130一侧的导电加热层上分离的过程,分离方式为:通过对导电加热层通电进行加热,使得该导电加热层产生足够的热量以便使得柔性基底层130从导电加热层上剥离。在加热分离的过程中,导电加热层产生的热量在柔性基底层130和导电加热层的交界处,将柔性基底层130从导电加热层上剥离,即实现了硬性基板与柔性基底层130分离的效果。加热的时间和温度易于控制,有利于避免因局部热量过高对显示器件性能的影响,在一定程度上提高了柔性显示装置的制成良率。
需要说明的是,本公开实施例中柔性基底层130远离显示器件140的一侧的微结构图形,就是在分离导电加热层后产生的。可以理解的是,与该柔性基底层130相贴合的导电加热层具有与柔性基底层130远离显示器件140一侧的微结构图形成互补形状的图形,以图2所示网格状图形为例予以说明。 图2中的网格状图形为导电加热层120的微结构图形,则网格状图形内部的点阵状图形为柔性基底层130远离显示器件140一侧的微结构图形。柔性基底层130远离显示器件140一侧形成的微结构图形有利于提高光提取效率,从而进一步提高显示器件的使用寿命。
还需要说明的是,本公开实施例中柔性基底层130远离显示器件140一侧的微结构图形也可以为网格状图形,此时,导电加热层的微结构图形则为点阵状图形。本公开实施例不限制柔性基底层130远离显示器件140一侧的微结构图形的具体形状,只要满足分离后的柔性基底层130远离显示器件140的一侧不是平坦结构,而是具有凹凸状的图形结构,并且形成的凹凸状图形结构可以提高柔性显示装置的光提取效率,即可作为本发明实施例中柔性基底层130远离显示器件140一侧的微结构图形。
相关技术中将柔性显示装置从硬性基板上分离的方式,即通过激光扫描硬性基板的底部将柔性显示装置从硬性基板上分离,实际就是对硬性基板进行加热以实现硬性基板和柔性基底层的分离。然而,该分离技术中由于散热效果不佳,对柔性基底层和TFT电路损坏程度较大,导致产品不良率增加。另外,采用激光扫描分离硬性基板和柔性显示器的方式,工艺不易控制且成本较高。
本公开实施例提供的柔性显示装置,包括柔性基底层和显示器件,并且柔性基底层远离显示器件的一侧设置有微结构图形。显示器件制作于柔性基底层之上,柔性基底层制作于硬性基层之上,柔性基底层远离显示器件一侧的微结构图形的形成方式为:剥离柔性基底层时通过对该硬性基板接近柔性基底层一侧的导电加热层进行加热形成的。本公开提供的柔性显示装置,柔性基底层远离显示器件一侧的微结构图形有利于提高光提取效率,从而提高显示器件的使用寿命,形成该微结构图形的分离方式可以避免传统分离工艺中的激光能量对显示器件的损伤,从而进一步提高显示器件的使用寿命。
可选地,图10为本公开实施例提供的另一种柔性显示装置的结构示意图。在图9所示柔性显示装置10的结构基础上,本公开实施例提供的柔性显示装置10中,柔性基底层130包括:与显示器件140相贴合设置的第二柔性基层133,以及依次设置于第二柔性基层133远离显示器件140一侧的散热层132和第一柔性基层131。微结构图形130a例如设置于第一柔性基层131远离显 示器件140的一侧。
本公开实施例中的柔性基底层130为多层结构,该多层结构可以包括图10所示的第一柔性基层131、散热层132和第二柔性基层133。第一柔性基层131设置于柔性显示装置10的最外侧(即柔性显示装置10中背离显示器件140一侧的最外侧),显示器件140例如制备于第二柔性基层133上。在一些示例中,在第二柔性基层133远离显示器件140的一侧具有散热层132,该散热层132用于在通电加热分离柔性显示装置10时,进行有效地散热,减小局部的热影响,从而阻隔高温对显示器件的造成的影响,提高柔性显示装置的产品良率。
