WO2019224978A1 - シェルアンドチューブ式熱交換器 - Google Patents

シェルアンドチューブ式熱交換器 Download PDF

Info

Publication number
WO2019224978A1
WO2019224978A1 PCT/JP2018/020001 JP2018020001W WO2019224978A1 WO 2019224978 A1 WO2019224978 A1 WO 2019224978A1 JP 2018020001 W JP2018020001 W JP 2018020001W WO 2019224978 A1 WO2019224978 A1 WO 2019224978A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
shell
heat exchanger
refrigerant inlet
space
Prior art date
Application number
PCT/JP2018/020001
Other languages
English (en)
French (fr)
Inventor
有悟 笹谷
肇 藤本
健一 秦
野本 宗
竜児 内村
純 三重野
圭 岡本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020520960A priority Critical patent/JP6956868B2/ja
Priority to PCT/JP2018/020001 priority patent/WO2019224978A1/ja
Priority to DE112018007657.1T priority patent/DE112018007657B4/de
Publication of WO2019224978A1 publication Critical patent/WO2019224978A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0263Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by varying the geometry or cross-section of header box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0278Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • F28F2009/222Particular guide plates, baffles or deflectors, e.g. having particular orientation relative to an elongated casing or conduit
    • F28F2009/226Transversal partitions

