WO2019226063A1 - Алюминиевый сплав для аддитивных технологий - Google Patents

Алюминиевый сплав для аддитивных технологий Download PDF

Info

Publication number
WO2019226063A1
WO2019226063A1 PCT/RU2018/000313 RU2018000313W WO2019226063A1 WO 2019226063 A1 WO2019226063 A1 WO 2019226063A1 RU 2018000313 W RU2018000313 W RU 2018000313W WO 2019226063 A1 WO2019226063 A1 WO 2019226063A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
scandium
powder
zirconium
alloy
Prior art date
Application number
PCT/RU2018/000313
Other languages
English (en)
French (fr)
Inventor
Виктор Христьянович МАНН
Александр Юрьевич КРОХИН
Роман Олегович ВАХРОМОВ
Дмитрий Константинович РЯБОВ
Владимир Александрович КОРОЛЕВ
Дмитрий Владимирович ЦИСАРЬ
Original Assignee
Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" filed Critical Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр"
Priority to JP2019541404A priority Critical patent/JP6880203B2/ja
Priority to US17/100,578 priority patent/US11802325B2/en
Priority to PL18830005T priority patent/PL3623488T3/pl
Priority to CN201880007058.5A priority patent/CN110832093B/zh
Priority to EP18830005.7A priority patent/EP3623488B1/en
Priority to PCT/RU2018/000313 priority patent/WO2019226063A1/ru
Priority to CA3050947A priority patent/CA3050947C/en
Priority to KR1020207018050A priority patent/KR102422213B1/ko
Priority to RU2019103463A priority patent/RU2717441C1/ru
Publication of WO2019226063A1 publication Critical patent/WO2019226063A1/ru
Priority to US17/695,808 priority patent/US20220205067A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/40Structures for supporting workpieces or articles during manufacture and removed afterwards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F2009/065Melting inside a liquid, e.g. making spherical balls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/11Use of irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/052Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the disadvantage of the claimed aluminum alloy is the high cost of the material due to the high content of scandium (up to 30 wt.%) And other rare elements, in addition, the overall displacement of the alloy leads to a decrease in ductility and fatigue characteristics.
  • the technical result of the invention is the ability to obtain an aluminum alloy with high strength characteristics (tensile strength of at least 470 MPa) with increased the level of elongation is not less than 11%, and the powder from it for the production of workpieces and parts by additive technologies.
  • a distinctive feature will be the low cost of the powder by optimizing the composition and reducing the concentration of expensive elements in comparison with the analogue, which can significantly reduce the cost of manufacturing parts through the use of cheaper raw materials.
  • the powder can be used for the manufacture of highly loaded parts, including those working under shock loads, where increased strength and plastic characteristics are required.
  • FIG. 1 Photographs of particles of aluminum powder.
  • FIG. 2 Digital 3 D-model of the arrangement of samples on the platform for selective laser fusion.
  • FIG. 3 Photos of thin sections of samples made from powder according to the proposed alloy, for determining porosity.
  • the aluminum powder was obtained as follows: ligatures of scandium and zirconium are introduced into the aluminum melt of grade no lower than A7 according to GOST 1 1069 at a temperature of 850-950 ° C, and the ligatures are introduced in portions (in several stages) to exclude supercooling of the melt below 740 ° C, after dissolution of scandium and zirconium, a calcium ligature is introduced.
  • the powder is leveled on the platform with a special feeding device - a squeegee, which can be a roller, a metal or ceramic blade.
  • FIG. 3 is a photograph of a thin section of a sample grown by the above technology.
  • the porosity level does not exceed 0.35%.
  • FIG. Figure 4 shows the time dependence of the hardness of the samples obtained from the powder of the developed aluminum-based alloy at different temperatures of the annealing temperature. Based on the analysis of these curves, the heat treatment modes of the samples were determined for tensile testing of cylindrical samples in accordance with the requirements of GOST 1497.
  • the level of mechanical properties of the proposed alloy is at the level of an analogue with a high content of scandium at a level of elongation increased by 20-30%, which allows the use of material for the manufacture of structural elements that can withstand large deformations. In this sense, the technical and economic indicators of the proposed invention are significantly higher than that of the prototype.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

Изобретение относится к области металлургии, а именно, к составу и технологии получения заготовок и деталей из сплавов на основе алюминия, в т.ч. с использованием технологий селективного лазерного сплавления. Предложенный сплав на основе алюминия, содержащий магний, цирконий и скандий, для распыления из него сферического порошка и последующего изготовления деталей с помощью аддитивных технологий имеет пониженное содержание скандия и дополнительно содержит кислород и кальций при ограниченном размере оксидной пленки и содержании влаги.

Description

АЛЮМИНИЕВЫЙ СПЛАВ ДЛЯ АДДИТИВНЫХ ТЕХНОЛОГИЙ
Изобретение относится к области металлургии, а именно, к составу и технологии получения заготовок и деталей из сплавов на основе алюминия, в т.ч. с использованием технологий селективного лазерного сплавления.
В настоящее время для изготовления деталей с использованием аддитивных технологий широко применяются алюминиевые сплавы на основе систем Al-Si и Al-Mg-Sc.
Известен алюминиевый сплав AlSilOMg, используемый в виде порошка для изготовления деталей методами аддитивных технологий. Сплав обладает хорошей технологичностью и позволяет получать прочность на уровне литейных сплавов, однако данного уровня характеристик недостаточно для того, чтобы конкурировать с высокопрочными деформируемыми сплавами.
Скандий-содержащие материалы позволяют обеспечить уровень прочности до 500-550МПа, что позволяет расширить применение материалов, однако высокая стоимость скандия на сегодняшний день приводит к низкой заинтересованности конструкторов и технологов в применении данных материалов.
В связи с этим, остро стоит задача разработки новых материалов для аддитивных технологий с высокой прочностью и приемлемой стоимостью.
Известен алюминиевый сплав для изготовления заготовок методами аддитивных технологий, содержащий (в масс.%):
Zn - 4-lO
Mg - 1-3,5
Zr - 0-0,5
Си - 0-2,5
Sc - 0-1,25
АЛЮМИНИЙ - основа (см. заявку US 20170233857, опуб. 17.08.2017 C22F1/053; B33Y10/00; B33Y70/00; B33Y80/00; C22C21/10).
Недостатком известного алюминиевого сплава является высокое содержание цинка (от 4 до 10 масс.%), который угорает в процессе изготовления деталей методами аддитивных технологий, к тому же для достижения высоких показателей механических свойств требуется проведение операции закалки, что может привести к дополнительному короблению при термической обработке и увеличивает время изготовления деталей.
Известен алюминиевый сплав для изготовления заготовок методами аддитивных технологий (см. заявку US 2017121794, опуб. 04.05.2017
С22С21/08; B22F1/00; C22F1/05; С23С4/08), содержащий (в масс.%):
Mg - 3-6
Si - 1-4
Ti - 0,005-0,2
Sc - 0.1-0.75
Zr - 0,01-0,375
Hf, Mo, Tb, Nb, Gd, Er, V - 0-0,5
Be - 0-0,004
Алюминий - основа,
где содержание циркония или суммарное содержание циркония и титана составляет менее 50% от содержания скандия.
Недостатком данного сплава является повышенное содержание кремния (от 1 до 4 масс.%), который существенно повышает литейные свойства, однако одновременно приводит к образованию грубых избыточных фаз, снижающих характеристики пластичности материала ввиду плохого сродства с алюминиевой матрицей.
В качестве наиболее близкого аналога предложенного изобретения выбран сплав по заявке US 20170165795, опуб. 15.06.2017 В23К35/28; C22C21/08, в которой предлагается алюминиевый порошковый сплав, содержащий (в масс.%):
Mg - 0.5-10
Sc - 0.1-30
Zr - 0.05-1.5
Mn - 0.01-1.5
Zn - 0-2.0
Ti - 0.01-0.2
Се й0.25
Be - 0-0.004
В - 0-0.008
Si ^0.25
Fe ^0.25
Hf ^0.5
По крайней мере, один из группы лантаноидов, за исключением Се,
Y, Ga, Nb, Та, W, V, Ni, Со, Mo, Li, Th, Ag, где доля этих элементов не более 0,5,
Алюминий - основа.
Недостатком заявленного алюминиевого сплава является высокая стоимость материала ввиду большого содержания скандия (до 30 масс.%) и других редких элементов, кроме того, общая перелегированность сплава приводит к снижению характеристик пластичности и усталости.
Технической задачей предложенного изобретения является разработка алюминиевого порошка для изготовления аддитивными технологиями заготовок и деталей с высокой прочностью и приемлемой стоимостью.
Техническим результатом изобретения является возможность получения алюминиевого сплава с высокими прочностными характеристиками (предел прочности не менее 470 МПа) при повышенном уровне относительного удлинения - не менее 11%, и порошка из него для производства заготовок и деталей аддитивными технологиями. Отличительной особенностью будет являться низкая стоимость порошка за счет оптимизации состава и снижения концентрации дорогостоящих элементов в сравнении с аналогом, позволяющая существенно снизить расходы на изготовление деталей за счет использования более дешевого сырья. Порошок может быть использован для изготовления высоконгруженных деталей, работающих в том числе в условиях воздействия ударных нагрузок, где требуется повышенная прочность и пластические характеристики.
Задача решается, а результат достигается за счет получения порошка предложенного химического состава (масс.%):
Mg 4, 0-6, 5;
Zr 0, 5-1,0;
Sc 0, 2-0, 6;
