WO2019225676A1 - 押出樹脂板とその製造方法、及び積層板 - Google Patents

押出樹脂板とその製造方法、及び積層板 Download PDF

Info

Publication number
WO2019225676A1
WO2019225676A1 PCT/JP2019/020387 JP2019020387W WO2019225676A1 WO 2019225676 A1 WO2019225676 A1 WO 2019225676A1 JP 2019020387 W JP2019020387 W JP 2019020387W WO 2019225676 A1 WO2019225676 A1 WO 2019225676A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin plate
extruded resin
resin
heating
cooling roll
Prior art date
Application number
PCT/JP2019/020387
Other languages
English (en)
French (fr)
Inventor
一男 船崎
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to KR1020207035056A priority Critical patent/KR20210011946A/ko
Priority to CN201980034631.6A priority patent/CN112188951B/zh
Priority to JP2020520353A priority patent/JP7150016B2/ja
Publication of WO2019225676A1 publication Critical patent/WO2019225676A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/885External treatment, e.g. by using air rings for cooling tubular films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3475Displays, monitors, TV-sets, computer screens

Definitions

  • the present invention relates to an extruded resin plate, a method for producing the same, and a laminate including the extruded resin plate.
  • Flat panel displays such as liquid crystal displays, and touch panel displays combining such flat panel displays and touch panels (also called touch screens) are ATMs of financial institutions such as banks; vending machines; mobile phones (including smartphones), It is used in personal digital assistants such as personal digital assistants (PDAs) such as tablet personal computers, digital audio players, portable game machines, copiers, fax machines, and car navigation systems.
  • PDAs personal digital assistants
  • a transparent protective plate is installed on the surface of a flat panel display such as a liquid crystal display and a touch panel.
  • tempered glass has been mainly used as a protective plate, but a transparent resin plate has been developed from the viewpoint of workability and weight reduction.
  • the protective plate is required to have functions such as gloss, scratch resistance, and impact resistance.
  • the protection plate By forming a (half) mirror film on the surface of the protection plate, the protection plate can be used as a (half) mirror plate.
  • “(half) mirror” is a general term for a mirror and a half mirror.
  • a mirror with a liquid crystal monitor in which a liquid crystal monitor and a (half) mirror plate are combined has been developed for applications such as an in-vehicle rearview mirror.
  • a glass plate has been mainly used as a (half) mirror plate substrate, but from the viewpoint of processability, weight reduction, and visibility when viewing a screen through a polarizing filter such as polarized sunglasses, a transparent resin substrate Development is underway.
  • This transparent resin substrate is required to have low warpage performance close to that of glass from the viewpoint of suppressing the distortion of the reflected image in addition to the above-described functions required for a general protective plate.
  • a resin plate including a polycarbonate layer excellent in impact resistance and a methacrylic resin layer excellent in gloss and scratch resistance has been studied.
  • This resin plate is preferably manufactured by coextrusion molding.
  • strain stress may remain on the obtained resin plate due to the difference in characteristics between the two types of resins.
  • the strain stress remaining on the resin plate is referred to as “residual stress”, and the resin plate having this residual stress may be warped due to thermal change or the like.
  • Patent Document 1 discloses a method for adjusting the rotational speed of a cooling roll used for extrusion molding (Claim 1).
  • Patent Document 2 as a methacrylic resin laminated with a polycarbonate, a methacrylic ester such as methyl methacrylate (MMA) is copolymerized with an aromatic vinyl monomer such as styrene, and then an aromatic double bond is hydrogenated.
  • MMA methyl methacrylate
  • a method using the resin obtained in this manner is disclosed (claim 2).
  • Patent Document 3 discloses MMA units, methacrylic acid (MA) units, acrylic acid (AA) units, maleic anhydride units, N-substituted or unsubstituted myremide units, glutars as methacrylic resins laminated with polycarbonate.
  • a method using a resin having an acid anhydride structural unit and a unit selected from a glutarimide structural unit and having a glass transition temperature (Tg) of 110 ° C. or higher is disclosed (Claim 1).
  • Patent Document 4 in a decorative sheet obtained by laminating two resin sheets with at least one pattern layer interposed therebetween, a difference in linear expansion coefficient (also referred to as a linear expansion coefficient) between the two resin sheets is reduced.
  • a method is disclosed (claim 1).
  • a cured film having low reflectivity for improving scratch resistance (hard coat property) and / or visibility can be formed on at least one surface of the protective plate (Claims 1 and 2 of Patent Document 5). And claim 1 of Patent Document 6).
  • a protective plate for the liquid crystal display is installed on the front side (viewer side) of the liquid crystal display, and the viewer views the screen of the liquid crystal display through this protective plate.
  • the protective plate hardly changes the polarization of the emitted light from the liquid crystal display, depending on the angle formed by the polarization axis of the emitted light and the transmission axis of the polarizing filter when the screen is viewed through a polarizing filter such as polarized sunglasses. The screen becomes dark and the visibility of the image may be reduced.
  • Patent Document 7 discloses a liquid crystal display protective plate comprising a scratch-resistant resin plate having a cured film formed on at least one surface of a resin substrate, and having an in-plane retardation value (Re) of 85 to 300 nm. (Claim 1).
  • an extruded resin plate stress is generated during molding, whereby molecules may be oriented to cause retardation (see paragraph 0034 of Patent Document 8). Further, in an extruded resin plate including a plurality of resin layers, the degree of residual stress in each resin layer may be different. Further, in the molding of the extruded resin plate, when leaving from the last cooling roll, streaky defects (so-called chatter marks) may occur on the surface of the extruded resin plate, and the surface property may be lowered. By adjusting the manufacturing conditions such as the rotation speed of the cooling roll and take-up roll used for extrusion molding, the stress and chatter marks generated during molding can be reduced.
  • Patent Documents 8 and 9 both share an extruded resin plate in which a methacrylic resin layer is laminated on at least one side of a polycarbonate layer in order to reduce the stress generated during molding of the extruded resin plate and suppress a decrease in the Re value.
  • a method for manufacturing an extruded resin plate that optimizes manufacturing conditions such as the relationship between the peripheral speeds of a plurality of cooling rolls and take-up rolls and the temperature of the entire resin at the time of peeling from the last cooling roll during extrusion molding. (Claim 1 of Patent Document 8, Claims 3 and 4 of Patent Document 9, etc.).
  • Patent Document 10 discloses that an extruded resin plate in which a methacrylic resin layer is laminated on at least one surface of a polycarbonate layer is co-extruded.
  • a method of manufacturing an extruded resin plate that optimizes the manufacturing conditions such as the relationship between the peripheral speeds of a plurality of cooling rolls and take-up rolls and the temperature of the entire resin at the time of peeling from the last cooling roll is disclosed. (Claim 1 etc. of Patent Document 10).
  • JP 2007-185756 A International Publication No. 2011/145630 JP 2009-248416 A JP 2007-118597 A JP 2004-299199 A JP 2006-103169 A JP 2010-085978 A International Publication No. 2015/093037 International Publication No. 2016/038868 International Publication No. 2017/164276
  • the transparent resin plate may be heated to a temperature of 100 ° C. or higher.
  • a thermosetting coating material requires heating for curing, and a photocurable coating material receives heat when irradiated with light.
  • the coating material contains a solvent, it may be heated for solvent drying.
  • the transparent resin plate may be heated to a temperature of 100 ° C. or higher when the coating material is heat-treated.
  • a protective plate for a liquid crystal display mounted on an in-vehicle display device such as a car navigation system, a mobile phone (including a smartphone), or the like may be used in a high-temperature environment such as sunlight in summer.
  • the Re value when the resin plate is exposed to a high temperature in the manufacturing process or in the use environment, the Re value may be lowered by heat and may be out of a desired range. It is preferable that the thermal change of the Re value is small.
  • a resin plate used as a substrate of a (half) mirror plate used for a mirror with a liquid crystal monitor or the like it is preferable that the amount of warpage is small even when exposed to high temperatures from the viewpoint of suppressing distortion of the reflected image.
  • the present invention has been made in view of the above circumstances, and the in-plane retardation value (Re) is within a range suitable as a protective plate for a flat panel display such as a liquid crystal display and a touch panel. It is an object of the present invention to provide an extruded resin plate having a small reduction rate, less warpage due to heating, and good surface properties, and a method for producing the same.
  • this invention is a thing suitable as protective plates, such as flat panel displays, such as a liquid crystal display, and a touch panel, it can be used for arbitrary uses.
  • the present invention provides the following extruded resin plates [1] to [13], methods for producing the same, and laminates.
  • the overall temperature (TT) of the thermoplastic resin laminate at the position where it is peeled off from the last cooling roll is in the range of + 5 ° C. to + 19 ° C. with respect to the glass transition temperature of the layer containing the polycarbonate,
  • An extruded resin plate having a peripheral speed ratio (V4 / V2) between a peripheral speed (V4) of the take-up roll and a peripheral speed (V2) of the second cooling roll is 0.98 or more and less than 1.0. Production method.
  • the glass transition temperature of the layer containing the methacrylic resin is 115 ° C. or higher
  • the difference (S2 ⁇ S1) between the linear expansion coefficient (S1) of the layer containing polycarbonate and the linear expansion coefficient (S2) of the layer containing methacrylic resin, and the linear expansion coefficient (S1) of the layer containing polycarbonate. )) ((S2-S1) / S1) is from -10% to + 10%.
  • the layer containing the methacrylic resin contains 5 to 80% by mass of a methacrylic resin, and 95 to 20% by mass of a copolymer including a structural unit derived from an aromatic vinyl compound and a structural unit derived from maleic anhydride;
  • the copolymer comprises 50 to 84 mass% of structural units derived from the aromatic vinyl compound, 15 to 49 mass% of structural units derived from maleic anhydride, and 1 to 5 structural units derived from a methacrylic ester.
  • the method further comprises a step (Y) of heating the extruded resin plate at a temperature of 75 to 125 ° C. for 1 to 30 hours, In both the before and after heating, the extruded resin plate has a warp amount of 0 to ⁇ 0.2 mm measured for a rectangular test piece having a width direction of 200 mm at the time of extrusion molding and a flow direction of 100 mm at the time of extrusion molding.
  • the method further includes a step (Y) of heating the extruded resin plate at a temperature of 75 to 125 ° C.
  • the extruded resin plate has a retardation value of at least a part of the plane in the width direction of 50 to 330 nm, and the rate of decrease in the retardation value of the extruded resin plate after heating with respect to before heating.
  • An extruded resin plate in which a layer containing a methacrylic resin is laminated on at least one side of a layer containing a polycarbonate,
  • the glass transition temperature of the layer containing the methacrylic resin is 115 ° C. or higher, Warpage measured on a rectangular specimen having a width direction of 200 mm during extrusion molding and a flow direction of 100 mm during extrusion molding both before and after heating when heated at a constant temperature in the range of 75 to 125 ° C. for 5 hours.
  • the amount is 0 ⁇ ⁇ 0.2mm
  • the retardation value in at least a part of the plane in the width direction is 50 to 330 nm
  • the reduction rate of the retardation value after heating with respect to before heating is less than 30%
  • the difference (S2 ⁇ S1) between the linear expansion coefficient (S1) of the layer containing polycarbonate and the linear expansion coefficient (S2) of the layer containing methacrylic resin, and the linear expansion coefficient (S1) of the layer containing polycarbonate. ) ((S2-S1) / S1) is an extruded resin plate having a ratio of -10% to + 10%.
  • the amount of warpage measured for a rectangular test piece having a width direction of 200 mm during extrusion molding and a flow direction of 100 mm during extrusion molding is 0 to ⁇ 0.15 mm, [7] or [8] An extruded resin plate.
  • a reduction rate of the retardation value after heating with respect to before heating is less than 15%.
  • a laminate comprising the extruded resin plate according to any one of [7] to [11] and a scratch-resistant layer formed on at least one surface of the extruded resin plate.
  • a laminate comprising the extruded resin plate of any one of [7] to [11] and a mirror film or a half mirror film formed on at least one surface of the extruded resin plate.
  • the in-plane retardation value (Re) is in a range suitable for a flat panel display such as a liquid crystal display and a protective plate for a touch panel and the like. It is possible to provide an extruded resin plate with less warpage and good surface properties and a method for producing the same.
  • the present invention relates to a flat panel display such as a liquid crystal display, a protective plate such as a touch panel, and an extruded resin plate suitable as a protective plate (half) mirror plate included in a mirror with a liquid crystal monitor.
  • the extruded resin plate of the present invention is a layer containing methacrylic resin (PM) on at least one side of a layer containing polycarbonate (PC) (hereinafter also simply referred to as polycarbonate-containing layer) (hereinafter also simply referred to as methacrylic resin-containing layer).
  • PC polycarbonate
  • methacrylic resin-containing layer methacrylic resin-containing layer
  • the extruded resin plate of the present invention in which these resins are laminated is excellent in gloss, transparency, impact resistance, and scratch resistance. Moreover, since the extrusion resin board of this invention is manufactured by the extrusion molding method, it is excellent in productivity.
  • the methacrylic resin-containing layer contains one or more methacrylic resins (PM).
  • the methacrylic resin (PM) is preferably a homopolymer or copolymer containing a structural unit derived from one or more methacrylic acid hydrocarbon esters (hereinafter also simply referred to as methacrylic acid esters) containing methyl methacrylate (MMA). It is.
  • the hydrocarbon group in the methacrylic acid ester may be an acyclic aliphatic hydrocarbon group such as a methyl group, an ethyl group, or a propyl group, an alicyclic hydrocarbon group, or an aromatic group such as a phenyl group. It may be a hydrocarbon group.
  • the content of the methacrylic acid ester monomer unit in the methacrylic resin (PM) is preferably 50% by mass or more, more preferably 80% by mass or more, and particularly preferably 90% by mass or more. It may be 100% by mass.
  • the methacrylic resin (PM) may contain a structural unit derived from one or more other monomers other than the methacrylic acid ester.
  • Other monomers include methyl acrylate (MA), ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, tert-butyl acrylate, hexyl acrylate, acrylic 2-ethylhexyl acid, nonyl acrylate, decyl acrylate, dodecyl acrylate, stearyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, cyclohexyl acrylate, 2-acrylate Methoxyethyl, 3-methoxybutyl acrylate, trifluoromethyl acrylate, trifluoroethyl acrylate, pentafluoroethyl acryl
  • MA ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, tert-butyl acrylate, and the like are preferable.
  • MA, ethyl acrylate, and the like Is more preferable, and MA is particularly preferable.
  • the content of structural units derived from other monomers in the methacrylic resin (PM) is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 2% by mass or less.
  • the methacrylic resin (PM) is preferably obtained by polymerizing one or more methacrylic acid esters containing MMA and, if necessary, other monomers.
  • the polymerization is usually carried out after preparing a monomer mixture by mixing a plurality of types of monomers.
  • the polymerization method is not particularly limited, and radical polymerization methods such as bulk polymerization method, suspension polymerization method, solution polymerization method, and emulsion polymerization method are preferable from the viewpoint of productivity.
  • the glass transition temperature of the methacrylic resin-containing layer is represented as Tg (M).
  • Tg (M) is not particularly limited, and it is easy to obtain an extruded resin plate having good surface properties and small warpage due to residual stress. Therefore, the lower limit of Tg (M) is preferably 115 ° C., more preferably 120 ° C. ° C, particularly preferably 125 ° C, most preferably 130 ° C, and the upper limit of Tg (M) is preferably 160 ° C, more preferably 155 ° C, particularly preferably 150 ° C.
  • a methacrylic resin content layer can contain methacrylic resin (PM) and one or more sorts of other polymers as needed.
  • the methacrylic resin-containing layer can be made of a methacrylic resin composition (MR) containing methacrylic resin (PM) and SMA resin (S) (hereinafter also simply referred to as resin composition (MR)).
  • SMA resin includes a structural unit derived from one or more aromatic vinyl compounds and a structural unit derived from one or more acid anhydrides including maleic anhydride (MAH), More preferably, it is a copolymer containing a structural unit derived from a methacrylic acid ester.
  • the methacrylic resin composition (MR) can preferably contain 5 to 80% by mass of methacrylic resin (PM) and 95 to 20% by mass of SMA resin (S).
  • the content of the methacrylic resin (PM) in the resin composition (MR) is preferably 5 to 80% by mass, more preferably 5 to 55% by mass, Particularly preferred is 10 to 50% by mass.
  • the SMA resin (S) is a copolymer containing a structural unit derived from one or more acid anhydrides including one or more aromatic vinyl compounds and MAH.
  • aromatic vinyl compounds include styrene (St); nuclear alkyl-substituted styrenes such as 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-ethylstyrene, and 4-tert-butylstyrene; ⁇ -methylstyrene And ⁇ -alkyl-substituted styrenes such as 4-methyl- ⁇ -methylstyrene.
  • styrene (St) is preferable from the viewpoint of availability.
  • the content of the aromatic vinyl compound monomer unit in the SMA resin (S) is preferably 50 to 84% by mass, more preferably 55 to 82%. % By mass, particularly preferably 60 to 80% by mass.
  • the acid anhydride at least maleic anhydride (MAH) is used from the viewpoint of availability, and other acid anhydrides such as citraconic anhydride and dimethylmaleic anhydride can be used as necessary.
  • the content of the acid anhydride monomer unit in the SMA resin (S) is preferably 15 to 49% by mass, more preferably 18 to 45% by mass. %, Particularly preferably 20 to 40% by mass.
  • the SMA resin (S) can contain a structural unit derived from one or more methacrylic acid ester monomers in addition to the aromatic vinyl compound and the acid anhydride.
  • methacrylic acid esters include MMA, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, Examples include 2-ethylhexyl methacrylate, cyclohexyl methacrylate, phenyl methacrylate, benzyl methacrylate, and 1-phenylethyl methacrylate.
  • methacrylic acid alkyl esters in which the alkyl group has 1 to 7 carbon atoms are preferred.
  • MMA is particularly preferable.
  • the content of the methacrylic acid ester monomer unit in the SMA resin (S) is preferably 1 to 35% by mass, more preferably 3 to 30% by mass, Particularly preferred is 5 to 26% by mass.
  • the content of the aromatic vinyl compound monomer unit is preferably 50 to 84% by mass, and the content of the acid anhydride monomer unit is preferably 15 to 49% by mass.
  • the SMA resin (S) is composed of 50 to 84% by mass of structural units derived from an aromatic vinyl compound, 15 to 49% by mass of structural units derived from maleic anhydride, and 1 to 35% by mass of structural units derived from a methacrylic ester. It is preferable to contain.