Definitions

  • the present invention relates to a shell and tube heat exchanger in which a plurality of heat transfer tubes are arranged in a shell.
  • the shell-and-tube heat exchanger has a plurality of heat transfer tubes through which a refrigerant flows and a shell that accommodates the plurality of heat transfer tubes, and a heat exchange fluid that flows outside the plurality of heat transfer tubes in the shell, Heat exchange is performed with the refrigerant flowing inside the heat pipe (for example, see Patent Document 1).
  • a refrigerant inlet header that communicates with one end portions of a plurality of heat transfer tubes is provided at one end portion in the longitudinal direction of the shell.
  • coolant inlet header from the outside is distributed to each heat exchanger tube by a refrigerant
  • the refrigerant inlet header has a diameter equivalent to that of the shell.
  • the refrigerant inlet provided in the refrigerant inlet header has a diameter smaller than the diameter of the shell. For this reason, the flow rate of the refrigerant that has flowed into the refrigerant inlet header from the inlet significantly decreases due to rapid volume expansion.
  • the flow rate decreases the refrigerant does not spray, the liquid phase and the gas phase are separated, the liquid refrigerant accumulates at the lower part of the refrigerant inlet header, and the refrigerant is biased to the heat transfer tube arranged on the lower side in the shell. It will be distributed. Since the portion with high heat exchange efficiency in the shell is the central portion in the radial direction, there is a problem in that the heat exchange efficiency with the heat exchange fluid in the shell decreases if the refrigerant is biased to the lower heat transfer tube .
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a shell-and-tube heat exchanger that can improve heat exchange efficiency.
  • a shell and tube heat exchanger includes a plurality of heat transfer tubes, and a cylindrical shell that houses the plurality of heat transfer tubes and through which the heat exchange fluid flows outside the plurality of heat transfer tubes.
  • a shell-and-tube heat exchanger that exchanges heat between the refrigerant flowing through the heat pipe and the heat exchange fluid, and is disposed at one end in the left-right direction, which is the longitudinal direction of the horizontally installed shell, and has a refrigerant inlet.
  • a refrigerant inlet header that distributes the refrigerant flowing from the refrigerant inlet to the plurality of heat transfer tubes, and one end of the plurality of heat transfer tubes within the refrigerant inlet header, and a plurality of holes for passage of the refrigerant are formed. And a distribution plate.
  • the distribution plate in the refrigerant inlet header it is possible to improve the state in which the refrigerant is biased to the lower heat transfer tube, and to improve the heat exchange efficiency between the refrigerant and the heat exchange fluid in the shell.
  • FIG. 10 is a view of the refrigerant lid of FIG. 9 as viewed from the direction of arrow A in FIG. 9. It is a schematic sectional drawing of the refrigerant
  • FIG. 10 It is a figure which shows the plate-shaped partition plate of the shell and tube type heat exchanger which concerns on Embodiment 10 of this invention, (a) is a top view, (b) is a front view, (c) is a side view. It is a figure which shows the modification 1 of the distribution plate of the shell and tube type heat exchanger of FIG. It is a figure which shows the modification 2 of the distribution plate of the shell and tube type heat exchanger of FIG. It is a figure which shows the modification 3 of the distribution plate of the shell and tube type heat exchanger of FIG. It is a figure which shows the modification 1 of the refrigerant
  • FIG. 1 is a schematic cross-sectional view of a shell and tube heat exchanger according to Embodiment 1 of the present invention.
  • FIG. 2 is a view showing the partition plate of FIG.
  • the shell-and-tube heat exchanger includes a plurality of heat transfer tubes 1 through which refrigerant flows, a cylindrical shell 2 that houses the plurality of heat transfer tubes 1 and through which the heat exchange fluid flows outside the plurality of heat transfer tubes 1, and a shell 2 and a plurality of baffle plates 3 arranged at appropriate intervals in the longitudinal direction.
  • the shell-and-tube heat exchanger is installed with the shell 2 in a horizontal position, and is used in the following description, “upper”, “lower”, “right”, “left”, “front”, “rear”. Is based on the installation state shown in FIG. That is, the longitudinal direction of the shell 2 is the left-right direction, the height direction of the shell 2 is the up-down direction, and the depth direction of the shell 2 is the front-rear direction.
  • the shell 2 has a cylindrical shape, and a refrigerant inlet header 10 is disposed on one end side (right side in FIG. 1) in the longitudinal direction, and a refrigerant outlet header 50 is disposed on the other end side (left side in FIG. 1). Yes.
  • the refrigerant inlet header 10 has a refrigerant inlet 20 and distributes the refrigerant flowing from the refrigerant inlet 20 to the heat transfer tubes 1.
  • the refrigerant outlet header 50 has the refrigerant outlet 5, and the refrigerant that has flowed through the heat transfer tubes 1 joins and flows out from the refrigerant outlet 5.
  • a fluid inlet 6 into which the heat exchange fluid flows is provided in the vicinity of the refrigerant outlet header 50 below the outer peripheral surface at both ends in the longitudinal direction of the shell 2, and a fluid outlet 7 through which the heat exchange fluid flows out.
  • the refrigerant inlet header 10 is provided in the vicinity.
  • the baffle plate 3 has an outer shape composed of an arcuate arc portion 30a that is in contact with the inner peripheral surface of the shell 2, and a linear portion 30b that connects the both ends of the arc portion 30a with straight lines.
  • a plurality of tube holes 3a through which the heat transfer tube 1 passes are formed.
  • the baffle plate 3 has a plurality of holes or notches through which the heat exchange fluid flows.
  • the baffle plate 3 configured in this manner is arranged in the shell 2 between the fluid inlet 6 and the fluid outlet 7 so that the straight portions 30b face each other at an interval in the longitudinal direction.
  • the refrigerant flows into the refrigerant inlet header 10 from the refrigerant inlet 20, and the refrigerant is distributed to the heat transfer tubes 1 by the refrigerant inlet header 10.
  • the distributed refrigerants flow through the heat transfer tubes 1, merge at the refrigerant outlet header 50, and flow out from the refrigerant outlet 5.
  • the heat exchange fluid flows into the shell 2 from the fluid inlet 6.
  • the heat exchange fluid that has flowed into the shell 2 flows outside the heat transfer tube 1 in the shell 2 in the direction opposite to the flow direction of the refrigerant in the heat transfer tube 1.
  • the heat exchange fluid flows in a zigzag manner in the shell 2 by the plurality of baffle plates 3 and also flows through holes provided in the baffle plate 3. In this process, the refrigerant and the heat exchange fluid exchange heat. Then, the heat exchange fluid that flows in a zigzag manner in the shell 2 flows out from the fluid outlet 7.
  • the first embodiment is characterized in that a distribution plate 12 is provided in the refrigerant inlet header 10 as a technique for improving the distribution efficiency of the refrigerant in the refrigerant inlet header 10.
  • a distribution plate 12 is provided in the refrigerant inlet header 10 as a technique for improving the distribution efficiency of the refrigerant in the refrigerant inlet header 10.
  • FIG. 3 is a schematic cross-sectional view of the refrigerant inlet header of FIG.
  • the white arrow indicates the flow of the refrigerant.
  • the refrigerant inlet header 10 is disposed between the tube plate 8 that holds the ends of the plurality of heat transfer tubes 1, the refrigerant lid 13, the tube plate 8, and the refrigerant lid 13, and allows the refrigerant flowing into the refrigerant inlet header 10 to flow.
  • coolant inlet header 10 has the structure by which the whole was joined in the state which interposed the annular plate-shaped packing 14 on both surfaces of the distribution plate 12.
  • the interior of the refrigerant inlet header 10 is divided into a first space 10a into which refrigerant flows from the refrigerant inlet 20 with the distribution plate 12 as a boundary, and a second space 10b on the opposite side and communicating with one end of each heat transfer tube 1 It is divided into.
  • the refrigerant lid 13 constitutes an end face in the longitudinal direction (left-right direction) of the shell 2 in the refrigerant inlet header 10, and a refrigerant inlet 20 is provided at a lower portion of the refrigerant lid 13.
  • the refrigerant that has flowed into the first space 10a from the refrigerant inlet 20 passes through a hole 15 (described later in FIG. 4) formed in the distribution plate 12 and flows into the second space 10b, and then enters each heat transfer tube 1. Inflow.
  • the refrigerant inlet 20 has a configuration in which the inlet pipe 4 is connected to an adapter 21 penetrating the refrigerant lid 13, and the inlet pipe 4 is connected to the adapter 21 in a sideways orientation. Yes.
  • the distribution plate 12 is made of, for example, sheet metal, and a refrigerant passage hole 15 is formed at a position facing each of the heat transfer tubes 1.
  • the hole diameters of the holes 15 are all the same.
  • a plurality of mounting holes 16 for mounting the tube plate 8 and the refrigerant lid 13 are provided in the annular portion of the distribution plate 12 that contacts the packing 14 at intervals in the circumferential direction.
  • the refrigerant inlet header 10 configured as described above, when the refrigerant flows from the refrigerant inlet 20 into the first space 10a, the refrigerant flow rate becomes slow due to rapid volume expansion, and the liquid refrigerant accumulates in the lower portion of the first space 10a.
  • the liquid refrigerant accumulated in the lower part in the refrigerant inlet header 10 flows directly into the heat transfer tube 1 disposed on the lower side in the shell 2.
  • the distribution plate 12 since the distribution plate 12 is disposed here, the distribution plate 12 becomes a resistance, and the height position where the liquid refrigerant is accumulated in the first space 10a rises, and from the height position through the second space 10b.
  • the liquid refrigerant flows into the heat transfer tube 1.
  • the liquid refrigerant accumulated in the lower part of the first space 10a flows into the first space 10a from the inlet pipe 4. It is wound up by the refrigerant. Accordingly, the liquid refrigerant flows into the second space 10b through the holes 15 of the distribution plate 12 while moving upward in the first space 10a. And when flowing in into the shell 2 from the 2nd space 10b, a refrigerant
  • the distribution plate 12 in the refrigerant inlet header 10, it is possible to improve the state where the refrigerant is biased to the lower heat transfer tube 1, and as a result, the distribution plate 12.
  • the heat exchange efficiency in the shell 2 between the refrigerant and the heat exchange fluid can be improved as compared with the case where there is no air.
  • the refrigerant inlet 20 is provided at the lower part of the refrigerant lid 13
  • the liquid refrigerant accumulated in the lower part of the first space 10a can be rolled up by the refrigerant flowing in from the refrigerant inlet 20, and the upper heat transfer tube 1 also has a refrigerant. Can be distributed. As a result, the heat exchange efficiency in the shell 2 between the refrigerant and the heat exchange fluid can be improved.
  • FIG. FIG. 5 is a schematic cross-sectional view of the refrigerant inlet header of the shell and tube heat exchanger according to Embodiment 2 of the present invention. The following description will focus on the differences of the second embodiment from the first embodiment.
  • the refrigerant inlet 20 is provided on the upper part of the refrigerant lid 13.
  • the plate-shaped partition plate 9 which partitions off the 1st space 10a to an up-down direction is arrange
  • two plate-like partition plates 9 are erected on the distribution plate 12 in a horizontal posture with a space in the vertical direction in the first space 10 a.
  • a gap 9a is provided between the tip of the plate-like partition plate 9 and the refrigerant lid 13, and the first space 10a communicates in the vertical direction at the gap 9a portion.
  • FIG. 5 shows an example in which two plate-like partition plates 9 are provided, the number of plate-like partition plates 9 is arbitrary.
  • Embodiment 2 since the refrigerant inlet 20 is provided at the upper part of the refrigerant lid 13, the refrigerant flows from the upper part of the first space 10a. And since the two plate-shaped partition plates 9 are provided here, the liquid refrigerant has an upper portion of the upper plate-shaped partition plate 9, an upper portion of the lower plate-shaped partition plate 9, and a lower portion of the first space 10a. Are stored in three stages. Then, the liquid refrigerant is distributed from the respective positions to the heat transfer tube 1 so that the bias of the refrigerant is suppressed.
  • liquid refrigerant out of the refrigerant flowing in from the upper part of the first space 10a temporarily accumulates in the upper part of the upper plate-shaped partition plate 9, and from the accumulated position, the holes 15 of the distribution plate 12 and the second space 10b are accumulated.
  • the refrigerant that has not been distributed here flows downward through the gap 9a and accumulates on the upper part of the lower plate-like partition plate 9.
  • the holes 15 and the second space of the distribution plate 12 are accumulated. It distributes to the heat transfer tube 1 through 10b.
  • coolant which was not distributed here flows through the clearance gap 9a further downward, and is similarly distributed to the heat exchanger tube 1.
  • the liquid refrigerant once accumulates in the upper part of the plate-like partition plate 9, and the refrigerant that has not been distributed there flows downward through the gap 9a and is distributed again, whereby the refrigerant is transferred to the lower heat transfer tube 1.
  • the heat exchange efficiency between the refrigerant and the heat exchange fluid in the shell 2 can be improved, and the performance can be improved.
  • the plate-like partition plate 9 is provided on the distribution plate 12, but the member provided with the plate-like partition plate 9 is not limited to the distribution plate 12, and is provided on the refrigerant lid 13 as shown in FIG. 6. Also good.
  • FIG. 6 is a schematic cross-sectional view of a modified example of the refrigerant inlet header of the shell and tube heat exchanger according to Embodiment 2 of the present invention.
  • the plate-like partition plate 9 is erected on the surface of the refrigerant lid 13 on the first space 10 a side, and between the tip of the plate-like partition plate 9 and the distribution plate 12. It is set as the structure which has the clearance gap 9a. Even with this configuration, the same effect as that obtained when the plate-like partition plate 9 is provided on the distribution plate 12 can be obtained.
  • FIG. 7 is a schematic cross-sectional view of the refrigerant inlet header of the shell and tube heat exchanger according to Embodiment 3 of the present invention.
  • 8 is a view of the distribution plate of FIG. 7 as viewed from the direction of arrow A in FIG.
  • the third embodiment will be described with a focus on differences from the first embodiment.
  • the refrigerant inlet 20 is provided on the upper part of the refrigerant lid 13.
  • coolant is arrange
  • FIG. Two guide plates 11 are arranged in the first space 10a so as to extend in the front-rear direction (a direction perpendicular to the plane of FIG. 7) with a space in the vertical direction. Specifically, each guide plate 11 is erected on the distribution plate 12. As shown in FIG. 8, the upper guide plate 11 and the lower guide plate 11 are displaced from each other in the arrangement position in the front-rear direction (left-right direction in FIG. 8).
  • the upper guide plate 11 is disposed close to the front (left side in FIG. 8), and the lower guide plate 11 is disposed close to the rear (right side in FIG. 8).
  • the refrigerant is zigzag in the front-rear direction (left-right direction in FIG. 8) from the top to the bottom in the first space 10a as shown by the dotted line in FIG. A flowing channel is formed.
  • Embodiment 3 since the refrigerant inlet 20 is provided at the upper part of the refrigerant lid 13, the refrigerant flows from the upper part of the first space 10a.
  • the refrigerant flowing in from the upper part of the first space 10a accumulates in the upper part of each guide plate 11 in the process of flowing from the upper part to the lower part.
  • the biased state can be improved.
  • the heat exchange efficiency between the refrigerant and the heat exchange fluid in the shell 2 can be improved, and the performance can be improved.
  • FIG. 7 shows an example in which two guide plates 11 are provided, the number of guide plates 11 is arbitrary.
  • the guide plates 11 may be arranged so that the positions in the front-rear direction (left-right direction in FIG. 8) are alternately shifted.
  • the guide plate 11 is provided on the distribution plate 12, but the member on which the guide plate 11 is provided is not limited to the distribution plate 12 and may be provided on the refrigerant lid 13 as shown in FIGS. 9 and 10.
  • FIG. 9 is a schematic cross-sectional view of a modified example of the refrigerant inlet header of the shell-and-tube heat exchanger according to Embodiment 3 of the present invention.
  • 10 is a view of the refrigerant lid of FIG. 9 as viewed from the direction of arrow A in FIG.
  • the guide plate 11 is erected on the refrigerant lid 13. Even with this configuration, the same effect as when the guide plate 11 is provided on the distribution plate 12 can be obtained.
  • reference numeral 5 a denotes an adapter connection hole provided in the refrigerant lid 13.
  • FIG. FIG. 11 is a schematic sectional drawing of the refrigerant
  • the difference between the fourth embodiment and the first embodiment will be mainly described.
  • at least two refrigerant inlets 20 are provided in the refrigerant lid 13, one refrigerant inlet 20 is provided in the upper part of the refrigerant lid 13, and the other refrigerant inlet 20 is provided in the lower part of the refrigerant lid 13.
  • the upper refrigerant inlet 20 is distinguished as the refrigerant inlet 20a, and the lower refrigerant inlet 20 as the refrigerant inlet 20b.
  • the distribution of the refrigerant to the heat transfer tubes 1 on the upper side in the shell 2 can be improved.
  • the refrigerant inlet 20b at the lower part of the refrigerant lid 13 the liquid refrigerant accumulated in the lower part of the first space 10a due to the decrease in the flow velocity can be wound up by the refrigerant flowing into the first space 10a from the refrigerant inlet 20b,
  • the distribution of the refrigerant to the lower heat transfer tube 1 in the shell 2 can also be improved.
  • the heat exchange efficiency between the refrigerant and the heat exchange fluid in the shell 2 can be improved, and the performance can be improved.
  • Embodiment 5 FIG.
  • the fifth to eighth embodiments relate to a structure in which one of the refrigerant inlet header 10 and the distribution plate 12 has a surface protruding toward the first space 10a so as to reduce the volume of the first space 10a.
  • the difference between the fifth embodiment and the first embodiment will be mainly described.
  • FIG. 12 is a schematic cross-sectional view of a refrigerant inlet header of a shell and tube heat exchanger according to Embodiment 5 of the present invention.
  • the refrigerant inlet 20 is provided on the upper part of the refrigerant lid 13.
  • the surface of the distribution plate 12 on the first space 10a side is an inclined surface 12a that protrudes toward the first space 10a as it goes downward.
  • the distribution of the refrigerant to the heat transfer tubes 1 on the upper side in the shell 2 can be improved by providing the refrigerant inlet 20 a at the upper part of the refrigerant lid 13.
  • the surface of the distribution plate 12 on the first space 10a side is the inclined surface 12a
  • the surface of the distribution plate 12 on the first space 10a side is a straight vertical surface from the upper surface to the lower surface.
  • the volume in the first space 10a can be reduced.
  • the liquid refrigerant can be prevented from accumulating in the lower portion of the first space 10a, and the state where the refrigerant is biased to the heat transfer tube 1 on the lower side in the shell can be improved. From the above, the heat exchange efficiency between the refrigerant and the heat exchange fluid in the shell 2 can be improved, and the performance can be improved.
  • the inclined surface 12 a is provided on the distribution plate 12, but the member provided with the inclined surface 12 a is not limited to the distribution plate 12 and may be provided on the refrigerant lid 13.
  • the lower side volume of the first space 10a is made smaller than the upper side volume, but the upper side of the first space 10a is used.
  • the volume may be smaller than the volume on the lower side.
  • FIG. FIG. 13 is a schematic sectional drawing of the refrigerant
  • the refrigerant inlet 20 is provided on the upper part of the refrigerant lid 13.
  • the surface of the distribution plate 12 on the first space 10a side is a stepped surface 12b whose lower side protrudes toward the first space 10a compared to the upper side.
  • the step surface 12b is provided on the distribution plate 12.
  • the member provided with the step surface 12b is not limited to the distribution plate 12, and may be provided on the refrigerant lid 13 as shown in FIG.
  • FIG. 14 is a schematic cross-sectional view of a modified example of the refrigerant inlet header 10 of the shell and tube heat exchanger according to the sixth embodiment of the present invention.
  • a step surface 12 b is provided on the refrigerant lid 13. Even with this configuration, the same effect as that obtained when the step surface 12b is provided on the distribution plate 12 can be obtained.
  • the volume on the lower side of the first space 10a is made smaller than the volume on the upper side, but the upper side of the first space 10a.
  • the volume may be smaller than the volume on the lower side.
  • FIG. FIG. 15 is a schematic cross-sectional view of a refrigerant inlet header of a shell and tube heat exchanger according to Embodiment 7 of the present invention.
  • the refrigerant inlet 20 is provided at the center of the refrigerant lid 13.
  • coolant lid 13 is made into the inclined surface 12c which protrudes in the 1st space 10a side as it goes to each of an upward direction and a downward direction from a center part.
  • FIG. 16 is a schematic cross-sectional view of the refrigerant inlet header of the shell-and-tube heat exchanger according to Embodiment 8 of the present invention.
  • the refrigerant inlet 20 is provided in the lower part of the refrigerant lid 13.
  • the refrigerant lid 13 is composed of a disc portion 13a and a peripheral surface portion 13b standing from the outer peripheral edge of the disc portion 13a.
  • the refrigerant inlet 20 is provided so that the refrigerant inflow direction is upward.
  • the refrigerant flowing from the refrigerant inlet 20 does not directly hit the distribution plate 12
  • the refrigerant can be efficiently wound up, and the distribution efficiency is increased.
  • Embodiment 9 FIG.
  • the ninth embodiment is a technique based on this, and relates to a structure that increases the amount of refrigerant flowing in the heat transfer tube 1 in the central portion in the radial direction in the shell.
  • FIG. 17 is a schematic cross-sectional view of the refrigerant inlet header of the shell and tube heat exchanger according to the ninth embodiment of the present invention.
  • 18 is a view of the distribution plate of FIG. 17 as viewed from the direction of arrow A in FIG.
  • an annular partition plate 17 that divides the inside of the first space 10a into a central portion and the others is arranged in the first space 10a.
  • the annular partition plate 17 is erected on the distribution plate 12 as shown in FIG.
  • a refrigerant inlet 20 a that allows the refrigerant to flow into the outer space 10 ab of the annular partition plate 17 is provided at the top of the refrigerant lid 13, and a refrigerant inlet 20 c that allows the refrigerant to flow into the inner space 10 aa of the annular partition plate 17 is the center of the refrigerant lid 13. Provided in the department.
  • the refrigerant flowing from the upper refrigerant inlet 20a flows into the inner space 10aa, and the refrigerant flowing from the central refrigerant inlet 20c flows into the outer space 10ab.
  • coolant flows in into the heat exchanger tube 1 via the 2nd space 10b from each of inner side space 10aa and outer side space 10ab.
  • the heat transfer tube at the central portion of the shell 2 is provided.
  • the refrigerant can flow intensively to 1. As a result, the heat exchange efficiency can be improved.
  • the annular partition plate 17 is provided on the distribution plate 12, but the member on which the annular partition plate 17 is provided is not limited to the distribution plate 12 and is provided on the refrigerant lid 13 as shown in FIGS. 19 and 20. May be.
  • FIG. 19 is a schematic cross-sectional view of a modified example of the refrigerant inlet header 10 of the shell-and-tube heat exchanger according to Embodiment 9 of the present invention.
  • 20 is a view of the refrigerant lid of FIG. 19 as viewed from the direction of arrow A in FIG. As shown in FIG. 19, in this modification, an annular partition plate 17 is erected on the refrigerant lid 13. With this configuration as well, the same effect as when the annular partition plate 17 is provided on the distribution plate 12 can be obtained.
  • 5 b is an adapter connection hole of the refrigerant inlet 20 c provided in the refrigerant lid 13.
  • FIG. FIG. 21 is a view showing a plate-like partition plate of a shell-and-tube heat exchanger according to Embodiment 10 of the present invention, where (a) is a plan view, (b) is a front view, and (c) is a side view. It is.
  • the tenth embodiment will be described with a focus on differences from the second embodiment including the plate-like partition plate 9.
  • the plate-like partition plate 9 is provided with one or a plurality of through holes 18 for the refrigerant flow path. Although three through holes 18 are provided here, the number of through holes 18 is not limited to three and is arbitrary.
  • the plate-like partition plate 9 is fixed by screwing the screw (not shown) to the distribution plate 12 or the refrigerant lid 13 through the screw holes 19a of the mounting plate 19 fixed to the plate-like partition plate 9.
  • the refrigerant that has accumulated on the plate partition plate 9 and has not been distributed flows down through the through holes 18 and is redistributed. Thereby, the distribution efficiency can be improved.
  • the through-hole 18 may be provided in the guide plate 11 of Embodiment 3 shown in FIG.7 and FIG.8, In this case The same effect can be obtained.
  • the shell and tube heat exchanger of the present invention is not limited to the structure shown in each of the above drawings, and can be variously modified as follows, for example, without departing from the gist of the present invention.
  • FIG. 22 is a diagram showing a first modification of the distribution plate of the shell-and-tube heat exchanger of FIG.
  • a dotted circle is a projection of the heat transfer tube 1 on the distribution plate 12.
  • the correspondence relationship between the heat transfer tubes 1 and the holes 15 of the distribution plate 12 in the above embodiments is shown for reference.
  • the correspondence between the heat transfer tube 1 and the holes 15 of the distribution plate 12 in Modification 1 is shown on the lower side.
  • each hole 15 of the distribution plate 12 is formed at a position facing each heat transfer tube 1 as shown on the upper side of the enlarged view of FIG. And do not necessarily have to be paired.
  • one hole 15 is provided in the two heat transfer tubes 1.
  • the number of holes formed in the distribution plate 12 is reduced, and the processing cost can be reduced.
  • the number of the heat transfer tubes 1 with respect to one hole 15 is not limited to two, and may be a plurality.
  • FIG. 23 is a diagram showing a second modification of the distribution plate of the shell-and-tube heat exchanger of FIG.
  • the hole diameters of the holes 15 of the distribution plate 12 are all the same.
  • the hole diameters of the holes 15 are increased stepwise from the lower side to the upper side. Yes.
  • This structure makes it easier for the refrigerant to flow from the first space 10a to the second space 10b on the upper side than on the lower side. Therefore, the state where the refrigerant is biased toward the lower heat transfer tube 1 can be improved. As a result, the heat exchange efficiency in the shell 2 between the refrigerant and the heat exchange fluid can be improved as compared with the case where the distribution plate 12 is not provided.
  • FIG. 24 is a diagram showing a third modification of the distribution plate of the shell-and-tube heat exchanger of FIG.
  • the hole diameters of the holes 15 of the distribution plate 12 are all the same.
  • the hole diameter of the hole 15 at the central portion of the distribution plate 12 is large and the hole diameters of the holes 15 other than the central portion are large. Is made smaller.
  • the portion with high heat exchange efficiency in the shell 2 is the central portion in the radial direction as described in the ninth embodiment.
  • the heat exchange efficiency can be further improved by increasing the amount of refrigerant flowing through the heat transfer tube 1 in the central portion in the radial direction in the shell 2. Therefore, as in the third modification, the diameter of the hole 15 at the center of the distribution plate 12 is increased and the diameter of the holes 15 other than the center is decreased, so that the heat transfer tube at the center in the radial direction in the shell 2 is formed.
  • the amount of refrigerant flowing to 1 can be increased, and the heat exchange efficiency can be further improved.
  • the adapter 21 is a connecting member that connects the inlet pipe 4 to the refrigerant lid 13, but the adapter 21 may have a structure shown in Modification 1 or Modification 2 described below.
  • FIG. 25 is a view showing Modification 1 of the refrigerant inlet of the shell and tube heat exchanger of FIG. 25A is a front view of the adapter, and FIG. 25B is a cross-sectional view taken along line AA of FIG.
  • the adapter 21 of the first modification is configured such that an insertion hole 21a into which the inlet pipe 4 is inserted and a plurality of radiation holes 21b that communicate with the insertion hole 21a and extend in the radial direction about the central axis of the adapter 21 are formed.
  • the adapter 21 By configuring the adapter 21 in this way, the refrigerant flowing in from the inlet pipe 4 blows out from the entire circumferential direction from each radiation hole 21b. For this reason, it can avoid that a refrigerant blows off from adapter 21 to one direction, and efficient distribution becomes possible.
  • the adapter 21 may be applied to the refrigerant inlet 20 other than the eighth embodiment.
  • FIG. 26 is a diagram showing a second modification of the refrigerant inlet of the shell and tube heat exchanger of FIG.
  • FIG. 26 shows a cross section of the adapter.
  • the adapter 21 has a configuration in which an insertion hole 21a into which the inlet pipe 4 is inserted and an orifice hole 21c that is in communication with the insertion hole 21a and has a diameter smaller than the diameter of the insertion hole 21a are formed.
  • a so-called diaphragm structure is provided.
  • the adapter 21 with the throttle structure, the refrigerant from the inlet pipe 4 is throttled by the throttle structure and sprayed, so that distribution drift can be suppressed.
  • the adapter 21 of this modification 2 can flow the atomized refrigerant toward a specific part. For this reason, it is effective when used to wind up the liquid refrigerant accumulated in the lower portion of the first space 10a, and is particularly suitable for the refrigerant inlet 20b of the eighth embodiment.
  • Modification 3 is a modification applicable to Embodiment 4 in which a plurality of refrigerant inlets 20 are provided in the refrigerant lid 13.
  • FIG. 27 is a view showing a third modification of the refrigerant inlet of the shell and tube heat exchanger of FIG.
  • the same adapter 21 is used at each refrigerant inlet 20, but in the third modification, different adapters having different refrigerant outflow modes are used.
  • distribution is prioritized using the adapter 21 of FIG. 25 for the adapter 21 on the refrigerant inlet 20a side
  • winding is prioritized using the adapter 21 of FIG. 26 for the adapter 21 on the refrigerant inlet 20b side.
  • Modification 4 changes the structure of the attachment part of the adapter 21, and reduces the volume of the 1st space 10a.
  • FIG. 28 is a diagram showing a fourth modification of the refrigerant inlet of the shell and tube heat exchanger of FIG.
  • the modified example 4 is a modified example of the attachment location of the adapter 21, and is provided with a mounting lid 22 for attaching the adapter separately to the refrigerant lid 13 so that the adapter 21 is attached to the mounting lid 22. It is. With this configuration, the volume of the first space 10 a can be reduced as compared with the structure in which the adapter 21 is directly attached to the refrigerant lid 13.
  • the rapid volume expansion of the refrigerant flowing into the first space 10a from the inlet pipe 4 can be suppressed by reducing the volume of the first space 10a.
  • coolant can be suppressed, and a refrigerant
  • coolant can be maintained in the mixed state of a gaseous phase and a liquid phase.
  • the liquid refrigerant can be prevented from accumulating in the lower portion of the first space 10a, and the state where the refrigerant is biased toward the lower heat transfer tube 1 can be improved.
  • FIG. 29 is a view showing a fifth modification of the refrigerant inlet of the shell and tube heat exchanger of FIG.
  • Modification 5 is a modification of the attachment location of the adapter 21, and has a configuration in which the adapter 21 is not attached to the refrigerant lid 13 and an orifice hole 23 having a smaller diameter than the inlet pipe 4 is provided in the refrigerant lid 13. The inlet pipe 4 is directly connected to the orifice hole 23.
  • the adapter 21 is not necessary, so that the number of parts and the cost can be reduced. Further, since the adapter 21 is not necessary, it is not necessary to provide a large space in the refrigerant inlet header 10, and a decrease in the refrigerant flow rate can be reduced. Furthermore, the outer shape of the shell-and-tube heat exchanger can be reduced.
  • Modification 6 is a modification applicable to Embodiment 1 in which the refrigerant inlet 20 is provided at the lower part of the refrigerant lid 13.
  • FIG. 30 is a view showing a sixth modification of the refrigerant inlet of the shell and tube heat exchanger of FIG. 1.
  • the modification 6 further includes a partition plate 24 that partitions the refrigerant inlet header 10 up and down in the configuration of the first embodiment shown in FIG. 3, and the height of the partition plate 24 is used as a boundary.
  • the plurality of heat transfer tubes 1 are divided into a first group 1a on the lower side and a second group 1b on the upper side.
  • the refrigerant inlet 20 is provided in the refrigerant lid 13 so as to communicate with the first space 10 a at a height position below the partition plate 24.
  • cover 13 is further provided with the refrigerant
  • coolant exit header 50 of FIG. 1 is deleted, and the folding
  • the length of the shell 2 in the longitudinal direction can be shortened while maintaining the heat exchange performance by using the two-pass specification, and space-saving installation is possible.
  • FIG. 31 is a diagram showing a first modification of the structure in the shell of the shell-and-tube heat exchanger of FIG.
  • a flow path changing plate 26 is disposed in the shell 2 so as to face the fluid inlet 6 and the fluid outlet 7.
  • the flow path changing plate 26 is arranged in a direction perpendicular to the flow direction of each fluid at the fluid inlet 6 and the fluid outlet 7.
  • the region closer to the refrigerant outlet header 50 than the fluid inlet 6 and the region closer to the refrigerant inlet header 10 than the fluid outlet 7 have a poor heat exchange fluid flow and are dead spaces.
  • the flow path change plate 26 is disposed opposite to each of the fluid inlet 6 and the fluid outlet 7, so that the flow of the heat exchange fluid is changed by the flow path change plate 26 and indicated by the dotted line. It becomes. That is, the heat exchange fluid flows in the dead space, and the heat exchange performance can be improved.
  • (Modification 2) 32 is a view showing a modified example 2 of the structure in the shell of the shell and tube heat exchanger of FIG. 1, wherein (a) is a schematic sectional view of the shell and tube heat exchanger, and (b) is a baffle plate. It is explanatory drawing of the arrangement
  • the arrangement angle of the baffle plates 3 is sequentially shifted in the circumferential direction between the baffle plates 3 adjacent to each other in the longitudinal direction of the shell 2.
  • the flow of the heat exchange fluid is worse at the outer peripheral portion than at the central portion in the radial direction.
  • turbulent flow occurs in the shell 2 by sequentially shifting the arrangement angle of the baffle plate 3 in the circumferential direction, and the heat exchange fluid is also transferred to the outer periphery where the heat exchange fluid is difficult to flow in the shell 2. It begins to flow. As a result, the heat exchange performance is improved.
  • FIG. 33 is a diagram showing a third modification of the structure in the shell of the shell-and-tube heat exchanger of FIG.
  • FIG. 33 shows a modification of the baffle plate.
  • it has the structure which provided the convex part 3b in the both ends of the linear part 30b of the baffle board 3.
  • the convex part 3b is formed in the fan shape which extended the circular arc of the circular arc part 30a of the baffle board 3, as shown in the enlarged view of FIG.
  • the shell 2 may corrode.
  • the fan-shaped convex portions 3b are provided at both ends of the linear portion 30b of the baffle plate 3, so that the angle ⁇ 1 between the convex portions 3b and the inner peripheral surface of the shell 2 does not provide the convex portions 3b.
  • the angle ⁇ 2 between the straight portion 30b of the baffle plate 3 and the inner peripheral surface of the shell 2 becomes larger. Thereby, the flow rate of the heat exchange fluid at the contact portion between the convex portion 3b and the inner peripheral surface of the shell 2 is suppressed. Thereby, corrosion of the shell 2 can be suppressed.
  • the shell and tube compressor may be configured by appropriately combining the characteristic configurations of the embodiments and the modified examples.
  • the modification applied to the same component is similarly applied to the other embodiments other than the embodiment described for the modification.
  • it is good also as a structure which combined the modification examples suitably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