О 0,001-0,2;
Са 0,005-0,2;
А1 и неизбежные примеси - остальное.
Содержание магния в сплаве лимитировано ввиду необходимости обеспечения лимитированного интервала кристаллизации, что повышает технологичность в процессе изготовления изделий методом селективного лазерного сплавления. Повышение содержания магния выше 6,5 масс.% в сплаве приведет к нежелательному эффекту снижения коррозионной стойкости ввиду склонности фазы A13Mg2 выделяться по границам зерен, приводя к разрушению по типу коррозии под напряжением. Содержание скандия ограничено ввиду того, что его максимальная растворимость при комнатной температуре составляет 0,02 масс.%, а максимальная не превышает 0,8 масс.%, что позволяет гарантированно избежать образование первичных интерметаллидов как в самом порошке, так и в получаемых деталях. Совместное легирование скандием и цирконием позволяет заменить часть скандия с образованием фазы A13(Sc,Zr), которая обладает повышенной теплостойкостью и эффективно упрочняет материал при правильном подборе параметров термической обработки.
Кислород необходим для обеспечения требуемой сферичности порошка и его пониженной реакционной способности. Повышенное содержание кислорода выше 0,2 масс.% приведет к пониженному качеству поверхности частиц и нарушению сферической формы. Добавка кальция приводит к препятствию образования оксида алюминия по границам синтезированного материала в процессе многократных переплавов, кроме того, в процессе последующей термической обработки формируется фаза типа А14Са, обеспечивающая эффект модифицирования материала, что приводит к снижению размеров микрозерен и повышению характеристик прочности.
Общая легированность малым количеством переходных металлов материала по сравнению с прототипом приводит к формированию повышенных характеристик относительного удлинения. Кроме того дополнительным эффектом является предотвращение выгорания магния в процессе приготовления расплава и его распыления.
В качестве исходного сырья для производства сплава обычно используют алюминий технической чистоты марки не ниже А5 по ГОСТ 1 1069 (содержанием алюминия не ниже 99,5%). Существующие в металле примеси находятся ниже предела их максимальной растворимости и не оказывают существенного влияния на характеристики конечных образцов ввиду их нахождения в твердом растворе или в виде интерметаллидов с объемной долей менее 0,1%.
Существенно то, что в предложенном сплаве отсутствуют добавки марганца и титана, так как упрочнение, достигаемое за счет старения твердого раствора алюминия по данным переходным металлам (ПМ) проявляется гораздо слабее, чем за счет распада твердого раствора циркония и скандия. Кроме того, модифицирующее действие данных добавок проявляется менее сильно чем от введения циркония, что делает нецелесообразным введение данных добавок. Повышенное содержание интерметаллидов в сплаве может также ухудшить стойкость к питтинговой коррозии.
Описание чертежей
Фиг. 1 - Фотографии частиц алюминиевого порошка.
Фиг. 2 - Цифровая 3 D-модель расположения образцов на платформе для селективного лазерного сплавления.
Фиг. 3 - Фотографии шлифов образцов, изготовленных из порошка согласно предложенному сплаву, для определения пористости.
Фиг. 4 - Зависимость твердости образцов, изготовленных из порошка по предложенному сплаву, от времени и температуры отжига при отжиге по одноступенчатому режиму.
Осуществление изобретения
Пример1
Алюминиевый порошок был получен следующим образом: в расплав алюминия марки не ниже А7 по ГОСТ 1 1069 при температуре 850-950°С вводятся лигатуры скандия и циркония, причем лигатуры вводятся порционно (в несколько приемов) для исключения переохлаждения расплава ниже температуры 740°С, после растворения скандия и циркония вводят лигатуру кальция.
После полного растворения лигатуры алюминий-кальций вводят магний при температуре не выше 820°С, проводят отбор пробы расплава и корректировку химического состава. Непосредственно перед распылением проводят окончательный контроль химического состава и при необходимости производят дошихтовку.
После получения требуемого химического состава, расплав распыляют азотно-кислородной или аргоно-кислородной смесью с содержанием 0, 2- 1,0% кислорода в стальную бочку, причем скорость охлаждения должна быть не ниже 5* 104 К/с для получения пересыщенного твердого раствора. Распыление расплава осуществляют при температуре на 160-250°С превышающей точку ликвидуса во избежание наличия в расплаве мелких первичных интерметаллидов циркония и скандия. После получения порошок проходит сепарацию для отсева фракции менее 20 мкм и более 63 мкм или более 130 мкм в зависимости от требований.
