WO2019225909A1 - 내열성이 개선된 제올라이트 및 이를 이용한 촉매 복합체 - Google Patents

내열성이 개선된 제올라이트 및 이를 이용한 촉매 복합체 Download PDF

Info

Publication number
WO2019225909A1
WO2019225909A1 PCT/KR2019/005919 KR2019005919W WO2019225909A1 WO 2019225909 A1 WO2019225909 A1 WO 2019225909A1 KR 2019005919 W KR2019005919 W KR 2019005919W WO 2019225909 A1 WO2019225909 A1 WO 2019225909A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
catalyst
modified
alumina sol
zeolites
Prior art date
Application number
PCT/KR2019/005919
Other languages
English (en)
French (fr)
Inventor
라오 코마테디나라야나
김은석
김용술
Original Assignee
희성촉매 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190039595A external-priority patent/KR20190132914A/ko
Application filed by 희성촉매 주식회사 filed Critical 희성촉매 주식회사
Priority to CN201980034389.2A priority Critical patent/CN112423881A/zh
Priority to EP19808452.7A priority patent/EP3797866A4/en
Priority to JP2020565495A priority patent/JP2021523829A/ja
Priority to US17/057,218 priority patent/US20210205794A1/en
Publication of WO2019225909A1 publication Critical patent/WO2019225909A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/743CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7015CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/7415Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/763CHA-type, e.g. Chabazite, LZ-218
    • B01J35/396
    • B01J35/397
    • B01J35/40
    • B01J35/56
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/038Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • B01D2255/9155Wall flow filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/063Surface coverings for exhaust purification, e.g. catalytic reaction zeolites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a modified zeolite using a selective reduction catalyst or a selective reduction catalyst using ammonia or urea as a reducing agent or a nitrogen oxide- occluded diesel oxidation catalyst coated with a filter, and to improved heat resistance. It is about.
  • the modified zeolite according to the present invention is prepared by coating or mixing the zeolite with an alumina sol, and the catalyst containing the modified zeolite according to the present invention is improved in NOx reduction performance in a high temperature region and thermal exposure to high temperature exhaust gas emitted from an internal combustion engine. Durability can be improved.
  • NOx nitrogen oxides
  • SCR Selective Catalytic Reduction
  • ammonia which is a reducing agent
  • N 2 nitrogen
  • vanadium-titanium oxide is applied as a selective reduction catalyst that exhibits 90% or more nitrogen oxide reduction performance in the region of 300 to 450 ° C., and has a higher temperature durability (600 ° C. or higher) and a higher active temperature range than the vanadium-titanium oxide catalyst.
  • SCR SCR on Filter
  • SDPF filter type selective reduction catalyst
  • a catalyst article including a nitrogen oxide storage material has been developed and applied to a diesel oxidation catalyst (DOC), which is called NA-DOC, and is referred to herein as a nitrogen oxide storage diesel oxidation catalyst.
  • DOC diesel oxidation catalyst
  • NA-DOC diesel oxidation catalyst
  • the present inventors have completed the present invention by achieving a catalyst having excellent heat resistance and high temperature activity as a result of applying alumina sol to the zeolite to prepare a modified zeolite and applying it to NA-DOC, SCR or SDPF based thereon.
  • the present invention provides a catalyst article, in particular a nitrogen oxide sorbed diesel oxidation catalyst, a selective reduction catalyst or a filter type selective reduction catalyst article, comprising a zeolite disposed on a carrier, wherein the zeolite is a zeolite coated with an alumina sol. It relates to an article.
  • the zeolite before the modification according to the present invention is H-beta zeolite or CHA zeolite.
  • the catalyst article according to the present invention may further include a platinum group component, a nitrogen oxide storage material such as barium, strontium, magnesium, and the like, which are commonly added to a nitrogen oxide-sorbed diesel oxidation catalyst, and also a selective reduction catalyst or a filter type selective reduction catalyst. Ordinary ingredients, such as binders and the like, which are understood by those skilled in the art may be further included.
  • the modified zeolite according to the present invention is characterized in that it is disposed in the carrier inner wall surface or in the carrier inner wall pores.
  • the present invention relates to an exhaust gas treatment system comprising the catalyst article.
  • the stability of the modified zeolite according to the present invention can be confirmed by the change of XRD and BET surface area, and when the modified zeolite-coated NA_DOC, SCR, SDPF catalyst is applied to the exhaust system, NOx occlusion of the exhaust gas at high temperature is improved by improving zeolite heat resistance. Rate or conversion rate is improved. In addition, thermal endurance against high temperature exposure and endothelial toxicity that is maintained even when exposed to high concentrations of sulfur and alkali metals are improved.
  • the stability of the modified zeolite may be due to, but not limited to, a physical barrier role of the shell alumina to the core zeolite, weakening of dealumination, and the like.
  • FIG. 1 shows the results of TEM analysis for fresh modified zeolites and aged modified zeolites
  • FIG. 2B is a schematic of this change due to degradation.
  • Figure 2 shows the results of TEM analysis after preparing modified zeolite by mixing gamma alumina powder instead of alumina sol in a modified zeolite manufacturing method by a RAM mixer and a ball milling process.
  • FIG. 3A shows XRD spectra at 750 ° C. to 1200 ° C. for conventional BEA zeolites and modified BEA zeolites
  • FIG. 3B shows XRD spectra at 750 ° C. to 1200 ° C. for conventional SSZ13 zeolites and modified SSZ13 zeolites. It is shown.
  • FIG. 4 shows XRD spectra for conventional BEA zeolites and modified BEA zeolites in the LTF aging L / R process at 800 ° C. to 950 ° C.
  • FIG. 4 shows XRD spectra for conventional BEA zeolites and modified BEA zeolites in the LTF aging L / R process at 800 ° C. to 950 ° C.
  • FIG. 5 shows BET surface area changes for conventional zeolites and modified zeolites in the LTF aging L / R process at 800 ° C. to 950 ° C.
  • FIG. 5 shows BET surface area changes for conventional zeolites and modified zeolites in the LTF aging L / R process at 800 ° C. to 950 ° C.
  • SSZ13 zeolite control (Ref-Cu / CHA), gamma alumina (g-Al 2 O 3 ) control, modified zeolite (ZASA) containing 30 parts by weight of alumina sol in the control zeolite Ammonia SCR performance efficiency is shown after 850 ° C / 25h HTA degradation and after 900 ° C / 12h HTA degradation.
  • FIG. 8 shows ammonia after 900 ° C./12h HTA degradation of a catalyst article coated with a catalyst having a SSZ13 zeolite control (Ref-NOx) and a modified zeolite (ZASA) containing 30 parts by weight of alumina sol in the control zeolite. SCR performance is shown to be efficient.
  • Ref-NOx SSZ13 zeolite control
  • ZASA modified zeolite
  • the present invention relates to a modified zeolite coated with an alumina sol, a catalyst article on which the modified zeolite is disposed on a carrier, and an exhaust gas treatment system comprising the catalyst article.
  • Zeolites are aluminosilicate crystalline materials that typically have a uniform pore size in the range of about 3 to 10 angstroms in diameter, depending on the type of zeolite and the type and amount of cations included in the zeolite lattice. Its use is known for promoting certain reactions, including synthetic and natural zeolites and the selective reduction of nitrogen oxides with ammonia reducing agents.
  • the present application is to modify the zeolite to improve heat resistance, and in particular to prepare modified zeolite using an alumina sol.
  • the alumina sol herein can be used interchangeably with the terms aluminum hydroxide, bayerite, boehmite. In practice, alumina sol is understood to be a material containing various forms of aluminum hydroxide.
  • alumina sol is obtained by aging and washing the alumina hydrate obtained by the liquid phase neutralization reaction with an acidic water-soluble aluminum salt such as aluminum chloride or aluminum nitrate with an alkaline substance such as ammonia hydroxide or carbonate to remove impurities, and then filtering the obtained alumina hydrate. Obtained in the form of a cake or dried and then heat treated to prepare the desired alumina sol powder.
  • an acidic water-soluble aluminum salt such as aluminum chloride or aluminum nitrate
  • an alkaline substance such as ammonia hydroxide or carbonate
  • H-beta zeolites, BEA or CHA zeolites are exemplified herein, and SSZ-13 among CHA zeolites is exemplified but not limited to.
  • Zeolites may also be exchanged by one or more metal cations and suitable metals include, but are not limited to, copper, iron and cobalt.
  • the zeolite is mixed with the alumina sol, wherein the alumina sol is included in about 5 to 50% by weight, preferably about 10 to 30% by weight based on the weight of the zeolite, the mixture is dried and calcined to prepare a modified zeolite.
