CN110832093B - 用于添加剂技术的铝合金 - Google Patents

用于添加剂技术的铝合金 Download PDF

Info

Publication number
CN110832093B
CN110832093B CN201880007058.5A CN201880007058A CN110832093B CN 110832093 B CN110832093 B CN 110832093B CN 201880007058 A CN201880007058 A CN 201880007058A CN 110832093 B CN110832093 B CN 110832093B
Authority
CN
China
Prior art keywords
scandium
alloy
aluminum
melt
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880007058.5A
Other languages
English (en)
Other versions
CN110832093A (zh
Inventor
V·K·曼
A·Y·克罗欣
R·O·瓦赫罗莫夫
D·K·赖亚波夫
V·A·科罗列夫
D·V·特斯萨尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rusal Engineering and Technological Center LLC
Original Assignee
Rusal Engineering and Technological Center LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rusal Engineering and Technological Center LLC filed Critical Rusal Engineering and Technological Center LLC
Publication of CN110832093A publication Critical patent/CN110832093A/zh
Application granted granted Critical
Publication of CN110832093B publication Critical patent/CN110832093B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/40Structures for supporting workpieces or articles during manufacture and removed afterwards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F2009/065Melting inside a liquid, e.g. making spherical balls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/11Use of irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/052Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明涉及冶金学,更具体地涉及用于由铝基合金制造部件坯体和成品部件的组合物和方法,包括但不限于使用选择性激光熔融工艺。所提出的包含镁、锆和钪的铝基合金用于由其雾化得到铝粉、然后通过添加剂技术制造成品部件,该合金具有减少的钪含量,并且还包含具有受限尺寸的氧化物膜和水含量的氧和钙。

Description

用于添加剂技术的铝合金
本发明涉及冶金学,更具体地涉及用于由铝基合金制造部件坯体和成品部件的组合物和方法,包括但不限于使用选择性激光熔融(SLM)工艺。
目前,基于Al-Si和Al-Mg-Sc体系的铝合金被广泛用于使用添加剂技术制造各种部件。
已知AlSi10Mg铝合金以粉末形式使用,以利用添加剂技术制造成品部件。尽管所述合金具有良好的加工性并且允许获得铸造合金水平上的机械性能,但这种特性水平不足以与高强度锻造合金竞争。
含钪材料可以实现至多500MPa-550MPa的强度,使得这些材料可以找到更广泛的应用。然而,目前钪的高成本导致设计者和工艺工程师对使用这些材料的兴趣较低。
因此,存在开发用于添加剂技术的高强度且价格合理的新材料的实际需求。
已知一种用于通过添加剂技术来制造部件的铝合金,其包含(以重量%计):
Zn–4~10;
Mg–1~3.5;
Zr–0~0.5;
Cu–0~2.5;
Sc–0~1.25;
铝–基础成分(参见美国专利申请20170233857,2017年8月17日公开,C22F1/053;B33Y10/00;B33Y70/00;B33Y80/00;C22C21/10)。
该已知铝合金的缺点在于高含量(4重量%~10重量%)的锌,其在通过添加剂技术制造成品部件的过程中蒸发。此外,需要淬火来实现高水平的拉伸性能,这可能在热处理期间引起各种变形并导致制造成品部件的时间更长。
已知一种用于通过添加剂技术制造部件坯体的铝合金(参见美国专利申请2017121794,2017年5月4日公开,C22C21/08;B22F1/00;C22F1/05;C23C4/08),其包含(以重量%计):
Mg–3~6;
Si–1~4;
Ti–0.005~0.2;
Sc–0.1~0.75;
Zr–0.01~0.375;
Hf,Mo,Tb,Nb,Gd,Er,V–0~0.5;
Be–0~0.004;
铝–基础成分;
其中,锆含量或锆和钛的集合含量小于钪含量的50%。
该合金的缺点是硅含量高(1重量%至4重量%),这大大改善了铸造性能,但导致形成了粗过剩相,其由于与铝基体的结合性差而降低了材料的可塑性特性。
与所提出的发明最接近的现有技术是美国专利申请20170165795(2017年6月15日公开,B23K35/28;C22C21/08)所述的合金,该专利申请公开了一种铝粉合金,其包含(重量%):
Mg–0.5~10;
Sc–0.1~30;
Zr–0.05~1.5;
Mn–0.01~1.5;
Zn–0~2.0;
Ti–0.01~0.2;
Ce≦0.25;
Be–0~0.004;
B–0~0.008;
Si≦0.25;
Fe≦0.25;
Hf≦0.5;
至少一种选自由除Ce外的镧系元素、Y、Ga、Nb、Ta、W、V、Ni、Co、Mo、Li、Th、Ag组成的组的元素,其中这些元素的比例为最多0.5;和
作为剩余部分的铝。
上述铝合金的缺点是由于钪(至多30重量%)和其它稀有元素的含量高而导致材料成本高;此外,材料的过合金化导致较低的可塑性和疲劳特性。
本发明要解决的技术问题是开发一种铝粉,其用于通过添加剂技术制造高强度且价格合理的部件坯体和成品部件。
本发明的技术效果在于制造一种具有高强度性能(极限拉伸强度至少为470MPa)和至少11%的增加的伸长率水平的铝合金,以及用于通过添加剂技术制造部件坯体和成品部件的该铝合金的粉末。由于其与最接近的现有技术相比具有优化的组成和更低浓度的昂贵元素,一个突出特点是粉末成本低,使得成品部件的制造成本因使用较廉价的原料而可以大幅降低。该粉末可用于生产高负荷的成品部件,尤其用于在暴露于要求提高强度和塑性特性的冲击载荷时使用。
通过制备具有如下提出的化学组成(以重量%计)的粉末,解决所述问题并实现了所述效果:
Mg 4.0~6.5;
Zr 0.5~1.0;
Sc 0.2~0.6;
O 0.001~0.2;
Ca 0.005~0.2;
其余为Al和不可避免的杂质。
该合金中的镁含量是有限的,因为必须提供窄的结晶范围以改善加工性,因为制品和部件通过选择性激光熔融来制造。镁含量高于合金的6.5重量%将导致耐腐蚀性下降的不良效果,因为Al3Mg2相倾向于在晶界处成核,这导致因应力腐蚀开裂而造成的碎裂。钪含量是有限的,因为它在室温下的最大溶解度为0.02重量%,且其最大溶解度不超过0.8重量%,这使得可以确保避免在粉末本身和在所制造的成品部件中形成初级金属间化合物。采用钪和锆一起合金化使得可以使钪被部分地替换,从而形成Al3(Sc,Zr)相,其具有增加的耐热性并且在正确选择的热处理参数下高效地硬化该材料。
氧是提供所需球形度和降低粉末反应性所必需的。氧含量增加至超过0.2重量%将导致颗粒表面品质降低和球形形状被破坏。钙的添加防止了在反复再熔融过程中沿着合成材料的边界形成氧化铝。另外,在随后的热处理过程中,形成了Al4Ca型相以能够获得晶粒细化效果,由此使得微晶粒尺寸变小并且改善强度特性。
由于与最接近的现有技术相比具有少量过渡金属的该材料的整体合金化水平,提供了改进的伸长率特性。此外,进一步的效果在于防止镁在熔体制备和喷雾过程中烧尽。
作为用于生产合金的原料,通常使用纯度等级不低于GOST 11069A5的铝(铝含量不低于99.5%)。存在于金属中的杂质低于其最大溶解度的极限,并且对最终样品的特性没有显著影响,因为其存在于固溶体中或者作为体积比小于0.1%的金属间化合物存在。
重要的是,所提出的合金不含锰和钛添加剂,因为带有这些过渡金属(TM)的铝固溶体的老化所能实现的硬化表现得远远小于因锆和钪固溶体在铝中的瓦解所能实现的硬化。此外,这些添加剂的改性效果表现得比引入锆的情形更低,这使得引入这些添加剂不切实际。合金中增加的金属间化合物含量也会降低它们对点蚀的抗性。
附图说明
图1显示了铝粉颗粒的照片。
图2是在选择性激光合金化平台上的样品排布的数字3D模型。
图3显示了用所提出的合金的粉末制备的用于测定孔隙率的金相样品的照片。
图4显示了用所提出的合金的粉末制备的样品的硬度与在单步退火中的退火时间和温度之间的关系。
具体实施方式
实施例1
如下获得铝粉:在850℃~950℃,向等级不低于GOST 11069-A7的铝熔体中分批添加作为合金元素的钪和锆,以避免该熔体过冷却至低于740℃的温度。在钪和锆溶解后,加入作为合金元素的钙。
在铝-钙母合金完全溶解后,在不高于820℃的温度加入镁,选择熔体样品并调节化学组成。
在雾化之前即刻,最终检查化学组成,并在适当时进行额外的合金化。
在获得所需的化学组成后,使用含有0.2%~1.0%氧气的氮气-氧气或氩气-氧气混合物以不低于5·104K/s的冷却速率使熔体雾化,以产生过饱和固溶体。将熔体在高出液相点160℃~250℃的温度喷雾,以避免在熔体中存在细小的锆和钪初级金属间化合物。一旦制成,分离粉末以根据需要筛出低于20μm和高于63μm或高于130μm的级分。
通过扫描电子显微镜研究粉末形态。所制造的铝粉颗粒的照片如图1所示。
使用Leco气体分析仪根据载气混合物中的氧含量来研究粉末中的氧含量。氧含量在0.2%至2%之间变化。
获得了以下结果:
氮气中的氧含量,% 粉末中的氧含量,重量%
0.2 0.003
0.6 0.08
1.0 0.19
2.0 0.36
使用激光衍射来确定铝粉的分散度。获得了以下结果:d10=12.7μm,d50=33.1μm,d90=59.8μm。
实施例2
通过选择性激光熔融,用实施例1的上述粉末制备了部件坯体。
使用CAD(Solid Works,Catia,Creo,NX,Compas 3D)生成制品的数字3D模型(例如,用于拉伸测试的样品,如图2所示),然后存储为STL文件。然后将生成的文件加载到计算机。使用特殊的软件包将该3D模型分成多层(每层厚度为30μm)。基于这些层来制备来自金属粉末的制品。
将一定量的粉末从另外的平台或从料斗转移到主操作平台。该平台包括可移除的金属板。该板由具有类似于所述粉末的基础成分的材料制成以用于打印。利用特殊的支持结构体(图2中用红色标出)将所要制造的部件连接到该板上。打印后移除所述支持结构体。
利用特殊的刮刀将粉末平铺在整个平台上,刮刀可包括圆柱刮刀、金属刮刀或陶瓷刮刀。
通过暴露于180瓦的激光辐射,使粉末颗粒沿预定的轮廓熔化。然后通过反复施加粉末层并使其沿着预定轮廓合金化来进行打印过程。
一旦打印过程完成,从室中除去过量的粉末。将带有打印部件的板从机器中取出。
以机械手段或通过放电切割从平台上切割出部件。
图3显示了根据上述方法生长的金相样品的照片。孔隙率水平不超过0.35%。
图4显示了由本发明的铝基合金粉末制备的样品的硬度与在不同退火温度下的均热时间之间的关系。基于曲线数据分析,确定了热处理模式,从而根据GOST 1497的要求进行圆柱形样品的拉伸测试。
表1显示了所研究的粉末的化学组成。
表2显示了在400℃进行单步退火后测定的拉伸性能。
表1
Figure BDA0002131292320000061
表2
Figure BDA0002131292320000062
从上表中可以看出,氧含量的增加导致伸长率的某种降低,这是由合金材料中氧化物相的存在引起的,所述氧化物相足够精细以保持硬化效果,但对铝基质没有亲合力。
粉末成本是根据所需部分的35%的产率和以下原料的使用而计算出的:
-A7铝锭;
-Mg95镁锭;
-铝-2%钪母合金;
-铝-10%锆母合金;
-铝-10%钇母合金;
-Z0级锌金属;
-铝-6%钙母合金;
-铝-5%钛母合金。
所提出的合金与原型相比的估算制造成本节约如下表3所示。
表3
Figure BDA0002131292320000071
由于将钪含量降低至了0.2重量%~0.6重量%,并且将铝-2%钪初始合金的成本降至了50美元/公斤,因此与原型(US20170165795)相比,每吨合金的成本节约了7,500美元至17,500美元。同时,所提出的合金在拉伸强度方面与其高钪含量的原型相似,同时伸长率值高出20%~30%,因此它可用于制造能够承受严重应变的结构元件。在这方面,所要求保护的发明的工程性能和经济性能远高于原型。

Claims (8)

1.一种由铝基合金制造铝粉的方法,其特征在于,在850℃至950℃的温度,向铝熔体中分批添加作为合金元素的钪和锆,以避免所述熔体过冷却至低于750℃的温度;在钪溶解后,添加钙作为母合金;而后添加镁,然后用氧气含量为0.2%~1.0%的氮气-氧气或氩气-氧气混合物使所述熔体雾化以得到铝粉,同时在雾化前保持熔体组成成分为下述以重量%计的比例:
镁 4.0~6.5
锆 0.5~1.0
钪 0.2~0.6
钙 0.005~0.2
其余为Al和不可避免的杂质。
2.如权利要求1所述的方法,其中,在高出合金液相点160℃~250℃的温度将所述熔体雾化。
3. 一种包含镁、锆和钪的铝基合金,其用于由其雾化得到铝粉、然后通过添加剂技术来制造成品部件,其特征在于,所述合金具有减少的钪含量并且还包含以重量%计的以下成分比例的氧和钙:
镁 4.0~6.5
锆 0.5~1.0
钪 0.2~0.6
氧 0.001~0.2
钙 0.005~0.2
其余为Al和不可避免的杂质。
4. 用权利要求1或2所述的方法制造的球形粉末,其粒径为20 μm至150 μm。
5. 如权利要求4所述的球形粉末,其粒径为20 μm至63 μm。
6. 由权利要求3所述的合金制造的球形粉末,其粒径为20 μm至150 μm。
7.如权利要求6所述的球形粉末,其粒径为20 μm至63 μm。
8.通过选择性激光熔融或电子束熔融方法由权利要求4至7中任一项所述的球形粉末制造的成品部件。
CN201880007058.5A 2018-05-21 2018-05-21 用于添加剂技术的铝合金 Active CN110832093B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2018/000313 WO2019226063A1 (ru) 2018-05-21 2018-05-21 Алюминиевый сплав для аддитивных технологий

Publications (2)

Publication Number Publication Date
CN110832093A CN110832093A (zh) 2020-02-21
CN110832093B true CN110832093B (zh) 2022-05-17

Family

ID=64949357

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880007058.5A Active CN110832093B (zh) 2018-05-21 2018-05-21 用于添加剂技术的铝合金

Country Status (9)

Country Link
US (2) US11802325B2 (zh)
EP (1) EP3623488B1 (zh)
JP (1) JP6880203B2 (zh)
KR (1) KR102422213B1 (zh)
CN (1) CN110832093B (zh)
CA (1) CA3050947C (zh)
PL (1) PL3623488T3 (zh)
RU (1) RU2717441C1 (zh)
WO (1) WO2019226063A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3163346C (en) * 2019-12-17 2024-05-21 Novelis Inc. Suppression of stress corrosion cracking in high magnesium alloys through the addition of calcium
CN111496244B (zh) * 2020-04-27 2023-01-13 中南大学 一种增材制造高强铝合金粉及其制备方法和应用
CN111872386B (zh) * 2020-06-30 2021-12-31 同济大学 一种高强度铝镁合金的3d打印工艺方法
RU2754258C1 (ru) * 2021-03-16 2021-08-31 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Способ получения порошка на основе алюминия для 3D печати
CN115990669B (zh) * 2023-03-24 2023-06-27 湖南东方钪业股份有限公司 一种用于增材制造的钪铝合金粉末及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1873035A (zh) * 2005-05-31 2006-12-06 联合工艺公司 高温铝合金
JP2007092117A (ja) * 2005-09-28 2007-04-12 Toyota Central Res & Dev Lab Inc 高強度・低比重アルミニウム合金
CN101594952A (zh) * 2006-10-27 2009-12-02 纳米技术金属有限公司 雾化皮米复合物铝合金及其方法
CN101863307A (zh) * 2009-04-15 2010-10-20 阿勒里斯铝业科布伦茨有限公司 用于飞机机身的蒙皮板
DE102011111365A1 (de) * 2011-08-29 2013-02-28 Eads Deutschland Gmbh Oberflächenpassivierung von aluminiumhaltigem Pulver
CN104507601A (zh) * 2012-05-28 2015-04-08 瑞尼斯豪公司 金属制品的制造
CN105764634A (zh) * 2013-07-04 2016-07-13 斯内克马公司 采用适用于目标方法/材料对的粉末,通过用高能束熔融或烧结粉末颗粒来叠加制造部件的方法
CN107881382A (zh) * 2017-12-04 2018-04-06 南京航空航天大学 一种增材制造专用稀土改性高强铝合金粉体

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0995750A (ja) * 1995-09-30 1997-04-08 Kobe Steel Ltd 耐熱性に優れたアルミニウム合金
JP3929978B2 (ja) * 2003-01-15 2007-06-13 ユナイテッド テクノロジーズ コーポレイション アルミニウム基合金
US7648593B2 (en) * 2003-01-15 2010-01-19 United Technologies Corporation Aluminum based alloy
RU2251585C2 (ru) * 2003-07-29 2005-05-10 Олег Домианович Нейков Алюминиевый сплав
US7998402B2 (en) * 2005-08-16 2011-08-16 Aleris Aluminum Koblenz, GmbH High strength weldable Al-Mg alloy
JP4996854B2 (ja) * 2006-01-12 2012-08-08 古河スカイ株式会社 高温高速成形用アルミニウム合金材及びその製造方法、並びにアルミニウム合金成形品の製造方法
US8770261B2 (en) * 2006-02-09 2014-07-08 Schlumberger Technology Corporation Methods of manufacturing degradable alloys and products made from degradable alloys
RU2368687C2 (ru) * 2006-08-31 2009-09-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Сплав на основе алюминия и способ его получения
US7871477B2 (en) * 2008-04-18 2011-01-18 United Technologies Corporation High strength L12 aluminum alloys
US7879162B2 (en) 2008-04-18 2011-02-01 United Technologies Corporation High strength aluminum alloys with L12 precipitates
US8778098B2 (en) * 2008-12-09 2014-07-15 United Technologies Corporation Method for producing high strength aluminum alloy powder containing L12 intermetallic dispersoids
US20110064599A1 (en) * 2009-09-15 2011-03-17 United Technologies Corporation Direct extrusion of shapes with l12 aluminum alloys
DE102010053274A1 (de) * 2010-12-02 2012-06-21 Eads Deutschland Gmbh Verfahren zum Herstellen einer AlScCa-Legierung sowie AlScCa-Legierung
CN104651683A (zh) * 2015-03-18 2015-05-27 中南大学 一种用Sc、Zr复合微合金化的铝合金及制备方法
DE102015221643A1 (de) * 2015-11-04 2017-05-04 Airbus Defence and Space GmbH Al-Mg-Si-Legierung mit Scandium für den integralen Aufbau von ALM-Strukturen
JP7156948B2 (ja) * 2015-11-06 2022-10-19 イノマック 21 ソシエダ リミターダ 金属部品の経済的な製造方法
EP3181711B1 (de) * 2015-12-14 2020-02-26 Apworks GmbH Scandiumhaltige aluminiumlegierung für pulvermetallurgische technologien
DE102016001500A1 (de) 2016-02-11 2017-08-17 Airbus Defence and Space GmbH Al-Mg-Zn-Legierung für den integralen Aufbau von ALM-Strukturen
CN106222502A (zh) * 2016-08-30 2016-12-14 中国航空工业集团公司北京航空材料研究院 一种高钪含量的超高强度铝合金及其制造方法
US20180193916A1 (en) * 2017-01-06 2018-07-12 General Electric Company Additive manufacturing method and materials
US11098391B2 (en) * 2017-04-15 2021-08-24 The Boeing Company Aluminum alloy with additions of magnesium, calcium and at least one of chromium, manganese and zirconium, and method of manufacturing the same
CN107385294A (zh) 2017-08-01 2017-11-24 天津百恩威新材料科技有限公司 一种汽车轮毂用铝合金及其喷射成形工艺
UA127315C2 (uk) * 2017-12-04 2023-07-19 Монаш Юніверсіті Високоміцний алюмінієвий сплав для виробничих процесів високошвидкісної кристалізації

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1873035A (zh) * 2005-05-31 2006-12-06 联合工艺公司 高温铝合金
JP2007092117A (ja) * 2005-09-28 2007-04-12 Toyota Central Res & Dev Lab Inc 高強度・低比重アルミニウム合金
CN101594952A (zh) * 2006-10-27 2009-12-02 纳米技术金属有限公司 雾化皮米复合物铝合金及其方法
CN101863307A (zh) * 2009-04-15 2010-10-20 阿勒里斯铝业科布伦茨有限公司 用于飞机机身的蒙皮板
DE102011111365A1 (de) * 2011-08-29 2013-02-28 Eads Deutschland Gmbh Oberflächenpassivierung von aluminiumhaltigem Pulver
CN104507601A (zh) * 2012-05-28 2015-04-08 瑞尼斯豪公司 金属制品的制造
CN105764634A (zh) * 2013-07-04 2016-07-13 斯内克马公司 采用适用于目标方法/材料对的粉末,通过用高能束熔融或烧结粉末颗粒来叠加制造部件的方法
CN107881382A (zh) * 2017-12-04 2018-04-06 南京航空航天大学 一种增材制造专用稀土改性高强铝合金粉体

Also Published As

Publication number Publication date
KR20200087857A (ko) 2020-07-21
RU2717441C1 (ru) 2020-03-23
US20210246535A1 (en) 2021-08-12
PL3623488T3 (pl) 2021-10-25
CA3050947A1 (en) 2019-11-21
JP2021507088A (ja) 2021-02-22
US20220205067A1 (en) 2022-06-30
EP3623488B1 (en) 2021-05-05
US11802325B2 (en) 2023-10-31
KR102422213B1 (ko) 2022-07-18
WO2019226063A1 (ru) 2019-11-28
CN110832093A (zh) 2020-02-21
EP3623488A1 (en) 2020-03-18
CA3050947C (en) 2022-01-11
JP6880203B2 (ja) 2021-06-02

Similar Documents

Publication Publication Date Title
CN110832093B (zh) 用于添加剂技术的铝合金
JP7314184B2 (ja) アルミニウム合金からなる部品の製造方法
US20170120386A1 (en) Aluminum alloy products, and methods of making the same
JP2021507088A5 (zh)
EP4083244A1 (en) Heat-resistant powdered aluminium material
EP4012062A1 (en) Aluminum alloy for 3d printing or additive manufacturing, 3d printing or additive manufacturing method using same, and aluminum alloy product or component manufactured by 3d printing or additive manufacturing
CN110423923B (zh) 一种适用于3d打印的铝合金
WO2013157653A1 (ja) マグネシウム合金及びその製造方法
CN111218586A (zh) 一种含有钪钛锆元素的3d打印用铝合金
US20220275484A1 (en) Aluminum alloy for 3d printing or additive manufacturing, 3d printing or additive manufacturing method using same, and aluminum alloy product or component manufactured by 3d printing or additive manufacturing
CN112301259A (zh) 高强压铸铝合金、其制备方法和应用
CN111560545A (zh) 一种无稀土元素的3d打印用铝合金
US20220372599A1 (en) Powder Aluminum Material
CN116723904A (zh) 具有高热导率的粉末材料
JP2006274435A (ja) アルミニウム合金成形材及びその製造方法
CN115896558B (zh) 一种4xxx系铝合金锻件及其制备方法
WO2021193536A1 (ja) 金属積層造形用アルミニウム系粉末、その製造方法、及びその金属積層造形物
TW202229574A (zh) 新粉末、用於積層製造自該新粉末製得之組件的方法及自其製得之物件
WO2024068431A1 (en) Highly conductive aluminium alloy
EP4323557A1 (en) Oxidation resistant al-mg high strength die casting foundry alloys
CN117921025A (zh) 一种用于激光熔化成形的Al-Si系合金粉末及其制备和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant