WO2019225679A1 - 電子機器およびプロジェクタ - Google Patents

電子機器およびプロジェクタ Download PDF

Info

Publication number
WO2019225679A1
WO2019225679A1 PCT/JP2019/020391 JP2019020391W WO2019225679A1 WO 2019225679 A1 WO2019225679 A1 WO 2019225679A1 JP 2019020391 W JP2019020391 W JP 2019020391W WO 2019225679 A1 WO2019225679 A1 WO 2019225679A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
liquid crystal
duct
blowers
optical system
Prior art date
Application number
PCT/JP2019/020391
Other languages
English (en)
French (fr)
Inventor
亮祐 川瀬
Original Assignee
Necディスプレイソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necディスプレイソリューションズ株式会社 filed Critical Necディスプレイソリューションズ株式会社
Priority to US17/058,074 priority Critical patent/US11330234B2/en
Priority to JP2020520354A priority patent/JP7036911B2/ja
Priority to CN201980035406.4A priority patent/CN112352196B/zh
Publication of WO2019225679A1 publication Critical patent/WO2019225679A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/3144Cooling systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/006Projectors using an electronic spatial light modulator but not peculiar thereto using LCD's
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/145Housing details, e.g. position adjustments thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20954Modifications to facilitate cooling, ventilating, or heating for display panels
    • H05K7/20972Forced ventilation, e.g. on heat dissipaters coupled to components

Definitions

  • the present invention relates to an electronic device and a projector.
  • Main modules constituting a projection display device that projects an image include a light source such as a lamp, a laser, and an LED (Light Emitting Diode), an illumination optical system, a projection lens, an electronic substrate, and a power source.
  • the illumination optical system is mounted with optical electronic components that generate an image using a light modulation element such as a DMD (Digital Mirror Device) or a liquid crystal panel.
  • the electronic substrate generates a drive signal for driving the light modulation element in accordance with the video signal from the outside. Strong light is sent from the lamp or laser / LED light source to the illumination optical system, and irradiates the light modulation element through each optical component.
  • the projection lens enlarges the light emitted from the light modulation element and projects it onto the screen.
  • the optical component In cooling the display device, it is necessary to prevent the brightness deterioration from occurring due to dust entering the device from the outside of the device together with the cooling air and adhering to the optical components. Therefore, in general, the optical component is surrounded by a box, and the mating portion of the box is sealed with a cushion, rubber, or a packing made of a soft metal such as copper to prevent inflow of dust. Strong light is sent into the sealed box.
  • the sealed structure as described above, if the illumination optical system is to be cooled, it is necessary to seal the clearance between the cooling duct from the blower to the illumination optical system and the illumination optical system, and the clearance between the circulation duct and the illumination optical system. Therefore, a sealed structure is required in all circulation paths. As described above, when sealing is performed in a complicated shape with a large number of sealing locations, the number of dust entry locations increases and the performance deteriorates, and the size of the illumination optical system including the cooling structure increases. .
  • An object of the present invention is to provide an electronic device and a projector that solve the above-described problems.
  • the electronic device of the present invention is An illumination optical system that outputs light to a projection lens; A plurality of fans for cooling a liquid crystal panel mounted on the illumination optical system; A first duct for guiding air blown from the plurality of blowers to the liquid crystal panel; A second duct that guides air that has passed through the liquid crystal panel in a direction opposite to the direction of the air blown from the plurality of blowers; A heat sink for removing heat from the air passing through the second duct; A blower holding member that holds the plurality of blowers is provided in a dustproof case, The second duct is in a space surrounded by at least the inner wall of the top surface of the dustproof case and the top surface of the blower holding member, and is formed along the top surface of the dustproof case, The blower holding member forms a third duct that guides the air removed by the heat sink to the intake ports of the plurality of blowers.
  • the projector of the present invention is An illumination optical system that outputs light to a projection lens; A plurality of fans for cooling a liquid crystal panel mounted on the illumination optical system; A first duct for guiding air blown from the plurality of blowers to the liquid crystal panel; A second duct that guides air that has passed through the liquid crystal panel in a direction opposite to the direction of the air blown from the plurality of blowers; A heat sink for removing heat from the air passing through the second duct; A blower holding member that holds the plurality of blowers is provided in a dustproof case, The second duct is a space formed along the top surface of the dustproof case at the top of the blower holding member, The blower holding member is an electronic device that forms a third duct that guides the air removed by the heat sink to the intake ports of the plurality of blowers.
  • a light source The electronic device receives light from the light source and modulates the incident light.
  • efficient cooling can be performed in a sealed structure.
  • FIG. 1 is a diagram showing a first embodiment of an electronic apparatus according to the present invention.
  • the electronic apparatus 100 in this embodiment includes an illumination optical system 101, a liquid crystal panel 102, a blower 103, a first duct 104, a second duct 105, a heat sink 106, and a blower holding unit. 107.
  • the illumination optical system 101 projects light.
  • the blower 103 cools the liquid crystal panel 102 mounted on the illumination optical system 101.
  • the first duct 104 guides the air blown from the blower 103 to the liquid crystal panel 102.
  • the second duct 105 guides the air that has passed through the liquid crystal panel 102 in the direction opposite to the direction of the air blown out from the blower 103.
  • the heat sink 106 removes heat from the air that has passed through the second duct 105.
  • the blower holding unit 107 that is a blower holding member holds the blower 103 and guides the air generated by the heat sink 106 to the intake port of the blower 103.
  • Each of these components is housed in a dustproof case 108 having a sealed structure.
  • FIG. 2 is a diagram showing a second embodiment of the electronic apparatus of the present invention.
  • the projector 111 which is an electronic device in this embodiment includes an illumination optical system 112 and a light source unit 113.
  • the illumination optical system 112 that outputs light to the projection lens 121 includes an XDP 122 that is a cross dichroic prism, three liquid crystal panels 123 to 125, a mirror 126, a field lens 127, a mirror 128, a relay lens 129, and a mirror.
  • the light source unit 113 includes a lens 138, a DM 139, a lens 140, a phosphor 141, a lens 142, a lens 143, and a laser 144.
  • the constituent elements included in the illumination optical system 112 and the light source unit 113 are the same as the constituent elements included in a general projector.
  • the light from the laser 144 is output using other components that constitute the light source unit 113. Further, in the present embodiment, of the light that has passed through the integrator 137, the PBS 136, and the field lens 135, the blue light is reflected by the color filter 134, passes through the field lens 127, and is reflected by the mirror 126. Of the light that has passed through the integrator 137, the PBS 136, and the field lens 135, green light passes through the color filter 134 and the field lens 133 and is reflected by the color filter 132.
  • the red light passes through the color filter 134, the field lens 133, the color filter 132, and the relay lens 131, is reflected by the mirror 130, and passes through the relay lens 129. Passes and is reflected by mirror 128. Therefore, the liquid crystal panel 123 modulates blue light. The liquid crystal panel 124 modulates green light. The liquid crystal panel 125 modulates red light.
  • the planar shape of the illumination optical system 112 is a rectangle whose long side is the direction in which the liquid crystal panel 123 and the liquid crystal panel 125 face each other.
  • Fans 203 to 205 which are blowers, are provided for cooling the liquid crystal panels 123 to 125, respectively.
  • the fans 203 to 205 are arranged in a first direction in which the liquid crystal panel 123 and the liquid crystal panel 125 of the liquid crystal panels 123 to 125 face each other on the opposite side of the liquid crystal panels 123 to 125 where the projection lens 121 is disposed. Are arranged side by side. Further, the fans 203 to 205 are arranged so that the respective intake ports face each other.
  • the components constituting the illumination optical system 112 are accommodated in one rectangular parallelepiped that can accommodate the layout (broken line of the illumination optical system 112 shown in FIG. 2) or a casing having a shape corresponding thereto.
  • the fans 203 to 205 are arranged on the side of the casing opposite to the plane on which the projection lens 121 is arranged. In that case, the fans 203 to 205 may be disposed inside the casing or may be disposed outside the casing.
  • a heat sink 211 is disposed on the side of the fans 203 to 205 opposite to the side facing the illumination optical system 112.
  • the heat sink 211 removes the intake air sucked by the fans 203 to 205.
  • the illumination optical system 112, the fans 203 to 205, and the heat sink 211 are housed in a dustproof case 150 that keeps hermetically sealed.
  • the heat sink 211 is connected to heat sinks 212 and 213 for heat dissipation provided outside the dustproof case 150.
  • the heat sink 211 and the heat sinks 212 and 213 for heat dissipation are connected via heat pipes 214 that respectively penetrate two surfaces of the dustproof case 150 facing each other in a direction orthogonal to the direction of air blown from the fans 203 to 205.
  • the portion of the surface of the dustproof case 150 through which the heat pipe 214 passes is sealed.
  • the heat absorbed (heat removal) by the heat sink 211 is transmitted to the heat sinks 212 and 213 through the heat pipe 214, and the heat transmitted to the heat sinks 212 and 213 is released to the outside.
  • FIG. 2 illustrates a cooling duct that guides air blown from the fans 203 to 205 to the liquid crystal panels 123 to 125, and a high-temperature air duct that guides air that has passed through the liquid crystal panels 123 to 125 to the heat sink 211, respectively. Not. These will be described with reference to FIG.
  • FIG. 3 is a diagram showing an example of the appearance of the projector 111 in this embodiment.
  • a dustproof case 150 is provided inside the projector 111.
  • an illumination optical system 112, fans 203 to 205, and a heat sink 211 are housed.
  • the dustproof case 150 has a structure in which the upper housing and the lower housing are coupled so as to sandwich the projection lens 121 therebetween.
  • a plane part is couple
  • FIG. 4 is a diagram showing an example of the appearance of the fan 203 shown in FIG.
  • FIG. 5 is a plan view of the fan 203 viewed from the direction A in the fan 203 shown in FIG.
  • the fan 203 in the present embodiment is a blower fan that performs intake air from the side surface of the fan 203 and blows out air in a direction orthogonal to the intake air direction. That is, the fan 203 is a blower fan in which the direction of air intake and the direction of blow-out are orthogonal, and is characterized by high static pressure.
  • FIG. 5 an example in which intake is performed from both sides of the fan 203 is shown as an example, but intake may be performed from only one side.
  • the rotations of the fans 203 to 205 may be individually controlled and may have different rotational speeds. This rotational speed may be set in advance based on the light modulation operation in the liquid crystal panels 123 to 125, or the temperature of the liquid crystal panels 123 to 125 is measured and controlled based on the measured temperature. Or may be controlled based on the usage period of the liquid crystal panels 123 to 125.
  • FIG. 6 is a plan view showing an example of the configuration of a cooling duct that guides the cooling air blown from the fans 203 to 205 shown in FIG. 2 to the liquid crystal panels 123 to 125.
  • the cooling air blown from the fans 203 to 205 using the air removed by the heat sink 211 as the intake air passes through the spaces provided in the cooling duct 304, and the liquid crystal panels 123 to 125, respectively.
  • FIG. 6 does not show a high-temperature air duct that guides the air that has passed through the liquid crystal panels 123 to 125 to the heat sink 211.
  • the fans 203 to 205 are arranged at intervals that can ensure a predetermined intake air amount.
  • a partition plate may be provided between the fans 203 to 205.
  • the position of the partition plate is determined based on the ratio between the intake capability from one side and the intake capability from the other side. There may be. Specifically, for example, when the intake capacity from the left side of the fans 203 to 205 is larger than the intake capacity from the right side, the distance from the left side of the fans 203 to 205 to the left partition plate is set as the fan 203 to 205. The distance from the right side surface of 205 to the right partition plate may be longer.
  • the positions of the respective outlets of the fans 203 to 205 with respect to the cooling duct 304 that is, the distances from the respective outlets of the fans 203 to 205 to the receiving opening of the cooling duct 304 are equal to each other.
  • LCD cooling openings 301 to 303 for cooling the liquid crystal panels 123 to 125 are shown in FIG.
  • the fans 203 to 205 are arranged at different distances from each other. That is, as shown in FIG. 6, among the fans 203 to 205, the distance from the fan 204 outlet disposed in the center to the LCD cooling opening 302 (liquid crystal panel 124) is the distance from the fan 203 outlet to the LCD cooling. Shorter than the distance to the opening 301 for the liquid crystal (the liquid crystal panel 123) and the distance from the outlet of the fan 205 to the opening 303 for the LCD cooling (the liquid crystal panel 125).
  • FIG. 7 is a side view of the fan 204, the cooling duct 304, and the illumination optical system 112 shown in FIG.
  • the cooling duct 304 is disposed below the illumination optical system 112. Cooling air blown from the fan 204 cools the liquid crystal panel 124 from the LCD cooling opening 302 through the cooling duct 304.
  • the high-temperature air duct 305 that is the second duct guides the air that has passed through the liquid crystal panel 124 to the heat sink 211 in the direction opposite to the direction of the air blown out from the fan 204.
  • the heat sink 211 removes heat from the air that has passed through the high-temperature air duct 305.
  • a blower holding unit 306 that is a blower holding member houses and holds the fan 203, and guides air removed by the heat sink 211 to the intake port of the fan 203.
  • the high-temperature air duct 305 is formed along the top surface of the dustproof case 150 in a space surrounded by the dustproof case 150, the illumination optical system 112, and the blower holding unit 306. That is, the high temperature air duct 305 is a space formed along the top surface of the dustproof case 150 in a space surrounded by at least the inner wall of the top surface of the dustproof case 150 and the top surface of the blower holding unit 306. is there.
  • the illumination optical system 112, the cooling duct 304, the fan 204, the blower holding unit 306, and the heat sink 211 are housed in a dustproof case 150. Further, the heat sink 211 may be held by the blower holding unit 306. Further, the height h3 of the fan 204 may be the same height as the height h4 of the heat sink 211.
  • the height h5 from the bottom surface of the dustproof case 150 to the top surface of the illumination optical system 112 is set to be the same height as the height h6 from the bottom surface of the dustproof case 150 to the top surface of the blower holding unit 306. Is preferred. Thereby, the flow path (height) of the high-temperature air duct 305 can be sufficiently secured, and the circulation cooling system can be downsized. Further, since the bottom surface of the high-temperature air duct 305 is composed of the top surface of the illumination optical system 112 and the top surface of the blower holding unit 306, the high-temperature air duct 305 can be obtained by setting the heights h5 and h6 to substantially the same height.
  • the bottom surface of the plate becomes a flat surface, and the loss of high-temperature air flow can be minimized. That is, it is preferable that the difference between the heights h5 and h6 be smaller (shorter) than a preset range (length) such that the bottom surface of the high-temperature air duct 305 is substantially flat.
  • the blower holding unit 306 has a bottom surface. However, since the blower holding unit 306 forms a “third duct” to be described later, Not limited.
  • FIG. 8 is a view of the arrangement of the fans 203 to 205 shown in FIG. 2 as viewed from the illumination optical system 112 side. As shown in FIG. 8, it is preferable that the fans 203 to 205 have the same height h1 of the blowing ports. Further, the fans 203 to 205 may have the same height h2 with each other.
  • FIGS. 9 to 11 are diagrams showing an example of the structure of the cooling duct 304 shown in FIG.
  • FIG. 9 is a perspective view of the cooling duct 304 before the upper housing and the lower housing are assembled.
  • FIG. 10 is a plan view of the cooling duct 304 before the upper housing and the lower housing are assembled.
  • FIG. 11 is a perspective view of the cooling duct 304 after the upper housing and the lower housing are assembled.
  • the upper casing and the lower casing shown in FIG. 9 are assembled by fitting the claws according to the broken line.
  • the cooling duct 304 is separately provided with spaces through which the cooling air blown from the fans 203 to 205 passes.
  • FIG. 12 is a diagram showing an example of the positional relationship between the fan and the heat sink provided in the projector 111 shown in FIG.
  • projector 111 shown in FIG. 2 includes fans 215 to 217 outside dustproof case 150 in addition to fans 203 to 205 provided inside dustproof case 150.
  • the fan 215 is for cooling the heat sink 212 for heat dissipation, and blows cooling air to the heat sink 212 for heat dissipation.
  • the fan 216 is for cooling the heat sink 213 for heat dissipation, and sucks heat generated from the heat sink 213 for heat dissipation.
  • the fan 217 is for cooling the light source unit 113 and sucks heat generated from the light source unit 113.
  • the projector 111 includes three LCDs (liquid crystal panels) in the 3LCD optical illumination system in which the optical axis direction passing through the integrator and the PBS and the projection direction of the projected image are arranged vertically.
  • a plurality of fans for cooling each of them has a sealed structure having a configuration arranged along the long side of the illumination optical system 112.
  • the projector 111 is characterized by a small circulation cooling configuration in which air is circulated in a dustproof case 150 having a sealed structure.
  • an illumination optical system 112 fans 203 to 205 for cooling liquid crystal panels 123 to 125 provided in the illumination optical system, a cooling duct 304, and a heat sink 211 are arranged in a dust-proof case 150 having a sealed structure.
  • a cooling duct 304 is disposed below the illumination optical system 112
  • fans 203 to 205 are disposed on the opposite side of the illumination optical system 112 from which the projection lens 121 is disposed, and the rear of the fans 203 to 205 is disposed.
  • the heat sink 211 is installed on the side.
  • the illumination optical system up to the integrator 137 is installed in the dustproof case 150.
  • the air blown from the fans 203 to 205 passes through the cooling duct 304 to cool the liquid crystal panels 123 to 125 and surrounding optical components, and is formed in the dustproof case 150.
  • the heat is removed in the heat sink 211 and sucked into the fans 203 to 205.
  • a partition is provided so that the heat-removed air and the high-temperature air after cooling the liquid crystal panels 123 to 125 and the surrounding optical components are not mixed.
  • the blower holding unit 306 may cover the heat sink 211 other than the surface in contact with the high-temperature air.
  • a partition is provided in which the intake air of the fans 203 to 205 in the blower holding unit 306 and the air after heat removal flowing in the cooling duct 304 are not mixed.
  • a partition that fills the gap between the fans 203 to 205 and the blower holding unit 306 may be provided.
  • the dustproof case 150 needs to be sealed using packing or the like so that dust does not enter.
  • the partition of the cooling duct 304 and the blower holding unit 306 is in a dustproof structure, sealing such as packing is unnecessary. .
  • the high-temperature air duct 305 formed by the bottom and top surfaces of the dust-proof case 150 and the blower holding unit 306 has the dust-proof case 150 as a part of the duct. It becomes.
  • the blower holding unit 306 also insulates the function of holding the fans 203 to 205 and the high-temperature air passing through the high-temperature air duct 305 and the air removed through the heat sink 211 after the liquid crystal panels 123 to 125 are cooled. Has function.
  • fans 203 to 205 for cooling the three LCDs (liquid crystal panels) are provided.
  • heat sinks 212 and 213 for heat radiation are provided on both sides of the dustproof case 150. Accordingly, the heat receiving heat sink 211 provided in the dustproof case 150 removes heat from the high-temperature air, the heat is transferred to the heat sinks 212 and 213 through the heat pipe 214, and the heat sinks 212 and 213 are cooled to generate heat. Discharged outside.
  • the heat sink 211 is connected to the heat sinks 212 and 213 at both ends via the heat pipe 214 and is also thermally connected. Since the heatsinks 212 and 213 are connected to both ends of the heatsink 211, the heat received by the heatsink 211 is transmitted to both sides, so that the same effect as when the number of pipes is doubled is obtained.
  • the parts up to the integrator 137 in the dustproof case 150 it is possible to cool parts such as PBS in the same cooling flow and reduce the number of parts.
  • the light source unit 113 and the illumination optical system 112 can be easily combined, and the number of structural parts can be reduced to improve the dustproof performance.
  • the cooling air blown from the LCD cooling fan cools the optical parts such as the LCD through the cooling duct.
  • an expensive material having vibration isolation is used for the cooling duct and the fan holder.
  • LCD cooling fans have a significant effect on noise levels.
  • the fans 203 to 205, the cooling duct 304, and the blower holding unit 306 are arranged in the dustproof case 150, and the dustproof case 150 shields noise, so that the noise value can be reduced. Further, since the dust-proof case 150 shields noise, inexpensive materials can be used for the cooling duct 304 and the blower holding unit 306, and the component cost can be reduced.
  • the blower holding unit 306 and the dustproof case 150 have the above-described two roles, the structure is simplified, and the overall size of the apparatus can be reduced. Further, by sealing the dustproof case 150, it is not necessary to seal the internal components. Therefore, it is possible to reduce the cost of the entire used parts by reducing the number of parts. In addition, the manufacturing cost can be reduced. (Third embodiment)
  • FIG. 13 is a diagram showing a third embodiment of the electronic apparatus of the present invention.
  • a projector 411 that is an electronic device in this embodiment includes an illumination optical system 112 and a light source unit 113.
  • the illumination optical system 112 and the light source unit 113 are the same as those in the second embodiment.
  • Fans 503 to 506 which are blowers, are provided to cool the liquid crystal panels 123 to 125, respectively.
  • Fans 503 to 506 are arranged on the opposite side of the liquid crystal panels 123 to 125 to the side where the projection lens 121 is disposed, and in the first direction in which the liquid crystal panel 123 and the liquid crystal panel 125 of the liquid crystal panels 123 to 125 face each other. Are arranged side by side. Further, the fans 503 to 506 are arranged so that the respective intake ports face each other.
  • the components constituting the illumination optical system 112 are accommodated in a single rectangular parallelepiped that can accommodate those layouts (broken lines of the illumination optical system 112 shown in FIG. 13) or a casing having a shape corresponding thereto.
  • the fans 503 to 506 are arranged on the side of the casing opposite to the plane on which the projection lens 121 is arranged. In that case, the fans 503 to 506 may be disposed inside the casing, or may be disposed outside the casing.
  • the external shape of the fans 503 to 506 is the same as that of the second embodiment, and is the same as the external shape of the fan 203 shown in FIGS.
  • a heat sink 211 is arranged on the opposite side of the fans 503 to 506 to the side facing the illumination optical system 112.
  • the heat sink 211 removes heat drawn by the fans 503 to 506.
  • the illumination optical system 112, the fans 503 to 506, and the heat sink 211 are housed in a dustproof case 150 that keeps hermetically sealed.
  • the heat sinks 211 to 213 and the heat pipe 214 are the same as those in the second embodiment.
  • FIG. 13 shows a cooling duct that guides the air blown from the fans 503 to 506 to the liquid crystal panels 123 to 125, and a high-temperature air duct that guides the air that has passed through the liquid crystal panels 123 to 125 to the heat sink 211. Not. These will be described with reference to FIG.
  • the rotations of the fans 503 to 506 may be controlled individually and may have different rotational speeds. This rotational speed may be set in advance based on the light modulation operation in the liquid crystal panels 123 to 125, or the temperature of the liquid crystal panels 123 to 125 is measured and controlled based on the measured temperature. Or may be controlled based on the usage period of the liquid crystal panels 123 to 125.
  • FIG. 14 is a plan view showing an example of the configuration of a cooling duct that guides the cooling air blown from the fans 503 to 506 shown in FIG. 13 to the liquid crystal panels 123 to 125.
  • the cooling air blown from the fans 503 to 506 using the air removed by the heat sink 211 as the intake air passes through the respective spaces provided in the cooling duct 304 that is the first duct.
  • the liquid crystal panels 123 to 125 are led to LCD cooling openings 301 to 303 for cooling the liquid crystal panels 123 to 125, respectively.
  • the cooling air blown from the fan 503 is guided to the LCD cooling opening 301 provided for cooling the liquid crystal panel 123.
  • FIG. 14 does not show a high-temperature air duct that guides air that has passed through the liquid crystal panels 123 to 125 to the heat sink 211.
  • the cooling air blown from the fan 504 may be guided to the LCD cooling opening 301, or the cooling air blown from the fan 505 may be guided to the LCD cooling opening 303.
  • the fans 503 to 506 are arranged at intervals that can ensure a predetermined intake air amount.
  • a partition plate may be provided between the fans 503 to 506.
  • the position of the partition plate is determined based on the ratio between the intake capability from one side and the intake capability from the other side. There may be. Specifically, for example, when the intake capacity from the left side of the fans 503 to 506 is larger than the intake capacity from the right side, the distance from the left side of the fans 503 to 506 to the left partition plate is set to The distance from the right side surface of 506 to the right partition plate may be longer.
  • the positions of the blowout ports of the fans 503 to 506 with respect to the cooling duct 304 that is, the distances from the blowout ports of the fans 503 to 506 to the receiving port of the cooling duct 304 are equal to each other.
  • liquid crystal panels 123 to 125 are arranged as shown in FIG. 13 as shown in FIG. 14, LCD cooling openings 301 to 303 for cooling the liquid crystal panels 123 to 125 are shown in FIG.
  • the fans 503 to 506 are arranged at different distances from each other. That is, as shown in FIG. 14, among the fans 503 to 506, the distance from the fan 504 and 505 outlet for cooling the liquid crystal panel 124 to the LCD cooling opening 302 (liquid crystal panel 124) is the outlet of the fan 503. To the LCD cooling opening 301 (liquid crystal panel 123) and the distance from the fan 506 outlet to the LCD cooling opening 303 (liquid crystal panel 125).
  • FIG. 15 is a side view of the fan 504, the cooling duct 304, and the illumination optical system 112 shown in FIG.
  • the cooling duct 304 is disposed below the illumination optical system 112. Cooling air blown out from the fan 504 cools the liquid crystal panel 124 from the LCD cooling opening 302 through the cooling duct 304.
  • the high-temperature air duct 305 that is the second duct guides the air that has passed through the liquid crystal panel 124 to the heat sink 211 in the direction opposite to the direction of the air blown from the fan 504.
  • the heat sink 211 removes heat from the air that has passed through the high-temperature air duct 305.
  • a blower holding unit 606 that is a blower holding member houses and holds the fan 504, and guides the air removed by the heat sink 211 to the intake port of the fan 504.
  • the high-temperature air duct 305 is in a space surrounded by the dustproof case 150, the illumination optical system 112, and the blower holding unit 606, and extends along the top surface of the dustproof case 150. It is formed from the inner wall and the top surface of the blower holding part 606.
  • the high temperature air duct 305 is in a space surrounded by at least the dustproof case 150 and the blower holding unit 606, and extends along the top surface of the dustproof case 150 and the top wall of the dustproof case 150 and the blower holding unit 606. It is formed from the top surface.
  • the third duct that guides the air removed by the heat sink 211 to the air inlet of the fan 504 is a space surrounded by the inner wall of the blower holding unit 606 and the inner wall of the bottom surface of the dustproof case 150.
  • the illumination optical system 112, the cooling duct 304, the fan 504, the blower holding unit 606, and the heat sink 211 are housed in the dustproof case 150.
  • the heat sink 211 is surrounded by the blower holding unit 606, and the air that has passed through the high temperature air duct 305 always passes through the heat sink 211 in order to flow to the blower holding unit 606. Further, the heat sink 211 may be held by the blower holding unit 606.
  • the height h3 of the fan 504 may be the same height as the height h4 of the heat sink 211. In FIG. 15, the area filled with dots is the third duct 607.
  • the height h8 from the top surface of the illumination optical system 112 to the top surface of the dustproof case 150 and the height h7 from the top surface of the blower holding unit 606 to the top surface of the dustproof case 150 are substantially the same height. It is preferable to do so. Thereby, the flow path (height) of the high-temperature air duct 305 can be sufficiently secured, and the circulation cooling system can be downsized. That is, the difference between the heights h8 and h7 is smaller (shorter) than the range (length) set in advance so that the flow path (height) of the high-temperature air duct 305 can be sufficiently secured. Those that do are preferred.
  • the height h5 from the bottom surface of the dustproof case 150 to the top surface of the illumination optical system 112 and the height h6 from the bottom surface of the dustproof case 150 to the top surface of the blower holding unit 606 are substantially the same height. It is preferable to do. Since the bottom surface of the high-temperature air duct 305 is composed of the top surface of the illumination optical system 112 and the top surface of the blower holding unit 606, the bottom surface of the high-temperature air duct 305 is made to have the same height h5 and h6. It becomes flat and the loss of high-temperature air flow can be minimized. That is, it is preferable that the difference between the heights h5 and h6 be smaller (shorter) than a preset range (length) such that the bottom surface of the high-temperature air duct 305 is substantially flat.
  • FIG. 16 is a view of the arrangement of the fans 503 to 506 shown in FIG. 13 as viewed from the illumination optical system 112 side. As shown in FIG. 16, it is preferable that the fans 503 to 506 have the same height h1 of the blowing ports. Further, the fans 503 to 506 may have the same height h2 with each other.
  • FIG. 17 is a diagram showing an example of a positional relationship between a fan and a heat sink provided in the projector 411 shown in FIG.
  • projector 411 shown in FIG. 13 includes fans 215 to 217 outside dustproof case 150 in addition to fans 503 to 506 provided inside dustproof case 150.
  • Fans 215 and 216, heat sinks 212 and 213, and heat pipe 214 are the same as those in the second embodiment.
  • the projector 411 includes three LCDs (liquid crystal panels) in the 3LCD optical illumination system in which the optical axis direction passing through the integrator and the PBS and the projection direction of the projected image are arranged vertically.
  • a plurality of fans for cooling each of them has a sealed structure having a configuration arranged along the long side of the illumination optical system 112.
  • the projector 411 is characterized by a small circulation cooling configuration in which air is circulated in a dustproof case 150 having a sealed structure.
  • an illumination optical system 112 fans 503 to 506 for cooling liquid crystal panels 123 to 125 provided in the illumination optical system, a cooling duct 304, and a heat sink 211 are arranged in a dust-proof case 150 having a sealed structure.
  • a cooling duct 304 is disposed below the illumination optical system 112, fans 503 to 506 are disposed on the opposite side of the illumination optical system 112 from which the projection lens 121 is disposed, and the rear of the fans 503 to 506 is disposed.
  • the heat sink 211 is installed on the side.
  • an illumination optical system up to the integrator 137 is installed in the dustproof case 150.
  • the air blown from the fans 503 to 506 passes through the cooling duct 304 to cool the liquid crystal panels 123 to 125 and surrounding optical components, and is formed in the dustproof case 150. 305 flows through the heat sink 211 and is sucked into the fans 503 to 506. At this time, a partition is provided so that the heat-removed air and the high-temperature air after cooling the liquid crystal panels 123 to 125 and the surrounding optical components are not mixed.
  • the blower holding unit 606 may cover a surface other than the surface of the heat sink 211 that contacts the high-temperature air. That is, as shown in FIG.
  • the fan holding unit 606 that holds the fans 503 to 506 in the dustproof case 150 is removed by using the high-temperature air duct 305 through which the air that has passed through the liquid crystal panels 123 to 125 flows and the heat sink 211. It is provided as a partition with a third duct through which heated air flows.
  • a partition that does not mix the intake air of the fans 503 to 506 in the blower holding unit 606 and the air after heat removal flowing in the cooling duct 304 is provided.
  • a partition that fills the gap between the fans 503 to 506 and the blower holding unit 606 may be provided.
  • the dustproof case 150 needs to be sealed by using packing or the like so that dust does not enter. However, since the partition of the cooling duct 304 and the blower holding unit 606 is in a dustproof structure, sealing such as packing is not necessary. .
  • the high-temperature air duct 305 formed by the top surface in the dust-proof case 150 and the top surface of the blower holding unit 606 has the dust-proof case 150 as a part of the duct. It becomes possible. Further, the blower holding unit 606 has a role of holding the fans 503 to 506 and a role of forming a third duct for guiding the heat removed by the heat sink 211 to the intake ports of the fans 503 to 506. . Therefore, it is not necessary to separately provide a member such as a partition only for forming the third duct, and the apparatus can be downsized.
  • the blower holding unit 606 insulates the high-temperature air passing through the high-temperature air duct 305 and the air removed through the heat sink 211 after cooling the liquid crystal panels 123 to 125.
  • the blower holding unit 606 has the ability to In the 3LCD optical illumination system in which the optical axis direction through which the integrator and the PBS pass and the projection direction of the projected image are arranged perpendicularly, fans 503 to 506 for cooling the three LCDs (liquid crystal panels) are provided. Since the illumination optical system 112 is arranged along the long side, a large intake area of the fans 503 to 506 can be secured, the intake loss is small, the length of each flow path is short, and the pressure loss is small. Moreover, the width of the cooling duct 304 can be ensured widely, and the loss is small. Therefore, both the intake efficiency and the cooling duct efficiency are increased, and the cooling efficiency is improved.
  • heat sinks 212 and 213 for heat radiation are provided on both sides of the dustproof case 150.
  • the same effect as the effect demonstrated in 2nd Embodiment is produced.
  • the components up to the integrator 137 in the dust-proof case 150 it is possible to cool components such as PBS in the same cooling flow and reduce the number of components. Can do.
  • the light source unit 113 and the illumination optical system 112 can be easily combined, and the number of structural parts can be reduced to improve the dustproof performance.
  • the cooling air blown from the LCD cooling fan cools the optical parts such as the LCD through the cooling duct.
  • an expensive material having vibration isolation is used for the cooling duct and the fan holder.
  • LCD cooling fans have a significant effect on noise levels.
  • the fans 503 to 506, the cooling duct 304, and the blower holding unit 606 are disposed in the dustproof case 150, and the dustproof case 150 shields noise, so that the noise value can be reduced.
  • the dustproof case 150 is preferably made of metal from the viewpoint of heat removal effect and fan noise reduction effect. Further, since the dust-proof case 150 shields noise, inexpensive materials can be used for the cooling duct 304 and the blower holding unit 606, and the component cost can be reduced.
  • the blower holding unit 606 and the dustproof case 150 have the above-described roles (functions), the structure is simplified, and the overall size of the apparatus can be reduced. Further, by sealing the dustproof case 150, it is not necessary to seal the internal components. Therefore, it is possible to reduce the cost of the entire used parts by reducing the number of parts. In addition, the manufacturing cost can be reduced.
  • the case where the number of fans is three is given as an example, and in the third embodiment, the case where the number of fans is four is described as an example.
  • the number is not limited to these and may be five or more.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)

Abstract

光を投写レンズへ出力する照明光学系(101)と、照明光学系(101)に搭載される液晶パネル(102)を冷却する複数の送風機(103)と、複数の送風機(103)から吹き出される空気を液晶パネル(102)へ導く第1のダクト(104)と、液晶パネル(102)を通過した空気を、複数の送風機(103)から吹き出される空気の向きと逆向きに導く第2のダクト(105)と、第2のダクト(105)を通過してきた空気を除熱するヒートシンク(106)と、複数の送風機(103)を保持する送風機保持部(107)とが防塵ケース(108)内に具備され、第2のダクト(105)は、少なくとも防塵ケース(108)の天面の内壁と送風機保持部(107)の天面とに囲まれた空間内であって、防塵ケース(108)の天面に沿って形成された空間であって、送風機保持部(107)は、ヒートシンク106で除熱された空気を複数の送風機(103)の吸気口へ導く第3のダクトを形成する。

Description

電子機器およびプロジェクタ
 本発明は、電子機器およびプロジェクタに関する。
 映像を投写する投写型表示装置を構成する主なモジュールには、ランプ、レーザー、LED(Light Emitting Diode)などの光源、照明光学系、投写レンズ、電子基板や電源がある。照明光学系にはDMD(Digital Mirror Device)または液晶パネルなどの光変調素子を用いて画像を生成する光学電子部品が実装されている。外部からの映像信号に応じて、電子基板が光変調素子を駆動するための駆動信号を生成する。ランプまたはレーザー/LEDの光源から強い光が照明光学系に送り込まれ、各光学部品を経て光変調素子に照射する。投写レンズが光変調素子からの射出光を拡大してスクリーンへ投影する。
 これらの過程において、電子部品には電気抵抗による発熱、光学部品には光の吸収による温度上昇が発生する。各部品には所望の性能を発揮するために許容温度を超えないように動作させる必要がある。そこで、装置内に複数の冷却ファンが実装され、冷却ファンからの送風が各部品を冷却して、許容温度を超えないように温度上昇を抑えている。また、液晶パネルには温度に応じて寿命時間が決まるため、さらに温度を下げる必要がある。
 例えば、一対のファンを投写レンズの両側にそれぞれ配置して、冷却を行う装置が考えられている(例えば、特許文献1参照。)。
 表示装置の冷却では、冷却風と共に装置外部から粉塵が装置内に侵入して光学部品などに付着して輝度劣化が発生するのを防ぐ必要がある。そこで、一般的に光学部品はボックスに囲われており、ボックスの合わせ部にはクッションやゴムまたは銅等の柔らかい金属などのパッキンで密閉され、粉塵の流入を防ぐ構造となっている。密閉されたボックス内には強い光が送り込まれる。
特許第3467697号
 上述したような密閉構造において、照明光学系の冷却を行おうとすると、送風機から照明光学系までの冷却ダクトと照明光学系との隙間や、循環ダクトと照明光学系との隙間のシーリングが必要になり、循環経路全てにおいて密閉構造が必要となる。このように、シーリング箇所が多く複雑な形状でシーリングを行うと粉塵進入箇所が増えて性能が落ちてしまい、また、冷却構造を含む照明光学系の大きさが大きくなってしまうという問題点がある。
 本発明の目的は、上述した課題を解決する電子機器およびプロジェクタを提供することである。
 本発明の電子機器は、
 光を投写レンズへ出力する照明光学系と、
 前記照明光学系に搭載される液晶パネルを冷却する複数の送風機と、
 前記複数の送風機から吹き出される空気を前記液晶パネルへ導く第1のダクトと、
 前記液晶パネルを通過した空気を、前記複数の送風機から吹き出される空気の向きと逆向きに導く第2のダクトと、
 前記第2のダクトを通過してきた空気を除熱するヒートシンクと、
 前記複数の送風機を保持する送風機保持部材とが防塵ケース内に具備され、
 前記第2のダクトは、少なくとも前記防塵ケースの天面の内壁と前記送風機保持部材の天面とに囲まれた空間内であって、前記防塵ケースの天面に沿って形成され、
 前記送風機保持部材は、前記ヒートシンクで除熱された空気を前記複数の送風機の吸気口へ導く第3のダクトを形成する。
 また、本発明のプロジェクタは、
 光を投写レンズへ出力する照明光学系と、
 前記照明光学系に搭載される液晶パネルを冷却する複数の送風機と、
 前記複数の送風機から吹き出される空気を前記液晶パネルへ導く第1のダクトと、
 前記液晶パネルを通過した空気を、前記複数の送風機から吹き出される空気の向きと逆向きに導く第2のダクトと、
 前記第2のダクトを通過してきた空気を除熱するヒートシンクと、
 前記複数の送風機を保持する送風機保持部材とが防塵ケース内に具備され、
 前記第2のダクトは、前記送風機保持部材の上部に前記防塵ケースの天面に沿って形成された空間であって、
 前記送風機保持部材は、前記ヒートシンクで除熱された空気を前記複数の送風機の吸気口へ導く第3のダクトを形成する電子機器と、
 光源とを有し、
 前記電子機器は、前記光源からの光を入射し、前記入射した光を光変調する。
 以上説明したように、本発明においては、密閉された構造において効率的な冷却を行うことができる。
本発明の電子機器の第1の実施の形態を示す図である。 本発明の電子機器の第2の実施の形態を示す図である。 本形態におけるプロジェクタ111の外観の一例を示す図である。 図2に示したファンの外観の一例を示す図である。 図4に示したファンをAの方向から見たファンの平面図である。 図2に示したファンから吹き出された冷却風を液晶パネルへ導く冷却ダクトの構成の一例を示す平面図である。 図6に示したファン、冷却ダクトおよび照明光学系を、プロジェクタの側面方向から見た側面図である。 図2に示したファンの配置を照明光学系側から見た図である。 図6に示した冷却ダクトの構造の一例を示す図である。 図6に示した冷却ダクトの構造の一例を示す図である。 図6に示した冷却ダクトの構造の一例を示す図である。 図2に示したプロジェクタに設けられたファンとヒートシンクとの位置関係の一例を示す図である。 本発明の電子機器の第3の実施の形態を示す図である。 図13に示したファンから吹き出された冷却風を液晶パネルへ導く冷却ダクトの構成の一例を示す平面図である。 図14に示したファン、冷却ダクトおよび照明光学系を、プロジェクタの側面方向から見た側面図である。 図13に示したファンの配置を照明光学系側から見た図である。 図13に示したプロジェクタに設けられたファンとヒートシンクとの位置関係の一例を示す図である。
 以下に、本発明の実施の形態について図面を参照して説明する。
(第1の実施の形態)
 図1は、本発明の電子機器の第1の実施の形態を示す図である。本形態における電子機器100は図1に示すように、照明光学系101と、液晶パネル102と、送風機103と、第1のダクト104と、第2のダクト105と、ヒートシンク106と、送風機保持部107とを有する。照明光学系101は、光を投写する。送風機103は、照明光学系101に搭載される液晶パネル102を冷却する。第1のダクト104は、送風機103から吹き出される空気を液晶パネル102へ導く。第2のダクト105は、液晶パネル102を通過した空気を、送風機103から吹き出される空気の向きと逆向きに導く。ヒートシンク106は、第2のダクト105を通過してきた空気を除熱する。送風機保持部材である送風機保持部107は、送風機103を保持し、ヒートシンク106でされた空気を送風機103の吸気口へ導く。これらの各構成要素が、密閉構造を持つ防塵ケース108に収納される。
 このように、防塵ケース108内で、液晶パネル102を冷却する送風機103から吹き出された空気を第1のダクトおよび第2のダクトを用いてヒートシンク106へ導き、ヒートシンク106で除熱された空気を送風機103の吸気口へ循環させる。これにより、密閉された構造において効率的な冷却を行うことができる。
(第2の実施の形態)
 図2は、本発明の電子機器の第2の実施の形態を示す図である。本形態における電子機器であるプロジェクタ111は図2に示すように、照明光学系112と、光源ユニット113とを有する。
 光を投写レンズ121へ出力する照明光学系112は、クロスダイクロイックプリズムであるXDP122と、3つの液晶パネル123~125と、ミラー126と、フィールドレンズ127と、ミラー128と、リレーレンズ129と、ミラー130と、リレーレンズ131と、カラーフィルタ132と、フィールドレンズ133と、カラーフィルタ134と、フィールドレンズ135と、偏光ビームスプリッタであるPBS(Polarizing Beam Splitter)136と、照度の均一性を調整するインテグレータ137とを有する。光源ユニット113は、レンズ138と、DM139と、レンズ140と、蛍光体141と、レンズ142と、レンズ143と、レーザー144とを有する。照明光学系112および光源ユニット113が具備する各構成要素は、一般的なプロジェクタが具備する構成要素と同じである。
 レーザー144からの光が、光源ユニット113を構成する他の構成要素を用いて、出力される。また、本形態においては、インテグレータ137、PBS136およびフィールドレンズ135を通過した光のうち、青色光が、カラーフィルタ134で反射し、フィールドレンズ127を通過し、ミラー126で反射される。また、インテグレータ137、PBS136およびフィールドレンズ135を通過した光のうち、緑色光が、カラーフィルタ134およびフィールドレンズ133を通過し、カラーフィルタ132で反射される。また、インテグレータ137、PBS136およびフィールドレンズ135を通過した光のうち、赤色光が、カラーフィルタ134、フィールドレンズ133、カラーフィルタ132およびリレーレンズ131を通過し、ミラー130で反射し、リレーレンズ129を通過し、ミラー128で反射される。そのため、液晶パネル123は、青色光を変調する。また、液晶パネル124は、緑色光を変調する。また、液晶パネル125は、赤色光を変調する。
 このような3LCDの配置では、照明光学系112の平面形状が、液晶パネル123と液晶パネル125とが対向する方向を長辺とする長方形となる。
 送風機であるファン203~205が、液晶パネル123~125をそれぞれ冷却するために設けられている。ファン203~205は、液晶パネル123~125の投写レンズ121が配置されている側と反対側に、液晶パネル123~125のうちの液晶パネル123と液晶パネル125とが対向する第1の方向に沿って並べて配置される。また、ファン203~205は、それぞれの吸気口が互いに対向するように配置される。なお、照明光学系112を構成する構成要素が、それらのレイアウト(図2に示した照明光学系112の破線)を収納可能な1つの直方体またはそれに相応する形状である筐体に収納されている場合、ファン203~205は、その筐体の投写レンズ121が配置されている面とは対向する面側に配置される。その場合、ファン203~205は、その筐体内に配置されるものであっても良いし、その筐体外に配置されるものであって良い。
 また、ファン203~205の照明光学系112と対向する側とは反対側には、ヒートシンク211が配置されている。ヒートシンク211は、ファン203~205が吸い込む吸気を除熱する。照明光学系112と、ファン203~205と、ヒートシンク211とが、密閉状態を保つ防塵ケース150に収納されている。さらに、ヒートシンク211は、防塵ケース150の外部に設けられた放熱用のヒートシンク212,213と接続されている。ヒートシンク211と放熱用のヒートシンク212,213とは、ファン203~205から吹き出される空気の向きと直交する方向で対向する防塵ケース150の2つの面をそれぞれ貫通したヒートパイプ214を介して接続されている。なお、ヒートパイプ214が貫通した防塵ケース150の面におけるその部分にはシーリングがなされていることは言うまでもない。この接続により、ヒートシンク211が吸収(除熱)した熱がヒートパイプ214を介してヒートシンク212,213へ伝わり、ヒートシンク212,213に伝わった熱が外部へ放出される。
 なお、図2には、ファン203~205から吹き出された空気を液晶パネル123~125それぞれへ導く冷却ダクトと、液晶パネル123~125を通過した空気をヒートシンク211へ導く高温エアーダクトとを図示していない。これらは、後述する図7を用いて説明する。
 図3は、本形態におけるプロジェクタ111の外観の一例を示す図である。図3に示すように、プロジェクタ111内部に防塵ケース150が具備されている。この防塵ケース150内に照明光学系112と、ファン203~205と、ヒートシンク211とが収納されている。また、防塵ケース150は、上側筐体と下側筐体とが投写レンズ121を挟み込むように結合する構造となっている。また、上側筐体と下側筐体との結合部分は、平面部分はパッキン、凸部および凹部はクッション素材のものを用いて結合される。
 図4は、図2に示したファン203の外観の一例を示す図である。図5は、図4に示したファン203をAの方向から見たファン203の平面図である。なお、図2に示したファン204,205についても同じである。図4および図5に示すように、本形態におけるファン203は、ファン203の側面から吸気を行い、吸気方向と直交する方向に吹き出しを行うブロアーファンである。つまり、ファン203は、空気の吸気の方向と吹き出しの方向とが直交するブロアーファンであり、高静圧を特徴とする。なお、図5に示した例では、ファン203の両方の側面から吸気を行うものを例に挙げて示しているが、一方の側面からのみ吸気を行うものであっても良い。
 なお、ファン203~205の回転は個々に制御され、互いに回転数が異なるものであっても良い。この回転数は、液晶パネル123~125における光変調の動作に基づいてあらかじめ設定されているものであっても良いし、液晶パネル123~125の温度を測定し、測定された温度に基づいて制御されるものであっても良いし、液晶パネル123~125の使用期間に基づいて制御されるものであっても良い。
 図6は、図2に示したファン203~205から吹き出された冷却風を液晶パネル123~125へ導く冷却ダクトの構成の一例を示す平面図である。図6に示すように、ヒートシンク211で除熱された空気を吸気とするファン203~205から吹き出された冷却風は、冷却ダクト304に設けられたそれぞれの空間を通過し、液晶パネル123~125をそれぞれ冷却するためのLCD冷却用開口301~303へ導かれる。なお、図6には、液晶パネル123~125を通過した空気をヒートシンク211へ導く高温エアーダクトを図示していない。
 なお、ファン203~205は、所定の吸気量が確保できる間隔で配置される。また、ファン203~205の互いの間に仕切り板が設けられていても良い。さらに、ファン203~205が両方の側面から吸気を行うものである場合、一方の側面からの吸気能力と他方の側面からの吸気能力との比率に基づいて、その仕切り板の位置を決めるものであっても良い。具体的には、例えば、ファン203~205の左側面からの吸気能力が右側面からの吸気能力よりも大きな場合、ファン203~205の左側面から左側の仕切り板までの距離を、ファン203~205の右側面から右側の仕切り板までの距離よりも長くするものであっても良い。
 また、冷却ダクト304に対するファン203~205それぞれの吹き出し口の位置、つまり、ファン203~205それぞれの吹き出し口から冷却ダクト304の受け入れ口までの距離は互いに等しいものが好ましい。
 また、図6に示すように、液晶パネル123~125が図2に示すように配置されているため、液晶パネル123~125をそれぞれ冷却するためのLCD冷却用開口301~303が図6に示すような、ファン203~205から互いに異なる距離に配置される。つまり、図6に示すように、ファン203~205のうち、中央に配置されたファン204の吹き出し口からLCD冷却用開口302(液晶パネル124)までの距離が、ファン203の吹き出し口からLCD冷却用開口301(液晶パネル123)までの距離およびファン205の吹き出し口からLCD冷却用開口303(液晶パネル125)までの距離よりも短い。
 図7は、図6に示したファン204、冷却ダクト304および照明光学系112を、プロジェクタ111の側面方向から見た側面図である。図7に示すように、冷却ダクト304は、照明光学系112の下部に配置される。ファン204から吹き出された冷却風が、冷却ダクト304を通ってLCD冷却用開口302から液晶パネル124を冷却する。第2のダクトである高温エアーダクト305は、液晶パネル124を通過した空気を、ファン204から吹き出される空気の向きと逆向きにヒートシンク211へ導く。ヒートシンク211は、高温エアーダクト305を通過してきた空気を除熱する。送風機保持部材である送風機保持部306は、ファン203を収納して保持し、ヒートシンク211で除熱された空気をファン203の吸気口へ導く。ここで、高温エアーダクト305は、防塵ケース150と照明光学系112と送風機保持部306とに囲まれた空間内であって、防塵ケース150の天面に沿って形成されている。つまり、高温エアーダクト305は、少なくとも防塵ケース150の天面の内壁と送風機保持部306の天面とに囲まれた空間内であって、防塵ケース150の天面に沿って形成された空間である。照明光学系112、冷却ダクト304、ファン204、送風機保持部306およびヒートシンク211は、防塵ケース150に収納される。また、ヒートシンク211は、送風機保持部306に保持されるものであっても良い。また、ファン204の高さh3はヒートシンク211の高さh4と同じ高さのものであっても良い。
 また、防塵ケース150の底面から照明光学系112の天面までの高さh5が、防塵ケース150の底面から送風機保持部306の天面までの高さh6と同じ高さになるようにすることが好ましい。これにより、高温エアーダクト305の流路(高さ)を十分に確保することができ、循環冷却システムの小型化を実現する。また、高温エアーダクト305の底面が照明光学系112の天面と送風機保持部306の天面とから構成されるため、高さh5とh6とをほぼ同じ高さとすることで、高温エアーダクト305の底面が平面となり、高温エアーの流れの損失を最小限とすることができる。つまり、高さh5とh6との差を、高温エアーダクト305の底面がほぼ平面となるようにあらかじめ設定された範囲(長さ)よりも小さい(短い)ものとするものが好ましい。また、図7においては、送風機保持部306が底面を有する構成を示しているが、送風機保持部306が後述する「第3のダクト」を形成するものであることから、この底面の有無については限定しない。
 図8は、図2に示したファン203~205の配置を照明光学系112側から見た図である。図8に示すように、ファン203~205は、その吹き出し口の高さh1が互いに同じであるものが好ましい。また、ファン203~205は、それ自体の高さh2が互いに同じであっても良い。
 図9~11は、図6に示した冷却ダクト304の構造の一例を示す図である。図9は、上側筐体と下側筐体とを組み立てる前の冷却ダクト304の斜視図である。図10は、上側筐体と下側筐体とを組み立てる前の冷却ダクト304の平面図である。図11は、上側筐体と下側筐体とを組み立てた後の冷却ダクト304の斜視図である。図9に示した上側筐体と下側筐体とを破線に従って爪の部分を嵌合させて組み立てる。図9~11に示すように、冷却ダクト304には、ファン203~205それぞれから吹き出された冷却風が通る空間が、別個に設けられている。
 図12は、図2に示したプロジェクタ111に設けられたファンとヒートシンクとの位置関係の一例を示す図である。図12に示すように、図2に示したプロジェクタ111は、防塵ケース150の内部に設けられたファン203~205以外に、防塵ケース150の外部にファン215~217を具備する。ファン215は、放熱用のヒートシンク212を冷却するためのものであり、放熱用のヒートシンク212に対して冷却風を吹き出す。ファン216は、放熱用のヒートシンク213を冷却するためのものであり、放熱用のヒートシンク213から発せられる熱を吸気する。ファン217は、光源ユニット113を冷却するためのものであり、光源ユニット113から発せられる熱を吸気する。
 このように、本形態におけるプロジェクタ111は、インテグレータおよびPBSを通過する光軸方向と、投写される映像の投写方向とが垂直に配置された3LCDの光学照明系において、3つのLCD(液晶パネル)をそれぞれ冷却する複数のファンが、照明光学系112の長辺に沿って配置された構成を持った密閉構造を備える。プロジェクタ111は、密閉構造を持つ防塵ケース150内で空気を循環させる小型循環冷却構成を特徴とする。プロジェクタ111では、照明光学系112、照明光学系内に設けられた液晶パネル123~125を冷却するファン203~205、冷却ダクト304およびヒートシンク211が密閉構造の防塵ケース150内に配置される。プロジェクタ111では、照明光学系112の下部に冷却ダクト304が配置され、照明光学系112の投写レンズ121が配置されている側と反対側にファン203~205が設置され、ファン203~205の後方にヒートシンク211が設置される。また、プロジェクタ111では、防塵ケース150内にインテグレータ137までの照明光学系を設置する。
 また、本形態におけるプロジェクタ111は、ファン203~205から吹き出された空気は冷却ダクト304を通り液晶パネル123~125や周辺の光学部品を冷却して防塵ケース150内に形成された高温エアーダクト305を流れ、ヒートシンク211内で除熱されファン203~205へ吸気される。このとき、除熱された空気と液晶パネル123~125や周辺の光学部品を冷却した後の高温エアーとが混ざらないように仕切りを設ける。例えば、図7に示すように、送風機保持部306がヒートシンク211の高温エアーと接する面以外を覆うものであっても良い。また、送風機保持部306内のファン203~205の吸気と冷却ダクト304内を流れる除熱後の空気とが混ざらない仕切りを設ける。例えば、ファン203~205と送風機保持部306との隙間を埋める仕切りを設けても良い。防塵ケース150は、粉塵が入らないようにパッキンなどを使用してシーリングが必要であるが、冷却ダクト304や送風機保持部306の仕切りは防塵構造内にあるため、パッキンなどのシーリングは不要である。
 また、防塵ケース150内の底面および天面と送風機保持部306とで形成する高温エアーダクト305は、防塵ケース150全体がダクトの一部となっているため、重複する仕切りが無くなり小型化が可能となる。また、送風機保持部306は、ファン203~205を保持する機能と、液晶パネル123~125の冷却後に高温エアーダクト305を通る高温エアーとヒートシンク211を通って除熱された空気との断熱をする機能を持っている。また、インテグレータおよびPBSが通過する光軸方向と、投写される映像の投写方向とが垂直に配置された3LCDの光学照明系において、3つのLCD(液晶パネル)をそれぞれ冷却するファン203~205を、照明光学系112の長辺に沿って配置したことで、ファン203~205の吸気面積を大きく確保でき、吸気の損失が小さく、流路の長さそれぞれが短く圧力損失が小さい。また、冷却ダクト304の幅もそれぞれ広く確保でき、損失が小さい。そのため、吸気効率と冷却ダクト効率との双方が上がり冷却効率が向上する。
 さらに、防塵ケース150の両側に放熱用のヒートシンク212,213を設ける。これにより、防塵ケース150内に設けられた受熱用のヒートシンク211で、高温エアーの除熱を行い、ヒートパイプ214を通してヒートシンク212,213に熱が伝わり、ヒートシンク212,213が冷却されて熱が装置外に排出される。ヒートシンク211は、ヒートパイプ214を介してヒートシンク212,213と両端で接続され、熱的にも接続される。ヒートシンク212,213が、ヒートシンク211の両端に接続されることで、ヒートシンク211が受けた熱が両側に伝わるため、2倍のパイプ本数にした場合と同等の効果が得られる。熱は高い方から低い方へ伝わる性質を持つため、ヒートシンク211内の温度の斑を起因として高温となる箇所の温度よりも低い温度である箇所が上流側にあると効率が下がる。ヒートシンク212,213がヒートシンク211の両側に接続されることで、温度の斑を起因とした効率低下を防ぐことができる。
 また、防塵ケース150内にインテグレータ137までの部品を設けることで、PBS等の冷却が必要な部品を同一の冷却フロー内で冷却でき、部品点数を減らすことができる。また、光源ユニット113と照明光学系112との合わせが容易になり、構造部品が減り防塵性能を上げることができる。
 また、LCD用冷却ファンから吹き出された冷却風は、冷却ダクトを通ってLCD等光学部品を冷却する。一般的には、その際に発生する風きり音を抑制するために、冷却ダクトやファンホルダを防振性のある高価な材料を使用している。LCD用冷却ファンは、騒音値に大きな影響を持つ。本形態においては、ファン203~205、冷却ダクト304および送風機保持部306を防塵ケース150内に配置し、防塵ケース150が騒音を遮蔽することで、騒音値の低減を図ることができる。また、防塵ケース150が騒音を遮蔽することで、冷却ダクト304や送風機保持部306として安価な材料を採用でき、部品コストを下げることができる。
 上述したように、冷却効率が上がることで液晶パネル123~125の寿命が伸び、ファン203~205の回転数も下げることができ、耳障りな騒音値を下げることが可能になる。送風機保持部306および防塵ケース150が上述した2つの役割を持つことで構造が簡単になり、装置全体の小型化を図ることができる。また、防塵ケース150のシーリングを行うことで、内部部品のシーリングを必要としない。そのため、部品点数が減ることで、使用部品全体のコストの削減を実現することができる。加えて、製造コストも下げることができる。
(第3の実施の形態)
 図13は、本発明の電子機器の第3の実施の形態を示す図である。本形態における電子機器であるプロジェクタ411は図13に示すように、照明光学系112と、光源ユニット113とを有する。照明光学系112および光源ユニット113は、第2の実施の形態におけるものと同じものである。
 送風機であるファン503~506が、液晶パネル123~125をそれぞれ冷却するために設けられている。ファン503~506は、液晶パネル123~125の投写レンズ121が配置されている側と反対側に、液晶パネル123~125のうちの液晶パネル123と液晶パネル125とが対向する第1の方向に沿って並べて配置される。また、ファン503~506は、それぞれの吸気口が互いに対向するように配置される。なお、照明光学系112を構成する構成要素が、それらのレイアウト(図13に示した照明光学系112の破線)を収納可能な1つの直方体またはそれに相応する形状である筐体に収納されている場合、ファン503~506は、その筐体の投写レンズ121が配置されている面とは対向する面側に配置される。その場合、ファン503~506は、その筐体内に配置されるものであっても良いし、その筐体外に配置されるものであって良い。ファン503~506の外観形状は、第2の実施の形態と同じあり、図4および図5に示したファン203の外観形状と同じである。
 また、ファン503~506の照明光学系112と対向する側とは反対側には、ヒートシンク211が配置されている。ヒートシンク211は、ファン503~506が吸い込む吸気を除熱する。照明光学系112と、ファン503~506と、ヒートシンク211とが、密閉状態を保つ防塵ケース150に収納されている。ヒートシンク211~213およびヒートパイプ214は、第2の実施の形態におけるものと同じものである。
 なお、図13には、ファン503~506から吹き出された空気を液晶パネル123~125それぞれへ導く冷却ダクトと、液晶パネル123~125を通過した空気をヒートシンク211へ導く高温エアーダクトとを図示していない。これらは、後述する図15を用いて説明する。
 なお、ファン503~506の回転は個々に制御され、互いに回転数が異なるものであっても良い。この回転数は、液晶パネル123~125における光変調の動作に基づいてあらかじめ設定されているものであっても良いし、液晶パネル123~125の温度を測定し、測定された温度に基づいて制御されるものであっても良いし、液晶パネル123~125の使用期間に基づいて制御されるものであっても良い。
 図14は、図13に示したファン503~506から吹き出された冷却風を液晶パネル123~125へ導く冷却ダクトの構成の一例を示す平面図である。図14に示すように、ヒートシンク211で除熱された空気を吸気とするファン503~506から吹き出された冷却風は、第1のダクトである冷却ダクト304に設けられたそれぞれの空間を通過し、液晶パネル123~125をそれぞれ冷却するためのLCD冷却用開口301~303へ導かれる。図14に示した例では、ファン503から吹き出された冷却風は、液晶パネル123を冷却するために設けられているLCD冷却用開口301へ導かれる。また、ファン504,505から吹き出された冷却風は、液晶パネル124を冷却するために設けられているLCD冷却用開口302へ導かれる。また、ファン506から吹き出された冷却風は、液晶パネル125を冷却するために設けられているLCD冷却用開口303へ導かれる。なお、図14には、液晶パネル123~125を通過した空気をヒートシンク211へ導く高温エアーダクトを図示していない。また、ファン504から吹き出された冷却風がLCD冷却用開口301へ導かれるものや、ファン505から吹き出された冷却風がLCD冷却用開口303へ導かれるものであっても良い。
 なお、ファン503~506は、所定の吸気量が確保できる間隔で配置される。また、ファン503~506の互いの間に仕切り板が設けられていても良い。さらに、ファン503~506が両方の側面から吸気を行うものである場合、一方の側面からの吸気能力と他方の側面からの吸気能力との比率に基づいて、その仕切り板の位置を決めるものであっても良い。具体的には、例えば、ファン503~506の左側面からの吸気能力が右側面からの吸気能力よりも大きな場合、ファン503~506の左側面から左側の仕切り板までの距離を、ファン503~506の右側面から右側の仕切り板までの距離よりも長くするものであっても良い。
 また、冷却ダクト304に対するファン503~506それぞれの吹き出し口の位置、つまり、ファン503~506それぞれの吹き出し口から冷却ダクト304の受け入れ口までの距離は互いに等しいものが好ましい。
 また、図14に示すように、液晶パネル123~125が図13に示すように配置されているため、液晶パネル123~125をそれぞれ冷却するためのLCD冷却用開口301~303が図14に示すような、ファン503~506から互いに異なる距離に配置される。つまり、図14に示すように、ファン503~506のうち、液晶パネル124を冷却するファン504,505の吹き出し口からLCD冷却用開口302(液晶パネル124)までの距離が、ファン503の吹き出し口からLCD冷却用開口301(液晶パネル123)までの距離およびファン506の吹き出し口からLCD冷却用開口303(液晶パネル125)までの距離よりも短い。
 図15は、図14に示したファン504、冷却ダクト304および照明光学系112を、プロジェクタ411の側面方向から見た側面図である。図15に示すように、冷却ダクト304は、照明光学系112の下部に配置される。ファン504から吹き出された冷却風が、冷却ダクト304を通ってLCD冷却用開口302から液晶パネル124を冷却する。第2のダクトである高温エアーダクト305は、液晶パネル124を通過した空気を、ファン504から吹き出される空気の向きと逆向きにヒートシンク211へ導く。ヒートシンク211は、高温エアーダクト305を通過してきた空気を除熱する。送風機保持部材である送風機保持部606は、ファン504を収納して保持し、ヒートシンク211で除熱された空気をファン504の吸気口へ導く。ここで、高温エアーダクト305は、防塵ケース150と照明光学系112と送風機保持部606とに囲まれた空間内であって、防塵ケース150の天面に沿って、防塵ケース150の天面の内壁と送風機保持部606の天面とから形成されている。高温エアーダクト305は、少なくとも防塵ケース150と送風機保持部606とに囲まれた空間内であって、防塵ケース150の天面に沿って、防塵ケース150の天面の内壁と送風機保持部606の天面とから形成されている。また、ヒートシンク211で除熱された空気をファン504の吸気口へ導く第3のダクトは、送風機保持部606の内壁と防塵ケース150の底面の内壁とに囲まれた空間である。照明光学系112、冷却ダクト304、ファン504、送風機保持部606およびヒートシンク211は、防塵ケース150に収納される。また、ヒートシンク211は、送風機保持部606に囲まれており、高温エアーダクト305を通過した空気が送風機保持部606に流れるためには、ヒートシンク211を必ず通過する。また、ヒートシンク211は、送風機保持部606に保持されるものであっても良い。また、ファン504の高さh3はヒートシンク211の高さh4と同じ高さのものであっても良い。なお、図15において、ドットで塗りつぶした領域が、第3のダクト607である。
 また、照明光学系112の天面から防塵ケース150の天面までの高さh8と、送風機保持部606の天面から防塵ケース150の天面までの高さh7とがほぼ同じ高さになるようにすることが好ましい。これにより、高温エアーダクト305の流路(高さ)を十分に確保することができ、循環冷却システムの小型化を実現する。つまり、高さh8とh7との差を、高温エアーダクト305の流路(高さ)を十分に確保することができるようにあらかじめ設定された範囲(長さ)よりも小さい(短い)ものとするものが好ましい。また、防塵ケース150の底面から照明光学系112の天面までの高さh5と、防塵ケース150の底面から送風機保持部606の天面までの高さh6とがほぼ同じ高さになるようにすることが好ましい。高温エアーダクト305の底面が照明光学系112の天面と送風機保持部606の天面とから構成されるため、高さh5とh6とを同じ高さとすることで、高温エアーダクト305の底面が平面となり、高温エアーの流れの損失を最小限とすることができる。つまり、高さh5とh6との差を、高温エアーダクト305の底面がほぼ平面となるようにあらかじめ設定された範囲(長さ)よりも小さい(短い)ものとするものが好ましい。
 図16は、図13に示したファン503~506の配置を照明光学系112側から見た図である。図16に示すように、ファン503~506は、その吹き出し口の高さh1が互いに同じであるものが好ましい。また、ファン503~506は、それ自体の高さh2が互いに同じであっても良い。
 図17は、図13に示したプロジェクタ411に設けられたファンとヒートシンクとの位置関係の一例を示す図である。図17に示すように、図13に示したプロジェクタ411は、防塵ケース150の内部に設けられたファン503~506以外に、防塵ケース150の外部にファン215~217を具備する。ファン215,216、ヒートシンク212,213およびヒートパイプ214は、第2の実施の形態におけるものと同じものである。
 このように、本形態におけるプロジェクタ411は、インテグレータおよびPBSを通過する光軸方向と、投写される映像の投写方向とが垂直に配置された3LCDの光学照明系において、3つのLCD(液晶パネル)をそれぞれ冷却する複数のファンが、照明光学系112の長辺に沿って配置された構成を持った密閉構造を備える。プロジェクタ411は、密閉構造を持つ防塵ケース150内で空気を循環させる小型循環冷却構成を特徴とする。プロジェクタ411では、照明光学系112、照明光学系内に設けられた液晶パネル123~125を冷却するファン503~506、冷却ダクト304およびヒートシンク211が密閉構造の防塵ケース150内に配置される。プロジェクタ411では、照明光学系112の下部に冷却ダクト304が配置され、照明光学系112の投写レンズ121が配置されている側と反対側にファン503~506が設置され、ファン503~506の後方にヒートシンク211が設置される。また、プロジェクタ411では、防塵ケース150内にインテグレータ137までの照明光学系を設置する。
 また、本形態におけるプロジェクタ411においては、ファン503~506から吹き出された空気は冷却ダクト304を通り液晶パネル123~125や周辺の光学部品を冷却して防塵ケース150内に形成された高温エアーダクト305を流れ、ヒートシンク211内で除熱されファン503~506へ吸気される。このとき、除熱された空気と液晶パネル123~125や周辺の光学部品を冷却した後の高温エアーとが混ざらないように仕切りを設ける。例えば、図15に示すように、送風機保持部606がヒートシンク211の高温エアーと接する面以外を覆うものであっても良い。つまり、図15に示すように、ファン503~506を防塵ケース150内に保持する送風機保持部606を、液晶パネル123~125を通過した空気が流れる高温エアーダクト305と、ヒートシンク211を用いて除熱された空気が流れる第3のダクトとの仕切りとして設ける。また、送風機保持部606内のファン503~506の吸気と冷却ダクト304内を流れる除熱後の空気とが混ざらない仕切りを設ける。例えば、ファン503~506と送風機保持部606との隙間を埋める仕切りを設けても良い。防塵ケース150は、粉塵が入らないようにパッキンなどを使用してシーリングが必要であるが、冷却ダクト304や送風機保持部606の仕切りは防塵構造内にあるため、パッキンなどのシーリングは不要である。
 また、防塵ケース150内の天面と送風機保持部606の天面とで形成する高温エアーダクト305は、防塵ケース150全体がダクトの一部となっているため、重複する仕切りが無くなり小型化が可能となる。さらに、送風機保持部606が、ファン503~506を保持する役割とともに、ヒートシンク211を用いて除熱された空気をファン503~506の吸気口へ導く第3のダクトを形成する役割も担っている。そのため、第3のダクトを構成するためだけに仕切り等の部材を別途設ける必要がなく、装置の小型化が可能となる。また、送風機保持部606は、ファン503~506を保持する機能のほかに、液晶パネル123~125の冷却後に高温エアーダクト305を通る高温エアーとヒートシンク211を通って除熱された空気との断熱をする機能を持っている。また、インテグレータおよびPBSが通過する光軸方向と、投写される映像の投写方向とが垂直に配置された3LCDの光学照明系において、3つのLCD(液晶パネル)をそれぞれ冷却するファン503~506を、照明光学系112の長辺に沿って配置したことで、ファン503~506の吸気面積を大きく確保でき、吸気の損失が小さく、流路の長さそれぞれが短く圧力損失が小さい。また、冷却ダクト304の幅もそれぞれ広く確保でき、損失が小さい。そのため、吸気効率と冷却ダクト効率との双方が上がり冷却効率が向上する。
 さらに、第2の実施の形態と同様に、防塵ケース150の両側に放熱用のヒートシンク212,213を設ける。これにより、第2の実施の形態で説明した効果と同じ効果を奏する。また、第2の実施の形態と同様に、防塵ケース150内にインテグレータ137までの部品を設けることで、PBS等の冷却が必要な部品を同一の冷却フロー内で冷却でき、部品点数を減らすことができる。また、光源ユニット113と照明光学系112との合わせが容易になり、構造部品が減り防塵性能を上げることができる。
 また、LCD用冷却ファンから吹き出された冷却風は、冷却ダクトを通ってLCD等光学部品を冷却する。一般的には、その際に発生する風きり音を抑制するために、冷却ダクトやファンホルダを防振性のある高価な材料を使用している。LCD用冷却ファンは、騒音値に大きな影響を持つ。本形態においては、ファン503~506、冷却ダクト304および送風機保持部606を防塵ケース150内に配置し、防塵ケース150が騒音を遮蔽することで、騒音値の低減を図ることができる。ここで、防塵ケース150は、除熱効果およびファンの騒音の低減効果の観点から、金属製であることが好ましい。また、防塵ケース150が騒音を遮蔽することで、冷却ダクト304や送風機保持部606として安価な材料を採用でき、部品コストを下げることができる。
 上述したように、冷却効率が上がることで液晶パネル123~125の寿命が伸び、ファン503~506の回転数も下げることができ、耳障りな騒音値を下げることが可能になる。送風機保持部606および防塵ケース150が上述した役割(機能)を持つことで構造が簡単になり、装置全体の小型化を図ることができる。また、防塵ケース150のシーリングを行うことで、内部部品のシーリングを必要としない。そのため、部品点数が減ることで、使用部品全体のコストの削減を実現することができる。加えて、製造コストも下げることができる。
 第2の実施の形態においては、ファンの数が3つである場合を例に挙げ、第3の実施の形態においては、ファンの数が4つである場合を例に挙げて説明したが、その数はこれらに限定せず、5つ以上であっても良い。
この出願は、2018年5月25日に出願された国際出願PCT/JP2018/020196を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 

Claims (17)

  1.  光を投写レンズへ出力する照明光学系と、
     前記照明光学系に搭載される液晶パネルを冷却する複数の送風機と、
     前記複数の送風機から吹き出される空気を前記液晶パネルへ導く第1のダクトと、
     前記液晶パネルを通過した空気を、前記複数の送風機から吹き出される空気の向きと逆向きに導く第2のダクトと、
     前記第2のダクトを通過してきた空気を除熱するヒートシンクと、
     前記複数の送風機を保持する送風機保持部材とが防塵ケース内に具備され、
     前記第2のダクトは、少なくとも前記防塵ケースの天面の内壁と前記送風機保持部材の天面とに囲まれた空間内であって、前記防塵ケースの天面に沿って形成され、
     前記送風機保持部材は、前記ヒートシンクで除熱された空気を前記複数の送風機の吸気口へ導く第3のダクトを形成する電子機器。
  2.  請求項1に記載の電子機器において、
     前記第3のダクトは、前記送風機保持部材の内壁と前記防塵ケースの底面の内壁とに囲まれた空間である電子機器。
  3.  請求項1または請求項2に記載の電子機器において、
     前記ヒートシンクは、前記防塵ケースの外部に設けられた放熱ヒートシンクと接続されている電子機器。
  4.  請求項3に記載の電子機器において、
     前記ヒートシンクは、前記複数の送風機から吹き出される空気の向きと直交する方向で対向する前記防塵ケースの2つの面をそれぞれ貫通したヒートパイプを介して、2つの前記放熱ヒートシンクと接続されている電子機器。
  5.  請求項1から4のいずれか1項に記載の電子機器において、
     前記照明光学系は、照度の均一性を調整するインテグレータを含む電子機器。
  6.  請求項1から5のいずれか1項に記載の電子機器において、
     前記複数の送風機それぞれは、ブロアーファンである電子機器。
  7.  請求項1から6のいずれか1項に記載の電子機器において、
     前記複数の送風機それぞれの高さと前記ヒートシンクの高さとが同じである電子機器。
  8.  請求項1から7のいずれか1項に記載の電子機器において、
     前記複数の送風機は、前記照明光学系に搭載される3つの液晶パネルのそれぞれを冷却し、前記照明光学系の投写レンズが配置されている側と反対側に、前記3つの液晶パネルのうちの2つの液晶パネルが対向する第1の方向に沿って並べて配置され、
     前記第1のダクトは、前記複数の送風機から吹き出される空気を前記3つの液晶パネルへそれぞれ導く電子機器。
  9.  請求項1から8のいずれか1項に記載の電子機器において、
     前記複数の送風機は、その吹き出し口の高さが互いに同じである電子機器。
  10.  請求項1から9のいずれか1項に記載の電子機器において、
     前記複数の送風機のうち、前記3つの液晶パネルのうちの互いに対向する2つの液晶パネル以外の液晶パネルを冷却する送風機の吹き出し口から該送風機が冷却する液晶パネルまでの距離が、他の送風機の吹き出し口からそれぞれが冷却する液晶パネルまでの距離よりも短い電子機器。
  11.  請求項9または請求項10に記載の電子機器において、
     前記複数の送風機は、前記第1の方向と直交する方向における吹き出し口の位置が互いに同じである電子機器。
  12.  請求項9から11のいずれか1項に記載の電子機器において、
     前記複数の送風機は、所定の吸気量が確保できる間隔で配置される電子機器。
  13.  請求項1から12のいずれか1項に記載の電子機器において、
     前記防塵ケースは、金属製である電子機器。
  14.  請求項1から13のいずれか1項に記載の電子機器において、
     前記送風機の数は3つであり、前記3つの送風機それぞれは、前記3つの液晶パネルのそれぞれを冷却する電子機器。
  15.  請求項1から14のいずれか1項に記載の電子機器において、
     前記防塵ケースの底面の内壁から前記照明光学系の天面までの距離と、前記防塵ケースの底面の内壁から前記送風機保持部材の天面までの距離との差が、所定の長さよりも短い電子機器。
  16.  請求項1から14のいずれか1項に記載の電子機器において、
     前記防塵ケースの天面の内壁から前記照明光学系の天面までの距離と、前記防塵ケースの天面の内壁から前記送風機保持部材の天面までの距離との差が、所定の長さよりも短い電子機器。
  17.  請求項1から16のいずれか1項に記載の電子機器と、
     光源とを有し、
     前記電子機器は、前記光源からの光を入射し、前記入射した光を光変調するプロジェクタ。
     
PCT/JP2019/020391 2018-05-25 2019-05-23 電子機器およびプロジェクタ WO2019225679A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/058,074 US11330234B2 (en) 2018-05-25 2019-05-23 Electronic device and projectors
JP2020520354A JP7036911B2 (ja) 2018-05-25 2019-05-23 電子機器およびプロジェクタ
CN201980035406.4A CN112352196B (zh) 2018-05-25 2019-05-23 电子设备和投影仪

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/020196 WO2019225013A1 (ja) 2018-05-25 2018-05-25 電子機器およびプロジェクタ
JPPCT/JP2018/020196 2018-05-25

Publications (1)

Publication Number Publication Date
WO2019225679A1 true WO2019225679A1 (ja) 2019-11-28

Family

ID=68616096

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/020196 WO2019225013A1 (ja) 2018-05-25 2018-05-25 電子機器およびプロジェクタ
PCT/JP2019/020391 WO2019225679A1 (ja) 2018-05-25 2019-05-23 電子機器およびプロジェクタ

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020196 WO2019225013A1 (ja) 2018-05-25 2018-05-25 電子機器およびプロジェクタ

Country Status (4)

Country Link
US (2) US20210203891A1 (ja)
JP (2) JP7036915B2 (ja)
CN (2) CN112352195A (ja)
WO (2) WO2019225013A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7363868B2 (ja) 2021-08-27 2023-10-18 セイコーエプソン株式会社 プロジェクターおよび画像形成ユニット
JP7371672B2 (ja) 2021-08-27 2023-10-31 セイコーエプソン株式会社 プロジェクター
WO2024058113A1 (ja) * 2022-09-12 2024-03-21 パナソニックIpマネジメント株式会社 投写型画像表示装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210203891A1 (en) 2018-05-25 2021-07-01 Sharp Nec Display Solutions, Ltd. Electronic device and projectors
US20210298199A1 (en) * 2020-03-17 2021-09-23 Nvidia Corporation Blower design for a graphics processing unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026422A (ja) * 2006-07-18 2008-02-07 Sharp Corp 冷却装置及び投射型画像表示装置
JP2015194716A (ja) * 2014-03-17 2015-11-05 セイコーエプソン株式会社 冷却装置、プロジェクター
JP2016057446A (ja) * 2014-09-09 2016-04-21 ソニー株式会社 投射型表示装置および光学系ユニット
JP2019020561A (ja) * 2017-07-14 2019-02-07 Necディスプレイソリューションズ株式会社 プロジェクターおよびプロジェクターの配線方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07152009A (ja) * 1993-11-26 1995-06-16 Sanyo Electric Co Ltd 液晶プロジェクタ
US6290360B1 (en) * 1997-11-20 2001-09-18 Hitachi, Ltd. Liquid crystal projector, and projection lens unit, optical unit and cooling system for the same
US6343862B1 (en) * 1998-11-20 2002-02-05 Minolta Co., Ltd. Projecting image display device
US6459580B1 (en) * 2001-02-07 2002-10-01 Compaq Information Technologies Group, Lp Cooling system for removing heat from an object
JP3467697B2 (ja) 2001-05-16 2003-11-17 セイコーエプソン株式会社 電気光学装置の冷却装置およびプロジェクタ
CN101281355B (zh) * 2007-04-05 2011-07-27 三洋科技中心(深圳)有限公司 投影机以及用于降低投影机内温度的组件
TW200848909A (en) * 2007-06-08 2008-12-16 Coretronic Corp Projection device
CN101666964B (zh) * 2008-09-01 2011-11-30 鸿富锦精密工业(深圳)有限公司 投影机
JP5132520B2 (ja) * 2008-10-29 2013-01-30 三菱電機株式会社 投写型表示装置
US20100302463A1 (en) * 2009-05-27 2010-12-02 Sanyo Electric Co., Ltd. Projection video display device
CN102033395B (zh) * 2009-09-29 2013-04-03 三洋科技中心(深圳)有限公司 投影式显示装置
JP5609213B2 (ja) * 2010-04-01 2014-10-22 セイコーエプソン株式会社 液晶プロジェクター
US20130242271A1 (en) * 2010-12-10 2013-09-19 Shinichirou Jougo Projection display device
KR20120131359A (ko) * 2011-05-25 2012-12-05 삼성전자주식회사 릴레이 렌즈들이 생략된 영상투사장치
WO2013069039A1 (ja) 2011-11-07 2013-05-16 日立コンシューマエレクトロニクス株式会社 投射型映像表示装置
US20170052434A1 (en) * 2014-04-30 2017-02-23 Nec Display Solution, Ltd. Structure for cooling an illumination optical system and projection display apparatus
WO2016157997A1 (ja) * 2015-03-31 2016-10-06 富士フイルム株式会社 プロジェクタ及びその画像劣化防止方法
JP6578715B2 (ja) * 2015-04-08 2019-09-25 セイコーエプソン株式会社 プロジェクター
JP2016200656A (ja) * 2015-04-08 2016-12-01 セイコーエプソン株式会社 プロジェクター
JP2016218383A (ja) * 2015-05-26 2016-12-22 セイコーエプソン株式会社 プロジェクター
CN106200227B (zh) * 2015-05-26 2018-02-27 精工爱普生株式会社 投影仪
US20210203891A1 (en) 2018-05-25 2021-07-01 Sharp Nec Display Solutions, Ltd. Electronic device and projectors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026422A (ja) * 2006-07-18 2008-02-07 Sharp Corp 冷却装置及び投射型画像表示装置
JP2015194716A (ja) * 2014-03-17 2015-11-05 セイコーエプソン株式会社 冷却装置、プロジェクター
JP2016057446A (ja) * 2014-09-09 2016-04-21 ソニー株式会社 投射型表示装置および光学系ユニット
JP2019020561A (ja) * 2017-07-14 2019-02-07 Necディスプレイソリューションズ株式会社 プロジェクターおよびプロジェクターの配線方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7363868B2 (ja) 2021-08-27 2023-10-18 セイコーエプソン株式会社 プロジェクターおよび画像形成ユニット
JP7371672B2 (ja) 2021-08-27 2023-10-31 セイコーエプソン株式会社 プロジェクター
WO2024058113A1 (ja) * 2022-09-12 2024-03-21 パナソニックIpマネジメント株式会社 投写型画像表示装置

Also Published As

Publication number Publication date
CN112352196A (zh) 2021-02-09
CN112352195A (zh) 2021-02-09
US20210208489A1 (en) 2021-07-08
JP7036911B2 (ja) 2022-03-15
US20210203891A1 (en) 2021-07-01
JP7036915B2 (ja) 2022-03-15
JPWO2019225679A1 (ja) 2021-06-10
WO2019225013A1 (ja) 2019-11-28
US11330234B2 (en) 2022-05-10
CN112352196B (zh) 2022-05-10
JPWO2019225013A1 (ja) 2021-06-10

Similar Documents

Publication Publication Date Title
WO2019225679A1 (ja) 電子機器およびプロジェクタ
JP4172503B2 (ja) 冷却装置、およびプロジェクタ
JP4479784B2 (ja) プロジェクタ
US7806532B2 (en) Projector for projecting an optical image formed by light modulated by a light modulating device
JP2007334043A (ja) プロジェクタ
US11009782B2 (en) Projection-type display device
US9470960B2 (en) Projector
JP2006208488A (ja) リアプロジェクタ
JP2004109731A (ja) 投影型表示装置
JP6995985B2 (ja) 電子機器およびプロジェクタ
JP2019020561A (ja) プロジェクターおよびプロジェクターの配線方法
JP2001042435A (ja) プロジェクタ装置
US6808296B2 (en) Cooling apparatus for optical engine assembly
JP2004279778A (ja) プロジェクタ
JP2010002683A (ja) 光変調装置およびプロジェクタ
JP5298513B2 (ja) プロジェクタ
JP2006072138A (ja) リアプロジェクタ
JP2000147652A (ja) 投写型表示装置
JP2007127872A (ja) プロジェクタ
JP2013182145A (ja) プロジェクター

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19807740

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020520354

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19807740

Country of ref document: EP

Kind code of ref document: A1