WO2019075847A1 - 有机发光显示面板及其制造方法、有机发光显示装置 - Google Patents

有机发光显示面板及其制造方法、有机发光显示装置 Download PDF

Info

Publication number
WO2019075847A1
WO2019075847A1 PCT/CN2017/112630 CN2017112630W WO2019075847A1 WO 2019075847 A1 WO2019075847 A1 WO 2019075847A1 CN 2017112630 W CN2017112630 W CN 2017112630W WO 2019075847 A1 WO2019075847 A1 WO 2019075847A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
emitting display
organic
light emitting
organic light
Prior art date
Application number
PCT/CN2017/112630
Other languages
English (en)
French (fr)
Inventor
邹新
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US15/739,863 priority Critical patent/US10297780B2/en
Publication of WO2019075847A1 publication Critical patent/WO2019075847A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80515Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • H10K71/421Thermal treatment, e.g. annealing in the presence of a solvent vapour using coherent electromagnetic radiation, e.g. laser annealing

Definitions

  • the present invention relates to the field of organic light emitting display devices, and in particular to an organic light emitting display panel, a method of fabricating the same, and an organic light emitting display device.
  • Each pixel of such a display device is composed of a cathode, an anode, and an organic layer interposed therebetween.
  • a suitable voltage is applied to the cathode and the anode, and holes are passed from the anode to the light-emitting layer via the hole injection layer and the hole transport layer, and electrons pass from the cathode to the light-emitting layer via the electron injection layer and the electron transport layer, and the two are combined in the light-emitting layer.
  • Glowing is applied to the cathode and the anode, and holes are passed from the anode to the light-emitting layer via the hole injection layer and the hole transport layer, and electrons pass from the cathode to the light-emitting layer via the electron injection layer and the electron transport layer, and the two are combined in the light-emitting layer.
  • the organic light emitting display device comprises an LTPS circuit back plate for controlling an anode via, a Pixel Define Layer on the anode, and the organic layer can be laminated by an evaporation, inkjet printing or the like and an anode located under the opening of the pixel defining layer. on.
  • An inkjet printing process uses a particular printing device to eject a solution into the opening of a pixel definition layer.
  • the pixel defining layer and the solution all have their own characteristics of hydrophilicity, hydrophobicity, etc.
  • the liquid level of the ejected solution is uneven, resulting in a large difference in film thickness of a single pixel, and the edge of the pixel emits light in the middle.
  • the color brightness of the color is inconsistent, resulting in poor display of the organic light-emitting display panel.
  • the technical problem to be solved by the present invention is to provide an organic light emitting display panel, a method for fabricating the same, and an organic light emitting display device, which solve the problem of poor display performance of the organic light emitting display panel.
  • an organic light emitting display panel comprising: a substrate, at least one light emitting unit formed on the substrate, wherein the light emitting unit An anode layer, an organic layer formed on the anode layer; and a pixel defining layer disposed on the anode layer and the organic layer, and in contact with the anode layer and both ends of the organic layer
  • the pixel defining layer The material of the inner side in contact with the anode layer and the organic layer is a hydrophilic material; wherein the anode layer is at least partially recessed downwardly to form a first arcuate groove, and the organic layer is recessed downwardly Provided in the first curved groove.
  • an organic light emitting display device including an organic light emitting display panel, the organic light emitting display panel including: a substrate formed in the At least one light emitting unit on the substrate, wherein the light emitting unit includes an anode layer, an organic layer formed on the anode layer; and further includes a cathode layer disposed on both sides of the anode layer and the organic layer, and the anode layer And a pixel defining layer in contact with the two ends of the organic layer; the material of the inner side of the pixel defining layer and the anode layer contacting the organic layer is a hydrophilic material; wherein the anode layer is at least partially downward
  • the recess is formed with a first arcuate recess, and the organic layer is recessed against the first arcuate recess.
  • another technical solution adopted by the present invention is to provide a method of manufacturing an organic light emitting display panel, the method of manufacturing an organic light emitting display panel comprising: providing a substrate; forming an anode layer on the substrate; The anode layer is recessed downward to form a first curved groove; a pixel defining layer is formed on both sides of the first curved groove on the anode layer, so that the pixel defining layer is adjacent to the inner side of the first curved groove and the material is hydrophilic Forming an organic layer on the first curved groove of the anode layer and inside the pixel defining layer, the organic layer being recessed downwardly against the first curved groove; forming a cathode layer on the organic layer, The cathode layer is recessed downwardly to the organic layer; a thin film encapsulation layer is formed on the top surface of the cathode layer and the pixel defining layer, and the thin film encapsulation layer is recessed downwardly to conform to the catho
  • the beneficial effects of the present invention are: different from the prior art, the anode layer portion of the organic light emitting display panel of the present invention is recessed downward to form an arcuate groove, and the organic layer is recessed downwardly to the arcuate groove, and the pixel defining layer
  • the inner material is a hydrophilic material.
  • the machine light-emitting display panel provided by the invention can overcome the defects of uneven thickness of the organic layer in the inkjet printing process, and improve the display effect of the organic light-emitting display device.
  • FIG. 1 is a schematic structural view of an embodiment of an organic light emitting display panel of the present invention.
  • FIG. 2 is a schematic structural view of another embodiment of an organic light emitting display panel of the present invention.
  • FIG. 3 is a schematic flow chart of an embodiment of a method for fabricating an organic light emitting display panel of the present invention.
  • the organic light emitting display panel of the embodiment of the invention includes a substrate, an anode layer, a pixel defining layer, an organic layer, a cathode layer, and a thin film encapsulating layer.
  • the substrate has at least one light emitting unit, and the organic light emitting unit comprises an anode layer, an organic layer, a cathode layer, and a thin film encapsulation layer.
  • the anode layer is disposed on the substrate, and a portion of the anode layer is recessed to form a first arcuate groove, the organic layer is located on the first arcuate groove of the anode layer, and the organic layer is recessed downwardly to be disposed on the first arc
  • the pixel defining layer is disposed on both sides of the first curved groove and is in contact with both ends of the organic layer, and the inner material of the pixel defining layer contacting the anode layer and the organic layer is a hydrophilic material.
  • FIG. 1 is a schematic structural view of an organic light emitting display panel according to an embodiment of the present invention.
  • An embodiment of the invention provides an organic light emitting display panel comprising: a substrate 101, an anode layer 102, an organic layer 104, a pixel defining layer 105, a cathode layer 106 and a thin film encapsulating layer 107.
  • the substrate 101 has an arc-shaped groove 108 formed on the surface of the substrate 101 by using a femtosecond laser to perform array processing on the position of the preset light-emitting unit, and then the substrate 101 is coated with the corresponding acid solution.