需要说明的是,基于图10所示柔性基底层130的多层结构可以看出,第一柔性基层131设置于柔性显示装置10的最外侧(即柔性显示装置10中背离显示器件140一侧的最外侧),分离柔性显示装置10前该第一柔性基层131与导电加热层(或导电加热层和硬性基板)相贴合,分离后的柔性显示装置10底部的最外层(即柔性显示装置10中背离显示器件140一侧的最外层)为第一柔性基层131,因此,分离后的柔性基底层130中,该第一柔性基层131远离显示器件140的一侧形成的凹凸状的微结构图形。对于双面发光或者底发光型的OLED显示器来说,该凹凸状的微结构图形能够有效地提高光提取效率。另外,该第一柔性基层131远离显示器件140一侧的微结构图形与导电加热层的微结构图形为互补的图形,可以参考图2中的填充区域和未填充区域。
可选地,在本公开实施例中,第一柔性基层131和第二柔性基层133可以选用PI材料,且第一柔性基层131和第二柔性基层133的厚度可以在10~50um之间。第一柔性基层131和第二柔性基层133的材料选取和厚度,例如为依据对柔性基底层130的结构和性能要求制定的。
可选地,在本公开实施例中,散热层132可以为具有较强导热散热性能的材料,从而达到良好的散热效果。可选地,若柔性显示装置10为双面发光或者是底发光型的OLED显示器,则该散热层132可以选用透明石墨烯层。
在一些示例中,该透明石墨烯层例如可以由依次贴附在第一柔性基层131上的多层透明石墨烯膜构成,透明石墨烯是目前最薄却也是最坚硬的纳米材料,几乎是完全透明的,导热系数高达5300W/m·K,高于碳纳米管和金 刚石,因此具有高导热散热性能。
在本公开实施例的一种实现方式中,该透明石墨烯层的厚度可以在5~25um之间。根据透明石墨烯膜的厚度计算,散热层132大概可以包括14900~74600层透明石墨烯膜。
在本公开实施例的另一种实现方式中,可以通过在第一柔性基层131上均匀地沉积5~25um的透明石墨烯材质,得到散热层132。
可选地,图11为本公开实施例提供的又一种柔性显示装置的结构示意图,在图10所示柔性显示装置10的结构基础上,本公开实施例的柔性显示装置10中,柔性显示装置10为柔性OLED显示装置,其显示器件140例如为OLED器件140,该OLED器件140包括远离第二柔性基层133依次设置的TFT层141、OLED层142和封装层143。
在本公开实施例中,柔性显示装置10可以有不同的类型,显示器件140可以有不同的类型和具体结构。基于柔性基底层130的多层结构和显示器件140的内部各层结构,本公开实施例中的显示器件140例如设置于第二柔性基层133上。需要说明的是,显示器件140中TFT层141为OLED器件内部结构中的TFT阵列,设置于第二柔性基层133上;OLED层142包括OLED阳极层、空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层和OLED阴极层等;封装层143设置于OLED层142之上,该封装层143与第二柔性基层133形成包覆空间,该包覆空间中包覆TFT层141和OLED层142。如图11所示,包覆空间为密封结构,将TFT层141和OLED层142包裹于其中,防止空气、水分进入,以保证TFT阵列和OLED发光结构的性能。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。