  • the SMA resin (S) may have a structural unit derived from another monomer other than the aromatic vinyl compound, the acid anhydride, and the methacrylic acid ester. As another monomer, what was mentioned above in description of methacryl resin (PM) can be used.
  • the content of other monomer units in the SMA resin (S) is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 2% by mass or less.
  • the SMA resin (S) can be obtained by polymerizing an aromatic vinyl compound, an acid anhydride, a methacrylic acid ester if necessary, and another monomer if necessary. In this polymerization, usually, a plurality of types of monomers are mixed to prepare a monomer mixture, and then polymerization is performed.
  • the polymerization method is not particularly limited, and radical polymerization methods such as bulk polymerization method and solution polymerization method are preferable from the viewpoint of productivity.
  • the Mw of the SMA resin (S) is preferably 40,000 to 300,000.
  • the Mw is 40,000 or more, the methacrylic resin-containing layer has excellent scratch resistance and impact resistance, and when the Mw is 300,000 or less, the methacrylic resin-containing layer has excellent moldability.
  • the content of the SMA resin (S) in the resin composition (MR) is preferably 20 to 95% by mass, more preferably 45 to 95% by mass, Particularly preferred is 50 to 90% by mass.
  • Resin composition (MR) is obtained, for example, by mixing methacrylic resin (PM) and SMA resin (S).
  • the mixing method include a melt mixing method and a solution mixing method.
  • a melt mixing method a single- or multi-axis kneader, an open roll, a Banbury mixer, a kneader or other melt kneader is used, and an inert gas such as nitrogen gas, argon gas, or helium gas, if necessary. Melt kneading can be performed under an atmosphere.
  • methacrylic resin (PM) and SMA resin (S) can be dissolved and mixed in an organic solvent such as toluene, tetrahydrofuran, and methyl ethyl ketone.
  • the methacrylic resin-containing layer can include a methacrylic resin (PM) and optionally one or more other polymers.
  • the methacrylic resin-containing layer is made of a methacrylic resin composition (MR), and the methacrylic resin composition (MR) is methacrylic resin (PM), SMA resin (S), and optionally one or more.
  • MR methacrylic resin composition
  • Other polymers can be included.
  • thermoplastic resins such as polyolefin such as polyethylene and polypropylene, polyamide, polyphenylene sulfide, polyether ether ketone, polyester, polysulfone, polyphenylene oxide, polyimide, polyetherimide, and polyacetal
  • a thermosetting resin such as a phenol resin, a melamine resin, a silicone resin, and an epoxy resin.
  • the content of the other polymer in the methacrylic resin-containing layer is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 2% by mass or less.
  • the methacrylic resin-containing layer can contain various additives as required.
  • Additives include antioxidants, thermal degradation inhibitors, UV absorbers, light stabilizers, lubricants, mold release agents, polymer processing aids, antistatic agents, flame retardants, dyes / pigments, light diffusing agents, gloss Examples include quenchers, impact modifiers such as core-shell particles and block copolymers, and phosphors.
  • Content of an additive can be suitably set in the range which does not impair the effect of this invention.
  • the content of the antioxidant is 0.01 to 1 part by mass and the content of the ultraviolet absorber is 0.01 to 3 parts by mass with respect to 100 parts by mass of the resin constituting the methacrylic resin-containing layer. Is preferably 0.01 to 3 parts by mass
  • the lubricant is preferably 0.01 to 3 parts by mass
  • the dye / pigment is preferably 0.01 to 3 parts by mass.
  • the timing of addition may be during polymerization of the methacrylic resin (PM) or after polymerization.
  • the addition timing may be at the time of polymerization of the methacrylic resin (PM) and / or SMA resin (S), or a mixture of these resins. May be after or after mixing.
  • the melt flow rate (MFR) of the constituent resin of the methacrylic resin-containing layer is preferably 1 to 10 g / 10 minutes, more preferably 1.5 to 7 g / 10 minutes, particularly preferably. 2-4 g / 10 min.
  • the MFR of the constituent resin of the methacrylic resin-containing layer is a value measured using a melt indexer at a temperature of 230 ° C. and a load of 3.8 kg.
  • the polycarbonate-containing layer includes one or more types of polycarbonate (PC).
  • the polycarbonate (PC) is preferably obtained by copolymerizing one or more dihydric phenols and one or more carbonate precursors.
  • the production method includes an interfacial polymerization method in which an aqueous solution of a dihydric phenol and an organic solvent solution of a carbonate precursor are reacted at the interface, and a reaction between the dihydric phenol and the carbonate precursor under high temperature, reduced pressure, and solvent-free conditions. Examples include a transesterification method.
  • dihydric phenol examples include 2,2-bis (4-hydroxyphenyl) propane (commonly called bisphenol A), 1,1-bis (4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 2,2-bis (3-methyl-4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, bis (4-hydroxyphenyl) sulfide, and bis (4- Hydroxyphenyl) sulfone and the like, and among them, bisphenol A is preferred.
  • the carbonate precursor include carbonyl halides such as phosgene; carbonate esters such as diphenyl carbonate; haloformates such as dihaloformates of dihydric phenols; and the like.
  • the Mw of polycarbonate (PC) is preferably 10,000 to 100,000, more preferably 20,000 to 70,000.
  • the polycarbonate-containing layer has excellent impact resistance and heat resistance, and when the Mw is 100,000 or less, the polycarbonate-containing layer has excellent moldability.
  • PC polycarbonate
  • a commercially available product may be used as the polycarbonate (PC).
  • PC polycarbonate
  • the polycarbonate-containing layer can contain one or more other polymers and / or various additives as required. As other polymers and various additives, the same ones as described above in the description of the methacrylic resin-containing layer can be used.
  • the content of the other polymer in the polycarbonate-containing layer is preferably 15% by mass or less, more preferably 10% by mass or less, and particularly preferably 5% by mass or less. Content of an additive can be suitably set in the range which does not impair the effect of this invention.
  • the content of the antioxidant is 0.01 to 1 part by mass
  • the content of the ultraviolet absorber is 0.01 to 3 parts by mass
  • the content of the light stabilizer is 0.1 parts by mass with respect to 100 parts by mass of the polycarbonate (PC).
  • the content is preferably 01 to 3 parts by mass
  • the lubricant content is 0.01 to 3 parts by mass
  • the dye / pigment content is preferably 0.01 to 3 parts by mass.
  • the addition timing may be during or after the polymerization of the polycarbonate (PC).
  • Linear expansion ratio (SR) Linear expansion ratio (SR)
  • the difference (S2-S1) between the linear expansion coefficient (S1) of the polycarbonate-containing layer and the linear expansion coefficient (S2) of the methacrylic resin-containing layer, and the linear expansion coefficient (S1) of the polycarbonate-containing layer ((S2-S1) / S1) is defined as the linear expansion coefficient ratio (SR).
  • the linear expansion coefficient ratio (SR) is ⁇ 10% to + 10%, preferably ⁇ 10% to + 5%, more preferably ⁇ 5% to + 2%.
  • the linear expansion coefficient ratio (SR) is -10% to -0.1%, -5% to -0.1%, + 0.1% to + 10%, + 0.1% to + 5%, or + 0.1%. Can be ⁇ 2%. When the linear expansion coefficient ratio (SR) is within such a range, it is easy to obtain an extruded resin plate having good surface properties and small warpage due to residual stress.
  • the total thickness (t) of the extruded resin plate of the present invention is such as a protective plate (half) mirror plate included in a flat panel display such as a liquid crystal display and a protective plate such as a touch panel, and a mirror with a liquid crystal monitor. In use, it is preferably 0.5 to 5.0 mm, more preferably 0.8 to 3.0 mm. If it is too thin, the rigidity may be insufficient, and if it is too thick, it may hinder the weight reduction of various electronic devices including it.
  • the thickness of the methacrylic resin-containing layer is not particularly limited, and is preferably 40 to 200 ⁇ m, more preferably 50 to 150 ⁇ m, and particularly preferably 60 to 100 ⁇ m. If it is too thin, the scratch resistance may be poor, and if it is too thick, the impact may be poor.
  • the thickness of the polycarbonate-containing layer is preferably 0.3 to 4.9 mm, more preferably 0.6 to 2.9 mm.
  • the extruded resin plate of the present invention may have another resin layer as long as the methacrylic resin-containing layer is laminated on at least one surface of the polycarbonate-containing layer.
  • the laminated structure of the extruded resin plate included in the extruded resin plate of the present invention includes a two-layer structure of polycarbonate-containing layer-methacrylic resin-containing layer; a three-layer structure of methacrylic resin-containing layer-polycarbonate-containing layer-methacrylic resin-containing layer; 3 layer structure of resin-containing layer-polycarbonate-containing layer-other resin layer; other resin layer-methacrylic resin-containing layer-3-layer structure of polycarbonate-containing layer;
  • the laminated board of the present invention can have a laminated structure in which an arbitrary film is formed on at least one surface of the above-described extruded resin board of the present invention.
  • the laminate of the present invention can have a cured coating on at least one surface of the extruded resin plate of the present invention.
  • the cured coating can function as a scratch-resistant layer or a low-reflective layer for improving visibility.
  • the cured film can be formed by a known method (see Patent Documents 4 and 5 listed in the “Background Art” section).
  • the thickness of the scratch-resistant (hard coat property) cured film (scratch-resistant layer) is preferably 2 to 30 ⁇ m, more preferably 5 to 20 ⁇ m.
  • the thickness of the low reflective cured film is preferably 80 to 200 nm, more preferably 100 to 150 nm. If it is too thin or too thick, the low reflection performance may be insufficient.
  • the laminate of the present invention can have a (half) mirror film on at least one surface of the above-described extruded resin plate of the present invention.
  • the laminated plate having such a configuration can be used as a (half) mirror plate.
  • an electronic device with a mirror can be provided.
  • the (half) mirror film can be formed by a known method described in JP-A-9-96702. If the (half) mirror film is too thin, a sufficient mirror function may not be exhibited, and if it is too thick, the production becomes difficult.
  • the thickness of the (half) mirror film can be designed in consideration of the mirror function and manufacturability.
  • the extruded resin plate of the present invention is produced by a production method including coextrusion molding.
  • Process (X) The constituent resins of the polycarbonate-containing layer and the methacrylic resin-containing layer are each heated and melted, and in a state of a thermoplastic resin laminate in which the methacrylic resin-containing layer is laminated on at least one side of the polycarbonate-containing layer, from a T-die having a wide discharge port Co-extruded in the molten state.
  • the molten resin for the polycarbonate-containing layer and the methacrylic resin-containing layer is preferably melt filtered with a filter before lamination.
  • a filter By performing multilayer molding using each melted resin that has been melt-filtered, an extruded resin plate having few defects due to foreign matters and gels can be obtained.
  • the filter medium of the filter is appropriately selected depending on the use temperature, viscosity, filtration accuracy, and the like.
  • nonwoven fabric made of polypropylene, polyester, rayon, cotton, glass fiber, etc .; sheet-like product made of phenol resin impregnated cellulose; metal fiber nonwoven fabric sintered sheet material; metal powder sintered sheet material; wire mesh; A combination etc. are mentioned.
  • a filter in which a plurality of metal fiber nonwoven fabric sintered sheets are laminated is preferable.
  • the filtration accuracy of the filter is not particularly limited, and is preferably 30 ⁇ m or less, more preferably 15 ⁇ m or less, and particularly preferably 5 ⁇ m or less.
  • Examples of the stacking method include a feed block method in which layers are stacked before the inflow of the T die, and a multi-manifold method in which layers are stacked inside the T die. From the viewpoint of enhancing the interfacial smoothness between the layers of the extruded resin plate, the multi-manifold method is preferable.
  • the molten thermoplastic resin laminate coextruded from the T-die is cooled using a plurality of cooling rolls.
  • Examples of the cooling roll include a metal roll and an elastic roll (hereinafter also referred to as a metal elastic roll) provided with a metal outer cylinder on the outer peripheral portion.
  • Examples of the metal roll include a drilled roll and a spiral roll, and the surface thereof may be a mirror surface or may have a pattern or unevenness.
  • the metal elastic roll is, for example, a shaft roll made of stainless steel or the like, a metal outer tube made of stainless steel or the like covering the outer peripheral surface of the shaft roll, and a fluid sealed between the shaft roll and the metal outer tube. It can be elastic due to the presence of fluid.
  • the thickness of the metal outer cylinder is preferably about 2 to 5 mm.
  • the metal outer cylinder preferably has flexibility, flexibility, etc., and preferably has a seamless structure without a welded joint.
  • the metal elastic roll provided with such a metal outer cylinder is excellent in durability and can be handled in the same manner as a normal mirror roll if the metal outer cylinder is mirror-finished. If it is given, it becomes a roll that can transfer the shape, so it is easy to use.
  • the extruded resin plate obtained after cooling is taken up by a take-up roll.
  • the above steps of coextrusion, cooling, and take-up are performed continuously.
  • the heat-melted state is mainly expressed as “thermoplastic resin laminate”, and the solidified one is expressed as “extruded resin plate”, but there is a clear boundary between them. Absent.
  • FIG. 3 shows a schematic view of a manufacturing apparatus including a T die 11, first to third cooling rolls 12 to 14, and a pair of take-up rolls 15 as an embodiment.
  • the thermoplastic resin laminate coextruded from the T-die 11 is cooled using the first to third cooling rolls 12 to 14 and taken up by the pair of take-up rolls 15.
  • the 3rd cooling roll 14 is "the cooling roll (henceforth only the last cooling roll) on which a thermoplastic resin laminated body is wound last”.
  • a fourth and subsequent cooling rolls may be installed adjacent to the subsequent stage of the third cooling roll 14. In this case, the cooling roll around which the thermoplastic resin laminate is wound last becomes the “last cooling roll”.
  • the total temperature (TX) of the thermoplastic resin laminate when sandwiched between the second cooling roll and the third cooling roll is used as the glass transition temperature (Tg (PC )) + 15 ° C. or higher.
  • Tg (PC ) glass transition temperature
  • thermoplastic resin laminate The temperature of the entire temperature (TT) of the thermoplastic resin laminate at the position to be lowered becomes lower than Tg (PC), and there is a possibility that the warpage becomes large as described above.
  • temperature (TX) shall be measured by the method as described in a term of an after-mentioned [Example].
  • the total temperature (TT) of the thermoplastic resin laminate at the position where it is peeled off from the last cooling roll (the third cooling roll in FIG. 3) is the glass transition temperature (Tg (PC)) of the polycarbonate-containing layer. + 5 ° C to + 19 ° C.
  • the temperature (TT) is preferably + 7 ° C. to + 17 ° C., more preferably + 9 ° C. to + 15 ° C., particularly preferably + 10 ° C. to + 15 ° C. with respect to (Tg (PC)). If the temperature TT is excessively low with respect to Tg (PC), the shape of the last cooling roll (third cooling roll in FIG.
  • the temperature TT is excessively high with respect to the glass transition temperature (Tg) of the resin layer in contact with the last cooling roll (the third cooling roll in FIG. 3), the surface property of the extruded resin plate may be deteriorated.
  • Tg glass transition temperature
  • the temperature (TT) is measured by the method described in the section “Examples” below.
  • the difference (TT-TM) with respect to the total temperature (TM) of the thermoplastic resin laminate within 1 m downstream from the position where it is peeled off is set to 20 ° C. or less.
  • TT-TM is 20 ° C. or lower, rapid cooling of the extruded resin plate after peeling from the last cooling roll (the third cooling roll in FIG. 3) is suppressed, and the occurrence of warpage can be suppressed.
  • temperature (TM) shall be measured by the method as described in the item of [Example] below.
  • the linear expansion coefficient ratio (SR) is set to ⁇ 10% to + 10%
  • the glass transition temperature (Tg (M)) of the methacrylic resin-containing layer is set to 115 ° C. or higher. It is preferable to do.
  • Retardation is a phase difference between light in the molecular main chain direction and light in a direction perpendicular thereto.
  • polymers can be obtained in any shape by heat-melt molding, but it is known that retardation occurs due to orientation of molecules by stress generated in the process of heating and cooling. Therefore, in order to control retardation, it is necessary to control molecular orientation.
  • the molecular orientation is generated by stress at the time of molding near the glass transition temperature (Tg) of the polymer.
  • Tg glass transition temperature
  • the present inventors can control the molecular orientation by optimizing the manufacturing conditions in the process of extrusion molding, thereby optimizing the Re value after molding of the extruded resin plate, and further the thermal change of the Re value. It was found that can be suppressed.
  • the extruded resin plate has a Re value of at least a part in the width direction of 50 to 330 nm, and the Re value of the extruded resin plate after heating is reduced with respect to that before heating.
  • the rate is preferably less than 30%.
  • the “circumferential speed ratio” is the ratio of the peripheral speed of any other cooling roll or take-up roll to the second cooling roll.
  • the circumferential speed of the second cooling roll is represented as V2
  • the circumferential speed of the third cooling roll is represented as V3
  • the circumferential speed of the take-up roll is represented as V4.
  • the total temperature (TT) of the thermoplastic resin laminate at the position where it is peeled from the last cooling roll is the glass transition temperature (Tg (PC) of the polycarbonate-containing layer. )
  • Tg (PC) glass transition temperature
  • the total temperature of the thermoplastic resin laminate at the position where it first contacts the last cooling roll is the heat at the position where it is peeled off from the last cooling roll. It is higher than the total temperature (TT) of the plastic resin laminate.
  • the total temperature of the thermoplastic resin laminate at the time of first contact with the last cooling roll is higher than the range of + 5 ° C. to + 19 ° C. with respect to the glass transition temperature (Tg (PC)) of the polycarbonate-containing layer, For example, it is about + 20 ° C. or higher with respect to the glass transition temperature (Tg (PC)).
  • Tg (PC) glass transition temperature
  • the peripheral speed ratio (V3 / V2) is increased under these conditions and a large tensile stress is applied to the extruded resin plate, it is assumed that the Re value does not increase greatly because it is a high temperature region in which resin molecules are difficult to orient. Is done.
  • the Re value increases as the peripheral speed ratio (V4 / V2) increases.
  • the reason is estimated as follows. Under conditions where the temperature (TT) is adjusted to a range of +5 to + 19 ° C. with respect to the glass transition temperature (Tg (PC)) of the polycarbonate-containing layer, the peripheral speed ratio of the take-up roll is increased, and the extruded resin plate has a large tensile force. When stress is applied, it is presumed that the Re value increases because it is a temperature region in which resin molecules are easily oriented.
  • the peripheral speed ratio (V4 / V2) is adjusted and the Re value is adjusted under the condition that the temperature (TT) is in the range of + 5 ° C. to + 19 ° C. with respect to the glass transition temperature (Tg (PC)) of the polycarbonate-containing layer. It was found that when the value was adjusted to an inappropriate range, the decrease rate of the Re value after heating did not change greatly. The reason is estimated as follows. When adjusting the temperature (TT) to a range of + 5 ° C. to + 19 ° C. with respect to the glass transition temperature (Tg (PC)) of the polycarbonate-containing layer, the peripheral speed ratio of the take-up roll is increased and a large tensile force is applied to the extruded resin plate.
  • the molecules are oriented and the Re value is increased.
  • the heating temperature is lower than the glass transition temperature (Tg (PC)) of the polycarbonate-containing layer, the orientation of the molecules is difficult to relax. The rate of decline is presumed not to change significantly.
  • the peripheral speed ratio (V4 / V2) is set to 0.98 or more and less than 1.0.
  • the Re value may exceed 330 nm. If the peripheral speed ratio (V4 / V2) is less than 0.98, Re may be less than 50 nm.
  • the peripheral speed ratio (V4 / V2) is more preferably 0.985 to 0.995.
  • the Re value of the extruded resin plate is not particularly limited.
  • polarizing filters such as polarized sunglasses When viewing through, the difference in transmittance of each wavelength in the visible light range becomes large, and various colors may be seen, and the visibility may be reduced.
  • the Re value is less than 50 nm, it will be at all wavelengths in the visible light range. There is a possibility that the transmittance is lowered and the visibility is lowered.
  • Re is preferably 50 to 330 nm. Within this range, the brightness increases as the value increases, and the color tends to become clearer as the value decreases. From the viewpoint of balance between brightness and color, the Re value is more preferably 80 to 250 nm. Note that at least a part of the width direction Re is preferably 50 to 330 nm, more preferably 80 to 250 nm. When a general extruded resin plate is exposed to a high temperature in the manufacturing process or use environment, the Re value may decrease due to heat and may be outside a desired range. It is preferable that the thermal change of the Re value is small.
  • the extruded resin plate When used as a protective plate (half) mirror plate included in a flat panel display such as a liquid crystal display and a touch panel, and a mirror with a liquid crystal monitor, etc., there is little distortion of the display image or reflected image, etc.
  • the extruded resin plate preferably has a small amount of warpage.
  • the amount of warpage of the extruded resin plate measured for a rectangular test piece having a width direction of 200 mm during extrusion molding and a flow direction of 100 mm during extrusion molding is preferably 0 to ⁇ 0.2 mm, more preferably Is 0 to ⁇ 0.15 mm.
  • warpage increases due to heat and may be outside a desired range. It is preferable that the thermal change of the warp amount is small.
  • a constant temperature within a range of 75 to 125 ° C. and a constant time within a range of 1 to 30 hours can be used.
  • the evaluation can be performed under conditions of 75 ° C. for 5 hours or 125 ° C. for 5 hours.
  • the evaluation can be performed by heating the test piece in an oven controlled at 125 ° C. ⁇ 3 ° C. or 75 ° C. ⁇ 3 ° C. for 5 hours.
  • the heating condition is a general heating temperature in the process of forming a cured film that can function as a scratch-resistant layer or a low-reflective layer for improving visibility, and a (half) mirror film. And consider time. Therefore, it is preferable that the Re value and the amount of warpage can be maintained in a suitable range when the heating under the above conditions is performed and evaluated.
  • the extruded resin plate when the extruded resin plate is heated at a temperature of 75 to 125 ° C. for 1 to 30 hours, the extruded resin plate preferably has an Re value in at least a part of the plane in the width direction both before and after heating. It is 50 to 330 nm, more preferably 80 to 250 nm, and the reduction rate of the Re value of the extruded resin plate after heating with respect to before heating is preferably less than 30%, more preferably less than 20%, and particularly preferably less than 15%. . Further, when the extruded resin plate is heated at a temperature of 75 to 125 ° C.
  • the extruded resin plate has a rectangular shape with a width direction of 200 mm during extrusion molding and a flow direction of 100 mm during extrusion molding both before and after heating.
  • the amount of warpage measured for the test piece is preferably 0 to ⁇ 0.2 mm, more preferably 0 to ⁇ 0.15 mm.
  • the Re value and the warpage amount are measured by the method described in the section “Examples” below.
  • the step (Y) of heating the extruded resin plate at a temperature of 75 to 125 ° C. for 1 to 30 hours may be performed.
  • the Re value, the amount of warpage, and the thermal change thereof are effectively controlled, and a protective plate (half-panel) included in a flat panel display such as a liquid crystal display and a protective plate such as a touch panel, a mirror with a liquid crystal monitor, and the like.
  • a protective plate half-panel included in a flat panel display such as a liquid crystal display and a protective plate such as a touch panel, a mirror with a liquid crystal monitor, and the like.
  • the extruded resin plate preferably has at least a part of the Re value in the width direction of 50 to 330 nm, more preferably 80 to 250 nm.
  • the reduction rate of the Re value of the extruded resin plate afterwards is preferably less than 30%, more preferably less than 15%.
  • the amount of warpage of the extruded resin plate measured on a rectangular test piece having a width direction of 200 mm during extrusion molding and a flow direction of 100 mm during extrusion molding is preferably 0 to ⁇ 0. .2 mm, more preferably 0 to ⁇ 0.15 mm.
  • the extruded resin plate of the present invention is suitable as a flat panel display such as a liquid crystal display, a protective plate such as a touch panel, and a protective plate (half) mirror plate included in a mirror with a liquid crystal monitor. Since the extruded resin plate of the present invention has a methacrylic resin-containing layer laminated on at least one side of a polycarbonate-containing layer, it is excellent in gloss, scratch resistance, and impact resistance. According to the present invention, the in-plane retardation value (Re) is in a range suitable for a flat panel display such as a liquid crystal display and a protective plate for a touch panel and the like. It is possible to provide an extruded resin plate with less warpage and good surface properties and a method for producing the same.
  • the extruded resin plate of the present invention has a cured coating that can function as a scratch-resistant layer or a low-reflective layer for improving the visibility because it has little warpage due to heating and a small thermal change in Re value.
  • Half It withstands heating and high temperature use environments in the process of forming a mirror film or the like, and is excellent in productivity and durability.
  • the extruded resin plate of the present invention is less likely to be warped by heating and has a small thermal change in the Re value. Therefore, the protection plate included in flat panel displays such as liquid crystal displays and touch panels, and mirrors with liquid crystal monitors, etc. When used as a plate (half) mirror plate or the like, the display image or reflected image is less distorted and the visibility is excellent.
  • the extruded resin plate of the present invention is an ATM of a financial institution such as a bank, a vending machine, a mobile phone (including a smart phone), a personal digital assistant (PDA) such as a tablet personal computer, a digital audio player, a portable game machine, a copy It is suitable as a protection panel for flat panel displays such as liquid crystal displays and touch panels used in machines, fax machines, car navigation systems, heat control panels, various in-vehicle operation monitor panels, and E-cockpits.
  • a financial institution such as a bank, a vending machine, a mobile phone (including a smart phone), a personal digital assistant (PDA) such as a tablet personal computer, a digital audio player, a portable game machine, a copy
  • PDA personal digital assistant
  • a protection panel for flat panel displays such as liquid crystal displays and touch panels used in machines, fax machines, car navigation systems, heat control panels, various in-vehicle operation monitor panels, and E-cockpits.
  • the laminate including the extruded resin plate and the (half) mirror film of the present invention is a vehicle-mounted electronic mirror with various liquid crystal monitors such as a room mirror with a liquid crystal monitor, a rearview mirror with a liquid crystal monitor, and a side mirror with a liquid crystal monitor;
  • Protective plate used in smart mirror-equipped electronic devices that combine (half) mirror plates with various electronic devices such as displays, liquid crystal holograms, single-lens reflex digital cameras, smartphones, game machines, and head mounted displays (HMD) Suitable as a (half) mirror plate.
  • Evaluation items and evaluation methods are as follows.
  • the copolymer composition of the SMA resin was determined by a 13 C-NMR method according to the following procedure using a nuclear magnetic resonance apparatus (“GX-270” manufactured by JEOL Ltd.).
  • GX-270 nuclear magnetic resonance apparatus manufactured by JEOL Ltd.
  • a sample solution was prepared by dissolving 1.5 g of SMA resin in 1.5 ml of deuterated chloroform, and a 13 C-NMR spectrum was measured under conditions of room temperature and 4000 to 5000 times of integration. Asked.
  • the Mw of the resin was determined by the GPC method according to the following procedure. Tetrahydrofuran was used as the eluent, and two columns of “TSKgel SuperMultipore HZM-M” manufactured by Tosoh Corporation and “SuperHZ4000” were connected in series as the column. As a GPC apparatus, HLC-8320 (product number) manufactured by Tosoh Corporation equipped with a differential refractive index detector (RI detector) was used. A sample solution was prepared by dissolving 4 mg of the resin in 5 ml of tetrahydrofuran.
  • RI detector differential refractive index detector
  • the column oven temperature was set to 40 ° C., 20 ⁇ l of sample solution was injected at an eluent flow rate of 0.35 ml / min, and the chromatogram was measured.
  • Ten standard polystyrenes having a molecular weight in the range of 400 to 5,000,000 were measured by GPC, and a calibration curve showing the relationship between retention time and molecular weight was prepared. Mw was determined based on this calibration curve.
  • Glass transition temperature (Tg) of each layer The glass transition temperature (Tg) of each layer was measured by putting 10 mg of the constituent resin (composition) in an aluminum pan and using a differential scanning calorimeter (“DSC-50”, manufactured by Rigaku Corporation). After performing nitrogen substitution for 30 minutes or more, in a nitrogen stream of 10 ml / min, the temperature was once increased from 25 ° C. to 200 ° C. at a rate of 20 ° C./min, held for 10 minutes, and cooled to 25 ° C. (primary scanning) ). Next, the temperature was raised to 200 ° C.
  • DSC-50 differential scanning calorimeter
  • Tg glass transition temperature
  • the coefficient of linear expansion is defined as the rate of change in length per unit temperature change.
  • the linear expansion coefficient of each layer was measured according to JIS K7197 using a thermomechanical analyzer (“TMA4000”, manufactured by Bruker AXS Co., Ltd.). That is, for each layer, a press-molded resin plate having the same composition was obtained, and a 5 mm ⁇ 5 mm, 10 mm high rectangular columnar sample was cut out using a diamond saw to form a smooth end face. The obtained sample was placed on a quartz plate so that the surface of 5 mm ⁇ 5 mm was in contact with the quartz plate, and a cylindrical rod was placed thereon and fixed by applying a compression load of 5 g.
  • the temperature was raised from 25 ° C. (room temperature) to minus 10 ° C. of the glass transition temperature (Tg) of the sample at a heating rate of 3 ° C./min in an air atmosphere, and cooled to 25 ° C. (room temperature) (primary scanning). .
  • the temperature was raised from 25 ° C. (room temperature) to a plus 20 ° C. of the glass transition temperature (Tg) of the sample at a rate of temperature rise of 3 ° C./min (secondary scanning).
  • the linear expansion coefficient at each temperature during the secondary scanning was measured, and the average linear expansion coefficient in the range of 30 to 80 ° C. was obtained.
  • the linear expansion coefficient ratio (SR) was determined from the linear expansion coefficient of each layer.
  • Example 2 (Extruded resin board warpage) A rectangular test piece having a width direction of 200 mm at the time of extrusion molding and a flow direction of 100 mm at the time of extrusion molding was cut out from the extruded resin plate using a running saw. The obtained test piece was placed on a glass surface plate so that the upper surface in extrusion molding was the uppermost surface, and allowed to stand for 24 hours in an environment of temperature 23 ° C./relative humidity 50%. Thereafter, the maximum value of the gap between the test piece and the surface plate was measured using a gap gauge, and this value was used as the initial amount of warpage. Subsequently, this test piece was heated in an oven controlled at 125 ° C. ⁇ 3 ° C. for 5 hours.
  • the amount of warpage was measured as in the initial stage, and this value was taken as the amount of warpage after heating.
  • the sign of the warp amount when the upward warp occurred is “plus”, and the downward convex warp occurred
  • the sign of the amount of warping was defined as “minus”.
  • Total temperature (TT) of thermoplastic resin laminate The overall temperature (TT) of the thermoplastic resin laminate at the position where it was peeled off from the last cooling roll (specifically, the third cooling roll) was measured using an infrared radiation thermometer. The measurement position was the center of the extruded resin plate in the width direction.
  • Total temperature of the thermoplastic resin laminate (Total temperature of the thermoplastic resin laminate (TX))
  • TX Total temperature of the thermoplastic resin laminate
  • the total temperature (TX) of the thermoplastic resin laminate when sandwiched between the second cooling roll and the third cooling roll is obstructed by a pair of rolls and can be directly measured using an infrared radiation thermometer. Have difficulty. Therefore, an infrared radiation thermometer is used to determine the temperature of the entire thermoplastic resin laminate immediately before passing from the second cooling roll to the third cooling roll and the temperature of the entire thermoplastic resin laminate immediately after passing over the third cooling roll. Measured. The measurement location was the center of the extruded resin plate in the width direction. The average value of the temperature immediately before crossing the third cooling roll and the temperature immediately after crossing was determined as TX.
  • Total temperature of thermoplastic resin laminate (TM) The total temperature (TM) of the thermoplastic resin laminate at a position 1 m downstream from the position where the last cooling roll (specifically, the third cooling roll) was peeled was measured using an infrared radiation thermometer. The measurement position was the center of the extruded resin plate in the width direction.
  • SMA ratio shows the preparation ratio (mass percentage) of SMA resin (S1) with respect to the total amount of methacryl resin (PM1) and SMA resin (S1).
  • PC Polycarbonate
  • SD Polyca registered trademark
  • Example 1 (Production of extruded resin plate) An extruded resin plate was molded using a manufacturing apparatus as shown in FIG. A methacrylic resin (PM1) melted using a 65 mm ⁇ single screw extruder (manufactured by Toshiba Machine Co., Ltd.) and a polycarbonate (PC1) melted using a 150 mm ⁇ single screw extruder (manufactured by Toshiba Machine Co., Ltd.) Lamination was performed through a mold die, and a molten thermoplastic resin laminate was coextruded from the T die.
  • PM1 methacrylic resin
  • PC1 polycarbonate
  • thermoplastic resin laminate is sandwiched between the first cooling roll and the second cooling roll that are adjacent to each other, wound around the second cooling roll, and between the second cooling roll and the third cooling roll. And cooled by being wound around a third cooling roll.
  • the extruded resin plate obtained after cooling was taken up by a pair of take-up rolls.
  • the polycarbonate-containing layer was in contact with the third cooling roll.
  • the total temperature (TX) of the thermoplastic resin laminate when sandwiched between the second cooling roll and the third cooling roll is 180 ° C. by controlling the temperature of the second cooling roll and the third cooling roll. Adjusted.
  • the total temperature (TT) of the thermoplastic resin laminate at the position where the thermoplastic resin laminate peels from the third cooling roll was adjusted to 162 ° C.
  • thermoplastic resin laminate located 1 m from the position where the thermoplastic laminate is peeled from the third cooling roll is 148 ° C. by controlling the cooling temperature of the transport roll located on the lower surface. Adjusted.
  • the peripheral speed ratio (V4 / V2) between the take-up roll and the second cooling roll was adjusted to 0.99, and the peripheral speed ratio (V3 / V2) between the third cooling roll and the second cooling roll was adjusted to 1.00.
  • an extruded resin plate having a two-layer structure having a laminated structure of a methacrylic resin-containing layer (surface layer 1) and a polycarbonate-containing layer (surface layer 2) was obtained.
  • the thickness of the methacrylic resin-containing layer was 0.075 mm
  • the thickness of the polycarbonate-containing layer was 1.925 mm
  • the total thickness (t) of the extruded resin plate was 2 mm.
  • Tables 1-1 and 1-2 show the main production conditions and the evaluation results of the obtained extruded resin plates. In the following examples and comparative examples, manufacturing conditions not listed in the table were common conditions.
  • Example 2 to 5 The laminated structure of the methacrylic resin-containing layer (surface layer 1) -polycarbonate-containing layer (surface layer 2) was the same as in Example 1 except that the composition and production conditions of the methacrylic resin-containing layer were changed as shown in Table 1-1. An extruded resin plate having a two-layer structure was obtained. The evaluation results of the extruded resin plate obtained in each example are shown in Table 1-2.
  • Example 6 to 10 An extruded resin plate was molded using a manufacturing apparatus as shown in FIG. A methacrylic resin (composition) melted using a 65 mm ⁇ single screw extruder, a polycarbonate melted using a 150 mm ⁇ single screw extruder, and a methacrylic resin (composition) melted using a 65 mm ⁇ single screw extruder Laminated through a manifold die, co-extruded a three-layered thermoplastic resin laminate in a molten state from a T die, cooled using first to third cooling rolls, and the extruded resin plate obtained after cooling It was taken up by a pair of take-up rolls.
  • an extruded resin plate having a three-layer structure having a laminated structure of a methacrylic resin-containing layer (surface layer 1) -polycarbonate-containing layer (inner layer) -methacrylic resin-containing layer (surface layer 2) was obtained.
  • the composition of the two methacrylic resin-containing layers was the same.
  • the thickness of each of the two methacrylic resin-containing layers was 0.075 mm
  • the thickness of the polycarbonate-containing layer was 1.850 mm
  • the total thickness (t) of the extruded resin plate was 2 mm.
  • Tables 1-1 and 1-2 show the main production conditions in each example and the evaluation results of the obtained extruded resin plates.
  • An extruded resin plate having a three-layer structure having a laminated structure of () -polycarbonate-containing layer (inner layer) -methacrylic resin-containing layer (surface layer 2) was obtained.
  • the evaluation results of the extruded resin plate obtained in each example are shown in Table 2-2.
  • the total temperature (TX) of the thermoplastic resin laminate when sandwiched between the second cooling roll and the third cooling roll was determined as the glass of the polycarbonate-containing layer.
  • the glass transition temperature (Tg (PC)) of the polycarbonate-containing layer is set to + 15 ° C. or higher with respect to the transition temperature (Tg (PC)), and the total temperature (TT) of the thermoplastic resin laminate at the position where the last cooling roll is peeled off.
  • the present invention is not limited to the above-described embodiments and examples, and can be appropriately modified without departing from the gist of the present invention.
  • T die 12 1st cooling roll (first cooling roll) 13 Second cooling roll (second cooling roll) 14 Third cooling roll (third cooling roll) 15 Take-off roll 16, 16X, 16Y Extruded resin plate 21 Polycarbonate-containing layer 22, 22A, 22B Methacrylic resin-containing layer

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Mathematical Physics (AREA)
  • Laminated Bodies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

本発明は、加熱によるRe値の低下率が小さく、加熱による反りの発生が少ない押出樹脂板を提供する。ポリカーボネート含有層(ガラス転移温度:Tg(PC))の少なくとも片面にメタクリル樹脂含有層が積層された熱可塑性樹脂積層体を溶融状態でTダイから共押出し、複数の冷却ロールを用いて冷却する。第2番目の冷却ロールと第3番目の冷却ロールとの間に挟み込まれているときの熱可塑性樹脂積層体の全体温度:TX、最後の冷却ロールから剥離する位置における熱可塑性樹脂積層体の全体温度:TT、最後の冷却ロールから剥離する位置から下流側1m以内の熱可塑性樹脂積層体の全体温度:TM、引取りロールの周速度:V4、第2番目の冷却ロールの周速度:V2。TX(℃)≧Tg(PC)+15、Tg(PC)+5≦TT(℃)≦Tg(PC)+19、TT-TM(℃)≦20、0.98≦V4/V2<1.0。

Description

押出樹脂板とその製造方法、及び積層板
 本発明は、押出樹脂板とその製造方法、及び押出樹脂板を含む積層板に関する。
 液晶ディスプレイ等のフラットパネルディスプレイ、並びに、かかるフラットパネルディスプレイとタッチパネル(タッチスクリーンとも言う)とを組み合わせたタッチパネルディスプレイは、銀行等の金融機関のATM;自動販売機;携帯電話(スマートフォンを含む)、タブレット型パーソナルコンピュータ等の携帯情報端末(PDA)、デジタルオーディオプレーヤー、携帯ゲーム機、コピー機、ファックス、及びカーナビゲーションシステム等のデジタル情報機器等に使用されている。
 表面の擦傷等を防止するために、液晶ディスプレイ等のフラットパネルディスプレイ及びタッチパネル等の表面には透明な保護板が設置される。従来、保護板としては強化ガラスが主に使われてきたが、加工性及び軽量化の観点から、透明樹脂板の開発が行われている。保護板には、光沢、耐擦傷性、及び耐衝撃性等の機能が求められる。
 保護板の表面に(ハーフ)ミラー膜を形成することで、保護板を(ハーフ)ミラー板として使用することができる。本明細書において、「(ハーフ)ミラー」は、ミラー及びハーフミラーの総称である。
 例えば、車載用バックミラー等の用途では、液晶モニターと(ハーフ)ミラー板とを組み合わせた液晶モニター付きミラーが開発されている。従来、(ハーフ)ミラー板の基板としてガラス板が主に使われてきたが、加工性、軽量化、及び、偏光サングラス等の偏光フィルタを通して画面を見る際の視認性の観点から、透明樹脂基板の開発が行われている。この透明樹脂基板には、一般的な保護板に必要な上記機能に加え、反射像の歪みを抑制する観点から、ガラスに近い低反り性能が求められる。
 透明樹脂製の保護板として、耐衝撃性に優れるポリカーボネート層と光沢及び耐擦傷性に優れるメタクリル樹脂層とを含む樹脂板が検討されている。この樹脂板は、好ましくは共押出成形によって製造される。この場合、2種類の樹脂の特性の違いにより、得られる樹脂板に歪み応力が残る場合がある。樹脂板に残る歪み応力は「残留応力」と呼ばれ、この残留応力を有する樹脂板では熱変化等によって反り等が生じる恐れがある。
 樹脂板中の残留応力を減らし、反りの発生を抑制する方法として、特許文献1には、押出成形に用いられる冷却ロールの回転速度を調整する方法が開示されている(請求項1)。特許文献2には、ポリカーボネートと積層するメタクリル樹脂として、メタクリル酸メチル(MMA)等のメタクリル酸エステルとスチレン等の芳香族ビニル単量体とを共重合した後、芳香族二重結合を水素化して得られた樹脂を用いる方法が開示されている(請求項2)。
 また、上記課題を解決すべく、メタクリル樹脂の耐熱性及び耐湿性の向上が検討されている。例えば、特許文献3には、ポリカーボネートと積層するメタクリル樹脂として、MMA単位と、メタクリル酸(MA)単位、アクリル酸(AA)単位、マレイン酸無水物単位、N-置換又は無置換マイレミド単位、グルタル酸無水物構造単位、及びグルタルイミド構造単位から選ばれる単位とを有し、ガラス転移温度(Tg)が110℃以上である樹脂を用いる方法が開示されている(請求項1)。
 その他、特許文献4には、2枚の樹脂シートを少なくとも1層の絵柄層を挟んで積層した化粧シートにおいて、2枚の樹脂シート間の線膨張率(線膨張係数とも言う)の差を小さくする方法が開示されている(請求項1)。
 保護板の少なくとも一方の面には、耐擦傷性(ハードコート性)及び/又は視認性向上のための低反射性を有する硬化被膜を形成することができる(特許文献5の請求項1、2、及び特許文献6の請求項1等)。
 液晶ディスプレイ用の保護板は、液晶ディスプレイの前面側(視認者側)に設置され、視認者はこの保護板を通して液晶ディスプレイの画面を見る。ここで、保護板は液晶ディスプレイからの出射光の偏光性をほとんど変化させないため、偏光サングラス等の偏光フィルタを通して画面を見ると、出射光の偏光軸と偏光フィルタの透過軸とがなす角度によっては、画面が暗くなり、画像の視認性が低下する場合がある。そこで、偏光フィルタを通して液晶ディスプレイの画面を見る場合の画像の視認性の低下を抑制しうる液晶ディスプレイ用の保護板が検討されている。例えば、特許文献7には、樹脂基板の少なくとも一方の面に硬化被膜が形成された耐擦傷性樹脂板からなり、面内のレターデーション値(Re)が85~300nmである液晶ディスプレイ保護板が開示されている(請求項1)。
 一般的に、押出樹脂板では成形時に応力が発生し、それにより分子が配向してレターデーションが発生する場合がある(特許文献8の段落0034を参照)。また、複数の樹脂層を含む押出樹脂板では、各樹脂層の残留応力の程度が異なる場合がある。また、押出樹脂板の成形では、最後の冷却ロールから離れるときに、押出樹脂板の表面にすじ状の欠点(いわゆるチャタマーク)が生じ、表面性が低下することがある。押出成形に用いられる冷却ロール及び引取りロールの回転速度等の製造条件を調整することによって、成形時に発生する応力及びチャタマークを減らすことができる。
 例えば、押出樹脂板の成形時に発生する応力を低減し、Re値の低下を抑制するべく、特許文献8、9には、ポリカーボネート層の少なくとも片面にメタクリル樹脂層が積層された押出樹脂板を共押出成形する際に、複数の冷却ロールと引取りロールの周速度の関係、及び最後の冷却ロールから剥離する時点における樹脂全体の温度等の製造条件を好適化した押出樹脂板の製造方法が開示されている(特許文献8の請求項1、特許文献9の請求項3、4等)。
 また、押出樹脂板の成形時に発生する応力を低減し、Re値の低下を抑制するべく、特許文献10には、ポリカーボネート層の少なくとも片面にメタクリル樹脂層が積層された押出樹脂板を共押出成形する際に、複数の冷却ロールと引取りロールの周速度の関係、及び最後の冷却ロールから剥離する時点における樹脂全体の温度等の製造条件を好適化した押出樹脂板の製造方法が開示されている(特許文献10の請求項1等)。
特開2007-185956号公報 国際公開第2011/145630号 特開2009-248416号公報 特開2007-118597号公報 特開2004-299199号公報 特開2006-103169号公報 特開2010-085978号公報 国際公開第2015/093037号 国際公開第2016/038868号 国際公開第2017/164276号
 透明樹脂板の表面に耐擦傷性(ハードコート性)及び/又は低反射性を有する硬化被膜を形成する工程においては、透明樹脂板が100℃以上の温度に加熱される場合がある。例えば、熱硬化性の被膜材料は硬化に加熱を要するし、光硬化性の被膜材料は光照射時に熱を受ける。被膜材料が溶剤を含む場合、溶剤乾燥のために加熱される場合がある。
 透明樹脂板の表面に(ハーフ)ミラー膜を形成する工程においても、コーティング材料を熱処理する際に透明樹脂板が100℃以上の温度に加熱される場合がある。
 また、カーナビゲーションシステム等の車載用表示装置、携帯電話(スマートフォンを含む)等に搭載される液晶ディスプレイ用の保護板は、夏季日照下等の高温環境下で使用される場合がある。
 このように製造工程又は使用環境下で樹脂板が高温に曝された場合、熱によりRe値が低下して、所望の範囲外となる恐れがある。Re値の熱変化は小さいことが好ましい。液晶モニター付きミラー等に使用される(ハーフ)ミラー板の基板として用いられる樹脂板では、反射像の歪みを抑制する観点から、高温に曝されても、反り量が小さいことが好ましい。
 本発明は上記事情に鑑みてなされたものであり、面内のレターデーション値(Re)が液晶ディスプレイ等のフラットパネルディスプレイ及びタッチパネル等の保護板等として好適な範囲内であり、加熱によるRe値の低下率が小さく、加熱による反りの発生が少なく、表面性が良好な押出樹脂板とその製造方法を提供することを目的とする。
 なお、本発明は、液晶ディスプレイ等のフラットパネルディスプレイ及びタッチパネル等の保護板として好適なものであるが、任意の用途に使用することができる。
 本発明は、以下の[1]~[13]の押出樹脂板とその製造方法、及び積層板を提供する。
[1] ポリカーボネートを含有する層の少なくとも片面にメタクリル樹脂を含有する層が積層された押出樹脂板の製造方法であって、
 前記ポリカーボネートを含有する層の少なくとも片面に前記メタクリル樹脂を含有する層が積層された熱可塑性樹脂積層体を溶融状態でTダイから共押出し、
 互いに隣接する3つ以上の冷却ロールを用い、前記溶融状態の熱可塑性樹脂積層体を、第n番目(但し、n≧1)の冷却ロールと第n+1番目の冷却ロールとの間に挟み込み、第n+1番目の冷却ロールに巻き掛ける操作をn=1から複数回繰り返すことにより冷却し、
 冷却後に得られた前記押出樹脂板を引取りロールによって引き取る工程(X)を含み、
 第2番目の前記冷却ロールと第3番目の前記冷却ロールとの間に挟み込まれているときの前記熱可塑性樹脂積層体の全体温度(TX)を、前記ポリカーボネートを含有する層のガラス転移温度に対し+15℃以上とし、
 最後の前記冷却ロールから剥離する位置における前記熱可塑性樹脂積層体の全体温度(TT)を、前記ポリカーボネートを含有する層のガラス転移温度に対し+5℃~+19℃の範囲とし、
 最後の前記冷却ロールから剥離する位置における前記熱可塑性樹脂積層体の全体温度(TT)と最後の前記冷却ロールから剥離する位置から下流側1m以内の前記熱可塑性樹脂積層体の全体温度(TM)との差(TT-TM)を20℃以下とし、
 前記引取りロールの周速度(V4)と第2番目の前記冷却ロールの周速度(V2)との周速度比(V4/V2)を0.98以上1.0未満とする、押出樹脂板の製造方法。
[2] 前記メタクリル樹脂を含有する層のガラス転移温度が115℃以上であり、
 前記ポリカーボネートを含有する層の線膨張率(S1)と前記メタクリル樹脂を含有する層の線膨張率(S2)との差(S2-S1)と、前記ポリカーボネートを含有する層の線膨張率(S1)との比((S2-S1)/S1)が-10%~+10%である、[1]の押出樹脂板の製造方法。
[3] 前記メタクリル樹脂を含有する層が、メタクリル樹脂5~80質量%と、芳香族ビニル化合物に由来する構造単位及び無水マレイン酸に由来する構造単位を含む共重合体95~20質量%とを含有する、[1]又は[2]の押出樹脂板の製造方法。 
[4] 前記共重合体が、前記芳香族ビニル化合物に由来する構造単位50~84質量%、無水マレイン酸に由来する構造単位15~49質量%、及びメタクリル酸エステルに由来する構造単位1~35質量%を含有する、[3]の押出樹脂板の製造方法。
[5] 工程(X)後にさらに、前記押出樹脂板を75~125℃の温度で1~30時間加熱する工程(Y)を含み、
 加熱前後の双方において、前記押出樹脂板は、押出成形時の幅方向200mm、押出成形時の流れ方向100mmの長方形状の試験片について測定される反り量が0~±0.2mmである、[1]~[4]のいずれかの押出樹脂板の製造方法。
[6] 工程(X)後にさらに、前記押出樹脂板を75~125℃の温度で1~30時間加熱する工程(Y)を含み、
 加熱前後の双方において、前記押出樹脂板は、少なくとも幅方向の一部の面内のレターデーション値が50~330nmであり、加熱前に対する加熱後の前記押出樹脂板の前記レターデーション値の低下率が30%未満である、[1]~[5]のいずれかの押出樹脂板の製造方法。
[7] ポリカーボネートを含有する層の少なくとも片面にメタクリル樹脂を含有する層が積層された押出樹脂板であって、
 前記メタクリル樹脂を含有する層のガラス転移温度が115℃以上であり、
 75~125℃の範囲内の一定温度で5時間加熱したときに、加熱前後の双方において、押出成形時の幅方向200mm、押出成形時の流れ方向100mmの長方形状の試験片について測定される反り量が0~±0.2mmであり、
 少なくとも幅方向の一部の面内のレターデーション値が50~330nmであり、
 加熱前に対する加熱後の前記レターデーション値の低下率が30%未満であり、
 前記ポリカーボネートを含有する層の線膨張率(S1)と前記メタクリル樹脂を含有する層の線膨張率(S2)との差(S2-S1)と、前記ポリカーボネートを含有する層の線膨張率(S1)との比((S2-S1)/S1)が-10%~+10%である、押出樹脂板。
[8] 前記押出樹脂板を75℃又は125℃の温度で5時間加熱したときに、加熱前後の双方において、押出成形時の幅方向200mm、押出成形時の流れ方向100mmの長方形状の試験片について測定される反り量が0~±0.2mmであり、
 少なくとも幅方向の一部の面内のレターデーション値が50~330nmであり、
 加熱前に対する加熱後の前記レターデーション値の低下率が30%未満である、[7]の押出樹脂板。
[9] 加熱前後の双方において、押出成形時の幅方向200mm、押出成形時の流れ方向100mmの長方形状の試験片について測定される反り量が0~±0.15mmである、[7]又は[8]の押出樹脂板。
[10] 加熱前後の双方において、少なくとも幅方向の一部の面内のレターデーション値が80~250nmである、[7]~[9]のいずれかの押出樹脂板。
[11] 加熱前に対する加熱後の前記レターデーション値の低下率が15%未満である、[7]~[10]のいずれかの押出樹脂板。
[12] [7]~[11]のいずれかの押出樹脂板と、当該押出樹脂板の少なくとも一方の表面に形成された耐擦傷性層とを備える、積層板。
[13] [7]~[11]のいずれかの押出樹脂板と、当該押出樹脂板の少なくとも一方の表面に形成されたミラー膜又はハーフミラー膜とを備える、積層板。
 本発明によれば、面内のレターデーション値(Re)が液晶ディスプレイ等のフラットパネルディスプレイ及びタッチパネル等の保護板等として好適な範囲内であり、加熱によるRe値の低下率が小さく、加熱による反りの発生が少なく、表面性が良好な押出樹脂板とその製造方法を提供することができる。
本発明に係る第1実施形態の押出樹脂板の模式断面図である。 本発明に係る第2実施形態の押出樹脂板の模式断面図である。 本発明に係る一実施形態の押出樹脂板の製造装置の模式図である。
[押出樹脂板]
 本発明は、液晶ディスプレイ等のフラットパネルディスプレイ及びタッチパネル等の保護板、並びに、液晶モニター付きミラー等に含まれる保護板兼(ハーフ)ミラー板等として好適な押出樹脂板に関する。
 本発明の押出樹脂板は、ポリカーボネート(PC)を含有する層(以下、単にポリカーボネート含有層とも言う)の少なくとも片面にメタクリル樹脂(PM)を含有する層(以下、単にメタクリル樹脂含有層とも言う)が積層されたものである。
 ポリカーボネート(PC)は耐衝撃性に優れ、メタクリル樹脂(PM)は光沢、透明性、及び耐擦傷性に優れる。したがって、これら樹脂を積層した本発明の押出樹脂板は、光沢、透明性、耐衝撃性、及び耐擦傷性に優れる。また、本発明の押出樹脂板は押出成形法で製造されるものであるため、生産性に優れる。
(メタクリル樹脂含有層)
 メタクリル樹脂含有層は、1種以上のメタクリル樹脂(PM)を含む。メタクリル樹脂(PM)は、好ましくはメタクリル酸メチル(MMA)を含む1種以上のメタクリル酸炭化水素エステル(以下、単にメタクリル酸エステルとも言う)に由来する構造単位を含む単独重合体又は共重合体である。
 メタクリル酸エステル中の炭化水素基は、メチル基、エチル基、及びプロピル基等の非環状脂肪族炭化水素基であっても、脂環式炭化水素基であっても、フェニル基等の芳香族炭化水素基であってもよい。
 透明性の観点から、メタクリル樹脂(PM)中のメタクリル酸エステル単量体単位の含有量は、好ましくは50質量%以上、より好ましくは80質量%以上、特に好ましくは90質量%以上であり、100質量%であってもよい。
 メタクリル樹脂(PM)は、メタクリル酸エステル以外の1種以上の他の単量体に由来する構造単位を含んでいてもよい。他の単量体としては、アクリル酸メチル(MA)、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸tert-ブチル、アクリル酸ヘキシル、アクリル酸2-エチルヘキシル、アクリル酸ノニル、アクリル酸デシル、アクリル酸ドデシル、アクリル酸ステアリル、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、アクリル酸4-ヒドロキシブチル、アクリル酸シクロヘキシル、アクリル酸2-メトキシエチル、アクリル酸3-メトキシブチル、アクリル酸トリフルオロメチル、アクリル酸トリフルオロエチル、アクリル酸ペンタフルオロエチル、アクリル酸グリシジル、アクリル酸アリル、アクリル酸フェニル、アクリル酸トルイル、アクリル酸ベンジル、アクリル酸イソボルニル、及びアクリル酸3-ジメチルアミノエチル等のアクリル酸エステルが挙げられる。中でも、入手性の観点から、MA、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、及びアクリル酸tert-ブチル等が好ましく、MA及びアクリル酸エチル等がより好ましく、MAが特に好ましい。メタクリル樹脂(PM)における他の単量体に由来する構造単位の含有量は、好ましくは10質量%以下、より好ましくは5質量%以下、特に好ましくは2質量%以下である。
 メタクリル樹脂(PM)は、好ましくはMMAを含む1種以上のメタクリル酸エステル、及び必要に応じて他の単量体を重合することで得られる。複数種の単量体を用いる場合は、通常、複数種の単量体を混合して単量体混合物を調製した後、重合を行う。重合方法としては特に制限されず、生産性の観点から、塊状重合法、懸濁重合法、溶液重合法、及び乳化重合法等のラジカル重合法が好ましい。
 メタクリル樹脂(PM)の重量平均分子量(Mw)は、好ましくは40,000~500,000である。Mwが40,000以上であることでメタクリル樹脂含有層は耐擦傷性及び耐熱性に優れるものとなり、Mwが500,000以下であることでメタクリル樹脂含有層は成形性に優れるものとなる。
 本明細書において、特に明記しない限り、「Mw」はゲルパーエミーションクロマトグラフィー(GPC)を用いて測定される標準ポリスチレン換算値である。
 本明細書において、メタクリル樹脂含有層のガラス転移温度をTg(M)と表す。Tg(M)は特に制限されず、表面性が良好で、残留応力に起因する反りが小さい押出樹脂板を得やすいことから、Tg(M)の下限は、好ましくは115℃、より好ましくは120℃、特に好ましくは125℃、最も好ましくは130℃であり、Tg(M)の上限は、好ましくは160℃、より好ましくは155℃、特に好ましくは150℃である。
<メタクリル樹脂組成物(MR)>
 メタクリル樹脂含有層は、メタクリル樹脂(PM)、及び必要に応じて1種以上の他の重合体を含むことができる。
 例えば、メタクリル樹脂含有層は、メタクリル樹脂(PM)とSMA樹脂(S)とを含むメタクリル樹脂組成物(MR)(以下、単に樹脂組成物(MR)とも言う)からなることができる。
 本明細書において、「SMA樹脂」とは、1種以上の芳香族ビニル化合物に由来する構造単位、及び無水マレイン酸(MAH)を含む1種以上の酸無水物に由来する構造単位を含み、さらに好ましくはメタクリル酸エステルに由来する構造単位を含む共重合体である。
 メタクリル樹脂組成物(MR)は好ましくは、メタクリル樹脂(PM)5~80質量%と、SMA樹脂(S)95~20質量%とを含むことができる。
 Tg(M)を115℃以上とする等の観点から、樹脂組成物(MR)中のメタクリル樹脂(PM)の含有量は、好ましくは5~80質量%、より好ましくは5~55質量%、特に好ましくは10~50質量%である。
 SMA樹脂(S)は、1種以上の芳香族ビニル化合物及びMAHを含む1種以上の酸無水物に由来する構造単位を含む共重合体である。
 芳香族ビニル化合物としては、スチレン(St);2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、4-エチルスチレン、及び4-tert-ブチルスチレン等の核アルキル置換スチレン;α-メチルスチレン及び4-メチル-α-メチルスチレン等のα-アルキル置換スチレン;が挙げられる。中でも、入手性の観点からスチレン(St)が好ましい。樹脂組成物(MR)の透明性及び耐湿性の観点から、SMA樹脂(S)中の芳香族ビニル化合物単量体単位の含有量は、好ましくは50~84質量%、より好ましくは55~82質量%、特に好ましくは60~80質量%である。
 酸無水物としては入手性の観点から少なくとも無水マレイン酸(MAH)を用い、必要に応じて、無水シトラコン酸及びジメチル無水マレイン酸等の他の酸無水物を用いることができる。樹脂組成物(MR)の透明性及び耐熱性の観点から、SMA樹脂(S)中の酸無水物単量体単位の含有量は、好ましくは15~49質量%、より好ましくは18~45質量%、特に好ましくは20~40質量%である。
 SMA樹脂(S)は、芳香族ビニル化合物及び酸無水物に加え、1種以上のメタクリル酸エステル単量体に由来する構造単位を含むことができる。メタクリル酸エステルとしては、MMA、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸シクロへキシル、メタクリル酸フェニル、メタクリル酸ベンジル、及びメタクリル酸1-フェニルエチル等が挙げられる。中でも、アルキル基の炭素数が1~7であるメタクリル酸アルキルエステルが好ましい。SMA樹脂(S)の耐熱性及び透明性の観点から、MMAが特に好ましい。押出樹脂板の曲げ加工性及び透明性の観点から、SMA樹脂(S)中のメタクリル酸エステル単量体単位の含有量は、好ましくは1~35質量%、より好ましくは3~30質量%、特に好ましくは5~26質量%である。この場合において、芳香族ビニル化合物単量体単位の含有量は好ましくは50~84質量%、酸無水物単量体単位の含有量は好ましくは15~49質量%である。
 SMA樹脂(S)は、芳香族ビニル化合物に由来する構造単位50~84質量%、無水マレイン酸に由来する構造単位15~49質量%、及びメタクリル酸エステルに由来する構造単位1~35質量%を含有することが好ましい。
 SMA樹脂(S)は、芳香族ビニル化合物、酸無水物、及びメタクリル酸エステル以外の他の単量体に由来する構造単位を有していてもよい。他の単量体としては、メタクリル樹脂(PM)の説明において上述したものを用いることができる。SMA樹脂(S)中の他の単量体単位の含有量は、好ましくは10質量%以下、より好ましくは5質量%以下、特に好ましくは2質量%以下である。
 SMA樹脂(S)は、芳香族ビニル化合物、酸無水物、必要に応じてメタクリル酸エステル、及び必要に応じて他の単量体を重合することで得られる。この重合においては、通常、複数種の単量体を混合して単量体混合物を調製した後、重合を行う。重合方法は特に制限されず、生産性の観点から、塊状重合法及び溶液重合法等のラジカル重合法が好ましい。
 SMA樹脂(S)のMwは、好ましくは40,000~300,000である。Mwが40,000以上であることでメタクリル樹脂含有層は耐擦傷性及び耐衝撃性に優れるものとなり、Mwが300,000以下であることでメタクリル樹脂含有層は成形性に優れるものとなる。
 Tg(M)を115℃以上とする等の観点から、樹脂組成物(MR)中のSMA樹脂(S)の含有量は、好ましくは20~95質量%、より好ましくは45~95質量%、特に好ましくは50~90質量%である。
 樹脂組成物(MR)は例えば、メタクリル樹脂(PM)とSMA樹脂(S)とを混合して得られる。混合法としては、溶融混合法及び溶液混合法等が挙げられる。溶融混合法では、単軸又は多軸の混練機、オープンロール、バンバリーミキサー、及びニーダー等の溶融混練機等を用い、必要に応じて、窒素ガス、アルゴンガス、及びヘリウムガス等の不活性ガス雰囲気下で溶融混練を行うことができる。溶液混合法では、メタクリル樹脂(PM)とSMA樹脂(S)とを、トルエン、テトラヒドロフラン、及びメチルエチルケトン等の有機溶媒に溶解させて混合することができる。
 一実施形態において、メタクリル樹脂含有層は、メタクリル樹脂(PM)、及び必要に応じて1種以上の他の重合体を含むことができる。
 他の実施形態において、メタクリル樹脂含有層はメタクリル樹脂組成物(MR)からなり、メタクリル樹脂組成物(MR)は、メタクリル樹脂(PM)、SMA樹脂(S)、及び必要に応じて1種以上の他の重合体を含むことができる。
 他の重合体としては特に制限されず、ポリエチレン及びポリプロピレン等のポリオレフィン、ポリアミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリイミド、ポリエーテルイミド、及びポリアセタール等の他の熱可塑性樹脂;フェノール樹脂、メラミン樹脂、シリコーン樹脂、及びエポキシ樹脂等の熱硬化性樹脂等が挙げられる。メタクリル樹脂含有層中の他の重合体の含有量は、好ましくは10質量%以下、より好ましくは5質量%以下、特に好ましくは2質量%以下である。
 メタクリル樹脂含有層は必要に応じて、各種添加剤を含むことができる。添加剤としては、酸化防止剤、熱劣化防止剤、紫外線吸収剤、光安定剤、滑剤、離型剤、高分子加工助剤、帯電防止剤、難燃剤、染料・顔料、光拡散剤、艶消し剤、コアシェル粒子及びブロック共重合体等の耐衝撃性改質剤、及び蛍光体等が挙げられる。添加剤の含有量は、本発明の効果を損なわない範囲で適宜設定できる。メタクリル樹脂含有層を構成する樹脂100質量部に対して、例えば、酸化防止剤の含有量は0.01~1質量部、紫外線吸収剤の含有量は0.01~3質量部、光安定剤の含有量は0.01~3質量部、滑剤の含有量は0.01~3質量部、染料・顔料の含有量は0.01~3質量部が好ましい。
 メタクリル樹脂(PM)に他の重合体及び/又は添加剤を含有させる場合、添加タイミングはメタクリル樹脂(PM)の重合時でも重合後でもよい。
 メタクリル樹脂組成物(MR)に他の重合体及び/又は添加剤を含有させる場合、添加タイミングは、メタクリル樹脂(PM)及び/又はSMA樹脂(S)の重合時でもよいし、これら樹脂の混合時又は混合後でもよい。
 加熱溶融成形の安定性の観点から、メタクリル樹脂含有層の構成樹脂のメルトフローレイト(MFR)は、好ましくは1~10g/10分、より好ましくは1.5~7g/10分、特に好ましくは2~4g/10分である。本明細書において、特に明記しない限り、メタクリル樹脂含有層の構成樹脂のMFRは、メルトインデクサーを用いて、温度230℃、3.8kg荷重下で測定される値である。
(ポリカーボネート含有層)
 ポリカーボネート含有層は、1種以上のポリカーボネート(PC)を含む。ポリカーボネート(PC)は、好ましくは1種以上の二価フェノールと1種以上のカーボネート前駆体とを共重合して得られる。製造方法としては、二価フェノールの水溶液とカーボネート前駆体の有機溶媒溶液とを界面で反応させる界面重合法、及び、二価フェノールとカーボネート前駆体とを高温、減圧、無溶媒条件下で反応させるエステル交換法等が挙げられる。
 二価フェノールとしては、2,2-ビス(4-ヒドロキシフェニル)プロパン(通称ビスフェノールA)、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)サルファイド、及びビス(4-ヒドロキシフェニル)スルホン等が挙げられ、中でもビスフェノールAが好ましい。カーボネート前駆体としては、ホスゲン等のカルボニルハライド;ジフェニルカーボネート等のカーボネートエステル;二価フェノールのジハロホルメート等のハロホルメート;等が挙げられる。
 ポリカーボネート(PC)のMwは、好ましくは10,000~100,000、より好ましくは20,000~70,000である。Mwが10,000以上であることでポリカーボネート含有層は耐衝撃性及び耐熱性に優れるものとなり、Mwが100,000以下であることでポリカーボネート含有層は成形性に優れるものとなる。
 ポリカーボネート(PC)は市販品を用いてもよい。住化スタイロンポリカーボネート株式会社製「カリバー(登録商標)」及び「SDポリカ(登録商標)」、三菱エンジニアリングプラスチック株式会社製「ユーピロン/ノバレックス(登録商標)」、出光興産株式会社製「タフロン(登録商標)」、及び帝人化成株式会社製「パンライト(登録商標)」等が挙げられる。
 ポリカーボネート含有層は必要に応じて、1種以上の他の重合体及び/又は各種添加剤を含むことができる。他の重合体及び各種添加剤としては、メタクリル樹脂含有層の説明において上述したものと同様のものを用いることができる。ポリカーボネート含有層中の他の重合体の含有量は、好ましくは15質量%以下、より好ましくは10質量%以下、特に好ましくは5質量%以下である。添加剤の含有量は本発明の効果を損なわない範囲で適宜設定できる。ポリカーボネート(PC)100質量部に対して、酸化防止剤の含有量は0.01~1質量部、紫外線吸収剤の含有量は0.01~3質量部、光安定剤の含有量は0.01~3質量部、滑剤の含有量は0.01~3質量部、染料・顔料の含有量は0.01~3質量部が好ましい。
 ポリカーボネート(PC)に他の重合体及び/又は添加剤を添加させる場合、添加タイミングは、ポリカーボネート(PC)の重合時時でも重合後でもよい。
 本明細書において、ポリカーボネート含有層のガラス転移温度をTg(PC)と表す。Tg(PC)は、好ましくは120~160℃、より好ましくは135~155℃、特に好ましくは140~150℃である。
 加熱溶融成形の安定性の観点から、ポリカーボネート含有層の構成樹脂のMFRは、好ましくは1~30g/10分、より好ましくは3~20g/10分、特に好ましくは5~10g/10分である。本明細書において、ポリカーボネート含有層の構成樹脂のMFRは、特に明記しない限り、メルトインデクサーを用いて、温度300℃、1.2kg荷重下の条件で測定される値である。
(線膨張率比(SR))
 本発明の押出樹脂板において、ポリカーボネート含有層の線膨張率(S1)とメタクリル樹脂含有層の線膨張率(S2)との差(S2-S1)と、ポリカーボネート含有層の線膨張率(S1)との比((S2-S1)/S1)を、線膨張率比(SR)と定義する。
 熱変化等による反りの低減の観点から、線膨張率比(SR)は-10%~+10%であり、好ましくは-10%~+5%、より好ましくは-5%~+2%である。線膨張率比(SR)は、-10%~-0.1%、-5%~-0.1%、+0.1%~+10%、+0.1%~+5%、又は+0.1%~+2%であることができる。線膨張率比(SR)がかかる範囲内であると、表面性が良好で残留応力に起因する反りが小さい押出樹脂板を得やすい。
(各層及び押出樹脂板の厚さ)
 本発明の押出樹脂板の全体の厚さ(t)は、液晶ディスプレイ等のフラットパネルディスプレイ及びタッチパネル等の保護板、並びに、液晶モニター付きミラー等に含まれる保護板兼(ハーフ)ミラー板等の用途では、好ましくは0.5~5.0mm、より好ましくは0.8~3.0mmである。薄すぎると剛性が不充分となる恐れがあり、厚すぎるとこれを含む各種電子機器の軽量化の妨げになる恐れがある。
 メタクリル樹脂含有層の厚さは特に制限されず、好ましくは40~200μm、より好ましくは50~150μm、特に好ましくは60~100μmである。薄すぎると耐擦傷性が劣り、厚すぎると衝撃性が劣る恐れがある。ポリカーボネート含有層の厚さは、好ましくは0.3~4.9mm、より好ましくは0.6~2.9mmである。
(積層構造)
 本発明の押出樹脂板は、ポリカーボネート含有層の少なくとも片面にメタクリル樹脂含有層が積層されていれば、他の樹脂層を有していてもよい。本発明の押出樹脂板に含まれる押出樹脂板の積層構造としては、ポリカーボネート含有層-メタクリル樹脂含有層の2層構造;メタクリル樹脂含有層-ポリカーボネート含有層-メタクリル樹脂含有層の3層構造;メタクリル樹脂含有層-ポリカーボネート含有層-他の樹脂層の3層構造;他の樹脂層-メタクリル樹脂含有層-ポリカーボネート含有層の3層構造;等が挙げられる。
 図1、図2は、本発明に係る第1、第2実施形態の押出樹脂板の模式断面図である。図中、符号16X、16Yは押出樹脂板、符号21はポリカーボネート含有層、符号22、22A、22Bはメタクリル樹脂含有層を示す。第1実施形態の押出樹脂板16Xは、ポリカーボネート含有層21-メタクリル樹脂含有層22の2層構造を有している。第2実施形態の押出樹脂板16Yは、第1のメタクリル樹脂含有層22A-ポリカーボネート含有層21-第2のメタクリル樹脂含有層22Bの3層構造を有している。なお、押出樹脂板の構成は、適宜設計変更が可能である。
[積層板]
 本発明の積層板は、上記の本発明の押出樹脂板の少なくとも一方の表面に任意の膜を形成した積層構造を有することができる。
 一実施形態において、本発明の積層板は、上記の本発明の押出樹脂板の少なくとも一方の表面に硬化被膜を有することができる。硬化被膜は耐擦傷性層又は視認性向上効果のための低反射性層として機能することができる。硬化被膜は公知方法にて形成することができる(「背景技術」の項で挙げた特許文献4、5等を参照されたい。)。
 耐擦傷性(ハードコート性)硬化被膜(耐擦傷性層)の厚さは、好ましくは2~30μm、より好ましくは5~20μmである。薄すぎると表面硬度が不充分となり、厚すぎると製造工程中の折り曲げにより割れが発生する恐れがある。
 低反射性硬化被膜(低反射性層)の厚さは、好ましくは80~200nm、より好ましくは100~150nmである。薄すぎても厚すぎても低反射性能が不充分となる恐れがある。
 他実施形態において、本発明の積層板は、上記の本発明の押出樹脂板の少なくとも一方の表面に(ハーフ)ミラー膜を有することができる。かかる構成の積層板は(ハーフ)ミラー板として使用できる。液晶モニター等の各種電子機器に(ハーフ)ミラー板を組み合わせることで、ミラー付き電子機器を提供することができる。
 (ハーフ)ミラー膜は、特開平9-96702号公報等に記載の公知方法にて形成することができる。(ハーフ)ミラー膜は、薄すぎると充分なミラー機能が発現できない恐れがあり、厚すぎると製造が難しくなる。ミラー機能と製造性を考慮して、(ハーフ)ミラー膜の厚さを設計することができる。
[押出樹脂板の製造方法]
 以下、上記構成の本発明の押出樹脂板の製造方法について、説明する。本発明の押出樹脂板は、共押出成形を含む製造方法により製造される。
(工程(X))
 ポリカーボネート含有層及びメタクリル樹脂含有層の構成樹脂はそれぞれ加熱溶融され、ポリカーボネート含有層の少なくとも片面にメタクリル樹脂含有層が積層された熱可塑性樹脂積層体の状態で、幅広の吐出口を有するTダイから溶融状態で共押出される。
 ポリカーボネート含有層用及びメタクリル樹脂含有層用の溶融樹脂は、積層前にフィルタにより溶融濾過することが好ましい。溶融濾過した各溶融樹脂を用いて多層成形することにより、異物及びゲルに起因する欠点の少ない押出樹脂板が得られる。フィルタの濾材は、使用温度、粘度、及び濾過精度等により適宜選択される。例えば、ポリプロピレン、ポリエステル、レーヨン、コットン、及びグラスファイバー等からなる不織布;フェノール樹脂含浸セルロース製のシート状物;金属繊維不織布焼結シート状物;金属粉末焼結シート状物;金網;及びこれらの組合せ等が挙げられる。中でも耐熱性及び耐久性の観点から、金属繊維不織布焼結シート状物を複数枚積層したフィルタが好ましい。フィルタの濾過精度は特に制限されず、好ましくは30μm以下、より好ましくは15μm以下、特に好ましくは5μm以下である。
 積層方式としては、Tダイ流入前に積層するフィードブロック方式、及びTダイ内部で積層するマルチマニホールド方式等が挙げられる。押出樹脂板の層間の界面平滑性を高める観点から、マルチマニホールド方式が好ましい。
 Tダイから共押出された溶融状態の熱可塑性樹脂積層体は、複数の冷却ロールを用いて冷却される。本発明では、互いに隣接する3つ以上の冷却ロールを用い、溶融状態の熱可塑性樹脂積層体を、第n番目(但し、n≧1)の冷却ロールと第n+1番目の冷却ロールとの間に挟み込み、第n+1番目の冷却ロールに巻き掛ける操作をn=1から複数回繰り返すことにより冷却する。例えば、3つの冷却ロールを用いる場合、繰り返し回数は2回である。
 冷却ロールとしては、金属ロール、及び外周部に金属製外筒を備えた弾性ロール(以下、金属弾性ロールとも言う)等が挙げられる。金属ロールとしては、ドリルドロール及びスパイラルロール等が挙げられ、その表面は鏡面であってもよいし模様又は凹凸等を有していてもよい。金属弾性ロールは例えば、ステンレス鋼等からなる軸ロールと、この軸ロールの外周面を覆うステンレス鋼等からなる金属製外筒と、これら軸ロール及び金属製外筒の間に封入された流体とからなり、流体の存在により弾性を示すことができる。金属製外筒の厚みは好ましくは2~5mm程度である。金属製外筒は、屈曲性及び可撓性等を有することが好ましく、溶接継ぎ部のないシームレス構造であるのが好ましい。このような金属製外筒を備えた金属弾性ロールは、耐久性に優れると共に、金属製外筒を鏡面化すれば通常の鏡面ロールと同様の取り扱いができ、金属製外筒に模様及び凹凸等を付与すればその形状を転写できるロールになるので、使い勝手がよい。
 冷却後に得られた押出樹脂板は、引取りロールによって引き取られる。以上の共押出、冷却、及び引取りの工程は、連続的に実施される。なお、本明細書では、主に加熱溶融状態のものを「熱可塑性樹脂積層体」と表現し、固化したものを「押出樹脂板」と表現しているが、両者の間に明確な境界はない。
 図3に、一実施形態として、Tダイ11、第1~第3冷却ロール12~14、及び一対の引取りロール15を含む製造装置の模式図を示す。Tダイ11から共押出された熱可塑性樹脂積層体は第1~第3冷却ロール12~14を用いて冷却され、一対の引取りロール15により引き取られる。図示例では、第3冷却ロール14が「最後に熱可塑性樹脂積層体が巻き掛けられる冷却ロール(以下、単に最後の冷却ロールとも言う)」である。
 第3冷却ロール14の後段に隣接して第4以降の冷却ロールを設置してもよい。この場合は、熱可塑性樹脂積層体が最後に巻き掛けられる冷却ロールが「最後の冷却ロール」となる。なお、互いに隣接した複数の冷却ロールと引取りロールとの間には必要に応じて搬送用ロールを設置することができるが、搬送用ロールは「冷却ロール」には含めない。
 なお、製造装置の構成は、本発明の趣旨を逸脱しない範囲において、適宜設計変更が可能である。
 本発明の製造方法では、第2冷却ロールと第3冷却ロールとの間に挟み込まれているときの熱可塑性樹脂積層体の全体温度(TX)を、ポリカーボネート含有層のガラス転移温度(Tg(PC))に対し+15℃以上とする。熱可塑性樹脂積層体の全体温度(TX)がTg(PC)に対して過低である場合、熱可塑性樹脂積層体に第2冷却ロールの形状が転写され、反りが大きくなる恐れがある。TXがTg(PC)以上であっても、Tg(PC)+15℃未満である場合には、第3冷却ロールによって冷却された後、最後の冷却ロール(図3では第3冷却ロール)から剥離する位置における熱可塑性樹脂積層体の全体温度(TT)の温度がTg(PC)より低くなり、前記同様に反りが大きくなる恐れがある。
 なお、温度(TX)は後記[実施例]の項に記載の方法にて測定するものとする。
 本発明の製造方法では、最後の冷却ロール(図3では第3冷却ロール)から剥離する位置における熱可塑性樹脂積層体の全体温度(TT)をポリカーボネート含有層のガラス転移温度(Tg(PC))に対して+5℃~+19℃の範囲とする。温度(TT)は、(Tg(PC))に対して、好ましくは+7℃~+17℃、より好ましくは+9℃~+15℃、特に好ましくは+10℃~+15℃である。
Tg(PC)に対して温度TTが過低では、押出樹脂板に最後の冷却ロール(図3では第3冷却ロール)の形状が転写され、反りが大きくなる恐れがある。一方、最後の冷却ロール(図3では第3冷却ロール)と接する樹脂層のガラス転移温度(Tg)に対して温度TTが過高では、押出樹脂板の表面性が低下する恐れがある。なお、温度(TT)は後記[実施例]の項に記載の方法にて測定するものとする。
 本発明の製造方法では、最後の冷却ロール(図3では第3冷却ロール)から剥離する位置における熱可塑性樹脂積層体の全体温度(TT)と最後の冷却ロール(図3では第3冷却ロール)から剥離する位置から下流側1m以内の熱可塑性樹脂積層体の全体温度(TM)との差(TT-TM)を20℃以下とする。
 TT-TMが大きく、最後の冷却ロールから剥離した後に押出樹脂板が急冷される場合、押出樹脂板の内部に歪が生じ、反りが生じる恐れがある。例えば、押出成形における下面側が急冷され、上面側より下面側が先にポリカーボネート含有層のガラス転移温度より低下する場合、上面側の樹脂は温度が徐々に低下し徐々に収縮することで、下に凸の反りが生じる恐れがある。TT-TMが20℃以下であれば、最後の冷却ロール(図3では第3冷却ロール)から剥離した後の押出樹脂板の急冷が抑制され、反りの発生を抑制することができる。なお、温度(TM)は後記[実施例]の項に記載の方法にて測定するものとする。
 本発明では、反りの小さい押出樹脂板を得るために、線膨張率比(SR)を-10%~+10%とし、メタクリル樹脂含有層のガラス転移温度(Tg(M))を115℃以上とすることが好ましい。
 「レターデーション」とは、分子主鎖方向の光とそれに垂直な方向の光との位相差である。一般的に高分子は加熱溶融成形されることで任意の形状を得ることができるが、加熱及び冷却の過程において発生する応力によって分子が配向してレターデーションが発生することが知られている。したがって、レターデーションを制御するためには分子の配向を制御する必要がある。分子の配向は例えば、高分子のガラス転移温度(Tg)近傍での成形時の応力により発生する。なお、本明細書において、「レターデーション」は特に明記しない限り、面内のレターデーションを示すものとする。
 本発明者らは、押出成形の過程における製造条件を好適化することにより分子の配向を制御し、これによって、押出樹脂板の成形後のRe値を好適化でき、さらに、Re値の熱変化を抑制できることを見出した。
 なお、詳細については後記するが、加熱前後の双方において、押出樹脂板は、少なくとも幅方向の一部のRe値が50~330nmであり、加熱前に対する加熱後の押出樹脂板のRe値の低下率が30%未満であることが好ましい。
<周速度比とRe値との関係>
 本明細書において、特に明記しない限り、「周速度比」は、第2冷却ロールに対するそれ以外の任意の冷却ロール又は引取りロールの周速度の比である。第2冷却ロールの周速度はV2、第3冷却ロールの周速度はV3、引取ロールの周速度はV4と表す。
 本発明者らが第2冷却ロールに対する第3冷却ロールの周速度比(V3/V2)とRe値との関係について種々評価した結果、周速度比(V3/V2)を大きくしてもRe値は大きく増加しないことが分かった。その理由は、以下のように推定される。
 本発明の製造方法では、最後の冷却ロール(図3では第3冷却ロール)から剥離する位置における熱可塑性樹脂積層体の全体温度(TT)は、ポリカーボネート含有層のガラス転移温度(Tg(PC))に対して+5℃~+19℃の範囲に調整する。ここで、熱可塑性樹脂積層体の最後の冷却ロールによる冷却過程に着目する。熱可塑性樹脂積層体は最後の冷却ロールに接触しながら冷却されるため、最後の冷却ロールに最初に接触する位置における熱可塑性樹脂積層体の全体温度は、最後の冷却ロールから剥離する位置における熱可塑性樹脂積層体の全体温度(TT)よりも高い。したがって、最後の冷却ロールに最初に接触する時点の熱可塑性樹脂積層体の全体温度は、ポリカーボネート含有層のガラス転移温度(Tg(PC))に対して+5℃~+19℃の範囲よりも高く、例えばガラス転移温度(Tg(PC))に対して+20℃程度又はそれ以上となる。この条件で周速度比(V3/V2)を大きくして押出樹脂板に大きな引張応力をかけたとしても、樹脂の分子が配向し難い高温度領域であるため、Re値は大きく増加しないと推察される。
 本発明者らが第2冷却ロールに対する引取りロールの周速度比(V4/V2)とRe値との関係について種々評価した結果、周速度比(V4/V2)が大きいほどRe値が増すことが分かった。その理由は、以下のように推定される。
 温度(TT)をポリカーボネート含有層のガラス転移温度(Tg(PC))に対して+5~+19℃の範囲に調整する条件で、引取りロールの周速度比を大きくし、押出樹脂板に大きな引張応力をかける場合、樹脂の分子が配向しやすい温度領域であるため、Re値が増すと推察される。
<周速度比と加熱後のRe値の低下率との関係>
 温度(TT)がポリカーボネート含有層のガラス転移温度(Tg(PC))に対して+5~+19℃の範囲より低い条件の場合、加熱後のRe値の低下率が大きくなる傾向があることが分かった。
 これに対して、温度(TT)がポリカーボネート含有層のガラス転移温度(Tg(PC))に対して+5℃~+19℃の範囲の条件で、周速度比(V4/V2)を調整しRe値を適正ない範囲に調整した場合、加熱後のRe値の低下率は大きく変化しないことが分かった。
 その理由は、以下にように推定される。温度(TT)をポリカーボネート含有層のガラス転移温度(Tg(PC))に対して+5℃~+19℃の範囲に調整する場合、引取りロールの周速度比を大きくして押出樹脂板に大きな引張応力を掛けることにより分子が配向してRe値が大きくなるが、加熱温度がポリカーボネート含有層のガラス転移温度(Tg(PC))より低い温度であるため分子の配向が緩和し難く、Re値の低下率は大きく変化しないと推察される。
 温度(TT)をポリカーボネート含有層のガラス転移温度(Tg(PC))に対して+5℃~+19℃の範囲に制御し、周速度比(V4/V2)を好適な範囲内に調整することで、Re値及び加熱後のRe値の低下率を制御できることが分かった。
 具体的には、本発明の製造方法では、周速度比(V4/V2)を0.98以上1.0未満とする。周速度比(V4/V2)が1.0以上では、Re値が330nmを超える恐れがある。周速度比(V4/V2)が0.98未満ではReが50nm未満となる恐れがある。Re値の好適化の観点から、周速度比(V4/V2)は、より好ましくは0.985~0.995である。
<面内のレターデーション値(Re)と反り量>
 押出樹脂板のRe値は特に制限されない。液晶ディスプレイ等のフラットパネルディスプレイ及びタッチパネル等の保護板、並びに、液晶モニター付きミラー等に含まれる保護板兼(ハーフ)ミラー板等の用途では、Re値が330nm超では、偏光サングラス等の偏光フィルタを通して視認した場合に可視光範囲の各波長の透過率の差が大きくなり、さまざまな色が見えて視認性が低下する恐れがあり、Re値が50nm未満では、可視光範囲の全波長での透過率が低下し視認性が低下する恐れがある。視認性の観点から、Reは好ましくは50~330nmである。この範囲内では、値が大きいほど明るさが増し、値が小さくなるほど色が鮮明となる傾向がある。明るさと色のバランスの観点から、Re値はより好ましくは80~250nmである。なお、少なくとも幅方向の一部のReが好ましくは50~330nm、より好ましくは80~250nmであればよい。
 一般的な押出樹脂板では、製造工程又は使用環境下で高温に曝された場合、熱によりRe値が低下して、所望の範囲外となることがある。Re値の熱変化は小さいことが好ましい。
 液晶ディスプレイ等のフラットパネルディスプレイ及びタッチパネル等の保護板、並びに、液晶モニター付きミラー等に含まれる保護板兼(ハーフ)ミラー板等として用いたときに、表示画像又は反射像の歪み等が少なく、視認性に優れることから、押出樹脂板は反り量が小さいことが好ましい。具体的には、押出樹脂板は、押出成形時の幅方向200mm、押出成形時の流れ方向100mmの長方形状の試験片について測定される反り量が、好ましくは0~±0.2mm、より好ましくは0~±0.15mmである。
 一般的な押出樹脂板では、製造工程又は使用環境下で高温に曝された場合、熱により反りが大きくなり、所望の範囲外となることがある。反り量の熱変化は小さいことが好ましい。
 押出樹脂板のRe値の低下率及び反り量を評価するための加熱条件に関しては、75~125℃の範囲内の一定温度、1~30時間の範囲内の一定時間とすることができる。例えば、75℃で5時間又は125℃で5時間の条件で評価を実施することができる。例えば、試験片を125℃±3℃又は75℃±3℃に管理されたオーブン内で5時間加熱することで、評価を実施することができる。なお、上記加熱条件は、耐擦傷性層又は視認性向上効果のための低反射性層として機能することができる硬化被膜、及び(ハーフ)ミラー膜等を形成する過程における一般的な加熱の温度と時間を考慮している。したがって、上記条件の加熱を実施して評価したときに、Re値及び反り量を好適な範囲に維持できることが好ましい。
 具体的には、押出樹脂板を75~125℃の温度で1~30時間加熱したとき、加熱前後の双方において、押出樹脂板は、少なくとも幅方向の一部の面内のRe値が好ましくは50~330nm、より好ましくは80~250nmであり、加熱前に対する加熱後の押出樹脂板のRe値の低下率が好ましくは30%未満、より好ましくは20%未満、特に好ましくは15%未満である。
 また、押出樹脂板を75~125℃の温度で1~30時間加熱したとき、加熱前後の双方において、押出樹脂板は、押出成形時の幅方向200mm、押出成形時の流れ方向100mmの長方形状の試験片について測定される反り量が好ましくは0~±0.2mm、より好ましくは0~±0.15mmである。
 なお、Re値及び反り量は後記[実施例]の項に記載の方法にて測定するものとする。
(工程(Y))
 工程(X)後に、押出樹脂板を75~125℃の温度で1~30時間加熱する工程(Y)を実施してもよい。この場合、Re値、反り量、及びこれらの熱変化を効果的に制御し、液晶ディスプレイ等のフラットパネルディスプレイ及びタッチパネル等の保護板、並びに、液晶モニター付きミラー等に含まれる保護板兼(ハーフ)ミラー板等として好適な押出樹脂板をより安定的に得ることができる。
 工程(Y)前後の双方において、押出樹脂板は、少なくとも幅方向の一部のRe値が好ましくは50~330nmであり、より好ましくは80~250nmであり、工程(Y)前に対する工程(Y)後の押出樹脂板のRe値の低下率が好ましくは30%未満、より好ましくは15%未満である。また、工程(Y)前後の双方において、押出樹脂板は、押出成形時の幅方向200mm、押出成形時の流れ方向100mmの長方形状の試験片について測定される反り量が好ましくは0~±0.2mm、より好ましくは0~±0.15mmである。
 本発明の押出樹脂板は、液晶ディスプレイ等のフラットパネルディスプレイ及びタッチパネル等の保護板、並びに、液晶モニター付きミラー等に含まれる保護板兼(ハーフ)ミラー板等として好適である。
 本発明の押出樹脂板は、ポリカーボネート含有層の少なくとも片面にメタクリル樹脂含有層が積層されたものであるので、光沢、耐擦傷性、及び耐衝撃性に優れる。
 本発明によれば、面内のレターデーション値(Re)が液晶ディスプレイ等のフラットパネルディスプレイ及びタッチパネル等の保護板等として好適な範囲内であり、加熱によるRe値の低下率が小さく、加熱による反りの発生が少なく、表面性が良好な押出樹脂板とその製造方法を提供することができる。
 本発明の押出樹脂板は、加熱による反りの発生が少なく、Re値の熱変化が小さいため、耐擦傷性層又は視認性向上効果のための低反射性層として機能することができる硬化被膜及び(ハーフ)ミラー膜等を形成する工程等における加熱及び高温使用環境に耐えるものであり、生産性及び耐久性に優れる。
 本発明の押出樹脂板は、加熱による反りの発生が少なく、Re値の熱変化が小さいため、液晶ディスプレイ等のフラットパネルディスプレイ及びタッチパネル等の保護板、並びに、液晶モニター付きミラー等に含まれる保護板兼(ハーフ)ミラー板等として用いたときに、表示画像又は反射像の歪み等が少なく、視認性に優れる。
[用途]
 本発明の押出樹脂板は、銀行等の金融機関のATM、自動販売機、携帯電話(スマートフォンを含む)、タブレット型パーソナルコンピュータ等の携帯情報端末(PDA)、デジタルオーディオプレーヤー、携帯ゲーム機、コピー機、ファックス、カーナビゲーションシステム、ヒートコントロールパネル、各種車載操作モニター用パネル、及びE-コックピット等に使用される、液晶ディスプレイ等のフラットパネルディスプレイ及びタッチパネル等の保護板として好適である。
 本発明の押出樹脂板と(ハーフ)ミラー膜とを含む積層板は、液晶モニター付きルームミラー、液晶モニター付きバックミラー、及び液晶モニター付きサイドミラー等の各種液晶モニター付き車載用電子ミラー;3D液晶ディスプレイ、液晶ホログラム、一眼レフデジタルカメラ、スマートフォン、ゲーム機、及びヘッドマウントディスプレイ(HMD)等の各種電子機器と(ハーフ)ミラー板とを組み合わせたスマートミラー付き電子機器に使用される、保護板兼(ハーフ)ミラー板として好適である。
 本発明に係る実施例及び比較例について説明する。
[評価項目及び評価方法]
 評価項目及び評価方法は、以下の通りである。
(SMA樹脂の共重合組成)
 SMA樹脂の共重合組成は、核磁気共鳴装置(日本電子社製「GX-270」)を用い、下記の手順で13C-NMR法により求めた。
 SMA樹脂1.5gを重水素化クロロホルム1.5mlに溶解させて試料溶液を調製し、室温環境下、積算回数4000~5000回の条件にて13C-NMRスペクトルを測定し、以下の値を求めた。
・[スチレン単位中のベンゼン環(炭素数6)のカーボンピーク(127、134,143ppm付近)の積分強度]/6
・[無水マレイン酸単位中のカルボニル部位(炭素数2)のカーボンピーク(170ppm付近)の積分強度]/2
・[MMA単位中のカルボニル部位(炭素数1)のカーボンピーク(175ppm付近)の積分強度]/1
 以上の値の面積比から、試料中のスチレン単位、無水マレイン酸単位、MMA単位のモル比を求めた。得られたモル比とそれぞれの単量体単位の質量比(スチレン単位:無水マレイン酸単位:MMA単位=104:98:100)から、SMA樹脂中の各単量体単位の質量組成を求めた。
(重量平均分子量(Mw))
 樹脂のMwは、下記の手順でGPC法により求めた。溶離液としてテトラヒドロフラン、カラムとして東ソー株式会社製の「TSKgel SuperMultipore HZM-M」の2本と「SuperHZ4000」とを直列に繋いだものを用いた。GPC装置として、示差屈折率検出器(RI検出器)を備えた東ソー株式会社製のHLC-8320(品番)を使用した。樹脂4mgをテトラヒドロフラン5mlに溶解させて試料溶液を調製した。カラムオーブンの温度を40℃に設定し、溶離液流量0.35ml/分で、試料溶液20μlを注入して、クロマトグラムを測定した。分子量が400~5,000,000の範囲内にある標準ポリスチレン10点をGPCで測定し、保持時間と分子量との関係を示す検量線を作成した。この検量線に基づいてMwを決定した。
(各層のガラス転移温度(Tg))
 各層のガラス転移温度(Tg)は、構成樹脂(組成物)10mgをアルミパンに入れ、示差走査熱量計(「DSC-50」、株式会社リガク製)を用いて、測定を実施した。30分以上窒素置換を行った後、10ml/分の窒素気流中、一旦25℃から200℃まで20℃/分の速度で昇温し、10分間保持し、25℃まで冷却した(1次走査)。次いで、10℃/分の速度で200℃まで昇温し(2次走査)、2次走査で得られた結果から、中点法でガラス転移温度(Tg)を算出した。なお、2種以上の樹脂を含有する樹脂組成物において複数のTgデータが得られる場合は、主成分の樹脂に由来する値をTgデータとして採用した。
(各層の線膨張率と線膨張率比)
 線膨張率は、単位温度変化あたりの長さ変化率として定義される。各層の線膨張率は、熱機械分析装置(「TMA4000」、ブルカー・エイエックスエス株式会社製)を使用し、JIS K7197に準じて測定した。すなわち、各層について、同組成のプレス成形樹脂板を得、平滑な端面を形成すべくダイヤモンドソーを用いて、5mm×5mm、高さ10mmの四角柱状の試料を切り出した。得られた試料を石英板の上に5mm×5mmの面が石英板に接するように載置し、その上に、円筒状の棒を載置し、5gの圧縮荷重をかけ固定した。次いで、空気雰囲気下、昇温速度3℃/分で25℃(室温)から試料のガラス転移温度(Tg)のマイナス10℃まで昇温し、25℃(室温)まで冷却した(1次走査)。次いで、昇温速度3℃/分で25℃(室温)から試料のガラス転移温度(Tg)のプラス20℃まで昇温した(2次走査)。この2次走査時の各温度における線膨張率を測定し、30~80℃の範囲における平均線膨張率を求めた。各層の線膨張率から線膨張率比(SR)を求めた。
(押出樹脂板の反り量)
 押出樹脂板から、ランニングソーを用いて、押出成形時の幅方向200mm、押出成形時の流れ方向100mmの長方形状の試験片を切り出した。得られた試験片を、ガラス定盤上に、押出成形における上面が最上面となるよう載置し、温度23℃/相対湿度50%の環境下で24時間放置した。その後、隙間ゲージを用いて試験片と定盤との隙間の最大値を測定し、この値を初期の反り量とした。次いで、この試験片を125℃±3℃に管理されたオーブン内で5時間加熱した。その後、初期と同様に反り量の測定を行い、この値を加熱後の反り量とした。なお、定盤上に押出成形における上面が最上面となるよう載置した試験片において、上向きに凸の反りが生じた場合の反り量の符号を「プラス」、下向きに凸の反りが生じた場合の反り量の符号を「マイナス」と定義した。
(押出樹脂板の面内のレターデーション値(Re)とその低下率)
 押出樹脂板から、ランニングソーを用いて100mm四方の試験片を切り出した。この試験片を125℃±3℃に管理されたオーブン内で5時間加熱した。加熱前後についてそれぞれ、以下のようにRe値を測定した。試験片を23℃±3℃の環境下に10分以上放置した後、株式会社フォトニックラティス製「WPA-100(-L)」を用いて、Re値を測定した。測定箇所は、試験片の中央部とした。加熱前後のRe値の低下率を、以下の式から求めた。
[Re値の低下率(%)]
=100×([加熱前のRe値]-[加熱後のRe値])/[加熱前のRe値]
(押出樹脂板の表面性)
 蛍光灯が設置された室内にて押出樹脂板の両面を目視観察し、次の基準で表面性を評価した。
○(良):押出樹脂板の表面に冷却ロールからの剥離マーク(いわゆるチャタマーク)が見られない。
△(可):押出樹脂板の表面にチャタマークが見られるが、目立たない。
×(不可):押出樹脂板の表面にチャタマークが目立って見られる。
(熱可塑性樹脂積層体の全体温度(TT))
 最後の冷却ロール(具体的には第3冷却ロール)から剥離する位置における熱可塑性樹脂積層体の全体温度(TT)を、赤外線放射温度計を用いて測定した。測定位置は押出樹脂板の幅方向の中心部とした。
(熱可塑性樹脂積層体の全体温度(TX))
 第2冷却ロールと第3冷却ロールとの間に挟み込まれているときの熱可塑性樹脂積層体の全体温度(TX)は、一対のロールに阻まれて赤外線放射温度計を用いた直接の測定が困難である。そこで、第2冷却ロールから第3冷却ロールに渡る直前の熱可塑性樹脂積層体全体の温度と第3冷却ロールに渡った直後の熱可塑性樹脂積層体全体の温度とを、赤外線放射温度計を用いて測定した。測定箇所は押出樹脂板の幅方向の中心部とした。第3冷却ロールに渡る直前の温度と渡った直後の温度の平均値をTXとして求めた。
(熱可塑性樹脂積層体の全体温度(TM))
 最後の冷却ロール(具体的には第3冷却ロール)から剥離する位置から下流側1mの位置における熱可塑性樹脂積層体の全体温度(TM)を、赤外線放射温度計を用いて測定した。測定位置は押出樹脂板の幅方向の中心部とした。
[材料]
 用いた材料は、以下の通りである。
<メタクリル樹脂(PM)>
(PM1)ポリメタクリル酸メチル(PMMA)、株式会社クラレ製「パラペット(登録商標) HR」(温度230℃、3.8kg荷重下でのMFR=2.0cm/10分)。
<SMA樹脂>
(SMA1)国際公開第2010/013557号に記載の方法に準拠して、SMA樹脂(スチレン-無水マレイン酸-MMA共重合体、スチレン単位/無水マレイン酸単位/MMA単位(質量比)=56/18/26、Mw=150,000、Tg=138℃、線膨張率=6.25×10-5/K)を得た。
<樹脂組成物(MR)>
 メタクリル樹脂(PM1)とSMA樹脂(SMA1)とを混合して、以下の4種の樹脂組成物を得た。なお、SMA比率は、メタクリル樹脂(PM1)とSMA樹脂(S1)との合計量に対するSMA樹脂(S1)の仕込み比率(質量百分率)を示す。
(MR1)(PM1)/(S1)樹脂組成物(SMA比率20質量%、Tg=120℃、線膨張率=7.28×10-5/K)、
(MR2)(PM1)/(S1)樹脂組成物(SMA比率50質量%、Tg=127℃、線膨張率=6.38×10-5/K)、
(MR3)(PM1)/(S1)樹脂組成物(SMA比率70質量%、Tg=132℃、線膨張率=6.15×10-5/K)、
(MR4)(PM1)/(S1)樹脂組成物(SMA比率80質量%、Tg=135℃、線膨張率=6.48×10-5/K)。
<ポリカーボネート(PC)>
(PC1)住化スタイロンポリカーボネート株式会社製「SDポリカ(登録商標) PCX」(温度300℃、1.2kg荷重下でのMFR=6.7g/10分、Tg=150℃、線膨張率=6.93×10-5/K)。
[実施例1](押出樹脂板の製造)
 図3に示したような製造装置を用いて押出樹脂板を成形した。
 65mmφ単軸押出機(東芝機械株式会社製)を用いて溶融したメタクリル樹脂(PM1)と、150mmφ単軸押出機(東芝機械株式会社製)を用いて溶融したポリカーボネート(PC1)とを、マルチマニホールド型ダイスを介して積層し、Tダイから溶融状態の熱可塑性樹脂積層体を共押出した。
 次いで、溶融状態の熱可塑性樹脂積層体を、互いに隣接する第1冷却ロールと第2冷却ロールとの間に挟み込み、第2冷却ロールに巻き掛け、第2冷却ロールと第3冷却ロールとの間に挟み込み、第3冷却ロールに巻き掛けることにより冷却した。冷却後に得られた押出樹脂板を一対の引取りロールによって引き取った。なお、第3冷却ロールにポリカーボネート含有層が接するようにした。
 第2冷却ロールと第3冷却ロールとの間に挟み込まれているときの熱可塑性樹脂積層体の全体温度(TX)は、第2冷却ロール及び第3冷却ロールの温度を制御することで180℃に調整した。第3冷却ロールから熱可塑性樹脂積層体が剥離する位置における、熱可塑性樹脂積層体の全体温度(TT)は、第2冷却ロール及び第3冷却ロールの温度を制御することで162℃に調整した。第3冷却ロールから熱可塑性樹脂積層体が剥離する位置から1mに位置する熱可塑性樹脂積層体の全体温度(TM)は、下面に位置する搬送用のロールの冷却温度を制御することで148℃に調整した。
 引取りロールと第2冷却ロールとの周速度比(V4/V2)を0.99に、第3冷却ロールと第2冷却ロールとの周速度比(V3/V2)を1.00に調整した。
 以上のようにして、メタクリル樹脂含有層(表層1)-ポリカーボネート含有層(表層2)の積層構造を有する2層構造の押出樹脂板を得た。メタクリル樹脂含有層の厚さを0.075mm、ポリカーボネート含有層の厚さを1.925mmとし、押出樹脂板の全体の厚さ(t)を2mmとした。主な製造条件及び得られた押出樹脂板の評価結果を表1-1、表1-2に示す。なお、以降の実施例及び比較例において、表に記載のない製造条件は共通条件とした。
[実施例2~5]
 メタクリル樹脂含有層の組成と製造条件を表1-1に示すように変更する以外は実施例1と同様にして、メタクリル樹脂含有層(表層1)-ポリカーボネート含有層(表層2)の積層構造を有する2層構造の押出樹脂板を得た。各例において得られた押出樹脂板の評価結果を表1-2に示す。
[実施例6~10]
 図3に示したような製造装置を用いて押出樹脂板を成形した。65mmφ単軸押出機を用いて溶融したメタクリル樹脂(組成物)と、150mmφ単軸押出機を用いて溶融したポリカーボネートと、65mmφ単軸押出機を用いて溶融したメタクリル樹脂(組成物)とをマルチマニホールド型ダイスを介して積層し、Tダイから溶融状態の3層構造の熱可塑性樹脂積層体を共押出し、第1~第3冷却ロールを用いて冷却し、冷却後に得られた押出樹脂板を一対の引取りロールによって引き取った。
 以上のようにして、メタクリル樹脂含有層(表層1)-ポリカーボネート含有層(内層)-メタクリル樹脂含有層(表層2)の積層構造を有する3層構造の押出樹脂板を得た。2つのメタクリル樹脂含有層の組成は同一とした。2つのメタクリル樹脂含有層の厚さをいずれも0.075mm、ポリカーボネート含有層の厚さを1.850mmとし、押出樹脂板の全体厚さ(t)を2mmした。各例における主な製造条件及び得られた押出樹脂板の評価結果を表1-1、表1-2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[比較例1~4]
 比較例1、2の各例においては、メタクリル樹脂含有層の組成と製造条件を表2-1に示すように変更する以外は実施例1~5と同様にして、メタクリル樹脂含有層(表層1)-ポリカーボネート含有層(表層2)の積層構造を有する2層構造の押出樹脂板を得た。
 比較例3、4の各例においては、メタクリル樹脂含有層の組成と製造条件を表2-1に示すように変更する以外は実施例6~10と同様にして、メタクリル樹脂含有層(表層1)-ポリカーボネート含有層(内層)-メタクリル樹脂含有層(表層2)の積層構造を有する3層構造の押出樹脂板を得た。
 各例において得られた押出樹脂板の評価結果を表2-2に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
[結果のまとめ]
 実施例1~10ではいずれも、第2番目の冷却ロールと第3番目の冷却ロールとの間に挟み込まれているときの熱可塑性樹脂積層体の全体温度(TX)を、ポリカーボネート含有層のガラス転移温度(Tg(PC))に対し+15℃以上とし、最後の冷却ロールから剥離する位置における熱可塑性樹脂積層体の全体温度(TT)を、ポリカーボネート含有層のガラス転移温度(Tg(PC))に対し+5℃~+19℃の範囲とし、最後の冷却ロールから剥離する位置における熱可塑性樹脂積層体の全体温度(TT)と最後の冷却ロールから剥離する位置から下流側1m以内の熱可塑性樹脂積層体の全体温度(TM)との差(TT-TM)を20℃以下とし、引取りロールと第2番目の冷却ロールとの周速度比(V4/V2)を0.98以上1.0未満とした。これら実施例ではいずれも、初期のRe値と加熱後のReの低下率が好適な範囲内であり、初期と加熱後の反り量が小さく、表面性が良好な押出樹脂板を製造することができた。
 比較例1~4ではいずれも、TT-TMが20℃超であったため、加熱後の反り量、又は、初期及び加熱後の反り量が大きい押出樹脂板が製造された。比較例1では、TXがポリカーボネート含有層のガラス転移温度(Tg(PC))に対し+15℃未満であったため、反りが顕著に大きく加熱後のReの低下率も大きかった。
[実施例11](ハーフミラー板の製造例)
 ポリカーボネート基板の代わりに実施例9で得られた押出樹脂板を用いた以外は特開平9-96702号公報の実施例6に記載の方法に準拠して、ハーフミラー板を製造した。なお、押出樹脂板のメタクリル樹脂含有層上に上記文献に記載のコーティング組成物(A)、(B-1)を順次塗布し、100℃で4時間熱処理を行った。熱処理後に得られたハーフミラー板は反りが少ないため、反射像の歪みがなく、液晶モニター付きミラー等に好適に使用できるものであった。
 本発明は上記実施形態及び実施例に限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて、適宜設計変更が可能である。
 この出願は、2018年5月23日に出願された日本出願特願2018-098845号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
11 Tダイ
12 第1冷却ロール(第1番目の冷却ロール)
13 第2冷却ロール(第2番目の冷却ロール)
14 第3冷却ロール(第3番目の冷却ロール)
15 引取りロール
16、16X、16Y 押出樹脂板
21 ポリカーボネート含有層
22、22A、22B メタクリル樹脂含有層

Claims (13)

  1.  ポリカーボネートを含有する層の少なくとも片面にメタクリル樹脂を含有する層が積層された押出樹脂板の製造方法であって、
     前記ポリカーボネートを含有する層の少なくとも片面に前記メタクリル樹脂を含有する層が積層された熱可塑性樹脂積層体を溶融状態でTダイから共押出し、
     互いに隣接する3つ以上の冷却ロールを用い、前記溶融状態の熱可塑性樹脂積層体を、第n番目(但し、n≧1)の冷却ロールと第n+1番目の冷却ロールとの間に挟み込み、第n+1番目の冷却ロールに巻き掛ける操作をn=1から複数回繰り返すことにより冷却し、
     冷却後に得られた前記押出樹脂板を引取りロールによって引き取る工程(X)を含み、
     第2番目の前記冷却ロールと第3番目の前記冷却ロールとの間に挟み込まれているときの前記熱可塑性樹脂積層体の全体温度(TX)を、前記ポリカーボネートを含有する層のガラス転移温度に対し+15℃以上とし、
     最後の前記冷却ロールから剥離する位置における前記熱可塑性樹脂積層体の全体温度(TT)を、前記ポリカーボネートを含有する層のガラス転移温度に対し+5℃~+19℃の範囲とし、
     最後の前記冷却ロールから剥離する位置における前記熱可塑性樹脂積層体の全体温度(TT)と最後の前記冷却ロールから剥離する位置から下流側1m以内の前記熱可塑性樹脂積層体の全体温度(TM)との差(TT-TM)を20℃以下とし、
     前記引取りロールの周速度(V4)と第2番目の前記冷却ロールの周速度(V2)との周速度比(V4/V2)を0.98以上1.0未満とする、押出樹脂板の製造方法。
  2.  前記メタクリル樹脂を含有する層のガラス転移温度が115℃以上であり、
     前記ポリカーボネートを含有する層の線膨張率(S1)と前記メタクリル樹脂を含有する層の線膨張率(S2)との差(S2-S1)と、前記ポリカーボネートを含有する層の線膨張率(S1)との比((S2-S1)/S1)が-10%~+10%である、請求項1に記載の押出樹脂板の製造方法。
  3.  前記メタクリル樹脂を含有する層が、メタクリル樹脂5~80質量%と、芳香族ビニル化合物に由来する構造単位及び無水マレイン酸に由来する構造単位を含む共重合体95~20質量%とを含有する、請求項1又は2に記載の押出樹脂板の製造方法。 
  4.  前記共重合体が、前記芳香族ビニル化合物に由来する構造単位50~84質量%、無水マレイン酸に由来する構造単位15~49質量%、及びメタクリル酸エステルに由来する構造単位1~35質量%を含有する、請求項3に記載の押出樹脂板の製造方法。
  5.  工程(X)後にさらに、前記押出樹脂板を75~125℃の温度で1~30時間加熱する工程(Y)を含み、
     加熱前後の双方において、前記押出樹脂板は、押出成形時の幅方向200mm、押出成形時の流れ方向100mmの長方形状の試験片について測定される反り量が0~±0.2mmである、請求項1~4のいずれか1項に記載の押出樹脂板の製造方法。
  6.  工程(X)後にさらに、前記押出樹脂板を75~125℃の温度で1~30時間加熱する工程(Y)を含み、
     加熱前後の双方において、前記押出樹脂板は、少なくとも幅方向の一部の面内のレターデーション値が50~330nmであり、加熱前に対する加熱後の前記押出樹脂板の前記レターデーション値の低下率が30%未満である、請求項1~5のいずれか1項に記載の押出樹脂板の製造方法。
  7.  ポリカーボネートを含有する層の少なくとも片面にメタクリル樹脂を含有する層が積層された押出樹脂板であって、
     前記メタクリル樹脂を含有する層のガラス転移温度が115℃以上であり、
     75~125℃の範囲内の一定温度で5時間加熱したときに、加熱前後の双方において、押出成形時の幅方向200mm、押出成形時の流れ方向100mmの長方形状の試験片について測定される反り量が0~±0.2mmであり、
     少なくとも幅方向の一部の面内のレターデーション値が50~330nmであり、
     加熱前に対する加熱後の前記レターデーション値の低下率が30%未満であり、
     前記ポリカーボネートを含有する層の線膨張率(S1)と前記メタクリル樹脂を含有する層の線膨張率(S2)との差(S2-S1)と、前記ポリカーボネートを含有する層の線膨張率(S1)との比((S2-S1)/S1)が-10%~+10%である、押出樹脂板。
  8.  前記押出樹脂板を75℃又は125℃の温度で5時間加熱したときに、加熱前後の双方において、押出成形時の幅方向200mm、押出成形時の流れ方向100mmの長方形状の試験片について測定される反り量が0~±0.2mmであり、
     少なくとも幅方向の一部の面内のレターデーション値が50~330nmであり、
     加熱前に対する加熱後の前記レターデーション値の低下率が30%未満である、請求項7に記載の押出樹脂板。
  9.  加熱前後の双方において、押出成形時の幅方向200mm、押出成形時の流れ方向100mmの長方形状の試験片について測定される反り量が0~±0.15mmである、請求項7又は8に記載の押出樹脂板。
  10.  加熱前後の双方において、少なくとも幅方向の一部の面内のレターデーション値が80~250nmである、請求項7~9のいずれか1項に記載の押出樹脂板。
  11.  加熱前に対する加熱後の前記レターデーション値の低下率が15%未満である、請求項7~10のいずれか1項に記載の押出樹脂板。
  12.  請求項7~11のいずれか1項に記載の押出樹脂板と、当該押出樹脂板の少なくとも一方の表面に形成された耐擦傷性層とを備える、積層板。
  13.  請求項7~11のいずれか1項に記載の押出樹脂板と、当該押出樹脂板の少なくとも一方の表面に形成されたミラー膜又はハーフミラー膜とを備える、積層板。
PCT/JP2019/020387 2018-05-23 2019-05-23 押出樹脂板とその製造方法、及び積層板 WO2019225676A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207035056A KR20210011946A (ko) 2018-05-23 2019-05-23 압출 수지판과 그 제조 방법, 및 적층판
CN201980034631.6A CN112188951B (zh) 2018-05-23 2019-05-23 挤出树脂板及其制造方法以及层叠板
JP2020520353A JP7150016B2 (ja) 2018-05-23 2019-05-23 押出樹脂板とその製造方法、及び積層板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-098845 2018-05-23
JP2018098845 2018-05-23

Publications (1)

Publication Number Publication Date
WO2019225676A1 true WO2019225676A1 (ja) 2019-11-28

Family

ID=68617041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020387 WO2019225676A1 (ja) 2018-05-23 2019-05-23 押出樹脂板とその製造方法、及び積層板

Country Status (4)

Country Link
JP (1) JP7150016B2 (ja)
KR (1) KR20210011946A (ja)
CN (1) CN112188951B (ja)
WO (1) WO2019225676A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS557451A (en) * 1978-07-04 1980-01-19 Sumitomo Bakelite Co Ltd Production of polypropylene sheet
JPH0996702A (ja) * 1995-07-27 1997-04-08 Fukuvi Chem Ind Co Ltd 光学的材料
JP2005061757A (ja) * 2003-08-19 2005-03-10 Mitsubishi Electric Corp 冷蔵庫
JP2016534898A (ja) * 2013-10-31 2016-11-10 エルジー・ハウシス・リミテッドLg Hausys,Ltd. 高硬度多層シート
WO2018030504A1 (ja) * 2016-08-12 2018-02-15 株式会社クラレ 押出樹脂板の製造方法及び押出樹脂板

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4239649B2 (ja) 2003-03-31 2009-03-18 住友化学株式会社 耐擦傷性樹脂板及びそれを用いた携帯型情報端末の表示窓保護板
JP2006103169A (ja) 2004-10-06 2006-04-20 Mitsubishi Gas Chem Co Inc 液晶ディスプレーカバー用ポリカーボネート樹脂積層体
JP5065644B2 (ja) 2005-09-30 2012-11-07 大日本印刷株式会社 化粧シート及びその製造方法並びに化粧シート付射出成形品
JP4396698B2 (ja) 2005-12-14 2010-01-13 住友化学株式会社 押出樹脂板の製造方法
JP5186983B2 (ja) 2008-04-04 2013-04-24 住友化学株式会社 耐擦傷性樹脂板及びその用途
JP2010085978A (ja) 2008-09-03 2010-04-15 Sumitomo Chemical Co Ltd 液晶ディスプレイ保護板
KR101885386B1 (ko) 2010-05-21 2018-09-11 미츠비시 가스 가가쿠 가부시키가이샤 합성 수지 적층체
WO2015093037A1 (ja) 2013-12-19 2015-06-25 株式会社クラレ 樹脂板の製造方法
KR102365231B1 (ko) 2014-09-08 2022-02-18 주식회사 쿠라레 액정 디스플레이 보호판의 제조 방법
JP6545179B2 (ja) * 2014-09-18 2019-07-17 株式会社クラレ 押出樹脂板の製造方法及び耐擦傷性層付き押出樹脂板の製造方法
TWI729089B (zh) 2016-03-23 2021-06-01 日商可樂麗股份有限公司 擠出樹脂板之製造方法及擠出樹脂板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS557451A (en) * 1978-07-04 1980-01-19 Sumitomo Bakelite Co Ltd Production of polypropylene sheet
JPH0996702A (ja) * 1995-07-27 1997-04-08 Fukuvi Chem Ind Co Ltd 光学的材料
JP2005061757A (ja) * 2003-08-19 2005-03-10 Mitsubishi Electric Corp 冷蔵庫
JP2016534898A (ja) * 2013-10-31 2016-11-10 エルジー・ハウシス・リミテッドLg Hausys,Ltd. 高硬度多層シート
WO2018030504A1 (ja) * 2016-08-12 2018-02-15 株式会社クラレ 押出樹脂板の製造方法及び押出樹脂板

Also Published As

Publication number Publication date
CN112188951A (zh) 2021-01-05
CN112188951B (zh) 2022-08-19
JP7150016B2 (ja) 2022-10-07
KR20210011946A (ko) 2021-02-02
JPWO2019225676A1 (ja) 2021-07-01

Similar Documents

Publication Publication Date Title
WO2018199213A1 (ja) 押出樹脂板とその製造方法
KR102365229B1 (ko) 압출 수지판의 제조 방법 및 압출 수지판
JP6926088B2 (ja) 押出樹脂板の製造方法及び押出樹脂板
JP7071980B2 (ja) 積層押出樹脂板及び赤外線センサー付き液晶ディスプレイ用の保護板
JP6864671B2 (ja) 押出樹脂板の製造方法及び耐擦傷性層付き押出樹脂板の製造方法
WO2019159890A1 (ja) 積層シートとその製造方法、及び保護カバー付きディスプレイ
JP7045944B2 (ja) 防眩性保護板
WO2019225676A1 (ja) 押出樹脂板とその製造方法、及び積層板
JPWO2020149254A1 (ja) 押出樹脂積層体及び硬化被膜付き押出樹脂積層体
WO2023054533A1 (ja) 押出樹脂積層フィルムとその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19807069

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020520353

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207035056

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19807069

Country of ref document: EP

Kind code of ref document: A1