  • the etching is performed to produce a concave surface corresponding to the liquid surface curvature of the ink jet printing process, and the concave surface size and the curvature of the curved groove 108 can be adjusted by adjusting the laser energy level, the etching liquid concentration, and the like.
  • the anode layer 102 is located on the curved groove 108, and is recessed downwardly to fit the curved groove. 108 forms a first curved groove 103.
  • the anode layer 102 is formed using low temperature polysilicon technology.
  • the work function of the anode layer 102 is required to be as high as possible.
  • the anode layer 102 should be in a transparent state to allow light to pass through.
  • materials such as Au, transparent conductive polymers such as polyaniline and ITO conductive glass may be used, and in other embodiments, other materials may be used. There is no limit here.
  • the pixel defining layer 105 is located at two ends of the anode layer 102, the organic layer 104, and the cathode layer 106.
  • the pixel defining layer 105 is located at two sides of the first curved groove 103 and forms an opening.
  • the formation process of the pixel defining layer 105 is performed by first applying a glue, exposing and developing at least a portion of the glue, and then etching.
  • the pixel defining layer 105 is located on the inner side of the organic layer 104 and is made of a hydrophilic material, and the top surface is made of a hydrophobic material.
  • the liquid level of the solution in the inkjet printing process can be made concave, and the top surface is made of a hydrophobic material, so that the solution is not on the top surface of the pixel defining layer 105 during the inkjet printing process. accumulation.
  • the pixel defining layer 105 has a set thickness, for example, 1 to 20 ⁇ m, and preferably, the pixel defining layer 105 has a thickness of 1-10 ⁇ m.
  • the organic layer 104 may be accommodated in the opening formed by the pixel defining layer 105 by setting the pixel defining layer 105 having a considerable thickness, which is not limited thereto. Therefore, the specific thickness of the pixel defining layer 105 can also be determined according to the thickness of the organic layer 104 to be accommodated, and the thickness of the pixel defining layer 105 is not limited herein.
  • the organic layer 104 is located on the first curved groove 103 and is recessed downwardly against the first curved groove 103.
  • the organic layer 104 includes a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
  • the organic layer 104 is formed by inkjet printing by using an opening inkjet formed by the pixel defining layer 105 on both sides of the first curved groove 103, which can form a solution liquid for forming the organic layer 104.
  • the face corresponds to the concave surface of the first curved groove 103, and thus the organic layer 104 is formed to have a uniform thickness, thereby improving the light-emitting effect and material utilization of the display panel.
  • the cathode layer 106 is located on the organic layer 104, and the cathode layer 106 is recessed downwardly to the organic layer 104.
  • a material with a work function as low as possible as a cathode.
  • the lower the work function the higher the brightness of the display panel and the longer the service life.
  • cathode structures and materials such as single-layer metal cathodes, Ag, Al, Li, Mg, Ca, In, etc., alloy cathodes, Mg: Ag (10:1), Li:Al (0.6% Li).
  • the alloy electrode, the layered cathode consists of a very thin insulating material such as LiF, Li 2 O, MgO, Al 2 O 3 and the like and a thick outer layer of Al.
  • the thin film encapsulation layer 107 covers the cathode layer 106, the inner side and the top surface of the pixel defining layer 105.
  • the thin film encapsulation layer 107 is formed by an evaporation and packaging process.
  • the ink jet printing process for forming the organic layer 104 and the vapor deposition process for forming the thin film encapsulation layer 107 can be adjusted in order and number of times according to the characteristics of the organic light emitting panel.
  • the beneficial effects of the present invention are: different from the prior art, the anode layer portion of the organic light emitting display panel of the present invention is recessed downward to form an arcuate groove, and the organic layer is recessed downwardly to the arcuate groove, and the pixel defining layer
  • the inner material is a hydrophilic material.
  • the machine light-emitting display panel provided by the invention can overcome the defects of uneven thickness of the organic layer in the inkjet printing process, and improve the display effect of the organic light-emitting display device.
  • FIG. 2 is a schematic structural view of another embodiment of the organic light emitting display panel of the present invention.
  • the embodiment of the invention provides an organic light emitting display panel comprising: a substrate 201, an anode layer 202, an organic layer 204, a pixel defining layer 205, a cathode layer 206 and a thin film encapsulating layer 207.
  • the substrate 202 has a uniform thickness, and an anode layer 202 is disposed on the substrate 201.
  • the anode layer 202 is provided with a first arcuate groove 203, and the number of the first arcuate grooves 203 is adapted to the number of the light emitting units.
  • the first curved groove 203 is formed by performing array processing on the surface of the anode layer 202 by using a femtosecond laser to position the predetermined light emitting unit, and then etching the substrate 202 with the corresponding acid solution to prepare and inkjet printing.
  • the concave surface corresponding to the liquid surface curvature of the solution forming the organic layer 104 in the process, the concave surface size and the curvature of the first curved groove 203 can be adjusted by adjusting the laser energy size, the etching solution concentration, and the like.
  • the anode layer 202 is formed using low temperature polysilicon technology. In order to increase the injection efficiency of the holes, the work function of the anode layer 202 is required to be as high as possible.
  • the anode layer 202 should be in a transparent state allowing light to pass therethrough, for example, materials such as Au, a transparent conductive polymer such as polyaniline, and ITO conductive glass can be used.
  • the pixel defining layer 205 is located at two ends of the anode layer 202, the organic layer 204 and the cathode layer 206, and the pixel defining layer 205 is located at two sides of the first curved groove 203 and forms an opening.
  • the formation process of the pixel defining layer 205 is a glue-exposure-development, and the pixel defining layer 205 is located on the inner side of the organic layer 204 and is made of a hydrophilic material, and the top surface is a hydrophobic material.
  • the pixel defining layer 205 has a certain thickness so as to accommodate the organic layer 204 at the opening formed by the pixel defining layer 205.
  • the specific thickness of the pixel defining layer 205 can also be determined according to the thickness of the organic layer 204 to be accommodated, and the thickness of the pixel defining layer 205 is not limited herein.
  • the pixel defining layer 205 has a thickness of 1-10 ⁇ m.
  • the organic layer 204 is located on the first curved groove 203 and is recessed downwardly against the first curved groove 203.
  • the organic layer 104 includes a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
  • the organic layer 104 is formed by inkjet printing by using an opening inkjet formed by the pixel defining layer 205 on both sides of the first curved groove 103, which can form a solution liquid for forming the organic layer 204.
  • the face corresponds to the concave surface of the first curved groove 203, and thus the organic layer 204 is formed to have a uniform thickness, thereby improving the light-emitting effect and material utilization of the display panel.
  • the cathode layer 206 is located on the organic layer 204, and the cathode layer 206 is recessed downwardly to the organic layer 204. In order to improve the injection efficiency of electrons, it is required to select a material with a work function as low as possible as a cathode. The lower the work function, the higher the brightness of the display panel and the longer the service life.
  • cathode structures and materials that can be used, such as single-layer metal cathodes, Ag, Al, Li, Mg, Ca, In, etc., alloy cathodes, Mg: Ag (10:1), Li:Al (0.6% Li)
  • the alloy electrode, the layered cathode consists of a very thin insulating material such as LiF, Li 2 O, MgO, Al 2 O 3 and the like and a thick outer layer of Al.
  • the thin film encapsulation layer 207 covers the cathode layer 206 and the inner side and the top surface of the pixel defining layer 205.
  • the thin film encapsulation layer 207 is formed by an evaporation and packaging process.
  • the ink jet printing process for forming the organic layer 204 and the vapor deposition process for forming the thin film encapsulation layer 207 can be adjusted in order and number of times according to the characteristics of the organic light emitting panel.
  • the beneficial effects of the present invention are: different from the prior art, the anode layer portion of the organic light emitting display panel of the present invention is recessed downward to form an arcuate groove, and the organic layer is recessed downwardly to the arcuate groove, and the pixel defining layer
  • the inner material is a hydrophilic material.
  • the machine light-emitting display panel provided by the invention can overcome the defects of uneven thickness of the organic layer in the inkjet printing process, and improve the display effect of the organic light-emitting display device.
  • the present invention further provides an organic light emitting display device comprising the above organic light emitting display panel.
  • the technical problems and principles solved are similar to those of the above organic light emitting display panel, and the repeated portions are not described again.
  • the beneficial effects of the present invention are: different from the prior art, the anode layer portion of the panel portion of the organic light-emitting display device of the present invention is recessed downward to form an arc-shaped groove, and the organic layer is recessed downwardly to the arc-shaped groove.
  • the inner material of the pixel defining layer is a hydrophilic material.
  • FIG. 3 is a schematic flow chart of a method for fabricating an organic light emitting display panel according to an embodiment of the present invention.
  • the method of emitting a display panel includes the following steps:
  • a substrate suitable for an organic light emitting display panel is provided, which is a glass substrate, a plastic substrate or other substrate, and the thickness of the substrate is uniform.
  • a glass substrate will be described as an example.
  • S302 forming an anode layer on the substrate, and the anode layer is recessed downward to form a first curved groove.
  • the substrate is a glass substrate
  • the position of the preset light-emitting unit is arrayed on the surface of the glass substrate by using a femtosecond laser, and then the glass substrate is etched with the corresponding acid solution to prepare and eject the ink.
  • the concave surface corresponding to the liquid surface curvature of the solution in the printing process, the size and curvature of the concave surface of the curved groove can be adjusted by adjusting the laser energy size, the concentration of the etching liquid, and the like.
  • an anode layer is formed on the glass substrate by a low temperature polysilicon technique, and the anode layer is recessed downward to form a first arcuate groove by the arcuate groove.
  • the substrate is a glass substrate and has a uniform thickness.
  • the anode layer is formed on the glass substrate by low-temperature polysilicon technology, and the position of the preset light-emitting unit is arrayed on the surface of the anode layer by using a femtosecond laser. Then, the glass substrate is etched with the corresponding acid solution to prepare a concave surface corresponding to the liquid surface curvature of the inkjet printing process, and the concave groove size and curvature of the curved groove can be adjusted by adjusting the laser energy size, the etching solution concentration, and the like. .
  • the work function of the anode layer 102 is required to be as high as possible.
  • the anode layer 102 should be in a transparent state to allow light to pass therethrough, for example, materials such as Au, a transparent conductive polymer such as polyaniline, and ITO conductive glass can be used.
  • the pixel defining layer is formed by a process such as a glue-exposure-development process such that the pixel defining layer is located on both sides of the first curved groove formed by the recess of the anode layer, and an opening is formed.
  • the pixel defining layer is located on the inner side of the first curved groove and is made of a hydrophilic material, and the top surface is a hydrophobic material.
  • the pixel defining layer in order to accommodate the organic layer at the opening formed by the pixel defining layer, has a certain thickness. Therefore, the specific thickness of the pixel defining layer can also be determined according to the thickness of the organic layer to be accommodated, and the thickness of the pixel defining layer is not limited herein. Preferably, the pixel defining layer has a thickness of from 1 to 10 ⁇ m.
  • the openings formed by the pixel defining layers on both sides of the first curved groove are ink-jetted, and the organic layer is formed by inkjet printing, so that the organic layer is recessed downwardly against the first curved concave. groove.
  • the organic layer to be formed includes a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer.
  • the ink is formed by inkjet printing by opening inkjet formed by the pixel defining layers on both sides of the first curved groove, which can form the solution level of the organic layer and the first layer.
  • the concave surface of the curved groove corresponds to each other, so that the thickness of the formed organic layer is uniform, and the luminous effect and material utilization rate of the display panel are improved.
  • cathode In order to improve the injection efficiency of electrons, it is required to select a material with a work function as low as possible as a cathode.
  • cathode structures and materials that can be used, such as single-layer metal cathodes, Ag, Al, Li, Mg, Ca, In, etc., alloy cathodes, Mg: Ag (10:1), Li:Al (0.6% Li)
  • the alloy electrode, the layered cathode consists of a very thin insulating material such as LiF, Li 2 O, MgO, Al 2 O 3 and the like and a thick outer layer of Al.
  • S306 forming a thin film encapsulation layer on the top surface of the cathode layer and the pixel defining layer, wherein the thin film encapsulation layer is recessed downward to conform to the cathode layer.
  • the thin film encapsulation layer is formed by an evaporation and packaging process. Moreover, the ink jet printing process for forming the organic layer and the vapor deposition process for forming the thin film encapsulation layer can be adjusted in order and number of times according to the characteristics of the organic light emitting panel.
  • the beneficial effects of the present invention are: different from the prior art, the anode layer portion of the organic light emitting display panel of the present invention is recessed downward to form an arcuate groove, and the organic layer is recessed downwardly to the arcuate groove, and the pixel defining layer
  • the inner material is a hydrophilic material.
  • the machine light-emitting display panel provided by the invention can overcome the defects of uneven thickness of the organic layer in the inkjet printing process, and improve the display effect of the organic light-emitting display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机发光显示面板及其制造方法、有机发光显示装置,有机发光显示面板包括:基板(101,201),形成在基板(101,201)上的至少一个发光单元,其中发光单元包括阳极层(102,202),形成在阳极层(102,202)上的有机层(104,204);还包括设置在阳极层(102,202)以及有机层(104,204)两侧,且与阳极层(102,202)以及有机层(104,204)两端相接触的像素限定层(105,205);像素限定层(105,205)与阳极层(102,202)与有机层(104,204)接触的内侧的材质为亲水性材质;其中,阳极层(102,202)至少部分向下凹陷形成有第一弧形凹槽(103,203),有机层(104,204)向下凹陷贴靠设置在第一弧形凹槽(103,203)中。有机发光显示面板能克服喷墨打印制程中有机层厚度不均匀的缺点,提高有机发光显示装置的显示效果。

