WO2019221583A1 - Layered aln, method for manufacturing same, and aln nanosheet exfoliated therefrom - Google Patents

Layered aln, method for manufacturing same, and aln nanosheet exfoliated therefrom Download PDF

Info

Publication number
WO2019221583A1
WO2019221583A1 PCT/KR2019/006947 KR2019006947W WO2019221583A1 WO 2019221583 A1 WO2019221583 A1 WO 2019221583A1 KR 2019006947 W KR2019006947 W KR 2019006947W WO 2019221583 A1 WO2019221583 A1 WO 2019221583A1
Authority
WO
WIPO (PCT)
Prior art keywords
aln
layered
crystal structure
powder
precursor
Prior art date
Application number
PCT/KR2019/006947
Other languages
French (fr)
Korean (ko)
Inventor
심우영
김혜수
원종범
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2019221583A1 publication Critical patent/WO2019221583A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/68Crystals with laminate structure, e.g. "superlattices"
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/142Metallic substrates having insulating layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • H10N30/706Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings characterised by the underlying bases, e.g. substrates

Definitions

  • the present invention relates to a layered AlN, a method for producing the same and an AlN nanosheet peeled from the same, more specifically, unlike a conventional bulk AlN has a two-dimensional crystal structure, and excellent peelability in the form of nanosheets
  • the present invention relates to a layered AlN, a method for preparing the same, and an AlN nanosheet peeled therefrom, which is easy to do, and has excellent thermal conductivity and piezoelectric properties.
  • the research on existing 2D materials is based on the top-down method for separating van der Waals bonds with weak interlayer bondability by physical and chemical methods, and the bottom-up method for growing large-area thin films based on vapor deposition. It is becoming.
  • the top-down method since the pristine of the material to be exfoliated must have a two-dimensional layered crystal structure, graphene without band gap, layered metal oxide / nitride with low charge mobility, electron mobility / Research subjects such as transition metal chalcogenides with low electrical conductivity have very limited problems.
  • 2D materials Due to the limitations of previous research methods, 2D materials have been very limitedly studied for materials such as graphene and transition metal chalcogenides. It is limited in that it is not suitable for the development of low-dimensional future materials of a myriad of 3D bulk materials that are not layered.
  • AlN aluminum nitride
  • the AlN is manufactured from a two-dimensional material, the above-described characteristics may be improved, and thus, the AlN may be applied to a semiconductor substrate or a component of high thermal conductivity ceramics.
  • the present invention has a two-dimensional crystal structure, has excellent peelability and is easy to peel in the form of a nanosheet, and has a layered AlN and an AlN nanosheet peeled therefrom having excellent thermal conductivity and piezoelectric properties.
  • the purpose is to provide.
  • the present invention is (1) heat treatment and cooling the mixture containing Ca precursor or Ca powder, Al precursor or Al powder, and N precursor, the space group (C2 / 2 or P2) obtaining a layered compound represented by the formula Ca 3 Al 2 N 4 having a monoclinic crystal structure of / c and (2) Ca included in the layered compound without changing the crystal structure of the layered compound
  • It provides a method for producing a layered AlN comprising the step of treating the layered compound with a mixed solution comprising a salt capable of selectively removing ions and a solvent capable of dissolving the salt.
  • the salt may be represented by the following formula (1).
  • M is any one selected from Al, Mg, and Mn
  • X is any one selected from Cl, F, and I.
  • the solvent may be at least one selected from deionized water, tetrahydrofuran and dichloromethane.
  • the heat treatment of step (1) may be performed for 80 to 200 hours at 1000 ⁇ 1200 °C.
  • the cooling of the step (1) may be performed at a temperature reduction rate of 0.5 ⁇ 3 °C / hour or 10 ⁇ 15 °C / hour.
  • the present invention also provides a layered AlN having a monoclinic crystal structure in which the space group is C2 / 2 or P2 / c.
  • the layered AlN having a monoclinic crystal structure having a space group of C2 / 2 is 1354 in an X-ray diffractogram obtained by a powder X-ray diffraction method using Cu-K ⁇ rays. Peaks at 2 ⁇ values of ⁇ 02, 1668 ⁇ 02, 2079 ⁇ 02, 2125 ⁇ 02, 2685 ⁇ 02, 2743 ⁇ 02, 3146 ⁇ 02, and 3233 ⁇ 02, 3304 ⁇ 02, 3577 ⁇ 02, 377 ⁇ 02, It may not have peaks at 2 ⁇ values of 4948 ⁇ 02, 5902 ⁇ 02, 6554 ⁇ 02 and 7095 ⁇ 02.
  • the layered AlN having a monoclinic crystal structure in which the space group is P2 / c has an X-ray diffraction diagram obtained by a powder X-ray diffraction method using Cu-K ⁇ rays. It has peaks at 2 ⁇ values of 994 ⁇ 02, 1824 ⁇ 02, 1873 ⁇ 02, 1895 ⁇ 02, 1996 ⁇ 02, 2424 ⁇ 02, 2521 ⁇ 02 and 3011 ⁇ 02, and 3304 ⁇ 02, 3577 ⁇ 02, 377 ⁇ 02 , 4948 ⁇ 02, 5902 ⁇ 02, 6554 ⁇ 02 and 7095 ⁇ 02 may not have peaks at 2 ⁇ values.
  • the present invention also provides an AlN nanosheet peeled from the layered AlN according to the present invention and having an amorphous crystal structure.
  • the thickness of the AlN nanosheets may be 300 nm or less.
  • the layered AlN according to the present invention has a two-dimensional crystal structure, has excellent peelability and is easily peeled off in the form of a nanosheet, and has a high thermal conductivity and piezoelectric semiconductor substrate. It can be widely used for the substrate of a thyristor and a piezoelectric element.
  • FIG. 1 is a schematic diagram of a layered AlN manufacturing method according to an embodiment of the present invention.
  • FIG. 2 is a graph showing XRD analysis results of 3D bulk AlN of Comparative Example 1, layered Ca 3 Al 2 N 4 of Preparation Example 1, and layered AlN of Example 1.
  • FIG. 2 is a graph showing XRD analysis results of 3D bulk AlN of Comparative Example 1, layered Ca 3 Al 2 N 4 of Preparation Example 1, and layered AlN of Example 1.
  • FIG. 3A is an SEM image of the layered Ca 3 Al 2 N 4 of Preparation Example 1.
  • FIG. 3B is an SEM image of the layered Ca 3 Al 2 N 4 of Preparation Example 1.
  • 3C is an SEM image of the layered AlN of Example 1.
  • FIG. 4 is a photograph of layered Ca 3 Al 2 N 4 of Preparation Example 1.
  • the method of manufacturing a layered AlN according to the present invention can produce a bulk AlN of a conventional 3D structure in a two-dimensional structure, and unlike the existing bulk AlN can be easily peeled, and can produce a layered AlN having excellent thermal conductivity properties. .
  • step (1) the mixture comprising Ca precursor or Ca powder, Al precursor or Al powder, and N precursor is heat-treated and then cooled to give a monoclinic system having a space group of C2 / 2 or P2 / c. monoclinic) to obtain a layered compound having a crystal structure represented by the formula Ca 3 Al 2 N 4 .
  • the Ca precursor or Ca powder, Al precursor or Al powder, and N precursor may be mixed independently of each other, the N precursor may be included in the mixture with the same material as the Ca precursor or Al precursor.
  • the N precursor may be a compound including N ions
  • the Ca precursor may be a compound including Ca ions
  • the N precursor and the Ca precursor may be the same material as the compound including Ca and N elements.
  • it may be Ca 3 N 2 but is not limited thereto.
  • the Al precursor may be a compound including Al ions, for example, may be AlN, but is not limited thereto.
  • the mixture may be heat treated after being encapsulated in a reaction vessel, and the inside of the reaction vessel may be maintained in an inert gas atmosphere or a vacuum atmosphere.
  • the material of the reaction vessel may be, for example, alumina, molybdenum, tungsten or quartz, but any material that does not react with the sample and does not break at a high temperature may be used without limitation in the material.