シェルアンドチューブ式熱交換器は、複数の伝熱管と、複数の伝熱管を収容して複数の伝熱管の外側に被熱交換流体が流れる筒状のシェルとを有し、伝熱管を流れる冷媒と被熱交換流体とを熱交換するものである。このシェルアンドチューブ式熱交換器は、横置きに設置されたシェルの長手方向である左右方向の一端側に配置され、冷媒入口を有し、冷媒入口から流入した冷媒を複数の伝熱管に分配する冷媒入口ヘッダと、冷媒入口ヘッダ内で複数の伝熱管の一端部と対向して配置され、冷媒通過用の複数の孔が形成された分配板とを備えたものである。

Description

シェルアンドチューブ式熱交換器
 本発明は、シェル内に複数の伝熱管が配置されたシェルアンドチューブ式熱交換器に関する。
 従来より熱交換器の一種としてシェルアンドチューブ式熱交換器があり、様々な用途に用いられている。シェルアンドチューブ式熱交換器は、冷媒が流れる複数の伝熱管と、その複数の伝熱管を収容するシェルとを有し、シェル内において複数の伝熱管の外部を流れる被熱交換流体と、伝熱管の内部を流れる冷媒とを熱交換させるものである(例えば、特許文献1参照)。特許文献1において、シェルの長手方向の一端部には、複数の伝熱管の一端部に連通する冷媒入口ヘッダが設けられている。そして、外部から冷媒入口ヘッダ内に流入した冷媒が、冷媒入口ヘッダで各伝熱管に分配されるようになっている。
特開2012-72923号公報
 特許文献1において、冷媒入口ヘッダはシェルと同等の径で構成されている。一方で、冷媒入口ヘッダに設けられた冷媒の流入口は、シェルの径よりも小さい径で構成されている。このため、流入口から冷媒入口ヘッダ内に流入した冷媒は、急激な体積膨張により流速が大幅に低下する。流速が低下すると、冷媒は噴霧状態とならず、液相と気相とが分離して液冷媒が冷媒入口ヘッダの下部に溜まり、シェル内の下部側に配置された伝熱管に冷媒が偏って分配されてしまう。シェル内において熱交換効率が高い部分は径方向の中央部であるため、下部側の伝熱管に冷媒が偏ると、シェル内の被熱交換流体との熱交換効率が低下するという問題があった。
 本発明は、上記のような課題を解決するためになされたもので、熱交換効率を向上できるシェルアンドチューブ式熱交換器を提供することを目的とする。
 本発明に係るシェルアンドチューブ式熱交換器は、複数の伝熱管と、複数の伝熱管を収容して複数の伝熱管の外側に被熱交換流体が流れる筒状のシェルとを有し、伝熱管を流れる冷媒と被熱交換流体とを熱交換するシェルアンドチューブ式熱交換器であって、横置きに設置されたシェルの長手方向である左右方向の一端側に配置され、冷媒入口を有し、冷媒入口から流入した冷媒を複数の伝熱管に分配する冷媒入口ヘッダと、冷媒入口ヘッダ内で複数の伝熱管の一端部と対向して配置され、冷媒通過用の複数の孔が形成された分配板とを備えたものである。
 本発明によれば、冷媒入口ヘッダ内に分配板を設けたことで、下部側の伝熱管に冷媒が偏る状態を改善でき、シェル内における冷媒と被熱交換流体との熱交換効率を向上できる。
本発明の実施の形態1に係るシェルアンドチューブ式熱交換器の概略断面図である。 図1の仕切り板を示す図である。 図1の冷媒入口ヘッダの概略断面図である。 図3の分配板を図3の矢印A方向から見た図である。 本発明の実施の形態2に係るシェルアンドチューブ式熱交換器の冷媒入口ヘッダの概略断面図である。 本発明の実施の形態2に係るシェルアンドチューブ式熱交換器の冷媒入口ヘッダの変形例の概略断面図である。 本発明の実施の形態3に係るシェルアンドチューブ式熱交換器の冷媒入口ヘッダの概略断面図である。 図7の分配板を図7の矢印A方向から見た図である。 本発明の実施の形態3に係るシェルアンドチューブ式熱交換器の冷媒入口ヘッダの変形例の概略断面図である。 図9の冷媒蓋を図9の矢印A方向から見た図である。 本発明の実施の形態4に係るシェルアンドチューブ式熱交換器の冷媒入口ヘッダの概略断面図である。 本発明の実施の形態5に係るシェルアンドチューブ式熱交換器の冷媒入口ヘッダの概略断面図である。 本発明の実施の形態6に係るシェルアンドチューブ式熱交換器の冷媒入口ヘッダの概略断面図である。 本発明の実施の形態6に係るシェルアンドチューブ式熱交換器の冷媒入口ヘッダ10の変形例の概略断面図である。 本発明の実施の形態7に係るシェルアンドチューブ式熱交換器の冷媒入口ヘッダの概略断面図である。 本発明の実施の形態8に係るシェルアンドチューブ式熱交換器の冷媒入口ヘッダの概略断面図である。 本発明の実施の形態9に係るシェルアンドチューブ式熱交換器の冷媒入口ヘッダの概略断面図である。 図17の分配板を図17の矢印A方向から見た図である。 本発明の実施の形態9に係るシェルアンドチューブ式熱交換器の冷媒入口ヘッダ10の変形例の概略断面図である。 図19の分配板を図19の矢印A方向から見た図である。 本発明の実施の形態10に係るシェルアンドチューブ式熱交換器の板状仕切り板を示す図で、(a)は平面図、(b)は正面図、(c)は側面図である。 図1のシェルアンドチューブ式熱交換器の分配板の変形例1を示す図である。 図1のシェルアンドチューブ式熱交換器の分配板の変形例2を示す図である。 図1のシェルアンドチューブ式熱交換器の分配板の変形例3を示す図である。 図1のシェルアンドチューブ式熱交換器の冷媒入口の変形例1を示す図である。 図1のシェルアンドチューブ式熱交換器の冷媒入口の変形例2を示す図である。 図1のシェルアンドチューブ式熱交換器の冷媒入口の変形例3を示す図である。 図1のシェルアンドチューブ式熱交換器の冷媒入口の変形例4を示す図である。 図1のシェルアンドチューブ式熱交換器の冷媒入口の変形例5を示す図である。 図1のシェルアンドチューブ式熱交換器の冷媒入口の変形例6を示す図である。 図1のシェルアンドチューブ式熱交換器のシェル内の構造の変形例1を示す図である。 図1のシェルアンドチューブ式熱交換器のシェル内の構造の変形例2を示す図で、(a)はシェルアンドチューブ式熱交換器の概略断面図、(b)はバッフル板の配置角度の説明図である。 図1のシェルアンドチューブ式熱交換器のシェル内の構造の変形例3を示す図である。
 以下、本発明の実施の形態に係るシェルアンドチューブ式熱交換器について説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、各図において同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。さらに、明細書全文に表れている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1に係るシェルアンドチューブ式熱交換器の概略断面図である。図2は、図1の仕切り板を示す図である。
 シェルアンドチューブ式熱交換器は、冷媒が流れる複数の伝熱管1と、複数の伝熱管1を収容して複数の伝熱管1の外側に被熱交換流体が流れる筒状のシェル2と、シェル2の長手方向において適宜間隔を介して配置された複数のバッフル板3とを備えている。シェルアンドチューブ式熱交換器はシェル2を横置きにして設置されるものであり、以下の説明で用いる「上」、「下」、「右」、「左」、「前」、「後」は、図1に示す設置状態を基準としたものとする。つまり、シェル2の長手方向が左右方向、シェル2の高さ方向が上下方向、シェル2の奥行き方向が前後方向である。
 シェル2は、円筒状を成し、長手方向の一端側(図1の右側)には冷媒入口ヘッダ10が配置され、他端側(図1の左側)には冷媒出口ヘッダ50が配置されている。冷媒入口ヘッダ10は、冷媒入口20を有し、冷媒入口20から流入した冷媒を各伝熱管1に分配するものである。冷媒出口ヘッダ50は、冷媒出口5を有し、各伝熱管1を流れた冷媒が合流して冷媒出口5から流出させるものである。
 シェル2の長手方向の両端部の外周面の下方には、被熱交換流体が流入する流体入口6が、冷媒出口ヘッダ50に近接して設けられ、被熱交換流体が流出する流体出口7が、冷媒入口ヘッダ10に近接して設けられている。
 バッフル板3は、図2に示すように、シェル2の内周面に接する円弧状の円弧部30aと、円弧部30aの両端部を直線で結んだ直線部30bとから構成される外形形状を有し、伝熱管1が貫通する複数の管穴3aが形成されている。また、バッフル板3には、管穴3a以外にも、被熱交換流体を流す穴または切り欠きが複数、形成されている。このように構成されたバッフル板3は、シェル2内において流体入口6と流体出口7との間に、長手方向に間隔を空けて、直線部30bが交互に向き合うように配置されている。
 以上のように構成されたシェルアンドチューブ式熱交換器では、冷媒入口20から冷媒入口ヘッダ10に流入し、冷媒入口ヘッダ10で冷媒が各伝熱管1に分配される。そして、分配された各冷媒は各伝熱管1を流れた後、冷媒出口ヘッダ50で合流して冷媒出口5から流出する。一方、被熱交換流体は、流体入口6からシェル2内に流入する。シェル2内に流入した被熱交換流体は、シェル2内において伝熱管1の外側を伝熱管1内の冷媒の流れ方向とは逆方向へ流れる。しかも、被熱交換流体は、複数のバッフル板3によってシェル2内をジグザグに流れると共に、バッフル板3に設けられた穴を流れる。この過程で、冷媒と被熱交換流体とが熱交換する。そして、シェル2内をジグザグに流れた被熱交換流体は、流体出口7から流出する。
 本実施の形態1は、冷媒入口ヘッダ10における冷媒の分配効率を向上する技術として、冷媒入口ヘッダ10に分配板12を備えたことを特徴としている。以下、本実施の形態1の特徴部分である、冷媒入口ヘッダ10の構成について詳細に説明する。
 図3は、図1の冷媒入口ヘッダの概略断面図である。図3において白抜き矢印は冷媒の流れを示している。この点は、後述の冷媒入口ヘッダの概略断面図でも同様である。
 冷媒入口ヘッダ10は、複数の伝熱管1の端部を保持する管板8と、冷媒蓋13と、管板8と冷媒蓋13との間に配置され、冷媒入口ヘッダ10に流入した冷媒を分配する分配板12とを備えている。これらはシェル2の長手方向に見て円板状に構成され、立設した状態で配置されている。そして、冷媒入口ヘッダ10は、分配板12の両面に環状板状のパッキン14を介在した状態で全体が接合された構成を有する。
 冷媒入口ヘッダ10の内部は、分配板12を境として、冷媒入口20から冷媒が流入する第1空間10aと、その反対側であって各伝熱管1の一端部に連通する第2空間10bとに仕切られている。
 冷媒蓋13は、冷媒入口ヘッダ10においてシェル2の長手方向(左右方向)の端面を構成しており、冷媒蓋13の下部に冷媒入口20が設けられている。冷媒入口20から第1空間10aに流入した冷媒は、分配板12に形成された後述の孔15(後述の図4参照)を通過して第2空間10bに流入した後、各伝熱管1に流入するようになっている。冷媒入口20は、具体的には冷媒蓋13に貫通して設けられたアダプタ21に入口管4が接続された構成を有しており、入口管4が横向きの姿勢でアダプタ21に接続されている。
 図4は、図3の分配板を図3の矢印A方向から見た図である。
 分配板12は、例えば板金で構成され、各伝熱管1のそれぞれに対向する位置に、冷媒通過用の孔15が形成されている。各孔15の孔径は全て同じとなっている。また、分配板12においてパッキン14と当接する環状の部分には、管板8および冷媒蓋13との取り付け用の取り付け穴16が周方向に間隔を空けて複数、設けられている。
 以上のように構成された冷媒入口ヘッダ10において、冷媒入口20から第1空間10aに冷媒が流入すると、急激な体積膨張により冷媒流速が遅くなり、第1空間10aの下部に液冷媒が溜まる。ここで、仮に分配板12が無い場合、冷媒入口ヘッダ10内の下部に溜まった液冷媒が直接、シェル2内の下部側に配置された伝熱管1に流入する。しかし、ここでは分配板12が配置されているため、分配板12が抵抗となり、第1空間10a内で液冷媒が溜まる高さ位置が上昇し、その高さ位置から第2空間10bを介して伝熱管1に液冷媒が流入する。よって、シェル2内の下部側だけでなく上部側の伝熱管1にも冷媒が流れ込み、下部側の伝熱管1に冷媒が偏る状態を改善できる。その結果、冷媒と被熱交換流体とのシェル2内での熱交換効率を、分配板12が無い場合に比べて向上できる。
 また、本実施の形態1ではさらに、冷媒入口20が冷媒蓋13の下部に設けられているため、第1空間10aの下部に溜まった液冷媒が、入口管4から第1空間10aに流入する冷媒によって巻き上げられる。これにより、液冷媒が第1空間10a内を上方に移動しつつ、分配板12の各孔15を通って第2空間10bに流入する。そして、第2空間10bからシェル2内に流入する際には、シェル2の上部側の伝熱管1にも冷媒が分配され、下部側の伝熱管1に冷媒が偏る状態を改善できる。
 以上説明したように本実施の形態1によれば、冷媒入口ヘッダ10内に分配板12を設けたことで、下部側の伝熱管1に冷媒が偏る状態を改善でき、その結果、分配板12が無い場合に比べて冷媒と被熱交換流体とのシェル2内での熱交換効率を向上できる。
 また、冷媒蓋13の下部に冷媒入口20を設けたことで、第1空間10aの下部に溜まった液冷媒を冷媒入口20から流入する冷媒で巻き上げることができ、上部の伝熱管1にも冷媒の分配が可能となる。その結果、冷媒と被熱交換流体とのシェル2内での熱交換効率を向上できる。
実施の形態2.
 図5は、本発明の実施の形態2に係るシェルアンドチューブ式熱交換器の冷媒入口ヘッダの概略断面図である。以下、実施の形態2が実施の形態1と異なる点を中心に説明する。
 実施の形態2では、冷媒蓋13の上部に冷媒入口20を設けている。そして、第1空間10aに、第1空間10aを上下方向に仕切る板状仕切り板9が配置されている。板状仕切り板9は、図5に示すように第1空間10a内において上下方向に間隔を空けて2枚、水平姿勢で分配板12に立設されている。そして、板状仕切り板9の先端部と冷媒蓋13との間には隙間9aを有し、第1空間10aは隙間9a部分で上下方向に連通している。なお、図5には板状仕切り板9を2枚設けた例を示しているが、板状仕切り板9の枚数は任意である。
 実施の形態2では、冷媒入口20が冷媒蓋13の上部に設けられているため、冷媒が第1空間10aの上部から流入する。そして、ここでは板状仕切り板9を2枚設けているため、液冷媒が上側の板状仕切り板9の上部と、下側の板状仕切り板9の上部と、第1空間10aの下部との3段階に溜められる。そして、それぞれの位置から伝熱管1に液冷媒が分配されることで、冷媒の偏りが抑制されるようになっている。
 すなわち、まず、第1空間10aの上部から流入した冷媒のうち液冷媒は、上側の板状仕切り板9の上部に一旦溜まり、その溜まった位置から分配板12の孔15および第2空間10bを介して伝熱管1に分配される。そして、ここで分配されなかった冷媒は、隙間9aを通って下方に流れ、下側の板状仕切り板9の上部に溜まり、同様にその溜まった位置から分配板12の孔15および第2空間10bを介して伝熱管1に分配される。そして、ここで分配されなかった冷媒は、隙間9aを通ってさらに下方に流れ、同様にして伝熱管1に分配される。
 このように、板状仕切り板9の上部に一旦、液冷媒が溜まり、そこで分配されなかった冷媒が隙間9aを通って下方に流れて再度分配されることで、下部側の伝熱管1に冷媒が偏る状態を改善できる。その結果、シェル2内での冷媒と被熱交換流体との熱交換効率を向上でき、性能を改善できる。
 なお、図5では板状仕切り板9を分配板12に設けているが、板状仕切り板9を設ける部材は分配板12に限らず、次の図6に示すように冷媒蓋13に設けてもよい。
 図6は、本発明の実施の形態2に係るシェルアンドチューブ式熱交換器の冷媒入口ヘッダの変形例の概略断面図である。
 図6に示すように、この変形例では、板状仕切り板9を冷媒蓋13の第1空間10a側の表面に立設し、板状仕切り板9の先端部と分配板12との間に隙間9aを有する構成としている。この構成としても、板状仕切り板9を分配板12に設けた場合と同様の効果を得ることができる。
実施の形態3.
 図7は、本発明の実施の形態3に係るシェルアンドチューブ式熱交換器の冷媒入口ヘッダの概略断面図である。図8は、図7の分配板を図7の矢印A方向から見た図である。以下、実施の形態3が実施の形態1と異なる点を中心に説明する。
 実施の形態3では、冷媒蓋13の上部に冷媒入口20を設けている。そして、冷媒入口ヘッダ10の第1空間10a内に、冷媒の流れを形成する案内板11が配置されている。案内板11は、第1空間10a内において上下方向に間隔を空けて2枚、前後方向(図7の紙面に直交する方向)に延びて配置されている。各案内板11は、具体的には分配板12に立設されている。上側の案内板11と下側の案内板11とは、図8に示すようにその前後方向(図8の左右方向)の配置位置が互いにずれている。具体的には、上側の案内板11は前方(図8の左側)に寄せて配置され、下側の案内板11は後方(図8の右側)に寄せて配置されている。このように各案内板11が配置されることにより、第1空間10a内に、上部から下部に向かって、図8の点線で示すように前後方向(図8の左右方向)にジグザグに冷媒が流れる流路が形成されている。
 実施の形態3では、冷媒入口20が冷媒蓋13の上部に設けられているため、冷媒が第1空間10aの上部から流入する。そして、第1空間10aの上部から流入した冷媒が、上部から下部に流れる過程で各案内板11の上部に溜まりつつも、左右方向にジグザグに流れることで、下部側の伝熱管1に冷媒が偏る状態を改善できる。その結果、シェル2内での冷媒と被熱交換流体との熱交換効率を向上でき、性能を改善できる。
 なお、図7では案内板11を2枚設けた例を示しているが、案内板11の枚数は任意である。案内板11を3枚以上設けた場合、各案内板11は、前後方向(図8の左右方向)の位置が交互にずれて配置されればよい。
 図7では案内板11を分配板12に設けているが、案内板11を設ける部材は分配板12に限らず、次の図9および図10に示すように冷媒蓋13に設けてもよい。
 図9は、本発明の実施の形態3に係るシェルアンドチューブ式熱交換器の冷媒入口ヘッダの変形例の概略断面図である。図10は、図9の冷媒蓋を図9の矢印A方向から見た図である。
 この変形例では、案内板11を冷媒蓋13に立設した構成を有する。この構成としても、案内板11を分配板12に設けた場合と同様の効果を得ることができる。なお、図10において5aは、冷媒蓋13に設けられたアダプタ接続用の孔である。
実施の形態4.
 図11は、本発明の実施の形態4に係るシェルアンドチューブ式熱交換器の冷媒入口ヘッダの概略断面図である。以下、実施の形態4が実施の形態1と異なる点を中心に説明する。
 実施の形態4では、冷媒蓋13に設ける冷媒入口20を少なくとも2つとし、一方の冷媒入口20を冷媒蓋13の上部に、他方の冷媒入口20を冷媒蓋13の下部に設けている。以下、上部の冷媒入口20を冷媒入口20a、下部の冷媒入口20を冷媒入口20bとして区別する。
 実施の形態4によれば、冷媒入口20aを冷媒蓋13の上部に設けることで、シェル2内の上部側の伝熱管1への冷媒の分配を改善できる。また、冷媒入口20bを冷媒蓋13の下部に設けることで、流速低下により第1空間10aの下部に溜まった液冷媒を、冷媒入口20bから第1空間10aに流入した冷媒により巻き上げることができ、シェル2内の下部側の伝熱管1への冷媒の分配も改善できる。その結果、シェル2内での冷媒と被熱交換流体との熱交換効率を向上でき、性能を改善できる。
実施の形態5.
 実施の形態5~実施の形態8は、冷媒入口ヘッダ10および分配板12の一方が、第1空間10aの体積を減らすように第1空間10a側に突出している表面を有する構造に関する。以下、実施の形態5が実施の形態1と異なる点を中心に説明する。
 図12は、本発明の実施の形態5に係るシェルアンドチューブ式熱交換器の冷媒入口ヘッダの概略断面図である。
 実施の形態5では、冷媒蓋13の上部に冷媒入口20を設けている。また、分配板12の第1空間10a側の表面を、下方に向かうに連れて第1空間10a側に突出する傾斜面12aとしている。
 実施の形態5によれば、冷媒入口20aを冷媒蓋13の上部に設けることで、シェル2内の上部側の伝熱管1への冷媒の分配を改善できる。また、分配板12の第1空間10a側の表面を傾斜面12aとしたことで、分配板12の第1空間10a側の表面を、その表面上部から表面下部までまっすぐな垂直面とした場合に比べて第1空間10a内の体積を減らすことができる。このように第1空間10a内の体積を減らすことで、第1空間10aに流入した冷媒の流速の急激な低下を抑制でき、冷媒を気相と液相との混合状態に保つことができる。その結果、液冷媒が第1空間10aの下部に溜まることを抑制でき、シェル内の下部側の伝熱管1に冷媒が偏る状態を改善できる。以上より、シェル2内での冷媒と被熱交換流体との熱交換効率を向上でき、性能を改善できる。
 なお、図12では傾斜面12aを分配板12に設けているが、傾斜面12aを設ける部材は分配板12に限らず、冷媒蓋13に設けてもよい。
 また、本実施の形態5では、第1空間10a内の体積を減らすにあたり、第1空間10aの下部側の体積を上部側の体積よりも小さくした構造としているが、第1空間10aの上部側の体積を下部側の体積よりも小さくした構造としてもよい。
実施の形態6.
 図13は、本発明の実施の形態6に係るシェルアンドチューブ式熱交換器の冷媒入口ヘッダの概略断面図である。以下、実施の形態6が実施の形態1と異なる点を中心に説明する。
 実施の形態6では、冷媒蓋13の上部に冷媒入口20を設けている。そして、分配板12の第1空間10a側の表面を、上部側に比べて下部側が第1空間10a側に突出する段差面12bとしている。
 実施の形態6によれば、実施の形態5と同様の効果が得られる。
 なお、図13では段差面12bを分配板12に設けているが、段差面12bを設ける部材は分配板12に限らず、次の図14に示すように冷媒蓋13に設けてもよい。
 図14は、本発明の実施の形態6に係るシェルアンドチューブ式熱交換器の冷媒入口ヘッダ10の変形例の概略断面図である。
 図14に示すように、この変形例では、段差面12bを冷媒蓋13に設けている。この構成としても、段差面12bを分配板12に設けた場合と同様の効果を得ることができる。
 また、本実施の形態6では、第1空間10a内の体積を減らすにあたり、第1空間10aの下部側の体積を上部側の体積よりも小さくした構造としているが、第1空間10aの上部側の体積を下部側の体積よりも小さくした構造としてもよい。
実施の形態7.
 図15は、本発明の実施の形態7に係るシェルアンドチューブ式熱交換器の冷媒入口ヘッダの概略断面図である。以下、実施の形態7が実施の形態1と異なる点を中心に説明する。
 実施の形態7では、冷媒蓋13の中央部に冷媒入口20を設けている。そして、冷媒蓋13の第1空間10a側の表面を、中央部から上方向および下方向のそれぞれに向かうにしたがって第1空間10a側に突出する傾斜面12cとしている。
 実施の形態7によれば、実施の形態5と同様の効果が得られる。
実施の形態8.
 図16は、本発明の実施の形態8に係るシェルアンドチューブ式熱交換器の冷媒入口ヘッダの概略断面図である。以下、実施の形態8が実施の形態1と異なる点を中心に説明する。
 実施の形態8では、冷媒蓋13の下部に冷媒入口20を設けている。具体的な構造として、冷媒蓋13は、円板部13aと円板部13aの外周縁から立設した周面部13bとで構成されており、冷媒蓋13の設置状態において周面部13bの下部に、冷媒流入方向が上向きとなるように冷媒入口20が設けられている。
 実施の形態8によれば、冷媒入口20から流入した冷媒が分配板12にダイレクトに当たらないようになるため、効率的に冷媒を巻き上げることが可能となり、分配効率が上がる。
実施の形態9.
 上記各実施の形態は、シェル2内の下部側の伝熱管1に冷媒が偏る状態を改善して、熱交換効率の向上を図る技術であった。シェル2内において熱交換効率が高い部分は径方向の中央部である。このため、シェル2内の下部側の伝熱管1に冷媒が偏る状態を改善し、さらにシェル2内の径方向の中央部の伝熱管1に流れる冷媒量を多くすることで、さらに熱交換効率の向上を図ることができる。実施の形態9は、これを踏まえた技術であり、シェル内の径方向の中央部の伝熱管1に流れる冷媒の量を増やす構造に関するものである。
 図17は、本発明の実施の形態9に係るシェルアンドチューブ式熱交換器の冷媒入口ヘッダの概略断面図である。図18は、図17の分配板を図17の矢印A方向から見た図である。以下、実施の形態9が実施の形態1と異なる点を中心に説明する。
 実施の形態9では、第1空間10aに、第1空間10a内を中央部とそれ以外とに仕切る環状仕切り板17が配置されている。環状仕切り板17は、図17に示すように分配板12に立設されている。そして、環状仕切り板17の外側空間10abに冷媒を流入させる冷媒入口20aが冷媒蓋13の上部に設けられ、環状仕切り板17の内側空間10aaに冷媒を流入させる冷媒入口20cが冷媒蓋13の中央部に設けられている。
 この構成により、上部の冷媒入口20aから流入した冷媒が内側空間10aaに流入し、中央部の冷媒入口20cから流入した冷媒が外側空間10abに流入する。そして、冷媒は、内側空間10aaおよび外側空間10abのそれぞれから第2空間10bを介して伝熱管1に流入する。
 実施の形態9によれば、第1空間10aを環状仕切り板17で仕切って中央部を独立した空間とし、その内側空間10aaに個別に冷媒入口20cを設けたため、シェル2の中央部の伝熱管1に集中的に冷媒を流すことができるようになる。その結果、熱交換効率を向上することができる。
 なお、図17では環状仕切り板17を分配板12に設けているが、環状仕切り板17を設ける部材は分配板12に限らず、次の図19および図20に示すように冷媒蓋13に設けてもよい。
 図19は、本発明の実施の形態9に係るシェルアンドチューブ式熱交換器の冷媒入口ヘッダ10の変形例の概略断面図である。図20は、図19の冷媒蓋を図19の矢印A方向から見た図である。
 図19に示すように、この変形例では、環状仕切り板17を冷媒蓋13に立設した構成としている。この構成としても、環状仕切り板17を分配板12に設けた場合と同様の効果を得ることができる。なお、図20において5bは、冷媒蓋13に設けられた冷媒入口20cのアダプタ接続用の孔である。
実施の形態10.
 図21は、本発明の実施の形態10に係るシェルアンドチューブ式熱交換器の板状仕切り板を示す図で、(a)は平面図、(b)は正面図、(c)は側面図である。以下、実施の形態10が、板状仕切り板9を備えた実施の形態2と異なる点を中心に説明する。
 実施の形態10では、図21に示すように、板状仕切り板9に、冷媒流路用の1または複数の貫通孔18を設けている。なお、ここでは貫通孔18を3個設けているが、貫通孔18の個数は3個に限られたものではなく任意である。板状仕切り板9は、板状仕切り板9に固定された取り付け板19のネジ穴19aにネジ(図示せず)を通して分配板12または冷媒蓋13にネジ留めすることにより固定される。
 このように板状仕切り板9に貫通孔18を設けることで、板状仕切り板9上に溜まって分配されなかった冷媒が、貫通孔18を通って流れ落ち、再分配される。これにより、分配効率の改善が可能となる。
 なお、ここでは板状仕切り板9に貫通孔18を設けた構成を説明したが、図7および図8に示した実施の形態3の案内板11に貫通孔18を設けてもよく、この場合も同様の効果が得られる。
 本発明のシェルアンドチューブ式熱交換器は、上記各図に示した構造に限定されるものではなく、本発明の要旨を逸脱しない範囲で例えば以下のように種々の変形が可能である。
(変形例1)
 図22は、図1のシェルアンドチューブ式熱交換器の分配板の変形例1を示す図である。図22の拡大図において、点線の円は、伝熱管1を分配板12上に投影したものである。また、図22の拡大図において上側には、上記各実施の形態における、伝熱管1と分配板12の孔15との対応関係を参考のために示している。そして、図22の拡大図において下側に、変形例1における、伝熱管1と分配板12の孔15との対応関係を示している。
 上記各実施の形態では、分配板12の各孔15が、図22の拡大図の上側に示すように各伝熱管1に対向する位置に形成されているとしたが、伝熱管1と孔15とは必ずしも対となる必要はない。この変形例1では、図22の拡大図の下側に示すように、2本の伝熱管1に対して1つの孔15を設けた構造としている。
 この構造により、分配板12に形成する孔数が減り、加工費の削減が可能となる。なお、1つの孔15に対する伝熱管1の本数は2本に限らず、さらに複数本としてもよい。
(変形例2)
 図23は、図1のシェルアンドチューブ式熱交換器の分配板の変形例2を示す図である。
 上記各実施の形態では、分配板12の各孔15の孔径が全て同じとしていたが、変形例2では、下部側から上部側に行くにしたがって、各孔15の孔径を段階的に大きくしている。
 この構造により、下部側よりも上部側の方が第1空間10aから第2空間10bへ冷媒が流れやすい。したがって、下部側の伝熱管1に冷媒が偏る状態を改善できる。その結果、分配板12が無い場合に比べて冷媒と被熱交換流体とのシェル2内での熱交換効率を向上できる。
(変形例3)
 図24は、図1のシェルアンドチューブ式熱交換器の分配板の変形例3を示す図である。
 上記各実施の形態では、分配板12の各孔15の孔径が全て同じとしていたが、変形例3では、分配板12の中央部の孔15の孔径を大きく、中央部以外の孔15の孔径を小さくしている。
 この構造により、シェル2内の下部側の伝熱管1に冷媒が偏る状態を改善でき、熱交換効率の向上を図ることができる。また、シェル2内において熱交換効率が高い部分は、上記実施の形態9で説明したように径方向の中央部である。このため、シェル2内の径方向の中央部の伝熱管1に流れる冷媒量を多くすることで、さらに熱交換効率の向上を図ることができる。よって、この変形例3のように、分配板12の中央部の孔15の孔径を大きく、中央部以外の孔15の孔径を小さくすることで、シェル2内の径方向の中央部の伝熱管1に流れる冷媒量を多くでき、さらに熱交換効率を向上できる。
 上記各実施の形態では、アダプタ21が入口管4を冷媒蓋13に接続する接続部材であるとしたが、アダプタ21を以下に説明する変形例1または変形例2に示す構造としてもよい。
(変形例1)
 図25は、図1のシェルアンドチューブ式熱交換器の冷媒入口の変形例1を示す図である。図25の(a)はアダプタの正面図、(b)は(a)のA-A断面図である。
 変形例1のアダプタ21は、入口管4が挿入される挿入孔21aと、挿入孔21aに連通し、アダプタ21の中心軸を中心として放射方向に延びる複数の放射孔21bとが形成された構成を有する。
 このようにアダプタ21を構成することで、入口管4から流入した冷媒が各放射孔21bから周方向全体から吹き出す。このため、冷媒がアダプタ21から一方向に吹き出すのを避けることができ、効率的な分配が可能となる。このアダプタ21は、上記実施の形態8以外の冷媒入口20に適用するとよい。
(変形例2)
 図26は、図1のシェルアンドチューブ式熱交換器の冷媒入口の変形例2を示す図である。図26には、アダプタの断面を示している。
 変形例2において、アダプタ21は入口管4が挿入される挿入孔21aと、挿入孔21aに連通し、挿入孔21aの孔径よりも小さい孔径のオリフィス孔21cとが形成された構成を有し、いわゆる絞り構造を備えている。
 このようにアダプタ21に絞り構造を備えることで、入口管4からの冷媒が絞り構造で絞られて噴霧流化されるため、分配偏流を抑制できる。また、この変形例2のアダプタ21は、噴霧流化した冷媒を特定の部位に向けて流すことができる。このため、第1空間10aの下部に溜まった液冷媒の巻き上げに用いると効果的であり、特に上記実施の形態8の冷媒入口20bに適用するとよい。
(変形例3)
 変形例3は、冷媒蓋13に冷媒入口20を複数設ける実施の形態4に適用可能な変形例である。
 図27は、図1のシェルアンドチューブ式熱交換器の冷媒入口の変形例3を示す図である。
 図11に示した上記実施の形態4では、各冷媒入口20で同じアダプタ21を用いていたが、変形例3では冷媒の流出形態の異なるアダプタを使い分けて用いる。図27では、冷媒入口20a側のアダプタ21に図25のアダプタ21を用いて分配を優先し、冷媒入口20b側のアダプタ21に図26のアダプタ21を用いて巻き上げを優先している。
 このようにアダプタ21を用途によって使い分ける事で、効率的な冷媒の分配が可能となる。
(変形例4)
 変形例4は、アダプタ21の取り付け部分の構造を変更して第1空間10aの体積を減らすようにしたものである。
 図28は、図1のシェルアンドチューブ式熱交換器の冷媒入口の変形例4を示す図である。
 変形例4は、アダプタ21の取り付け箇所の変形例であり、冷媒蓋13に対して別途、アダプタ取り付け用の取付蓋22を外部に突出して設け、取付蓋22にアダプタ21を取り付けるようにしたものである。この構成により、冷媒蓋13に直接、アダプタ21を取り付けた構造に比べて第1空間10aの体積を減らすことができる。
 変形例4によれば、第1空間10aの体積を減らすことで、入口管4から第1空間10aに流入した冷媒の急激な体積膨張を抑制できる。これにより、冷媒の流速の急激な低下を抑制でき、冷媒を気相と液相との混合状態に保つことができる。その結果、液冷媒が第1空間10aの下部に溜まることを抑制でき、下部側の伝熱管1に冷媒が偏る状態を改善できる。
(変形例5)
 図29は、図1のシェルアンドチューブ式熱交換器の冷媒入口の変形例5を示す図である。
 変形例5は、アダプタ21の取り付け箇所の変形例であり、冷媒蓋13にアダプタ21を取り付けず、冷媒蓋13に入口管4よりも小径のオリフィス孔23を設けた構成を有する。そして、入口管4を直接、オリフィス孔23に接続させている。
 変形例5によれば、アダプタ21が不要となるため、部品点数の削減およびコストの削減が可能となる。また、アダプタ21が不要となることで、冷媒入口ヘッダ10に大きな空間を設ける必要が無くなり、冷媒流速の低下を軽減できる。さらにシェルアンドチューブ式熱交換器の外形を小さくすることが可能となる。
(変形例6)
 変形例6は、冷媒入口20が冷媒蓋13の下部に設けられた実施の形態1に適用可能な変形例である。
 図30は、図1のシェルアンドチューブ式熱交換器の冷媒入口の変形例6を示す図である。
 変形例6は、図3に示した実施の形態1の構成にさらに冷媒入口ヘッダ10内を上下に仕切る仕切り板24を備えており、仕切り板24の高さ位置を境に、シェル2内の複数の伝熱管1は、下部側の第1群1aと上部側の第2群1bとに分けられる。冷媒入口20は、仕切り板24よりも下方の高さ位置で第1空間10aに連通するように冷媒蓋13に設けられている。また、変形例6では、冷媒蓋13にさらに、仕切り板24よりも上方の高さ位置で第1空間10aに連通する冷媒出口25が設けられている。また、変形例6では、図1の冷媒出口ヘッダ50が削除され、伝熱管1の他端部(図30の左端部)が連通する折り返しヘッダ51が配置されている。
 このように構成された変形例6は、冷媒入口20から流入して第1群1aの伝熱管1を流れた冷媒が、折り返しヘッダ51で折り返して第2群1bの伝熱管1に流れた後、冷媒出口25から流出する2パス仕様のシェルアンドチューブ式熱交換器である。
 変形例6によれば、2パス仕様とすることで、熱交換性能を維持しつつシェル2の長手方向の長さを短くすることが可能となり、省スペース設置が可能となる。
(変形例1)
 図31は、図1のシェルアンドチューブ式熱交換器のシェル内の構造の変形例1を示す図である。
 変形例1では、シェル2内において流体入口6と流体出口7のそれぞれに対向して流路変更板26が配置されている。流路変更板26は、流体入口6と流体出口7におけるそれぞれの流体の流れ方向に対して垂直の向きで配置されている。
 シェル2内において流体入口6よりも冷媒出口ヘッダ50側の領域、および流体出口7よりも冷媒入口ヘッダ10側の領域は被熱交換流体の流れが悪く、デッドスペースとなっている。この変形例1では、流体入口6と流体出口7のそれぞれに対向して流路変更板26を配置したことで、被熱交換流体の流れが流路変更板26で変更されて点線で示す流れとなる。つまり、デッドスペースにも被熱交換流体が流れるようになり、熱交換性能を上げることができる。
(変形例2)
 図32は、図1のシェルアンドチューブ式熱交換器のシェル内の構造の変形例2を示す図で、(a)はシェルアンドチューブ式熱交換器の概略断面図、(b)はバッフル板の配置角度の説明図である。
 変形例2では、シェル2の長手方向に1つ置きに隣接するバッフル板3同士で、バッフル板3の配置角度を周方向に順にずらした構成としている。
 シェル2内では、径方向の中央部よりも外周部の方が被熱交換流体の流れが悪い。この変形例2では、バッフル板3の配置角度を周方向に順にずらすことでシェル2内で乱流が起こり、シェル2内において被熱交換流体が流れにくかった外周部にも被熱交換流体が流れるようになる。その結果、熱交換性能が改善される。
(変形例3)
 図33は、図1のシェルアンドチューブ式熱交換器のシェル内の構造の変形例3を示す図である。図33には、バッフル板の変形例を示している。
 変形例3では、バッフル板3の直線部30bの両端部に、凸部3bを設けた構成としている。凸部3bは、図33の拡大図に示すようにバッフル板3の円弧部30aの円弧を延長した扇状に形成されている。
 被熱交換流体として、腐食性の流体である例えばブラインの一種である塩化カルシウム水溶液またはエタノール等を使用する場合、シェル2が腐食する可能性がある。シェル2の腐食を抑えるには被熱交換流体のシェル2の内周面における流速を抑制することが有効である。この変形例3では、バッフル板3の直線部30bの両端部に扇状の凸部3bを設けたことで、凸部3bとシェル2の内周面との角度θ1が、凸部3bを設けない場合のバッフル板3の直線部30bとシェル2の内周面との角度θ2よりも大きくなる。これにより、凸部3bとシェル2の内周面との接触部における被熱交換流体の流速が抑制される。これによりシェル2の腐食を抑制することが可能となる。
 以上、実施の形態1~10および複数の変形例について説明したが、各実施の形態の特徴的な構成、また、変形例を適宜組み合わせてシェルアンドチューブ式圧縮機を構成してもよい。また、各実施の形態1~8のそれぞれにおいて、同様の構成部分について適用される変形例はその変形例を説明した実施の形態以外の他の実施の形態においても同様に適用される。また、変形例同士を適宜組み合わせた構成としてもよい。
 1 伝熱管、1a 第1群、1b 第2群、2 シェル、3 バッフル板、3a 管穴、3b 凸部、4 入口管、5 冷媒出口、6 流体入口、7 流体出口、8 管板、9 板状仕切り板、9a 隙間、10 冷媒入口ヘッダ、10a 第1空間、10aa 内側空間、10ab 外側空間、10b 第2空間、11 案内板、12 分配板、12a 傾斜面、12b 段差面、12c 傾斜面、13 冷媒蓋、13a 円板部、13b 周面部、14 パッキン、15 孔、16 取り付け穴、17 環状仕切り板、18 貫通孔、19 取り付け板、19a ネジ穴、20 冷媒入口、20a 冷媒入口、20b 冷媒入口、20c 冷媒入口、21 アダプタ、21a 挿入孔、21b 放射孔、21c オリフィス孔、22 取付蓋、23 オリフィス孔、24 仕切り板、25 冷媒出口、26 流路変更板、30a 円弧部、30b 直線部、50 冷媒出口ヘッダ、51 折り返しヘッダ。

Claims (29)

  1.  複数の伝熱管と、前記複数の伝熱管を収容して前記複数の伝熱管の外側に被熱交換流体が流れる筒状のシェルとを有し、前記伝熱管を流れる冷媒と前記被熱交換流体とを熱交換するシェルアンドチューブ式熱交換器であって、
     横置きに設置された前記シェルの長手方向である左右方向の一端側に配置され、冷媒入口を有し、前記冷媒入口から流入した冷媒を前記複数の伝熱管に分配する冷媒入口ヘッダと、
     前記冷媒入口ヘッダ内で前記複数の伝熱管の一端部と対向して配置され、冷媒通過用の複数の孔が形成された分配板とを備えたシェルアンドチューブ式熱交換器。
  2.  前記冷媒入口ヘッダの内部は、前記分配板を境として、前記冷媒入口から冷媒が流入する第1空間とその反対側であって前記複数の伝熱管の一端部に連通する第2空間とに仕切られ、前記冷媒入口が、前記冷媒入口ヘッダの前記左右方向の端面の下部に設けられている請求項1記載のシェルアンドチューブ式熱交換器。
  3.  前記冷媒入口ヘッダの内部は、前記分配板を境として、前記冷媒入口から冷媒が流入する第1空間とその反対側であって前記複数の伝熱管の一端部に連通する第2空間とに仕切られ、前記冷媒入口が、前記冷媒入口ヘッダの前記左右方向の端面の上部に設けられており、
     前記第1空間内に、上下方向に連通する隙間を残しつつ、前記第1空間内を上下に仕切る板状仕切り板を備えた請求項1記載のシェルアンドチューブ式熱交換器。
  4.  前記板状仕切り板に1または複数の貫通孔が形成されている請求項3記載のシェルアンドチューブ式熱交換器。
  5.  前記冷媒入口ヘッダの内部は、前記分配板を境として、前記冷媒入口から冷媒が流入する第1空間とその反対側であって前記複数の伝熱管の一端部に連通する第2空間とに仕切られ、前記冷媒入口が、前記冷媒入口ヘッダの前記左右方向の端面の上部に設けられており、
     前記第1空間内に、上下方向に間隔を空けて前後方向に延びて配置された複数の案内板を備え、前記複数の案内板は、前後方向の位置が交互にずれて配置され、前記第1空間内に、前記冷媒が前後方向にジグザグに流れる流路が形成されている請求項1記載のシェルアンドチューブ式熱交換器。
  6.  前記案内板に1または複数の貫通孔が形成されている請求項5記載のシェルアンドチューブ式熱交換器。
  7.  前記冷媒入口ヘッダの内部は、前記分配板を境として、前記冷媒入口から冷媒が流入する第1空間とその反対側であって前記複数の伝熱管の一端部に連通する第2空間とに仕切られ、
     前記冷媒入口が、前記冷媒入口ヘッダの前記左右方向の端面に2つ設けられており、
     一方の前記冷媒入口は前記端面の上部に設けられ、
     他方の前記冷媒入口は前記端面の下部に設けられている請求項1記載のシェルアンドチューブ式熱交換器。
  8.  前記冷媒入口ヘッダおよび前記分配板の一方は、前記第1空間の体積を減らすように前記第1空間側に突出している表面を有する請求項2~請求項7のいずれか一項に記載のシェルアンドチューブ式熱交換器。
  9.  前記表面は上下方向に延びる面であって、下方に向かうに連れて前記第1空間側に突出する傾斜面となっている請求項8記載のシェルアンドチューブ式熱交換器。
  10.  前記表面は上下方向に延びる面であって、段差面となっている請求項8記載のシェルアンドチューブ式熱交換器。
  11.  前記表面は上下方向に延びる面であって、前記シェルの径方向の中央部から上方向および下方向のそれぞれに向かうにしたがって前記第1空間に突出する傾斜面となっている請求項8記載のシェルアンドチューブ式熱交換器。
  12.  前記冷媒入口ヘッダの内部は、前記分配板を境として、前記冷媒入口から冷媒が流入する第1空間とその反対側であって前記複数の伝熱管の一端部に連通する第2空間とに仕切られ、前記冷媒入口が、前記冷媒入口ヘッダの前記左右方向の端面の下部に冷媒流入方向が上向きとなるように設けられている請求項1記載のシェルアンドチューブ式熱交換器。
  13.  前記冷媒入口ヘッダの内部は、前記分配板を境として、前記冷媒入口から冷媒が流入する第1空間とその反対側であって前記複数の伝熱管の一端部に連通する第2空間とに仕切られ、前記第1空間内に、前記第1空間を径方向の中央部とそれ以外とに仕切る環状仕切り板を備え、
     前記冷媒入口が、前記冷媒入口ヘッダの前記左右方向の端面に2つ設けられており、
     一方の前記冷媒入口は前記端面の上部に設けられて前記環状仕切り板の外側空間に前記冷媒を流入させ、
     他方の前記冷媒入口は前記端面の中央部に設けられて前記環状仕切り板の内側空間に前記冷媒を流入させる請求項1記載のシェルアンドチューブ式熱交換器。
  14.  前記分配板に形成された前記孔は、前記複数の伝熱管のそれぞれに対向する位置に形成されている請求項1~請求項13のいずれか一項に記載のシェルアンドチューブ式熱交換器。
  15.  前記分配板に形成された前記孔は、前記伝熱管が複数本に対して1つ形成されている請求項1~請求項13のいずれか一項に記載のシェルアンドチューブ式熱交換器。
  16.  前記分配板の前記各孔の孔径を全て同じとした請求項1~請求項15のいずれか一項に記載のシェルアンドチューブ式熱交換器。
  17.  前記分配板の前記各孔の孔径は、前記シェル内において下部側から上部側に行くにしたがって段階的に大きくなっている請求項1~請求項15のいずれか一項に記載のシェルアンドチューブ式熱交換器。
  18.  前記分配板の前記各孔の孔径は、径方向の中央部の前記孔の孔径が大きく、前記中央部以外の前記孔の孔径が小さい請求項1~請求項15のいずれか一項に記載のシェルアンドチューブ式熱交換器。
  19.  前記冷媒入口は、前記冷媒入口ヘッダに取り付けられたアダプタに入口管が接続された構成を有し、
     前記アダプタは、前記入口管が挿入される挿入孔と、前記挿入孔に連通し、前記アダプタの中心軸を中心として放射方向に延びる複数の放射孔とを有する請求項1~請求項18のいずれか一項に記載のシェルアンドチューブ式熱交換器。
  20.  前記冷媒入口は、前記冷媒入口ヘッダに取り付けられたアダプタに入口管が接続された構成を有し、
     前記アダプタは、前記入口管が挿入される挿入孔と、前記挿入孔に連通し、前記挿入孔よりも孔径の小さいオリフィス孔とを有する請求項1~請求項18のいずれか一項に記載のシェルアンドチューブ式熱交換器。
  21.  2つ設けられた前記冷媒入口のそれぞれは、前記冷媒入口ヘッダに取り付けられたアダプタに入口管が接続された構成を有し、
     前記冷媒入口毎に、冷媒の流出形態の異なる複数の前記アダプタを使い分けて用いる請求項7または請求項13記載のシェルアンドチューブ式熱交換器。
  22.  冷媒の流出形態の異なる複数の前記アダプタの1つが、前記入口管が挿入される挿入孔と、前記挿入孔に連通し、前記アダプタの中心軸を中心として放射方向に延びる複数の放射孔とを有するアダプタであり、
     他の1つが、前記入口管が挿入される挿入孔と、前記挿入孔に連通し、前記挿入孔よりも孔径の小さいオリフィス孔とを有するアダプタである請求項21記載のシェルアンドチューブ式熱交換器。
  23.  前記冷媒入口ヘッダは、前記入口管が外部から接続された冷媒蓋と、前記冷媒蓋の外部に突出して設けられ、アダプタ取り付け用の取付蓋とを有し、前記取付蓋に前記アダプタが取り付けられる請求項19~請求項22のいずれか一項に記載のシェルアンドチューブ式熱交換器。
  24.  前記冷媒入口ヘッダは、冷媒が流入する入口管が外部から接続された冷媒蓋を有し、前記冷媒蓋には前記入口管よりも小径のオリフィス孔が形成されている請求項1~請求項18のいずれか一項に記載のシェルアンドチューブ式熱交換器。
  25.  前記冷媒入口ヘッダ内を上下に仕切る仕切り板と、
     前記シェルの他端側に配置された折り返しヘッダとを備え、
     前記冷媒入口ヘッダの前記左右方向の端面には、前記仕切り板よりも下方の高さ位置に前記冷媒入口が設けられ、前記仕切り板よりも上方の高さ位置に冷媒出口が設けられており、
     前記複数の伝熱管は前記仕切り板の高さ位置を境に下部側の第1群と上部側の第2群とに分けられ、前記冷媒入口から流入して前記第1群の伝熱管を流れた冷媒が、前記折り返しヘッダで折り返して前記第2群の伝熱管に流れた後、前記冷媒出口から流出する請求項1または請求項2記載のシェルアンドチューブ式熱交換器。
  26.  前記シェルの前記長手方向の両端部の外周面に流体入口と流体出口とを有し、
     前記シェル内において前記流体入口と前記流体出口との間に、前記シェルの内周面に接する円弧状の円弧部と、前記円弧部の両端部を直線で結んだ直線部とから構成される外形形状を有するバッフル板が、前記長手方向に間隔を空けて、前記直線部が交互に向き合うように配置されている請求項1~請求項25のいずれか一項に記載のシェルアンドチューブ式熱交換器。
  27.  前記長手方向の1つ置きに隣接する前記バッフル板同士で、前記バッフル板の配置角度を周方向に順にずらした構成を有する請求項26記載のシェルアンドチューブ式熱交換器。
  28.  前記シェルの長手方向の両端部の外周面に流体入口と流体出口とを有し、前記シェル内において前記流体入口と前記流体出口のそれぞれに対向して流路変更板を備えた請求項26または請求項27記載のシェルアンドチューブ式熱交換器。
  29.  前記バッフル板の前記直線部の両端部に、前記バッフル板の前記円弧部の円弧を延長した扇状の凸部が設けられている請求項26~請求項28のいずれか一項に記載のシェルアンドチューブ式熱交換器。
PCT/JP2018/020001 2018-05-24 2018-05-24 シェルアンドチューブ式熱交換器 WO2019224978A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020520960A JP6956868B2 (ja) 2018-05-24 2018-05-24 シェルアンドチューブ式熱交換器
PCT/JP2018/020001 WO2019224978A1 (ja) 2018-05-24 2018-05-24 シェルアンドチューブ式熱交換器
DE112018007657.1T DE112018007657B4 (de) 2018-05-24 2018-05-24 Rohrbündel-wärmetauscher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/020001 WO2019224978A1 (ja) 2018-05-24 2018-05-24 シェルアンドチューブ式熱交換器

Publications (1)

Publication Number Publication Date
WO2019224978A1 true WO2019224978A1 (ja) 2019-11-28

Family

ID=68616914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020001 WO2019224978A1 (ja) 2018-05-24 2018-05-24 シェルアンドチューブ式熱交換器

Country Status (3)

Country Link
JP (1) JP6956868B2 (ja)
DE (1) DE112018007657B4 (ja)
WO (1) WO2019224978A1 (ja)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5288067U (ja) * 1975-12-26 1977-07-01
JPS5241900B2 (ja) * 1972-12-11 1977-10-21
JPS55180193U (ja) * 1979-06-12 1980-12-24
JPH03260567A (ja) * 1990-03-08 1991-11-20 Mitsubishi Electric Corp 気液二相流体の分配器
JPH05231793A (ja) * 1992-02-25 1993-09-07 Toshiba Corp 平行流形熱交換器
JPH0961071A (ja) * 1995-08-22 1997-03-07 Shoei:Kk 熱交換器
JP2001241883A (ja) * 2000-02-25 2001-09-07 Nippon Shokubai Co Ltd ガス分散板を設けた易重合性物質含有ガス用熱交換器およびその使用方法
JP2003279295A (ja) * 2002-03-22 2003-10-02 Exxonmobil Research & Engineering Co ファウリングが低減された改良熱交換器
GB2391931A (en) * 2001-03-01 2004-02-18 Valeo Termico Sa Heat exchanger for gas
JP2005042957A (ja) * 2003-07-24 2005-02-17 Toshiba Corp 熱交換器およびその製造方法
JP2008528941A (ja) * 2005-02-02 2008-07-31 キャリア コーポレイション 小流路熱交換器のヘッダ
JP2013002688A (ja) * 2011-06-14 2013-01-07 Sharp Corp パラレルフロー型熱交換器及びそれを搭載した空気調和機
US20130112381A1 (en) * 2010-07-16 2013-05-09 Alfa Laval Corporate Ab Heat exchange device with improved system for distributing coolant fluid
JP5901748B2 (ja) * 2012-04-26 2016-04-13 三菱電機株式会社 冷媒分配器、この冷媒分配器を備えた熱交換器、冷凍サイクル装置及び空気調和機
JP2017003189A (ja) * 2015-06-10 2017-01-05 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド シェルアンドチューブ式熱交換器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8365812B2 (en) 2007-06-27 2013-02-05 King Fahd University Of Petroleum And Minerals Shell and tube heat exchanger
JP2012072923A (ja) 2010-09-27 2012-04-12 Mdi Corp シェルアンドチューブ型熱交換器

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241900B2 (ja) * 1972-12-11 1977-10-21
JPS5288067U (ja) * 1975-12-26 1977-07-01
JPS55180193U (ja) * 1979-06-12 1980-12-24
JPH03260567A (ja) * 1990-03-08 1991-11-20 Mitsubishi Electric Corp 気液二相流体の分配器
JPH05231793A (ja) * 1992-02-25 1993-09-07 Toshiba Corp 平行流形熱交換器
JPH0961071A (ja) * 1995-08-22 1997-03-07 Shoei:Kk 熱交換器
JP2001241883A (ja) * 2000-02-25 2001-09-07 Nippon Shokubai Co Ltd ガス分散板を設けた易重合性物質含有ガス用熱交換器およびその使用方法
GB2391931A (en) * 2001-03-01 2004-02-18 Valeo Termico Sa Heat exchanger for gas
JP2003279295A (ja) * 2002-03-22 2003-10-02 Exxonmobil Research & Engineering Co ファウリングが低減された改良熱交換器
JP2005042957A (ja) * 2003-07-24 2005-02-17 Toshiba Corp 熱交換器およびその製造方法
JP2008528941A (ja) * 2005-02-02 2008-07-31 キャリア コーポレイション 小流路熱交換器のヘッダ
US20130112381A1 (en) * 2010-07-16 2013-05-09 Alfa Laval Corporate Ab Heat exchange device with improved system for distributing coolant fluid
JP2013002688A (ja) * 2011-06-14 2013-01-07 Sharp Corp パラレルフロー型熱交換器及びそれを搭載した空気調和機
JP5901748B2 (ja) * 2012-04-26 2016-04-13 三菱電機株式会社 冷媒分配器、この冷媒分配器を備えた熱交換器、冷凍サイクル装置及び空気調和機
JP2017003189A (ja) * 2015-06-10 2017-01-05 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド シェルアンドチューブ式熱交換器

Also Published As

Publication number Publication date
DE112018007657T5 (de) 2021-03-18
JP6956868B2 (ja) 2021-11-02
JPWO2019224978A1 (ja) 2021-04-01
DE112018007657B4 (de) 2022-10-27

Similar Documents

Publication Publication Date Title
EP2853843B1 (en) A refrigerant distributing device, and heat exchanger equipped with such a refrigerant distributing device
EP2392886B1 (en) Orientation insensitive refrigerant distributor tube
EP2784428B1 (en) Heat exchanger
CN113330268B (zh) 热交换器以及具备热交换器的空气调节装置
JP2006250412A (ja) 熱交換器
US10436483B2 (en) Heat exchanger for micro channel
US20190145710A1 (en) Side mounted refrigerant distributor in a flooded evaporator and side mounted inlet pipe to the distributor
US10168083B2 (en) Refrigeration system and heat exchanger thereof
KR101959657B1 (ko) 냉매 열교환기
US20130199288A1 (en) Fluid flow distribution device
JP2013002688A (ja) パラレルフロー型熱交換器及びそれを搭載した空気調和機
JP2014020755A (ja) 流下液膜式蒸発器
CN105783347A (zh) 降膜式蒸发器用制冷剂分配器
JP2011257111A (ja) エバポレータ
JP2011257111A5 (ja)
US20180172357A1 (en) Heat exchanger
JPH0355490A (ja) 熱交換器
WO2019224978A1 (ja) シェルアンドチューブ式熱交換器
JP2015092120A (ja) 凝縮器
JP5194279B2 (ja) エバポレータ
KR102491490B1 (ko) 열교환기
JP2005156095A (ja) 熱交換器
JP2017172906A (ja) 熱交換器
JP2016176615A (ja) パラレルフロー型熱交換器
KR101634399B1 (ko) 증발기의 냉매 유량 분배용 배플의 구조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919607

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020520960

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18919607

Country of ref document: EP

Kind code of ref document: A1