Description

有机发光显示面板及其制造方法、有机发光显示装置 【技术领域】
本发明涉及有机发光显示设备领域,特别是涉及有机发光显示面板及其制造方法、有机发光显示装置。
【背景技术】
有机发光显示技术自诞生以来,因具有宽视角、高对比度、宽色域、响应速度快等优点而发展迅猛。这种显示器件的每个像素由阴极、阳极和位于它们之间的有机层构成。给阴极和阳极加上合适的电压,空穴从阳极经由空穴注入层、空穴传输层到达发光层,电子从阴极经由电子注入层、电子传输层到达发光层,两者在发光层复合而发光。
有机发光显示器件包括控制阳极通路的LTPS电路背板,位于阳极之上的像素限定层(Pixel Define Layer),有机层可以通过蒸镀、喷墨打印等方式层叠与位于像素定义层开口下的阳极上。喷墨打印制程是采用特定的打印设备将溶液喷射到像素定义层的开口中。像素限定层、溶液都具有各自的亲水性、疏水性等特性,在像素级别的微小尺寸里,喷出的溶液液面不平整导致单个像素膜厚存在较大差异,像素边缘与中间发出光的颜色亮度不一致,导致有机发光显示面板显示效果不佳。
【发明内容】
本发明主要解决的技术问题是提供一种有机发光显示面板及其制造方法、有机发光显示装置,解决有机发光显示面板显示效果不佳的问题。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种有机发光显示面板,所述有机发光显示面板包括:基板,形成在所述基板上的至少一个发光单元,其中所述发光单元包括阳极层,形成在所述阳极层上的有机层;还包括设置在所述阳极层以及所述有机层两侧,且与所述阳极层以及所述有机层两端相接触的像素限定层;所述像素限定层 与所述阳极层与所述有机层接触的内侧的材质为亲水性材质;其中,所述阳极层至少部分向下凹陷形成有第一弧形凹槽,所述有机层向下凹陷贴靠设置在所述第一弧形凹槽中。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种有机发光显示装置,所述有机发光显示装置包括有机发光显示面板,所述有机发光显示面板包括:基板,形成在所述基板上的至少一个发光单元,其中所述发光单元包括阳极层,形成在所述阳极层上的有机层;还包括设置在所述阳极层以及所述有机层两侧,且与所述阳极层以及所述有机层两端相接触的像素限定层;所述像素限定层与所述阳极层与所述有机层接触的内侧的材质为亲水性材质;其中,所述阳极层至少部分向下凹陷形成有第一弧形凹槽,所述有机层向下凹陷贴靠设置在所述第一弧形凹槽中。
为解决上述技术问题,本发明采用的再一个技术方案是:提供一种制造有机发光显示面板的方法,所述制造有机发光显示面板的方法包括:提供基板;在所述基板上形成阳极层,阳极层向下凹陷形成第一弧形凹槽;在阳极层上第一弧形凹槽的两侧形成像素限定层,使像素限定层靠近第一弧形凹槽的内侧材质为亲水性材质;在阳极层的第一弧形凹槽上和像素限定层的内侧形成有机层,所述有机层向下凹陷靠贴在第一弧形凹槽上;在有机层上形成阴极层,所述阴极层向下凹陷贴合有机层;在阴极层和像素限定层的顶面形成薄膜封装层,所述薄膜封装层向下凹陷贴合阴极层。
本发明的有益效果是:区别于现有技术的情况,本发明的有机发光显示面板的阳极层部分向下凹陷形成弧形凹槽,且有机层向下凹陷贴近弧形凹槽,像素限定层的内侧材质为亲水性材质。本发明提供的机发光显示面板能克服喷墨打印制程中有机层厚度不均匀的缺点,提高有机发光显示装置的显示效果。
【附图说明】
图1是本发明有机发光显示面板一实施例结构示意图;
图2是本发明有机发光显示面板另一实施例结构示意图;
图3是本发明制造有机发光显示面板的方法一实施例的流程示意图。
【具体实施方式】
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,均属于本发明保护的范围。
本发明实施例的有机发光显示面板包括基板、阳极层、像素限定层、有机层、阴极层、薄膜封装层。其中,基板上至少有一个发光单元,该有机发光单元包括阳极层、有机层、阴极层、和薄膜封装层。阳极层设置在基板上,且阳极层的部分凹陷形成第一弧形凹槽,有机层位于该阳极层的第一弧形凹槽上且该有机层向下凹陷靠贴设置在第一弧形凹槽上,像素限定层设置在第一弧形凹槽的两侧且与有机层的两端相接触,像素限定层与阳极层和有机层接触的内侧材质为亲水材质。
下面结合说明书附图对本发明实施例作进一步详细描述。附图中附图中各膜层的厚度和形状不反映真实比例,目的只是说明本发明内容。
具体地,请参阅图1,图1是本发明有机发光显示面板一实施例结构示意图。
本发明实施例提供了一种有机发光显示面板,包括:基板101,阳极层102,有机层104,像素限定层105,阴极层106和薄膜封装层107。
其中,基板101上有弧形凹槽108,弧形凹槽108的形成工艺为在基板101表面利用飞秒激光对预设的发光单元所在位置进行阵列处理,之后用相应的酸溶液对基板101进行蚀刻,制作与喷墨打印制程中溶液液面弧度相对应的凹面,弧形凹槽108凹面大小及弧度可通过调节激光能量大小、蚀刻液浓度等进行调节。
其中,阳极层102位于弧形凹槽108上,且向下凹陷贴合弧形凹槽 108形成第一弧形凹槽103。本发明实施例中,采用低温多晶硅技术形成阳极层102。为提高空穴的注入效率,要求阳极层102的功函数尽可能高。作为显示器件的一部分,阳极层102应当为透明状态允许光通过,例如,可采用的材料有Au、透明导电聚合物如聚苯胺和ITO导电玻璃,在其他实施方式中,也可以采用其他材料,在此不做限定。
其中,像素限定层105位于阳极层102、有机层104和阴极层106的两端,像素限定层105位于第一弧形凹槽103的两侧,且形成开口。像素限定层105的形成工艺是先涂胶,对涂胶的至少部分进行曝光显影,然后进行蚀刻而形成。像素限定层105位于靠近有机层104的内侧材质为亲水性材质,顶面为疏水性材质。这样,通过将内侧材料设置为亲水性材质,可以使喷墨打印制程时溶液液面为凹面,顶面设置为疏水性材质,可以使喷墨打印制程时溶液不在像素限定层105的顶面堆积。
另外,像素限定层105具有设定的厚度,例如,1~20微米,优选的,像素限定层105的厚度为1-10μm。在其他实施方式中,也可以根据实际需要具体选择,在此不做限定,通过设定具有相当厚度的像素限定层105,从而在像素限定层105形成的开口处容置有机层104。因此,像素限定层105的具体厚度也可以根据所需容置的有机层104的厚度来确定,此处不对像素限定层105的厚度进行限定。
其中,有机层104位于第一弧形凹槽103上,并向下凹陷靠贴第一弧形凹槽103。具体地,有机层104包括空穴注入层、空穴传输层、发光层、电子传输层和电子注入层。本发明实施例中,采用向第一弧形凹槽103两侧的像素限定层105形成的开口喷墨,以喷墨打印的方式形成有机层104,该方式可使形成有机层104的溶液液面与第一弧形凹槽103的凹面相对应,因此形成的有机层104厚度均匀,提高显示面板的发光效果和材料利用率。
其中,阴极层106位于有机层104上,且阴极层106向下凹陷贴合有机层104。为提高电子的注入效率,要求选用功函数尽可能低的材料做阴极,功函数越低,显示面板发光亮度越高,使用寿命越长。可采用的阴极结构和材料有多种,例如单层金属阴极,Ag、Al、Li、Mg、 Ca、In等,合金阴极,Mg∶Ag(10∶1),Li∶Al(0.6%Li)合金电极,层状阴极,由一层极薄的绝缘材料如LiF,Li2O,MgO,Al2O3等和外面一层较厚的Al组成。
其中,薄膜封装层107覆盖阴极层106、像素限定层105的内侧和顶面。薄膜封装层107经过蒸镀和封装制程形成。
在上述实施方式中,形成有机层104的喷墨打印制程和形成薄膜封装层107的蒸镀制程可按有机发光面板的特性进行调整顺序和次数。
本发明的有益效果是:区别于现有技术的情况,本发明的有机发光显示面板的阳极层部分向下凹陷形成弧形凹槽,且有机层向下凹陷贴近弧形凹槽,像素限定层的内侧材质为亲水性材质。本发明提供的机发光显示面板能克服喷墨打印制程中有机层厚度不均匀的缺点,提高有机发光显示装置的显示效果。
请参阅图2,图2是本发明有机发光显示面板另一实施例结构示意图。
本发明实施例提供了一种有机发光显示面板,包括:基板201,阳极层202,有机层204,像素限定层205,阴极层206和薄膜封装层207。
其中,基板202厚度均匀,在基板201上设有阳极层202。阳极层202上设有第一弧形凹槽203,第一弧形凹槽203的数量与发光单元的数量相适应。第一弧形凹槽203的形成工艺为在阳极层202的表面利用飞秒激光对预设的发光单元所在位置进行阵列处理,之后用相应的酸溶液对基板202进行蚀刻,制作与喷墨打印制程中形成有机层104的溶液液面弧度相对应的凹面,第一弧形凹槽203凹面大小及弧度可通过调节激光能量大小、蚀刻液浓度等进行调节。本发明实施例中,采用低温多晶硅技术形成阳极层202。为提高空穴的注入效率,要求阳极层202的功函数尽可能高。作为显示器件的一部分,阳极层202应当为透明状态,允许光通过,例如,可采用的材料有Au、透明导电聚合物(如聚苯胺)和ITO导电玻璃。
其中,像素限定层205位于阳极层202、有机层204和阴极层206的两端,像素限定层205位于第一弧形凹槽203的两侧,且形成开口。 像素限定层205的形成工艺是涂胶-曝光-显影,像素限定层205位于靠近有机层204的内侧材质为亲水性材质,顶面为疏水性材质。像素限定层205具有一定的厚度,从而在像素限定层205形成的开口处容置有机层204。因此,像素限定层205的具体厚度也可以根据所需容置的有机层204的厚度来确定,此处不对像素限定层205的厚度进行限定。优选的,像素限定层205的厚度为1-10μm。
其中,有机层204位于第一弧形凹槽203上,并向下凹陷靠贴第一弧形凹槽203。有机层104包括空穴注入层、空穴传输层、发光层、电子传输层和电子注入层。本发明实施例中,采用向第一弧形凹槽103两侧的像素限定层205形成的开口喷墨,以喷墨打印的方式形成有机层104,该方式可使形成有机层204的溶液液面与第一弧形凹槽203的凹面相对应,因此形成的有机层204厚度均匀,提高显示面板的发光效果和材料利用率。
其中,阴极层206位于有机层204上,且阴极层206向下凹陷贴合有机层204。为提高电子的注入效率,要求选用功函数尽可能低的材料做阴极,功函数越低,显示面板发光亮度越高,使用寿命越长。可采用的阴极结构和材料有多种,例如单层金属阴极,Ag、Al、Li、Mg、Ca、In等,合金阴极,Mg∶Ag(10∶1),Li∶Al(0.6%Li)合金电极,层状阴极,由一层极薄的绝缘材料如LiF,Li2O,MgO,Al2O3等和外面一层较厚的Al组成。
其中,薄膜封装层207覆盖阴极层206、像素限定层205的内侧和顶面。薄膜封装层207经过蒸镀和封装制程形成。
在上述实施方式中,形成有机层204的喷墨打印制程和形成薄膜封装层207的蒸镀制程可按有机发光面板的特性进行调整顺序和次数。
本发明的有益效果是:区别于现有技术的情况,本发明的有机发光显示面板的阳极层部分向下凹陷形成弧形凹槽,且有机层向下凹陷贴近弧形凹槽,像素限定层的内侧材质为亲水性材质。本发明提供的机发光显示面板能克服喷墨打印制程中有机层厚度不均匀的缺点,提高有机发光显示装置的显示效果。
基于同一发明构思,本发明还提供了一种有机发光显示装置,该有机发光显示装置包括上述有机发光显示面板,解决的技术问题与原理与上述有机发光显示面板相似,重复之处不再赘述。
本发明的有益效果是:区别于现有技术的情况,本发明的有机发光显示装置的面板部分的阳极层部分向下凹陷形成弧形凹槽,且有机层向下凹陷贴近弧形凹槽,像素限定层的内侧材质为亲水性材质。本发明提供的机发光显示面板能克服喷墨打印制程中有机层厚度不均匀的缺点,提高有机发光显示装置的显示效果。
基于同一发明构思,本发明还提供了一种制造有机发光显示面板的方法,请参阅图3,图3是本发明制造有机发光显示面板的方法一实施例的流程示意图,本实施例的制造有机发光显示面板的方法包括如下步骤:
S301:提供基板。
提供一种适用于有机发光显示面板的基板,该基板为玻璃基板、塑料基板或其他基板,且基板的厚度均匀。下面以玻璃基板为例进行说明。
S302:在所述基板上形成阳极层,阳极层向下凹陷形成第一弧形凹槽。
在一个具体的实施例中,基板为玻璃基板,在玻璃基板的表面利用飞秒激光对预设的发光单元所在位置进行阵列处理,之后用相应的酸溶液对玻璃基板进行蚀刻,制作与喷墨打印制程中溶液液面弧度相对应的凹面,弧形凹槽凹面大小及弧度可通过调节激光能量大小、蚀刻液浓度等进行调节。然后,在玻璃基板上通过低温多晶硅技术形成阳极层,使阳极层向下凹陷靠贴弧形凹槽形成第一弧形凹槽。
在另一个具体的实施例中,基板为玻璃基板,且厚度均匀,在玻璃基板上通过低温多晶硅技术形成阳极层,在阳极层的表面利用飞秒激光对预设的发光单元所在位置进行阵列处理,之后用相应的酸溶液对玻璃基板进行蚀刻,制作与喷墨打印制程中溶液液面弧度相对应的凹面,弧形凹槽凹面大小及弧度可通过调节激光能量大小、蚀刻液浓度等进行调节。
在上述实施方式中,为提高空穴的注入效率,要求阳极层102的功函数尽可能高。作为显示器件的一部分,阳极层102应当为透明状态允许光通过,例如,可采用的材料有Au、透明导电聚合物(如聚苯胺)和ITO导电玻璃。
S303:在阳极层上第一弧形凹槽的两侧形成像素限定层,使像素限定层靠近第一弧形凹槽的内侧材质为亲水性材质。
在一个具体的实施例中,通过涂胶-曝光-显影等工艺形成像素限定层,使像素限定层位于阳极层凹陷形成的第一弧形凹槽两侧,且形成开口。像素限定层位于靠近第一弧形凹槽的内侧材质为亲水性材质,顶面为疏水性材质。
在上述实施方式中,为了能够在像素限定层形成的开口处容置有机层,像素限定层具有一定的厚度。因此,像素限定层的具体厚度也可以根据所需容置的有机层的厚度来确定,此处不对像素限定层的厚度进行限定。优选的,像素限定层的厚度为1-10μm。
S304:在阳极层的第一弧形凹槽上和像素限定层的内侧形成有机层,所述有机层向下凹陷靠贴在第一弧形凹槽上。
在一个具体的实施方式中,向第一弧形凹槽两侧的像素限定层形成的开口喷墨,以喷墨打印的方式形成有机层,使有机层向下凹陷靠贴第一弧形凹槽。使形成的有机层包括空穴注入层、空穴传输层、发光层、电子传输层和电子注入层。
在上述实施方式中,采用向第一弧形凹槽两侧的像素限定层形成的开口喷墨,以喷墨打印的方式形成有机层,该方式可使形成有机层的溶液液面与第一弧形凹槽的凹面相对应,因此形成的有机层厚度均匀,提高显示面板的发光效果和材料利用率。
S305:在有机层上形成阴极层,所述阴极层向下凹陷贴合有机层。
为提高电子的注入效率,要求选用功函数尽可能低的材料做阴极,功函数越低,显示面板发光亮度越高,使用寿命越长。可采用的阴极结构和材料有多种,例如单层金属阴极,Ag、Al、Li、Mg、Ca、In等,合金阴极,Mg∶Ag(10∶1),Li∶Al(0.6%Li)合金电极,层状阴极, 由一层极薄的绝缘材料如LiF,Li2O,MgO,Al2O3等和外面一层较厚的Al组成。
S306:在阴极层和像素限定层的顶面形成薄膜封装层,所述薄膜封装层向下凹陷贴合阴极层。
在上述实施方式中,薄膜封装层经过蒸镀和封装制程形成。且形成有机层的喷墨打印制程和形成薄膜封装层的蒸镀制程可按有机发光面板的特性进行调整顺序和次数。
本发明的有益效果是:区别于现有技术的情况,本发明的有机发光显示面板的阳极层部分向下凹陷形成弧形凹槽,且有机层向下凹陷贴近弧形凹槽,像素限定层的内侧材质为亲水性材质。本发明提供的机发光显示面板能克服喷墨打印制程中有机层厚度不均匀的缺点,提高有机发光显示装置的显示效果。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (18)

  1. 一种有机发光显示面板,其中,所述有机发光显示面板包括:基板,形成在所述基板上的至少一个发光单元,其中所述发光单元包括阳极层,形成在所述阳极层上的有机层;还包括设置在所述阳极层以及所述有机层两侧,且与所述阳极层以及所述有机层两端相接触的像素限定层;所述像素限定层与所述阳极层与所述有机层接触的内侧的材质为亲水性材质;
    其中,所述阳极层至少部分向下凹陷形成有第一弧形凹槽,所述有机层向下凹陷贴靠设置在所述第一弧形凹槽中。
  2. 根据权利要求1所述的有机发光显示面板,其中,所述基板包括至少一个向下凹陷形成的弧形凹槽,所述阳极层向下凹陷贴靠设置在所述基板的弧形凹槽中。
  3. 根据权利要求1所述的有机发光显示面板,其中,所述基板厚度均匀,所述阳极层的部分表面向下凹陷形成所述第一弧形凹槽。
  4. 根据权利要求2所述的有机发光显示面板,其中,所述基板上的弧形凹槽的数量与所述发光单元的数量相适应。
  5. 根据权利要求2所述的有机发光显示面板,其中,所述弧形凹槽是通过酸溶液对所述基板蚀刻而形成的。
  6. 根据权利要求1所述的有机发光显示面板,其中,所述像素限定层的顶面的材质为疏水性材质。
  7. 根据权利要求1所述的有机发光显示面板,其中,所述有机层是通过往所述两侧像素限定层所形成的开口喷墨而形成的。
  8. 根据权利要求1所述的有机发光显示面板,其中,所述有机发光显示面板还包括设置在所述有机层上的阴极层,以及设置在所述阴极层上的薄膜封装层,其中,所述阴极层与所述薄膜封装层依次向下凹陷形成在所述有机层的凹陷中。
  9. 一种有机发光显示装置,其中,所述有机发光显示装置包括有机发光显示面板,所述有机显示面板包括:基板,形成在所述基板上的至 少一个发光单元,其中所述发光单元包括阳极层,形成在所述阳极层上的有机层;还包括设置在所述阳极层以及所述有机层两侧,且与所述阳极层以及所述有机层两端相接触的像素限定层;所述像素限定层与所述阳极层与所述有机层接触的内侧的材质为亲水性材质;
    其中,所述阳极层至少部分向下凹陷形成有第一弧形凹槽,所述有机层向下凹陷贴靠设置在所述第一弧形凹槽中。
  10. 根据权利要求9所述的有机发光显示装置,其中,所述基板包括至少一个向下凹陷形成的弧形凹槽,所述阳极层向下凹陷贴靠设置在所述基板的弧形凹槽中。
  11. 根据权利要求9所述的有机发光显示装置,其中,所述基板厚度均匀,所述阳极层的部分表面向下凹陷形成所述第一弧形凹槽。
  12. 根据权利要求9所述的有机发光显示装置,其中,所述基板上的弧形凹槽的数量与所述发光单元的数量相适应。
  13. 根据权利要求9所述的有机发光显示装置,其中,所述基板上的弧形凹槽的数量与所述发光单元的数量相适应。
  14. 根据权利要求9所述的有机发光显示装置,其中,所述弧形凹槽是通过酸溶液对所述基板蚀刻而形成的。
  15. 根据权利要求9所述的有机发光显示装置,其中,所述像素限定层的顶面的材质为疏水性材质。
  16. 根据权利要求9所述的有机发光显示装置,其中,所述有机层是通过往所述两侧像素限定层所形成的开口喷墨而形成的。
  17. 根据权利要求9所述的有机发光显示装置,其中,所述有机发光显示面板还包括设置在所述有机层上的阴极层,以及设置在所述阴极层上的薄膜封装层,其中,所述阴极层与所述薄膜封装层依次向下凹陷形成在所述有机层的凹陷中。
  18. 一种制造有机发光显示面板的方法,其中,所述制造有机发光显示面板的方法包括:
    提供基板;
    在所述基板上形成阳极层,阳极层向下凹陷形成第一弧形凹槽;
    在阳极层上第一弧形凹槽的两侧形成像素限定层,使像素限定层靠近第一弧形凹槽的内侧材质为亲水性材质;
    在阳极层的第一弧形凹槽上和像素限定层的内侧形成有机层,所述有机层向下凹陷靠贴在第一弧形凹槽上;
    在有机层上形成阴极层,所述阴极层向下凹陷贴合有机层;
    在阴极层和像素限定层的顶面形成薄膜封装层,所述薄膜封装层向下凹陷贴合阴极层。
PCT/CN2017/112630 2017-10-18 2017-11-23 有机发光显示面板及其制造方法、有机发光显示装置 WO2019075847A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/739,863 US10297780B2 (en) 2017-10-18 2017-11-23 Organic light-emitting display panel, method for fabricating the same, and organic light-emitting display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710990913.6A CN107819079A (zh) 2017-10-18 2017-10-18 有机发光显示面板及其制造方法、有机发光显示装置
CN201710990913.6 2017-10-18

Publications (1)

Publication Number Publication Date
WO2019075847A1 true WO2019075847A1 (zh) 2019-04-25

Family

ID=61606958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112630 WO2019075847A1 (zh) 2017-10-18 2017-11-23 有机发光显示面板及其制造方法、有机发光显示装置

Country Status (2)

Country Link
CN (1) CN107819079A (zh)
WO (1) WO2019075847A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI691109B (zh) * 2019-05-09 2020-04-11 友達光電股份有限公司 顯示裝置及其製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109148727B (zh) * 2018-08-31 2021-01-29 京东方科技集团股份有限公司 Oled显示基板及制备方法、显示装置
CN109728178B (zh) * 2019-01-02 2021-03-05 京东方科技集团股份有限公司 有机电致发光元件、阵列基板及其制备方法和显示面板
CN110176477A (zh) * 2019-05-20 2019-08-27 深圳市华星光电半导体显示技术有限公司 基于喷墨打印技术的有机发光显示装置及其制作方法
CN110164944A (zh) * 2019-06-03 2019-08-23 京东方科技集团股份有限公司 显示基板及其制造方法、掩膜版、显示装置
CN110797473B (zh) * 2019-11-12 2022-10-28 京东方科技集团股份有限公司 一种显示基板、显示基板的制备方法及显示面板
CN110867470B (zh) * 2019-11-21 2022-09-27 武汉天马微电子有限公司 一种显示面板、制备方法及显示装置
CN111370456A (zh) * 2020-03-19 2020-07-03 深圳市华星光电半导体显示技术有限公司 一种显示面板及制程方法
CN111930264B (zh) * 2020-09-15 2023-12-01 武汉华星光电半导体显示技术有限公司 一种触控显示面板和触控显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030111957A1 (en) * 2001-12-13 2003-06-19 Samsung Nec Mobile Display Co., Ltd. Organic electroluminescent device
CN104103673A (zh) * 2014-07-09 2014-10-15 京东方科技集团股份有限公司 一种oled显示器及其制备方法
CN104241329A (zh) * 2014-08-22 2014-12-24 京东方科技集团股份有限公司 具有像素界定层的显示面板及像素界定层的制造方法
CN104465708A (zh) * 2014-12-24 2015-03-25 京东方科技集团股份有限公司 一种阵列基板及其制作方法和显示装置
CN105720085A (zh) * 2016-04-06 2016-06-29 广东聚华印刷显示技术有限公司 一种像素结构、显示面板及制作方法
CN105742313A (zh) * 2014-12-31 2016-07-06 乐金显示有限公司 有机发光显示装置及其制造方法
CN107403811A (zh) * 2017-09-07 2017-11-28 京东方科技集团股份有限公司 显示基板及其制造方法和显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030111957A1 (en) * 2001-12-13 2003-06-19 Samsung Nec Mobile Display Co., Ltd. Organic electroluminescent device
CN104103673A (zh) * 2014-07-09 2014-10-15 京东方科技集团股份有限公司 一种oled显示器及其制备方法
CN104241329A (zh) * 2014-08-22 2014-12-24 京东方科技集团股份有限公司 具有像素界定层的显示面板及像素界定层的制造方法
CN104465708A (zh) * 2014-12-24 2015-03-25 京东方科技集团股份有限公司 一种阵列基板及其制作方法和显示装置
CN105742313A (zh) * 2014-12-31 2016-07-06 乐金显示有限公司 有机发光显示装置及其制造方法
CN105720085A (zh) * 2016-04-06 2016-06-29 广东聚华印刷显示技术有限公司 一种像素结构、显示面板及制作方法
CN107403811A (zh) * 2017-09-07 2017-11-28 京东方科技集团股份有限公司 显示基板及其制造方法和显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI691109B (zh) * 2019-05-09 2020-04-11 友達光電股份有限公司 顯示裝置及其製造方法

Also Published As

Publication number Publication date
CN107819079A (zh) 2018-03-20

Similar Documents

Publication Publication Date Title
WO2019075847A1 (zh) 有机发光显示面板及其制造方法、有机发光显示装置
US10186561B2 (en) Array substrate and manufacturing method thereof and organic light-emitting display apparatus
CN103928497B (zh) Oled显示器件及其制作方法、显示装置
WO2016165233A1 (zh) 有机发光二极管显示面板及其制作方法、显示装置
WO2019196601A1 (zh) Oled显示面板及其制造方法、显示装置
WO2016145965A1 (zh) 像素界定层及其制作方法以及相应的发光显示器
CN102163617B (zh) 制造有机发光显示设备的方法
WO2019196587A1 (zh) 有机电致发光显示面板、其制作方法及显示装置
US9673266B2 (en) OLED pixel structure and method for manufacturing the same, OLED display panel and OLED display device
US20160293683A1 (en) Pixel unit and method of manufacturing the same, light emitting device and display device
WO2017147952A1 (zh) 一种基于喷墨打印技术的有机发光显示装置及其制造方法
US20160035802A1 (en) Light-emitting device, array substrate, display device and manufacturing method of light-emitting device
WO2016004709A1 (zh) Oled显示器及其制备方法
CN203787433U (zh) Oled显示器件及显示装置
CN110085655B (zh) 显示面板及其制造方法、显示装置
WO2020019755A1 (zh) 有机电致发光显示面板及其制作方法、显示装置
US20210246548A1 (en) Mask sheet and method of manufacturing the same, opening mask and method of using the same, thin film deposition device and display apparatus
WO2019201104A1 (zh) 像素单元、显示面板、显示设备及制造像素单元的方法
TWM569499U (zh) Organic light emitting device
JP4313274B2 (ja) インクジェットプリント用基板及びその製造方法
US7825576B2 (en) Pixel structure and organic light emitting device including the pixel structure
WO2024055821A9 (zh) 显示基板及其制备方法、显示面板
WO2006123491A1 (ja) 有機エレクトロルミネッセンス素子の製造方法
CN110993826B (zh) Oled显示面板及显示面板、显示装置
JP4886100B1 (ja) 有機発光素子及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17929285

Country of ref document: EP

Kind code of ref document: A1