  • the Ca 3 Al 2 N 4 is (2) has an AlN different 2D crystal structure of the 3D crystal structure, which will be described later stage be prepared through the step (1) As shown in Figure 1 of the Ca 3 Al 2 N 4 By selectively removing Ca ions, a layered AlN may be prepared without changing the crystal structure of Ca 3 Al 2 N 4 .
  • the heat treatment may be performed at 1000 to 1200 ° C. for 80 to 200 hours.
  • the heat treatment is performed at less than 1000 ° C., the sintering reaction of the mixture may not be completed, and thus unreacted raw materials may remain, resulting in a decrease in yield of the layered compound prepared. have.
  • the heat treatment is performed in excess of 1200 °C, there may be a problem such as the reaction vessel used in the sintering reaction by the vaporization of Ca ions, or the yield of the layered compound produced is lowered.
  • the heat treatment is performed for less than 80 hours, the sintering reaction of the mixture may not be completed, so that unreacted raw materials may remain, and thus the yield of the layered compound prepared may be deteriorated. have.
  • the heat treatment is performed for more than 200 hours, there is a fear that the manufacturing process time unnecessarily increases.
  • the cooling process after the heat treatment in step (1) is necessary for crystallization of the layered compound, and the single crystal size of the crystal may change according to the cooling rate.
  • the cooling may be performed at a temperature reduction rate of 10 to 15 ° C./hour or 0.5 to 3 ° C./hour, and when the temperature reduction rate is 10 to 15 ° C./hour, the layered Ca 3 Al 2 N 4 may be polycrystalline. have.
  • the heat-sensing and speed can be purified unity to 0.5 ⁇ 3 °C / hour day when the layered Ca 3 Al 2 N 4, a single crystal size of the layered AlN after Ca ion scavenging included in the layered Ca 3 Al 2 N 4 is Can be maintained.
  • grain boundaries of the particles may decrease, and the aspect ratio of the InAs nanosheets peeled off when the layered InAs is peeled off may increase.
  • the temperature reduction rate is less than 0.5 °C / hour, a change in the composition of the material produced due to the vaporization of Ca ions may occur, and if the temperature reduction rate exceeds 3 °C / hour, the layered compound prepared is polycrystalline Can be.
  • the layered compound prepared in step (1) includes a salt including a salt capable of selectively removing Ca ions contained in the layered compound and a solvent capable of dissolving the salt. Treated with solution to prepare a layered AlN without changing the crystal structure of the layered compound.
  • the salt may include an anion having a high electronegativity and a cation having an electronegativity value between the alkali metal ion and the Al ion in order to easily react with the alkali metal ion contained in the layered compound.
  • the salt may be represented by the following Chemical Formula 1, wherein the salt is a cation having an electronegativity value between the alkali metal ion and the Al ion, and is composed of M and Cl ions having a high electronegativity.
  • M may be any one selected from Al, Mg, and Mn, and X may be any one selected from Cl, F, and I.
  • the solvent may include at least one selected from deionized water, tetrahydrofuran and dichloromethane.
  • the salt may be included in the mixed solution at a high concentration that can be dissolved in the solvent in order to increase the Ca ion removal efficiency of the layered Ca 3 Al 2 N 4 and prevent the removal of Al ions.
  • the salt may be used in an amount sufficient to remove Ca ions of the layered Ca 3 Al 2 N 4 , but preferably the layered Ca 3 Al 2 N 4 and the salt in the mixed solution are 1: 1 to 1: It may be included in a molar ratio of three. If the molar ratio of the layered Ca 3 Al 2 N 4 and salt is less than 1: 1, Ca ions of the layered Ca 3 Al 2 N 4 may not be removed to the desired level, if the molar ratio is 1 If it exceeds 3, the salt may not be dissolved in the mixed solution, resulting in a precipitate.
  • the step (2) may be carried out at a temperature at which the Ca ion removal reaction may occur smoothly, the temperature may vary depending on the composition of the mixed solution, preferably at least 20 °C, more preferably Preferably it may be carried out at a temperature of 20 ⁇ 60 °C. If carried out below 20 ° C., Ca ions may not be removed to the desired level, and if carried out at temperatures above 60 ° C., the layered structure of the layered Ca 3 Al 2 N 4 produced may collapse. have.