Исследование морфологии порошка проводили с использованием растровой электронной микроскопии. Фотографии частиц полученного алюминиевого порошка представлены на Фиг. 1.
Исследование содержания кислорода в порошке проводили с использованием газоанализатора Leco в зависимости от содержания кислорода в несущей газовой смеси. Содержание кислорода варьировалось в пределах от 0,2 до 2%.
Получены следующие результаты:
Figure imgf000009_0001
Методом лазерной дифракции определена дисперсность алюминиевого порошка. Получено: di0 = 12,7 мкм, d50 - 33,1 мкм, d90 = 59,8 мкм
Пример 2
Из вышеуказанного порошка по примеру 1 проводили изготовление заготовок методом селективного лазерного сплавления.
При помощи CAD (SolidWorks, Catia, Creo, NX, Компас 3D) выстраивается цифровая 3 D-модель изделия (например, образцов для проведения механических испытаний, приведенных на Фиг. 2), которая затем сохраняется в STL-формате. Далее осуществляют загрузку итогового файла в станок. При помощи специальных программных пакетов ЗО-модель делится на слои (толщина отдельного слоя составляет 30 мкм). По этим слоям создается изделие из металлического порошка.
Определенное количество порошка переносят с дополнительной платформы или из бункера на основную рабочую площадку. Площадка представляет собой съемную металлическую плиту. Плиту изготавливают из материала на той же основе, что и порошок, из которого производится печать. Будущие детали крепятся к плите за счет специальных поддерживающих структур (выделены красным на Фиг. 2). После печати поддерживающие структуры удаляют.
Порошок разравнивается по платформе специальным подающим устройством - ракелем, которое может представлять из себя валик, металлическое или керамическое лезвие.
Сплавление частиц порошка между собой по заданному контуру осуществляется за счет воздействия на него лазерного излучения мощностью 180 Вт.Процесс печати далее осуществляется путем повторения операций нанесения слоя порошка и его сплавления по заданному контуру.
По завершении процесса печати лишний порошок удаляется из камеры. Плита с напечатанными деталями извлекается из станка.
Детали срезают с платформы механически или с использованием электроэрозионной резки.
На Фиг. 3 представлена фотография шлифа образца, выращенного по указанной выше технологии. Уровень пористости не превышает 0,35%. На Фиг. 4 представлена зависимость твердости образцов, полученных из порошка разработанного сплава на основе алюминия, от времени при разных температурах температуры отжига. На основании анализа данных кривых были определены режимы термической обработки образцов для проведения испытаний на растяжение цилиндрических образцов в соответствии с требованиями ГОСТ 1497.
В таблице 1 представлен химический состав исследуемых порошков.
В таблице 2 представлены результаты определения механических свойств при растяжении после одноступенчатого отжига при температуре 400°С.
Таблица 1
Figure imgf000011_0001
Таблица 2
Figure imgf000011_0002
Как видно из таблицы, повышенное содержание кислорода приводит к некоторому снижению относительного удлинения, что вызывается наличием оксидной фазы в сплавленном материале ввиду наличия оксидной фазы, которая достаточно мелкая, чтобы сохранить эффект упрочнения, но при этом не имеет сродства с алюминиевой матрицей.
Расчет стоимости порошка проводился исходя из выхода годного по нужной фракции 35% и использования сырья в виде:
- алюминий чушковой марки А7;
- Магний чушковой марки Мг95;
- Лигатура алюминий-2%скандия;
- Лигатура алюминий- 10%циркония;
- Лигатура алюминий- 10%иттрия;
- Цинк металлический марки Ц0;
- Лигатура алюминий-6%кальция;
- Лигатура алюминий-5 %титана
Оценка снижения стоимости приготовления предлагаемого сплава в сравнении с прототипом представлена в таблице 3.
Таблица 3
Figure imgf000012_0001
По сравнению с прототипом (US 20170165795) при снижении содержания скандия до 0,2-0, 6 масс.% и стоимости лигатуры Al-2%Sc 50$/кг достигается снижение стоимости 1 т сплава на $7500-$ 17500. При этом по уровню механических свойств предлагаемый сплав находится на уровне аналога с большим содержанием скандия при повышенном на 20-30% уровне относительного удлинения, что позволяет использовать материал для изготовления элементов конструкции, способных выдерживать большие деформации. В этом смысле технико-экономические показатели по предложенному изобретению значительно выше, чем у прототипа.

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ
1. Способ получения алюминиевого порошка из сплава на основе алюминия, отличающийся тем, что в расплав алюминия при температуре 850-950°С вводят лигатуры скандия и циркония порционно для предотвращения охлаждения расплава ниже температуры 750°С, после растворения скандия вводят лигатуру кальция, затем вводят магний, после чего распыляют азотно-кислородной или аргоновой смесью для получения алюминиевого порошка, при этом контролируют состав расплава до распыления при следующем соотношении компонентов (масс.%):
Магний 4, 0-6, 5
Цирконий 0, 5-1 , 0
Скандий 0, 2-0, 6
Кальций 0,005-0,2
А1 и неизбежные примеси остальное.
2. Способ по п. 1, в котором распыление расплава осуществляют с содержанием 0,2- 1,0% кислорода при температуре на 160-250°С выше точки ликвидуса.
3. Сплав на основе алюминия, содержащий магний, цирконий и скандий, для распыления из него алюминиевого порошка и последующего изготовления деталей с помощью аддитивных технологий, отличающийся тем, что сплав имеет пониженное содержание скандия и дополнительно содержит кислород и кальций при следующем соотношении компонентов (масс.%):
Магний 4, 0-6, 5
Цирконий 0, 5-1 , 0
Скандий 0,2-0, 6
Кислород 0,001-0,2 Кальций 0,005-0,2
A1 и неизбежные примеси остальное.
4. Сферический порошок, изготовленный способом по п. 1 или п. 2, имеющий частицы размером от 20 до 150 мкм, предпочтительно 20-63 мкм.
5. Сферический порошок, изготовленный из сплава по п. 3, имеющий частицы размером от 20 до 150 мкм, предпочтительно 20-63 мкм.
6. Деталь, полученная из сферического порошка по п. 4 или п. 5, изготовленная с использованием технологий селективного лазерного или электроннолучевого сплавления.
PCT/RU2018/000313 2018-05-21 2018-05-21 Алюминиевый сплав для аддитивных технологий WO2019226063A1 (ru)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2019541404A JP6880203B2 (ja) 2018-05-21 2018-05-21 付加製造技術用のアルミニウム合金
US17/100,578 US11802325B2 (en) 2018-05-21 2018-05-21 Aluminum alloy for additive technologies
PL18830005T PL3623488T3 (pl) 2018-05-21 2018-05-21 Proszek ze stopów aluminium do technik przyrostowych i części wytwarzanych z proszku
CN201880007058.5A CN110832093B (zh) 2018-05-21 2018-05-21 用于添加剂技术的铝合金
EP18830005.7A EP3623488B1 (en) 2018-05-21 2018-05-21 Aluminum alloy powder for additive techniques and parts produced from the powder
PCT/RU2018/000313 WO2019226063A1 (ru) 2018-05-21 2018-05-21 Алюминиевый сплав для аддитивных технологий
CA3050947A CA3050947C (en) 2018-05-21 2018-05-21 Aluminum alloy for additive technologies
KR1020207018050A KR102422213B1 (ko) 2018-05-21 2018-05-21 부가 제조 기술용 알루미늄 합금
RU2019103463A RU2717441C1 (ru) 2018-05-21 2018-05-21 Алюминиевый сплав для аддитивных технологий
US17/695,808 US20220205067A1 (en) 2018-05-21 2022-03-15 Aluminum Alloy for Additive Technologies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2018/000313 WO2019226063A1 (ru) 2018-05-21 2018-05-21 Алюминиевый сплав для аддитивных технологий