Claims (20)

  1. 一种柔性显示装置的制作方法,包括:
    在硬性基板上形成具有第一微结构图形的导电加热层;
    在所述导电加热层上形成柔性基底层,并且在所述柔性基底层上制备显示器件;
    对所述导电加热层进行加热处理,将所述柔性基底层从所述导电加热层上分离,且分离后的所述柔性基底层远离所述显示器件的一侧具有第二微结构图形。
  2. 根据权利要求1所述的柔性显示装置的制作方法,其中,所述在硬性基板上形成具有第一微结构图形的导电加热层,包括:
    在所述硬性基板上形成导电加热膜层;
    对所述导电加热膜层进行图形化工艺处理,形成所述具有第一微结构图形的导电加热层。
  3. 根据权利要求1或2所述的柔性显示装置的制作方法,其中,所述在所述导电加热层上形成所述柔性基底层,包括:
    在所述导电加热层上依次形成第一柔性基层、散热层和第二柔性基层。
  4. 根据权利要求3所述的柔性显示装置的制作方法,其中,分离后的所述柔性基底层中,所述第一柔性基层远离所述显示器件的一侧具有所述第二微结构图形。
  5. 根据权利要求3或4所述的柔性显示装置的制作方法,其中,
    所述第一柔性基层和所述第二柔性基层为聚酰亚胺纤维材质;
    所述第一柔性基层和所述第二柔性基层的厚度均在10微米到50微米之间。
  6. 根据权利要求3~5中任一项所述的柔性显示装置的制作方法,其中,
    所述散热层为透明石墨烯层,所述透明石墨烯层由多层透明石墨烯膜构成;
    所述散热层的厚度在5到25微米之间。
  7. 根据权利要求1~6中任一项所述的柔性显示装置的制作方法,其中,所述显示器件为有机发光二极管器件,在所述柔性基底层上制备显示器件包 括:
    在所述第二柔性基层上依次制备薄膜晶体管层、有机发光二极管层和封装层。
  8. 根据权利要求7所述的柔性显示装置的制作方法,其中,所述封装层与所述柔性基底层形成包覆空间,所述包覆空间中包覆所述薄膜晶体管层和所述有机发光二极管层。
  9. 根据权利要求1~8中任一项所述的柔性显示装置的制作方法,其中,所述柔性基底层远离所述显示器件的一侧的所述第二微结构图形与所述导电加热层的所述第一微结构图形为互补的图形。
  10. 根据权利要求1~9中任一项所述的柔性显示装置的制作方法,其中,所述导电加热层的材质包括以下至少一项:铁铬合金和镍铬合金。
  11. 根据权利要求1~10中任一项所述的柔性显示装置的制作方法,其中,所述导电加热层的所述第一微结构图形为网格状图形或点阵状图形。
  12. 一种柔性显示装置,包括:柔性基底层和设置于所述柔性基底层上的显示器件;
    其中,所述柔性基底层远离所述显示器件的一侧设置有微结构图形。
  13. 根据权利要求12所述的柔性显示装置,其中,所述微结构图形为所述柔性基底层的表面上凸出的网格状图形或点阵状图形。
  14. 根据权利要求12或13所述的柔性显示装置,其中,所述柔性基底层包括:从靠近所述显示器件向远离所述显示器件的方向上依次设置第二柔性基层、散热层和第一柔性基层;其中,所述微结构图形设置于所述第一柔性基层远离所述显示器件的一侧。
  15. 根据权利要求14所述的柔性显示装置,其中,
    所述第一柔性基层和所述第二柔性基层为聚酰亚胺纤维材质;
    所述第一柔性基层和所述第二柔性基层的厚度均在10微米到50微米之间。
  16. 根据权利要求14或15所述的柔性显示装置,其中,
    所述散热层为透明石墨烯层,所述透明石墨烯层由多层透明石墨烯膜构成;
    所述散热层的厚度在5到25微米之间。
  17. 根据权利要求12~16中任一项所述的柔性显示装置,其中,所述显示器件为有机发光二极管器件,所述有机发光二极管器件包括远离所述第二柔性基层依次设置的薄膜晶体管层、有机发光二极管层和封装层。
  18. 根据权利要求17所述的柔性显示装置,其中,所述封装层与所述柔性基底层形成包覆空间,所述包覆空间中包覆所述薄膜晶体管层和所述有机发光二极管层。
  19. 根据权利要求12~18中任一项所述的柔性显示装置,其中,所述微结构图形为将所述柔性基底层从硬性基板上设置的图形化的导电加热层上分离时,对所述图形化的导电加热层进行加热且分离后产生的。
  20. 根据权利要求19所述的柔性显示装置,其中,所述柔性基底层远离所述显示器件的一侧的微结构图形与所述导电加热层的图形为互补的图形。
PCT/CN2019/071163 2018-05-28 2019-01-10 柔性显示装置的制作方法和柔性显示装置 WO2019227940A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/473,402 US11316136B2 (en) 2018-05-28 2019-01-10 Manufacturing method of flexible display device and flexible display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810523678.6A CN108470855A (zh) 2018-05-28 2018-05-28 一种柔性显示装置的制作方法和柔性显示装置
CN201810523678.6 2018-05-28

Publications (1)

Publication Number Publication Date
WO2019227940A1 true WO2019227940A1 (zh) 2019-12-05

Family

ID=63260578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071163 WO2019227940A1 (zh) 2018-05-28 2019-01-10 柔性显示装置的制作方法和柔性显示装置

Country Status (3)

Country Link
US (1) US11316136B2 (zh)
CN (1) CN108470855A (zh)
WO (1) WO2019227940A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108470855A (zh) * 2018-05-28 2018-08-31 京东方科技集团股份有限公司 一种柔性显示装置的制作方法和柔性显示装置
CN109669640B (zh) * 2018-12-24 2023-05-23 浙江大华技术股份有限公司 一种数据存储方法、装置、电子设备及介质
CN111276637B (zh) * 2020-03-19 2023-08-25 合肥鑫晟光电科技有限公司 柔性显示基板及其制作方法、显示装置
CN111755632B (zh) * 2020-07-30 2022-07-19 河南工程学院 一种柔性有机电致发光器件及其制备方法
CN114420863B (zh) * 2022-01-10 2023-06-30 深圳市华星光电半导体显示技术有限公司 显示装置及其制造方法
CN114627768B (zh) * 2022-04-06 2024-03-15 深圳市华星光电半导体显示技术有限公司 柔性oled显示模组及制作方法、终端设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100068661A (ko) * 2008-12-15 2010-06-24 포항공과대학교 산학협력단 레이저 빔을 이용한 플렉서블 소자의 제조 방법
CN102683379A (zh) * 2011-03-10 2012-09-19 三星移动显示器株式会社 柔性显示装置及其制造方法
CN105185813A (zh) * 2015-09-09 2015-12-23 京东方科技集团股份有限公司 Oled显示装置及其制备方法
CN106356472A (zh) * 2016-10-18 2017-01-25 武汉华星光电技术有限公司 Oled器件制作方法及oled器件
CN108470855A (zh) * 2018-05-28 2018-08-31 京东方科技集团股份有限公司 一种柔性显示装置的制作方法和柔性显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014086451A (ja) * 2012-10-19 2014-05-12 Kaneka Corp フレキシブル電子デバイスおよびフレキシブル電子デバイスの製造方法
KR102188030B1 (ko) * 2013-12-31 2020-12-08 삼성디스플레이 주식회사 플렉서블 디스플레이 장치 및 그 제조방법
KR102385339B1 (ko) * 2015-04-21 2022-04-11 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100068661A (ko) * 2008-12-15 2010-06-24 포항공과대학교 산학협력단 레이저 빔을 이용한 플렉서블 소자의 제조 방법
CN102683379A (zh) * 2011-03-10 2012-09-19 三星移动显示器株式会社 柔性显示装置及其制造方法
CN105185813A (zh) * 2015-09-09 2015-12-23 京东方科技集团股份有限公司 Oled显示装置及其制备方法
CN106356472A (zh) * 2016-10-18 2017-01-25 武汉华星光电技术有限公司 Oled器件制作方法及oled器件
CN108470855A (zh) * 2018-05-28 2018-08-31 京东方科技集团股份有限公司 一种柔性显示装置的制作方法和柔性显示装置

Also Published As

Publication number Publication date
CN108470855A (zh) 2018-08-31
US11316136B2 (en) 2022-04-26
US20210343992A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
WO2019227940A1 (zh) 柔性显示装置的制作方法和柔性显示装置
WO2016165233A1 (zh) 有机发光二极管显示面板及其制作方法、显示装置
TWI541368B (zh) 遮罩框架組件、製造該遮罩框架組件之方法、以及使用該遮罩框架組件製造有機發光顯示裝置之方法
WO2019196587A1 (zh) 有机电致发光显示面板、其制作方法及显示装置
KR102097443B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
US20190148474A1 (en) Bendable display panel and fabricating method thereof
WO2016026212A1 (zh) Oled像素单元及其制备方法、显示面板和显示装置
WO2015131538A1 (zh) 掩模板、有机层加工方法和显示基板制备方法
WO2015149467A1 (zh) Oled显示器件及其制作方法、显示装置
JP2006309995A (ja) 転写用基板および表示装置の製造方法ならびに表示装置
JP6594615B2 (ja) 蒸着用マスク及びそれを用いた有機el表示装置の製造方法、並びに、蒸着用マスクの製造方法
JP2007288074A5 (zh)
JP2008205006A5 (zh)
WO2019033481A1 (zh) 一种高分子掩膜版及其制作方法和应用
US8257793B2 (en) Roll to roll fabrication of microlens arrays for low cost light outcoupling from OLEDs
KR100707601B1 (ko) 유기 발광표시장치 및 그 제조방법
US7259513B2 (en) Electroluminescent display device having surface treated organic layer and method of fabricating the same
WO2019075847A1 (zh) 有机发光显示面板及其制造方法、有机发光显示装置
CN106926559B (zh) 转印基板及其制作方法、oled器件制作方法
US7686052B2 (en) Lamination apparatus and laser-induced thermal imaging method using the same
WO2020056867A1 (zh) 柔性显示面板及其制备方法
KR20090073352A (ko) 투명 전극 패턴 제조 방법 및 이를 갖는 전기 광학 소자의제조 방법
US11121333B2 (en) OLED display panel and method for fabricating same
KR100646936B1 (ko) 유기 발광소자 및 그 제조방법
JP2005317536A (ja) 有機電界発光素子およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19812016

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19812016

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17-05-2021)