  • the alkali metal ion removal rate may be excellent while maintaining the layered structure of the layered Ca 3 Al 2 N 4 prepared when performed at a temperature of 20 ⁇ 60 °C.
  • the step (2) may be performed a plurality of times depending on the composition of the mixed solution, the removal rate of Ca ions, but is preferably performed once to maintain the layered structure of the layered AlN.
  • a reactant produced by reacting Ca ions with the salt in addition to the layered AlN may be present, for example, calcium chloride, and the powder obtained through step (2) may be removed to remove it. It can be washed with a solvent.
  • the solvent for removing the reactant may be used without limitation as long as it is a solvent having solubility in calcium chloride and may be at least one selected from water, deionized water and ethanol.
  • Layered AlN according to the present invention has a monoclinic (monoclinic) crystal structure of the space group (space group) of C2 / 2 or P2 / c, which is different from the existing 3D bulk AlN as a nanocrystalline sheet with excellent peelability It is easy to peel off in the form of, and may have excellent thermal conductivity characteristics.
  • the layered AlN having a monoclinic crystal structure in which the space group is C2 / 2 is 1354 ⁇ 02, 1668 ⁇ 02, 2079 ⁇ . 02, 2125 ⁇ 02, 2685 ⁇ 02, 2743 ⁇ 02, 3146 ⁇ 02 and 3233 ⁇ 02 with peaks at 2 ⁇ values, 3304 ⁇ 02, 3577 ⁇ 02, 377 ⁇ 02, 4948 ⁇ 02, 5902 ⁇ 02, 6554 It may not have peaks at 2 ⁇ values of ⁇ 02 and 7095 ⁇ 02.
  • the layered AlN having a monoclinic crystal structure in which the space group is P2 / c is 994 ⁇ 02, 1824 ⁇ 02, 1873 ⁇ 02, 1895 ⁇ 02, 1996 ⁇ 02, 2424 ⁇ 02, 2521 ⁇ 02, and 3011 ⁇ . It may have a peak at a 2 ⁇ value of 02 and may not have a peak at a 2 ⁇ value of 3304 ⁇ 02, 3577 ⁇ 02, 377 ⁇ 02, 4948 ⁇ 02, 5902 ⁇ 02, 6554 ⁇ 02 and 7095 ⁇ 02.
  • the AlN nanosheets according to the present invention can be obtained by peeling from the layered AlN according to the present invention and have an amorphous crystal structure.
  • the AlN nanosheets may have a thickness of 300 nm or less, and if the thickness exceeds 300 nm, the surface area of the AlN nanosheets may be lowered to lower thermal conductivity and piezoelectric properties, or the AlN nanosheets. Lamination of sheets can be difficult.
  • a peeling method of the layered AlN a peeling method of a layered material known in the art may be used, and for example, a peeling method using energy by ultrasonic waves, a peeling method by invasion of a solvent, a peeling method using a tape, and adhesion Any of the stripping methods using a substance having a surface may be used.
  • the layered AlN and AlN nanosheets according to the present invention have excellent thermal conductivity and piezoelectric properties, they may be used for semiconductor substrates of high thermal conductivity ceramics, substrates of thyristors, or piezoelectric elements.
  • the layered AlN and AlN nanosheets according to the present invention may be included as piezoelectric elements included in the piezoelectric elements, thereby providing excellent piezoelectric properties.
  • the configuration other than the piezoelectric element included in the piezoelectric element may adopt a configuration known in the art, and thus the detailed description thereof will be omitted.
  • the layered AlN and AlN nanosheets according to the present invention have excellent thermal conductivity, when used in a semiconductor substrate or a substrate of a high thermal conductivity ceramic, the thermal conductivity may be excellent.
  • Configurations other than the substrate may employ a configuration known in the art, so the detailed description thereof will be omitted.
  • the layered Ca 3 Al 2 N 4 prepared in Preparation Example 1 was mixed with deionized water, tetrahydrofuran and AlCl 3 to remove Ca ions from the Ca 3 Al 2 N 4 , through which a layered AlN was prepared.
  • Example 2 The layered AlN prepared in Example 1 was peeled off with a tape to prepare an AlN nanosheet.