  • the modified zeolite according to the present invention is an egg-shell structure in which the zeolite forms a core and the alumina forms a shell.
  • the modified zeolites according to the present invention are disposed in the carrier inner wall surface or in the carrier inner wall pores to constitute a NA-DOC, SCR or SDPF catalyst article.
  • the term catalyst article is used herein interchangeably with the term catalyst or catalyst complex, and the term carrier may be applied to the description, the term carrier.
  • the carrier is exemplified by a honeycomb substrate.
  • the catalyst article according to the invention may further comprise conventional additives.
  • the nitrogen oxide-sorbed diesel oxidation catalyst may further include a platinum group component, a nitrogen oxide storage material such as barium, strontium, magnesium, and the like, and a component binder or the like may be further added to the selective reduction catalyst or the filter type selective reduction catalyst. May be disposed on the refractory metal oxide carrier.
  • the catalyst article according to the present invention is mounted in an exhaust gas treatment system, and may further include a diesel oxidation catalyst and / or a soot filter upstream of the catalyst article, and downstream may be equipped with an ammonia oxidation catalyst.
  • a zeolite modification method by a RAM mixer and a ball milling process is proposed.
  • an alumina sol solution (30 parts by weight) and BEA zeolite (100 parts by weight) are mixed and distilled water (DI) is added to prepare a slurry of 30% solids.
  • DI distilled water
  • the slurry is treated with a RAM (Resonant Acoustic Mixing) mixer for 2 minutes.
  • Alumina balls were charged, wet milled for 24 hours, dried at 150 ° C. and calcined at 600 ° C. to complete the modified zeolite coated with alumina sol.
  • the new zeolite deteriorated under conditions of L / R for 12 hours from 700 ° C to 1100 ° C.
  • the alumina sol solution refers to a colloidal dispersion having a diameter of 2 to 10 nanometers produced by adding a commercially available alumina sol powder having a diameter of 5 to 50 microns, such as SASOL, into water or an acidic solution.
  • Alumina sol solution (30 parts by weight) and BEA zeolite (100 parts by weight) are mixed, distilled water (DI) is added and dispersed for 10 minutes, after which milling and acidity are adjusted to prepare a 30% solids slurry. Drying at 150 ° C. and calcining at 600 ° C. completed the modified zeolite coated with alumina sol. The new zeolite deteriorated under conditions of L / R for 12 hours from 700 ° C to 1100 ° C.
  • DI distilled water
  • the first and second methods produced modified zeolites of substantially the same properties.
  • FIG. 1A shows the results of TEM analysis for fresh modified zeolites and aged modified zeolites
  • FIG. 1B is a schematic of this structural change due to degradation.
  • the new zeolite is about hundreds of nm in size, and the alumina component is concentrated around it.
  • LTF Label Tube Furnace
  • the zeolite is agglomerated and reduced to about 1um in size, and the alumina is surrounded by alumina.
  • the components are applied substantially to form a significant egg-shell structure.
  • the new modified zeolites are expected to be gamma alumina because the alumina concentrated in the surroundings was calcined at 600 ° C. and egg-shells are formed but not dense, but the BET results after degradation, sintered at 700 to 850 ° C., and thus Thermal stability appears to be better than for new products.
  • Figure 2 shows the results of TEM analysis after the modified zeolite was prepared by mixing the gamma alumina powder instead of alumina sol in the modified zeolite manufacturing method by a RAM mixer and ball milling process.
  • the zeolite and alumina components are separated from each other and no egg-cell structure is formed. Therefore, in the present invention, the alumina precursor for providing a physical barrier to the zeolite is inevitably limited to the alumina sol, and preferably, the addition of the deterioration process further improves the properties of the modified zeolite.
  • FIG. 3A shows XRD spectra at 750 ° C. to 1200 ° C. for conventional BEA zeolites and modified BEA zeolites according to the invention, where conventional BEA zeolites show new peaks at 1200 ° C. or higher, ie the structure collapses,
  • the modified BEA zeolite is shown to be structurally stable by showing constant peaks even at high temperatures.
  • 3b shows XRD spectra at 750 ° C. to 1200 ° C. for conventional SSZ13 zeolites and modified SSZ13 zeolites according to the present invention, where conventional SSZ13 zeolites show new peaks above 1100 ° C., ie, the structure collapses.
  • the modified SSZ13 zeolite shows a new peak at 1150 ° C. or higher, indicating that the alumina sol is structurally stable at 50 ° C. or higher than unapplied.
  • FIG. 4 shows XRD spectra of conventional BEA zeolites in the process of LTF degradation L / R (Lean / Rich) and modified BEA zeolites according to the present invention at 800 ° C to 950 ° C. While the more unstable the structure, the modified BEA zeolite shows that it is more structurally stable even after 900 ° C., 12 h L / R cycle degradation.
  • FIG. 5 is a view showing a change in the BET surface area for the conventional zeolite and the modified zeolite according to the present invention in the LTF aging L / R process at 800 °C to 950 °C, the modified zeolite has less surface area change than conventional zeolite It is stable, and BEA zeolite shows a more stable pattern than SSZ13.
  • the modified zeolite may have a catalyst particle form, which is disposed on a carrier to provide a catalyst article.
  • the carrier or substrate can be any material typically used for preparing catalysts and typically includes a ceramic or metal honeycomb structure.
  • the ceramic substrate is made of any suitable refractory material.
  • the modified zeolite is applied to the substrate as a washcoat to prepare a catalyst article or catalyst composite, which is another embodiment of the present invention.
  • Binders can be used to prepare washcoats of modified zeolites.
  • ZrO 2 binders derived from suitable precursors such as zirconium precursors such as zirconyl nitrate are used.
  • the modified zeolite catalyst comprises a noble metal component, ie a platinum group metal component.
  • a noble metal component ie a platinum group metal component.
  • ammonia oxidation catalysts typically include a platinum group component.
  • Suitable platinum metal components include platinum, palladium, rhodium and mixtures thereof.
  • Various components of the catalytic material e.g., modified zeolite and precious metal components may be applied to the refractory carrier member, i.e., the substrate, in a known manner as a washcoat mixture of two or more components or as individual washcoat components to complete the catalyst article. Can be.
  • modified zeolite catalyst article of the present invention may be provided in exhaust gas treatment systems such as those found in gasoline and diesel vehicles.
  • modified zeolite catalyst articles are generally provided in fluid communication with other gas treatment articles, such as diesel oxidation catalysts, soot filters and / or ammonia oxidation catalyst articles, either upstream or downstream of the catalyst article.
  • FIG. 6 shows a SSZ13 zeolite control group (Pd / CHA), a gamma alumina (g-Al 2 O 3 ) control group, and a NA- containing modified zeolite (ZASA @ NA-DOC) containing 30 parts by weight of alumina sol in the control zeolite.
  • NA-DOC containing modified zeolite according to the present invention is about 20% compared to NA-DOC containing SSZ13 zeolite control (Pd / CHA) and gamma alumina (g-Al 2 O 3 ) control. It was confirmed that the degree of NOx adsorption was improved.
  • a catalyst article comprising SSZ13 zeolite control (Ref-Cu / CHA), gamma alumina (g-Al 2 O 3 ) control, modified zeolite (ZASA) containing 30 parts by weight of alumina sol in the control zeolite
  • Ammonia SCR performance efficiency is shown after 850 ° C./25h HTA degradation and after 900 ° C./12h HTA degradation.
  • the NO x conversion of the SCR catalyst article by is better than the control article, especially at high temperatures, the conversion was significantly improved.
  • FIG. 8 shows ammonia after 900 ° C./12h HTA degradation of a catalyst article coated with a catalyst having a SSZ13 zeolite control (Ref-NOx) and a modified zeolite (ZASA) containing 30 parts by weight of alumina sol in the control zeolite.
  • SCR performance is shown to be efficient.
  • the applied DPF is cordierite filter and the coating amount is 250g / L. NOx conversion by ZASA can be seen that the remarkable increase with temperature compared to the control.
  • FIG. 9 shows BEA at 770 ° C./20Lean, 800 ° C./12 C, and 850 ° C./12 C of a 3% Cu-containing SSZ13 zeolite control, a modified zeolite containing 10 parts by weight of alumina sol and 30 parts by weight of alumina sol in the control zeolite. It shows a change in surface area, thereby confirming the structural stability of the modified zeolite.