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/100,578 A-371-Of-International US11802325B2 (en) 2018-05-21 2018-05-21 Aluminum alloy for additive technologies
US17/695,808 Continuation US20220205067A1 (en) 2018-05-21 2022-03-15 Aluminum Alloy for Additive Technologies

Publications (1)

Publication Number Publication Date
WO2019226063A1 true WO2019226063A1 (ru) 2019-11-28

Family

ID=64949357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2018/000313 WO2019226063A1 (ru) 2018-05-21 2018-05-21 Алюминиевый сплав для аддитивных технологий

Country Status (9)

Country Link
US (2) US11802325B2 (ru)
EP (1) EP3623488B1 (ru)
JP (1) JP6880203B2 (ru)
KR (1) KR102422213B1 (ru)
CN (1) CN110832093B (ru)
CA (1) CA3050947C (ru)
PL (1) PL3623488T3 (ru)
RU (1) RU2717441C1 (ru)
WO (1) WO2019226063A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111872386A (zh) * 2020-06-30 2020-11-03 同济大学 一种高强度铝镁合金的3d打印工艺方法
WO2021126665A1 (en) * 2019-12-17 2021-06-24 Novelis Inc. Suppression of stress corrosion cracking in high magnesium alloys through the addition of calcium

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111496244B (zh) * 2020-04-27 2023-01-13 中南大学 一种增材制造高强铝合金粉及其制备方法和应用
RU2754258C1 (ru) * 2021-03-16 2021-08-31 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Способ получения порошка на основе алюминия для 3D печати
CN115747580A (zh) * 2022-11-29 2023-03-07 苏州三峰激光科技有限公司 一种适用于增材制造工艺的Al-Y-Zr-Mg-Mn-Sc铝合金及其增材制造方法
CN115990669B (zh) * 2023-03-24 2023-06-27 湖南东方钪业股份有限公司 一种用于增材制造的钪铝合金粉末及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2112239A2 (en) * 2008-04-18 2009-10-28 United Technologies Corporation High strength aluminium alloys with L12 precipitates
US20100143185A1 (en) * 2008-12-09 2010-06-10 United Technologies Corporation Method for producing high strength aluminum alloy powder containing L12 intermetallic dispersoids
DE102011111365A1 (de) * 2011-08-29 2013-02-28 Eads Deutschland Gmbh Oberflächenpassivierung von aluminiumhaltigem Pulver
EP2646587A2 (de) * 2010-12-02 2013-10-09 EADS Deutschland GmbH VERFAHREN ZUM HERSTELLEN EINER AlScCa-LEGIERUNG SOWIE AIScCa-LEGIERUNG

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0995750A (ja) * 1995-09-30 1997-04-08 Kobe Steel Ltd 耐熱性に優れたアルミニウム合金
ATE474070T1 (de) * 2003-01-15 2010-07-15 United Technologies Corp Legierung auf aluminium-basis
US7648593B2 (en) * 2003-01-15 2010-01-19 United Technologies Corporation Aluminum based alloy
RU2251585C2 (ru) 2003-07-29 2005-05-10 Олег Домианович Нейков Алюминиевый сплав
US7875132B2 (en) 2005-05-31 2011-01-25 United Technologies Corporation High temperature aluminum alloys
US7998402B2 (en) * 2005-08-16 2011-08-16 Aleris Aluminum Koblenz, GmbH High strength weldable Al-Mg alloy
JP4923498B2 (ja) 2005-09-28 2012-04-25 株式会社豊田中央研究所 高強度・低比重アルミニウム合金
JP4996854B2 (ja) * 2006-01-12 2012-08-08 古河スカイ株式会社 高温高速成形用アルミニウム合金材及びその製造方法、並びにアルミニウム合金成形品の製造方法
US8770261B2 (en) * 2006-02-09 2014-07-08 Schlumberger Technology Corporation Methods of manufacturing degradable alloys and products made from degradable alloys
RU2368687C2 (ru) 2006-08-31 2009-09-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Сплав на основе алюминия и способ его получения
CN101594952B (zh) 2006-10-27 2013-05-08 纳米技术金属有限公司 雾化皮米复合物铝合金及其方法
US7871477B2 (en) * 2008-04-18 2011-01-18 United Technologies Corporation High strength L12 aluminum alloys
US20110064599A1 (en) * 2009-09-15 2011-03-17 United Technologies Corporation Direct extrusion of shapes with l12 aluminum alloys
GB201209415D0 (en) 2012-05-28 2012-07-11 Renishaw Plc Manufacture of metal articles
FR3008014B1 (fr) * 2013-07-04 2023-06-09 Association Pour La Rech Et Le Developpement De Methodes Et Processus Industriels Armines Procede de fabrication additve de pieces par fusion ou frittage de particules de poudre(s) au moyen d un faisceau de haute energie avec des poudres adaptees au couple procede/materiau vise
CN104651683A (zh) * 2015-03-18 2015-05-27 中南大学 一种用Sc、Zr复合微合金化的铝合金及制备方法
DE102015221643A1 (de) 2015-11-04 2017-05-04 Airbus Defence and Space GmbH Al-Mg-Si-Legierung mit Scandium für den integralen Aufbau von ALM-Strukturen
EP3371338A2 (en) * 2015-11-06 2018-09-12 Innomaq 21, S.L. Method for the economic manufacturing of metallic parts
EP3181711B1 (de) 2015-12-14 2020-02-26 Apworks GmbH Scandiumhaltige aluminiumlegierung für pulvermetallurgische technologien
DE102016001500A1 (de) 2016-02-11 2017-08-17 Airbus Defence and Space GmbH Al-Mg-Zn-Legierung für den integralen Aufbau von ALM-Strukturen
CN106222502A (zh) 2016-08-30 2016-12-14 中国航空工业集团公司北京航空材料研究院 一种高钪含量的超高强度铝合金及其制造方法
US20180193916A1 (en) * 2017-01-06 2018-07-12 General Electric Company Additive manufacturing method and materials
US11098391B2 (en) * 2017-04-15 2021-08-24 The Boeing Company Aluminum alloy with additions of magnesium, calcium and at least one of chromium, manganese and zirconium, and method of manufacturing the same
CN107385294A (zh) 2017-08-01 2017-11-24 天津百恩威新材料科技有限公司 一种汽车轮毂用铝合金及其喷射成形工艺
CN107881382A (zh) 2017-12-04 2018-04-06 南京航空航天大学 一种增材制造专用稀土改性高强铝合金粉体
BR112020011187A2 (pt) * 2017-12-04 2020-11-17 Monash University liga de alumínio de alta resistência para processos de fabricação de solidificação rápida

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2112239A2 (en) * 2008-04-18 2009-10-28 United Technologies Corporation High strength aluminium alloys with L12 precipitates
US20100143185A1 (en) * 2008-12-09 2010-06-10 United Technologies Corporation Method for producing high strength aluminum alloy powder containing L12 intermetallic dispersoids
EP2646587A2 (de) * 2010-12-02 2013-10-09 EADS Deutschland GmbH VERFAHREN ZUM HERSTELLEN EINER AlScCa-LEGIERUNG SOWIE AIScCa-LEGIERUNG
DE102011111365A1 (de) * 2011-08-29 2013-02-28 Eads Deutschland Gmbh Oberflächenpassivierung von aluminiumhaltigem Pulver

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MUSTAFA AWD ET AL: "Comparison of Microstructure and Mechanical Properties of Scalmalloy Produced by Selective Laser Melting and Laser Metal Deposition", MATERIALS, vol. 11, no. 1, 23 December 2017 (2017-12-23), CH, pages 17, XP055547805, ISSN: 1996-1944, DOI: 10.3390/ma11010017 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021126665A1 (en) * 2019-12-17 2021-06-24 Novelis Inc. Suppression of stress corrosion cracking in high magnesium alloys through the addition of calcium
CN111872386A (zh) * 2020-06-30 2020-11-03 同济大学 一种高强度铝镁合金的3d打印工艺方法

Also Published As

Publication number Publication date
RU2717441C1 (ru) 2020-03-23
PL3623488T3 (pl) 2021-10-25
CA3050947C (en) 2022-01-11
EP3623488B1 (en) 2021-05-05
CA3050947A1 (en) 2019-11-21
US20210246535A1 (en) 2021-08-12
KR20200087857A (ko) 2020-07-21
US20220205067A1 (en) 2022-06-30
KR102422213B1 (ko) 2022-07-18
CN110832093A (zh) 2020-02-21
JP2021507088A (ja) 2021-02-22
JP6880203B2 (ja) 2021-06-02
CN110832093B (zh) 2022-05-17
EP3623488A1 (en) 2020-03-18
US11802325B2 (en) 2023-10-31

Similar Documents

Publication Publication Date Title
RU2717441C1 (ru) Алюминиевый сплав для аддитивных технологий
JP2730847B2 (ja) 高温クリープ強度に優れた鋳物用マグネシウム合金
EP2669028B1 (en) Crystal grain refining agent for casting and method for producing the same
JP2021507088A5 (ru)
JPH0742536B2 (ja) 高強度と高靭性とを有するアルミニウムベース合金製品及びその製法
JP7500726B2 (ja) 耐熱アルミニウム粉末材料
HUT53681A (en) Process for producing high-strength al-zn-mg-cu alloys with good plastic properties
Mandal et al. Chemical modification of morphology of Mg2Si phase in hypereutectic aluminium–silicon–magnesium alloys
Petrova et al. Structure and strength of Al-Mn-Cu-Zr-Cr-Fe ALTEC alloy after radial-shear rolling
Yousefi et al. Improving mechanical properties of Mn-added hypoeutectic Al-4Ni alloy by friction stir processing
US3544761A (en) Process of welding aluminum
JP7467633B2 (ja) 粉末アルミニウム材料
RU2697683C1 (ru) Способ получения слитков из алюмоматричного композиционного сплава
EP3903964B1 (en) Powdered aluminum material
Salamci et al. Microstructure and mechanical properties of spray deposited and extruded 7000 series aluminium alloys
Liu et al. The influence of Mn on the microstructure and mechanical properties of the Al–5Mg–Mn alloy solidified under near-rapid cooling
JP2768676B2 (ja) 迅速凝固経路により製造されるリチウム含有アルミニウム合金
RU2804221C1 (ru) Алюминиевый материал для аддитивных технологий и изделие, полученное из этого материала
Ovsyannikov et al. Development of a new aluminium-lithium alloy of Al-Cu-Mg-Li (Ag, Sc) system intended for manufacturing sheets, thin-walled sections and forgings
WO2011032435A1 (zh) 以C变质的Cr-RE高强耐热铝合金材料及其制备方法
Mandal et al. Development of a novel hypereutectic aluminum-siliconmagnesium alloy for die casting
Quanbin et al. Effect of Ca Impurity on Microstructures and Mechanical Properties of As-Cast Al-5Mg Filler Alloy
Sazonov et al. Microstructure and mechanical properties of disperse reinforced composite material with AZ91 matrix alloy
Bäckman et al. Potential for improved mechanical properties in cast aluminium alloys
Kopper et al. Improving Aluminum Casting Alloy and Process Competitiveness

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019541404

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018830005

Country of ref document: EP

Effective date: 20191210

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18830005

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207018050

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE