WO2019223560A1 - 利用废铅酸蓄电池废铅栅网生产铅钙合金的工艺方法 - Google Patents

利用废铅酸蓄电池废铅栅网生产铅钙合金的工艺方法 Download PDF

Info

Publication number
WO2019223560A1
WO2019223560A1 PCT/CN2019/086507 CN2019086507W WO2019223560A1 WO 2019223560 A1 WO2019223560 A1 WO 2019223560A1 CN 2019086507 W CN2019086507 W CN 2019086507W WO 2019223560 A1 WO2019223560 A1 WO 2019223560A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
antimony
tin
arsenic
calcium
Prior art date
Application number
PCT/CN2019/086507
Other languages
English (en)
French (fr)
Inventor
杨春明
Original Assignee
江苏新春兴再生资源有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810518706.5A external-priority patent/CN108588453B/zh
Priority claimed from CN201810518690.8A external-priority patent/CN108728648B/zh
Application filed by 江苏新春兴再生资源有限责任公司 filed Critical 江苏新春兴再生资源有限责任公司
Publication of WO2019223560A1 publication Critical patent/WO2019223560A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • C22B13/02Obtaining lead by dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C11/00Alloys based on lead
    • C22C11/06Alloys based on lead with tin as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention relates to the field of comprehensive recovery and utilization of waste lead-acid batteries, in particular to a process method for producing lead-calcium alloy by using waste lead grids of waste lead-acid batteries.
  • the lead-acid battery grid is the most important inactive material in the battery. It acts as an important carrier for the active material and plays the role of conducting and collecting current, so that the current is evenly distributed on the active material.
  • Lead-antimony alloy has always been the main material of choice for grids. With the advent of maintenance-free lead-acid batteries, lead-antimony alloys have been unable to meet the maintenance-free performance requirements of batteries, and have been gradually replaced by lead-calcium alloys. Studies have found that lead-calcium alloys have Small resistivity, good electrical conductivity, and excellent mechanical strength, lead-acid batteries made of it lose water slowly, which can meet the technical requirements of less maintenance or no maintenance. Commonly used lead-calcium alloys are generally formulated using primary electrolytic lead, which will inevitably bring certain restrictions on procurement and production, which is not conducive to cost control.
  • waste lead grid After the waste lead-acid battery is crushed by the automatic crushing and sorting system, the following four components are generated: waste lead grid, lead mud, waste plastic, and separator paper, of which waste lead grid accounts for about 25-30%.
  • the positive and negative lead grids of electric vehicle batteries, communication energy storage and other batteries are composed of lead-tin-calcium-aluminum alloy. Some negative grids use low antimony lead alloys, and the waste lead grids generated after crushing and sorting are in the melting pot.
  • the composition of recycled lead produced by low-temperature melting is generally: Pb ⁇ 99%, Sb ⁇ 0.3%, As ⁇ 0.1%, Fe ⁇ 0.005%, Sn 0.30 ⁇ 0.8%, Cu ⁇ 0.02%, Cd ⁇ 0.02%, Bi ⁇ 0.004%, Ag ⁇ 0.0008%.
  • the alloy must be refined to remove impurities when formulating the alloy.
  • the traditional methods are oxidative refining and alkaline refining. Due to the similar chemical properties of antimony, arsenic, and tin, the three metal elements will be removed during the refining process. It is removed at the same time, no matter it is oxidative refining or alkaline refining, the high-value metal tin in crude lead will be oxidized into the refining slag, causing a lot of waste of tin resources and increasing production costs.
  • the purpose of the present invention is to provide a process for producing lead-calcium alloy by using a waste lead-acid battery waste lead grid to solve the problem that in the prior art, the metal tin in the waste lead grid cannot be used regardless of the oxidation refining or alkaline refining. The problem.
  • the technical scheme of the present invention is implemented as follows: The technical scheme is as follows: the waste lead grid is melted at a low temperature in a melting pot, the melting temperature is controlled at 350-500 ° C, ash and slag are added, and the copper removal agent is added to remove copper to obtain copper and lead removal solution; The temperature of the copper and lead removal solution was raised to 580 to 650 ° C, and an antimony and arsenic removal agent was added to remove antimony and arsenic to obtain a tin-containing lead solution. The tin-containing lead solution was purified, and then a lead-calcium alloy was prepared.
  • the production method of the lead-calcium alloy is as follows:
  • Step (1) The waste lead grid is melted at low temperature; the crushed and separated lead grids such as waste electric bicycle batteries and maintenance-free batteries are melted at a low temperature in a melting pot, and the temperature is controlled at 350-500 ° C to obtain crude lead liquid.
  • the lead liquid is treated with ash and slag, and then pumped into the copper removal pot by a lead pump, or transferred to the copper removal pot through a thermal lead package;
  • Step (2) Perform copper removal treatment in a copper removal pot; control the temperature at 330-550 ° C, add copper removal agent to remove copper, and then take a sample and perform spectral analysis on the sample.
  • Cu ⁇ 0.001% remove copper and lead Liquid ash treatment, and then pumped into the refining pot with a lead pump;
  • Step (3) Perform antimony and arsenic removal in the refining pot; take a sample and perform spectroscopic analysis on the sample to obtain the total antimony and arsenic content in the pot, raise the temperature to 580-650 ° C, and then add the antimony and arsenic remover to the refining
  • the amount of antimony, arsenic and tin removal agent added in the pot is calculated according to 1-1.5 times of the total antimony and arsenic content. Turn on the stirrer and stir the lead liquid to generate a vortex. The speed of the antimony and arsenic removal tin agent should not affect the normal existence of the vortex.
  • the antimony removal arsenic tin retention agent melts into the lead solution to synthesize antimony compounds with antimony arsenic and floats on the liquid surface of the lead solution. After the addition of the antimony removal arsenic tin retention agent, continue stirring for 10 to 60 minutes; The temperature of the lead solution drops below 480 ° C. Add coal powder or sawdust and stir to remove the remaining calcium and aluminum until the white paste-like residue becomes a loose black powder. Sampling and spectral analysis of the sample, Sb in the lead solution is ⁇ 0.0005. %, As ⁇ 0.0005%, ash and slag treatment, and then remove the antimony, arsenic, lead liquid into the alloy pot with a lead pump;
  • Step (4) adjusting the tin content
  • step (5) the temperature is lowered to 480-600 ° C, and the lead pump is pumped into the casting machine, and the ingot is turned into a lead-calcium alloy finished product.
  • the step (4) is adding alloying element alloying treatment to the alloy pot, adding pure lead to adjust the tin content according to customer standards, heating up to 580-680 ° C, adding a lead calcium master alloy, or a calcium aluminum alloy. Or aluminum or calcium for alloying treatment, sampling, and spectral analysis, so that the lead-calcium alloy product formed by the ingot is a low-tin lead-calcium alloy product.
  • the step (4) includes adding alloying elements to the alloy pot for alloying treatment, heating up to 580-680 ° C, adding lead-calcium master alloy, or calcium aluminum alloy, or aluminum, calcium for alloying treatment, Then add pure tin according to customer standards to adjust the tin content, take samples, and perform spectral analysis, so that the lead-calcium alloy product made from the ingot is a high-tin lead-calcium alloy product.
  • the waste lead grid is an electric bicycle battery, a lead grid and a lead component selected by crushing and maintenance-free batteries.
  • the copper remover is a mixture composed of one or more of particulate sulfur, pyrite, hematite, and galena.
  • the antimony-removing arsenic tin-preserving agent is a composite consisting of 10-30 wt% aluminum, 65-85 wt% calcium, 1-10 wt% coke powder, and 1-2 wt% lead powder based on its total mass. .
  • the beneficial effect is that, because the above scheme is adopted, the process of the present invention is simple, the operation is simple, the production efficiency is high, and the valuable metal tin in the waste lead grid is effectively used.
  • the coke powder in the antimony, arsenic, and tin retaining agent used in the process can prevent the lead solution from slagging at high temperatures, which is helpful to prevent the oxidation of lead.
  • a small amount of lead powder can make the antimony, arsenic, and tin retaining agent fully and quickly dissolve in the lead solution.
  • the calcium and aluminum in the tin retaining agent can react with antimony and arsenic at high temperature to form antimony compounds and arsenide.
  • the solubility in the solution is very low, and its density is less than that of lead. It can be precipitated from the lead solution and float on the lead solution to become scum. As the temperature decreases, the antimonide and arsenide are further removed from the lead solution by the agitator. It floats and is removed to achieve the deep separation of antimony, arsenic and lead solution. The antimony and arsenic content in lead solution can be below 0.0005%, while the tin content is basically unchanged.
  • the lead-calcium alloy prepared from waste lead grids to produce recycled lead has been tested and used by large domestic battery manufacturers, and has a good response. After testing, its tensile strength, density, hardness and corrosion resistance are basically the same as those of the lead-calcium alloy prepared by the original electrolytic lead, which can fully meet the requirements of the battery's electrical performance.
  • the content of antimony and arsenic in lead is as low as 0.0005%, which is far lower than the national standard, and the removal rate of antimony and arsenic is high.
  • the operation method is simple and reliable, the application range is wide, the process is smokeless and tasteless, and the working environment is good.
  • FIG. 1 is a process flow chart of a lead-calcium alloy according to the present invention.
  • FIG. 2 is a process flow chart of a low tin lead calcium alloy according to the present invention.
  • FIG. 3 is a process flow chart of the high tin-lead-calcium alloy of the present invention.
  • the technical scheme is as follows: The waste lead grid is melted at a low temperature in the melting pot, the melting temperature is controlled at 350-500 ° C, ash and slag are added, and the copper removal agent is added to remove copper to obtain the copper and lead removal solution; the copper removal solution is heated to 580 to 650 ° C. Add antimony arsenic and tin retaining agent to remove antimony and arsenic to obtain tin-containing lead solution, and then purify the tin-containing lead solution, and then prepare a lead-calcium alloy.
  • the production method of the lead-calcium alloy is as follows:
  • Step (1) The waste lead grid is melted at low temperature; the crushed and separated lead grids such as waste electric bicycle batteries and maintenance-free batteries are melted at a low temperature in a melting pot, and the temperature is controlled at 350-500 ° C to obtain crude lead liquid.
  • the lead liquid is treated with ash and slag, and then pumped into the copper removal pot by a lead pump, or transferred to the copper removal pot through a thermal lead package;
  • Step (2) Perform copper removal treatment in a copper removal pot; control the temperature at 330-550 ° C, add copper removal agent to remove copper, and then take a sample and perform spectral analysis on the sample.
  • Cu ⁇ 0.001% remove copper and lead Liquid ash treatment, and then pumped into the refining pot with a lead pump;
  • Step (3) Perform antimony and arsenic removal in the refining pot; take a sample and perform spectroscopic analysis on the sample to obtain the total antimony and arsenic content in the pot, raise the temperature to 580-650 ° C, and then add the antimony and arsenic remover to the refining
  • the amount of antimony, arsenic and tin removal agent added in the pot is calculated according to 1-1.5 times of the total antimony and arsenic content; start the stirrer and stir the lead liquid to generate a vortex.
  • the antimony and arsenic removing agent quickly melts into the lead solution and forms antimony compounds with antimony arsenic and floats on the liquid surface of the lead solution.
  • Step (4) adjusting the tin content
  • step (5) the temperature is lowered to 480-600 ° C, and the lead pump is pumped into the casting machine, and the ingot is turned into a lead-calcium alloy finished product.
  • step (4) is adding alloying elements to the alloy pot for alloying treatment, adding pure lead according to customer standards to adjust the tin content, and heating up to 580-680 ° C to add lead-calcium master alloy, or calcium aluminum alloy, or aluminum. Calcium is alloyed, sampled, and spectrally analyzed, so that the finished tin-lead-calcium alloy formed by the ingot is a low-tin-lead-calcium alloy product.
  • step (4) is adding alloying elements to the alloy pot for alloying treatment, heating up to 580-680 ° C, adding lead-calcium master alloy, or calcium aluminum alloy, or aluminum, calcium for alloying treatment, and then according to The customer standard adds pure tin to adjust the tin content, sampling, and spectral analysis, so that the finished product of the tin-lead-calcium alloy formed by the ingot is a high-tin-lead-calcium alloy product.
  • the waste lead grid is an electric bicycle battery, a lead grid and a lead component selected by crushing and maintenance-free batteries.
  • the copper remover is a mixture composed of one or more of particulate sulfur, pyrite, hematite, and galena.
  • the antimony-removing arsenic tin-preserving agent is based on a total mass of 10-30% by weight of aluminum, 65-85% by weight of calcium, 1-10% by weight of coke powder, and 1-2% by weight of a composite.
  • Example 1 The waste lead grid is melted in a smelting pot at 410 ⁇ 20 ° C. After the slag is beaten, the lead liquid is pumped into a copper removal pot with a lead pump, and the sample is analyzed by spectrum analysis.