Abstract

본 발명은 암모니아 또는 요소를 환원제로 사용하는 선택적 환원촉매 (SCR) 또는 선택적 환원촉매가 필터에 코팅되는 필터형 선택적 환원촉매 (SDPF) 또는 질소산화물 흡장형 디젤산화촉매 (NA-DOC)에서 사용되고 내열성이 개선된 개질 제올라이트 및 이를 이용한 촉매 복합체에 관한 것으로, 놀랍게도 제올라이트 코팅물인 알루미나 성분은 제올라이트의 내열성을 개선시켜 고온에서 촉매 효율을 촉진시킨다.

Description

내열성이 개선된 제올라이트 및 이를 이용한 촉매 복합체
본 발명은 암모니아 또는 요소를 환원제로 사용하는 선택적 환원 촉매 또는 선택적 환원촉매가 필터에 코팅되는 필터형 선택적 환원촉매 또는 질소산화물 흡장형 디젤산화촉매에서 사용되고 내열성이 개선된 개질 제올라이트 및 이를 이용한 촉매 복합체에 관한 것이다. 본 발명에 의한 개질 제올라이트는 제올라이트를 알루미나 졸로 코팅 또는 혼합함으로써 제조되고, 본 발명에 의한 개질 제올라이트를 포함하는 촉매는 고온영역에서의 NOx 저감 성능 증진과 내연기관 등에서 배출되는 고온 배기가스 노출에 대한 열적 내구성이 개선될 수 있다.
화학양론적 연소에 요구되는 필요 공기량 이상의 공기를 사용하는 연소 조건, 즉 희박(lean) 조건에서 작동되는 내연기관의 경우 배기가스로부터 질소산화물 (NOx)을 제거하는 것이 특히 어렵다.
희박 조건인 고정원(stationary source)에 적용, 증명된 NOx 저감 기술로 암모니아를 사용하는 선택적 촉매 환원 (Selective Catalytic Reduction; SCR)이 있다. 이 때, 질소산화물은 SCR 촉매 표면에서 환원제인 암모니아와 반응하여, 질소(N 2)로 환원되면서 저감된다. 일반적으로 300~450℃ 영역에서 90% 이상의 질소산화물 저감 성능을 나타내는 선택적 환원 촉매로 바나듐-티타늄 산화물이 적용되며, 바나듐-티타늄 산화물 촉매보다 고온 내구성(600℃ 이상) 및 높은 활성 온도 범위(350~550℃)가 필요한 적용처를 위해서는 ZSM5 및 베타 형태의 제올라이트 및/또는 철(Fe), 구리(Cu)와 같은 전이 금속 이온이 이온교환 된 Fe-베타, Cu-베타, Fe-ZSM5, Cu-ZSM5 형태의 제올라이트 촉매가 개발되었고, 사용되고는 있으나, 여전히 내열성의 문제가 있다. 이러한 SCR은 필터 구조체에도 적용될 수 있으며, 이를 SCRoF (SCR on Filter)또는 SDPF라고 칭하며, 본원에서는 필터형 선택적 환원 촉매라고 부른다. 한편, 최근에서는 저온 활성을 개선하기 위하여 디젤산화촉매 (DOC)에 질소산화물 흡장물질을 포함하는 촉매 물품이 개발되어 적용되고 있으며 이를 NA-DOC라고 칭하며, 본원에서는 질소산화물 흡장형 디젤산화촉매라고 부른다. 상기 질소산화물 흡장형 디젤산화촉매 또는 필터형 선택적 환원 촉매에서 우수한 고온 활성 개선과 내연기관에서 발생되는 고온 노출에 대한 열적 내구성 및 황, 인, 칼슘, 아연 등 알칼리 금속 성분의 피독에 저항성을 가지는 촉매가 요구된다.
본 발명자들은 제올라이트에 알루미나 졸을 도포하여 개질 제올라이트를 제조하고 이를 기반으로 NA-DOC, SCR 또는 SDPF에 적용한 결과 놀랍게도 내열성 및 고온 활성이 우수한 촉매를 달성함으로써 본 발명을 완성하게 되었다.
본 발명은 촉매 물품, 특히 질소산화물 흡장형 디젤산화촉매, 선택적 환원 촉매 또는 필터형 선택적 환원 촉매 물품으로서, 담체에 배치되는 제올라이트를 포함하되, 상기 제올라이트는 알루미나 졸로 코팅된 제올라이트인 것을 특징으로 하는 촉매 물품에 관한 것이다.
본 발명의 실시태양에 의하면, 본 발명에 의한 개질 전 제올라이트는 H-베타 제올라이트 또는 CHA 제올라이트인 것을 특징으로 한다. 본 발명에 의한 촉매 물품은 질소산화물 흡장형 디젤산화촉매에 통상적으로 첨가되는 백금족 성분, 질소산화물 저장물질, 예컨대 바륨, 스트론튬, 마그네슘 등이 더욱 포함될 수 있고, 또한 선택적 환원 촉매 또는 필터형 선택적 환원 촉매에 당업자가 이해하는 통상의 성분들, 예컨대 결합체 등이 더욱 포함될 수 있는 것이다. 본 발명에 의한 개질 제올라이트는 담체 내벽 표면 또는 담체 내벽 공극에 배치되는 것을 특징으로 한다.
본 발명의 다른 실시태양에 의하면, 본 발명은 상기 촉매 물품을 포함하는 배기가스 처리시스템에 관한 것이다.
본 발명에 의한 개질 제올라이트의 안정성은 XRD 및 BET 표면적 변화로 확인할 수 있으며, 상기 개질 제올라이트가 코팅된 NA_DOC, SCR, SDPF 촉매는 배기 시스템에 적용될 경우, 제올라이트 내열성 향상으로 고온에서의 배기가스의 NOx 흡장율 또는 전환율이 개선된다. 아울러, 고온 노출에 대한 열적 내구성 및 고농도 황, 알칼리 금속에 노출되었어도 활성이 유지되는 내피독성이 향상된다.
개질 제올라이트의 안정성은 코어인 제올라이트에 대한 쉘인 알루미나의 물리적 장벽 역할, 탈알루미늄화 (dealumination) 약화 등에 원인이 있을 것이나, 이에 국한되지 않는다.
도 1은 신품 (fresh) 개질 제올라이트 및 열화 (aged) 개질 제올라이트에 대한 TEM 분석 결과이고, 도 2b는 열화에 의한 이러한 변화 개략도이다.
도 2는 RAM 혼합기 및 볼 밀링 공정에 의한 개질 제올라이트 제조 방법에서 알루미나 졸이 아닌 감마 알루미나 파우더를 혼합하여 개질 제올라이트를 제조한 후 TEM 분석 결과를 보인 것이다
도 3a는 통상의 BEA 제올라이트 및 개질 BEA 제올라이트에 대한 750℃ 내지 1200℃에서의 XRD 스펙트럼을 도시한 것이고, 도 3b는 통상의 SSZ13 제올라이트 및 개질 SSZ13 제올라이트에 대한 750℃ 내지 1200℃에서의 XRD 스펙트럼을 도시한 것이다.
도 4는 800℃ 내지 950℃에서 LTF aging L/R 과정에 있는 통상의 BEA 제올라이트 및 개질 BEA 제올라이트에 대하여 XRD 스펙트럼을 보인 것이다.
도 5는 800℃ 내지 950℃에서 LTF aging L/R 과정에 있는 통상의 제올라이트 및 개질 제올라이트에 대한 BET 표면적 변화를 보이는 도면이다.
도 6은 SSZ13 제올라이트 대조군 (Pd/CHA), 감마 알루미나 (g-Al 2O 3)대조군, 상기 대조군 제올라이트에 30중량부 알루미나 졸이 함유되는 개질 제올라이트 (ZASA @ NA-DOC)를 포함하는 NA-DOC 촉매 물품에 대한 850℃/25h HTA (수열) 열화 후 10분 동안 NOx = 400 ppm, 100℃ 흡착 및 100 내지 700℃ 탈착조건에서 NOx 흡착율을 보인다.
도 7은 SSZ13 제올라이트 대조군 (Ref-Cu/CHA), 감마 알루미나 (g-Al 2O 3)대조, 상기 대조군 제올라이트에 30중량부 알루미나 졸이 함유되는 개질 제올라이트 (ZASA)를 포함하는 촉매 물품에 대한 850℃/25h HTA 열화 후 및 900℃/12h HTA 열화 후 암모니아 SCR 성능 효율을 보인다.
도 8은 SSZ13 제올라이트 대조군 (Ref-NOx), 상기 대조군 제올라이트에 30중량부 알루미나 졸이 함유되는 개질 제올라이트 (ZASA)를 포함하는 촉매를 DPF에 코팅한 촉매 물품에 대한 900℃/12h HTA 열화 후 암모니아 SCR 성능 효율을 보인다.
본 발명은 알루미나 졸로 코팅되는 개질 제올라이트, 상기 개질 제올라이트가 담체에 배치되는 촉매 물품 및 상기 촉매 물품을 포함하는 배기가스 처리시스템에 관한 것이다.
제올라이트는, 제올라이트의 유형 및 제올라이트 격자 내에 포함된 양이온의 유형 및 양에 따라, 전형적으로 직경 약 3 내지 10 옹스트롬의 범위의 균일한 기공 크기를 갖는 알루미노실리케이트 결정질 물질이다. 합성 제올라이트 및 천연 제올라이트와, 암모니아 환원제에 의한 질소산화물의 선택적 환원을 포함하는 특정 반응을 촉진시키는데 있어서의 이것의 용도는 공지되어 있다. 본원은 내열성 개선을 위하여 제올라이트를 개질하는 것이고, 특히 알루미나 졸을 이용하여 개질 제올라이트를 제조하는 것이다. 본원에서 알루미나 졸은, 수산화 알루미늄, 바이어라이트 (bayerite), 베마이트 (boehmite)라는 용어와 혼용될 수 있다. 실제로 알루미나 졸은 여러 형태의 수산화알루미늄을 함유한 물질로 이해된다. 통상 알루미나 졸은 염화 알루미늄, 질산 알루미늄 등 산성의 수용성 알루미늄염에 암모니아 수산화물, 탄산염 등 알칼리성 물질과의 액상중화 반응에 의해 얻어진 알루미나 수화물을 숙성하고 세정하여 불순물을 제거하고 여과한 다음, 얻어진 알루미나 수화물을 케이크 상태로 얻거나 또는 건조 시킨 후 열처리하여 목적하는 알루미나 졸 파우더로 제조할 수 있다.
본원에서 H-베타 제올라이트, BEA 또는 CHA 제올라이트가 예시되고, CHA 제올라이트 중 SSZ-13가 예시되지만 이에 국한되지 않는다. 또한 제올라이트는 하나 이상의 금속 양이온에 의해 교환될 수 있고, 적합한 금속은 구리, 철 및 코발트를 포함하지만 이것으로만 제한되지는 않는다. 본원에서 제올라이트는 알루미나 졸과 혼합하되, 상기 알루미나 졸은 제올라이트 중량 기준으로 약 5 내지 50 중량% 바람직하게는 약 10 내지 30 중량%로 포함되며, 상기 혼합물을 건조, 소성하여 개질 제올라이트를 제조한다. 본원발명에 의한 개질 제올라이트는 에그-쉘 구조로서 제올라이트는 코어를 형성하고 알루미나는 쉘을 형성한다.
본 발명에 의한 개질 제올라이트는 담체 내벽 표면 또는 담체 내벽 공극에 배치되어 NA-DOC, SCR 또는 SDPF 촉매 물품을 구성한다. 본원에서 촉매 물품이라는 용어는 촉매 또는 촉매 복합체라는 용어와 상호 교환적으로 사용되고, 담체라는 용어는 기재, 캐리어라는 표현이 적용될 수 있다. 담체는 허니콤 기재가 예시된다. 본 발명에 의한 촉매 물품은 통상의 첨가제들이 더욱 포함할 수 있다. 예시로서 질소산화물 흡장형 디젤산화촉매에 백금족 성분, 질소산화물 저장물질, 예컨대 바륨, 스트론튬, 마그네슘 등이 더욱 포함될 수 있고, 선택적 환원 촉매 또는 필터형 선택적 환원 촉매에 성분 결합체 등이 추가의 촉매적 기능을 위해 내화성 금속 산화물 담체 상에 배치될 수 있다.
본 발명에 의한 촉매 물품은 배기가스 처리시스템에 장착되고, 상기 촉매 물품 상류에 디젤산화촉매 및/또는 매연필터 등을 더욱 포함할 수 있고, 하류에는 암모니아 산화촉매가 장착될 수 있다.
<제올라이트 개질>
제1 방법으로는 RAM 혼합기 및 볼 밀링 공정에 의한 제올라이트 개질 방법이 제안된다. 먼저, 알루미나 졸 용액 (30 중량부) 및 BEA 제올라이트 (100 중량부)를 혼합하고 증류수 (DI)를 첨가하여 30% 고형분의 슬러리를 제조한다. 슬러리를 RAM (Resonant Acoustic Mixing, 음향공명진동) 혼합기로 2분간 처리한다. 알루미나 볼을 투입하고 24시간 습식 밀링한 후, 150℃에서 건조하고 600℃에서 소성하여 알루미나 졸이 코팅된 개질 제올라이트를 완성하였다. 신품 제올라이트를 700℃에서 1100℃로 12시간 L/R 조건에서 열화시켰다. 상기 알루미나 졸 용액이란 SASOL 등 통상적으로 상업적으로 입수되는 직경 5 내지 50 미크론의 알루미나 졸 파우더를 물 또는 산성 용액에 투입하여 생성되는 직경 2 내지 10 나노미터의 콜로이드 분산액을 의미한다.
제2 방법으로는, 슬러리 공정이 제안된다. 알루미나 졸 용액 (30 중량부) 및 BEA 제올라이트 (100 중량부)를 혼합하고 증류수 (DI)를 첨가하고 10분 동안 분산시킨 후, 밀링 및 산도를 조절하여 30% 고형분의 슬러리를 제조한다. 150℃에서 건조하고 600℃에서 소성하여 알루미나 졸이 코팅된 개질 제올라이트를 완성하였다. 신품 제올라이트를 700℃에서 1100℃로 12시간 L/R 조건에서 열화시켰다.
상기 제1 방법 및 제2 방법은 실질적으로 동일한 특성의 개질 제올라이트를 생성하였다.
도 1a는 신품 (fresh) 개질 제올라이트 및 열화 (aged) 개질 제올라이트에 대한 TEM 분석 결과를 보이고, 도 1b는 열화에 의한 이러한 구조 변화 개략도이다. 신품 제올라이트는 약 수백 nm 크기로 주변에 알루미나 성분들이 집중된 형태이고, LTF (Lab Tube Furnace) 850℃/12C (Cyclic Lean/Rich)후 열화 제올라이트는 응집되어 약 1um로 크기가 감소되면서 제올라이트 주변에 알루미나 성분이 실질적으로 도포되어 현저한 에그-쉘 (egg-shell) 구조가 형성된다. 구체적으로, 신품 개질 제올라이트는, 주변에 집중된 알루미나는 600℃에서 소성되었으므로 감마 알루미나로 예상되고 에그-쉘이 형성되나 치밀하지는 않지만, 열화 후 즉 700 내지 850℃에서 소결된 후 BET 결과, 및 이에 따른 열적 안정성은 신품의 경우 보다 더욱 양호한 것으로 나타난다.
한편, 도 2는 RAM 혼합기 및 볼 밀링 공정에 의한 개질 제올라이트 제조 방법에서 알루미나 졸이 아닌 감마 알루미나 파우더를 혼합하여 개질 제올라이트를 제조한 후 TEM 분석 결과를 보인 것이다. 제올라이트 및 알루미나 성분은 서로 분리된 구조로서 에그-셀 구조가 형성되지 않는다. 따라서 본원발명에서 제올라이트에 물리적 장벽을 제공하기 위한 알루미나 전구체는 필연적으로 알루미나 졸에 한정되고, 바람직하게는 열화 과정이 추가되면 개질 제올라이트의 특성이 더욱 개선된다.
도 3a는 통상의 BEA 제올라이트 및 본 발명에 의한 개질 BEA 제올라이트에 대하여 750℃ 내지 1200℃에서의 XRD 스펙트럼을 보인 것으로, 통상의 BEA 제올라이트는 1200℃ 이상에서 새로운 피크를 보이고, 즉 구조가 붕괴되지만, 개질 BEA 제올라이트는 고온에서도 일정한 피크들을 보임으로써 구조적으로 안정한다는 것을 보인다.
또한 도 3b는 통상의 SSZ13 제올라이트 및 본 발명에 의한 개질 SSZ13 제올라이트에 대하여 750℃ 내지 1200℃에서의 XRD 스펙트럼을 보인 것으로, 통상의 SSZ13 제올라이트는 1100℃ 이상에서 새로운 피크를 보이고, 즉 구조가 붕괴되지만, 개질 SSZ13 제올라이트는 1150℃ 이상에서 새로운 피크를 보임으로써 알루미나 졸이 적용되지 않은 것보다 구조적으로 50℃ 이상 안정한다는 것을 보인다.
도 4는 800℃ 내지 950℃에서 LTF 열화 L/R (Lean/Rich) 과정에 있는 통상의 BEA 제올라이트 및 본 발명에 의한 개질 BEA 제올라이트에 대하여 XRD 스펙트럼을 보인 것으로, 통상의 BEA 제올라이트는 온도가 높아질수록 구조가 불안정하지만, 개질 BEA 제올라이트는 900℃, 12h L/R 사이클 열화 후에도 구조적으로 더욱 안정한다는 것을 보인다.
도 5는 800℃ 내지 950℃에서 LTF aging L/R 과정에 있는 통상의 제올라이트 및 본 발명에 의한 개질 제올라이트에 대한 BET 표면적 변화를 보이는 도면으로, 개질 제올라이트는 통상의 제올라이트보다 표면적 변화가 적어 구조적으로 안정함을 보이고, BEA 제올라이트 경우 SSZ13의 경우보다 더욱 안정한 패턴을 보인다.
본 발명의 다른 실시양태에 따르면, 개질 제올라이트는 촉매 입자 형태를 가질 수 있고, 이러한 입자 형태가 담체 상에 배치됨으로써 촉매 물품을 제공한다. 담체 또는 기재는 촉매 제조에 전형적으로 사용되는 임의의 물질일 수 있고, 통상적으로 세라믹 또는 금속 하니콤 구조를 포함한다. 예를들면 세라믹 기재는 임의의 적합한 내화성 물질로 제조된다. 구체적으로 개질 제올라이트를 워시코트로서 기재에 도포함으로써, 본 발명의 다른 실시태양인 촉매 물품 또는 촉매 복합체를 제조한다. 결합제를 사용하여 개질 제올라이트의 워시코트를 제조할 수 있다. 하나 이상의 실시태양에 따르면, 적합한 전구체, 예컨대 지르코늄 전구체, 예컨대 지르코닐 니트레이트로부터 유도된 ZrO 2 결합제가 사용된다. 본 발명의 다른 실시태양에서, 개질 제올라이트 촉매는 귀금속 성분, 즉 백금족 금속 성분을 포함한다. 예를들면, 필요에 따라 암모니아 슬립을 방지하기 위하여, 암모니아 산화 촉매로서 전형적으로 백금족 성분을 포함한다. 적합한 백금 금속 성분은 백금, 팔라듐, 로듐 및 이것들의 혼합물을 포함한다. 촉매 물질의 여러 성분들(예를들면 개질 제올라이트 및 귀금속 성분)을, 내화성 담체 부재, 즉 기재에, 둘 이상의 성분들의 워시코트 혼합물로서 또는 개별적인 워시코트 성분으로서 공지 방식으로 도포하여 촉매 물품을 완성할 수 있다. 코팅 방식은 공지된 것이고, 담체 내벽 표면에만, 표면에 일부를 나머지를 벽 내부로, 전체를 벽 내부에 담지할 수 있다. 본 발명의 개질 제올라이트 촉매 물품은 배기가스 처리 시스템, 예컨대 가솔린 및 디젤 차량에서 볼 수 있는 배기가스 처리 시스템에 제공될 수 있다. 이러한 배기가스 처리 시스템에서, 개질 제올라이트 촉매 물품은, 일반적으로 촉매 물품의 상류 또는 하류에서 다른 기체 처리 물품, 예컨대 디젤산화촉매, 매연필터 및/또는 암모니아 산화촉매 물품과 유체 소통하도록 제공된다.
도 6은 SSZ13 제올라이트 대조군 (Pd/CHA), 감마 알루미나 (g-Al 2O 3)대조군, 상기 대조군 제올라이트에 30중량부 알루미나 졸이 함유되는 개질 제올라이트 (ZASA @ NA-DOC)를 포함하는 NA-DOC 촉매 물품에 대하여 850℃/25h HTA (수열) 열화 후 10분 동안 NOx = 400 ppm, 100℃ 흡착 및 100 내지 700℃ 탈착조건에서 NOx 흡착율을 도시한 것이다. 도 6에서 구현된 NA-DOC는 비교되는 SSZ13 제올라이트, 감마 알루미나, 알루미나 졸에 의한 개질 제올라이트 외에 백금족이 함유된 CeO 2-Al 2O 3로 구성된다. 도 6을 참고하면 본 발명에 의한 개질 제올라이트를 함유한 NA-DOC는 SSZ13 제올라이트 대조군 (Pd/CHA), 감마 알루미나 (g-Al 2O 3)대조군을 함유한 NA-DOC와 비교하여 약 20% 정도 NOx 흡착율이 개선된 것이 확인된다.
도 7은 SSZ13 제올라이트 대조군 (Ref-Cu/CHA), 감마 알루미나 (g-Al 2O 3) 대조군, 상기 대조군 제올라이트에 30중량부 알루미나 졸이 함유되는 개질 제올라이트 (ZASA)를 포함하는 촉매 물품에 대한 850℃/25h HTA 열화 후 및 900℃/12h HTA 열화 후 암모니아 SCR 성능 효율을 보인다.도 7에서 암모니아-SCR 반응 조건은 400 ppm, NH3/NOx=1, SV=60,000 hr -1로서, 본 발명에 의한 SCR 촉매 물품의 NOx 전환율은 대조 물품보다 우수하며, 특히 고온에서 전환율은 유의미하게 개선되었다.
도 8은 SSZ13 제올라이트 대조군 (Ref-NOx), 상기 대조군 제올라이트에 30중량부 알루미나 졸이 함유되는 개질 제올라이트 (ZASA)를 포함하는 촉매를 DPF에 코팅한 촉매 물품에 대한 900℃/12h HTA 열화 후 암모니아 SCR 성능 효율을 보인다. 적용된 DPF는 코디어라이트계 필터이고 코팅량은 250g/L이다. ZASA에 의한 NOx 전환율은 대조군 대비 온도 증가에 따라 현저하다는 것을 확인할 수 있다.
본원에 의한 촉매 물품은 고온에서의 촉매 효율이 개선되며, 이러한 개선은 개질 제올라이트의 내열성에 기인한다고 판단된다. 이러한 결론은 도 9에 보여진 결과로 더욱 지지된다. 도 9는 3% Cu-함유 SSZ13 제올라이트 대조군, 상기 대조군 제올라이트에 10중량부 알루미나 졸, 30중량부 알루미나 졸이 함유되는 개질 제올라이트의 770℃/20Lean, 800℃/12C, 850℃/12C 조건에서 BEA 표면적 변화를 보이고, 이에 따라 개질 제올라이트의 구조적 안정성이 확인된다.

Claims (6)

  1. 질소산화물 흡장형 디젤산화촉매 물품으로서, 담체에 배치되는 제올라이트를 포함하되, 상기 제올라이트는 알루미나 졸로 코팅된 제올라이트인 것을 특징으로 하는, 질소산화물 흡장형 디젤산화촉매 물품.
  2. 선택적 환원 촉매 물품으로서, 담체에 배치되는 제올라이트를 포함하되, 상기 제올라이트는 알루미나 졸로 코팅된 제올라이트인 것을 특징으로 하는, 선택적 환원 촉매 물품.
  3. 필터형 선택적 환원 촉매 물품으로서, 담체에 배치되는 제올라이트를 포함하되, 상기 제올라이트는 알루미나 졸로 코팅된 제올라이트인 것을 특징으로 하는, 필터형 선택적 환원 촉매 물품.
  4. 질소산화물 흡장형 삼원촉매 물품, 선택적 환원 촉매 물품 또는 필터형 선택적 환원 촉매 물품에 사용되는, 알루미나 졸로 코팅된 제올라이트.
  5. 제1항 내지 제3항 중 어느 하나의 항에 있어서, 상기 제올라이트는 H-베타 제올라이트 또는 CHA 제올라이트인 것을 특징으로 하는, 촉매 물품.
  6. 제1항 내지 제3항 중 어느 하나의 항의 촉매 물품을 포함하는 배기가스 처리시스템.
PCT/KR2019/005919 2018-05-21 2019-05-17 내열성이 개선된 제올라이트 및 이를 이용한 촉매 복합체 WO2019225909A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980034389.2A CN112423881A (zh) 2018-05-21 2019-05-17 具有改善的耐热性的沸石以及使用该沸石的催化剂复合物
EP19808452.7A EP3797866A4 (en) 2018-05-21 2019-05-17 ZEOLITE HAVING IMPROVED HEAT RESISTANCE AND CATALYST COMPOSITE USING THE SAME
JP2020565495A JP2021523829A (ja) 2018-05-21 2019-05-17 耐熱性が改善されたゼオライト及びこれを用いた触媒複合体
US17/057,218 US20210205794A1 (en) 2018-05-21 2019-05-17 Zeolite having improved heat resistance and catalyst composite using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180057570 2018-05-21
KR10-2018-0057570 2018-05-21
KR1020190039595A KR20190132914A (ko) 2018-05-21 2019-04-04 내열성이 개선된 제올라이트 및 이를 이용한 촉매 복합체
KR10-2019-0039595 2019-04-04

Publications (1)

Publication Number Publication Date
WO2019225909A1 true WO2019225909A1 (ko) 2019-11-28

Family

ID=68616865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005919 WO2019225909A1 (ko) 2018-05-21 2019-05-17 내열성이 개선된 제올라이트 및 이를 이용한 촉매 복합체

Country Status (2)

Country Link
EP (1) EP3797866A4 (ko)
WO (1) WO2019225909A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021219628A1 (en) 2020-04-28 2021-11-04 Basf Corporation A composition for scr catalysts

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810566A (ja) * 1994-07-05 1996-01-16 Ngk Insulators Ltd 排ガス浄化用触媒−吸着体及び排ガス浄化方法
JP2009052542A (ja) * 2007-08-01 2009-03-12 Nissan Motor Co Ltd 排気ガス浄化システム
KR20100119378A (ko) * 2009-04-30 2010-11-09 한국에너지기술연구원 디젤 차량의 배출가스 저감장치용 혼합촉매와 그 제조방법
JP2011125849A (ja) * 2009-11-19 2011-06-30 Ibiden Co Ltd ハニカム構造体及び排ガス浄化装置
JP2014061456A (ja) * 2012-09-19 2014-04-10 Cataler Corp 排気ガス浄化用フィルター

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5346612A (en) * 1993-02-19 1994-09-13 Amoco Corporation Distillate hydrogenation utilizing a catalyst comprising platinum, palladium, and a beta zeolite support
EP2045012A4 (en) * 2006-06-28 2013-10-23 Idemitsu Kosan Co CATALYST FOR FLUID CATALYTIC CRACKING HAVING DESULFURING FUNCTIONS, PRODUCTION PROCESS THEREOF, AND CATALYTICALLY CRACKED SULFUR SULFUR PRODUCTION PROCESS USING THE CATALYST
EP3426394A4 (en) * 2016-03-09 2019-12-18 BASF Corporation CORE / SHELL HYDROCARBON CATALYST AND METHOD FOR PRODUCING THE SAME

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810566A (ja) * 1994-07-05 1996-01-16 Ngk Insulators Ltd 排ガス浄化用触媒−吸着体及び排ガス浄化方法
JP2009052542A (ja) * 2007-08-01 2009-03-12 Nissan Motor Co Ltd 排気ガス浄化システム
KR20100119378A (ko) * 2009-04-30 2010-11-09 한국에너지기술연구원 디젤 차량의 배출가스 저감장치용 혼합촉매와 그 제조방법
JP2011125849A (ja) * 2009-11-19 2011-06-30 Ibiden Co Ltd ハニカム構造体及び排ガス浄化装置
JP2014061456A (ja) * 2012-09-19 2014-04-10 Cataler Corp 排気ガス浄化用フィルター

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3797866A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021219628A1 (en) 2020-04-28 2021-11-04 Basf Corporation A composition for scr catalysts

Also Published As

Publication number Publication date
EP3797866A4 (en) 2022-03-09
EP3797866A1 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
US11660585B2 (en) Chabazite zeolite catalysts having low silica to alumina ratios
US10603655B2 (en) NOx adsorber catalyst
US20150290632A1 (en) IRON AND COPPER-CONTAINING CHABAZITE ZEOLITE CATALYST FOR USE IN NOx REDUCTION
KR102429131B1 (ko) NOx 흡착제 촉매
JP7270549B2 (ja) NOx吸着触媒
KR102336320B1 (ko) NOx 흡착제 촉매
CN108698841B (zh) 制备铁(iii)交换的沸石组合物的方法
US20150231620A1 (en) IRON-ZEOLITE CHABAZITE CATALYST FOR USE IN NOx REDUCTION AND METHOD OF MAKING
WO2019225909A1 (ko) 내열성이 개선된 제올라이트 및 이를 이용한 촉매 복합체
KR20190132914A (ko) 내열성이 개선된 제올라이트 및 이를 이용한 촉매 복합체
WO2022090468A1 (en) Catalyst for enhanced high temperature conversion and reduced n2o make
GB2560925A (en) NOx adsorber catalyst
GB2560926A (en) NOx adsorber catalyst
JP2019501758A (ja) 酸化触媒
US10801384B2 (en) Diesel oxidation catalyst containing manganese
WO2022122799A1 (en) Preparation process of scr catalyst comprising cu and fe-exchanged zeolite, said catalyst, system comprising said catalyst and exhaust gas treatment using such
WO2022122796A1 (en) Preparation process of scr catalyst comprising cu and fe-exchanged zeolite, said catalyst, system comprising said catalyst and exhaust gas treatment using such
JP2020505215A (ja) 酸化マンガン含有アルミナ組成物、同組成物の製造方法及びその使用。

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19808452

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020565495

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019808452

Country of ref document: EP

Effective date: 20201221