WO2019223559A1 - 一种用于再生粗铅精炼的选择性除锑砷保锡剂及使用方法 - Google Patents

一种用于再生粗铅精炼的选择性除锑砷保锡剂及使用方法 Download PDF

Info

Publication number
WO2019223559A1
WO2019223559A1 PCT/CN2019/086506 CN2019086506W WO2019223559A1 WO 2019223559 A1 WO2019223559 A1 WO 2019223559A1 CN 2019086506 W CN2019086506 W CN 2019086506W WO 2019223559 A1 WO2019223559 A1 WO 2019223559A1
Authority
WO
WIPO (PCT)
Prior art keywords
antimony
arsenic
lead
tin
retaining agent
Prior art date
Application number
PCT/CN2019/086506
Other languages
English (en)
French (fr)
Inventor
杨春明
Original Assignee
江苏新春兴再生资源有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏新春兴再生资源有限责任公司 filed Critical 江苏新春兴再生资源有限责任公司
Priority to EP19806405.7A priority Critical patent/EP3805413A4/en
Priority to US17/058,136 priority patent/US11414724B2/en
Priority to AU2019274901A priority patent/AU2019274901A1/en
Publication of WO2019223559A1 publication Critical patent/WO2019223559A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • C22B13/06Refining
    • C22B13/08Separating metals from lead by precipitating, e.g. Parkes process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • C22B13/06Refining
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • C22B13/02Obtaining lead by dry processes
    • C22B13/025Recovery from waste materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C24/00Alloys based on an alkali or an alkaline earth metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0084Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ carbon or graphite as the main non-metallic constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the field of refining and impurity removal of regenerated crude lead, and in particular to a selective antimony, arsenic and tin retaining agent used for refining regenerated crude lead and a method for using the same.
  • crude lead contains impurities such as antimony, tin, arsenic, iron, cadmium, and copper, and impurities in the crude lead must be refined to remove impurities.
  • Traditional lead refining removes impurities such as antimony, arsenic, and tin.
  • Oxidative refining removes impurities by oxidizing slag with oxygen in the air.
  • Basic refining uses sodium nitrate as an oxidant The impurities are oxidized and slag is removed.
  • the purpose of the present invention is to provide a selective antimony and arsenic tin retaining agent for regenerating crude lead refining and a method for using the same, to solve the problem that a large amount of tin resources are wasted in the prior art oxidation refining and alkaline refining methods.
  • antimony and arsenic tin retaining agents are composed of 10-30 wt% aluminum, 65-85 wt% calcium, 1-10 wt% coke powder, and 1-2 wt%.
  • Composition of lead powder; calcium, aluminum, coke powder, and lead powder are thoroughly mixed according to the above-mentioned mass ratio to prepare an antimony and arsenic tin retaining agent.
  • the selective antimony arsenic tin retaining agent is composed of 10% by weight of aluminum, 80% by weight of calcium, 8% by weight of coke powder, and 2% by weight of lead powder based on its total mass of 100.
  • the selective antimony arsenic tin retaining agent is composed of 25% by weight of aluminum, 72% by weight of calcium, 2% by weight of coke powder, and 1% by weight of lead powder based on its total mass of 100.
  • the selective antimony arsenic tin retaining agent is composed of 30 wt% aluminum, 67 wt% calcium 2 wt% coke powder, and 1 wt% lead powder based on its total mass of 100.
  • the selective antimony and arsenic tin remover of the present invention is applied to the production of antimony and arsenic by refining primary lead and the production of antimony and arsenic by refining crude lead.
  • the method for removing the antimony and arsenic in crude lead by using the selective antimony arsenic and tin retaining agent refining the regenerated crude lead includes the following steps:
  • Step (1) Weigh the components according to the mass ratio, and mix the components uniformly to form an antimony and arsenic removing composition
  • Step (2) The antimony and arsenic-removed crude lead is heated and melted to a temperature of 340-500 ° C, a sample is taken, and the sample is subjected to spectral analysis to obtain the total antimony-arsenic content in the pot, which is heated to 580-650 ° C, and then the antimony is removed.
  • the amount of antimony arsenic tin retaining agent is calculated based on 1-1.5 times of the total antimony arsenic content. Turn on the mixer and stir the lead solution to generate a vortex. Does not affect the normal existence of the vortex.
  • the antimony arsenic remover is melted into the lead solution to form antimony compound with antimony arsenide and floats on the liquid surface of the lead solution. After adding the antimony remover, the arsenic remover is continued to stir for 10 to 60 minutes;
  • Step (3) Allow to cool down, reduce the temperature of the lead solution after the reaction to below 480 ° C, add coal powder or sawdust and stir to remove the remaining calcium and aluminum until the white paste-like residue becomes a loose black powder. The slag was removed, and the antimony and arsenic in the lead solution dropped to less than 0.0005%, and the tin content remained basically unchanged.
  • the coke powder in the antimony, arsenic and tin removal agent described in the invention can avoid the slag formation of lead liquid at high temperature, which is beneficial to prevent the oxidation of lead.
  • the agent is fully and rapidly dissolved in the lead solution; the calcium and aluminum in the antimony, arsenic, and tin retention agent can react with antimony and arsenic at high temperatures to form antimonides and arsenides; during the process of removing antimony and arsenic, the antimonides, Arsenide has a high melting point, low solubility in lead solution, and its density is less than that of lead. It can be precipitated from the lead solution and float on top of the lead solution to become scum.
  • the antimony compound is stirred by the mixer.
  • the arsenic compound is further floated and removed from the lead solution to achieve the deep separation of antimony, arsenic and lead solution.
  • the antimony and arsenic content in the lead solution can be below 0.0005%, while the tin content is basically unchanged.
  • the invention Compared with the existing crude lead antimony and arsenic removal method, the invention has the following advantages:
  • the content of antimony and arsenic in lead is as low as 0.0005%, which is far lower than the national standard, and the removal rate of antimony and arsenic is high.
  • the operation method is simple and reliable, the application range is wide, the process is smokeless and tasteless, and the working environment is good.
  • the antimony-removing arsenic tin retaining agent of the present invention is composed of 10-30% by weight of aluminum, 65-85% by weight of calcium, 1-10% by weight of coke powder, and 1-2% by weight of lead powder; , Aluminum, coke powder, and lead powder are thoroughly mixed according to the above-mentioned mass ratio to prepare an antimony, arsenic and tin retaining agent.
  • the selective antimony arsenic tin retaining agent is composed of 10% by weight of aluminum, 80% by weight of calcium, 8% by weight of coke powder, and 2% by weight of lead powder based on its total mass of 100.
  • the selective antimony arsenic tin retaining agent is composed of 25% by weight of aluminum, 72% by weight of calcium, 2% by weight of coke powder, and 1% by weight of lead powder based on its total mass of 100.
  • the selective antimony arsenic tin retaining agent is composed of 30 wt% aluminum, 67 wt% calcium 2 wt% coke powder, and 1 wt% lead powder based on its total mass of 100.
  • the selective antimony and arsenic tin remover of the present invention is applied to the production of antimony and arsenic by refining primary lead and the production of antimony and arsenic by refining crude lead.
  • the method for removing the antimony and arsenic in crude lead by using the selective antimony arsenic and tin retaining agent refining the regenerated crude lead includes the following steps:
  • Step (1) Weigh the components according to the mass ratio, and mix the components uniformly to form an antimony and arsenic removing composition
  • Step (2) Take a sample and perform spectral analysis on the sample to obtain the total antimony and arsenic content in the pot.
  • the temperature is raised to 580-650 ° C, and then the antimony and arsenic removal tin retaining agent is added to the refining pot.
  • the amount is calculated according to 1-1.5 times of the total antimony and arsenic content.
  • the speed of adding the antimony arsenic tin retaining agent should not affect the normal existence of the vortex.
  • the antimony arsenic tin retaining agent melts quickly.
  • Antimony and arsenic are synthesized in the lead solution to form antimony compounds and float on the liquid surface of the lead solution. After adding the antimony and arsenic removing agent, continue stirring for 10 to 60 minutes;
  • Step (3) Allow to cool down, reduce the temperature of the lead solution after the reaction to below 480 ° C, add coal powder or sawdust and stir to remove the remaining calcium and aluminum until the white paste-like residue becomes a loose black powder. Remove the antimony and arsenic in the lead solution to less than 0.0005%, and the tin content is basically unchanged.
  • Example 1 A selective antimony, arsenic, and tin retention agent, based on its total mass of 100, is composed of 10% by weight of aluminum, 80% by weight of calcium, 8% by weight of coke powder, and 2% by weight of lead powder.
  • the slag is weighed and sampled for direct reading spectrum analysis.
  • the composition is as follows: Cu0.0007%, Sb 0.25%, As 0.0051%, Sn 0.615%, Bi 0.003% Ag 0.0008%, continue to heat up to 635 ° C to obtain the total antimony and arsenic content of the pot. Add 1.3 times the total antimony and arsenic content to remove the antimony and arsenic composition.
  • the ingredients are: 10 wt% Al, 80 wt% Ca, 8 wt% coke powder, and 2 wt% lead powder.
  • Example 2 A selective antimony, arsenic, and tin retention agent, based on its total mass of 100, was composed of 25 wt% aluminum, 72 wt% calcium, 2 wt% coke powder, and 1 wt% lead powder.
  • the slag is weighed and sampled for direct reading spectrum analysis.
  • the composition is as follows: Cu0.0005%, Sb 0.15% As 0.0031%, Sn 0.517%, Bi 0.0026% Ag0.001%, continue heating to 605 ° C to obtain the total antimony and arsenic content of the pot. Add 1.2 times the total antimony and arsenic content to remove the antimony and arsenic composition and composition.
  • the ingredients are: 25 wt% Al, 72 wt% Ca, 2 wt% coke powder, and 1 wt% lead powder.
  • the composition is as follows: Cu0.0005%, Sb 0.0003%, As 0.0002%, Sn 0.501%, Bi 0.0026% Ag0.00098%.
  • Example 3 Selective removal of antimony, arsenic, and tin retaining agent, based on its total mass of 100, consisting of 30 wt% aluminum, 67 wt% calcium 2 wt% coke powder, and 1 wt% lead powder.
  • composition is as follows: Cu0.0003%, Sb 0.08% As 0.0041%, Sn 0.685%, Bi 0.0027% Ag0.0007%, continue heating and heating to 595 ° C to obtain the total antimony arsenic content of the pot, according to 1.4 times the total antimony arsenic content, add antimony and arsenic composition, composition
  • the components are: 30 wt% Al, 67 wt% Ca, 8 wt% coke powder, and 2 wt% lead powder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种用于再生粗铅精炼的选择性除锑砷保锡剂及使用方法,属于再生粗铅的精炼除杂领域。所述的除锑砷保锡剂以其总质量为基准由10~30wt%的铝、65~85wt%的钙、1~10wt%的焦粉和1~5wt%的铅粉组成。根据铅中锑的含量,将上述除锑砷保锡剂按一定的比例加入温度为550~650℃左右铅液中进行除锑、砷反应,反应结束后降温捞出锑砷浮渣得除锑、砷铅液,锑砷含量降低至0.0005wt%以下,锡含量基本不变。本发明提供的除锑砷保锡剂对铅液中锑砷的脱除率高,实现对杂质锑砷的深度去除,有效地保留了有价金属锡,降低了铅合金配制的生产成本,同时除锑、砷反应过程中无烟无味,工作环境良好。

Description

一种用于再生粗铅精炼的选择性除锑砷保锡剂及使用方法 技术领域
本发明涉及一种再生粗铅的精炼除杂领域,尤其涉及一种用于再生粗铅精炼的选择性除锑砷保锡剂及使用方法。
背景技术
在再生铅生产过程中,粗铅中含有锑、锡、砷、铁、镉、铜等杂质,必须要对粗铅中的杂质进行精炼除杂。传统的铅精炼除锑、砷、锡等杂质有氧化精炼和碱性精炼两种方法;氧化精炼是借助于空气中的氧对杂质的氧化造渣除去,碱性精炼则是利用硝酸钠做氧化剂将杂质氧化造渣除去。由于锑、砷、锡三种金属元素化学性质相近,精炼除杂过程中都是同时被除去,在配制低锑高锡铅合金、无锑含锡铅合金时,无论采用氧化精炼或碱性精炼时都会将粗铅中高价值的金属锡氧化进入精炼渣中,造成锡资源大量浪费,增加生产成本。
发明内容
本发明的目的是要提供一种用于再生粗铅精炼的选择性除锑砷保锡剂及使用方法,解决现有技术氧化精炼和碱性精炼方法中造成锡资源大量浪费的问题。
本发明的技术方案是这样实现的:除锑砷保锡剂以其总质量100为基准由10~30wt%的铝、65~85wt%的钙、1~10wt%的焦粉和1~2wt%的铅粉组成;将钙、铝、焦粉、铅粉按上述质量配比充分混合,制得除锑砷保锡剂。
作为第一种优选,所述选择性除锑砷保锡剂,以其总质量100为基准由10wt%的铝、80wt%的钙、8wt%的焦粉和2wt%的铅粉组成。
作为第二种优选,所述选择性除锑砷保锡剂,以其总质量100为基准由25wt%的铝、72wt%的钙、2wt%的焦粉和1wt%的铅粉组成。
作为第三种优选,所述选择性除锑砷保锡剂,以其总质量100为基准由30wt%的铝、67wt%的钙2wt%的焦粉和1wt%的铅粉组成。
本发明的选择性除锑砷保锡剂应用于原生铅的精炼除锑、砷生产以及再生粗铅精炼除锑、砷生产。
采用上述再生粗铅精炼的选择性除锑砷保锡剂除粗铅中锑砷的使用方法,包括以下步骤:
步骤(1):按照质量配比称好各组分,将各组分均匀混合形成除锑、砷组合物;
步骤(2):将除锑、砷的粗铅加热熔化升温到340~500℃,取样,对样品进行光谱分析,得到锅中的锑砷总含量,升温到580-650℃,然后将除锑砷保锡剂加入至精炼锅中,除锑砷保锡剂加入的量按锑砷总含量的1-1.5倍计算;开启搅拌机,搅拌铅液产生旋涡,投入除锑砷保锡剂的速度应不影响漩涡的正常存在,除锑砷保锡剂熔入铅液中与锑砷化合成锑化物而浮在铅液的液面,加完除锑砷保锡剂后继续搅拌10~60min;
步骤(3):静置降温,将反应后的铅液温度降至480℃以下,加入煤粉或锯末搅拌除去剩余的钙、铝,直到白色糊状渣变成疏松黑色粉状为止,将灰渣捞出,铅液中的锑、砷降至 0.0005%以下,锡含量基本不变。
有益效果,由于采用了上述方案,发明所述除锑砷保锡剂中焦粉,可避免铅液在高温下造渣,有利于阻止铅的氧化,少量的铅粉可使除锑砷保锡剂充分快速溶解于铅液中;除锑砷保锡剂中的钙、铝,可以在高温下与锑、砷反应生成锑化物、砷化物;除锑、砷的过程中,生成的锑化物、砷化物熔点高,在铅液中的溶解性很低、其密度小于铅,能从铅液中析出上浮在铅液上面变成浮渣,随着温度的降低,在搅拌机搅拌的作用下锑化物砷化物进一步从铅液中浮出而脱除掉,达到锑、砷与铅液的深度分离,可将铅液中的锑、砷含量在0.0005%以下,而锡含量基本不变。解决了现有技术氧化精炼和碱性精炼方法中造成锡资源大量浪费的问题,达到了本发明的目的。
本发明和现有的粗铅除锑、砷方法相比具有以下优点:
1、可选择性的除去锑、砷,极大的保留铅中的有价金属锡,降低了配制合金的生产成本。
2、铅中锑、砷含量低至0.0005%,远低于国家标准,锑砷去除率高。
3、除锑、砷反应快,试剂用量少,造渣量少。
4、操作方法简单可靠,适用范围广,反应过程中无烟无味,工作环境良好。
具体实施方式
本发明的除锑砷保锡剂以其总质量100为基准由10~30wt%的铝、65~85wt%的钙、1~10wt%的焦粉和1~2wt%的铅粉组成;将钙、铝、焦粉、铅粉按上述质量配比充分混合,制得除锑砷保锡剂。
作为第一种优选,所述选择性除锑砷保锡剂,以其总质量100为基准由10wt%的铝、80wt%的钙、8wt%的焦粉和2wt%的铅粉组成。
作为第二种优选,所述选择性除锑砷保锡剂,以其总质量100为基准由25wt%的铝、72wt%的钙、2wt%的焦粉和1wt%的铅粉组成。
作为第三种优选,所述选择性除锑砷保锡剂,以其总质量100为基准由30wt%的铝、67wt%的钙2wt%的焦粉和1wt%的铅粉组成。
本发明的选择性除锑砷保锡剂应用于原生铅的精炼除锑、砷生产以及再生粗铅精炼除锑、砷生产。
采用上述再生粗铅精炼的选择性除锑砷保锡剂除粗铅中锑砷的使用方法,包括以下步骤:
步骤(1):按照质量配比称好各组分,将各组分均匀混合形成除锑、砷组合物;
步骤(2):取样,对样品进行光谱分析,得到锅中的锑砷总含量,升温到580-650℃,然后将除锑砷保锡剂加入至精炼锅中,除锑砷保锡剂加入的量按锑砷总含量的1-1.5倍计算;开启搅拌机,搅拌铅液产生旋涡,投入除锑砷保锡剂的速度应不影响漩涡的正常存在,除锑砷保锡剂很快熔入铅液中与锑砷化合成锑化物而浮在铅液的液面,加完除锑砷保锡剂后继续搅拌10~60min;
步骤(3):静置降温,将反应后的铅液温度降至480℃以下,加入煤粉或锯末搅拌除去剩余的钙、铝,直到白色糊状渣变成疏松黑色粉状为止,将渣捞出,铅液中的锑、砷降至0.0005%以下,锡含量基本不变。
下面以实施例对本发明的技术方案进一步说明:
实施例1:选择性除锑砷保锡剂,以其总质量100为基准由10wt%的铝、80wt%的钙、8wt%的焦粉和2wt%的铅粉组成。
称重向精炼锅中投入再生粗铅,加热熔化,升温至500℃用除铜剂除铜捞渣后,渣称重,取样直读光谱分析,成分如下:Cu0.0007%,Sb 0.25%,As 0.0051%,Sn 0.615%,Bi0.003%Ag0.0008%,继续加热升温至635℃,得到锅的锑砷总含量,按锑砷总含量的1.3倍加除锑、砷组合物,组合物的成分为:10wt%的Al、80wt%的Ca、8wt%的焦粉和2wt%铅粉。
开启搅拌机,将除锑、砷剂加入铅液中,持续搅拌30min,停机,静置降温至480℃,加入煤粉或锯末搅拌除去剩余的钙、铝,直到白色糊状渣变成疏松黑色粉状为止,将灰渣捞出,取样直读光谱分析,成分如下:Cu0.0007%,Sb 0.0004%,As 0.0002%,Sn 0.601%,Bi0.003%Ag0.0008%。
实施例2:选择性除锑砷保锡剂,以其总质量100为基准由25wt%的铝、72wt%的钙、2wt%的焦粉和1wt%的铅粉组成。
称重向精炼锅中投入再生粗铅,加热熔化,升温至490℃用除铜剂除铜捞灰渣后,渣称重,取样直读光谱分析,成分如下:Cu0.0005%,Sb 0.15%,As 0.0031%,Sn 0.517%,Bi0.0026%Ag0.001%,继续加热升温至605℃,得到锅的锑砷总含量,按锑砷总含量的1.2倍加除锑、砷组合物,组合物的成分为:25wt%的Al、72wt%的Ca、2wt%的焦粉和1wt%铅粉。
开启搅拌机,将除锑、砷剂加入铅液中,持续搅拌35min,停机,静置降温至450℃,加入煤粉或锯末搅拌除去剩余的钙、铝,直到白色糊状渣变成疏松黑色粉状为止,将渣捞出,取样直读光谱分析,成分如下:Cu0.0005%,Sb 0.0003%,As 0.0002%,Sn 0.501%,Bi0.0026%Ag0.00098%。
实施例3:选择性除锑砷保锡剂,以其总质量100为基准由30wt%的铝、67wt%的钙2wt%的焦粉和1wt%的铅粉组成。
称重向精炼锅中投入再生粗铅,加热熔化,升温至510℃用除铜剂除铜捞灰渣后,渣称重,取样直读光谱分析,成分如下:Cu0.0003%,Sb 0.08%,As 0.0041%,Sn 0.685%,Bi0.0027%Ag0.0007%,继续加热升温至595℃,得到锅的锑砷总含量,按锑砷总含量的1.4倍加除锑、砷组合物,组合物的成分为:30wt%的Al、67wt%的Ca、8wt%的焦粉和2wt%铅粉。
开启搅拌机,将除锑、砷剂加入铅液中,持续搅拌30min,停机,静置降温至480℃,加入煤粉或锯末搅拌除去剩余的钙、铝,直到白色糊状渣变成疏松黑色粉状为止,将渣捞出,取样直读光谱分析,成分如下:Cu0.0003%,Sb 0.0005%,As 0.0002%,Sn 0.661%,Bi0.0028%Ag0.0007%。

Claims (2)

  1. 一种用于再生粗铅精炼的选择性除锑砷保锡剂,其特征是:除锑砷保锡剂以其总质量100为基准由10~30wt%的铝、65~85wt%的钙、1~10wt%的焦粉和1~2wt%的铅粉组成;将钙、铝、焦粉、铅粉按上述质量配比充分混合,制得除锑砷保锡剂。
  2. 采用权利要求1所述的一种用于再生粗铅精炼的选择性除锑砷保锡剂的使用方法,其特征是:选择性除锑砷保锡剂应用于原生铅的精炼除锑、砷生产以及再生粗铅精炼除锑、砷生产;
    其使用方法,包括以下步骤:
    步骤(1):按照质量配比称好各组分,将各组分均匀混合形成除锑、砷组合物;
    步骤(2):取样,对样品进行光谱分析,得到锅中的锑砷总含量,升温到580-650℃,然后将除锑砷保锡剂加入至精炼锅中,除锑砷保锡剂加入的量按锑砷总含量的1-1.5倍计算;开启搅拌机,搅拌铅液产生旋涡,投入除锑砷保锡剂的速度应不影响漩涡的正常存在,除锑砷保锡剂熔入铅液中与锑砷化合成锑化物而浮在铅液的液面,加完除锑砷保锡剂后继续搅拌10~60min;
    步骤(3):静置降温,将反应后的铅液温度降至480℃以下,加入造渣剂或锯末搅拌除去剩余的钙、铝,直到白色糊状渣变成疏松黑色粉状为止,将渣捞出,铅液中的锑、砷降至0.0005%以下,锡含量基本不变。
PCT/CN2019/086506 2018-05-25 2019-05-12 一种用于再生粗铅精炼的选择性除锑砷保锡剂及使用方法 WO2019223559A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19806405.7A EP3805413A4 (en) 2018-05-25 2019-05-12 SELECTIVE ANTIMONY AND ARSENIC REMOVAL AND TIN RETAINING AGENT FOR REFINING SECONDARY RAW LEAD, AND METHOD OF USE
US17/058,136 US11414724B2 (en) 2018-05-25 2019-05-12 Agent for selective antimony and arsenic removal and tin retaining for refining secondary crude lead, and use method thereof
AU2019274901A AU2019274901A1 (en) 2018-05-25 2019-05-12 Selective antimony and arsenic removal and tin retaining agent for refining secondary crude lead, and use method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810518994.4 2018-05-25
CN201810518994.4A CN108707761B (zh) 2018-05-25 2018-05-25 一种用于再生粗铅精炼的选择性除锑砷保锡剂及使用方法

Publications (1)

Publication Number Publication Date
WO2019223559A1 true WO2019223559A1 (zh) 2019-11-28

Family

ID=63869696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086506 WO2019223559A1 (zh) 2018-05-25 2019-05-12 一种用于再生粗铅精炼的选择性除锑砷保锡剂及使用方法

Country Status (5)

Country Link
US (1) US11414724B2 (zh)
EP (1) EP3805413A4 (zh)
CN (1) CN108707761B (zh)
AU (1) AU2019274901A1 (zh)
WO (1) WO2019223559A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108707761B (zh) 2018-05-25 2019-10-29 江苏新春兴再生资源有限责任公司 一种用于再生粗铅精炼的选择性除锑砷保锡剂及使用方法
CN113684386A (zh) * 2021-08-17 2021-11-23 尤全仁 一种粗杂铅精炼再生铅锡基多元素合金的方法
CN113737020B (zh) * 2021-09-10 2022-09-13 广西万仕智稀贵金属科技有限公司 一种粗锑精炼过程深度除镉的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743074B2 (zh) * 1977-03-02 1982-09-11
CN102011015A (zh) * 2010-12-21 2011-04-13 株洲冶炼集团股份有限公司 一种粗铅精炼脱除砷、锑、铜的方法
CN105063369A (zh) * 2015-07-30 2015-11-18 浙江天能电源材料有限公司 一种用于再生铅精炼的除铜组合物及其应用
CN106282659A (zh) * 2016-08-21 2017-01-04 株洲冶炼集团股份有限公司 一种铅熔炼用复合除锑剂及除锑工艺
CN108588453A (zh) * 2018-05-25 2018-09-28 江苏新春兴再生资源有限责任公司 利用废铅酸蓄电池废铅栅网生产低锡铅钙合金的工艺方法
CN108695572A (zh) * 2018-05-25 2018-10-23 江苏新春兴再生资源有限责任公司 基于废铅酸蓄电池废铅栅网生产铅钙稀土合金的工艺方法
CN108707761A (zh) * 2018-05-25 2018-10-26 江苏新春兴再生资源有限责任公司 一种用于再生粗铅精炼的选择性除锑砷保锡剂及使用方法
CN108711652A (zh) * 2018-05-25 2018-10-26 江苏新春兴再生资源有限责任公司 基于废铅酸蓄电池废铅栅网生产铅钙铈合金的工艺方法
CN108728648A (zh) * 2018-05-25 2018-11-02 江苏新春兴再生资源有限责任公司 利用废铅酸蓄电池废铅栅网生产高锡铅钙合金的工艺方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4911755A (en) * 1989-08-28 1990-03-27 Cominco Ltd. Method for the refining of lead
US8211207B2 (en) * 2006-12-05 2012-07-03 Stannum Group LLC Process for refining lead bullion
CN101798632A (zh) * 2010-04-27 2010-08-11 天能电池(芜湖)有限公司 一种精铅的熔炼方法
JP5743074B2 (ja) 2011-03-31 2015-07-01 三菱マテリアル株式会社 試料調製方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743074B2 (zh) * 1977-03-02 1982-09-11
CN102011015A (zh) * 2010-12-21 2011-04-13 株洲冶炼集团股份有限公司 一种粗铅精炼脱除砷、锑、铜的方法
CN105063369A (zh) * 2015-07-30 2015-11-18 浙江天能电源材料有限公司 一种用于再生铅精炼的除铜组合物及其应用
CN106282659A (zh) * 2016-08-21 2017-01-04 株洲冶炼集团股份有限公司 一种铅熔炼用复合除锑剂及除锑工艺
CN108588453A (zh) * 2018-05-25 2018-09-28 江苏新春兴再生资源有限责任公司 利用废铅酸蓄电池废铅栅网生产低锡铅钙合金的工艺方法
CN108695572A (zh) * 2018-05-25 2018-10-23 江苏新春兴再生资源有限责任公司 基于废铅酸蓄电池废铅栅网生产铅钙稀土合金的工艺方法
CN108707761A (zh) * 2018-05-25 2018-10-26 江苏新春兴再生资源有限责任公司 一种用于再生粗铅精炼的选择性除锑砷保锡剂及使用方法
CN108711652A (zh) * 2018-05-25 2018-10-26 江苏新春兴再生资源有限责任公司 基于废铅酸蓄电池废铅栅网生产铅钙铈合金的工艺方法
CN108728648A (zh) * 2018-05-25 2018-11-02 江苏新春兴再生资源有限责任公司 利用废铅酸蓄电池废铅栅网生产高锡铅钙合金的工艺方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3805413A4 *

Also Published As

Publication number Publication date
CN108707761B (zh) 2019-10-29
US20210198770A1 (en) 2021-07-01
CN108707761A (zh) 2018-10-26
AU2019274901A1 (en) 2020-12-03
US11414724B2 (en) 2022-08-16
EP3805413A4 (en) 2022-03-09
EP3805413A1 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
WO2019223559A1 (zh) 一种用于再生粗铅精炼的选择性除锑砷保锡剂及使用方法
CN101886174B (zh) 从阳极泥回收所产生的含铋物料中提炼高纯铋的工艺
CN105063369B (zh) 一种用于再生铅精炼的除铜组合物及其应用
FR2472617A1 (fr) Procede pour la recuperation des metaux du groupe platine des substrats refractaires en matiere ceramique
JPS58130114A (ja) ケイ素の精製方法
CN102329960A (zh) 一种从废旧电路板中提金的方法
CN108251677B (zh) 一种铅合金冶炼用除渣剂及其制备方法
WO2019180642A1 (en) Method for the selective recovery of tin and a reactor for use in said method
WO2019223560A1 (zh) 利用废铅酸蓄电池废铅栅网生产铅钙合金的工艺方法
CN111363943A (zh) 一种再生铅用除渣剂及其应用
JP2009041052A (ja) スラグフューミング炉による含銅ドロスの製錬方法
US1804054A (en) Method of treating materials containing lead
CN112695206B (zh) 一种粗铅火法精炼除铜剂、制备方法及应用
CN1614045A (zh) 一种废镁合金的回收方法
CN114774704A (zh) 一种利用锡精炼渣生产低铅锡基巴氏合金的方法
JP2009209405A (ja) 含銅ドロスの製錬方法
JP4525453B2 (ja) スラグフューミング方法
CN113684386A (zh) 一种粗杂铅精炼再生铅锡基多元素合金的方法
CN107312931A (zh) 一种同时回收贵金属和制备高纯硅的方法
US5100466A (en) Process for purifying lead using calcium/sodium filter cake
CN1540007A (zh) 低熔点有色金属火法精炼中的除铜精炼剂及其工艺
CN111270093A (zh) 一种铅合金除渣剂及其使用方法
US2296196A (en) Process for purifying metals
US2043575A (en) Process for detinning lead alloys
US5108497A (en) Treatment of indium dusts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19806405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019274901

Country of ref document: AU

Date of ref document: 20190512

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019806405

Country of ref document: EP

Effective date: 20210111