  • the components are: Sb 0.132%, As 0.0051%, Sn 0.71. %, Cu 0.013%, Bi 0.0031%, Ag 0.0062%, Pb balance; heating to 490 ⁇ 20 °C, adding pyrite powder to remove copper, sampling and direct reading spectrum analysis, the composition is as follows: Sb 0.130%, As 0.0051% Sn 0.70%, Cu 0.0005%, Bi 0.0031%, Ag 0.0062%, Pb balance.
  • the copper and lead liquid is pumped into the refining pot with a lead pump.
  • the copper and lead removal liquid in the refining pot was heated to 580 ⁇ 20 ° C, and the amount of antimony removal and arsenic tin retaining agent was calculated based on 1.1 times the total amount of antimony and arsenic. Turn on the mixer and stir the lead liquid to generate a vortex. The normal existence of antimony, arsenic removal and tin retention agent quickly melted into the lead solution and antimony arsenide to synthesize antimonide to float out of the lead solution, and continued stirring for 30 minutes after the addition.
  • Example 2 The waste lead grid was melted in a smelting pot at 370 ⁇ 20 ° C. After the slag was slagged, the lead liquid was pumped into a copper removal pot with a lead pump and sampled for spectral analysis.
  • Composition Sb 0.08%, As 0.009%, Sn 0.61 %, Cu 0.013%, Bi 0.004%, Ag 0.00078%, Pb balance; cool down to 360 ⁇ 20 °C, add red scale to remove copper, sample and read the spectrum analysis directly, the components are as follows: Sb 0.081%, As 0.0081%, Sn 0.592 %, Cu 0.0004%, Bi 0.004%, Ag 0.00078%, Pb balance.
  • the copper and lead liquid is pumped into the refining pot with a lead pump.
  • the copper and lead removal solution in the refining pot was heated to 570 ⁇ 20 ° C, and the amount of antimony removal and arsenic tin retaining agent was calculated based on 1.5 times the total amount of antimony and arsenic. Turn on the mixer and stir the lead solution to generate a vortex. The normal existence of antimony, arsenic-removing tin retaining agent quickly melted into the lead solution and antimony arsenization to synthesize antimony compounds to float out of the lead solution, and continued stirring for 30 minutes after the addition.
  • Example 3 The waste lead grid was melted in a smelting pot at 430 ⁇ 20 ° C. After the slag was beaten, the lead liquid was pumped into a copper removal pot with a lead pump and sampled for spectral analysis.
  • Composition Sb 0.07%, As 0.01%, Sn 0.45 %, Cu 0.014%, Bi 0.004%, Ag 0.0008%, Pb balance; heating and heating to 480 ⁇ 20 °C, adding pyrite powder to remove copper, sampling and direct reading spectrum analysis, the composition is as follows: Sb 0.069%, As 0.0091% Sn 0.45%, Cu 0.00046%, Bi 0.004%, Ag 0.0079%, Pb balance.
  • the copper and lead liquid is pumped into the refining pot with a lead pump.
  • the copper and lead removal liquid in the refining pot was heated to 580 ⁇ 20 ° C, and the amount of antimony removal and arsenic tin retaining agent was calculated based on 1.4 times the total amount of antimony and arsenic. Turn on the mixer and stir the lead liquid to generate a vortex. The normal existence of antimony, arsenic removal composition quickly melted into the lead solution and antimony arsenization to synthesize antimonide to float out of the lead solution, and continued stirring for 50min after the addition.
  • Example 4 The waste lead grid is melted in a smelting pot at 420 ⁇ 20 ° C. After the slag is beaten, the lead liquid is pumped into a copper removal pot with a lead pump, and the sample is spectrally analyzed.
  • the components are: Sb 0.172%, As 0.0041%, Sn 0.58. %, Cu 0.015%, Bi 0.0038%, Ag 0.00068%, Pb balance; heating and heating to 500 ⁇ 20 °C, adding pyrite powder to remove copper, sampling and direct reading spectrum analysis, the composition is as follows: Sb 0.168%, As 0.0031% Sn 0.575%, Cu 0.0005%, Bi 0.0038%, Ag 0.00069%, Pb balance.
  • the copper and lead liquid is pumped into the refining pot with a lead pump.
  • the copper and lead removal solution in the refining pot was heated to 570 ⁇ 20 ° C, and the amount of antimony removal, arsenic and tin retaining agent was calculated based on 1.2 times the total amount of antimony and arsenic. Turn on the mixer and stir the lead solution to generate a vortex. The input speed should not affect the vortex. The normal existence of antimony, arsenic-removing tin retaining agent quickly melted into the lead solution and antimony arsenization to synthesize antimony compounds to float out of the lead solution, and continued stirring for 30 minutes after the addition.
  • Example 5 The waste lead grid was melted in a smelting pot at 380 ⁇ 20 ° C. After the slag was beaten, the lead liquid was pumped into a copper removal pot with a lead pump. Sampling and spectral analysis were performed. Composition: Sb 0.09%, As 0.008%, Sn 0.68 %, Cu 0.01%, Bi 0.004%, Ag 0.00071%, Pb balance; Cool down to 360 ⁇ 20 °C, add red phosphorus to remove copper, sample and read the spectrum analysis directly, the components are as follows: Sb 0.085%, As 0.0071%, Sn 0.665 %, Cu 0.0003%, Bi 0.004%, Ag 0.00070%, Pb balance.
  • the copper and lead liquid is pumped into the refining pot with a lead pump.
  • the copper and lead removal solution in the refining pot was heated to 570 ⁇ 20 ° C, and the amount of antimony removal and arsenic tin retaining agent was calculated based on 1.4 times the total amount of antimony and arsenic. Turn on the mixer and stir the lead solution to generate a vortex. The input speed should not affect the vortex. The normal existence of antimony, arsenic-removing tin retaining agent quickly melted into the lead solution and antimony arsenization to synthesize antimony compounds to float out of the lead solution, and continued stirring for 30 minutes after the addition.
  • Example 6 The waste lead grid was melted in a smelting pot at 440 ⁇ 20 ° C. After the slag was slag, the lead liquid was pumped into a copper removal pot with a lead pump, and the sample was analyzed by spectrum analysis.
  • the components were Sb 0.112%, As 0.0071%, Sn 0.38 %, Cu 0.012%, Bi 0.0031%, Ag 0.00078%, Pb balance; heating up to 490 ⁇ 20 °C, adding pyrite powder to remove copper, sampling and direct reading spectrum analysis, the composition is as follows: Sb 0.101%, As 0.0061% Sn 0.365%, Cu 0.00048%, Bi 0.0031%, Ag 0.0079%, Pb balance.
  • the copper and lead liquid is pumped into the refining pot with a lead pump.
  • the copper and lead removal liquid in the refining pot was heated to 560 ⁇ 20 ° C.
  • the amount of antimony removal and arsenic tin-retaining agent was calculated based on 1.3 times the total amount of antimony and arsenic. Turn on the mixer and stir the lead liquid to generate a vortex. The input speed should not affect the vortex.
  • the normal existence of antimony, arsenic-removing tin retaining agent quickly melted into the lead solution and antimony arsenization to synthesize antimony compounds to float out of the lead solution, and continued stirring for 40 minutes after the addition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种利用废铅酸蓄电池废铅栅网生产铅钙合金的工艺方法,属于废铅酸蓄电池综合回收利用领域。废铅栅网在熔炼锅中低温熔化,熔化温度控制在350-500℃,打灰渣,加脱铜剂除铜获得除铜铅液;除铜铅液升温到580~650℃,加除锑砷保锡剂除锑砷获得含锡铅液,再对含锡铅液净化处理,然后配制铅钙合金。生产的铅钙合金其抗拉强度、密度、硬度及耐腐蚀性等指标与原生电解铅配制的铅钙合金基本一致,满足蓄电池铅钙合金的使用要求。优点:该工艺简单、操作方便、生产效率高,有效地利用废铅栅网中有价的金属锡,降低了铅合金配制的生产成本,同时除锑、砷反应过程中无烟无味,工作环境良好。

Description

利用废铅酸蓄电池废铅栅网生产铅钙合金的工艺方法 技术领域
本发明涉及一种废铅酸蓄电池综合回收利用领域,尤其涉及一种利用废铅酸蓄电池废铅栅网生产铅钙合金的工艺方法。
背景技术
铅酸蓄电池板栅是电池中最重要的非活性物质,充当活性物质的重要载体,起到传导和汇集电流的作用,使电流均匀分布在活性物质上。铅锑合金一直是板栅最主要的选用材料,随着免维护铅酸电池的出现,铅锑合金已不能满足电池免维护的性能要求,逐渐被铅钙合金所替代,研究发现铅钙合金具有较小的电阻率、良好的导电性和优良的机械强度,制成的铅酸蓄电池失水缓慢,可以达到少维护或免维护的技术要求。常用的铅钙合金一般采用原生电解铅进行配制,必然会对采购和生产带来一定的制约,不利于成本的控制。
废铅酸蓄电池经自动破碎分选系统破碎后产生以下四种组分,废铅栅网、铅泥、废塑料和隔板纸,其中废铅栅网占25-30%左右。电动车电池、通讯储能等电池的正负铅板栅是由铅锡钙铝合金组成,有的负板栅利用低锑铅合金,经破碎分选后产生的废铅栅网在熔炼锅中低温熔化生产再生铅,其成分一般为:Pb≥99%,Sb≤0.3%,As≤0.1%,Fe≤0.005%,Sn0.30~0.8%,Cu≤0.02%,Cd≤0.02%,Bi≤0.004%,Ag≤0.0008%,配制合金时必须对其进行精炼除杂,传统的方法有氧化精炼和碱性精炼,由于锑、砷、锡三种金属元素化学性质相近,精炼除杂过程中都会被同时除去,无论采用氧化精炼或碱性精炼时都会将粗铅中高价值的金属锡氧化进入精炼渣中,造成锡资源大量浪费,增加生产成本。
发明内容
本发明的目的是要提供一种利用废铅酸蓄电池废铅栅网生产铅钙合金的工艺方法,解决现有技术中,无论采用氧化精炼或碱性精炼都不能利用废铅栅网中金属锡的问题。
本发明的技术方案是这样实现的:技术方案如下:废铅栅网在熔炼锅中低温熔化,熔化温度控制在350-500℃,打灰渣,加脱铜剂除铜获得除铜铅液;除铜铅液升温到580~650℃,加除锑砷保锡剂除锑砷获得含锡铅液,再对含锡铅液净化处理,然后配制铅钙合金。
本发明中,铅钙合金的生产方法如下:
步骤(1),低温熔化废铅栅网;废电动自行车电池、免维护电池等破碎 分选出的铅栅网在熔炼锅中低温熔化,温度控制在350-500℃得粗铅液,对粗铅液打灰渣处理,然后用铅泵泵入除铜锅,或通过保温铅包转运到除铜锅;
步骤(2),在除铜锅中进行脱铜处理;温度控制在330-550℃,加入脱铜剂除铜,然后取样,对样品进行光谱分析,达到Cu≤0.001%时,对除铜铅液打灰渣处理,再用铅泵泵入精炼锅;
步骤(3),在精炼锅中进行除锑砷处理;取样,对样品进行光谱分析,得到锅中的锑砷总含量,升温到580-650℃,然后将除锑砷保锡剂加入至精炼锅中,除锑砷保锡剂加入的量按锑砷总含量的1-1.5倍计算;开启搅拌机,搅拌铅液产生旋涡,投入除锑砷保锡剂的速度应不影响漩涡的正常存在,除锑砷保锡剂熔入铅液中与锑砷化合成锑化物而浮在铅液的液面,加完除锑砷保锡剂后继续搅拌10~60min;静置降温,将反应后的铅液温度降至480℃以下,加入煤粉或锯末搅拌除去剩余的钙、铝,直到白色糊状渣变成疏松黑色粉状为止;取样,对样品进行光谱分析,铅液中的Sb≤0.0005%、As≤0.0005%,打灰渣处理,然后除锑砷铅液用铅泵泵入合金锅;
步骤(4),调整锡含量;
步骤(5),降温至480-600℃,用铅泵泵入浇铸机,铸锭成铅钙合金成品。
在一个实施例中,所述步骤(4)为在合金锅中加入合金元素合金化处理,根据客户标准加入纯铅调整锡含量,升温至580-680℃加入铅钙母合金、或钙铝合金、或铝、钙进行合金化处理,取样,进行光谱分析,从而使得铸锭成的铅钙合金成品为低锡铅钙合金成品。
在一个实施例中,所述步骤(4)为,合金锅中加入合金元素合金化处理,升温至580-680℃加入铅钙母合金、或钙铝合金、或铝、钙进行合金化处理,然后再根据客户标准加入纯锡调整锡含量,取样,进行光谱分析,从而使得铸锭成的铅钙合金成品为高锡铅钙合金成品。
所述的废铅栅网为电动自行车电池、免维护电池破碎分选出的铅栅网、铅零件。
所述的脱铜剂为颗粒硫磺、黄铁矿、赤磷、方铅矿中的一种或几种所构成的混合物。
所述的除锑砷保锡剂为以其总质量为基准由10~30wt%的铝、65~85wt%的钙、1~10wt%的焦粉和1~2wt%的铅粉构成的复合物。
有益效果,由于采用了上述方案,本发明的工艺简便、操作简单、生产效率高,有效地利用废铅栅网中有价的金属锡。工艺过程所利用的除锑砷保锡剂中焦粉,可避免铅液在高温下造渣,有利于阻止铅的氧化,少量的铅粉可使除锑砷保锡剂充分快速溶解于铅液中;除锑砷保锡剂中的钙、铝,可以 在高温下与锑、砷反应生成锑化物、砷化物;除锑、砷的过程中,生成的锑化物、砷化物熔点高,在铅液中的溶解性很低、其密度小于铅,能从铅液中析出上浮在铅液上面变成浮渣,随着温度的降低,在搅拌机搅拌的作用下锑化物砷化物进一步从铅液中浮出而脱除掉,达到锑、砷与铅液的深度分离,可将铅液中的锑、砷含量在0.0005%以下,而锡含量基本不变。利用废铅栅网生产再生铅配制的铅钙合金经国内大型蓄电池厂家检测使用,反应效果良好。经检测其抗拉强度、密度、硬度及耐腐蚀性等指标与原生电解铅配制的铅钙合金基本一致,完全可以满足蓄电池电气性能的要求。
解决了现有技术中,无论采用氧化精炼或碱性精炼都不能利用废铅栅网中金属锡的问题,达到了本发明的目的。
优点:1、可选择性的除去锑、砷,极大的保留铅中的有价金属锡,降低了配制合金的生产成本。
2、铅中锑、砷含量低至0.0005%,远低于国家标准,锑砷去除率高。
3、除锑、砷反应快,试剂用量少,造渣量少。
4、操作方法简单可靠,适用范围广,反应过程中无烟无味,工作环境良好。
附图说明
图1为本发明的铅钙合金工艺流程图。
图2为本发明的低锡铅钙合金工艺流程图。
图3为本发明的高锡铅钙合金工艺流程图。
具体实施方式
技术方案如下:废铅栅网在熔炼锅中低温熔化,熔化温度控制在350-500℃,打灰渣,加脱铜剂除铜获得除铜铅液;除铜铅液升温到580~650℃,加除锑砷保锡剂除锑砷获得含锡铅液,再对含锡铅液净化处理,然后配制铅钙合金。
本发明中,铅钙合金的生产方法如下:
步骤(1),低温熔化废铅栅网;废电动自行车电池、免维护电池等破碎分选出的铅栅网在熔炼锅中低温熔化,温度控制在350-500℃得粗铅液,对粗铅液打灰渣处理,然后用铅泵泵入除铜锅,或通过保温铅包转运到除铜锅;
步骤(2),在除铜锅中进行脱铜处理;温度控制在330-550℃,加入脱铜剂除铜,然后取样,对样品进行光谱分析,达到Cu≤0.001%时,对除铜铅液打灰渣处理,再用铅泵泵入精炼锅;
步骤(3),在精炼锅中进行除锑砷处理;取样,对样品进行光谱分析,得到锅中的锑砷总含量,升温到580-650℃,然后将除锑砷保锡剂加入至精 炼锅中,除锑砷保锡剂加入的量按锑砷总含量的1-1.5倍计算;开启搅拌机,搅拌铅液产生旋涡,投入除锑砷保锡剂的速度应不影响漩涡的正常存在,除锑砷保锡剂很快熔入铅液中与锑砷化合成锑化物而浮在铅液的液面,加完除锑砷保锡剂后继续搅拌10~60min;静置降温,将反应后的铅液温度降至480℃以下,加入煤粉或锯末搅拌除去剩余的钙、铝,直到白色糊状渣变成疏松黑色粉状为止;取样,对样品进行光谱分析,铅液中的Sb≤0.0005%、As≤0.0005%,打灰渣处理,然后除锑砷铅液用铅泵泵入合金锅;
步骤(4),调整锡含量;
步骤(5),降温至480-600℃,用铅泵泵入浇铸机,铸锭成铅钙合金成品。
在一个实施例中,步骤(4)为合金锅中加入合金元素合金化处理,根据客户标准加入纯铅调整锡含量,升温至580-680℃加入铅钙母合金、或钙铝合金、或铝、钙进行合金化处理,取样,进行光谱分析,从而使得铸锭成的锡铅钙合金成品为低锡铅钙合金成品。
在一个实施例中,步骤(4)为合金锅中加入合金元素合金化处理,升温至580-680℃加入铅钙母合金、或钙铝合金、或铝、钙进行合金化处理,然后再根据客户标准加入纯锡调整锡含量,取样,进行光谱分析,从而使得铸锭成的锡铅钙合金成品为高锡铅钙合金成品。
所述的废铅栅网为电动自行车电池、免维护电池破碎分选出的铅栅网、铅零件。
所述的脱铜剂为颗粒硫磺、黄铁矿、赤磷、方铅矿中的一种或几种所构成的混合物。
所述的除锑砷保锡剂为以其总质量为基准由10~30wt%的铝、65~85wt%的钙、1~10wt%的焦粉和1~2wt%的复合物。
下面结合附图对本发明的技术方案进一步说明:
实施例1:废铅栅网在熔炼锅中在410±20℃熔化,打灰渣后铅液用铅泵泵入除铜锅,取样光谱分析,成分:Sb 0.132%,As 0.0051%,Sn 0.71%,Cu 0.013%,Bi 0.0031%,Ag 0.00062%,Pb余量;加热升温至490±20℃,加黄铁矿粉除铜,取样直读光谱分析,成分如下:Sb 0.130%,As 0.0051%,Sn 0.70%,Cu 0.0005%,Bi 0.0031%,Ag 0.00062%,Pb余量。
打灰渣后除铜铅液用铅泵泵入精炼锅。
将精炼锅中除除铜铅液升温到580±20℃,按锑砷总量的1.1倍计算使用除锑砷保锡剂的量,开启搅拌机,搅拌铅液产生旋涡,投入速度以不影响漩涡的正常存在,除锑砷保锡剂很快熔入铅液中与锑砷化合成锑化物浮出铅液,加完后继续搅拌30min。
静置降温,将反应后的铅液温度降至480℃以下,加入煤粉或锯末搅拌除去剩余的钙、铝,直到白色糊状渣变成疏松黑色粉状为止,取样光谱分析:Sb 0.00041%,As 0.0002%,Sn 0.69%,Cu 0.0005%,Bi 0.0031%,Ag 0.00063%,Pb余量;打灰渣后除锑砷铅液用铅泵泵入合金锅。
加热升温至620±20℃,加入钙铝合金合金化,按客户产品标准要求加入纯锡将锡调整到1.2±0.05%标准内,取样光谱分析:Sn 1.21%,Cu 0.0005%,Ca 0.07%,Al 0.022%,Sb 0.00042%,As 0.0002%,Bi 0.0032%,Ag 0.00063%,Pb余量;降温浇铸成高锡铅钙合金锭。
实施例2:废铅栅网在熔炼锅中在370±20℃熔化,打灰渣后铅液用铅泵泵入除铜锅,取样光谱分析,成分:Sb 0.08%,As 0.009%,Sn 0.61%,Cu 0.013%,Bi 0.004%,Ag 0.00078%,Pb余量;降温至360±20℃,加赤鳞除铜,取样直读光谱分析,成分如下:Sb 0.081%,As 0.0081%,Sn 0.592%,Cu 0.0004%,Bi 0.004%,Ag 0.00078%,Pb余量。
打灰渣后除铜铅液用铅泵泵入精炼锅。
将精炼锅中除除铜铅液升温到570±20℃,按锑砷总量的1.5倍计算使用除锑砷保锡剂的量,开启搅拌机,搅拌铅液产生旋涡,投入速度以不影响漩涡的正常存在,除锑砷保锡剂很快熔入铅液与锑砷化合成锑化物浮出铅液,加完后继续搅拌30min。
静置降温,将反应后的铅液温度降至480℃以下,加入煤粉或锯末搅拌除去剩余的钙、铝,直到白色糊状渣变成疏松黑色粉状为止,取样光谱分析:Sb 0.00041%,As 0.0001%,Sn 0.59%,Cu 0.00042%,Bi 0.0039%,Ag 0.00078%,Pb余量;打灰渣后除锑砷铅液用铅泵泵入合金锅。
加热升温至610±20℃,加入钙铝合金合金化,按客户产品标准要求加入纯锡将锡调整到1.3±0.05%标准内,取样光谱分析:Sn 1.29%,Cu 0.00042%,Ca 0.08%,Al 0.025%,Sb 0.00041%,As 0.0001%,Bi 0.0039%,Ag 0.00079%,Pb余量;降温浇铸成高锡铅钙合金锭。
实施例3:废铅栅网在熔炼锅中在430±20℃熔化,打灰渣后铅液用铅泵泵入除铜锅,取样光谱分析,成分:Sb 0.07%,As 0.01%,Sn 0.45%,Cu 0.014%,Bi 0.004%,Ag 0.0008%,Pb余量;加热升温至480±20℃,加黄铁矿粉除铜,取样直读光谱分析,成分如下:Sb 0.069%,As 0.0091%,Sn 0.45%,Cu 0.00046%,Bi 0.004%,Ag 0.00079%,Pb余量。
打灰渣后除铜铅液用铅泵泵入精炼锅。
将精炼锅中除除铜铅液升温到580±20℃,按锑砷总量的1.4倍计算使用除锑砷保锡剂的量,开启搅拌机,搅拌铅液产生旋涡,投入速度以不影响漩涡的正常存在,除锑、砷组合物很快熔入铅液中与锑砷化合成锑化物浮出 铅液,加完后继续搅拌50min。
静置降温,将反应后的铅液温度降至480℃以下,加入煤粉或锯末搅拌除去剩余的钙、铝,直到白色糊状渣变成疏松黑色粉状为止,取样光谱分析:Sb 0.0005%,As 0.0001%,Sn 0.44%,Cu 0.0005%,Bi 0.004%,Ag 0.00079%,Pb余量;打灰渣后除锑砷铅液用铅泵泵入合金锅。
加热升温至630±20℃,加入钙铝合金合金化,按客户产品标准要求加入纯锡将锡调整到1.0±0.05%标准内,取样光谱分析:Sn 0.98%,Cu 0.0005%,Ca 0.08%,Al 0.026%,Sb 0.0005%,As 0.0001%,Bi 0.004%,Ag 0.0008%,Pb余量;降温浇铸成高锡铅钙合金锭。
实施例4:废铅栅网在熔炼锅中在420±20℃熔化,打灰渣后铅液用铅泵泵入除铜锅,取样光谱分析,成分:Sb 0.172%,As 0.0041%,Sn 0.58%,Cu 0.015%,Bi 0.0038%,Ag 0.00068%,Pb余量;加热升温至500±20℃,加黄铁矿粉除铜,取样直读光谱分析,成分如下:Sb 0.168%,As 0.0031%,Sn 0.575%,Cu 0.0005%,Bi 0.0038%,Ag 0.00069%,Pb余量。
打灰渣后除铜铅液用铅泵泵入精炼锅。
将精炼锅中除除铜铅液升温到570±20℃,按锑砷总量的1.2倍计算使用除锑砷保锡剂的量,开启搅拌机,搅拌铅液产生旋涡,投入速度应不影响漩涡的正常存在,除锑砷保锡剂很快熔入铅液与锑砷化合成锑化物浮出铅液,加完后继续搅拌30min。
静置降温,将反应后的铅液温度降至480℃以下,加入煤粉或锯末搅拌除去剩余的钙、铝,直到白色糊状渣变成疏松黑色粉状为止,取样光谱分析:Sb 0.00048%,As 0.0001%,Sn 0.56%,Cu 0.0005%,Bi 0.0038%,Ag 0.00069%,Pb余量;打灰渣后除锑砷铅液用铅泵泵入合金锅。
按客户产品标准要求加入纯铅将锡稀释到0.3±0.05%标准内,加热升温至610±20℃,加入钙铝合金取样光谱分析:Sn 0.31%,Cu 0.0005%,Ca 0.11%,Al 0.021%,Sb 0.00047%,As 0.0001%,Bi 0.0038%,Ag 0.00069%,Pb余量;降温浇铸成低锡铅钙合金锭。
实施例5:废铅栅网在熔炼锅中在380±20℃熔化,打灰渣后铅液用铅泵泵入除铜锅,取样光谱分析,成分:Sb 0.09%,As 0.008%,Sn 0.68%,Cu 0.01%,Bi 0.004%,Ag 0.00071%,Pb余量;降温至360±20℃,加赤磷除铜,取样直读光谱分析,成分如下:Sb 0.085%,As 0.0071%,Sn 0.665%,Cu 0.0003%,Bi 0.004%,Ag 0.00070%,Pb余量。
打灰渣后除铜铅液用铅泵泵入精炼锅。
将精炼锅中除除铜铅液升温到570±20℃,按锑砷总量的1.4倍计算使用除锑砷保锡剂的量,开启搅拌机,搅拌铅液产生旋涡,投入速度应不影响 漩涡的正常存在,除锑砷保锡剂很快熔入铅液与锑砷化合成锑化物浮出铅液,加完后继续搅拌30min。
静置降温,将反应后的铅液温度降至480℃以下,加入煤粉或锯末搅拌除去剩余的钙、铝,直到白色糊状渣变成疏松黑色粉状为止,取样光谱分析:Sb 0.00045%,As 0.0001%,Sn 0.641%,Cu 0.0003%,Bi 0.0039%,Ag 0.00071%,Pb余量;打灰渣后除锑砷铅液用铅泵泵入合金锅。
按客户产品标准要求加入纯铅将锡稀释到0.3±0.05%标准内,加热升温至620±20℃,加入钙铝合金取样光谱分析:Sn 0.321%,Cu 0.0003%,Ca 0.101%,Al 0.023%,Sb 0.00041%,As 0.0001%,Bi 0.0037%,Ag 0.00069%,Pb余量;降温浇铸成低锡铅钙合金锭。
实施例6:废铅栅网在熔炼锅中在440±20℃熔化,打灰渣后铅液用铅泵泵入除铜锅,取样光谱分析,成分:Sb 0.112%,As 0.0071%,Sn 0.38%,Cu 0.012%,Bi 0.0031%,Ag 0.00078%,Pb余量;加热升温至490±20℃,加黄铁矿粉除铜,取样直读光谱分析,成分如下:Sb 0.101%,As 0.0061%,Sn 0.365%,Cu 0.00048%,Bi 0.0031%,Ag 0.00079%,Pb余量。
打灰渣后除铜铅液用铅泵泵入精炼锅。
将精炼锅中除除铜铅液升温到560±20℃,按锑砷总量的1.3倍计算使用除锑砷保锡剂的量,开启搅拌机,搅拌铅液产生旋涡,投入速度应不影响漩涡的正常存在,除锑砷保锡剂很快熔入铅液与锑砷化合成锑化物浮出铅液,加完后继续搅拌40min。
静置降温,将反应后的铅液温度降至480℃以下,加入煤粉或锯末搅拌除去剩余的钙、铝,直到白色糊状渣变成疏松黑色粉状为止,取样光谱分析:Sb 0.00041%,As 0.0002%,Sn 0.360%,Cu 0.0005%,Bi 0.0031%,Ag 0.00079%,Pb余量;打灰渣后除锑砷铅液用铅泵泵入合金锅。
按客户产品标准要求加入纯铅将锡稀释到0.2±0.05%标准内,加热升温至630±20℃,加入钙铝合金取样光谱分析:Sn 0.181%,Cu 0.00047%,Ca 0.121%,Al 0.025%,Sb 0.00040%,As 0.0002%,Bi 0.0029%,Ag 0.00076%,Pb余量;降温浇铸成低锡铅钙合金锭。

Claims (6)

  1. 一种利用废铅酸蓄电池废铅栅网生产铅钙合金的工艺方法,其特征是:包括如下步骤:
    步骤(1),低温熔化废铅栅网;废电动自行车电池、免维护电池等破碎分选出的铅栅网在熔炼锅中低温熔化,温度控制在350-500℃得粗铅液,对粗铅液打灰渣处理,然后用铅泵泵入除铜锅,或通过保温铅包转运到除铜锅;
    步骤(2),在除铜锅中进行脱铜处理;温度控制在330-550℃,加入脱铜剂除铜,然后取样,对样品进行光谱分析,达到Cu≤0.001%时,对除铜铅液打灰渣处理,再用铅泵泵入精炼锅;
    步骤(3),在精炼锅中进行除锑砷处理;取样,对样品进行光谱分析,得到锅中的锑砷总含量,升温到580-650℃,然后将除锑砷保锡剂加入至精炼锅中,除锑砷保锡剂加入的量按锑砷总含量的1-1.5倍计算;开启搅拌机,搅拌铅液产生旋涡,投入除锑砷保锡剂的速度应不影响漩涡的正常存在,除锑砷保锡剂熔入铅液中与锑砷化合成锑化物而浮在铅液的液面,加完除锑砷保锡剂后继续搅拌10~60min;静置降温,将反应后的铅液温度降至480℃以下,加入煤粉或锯末搅拌除去剩余的钙、铝,直到白色糊状渣变成疏松黑色粉状为止;取样,对样品进行光谱分析,铅液中的Sb≤0.0005%、As≤0.0005%,打灰渣处理,然后除锑砷铅液用铅泵泵入合金锅;
    步骤(4),调整锡含量;
    步骤(5),降温至480-600℃,用铅泵泵入浇铸机,铸锭成铅钙合金成品。
  2. 根据权利要求1所述的工艺方法,其特征是:所述步骤(4)为合金锅中加入合金元素合金化处理,根据客户标准加入纯铅调整锡含量,升温至580-680℃加入铅钙母合金、或钙铝合金、或铝、钙进行合金化处理,取样,进行光谱分析,从而使得铸锭成的铅钙合金成品为低锡铅钙合金成品。
  3. 根据权利要求1所述的工艺方法,其特征是:所述步骤(4)为合金锅中加入合金元素合金化处理,升温至580-680℃加入铅钙母合金、或钙铝合金、或铝、钙进行合金化处理,然后再根据客户标准加入纯锡调整锡含量,取样,进行光谱分析,从而使得铸锭成的铅钙合金成品为高锡铅钙合金成品。
  4. 根据权利要求1所述的工艺方法,其特征是:所述废铅栅网为电动自行车电池、免维护电池破碎分选出的铅栅网、铅零件。
  5. 根据权利要求1所述的工艺方法,其特征是:所述脱铜剂为颗粒硫磺、黄铁矿、赤磷、方铅矿中的一种或几种所构成的混合物。
  6. 根据权利要求1所述的工艺方法,其特征是:所述除锑砷保锡剂为以其总质量为基准由10~30wt%的铝、65~85wt%的钙、1~10wt%的焦粉和1~2wt%的铅粉构成的复合物。
PCT/CN2019/086507 2018-05-25 2019-05-12 利用废铅酸蓄电池废铅栅网生产铅钙合金的工艺方法 WO2019223560A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810518690.8 2018-05-25
CN201810518706.5A CN108588453B (zh) 2018-05-25 2018-05-25 利用废铅酸蓄电池废铅栅网生产低锡铅钙合金的工艺方法
CN201810518690.8A CN108728648B (zh) 2018-05-25 2018-05-25 利用废铅酸蓄电池废铅栅网生产高锡铅钙合金的工艺方法
CN201810518706.5 2018-05-25

Publications (1)

Publication Number Publication Date
WO2019223560A1 true WO2019223560A1 (zh) 2019-11-28

Family

ID=68616211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086507 WO2019223560A1 (zh) 2018-05-25 2019-05-12 利用废铅酸蓄电池废铅栅网生产铅钙合金的工艺方法

Country Status (1)

Country Link
WO (1) WO2019223560A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112420996A (zh) * 2020-10-29 2021-02-26 天能电池集团股份有限公司 一种利用回用铅粉制备动力电池的方法、正极板和动力电池
CN113178636A (zh) * 2021-04-27 2021-07-27 宁夏瑞银铅资源再生有限公司 一种利用废铅酸蓄电池废铅栅网生产低锡铅钙合金的工艺方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5683040A (en) * 1995-05-18 1997-11-04 Daimler-Benz Ag Method for recycling waste from printed circuit board assemblies from electrical and electronic devices
CN1355324A (zh) * 2000-11-27 2002-06-26 上海飞轮有色冶炼厂 一种无污染含铅废弃物再生纯铅冶炼工艺
CN102306856A (zh) * 2011-08-22 2012-01-04 铜梁县诚信电极板厂 废旧铅蓄电池的回收利用方法
CN106367593A (zh) * 2016-08-25 2017-02-01 安徽华铂再生资源科技有限公司 一种利用高锡再生铅生产铅锡合金的工艺
CN108588453A (zh) * 2018-05-25 2018-09-28 江苏新春兴再生资源有限责任公司 利用废铅酸蓄电池废铅栅网生产低锡铅钙合金的工艺方法
CN108728648A (zh) * 2018-05-25 2018-11-02 江苏新春兴再生资源有限责任公司 利用废铅酸蓄电池废铅栅网生产高锡铅钙合金的工艺方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5683040A (en) * 1995-05-18 1997-11-04 Daimler-Benz Ag Method for recycling waste from printed circuit board assemblies from electrical and electronic devices
CN1355324A (zh) * 2000-11-27 2002-06-26 上海飞轮有色冶炼厂 一种无污染含铅废弃物再生纯铅冶炼工艺
CN102306856A (zh) * 2011-08-22 2012-01-04 铜梁县诚信电极板厂 废旧铅蓄电池的回收利用方法
CN106367593A (zh) * 2016-08-25 2017-02-01 安徽华铂再生资源科技有限公司 一种利用高锡再生铅生产铅锡合金的工艺
CN108588453A (zh) * 2018-05-25 2018-09-28 江苏新春兴再生资源有限责任公司 利用废铅酸蓄电池废铅栅网生产低锡铅钙合金的工艺方法
CN108728648A (zh) * 2018-05-25 2018-11-02 江苏新春兴再生资源有限责任公司 利用废铅酸蓄电池废铅栅网生产高锡铅钙合金的工艺方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112420996A (zh) * 2020-10-29 2021-02-26 天能电池集团股份有限公司 一种利用回用铅粉制备动力电池的方法、正极板和动力电池
CN113178636A (zh) * 2021-04-27 2021-07-27 宁夏瑞银铅资源再生有限公司 一种利用废铅酸蓄电池废铅栅网生产低锡铅钙合金的工艺方法

Similar Documents

Publication Publication Date Title
CN108588453B (zh) 利用废铅酸蓄电池废铅栅网生产低锡铅钙合金的工艺方法
AU2020102180A4 (en) Method for leaching manganese from electrolytic manganese anode slag
CN105695744B (zh) 一种多金属全路径全价分离方法
CN108728648B (zh) 利用废铅酸蓄电池废铅栅网生产高锡铅钙合金的工艺方法
CN106367593B (zh) 一种利用高锡再生铅生产铅锡合金的工艺
CN102956936A (zh) 一种处理废旧汽车动力锂电池磷酸铁锂正极材料的方法
CN105063369B (zh) 一种用于再生铅精炼的除铜组合物及其应用
WO2019223560A1 (zh) 利用废铅酸蓄电池废铅栅网生产铅钙合金的工艺方法
CN102643996A (zh) 一种铜浮渣侧吹熔炼生产粗铅的方法
CN102011015A (zh) 一种粗铅精炼脱除砷、锑、铜的方法
JP7399586B2 (ja) 有価元素の回収方法
CN105886768A (zh) 一种从电子废料中高效富集贵金属的方法
CN114774709A (zh) 一种铋火法捕集联合真空蒸馏回收铂族金属的方法
CN106011497A (zh) 一种从铅冰铜中回收粗铅的方法
WO2019223559A1 (zh) 一种用于再生粗铅精炼的选择性除锑砷保锡剂及使用方法
CN108711652B (zh) 基于废铅酸蓄电池废铅栅网生产铅钙铈合金的工艺方法
CN108695572B (zh) 基于废铅酸蓄电池废铅栅网生产铅钙稀土合金的工艺方法
CN108787695A (zh) 一种分离破碎后铅酸蓄电池内铅板栅与塑料的方法
CN1010486B (zh) 一种蓄电池板栅合金的生产方法
CN112095033B (zh) 一种降低废旧黄杂铜中杂质元素锰的方法
CN115418491B (zh) 一种火法熔炼铋基合金捕集铂族金属的方法
CN112481515B (zh) 一种铅合金减渣剂、铅蓄电池压铸制备铅带的方法
CN114497790A (zh) 一种利用废旧铅蓄电池制备铅基合金的方法
CN116770077A (zh) 一种铅酸电池废渣高效提炼高锡铅合金工艺
CN115911407A (zh) 一种铅酸蓄电池耐腐蚀复合涂层板栅及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19806833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19806833

Country of ref document: EP

Kind code of ref document: A1