  • the layered Ca 3 Al 2 N 4 (preparation example 1) has a monoclinic crystal structure of space groups C2 / 2 and P2 / c.
  • the layered AlN (Example 1) having Ca ions removed from the layered Ca 3 Al 2 N 4 has a monoclinic crystal structure of C2 / 2 and P2 / c, which is a bulk of 3D structure. It is a crystal structure different from AlN.
  • AlN prepared after removing Ca ions of the layered Ca 3 Al 2 N 4 has a layered structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The present invention relates to layered AlN, a method for manufacturing same, and an AlN nanosheet exfoliated therefrom and, more specifically, relates to: layered AlN which has a two-dimensional crystal structure, unlike conventional bulk AlN, ease of exfoliation allowing easy exfoliation in the form of a nanosheet, and excellent thermal conductivity; a method for manufacturing same; and an AlN nanosheet exfoliated from same.

Description

층상형 ALN, 이의 제조 방법 및 이로부터 박리된 ALN 나노시트Layered ALN, Method for Producing It, and ALN Nanosheet Peeled From It
본 발명은 층상형 AlN, 이의 제조 방법 및 이로부터 박리된 AlN 나노시트에 관한 것이며, 더욱 상세하게는 종래의 벌크형 AlN와 달리 2차원 결정 구조를 갖고, 박리성이 우수하여 나노시트의 형태로 박리하기 용이하며, 우수한 열전도 및 압전 특성을 갖는 층상형 AlN, 이의 제조 방법 및 이로부터 박리된 AlN 나노시트에 관한 것이다.The present invention relates to a layered AlN, a method for producing the same and an AlN nanosheet peeled from the same, more specifically, unlike a conventional bulk AlN has a two-dimensional crystal structure, and excellent peelability in the form of nanosheets The present invention relates to a layered AlN, a method for preparing the same, and an AlN nanosheet peeled therefrom, which is easy to do, and has excellent thermal conductivity and piezoelectric properties.
그래핀을 비롯한 다양한 초박막 이차원(2D) 재료들은 새로운 물리적, 화학적, 기계적 및 광학적 특성을 바탕으로 다양한 분야에서 활발히 연구가 되고 있다. 이러한 저차원의 소재는 기존의 벌크 소재가 가지지 못하는 획기적인 신기능이 기대되고 기존소재를 대체할 차세대 미래 소재로서 가능성이 매우 크다.Graphene and other ultra-thin two-dimensional (2D) materials are being actively studied in various fields based on new physical, chemical, mechanical and optical properties. This low-dimensional material is expected to be a breakthrough new function that the existing bulk material does not have and is very likely as a next-generation future material to replace the existing material.
기존 2D 소재에 대한 연구는 층간(interlayer)의 결합력이 약한 반데르발스 결합을 물리적 및 화학적 방법으로 분리하는 Top-down법, 기상증착법에 기반한 대면적 박막을 성장시키는 Bottom-up법을 기반으로 진행되고 있다. 특히 Top-down법은 박리(exfoliation) 대상 물질의 모상(pristine)이 반드시 2차원적 층상결정구조를 가져야 하므로 밴드갭이 없는 그래핀, 전하 이동도가 낮은 층상 금속산화물/질화물, 전자이동도/전기전도도가 낮은 전이금속 칼코겐화합물 등 연구 대상이 매우 제한적인 문제점이 있다.The research on existing 2D materials is based on the top-down method for separating van der Waals bonds with weak interlayer bondability by physical and chemical methods, and the bottom-up method for growing large-area thin films based on vapor deposition. It is becoming. In particular, in the top-down method, since the pristine of the material to be exfoliated must have a two-dimensional layered crystal structure, graphene without band gap, layered metal oxide / nitride with low charge mobility, electron mobility / Research subjects such as transition metal chalcogenides with low electrical conductivity have very limited problems.
종래 연구 방법의 한계로 인해 2D 소재는 그래핀이나 전이금속 칼코겐화합물 등의 물질을 대상으로 매우 제한적으로 연구가 진행되었으며, 이는 본질적으로 저차원 소재의 개발 가능 여부가 사용하고자 하는 원소의 종류에 따라 제한된다는 점에서 한계를 가지며 층상구조가 아닌 무수히 많은 3D 벌크 소재의 저차원 미래 소재 개발에는 적합하지 않은 방법이다.Due to the limitations of previous research methods, 2D materials have been very limitedly studied for materials such as graphene and transition metal chalcogenides. It is limited in that it is not suitable for the development of low-dimensional future materials of a myriad of 3D bulk materials that are not layered.
한편, 질화 알루미늄(AlN)은 알루미나의 열전도도 대비 10배 이상의 열전도도(319W/m K)를 갖고, 열팽창계수가 알루미나 보다 상대적으로 낮고, 전기절연성 및 기계적 강도가 우수한 특성이 있다. 이러한 AlN을 2차원 소재로 제조할 경우 상술한 특성들이 향상될 수 있어 고열전도세라믹스의 반도체 기판이나 부품에 응용될 수 있다.On the other hand, aluminum nitride (AlN) has a thermal conductivity (319 W / m K) or more than 10 times the thermal conductivity of alumina, has a relatively low thermal expansion coefficient than alumina, and has excellent electrical insulation and mechanical strength. When the AlN is manufactured from a two-dimensional material, the above-described characteristics may be improved, and thus, the AlN may be applied to a semiconductor substrate or a component of high thermal conductivity ceramics.
본 발명은 종래의 벌크형 AlN과 달리 2차원 결정 구조를 갖고, 박리성이 우수하여 나노시트의 형태로 박리하기 용이하며, 우수한 열전도 및 압전 특성을 갖는 층상형 AlN 및 이로부터 박리된 AlN 나노시트를 제공하는데 목적이 있다.Unlike the conventional bulk AlN, the present invention has a two-dimensional crystal structure, has excellent peelability and is easy to peel in the form of a nanosheet, and has a layered AlN and an AlN nanosheet peeled therefrom having excellent thermal conductivity and piezoelectric properties. The purpose is to provide.
상술한 과제를 해결하기 위하여 본 발명은 (1) Ca 전구체 또는 Ca 분말, Al 전구체 또는 Al 분말, 및 N 전구체를 포함하는 혼합물을 열처리한 후 냉각하여 공간군(space group)이 C2/2 또는 P2/c인 단사정계(monoclinic) 결정구조를 갖는 화학식 Ca3Al2N4로 표시되는 층상형 화합물을 수득하는 단계 및 (2) 상기 층상형 화합물의 결정구조 변화 없이 상기 층상형 화합물에 포함된 Ca 이온을 선택적으로 제거할 수 있는 염 및 상기 염을 용해시킬 수 있는 용매를 포함하는 혼합용액으로 상기 층상형 화합물을 처리하는 단계를 포함하는 층상형 AlN의 제조 방법을 제공한다.In order to solve the above problems, the present invention is (1) heat treatment and cooling the mixture containing Ca precursor or Ca powder, Al precursor or Al powder, and N precursor, the space group (C2 / 2 or P2) obtaining a layered compound represented by the formula Ca 3 Al 2 N 4 having a monoclinic crystal structure of / c and (2) Ca included in the layered compound without changing the crystal structure of the layered compound It provides a method for producing a layered AlN comprising the step of treating the layered compound with a mixed solution comprising a salt capable of selectively removing ions and a solvent capable of dissolving the salt.
본 발명의 일 실시예에 의하면, 상기 염은 하기 화학식 1로 표시될 수 있다.According to one embodiment of the present invention, the salt may be represented by the following formula (1).
<화학식 1><Formula 1>
MaXb(1a2, 1b3)M a X b (1 a 2, 1 b 3)
상기 화학식 1에서 M은 Al, Mg, 및 Mn 중에서 선택된 어느 하나, X는 Cl, F 및 I 중에서 선택된 어느 하나다.In Formula 1, M is any one selected from Al, Mg, and Mn, and X is any one selected from Cl, F, and I.
또한 본 발명의 일 실시예에 의하면, 상기 용매는 탈이온수, 테트라하이드로퓨란 및 다이클로로메탄 중에서 선택된 적어도 어느 하나일 수 있다.In addition, according to an embodiment of the present invention, the solvent may be at least one selected from deionized water, tetrahydrofuran and dichloromethane.
또한 본 발명의 일 실시예에 의하면, 상기 (1)단계의 열처리는 1000~1200℃에서 80~200시간 동안 수행될 수 있다.In addition, according to an embodiment of the present invention, the heat treatment of step (1) may be performed for 80 to 200 hours at 1000 ~ 1200 ℃.
또한 본 발명의 일 실시예에 의하면, 상기 (1)단계의 냉각은 0.5~3℃/시간 또는 10~15℃/시간의 감온 속도로 수행될 수 있다.In addition, according to an embodiment of the present invention, the cooling of the step (1) may be performed at a temperature reduction rate of 0.5 ~ 3 ℃ / hour or 10 ~ 15 ℃ / hour.
또한 본 발명은 공간군(space group)이 C2/2 또는 P2/c인 단사정계(monoclinic) 결정구조를 갖는 층상형 AlN을 제공한다.The present invention also provides a layered AlN having a monoclinic crystal structure in which the space group is C2 / 2 or P2 / c.
본 발명의 일 실시예에 의하면, 상기 공간군이 C2/2인 단사정계 결정구조를 갖는 층상형 AlN는 Cu-Kα선을 사용하는 분말 X선 회절법에 의해 얻어지는 X선 회절도에 있어서, 1354±02, 1668±02, 2079±02, 2125±02, 2685±02, 2743±02, 3146±02 및 3233±02의 2θ값에서 피크를 갖고, 3304±02, 3577±02, 377±02, 4948±02, 5902±02, 6554±02 및 7095±02의 2θ값에서 피크를 갖지 않을 수 있다.According to one embodiment of the present invention, the layered AlN having a monoclinic crystal structure having a space group of C2 / 2 is 1354 in an X-ray diffractogram obtained by a powder X-ray diffraction method using Cu-Kα rays. Peaks at 2θ values of ± 02, 1668 ± 02, 2079 ± 02, 2125 ± 02, 2685 ± 02, 2743 ± 02, 3146 ± 02, and 3233 ± 02, 3304 ± 02, 3577 ± 02, 377 ± 02, It may not have peaks at 2θ values of 4948 ± 02, 5902 ± 02, 6554 ± 02 and 7095 ± 02.
또한 본 발명의 일 실시예에 의하면, 상기 공간군이 P2/c인 단사정계 결정구조를 갖는 층상형 AlN는 Cu-Kα선을 사용하는 분말 X선 회절법에 의해 얻어지는 X선 회절도에 있어서, 994±02, 1824±02, 1873±02, 1895±02, 1996±02, 2424±02, 2521±02 및 3011±02 의 2θ값에서 피크를 갖고, 3304±02, 3577±02, 377±02, 4948±02, 5902±02, 6554±02 및 7095±02의 2θ값에서 피크를 갖지 않을 수 있다.According to one embodiment of the present invention, the layered AlN having a monoclinic crystal structure in which the space group is P2 / c has an X-ray diffraction diagram obtained by a powder X-ray diffraction method using Cu-Kα rays. It has peaks at 2θ values of 994 ± 02, 1824 ± 02, 1873 ± 02, 1895 ± 02, 1996 ± 02, 2424 ± 02, 2521 ± 02 and 3011 ± 02, and 3304 ± 02, 3577 ± 02, 377 ± 02 , 4948 ± 02, 5902 ± 02, 6554 ± 02 and 7095 ± 02 may not have peaks at 2θ values.
또한 본 발명은 본 발명에 따른 층상형 AlN로부터 박리되고, 비정질 결정구조를 갖는 AlN 나노시트를 제공한다.The present invention also provides an AlN nanosheet peeled from the layered AlN according to the present invention and having an amorphous crystal structure.
본 발명의 일 실시예에 의하면, 상기 AlN 나노시트의 두께는 300 nm 이하일 수 있다.According to one embodiment of the present invention, the thickness of the AlN nanosheets may be 300 nm or less.
본 발명에 따른 층상형 AlN은 종래의 벌크형 AlN과 달리 2차원 결정구조를 갖고, 박리성이 우수하여 나노시트의 형태로 박리하기 용이하며, 우수한 열전도 및 압전 특성을 갖기 때문에 고열전도세라믹스의 반도체 기판, 다이리스터의 기판이나 압전 소자에 널리 활용될 수 있다.Unlike the conventional bulk AlN, the layered AlN according to the present invention has a two-dimensional crystal structure, has excellent peelability and is easily peeled off in the form of a nanosheet, and has a high thermal conductivity and piezoelectric semiconductor substrate. It can be widely used for the substrate of a thyristor and a piezoelectric element.
도 1은 본 발명의 일 실시예에 따른 층상형 AlN 제조 방법에 대한 모식도이다.1 is a schematic diagram of a layered AlN manufacturing method according to an embodiment of the present invention.
도 2는 비교예1의 3D 벌크형 AlN, 준비예1의 층상형 Ca3Al2N4 및 실시예1의 층상형 AlN의 XRD 분석 결과를 도시한 그래프이다.FIG. 2 is a graph showing XRD analysis results of 3D bulk AlN of Comparative Example 1, layered Ca 3 Al 2 N 4 of Preparation Example 1, and layered AlN of Example 1. FIG.
도 3a는 준비예1의 층상형 Ca3Al2N4의 SEM 이미지이다.3A is an SEM image of the layered Ca 3 Al 2 N 4 of Preparation Example 1. FIG.
도 3b는 준비예1의 층상형 Ca3Al2N4의 SEM 이미지이다.3B is an SEM image of the layered Ca 3 Al 2 N 4 of Preparation Example 1. FIG.
도 3c는 실시예1의 층상형 AlN의 SEM 이미지이다.3C is an SEM image of the layered AlN of Example 1. FIG.
도 4는 준비예1의 층상형 Ca3Al2N4의 사진이다.4 is a photograph of layered Ca 3 Al 2 N 4 of Preparation Example 1. FIG.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
본 발명에 따른 층상형 AlN의 제조 방법에 대하여 설명한다.The manufacturing method of layered AlN which concerns on this invention is demonstrated.
본 발명에 따른 층상형 AlN의 제조 방법은 기존 3D 구조의 벌크형 AlN를 이차원 구조로 제조할 수 있으며, 기존 벌크형 AlN과는 달리 박리가 용이하고, 우수한 열전도 특성을 갖는 층상형 AlN를 제조할 수 있다.The method of manufacturing a layered AlN according to the present invention can produce a bulk AlN of a conventional 3D structure in a two-dimensional structure, and unlike the existing bulk AlN can be easily peeled, and can produce a layered AlN having excellent thermal conductivity properties. .
먼저 (1)단계로서, Ca 전구체 또는 Ca 분말, Al 전구체 또는 Al 분말, 및 N 전구체를 포함하는 혼합물을 열처리한 후 냉각하여 공간군(space group)이 C2/2 또는 P2/c인 단사정계(monoclinic) 결정구조를 갖고 화학식 Ca3Al2N4로 표시되는 층상형 화합물을 수득 한다.First, as step (1), the mixture comprising Ca precursor or Ca powder, Al precursor or Al powder, and N precursor is heat-treated and then cooled to give a monoclinic system having a space group of C2 / 2 or P2 / c. monoclinic) to obtain a layered compound having a crystal structure represented by the formula Ca 3 Al 2 N 4 .
상기 Ca 전구체 또는 Ca 분말, Al 전구체 또는 Al 분말, 및 N 전구체는 각각 독립적으로 혼합될 수 있고, 상기 N 전구체는 상기 Ca 전구체 또는 Al 전구체와 동일한 물질로 상기 혼합물에 포함될 수 있다.The Ca precursor or Ca powder, Al precursor or Al powder, and N precursor may be mixed independently of each other, the N precursor may be included in the mixture with the same material as the Ca precursor or Al precursor.
구체적으로 상기 N 전구체는 N 이온을 포함하는 화합물일 수 있고, 상기 Ca 전구체는 Ca 이온을 포함하는 화합물일 수 있으며, 상기 N 전구체와 Ca 전구체는 Ca 및 N 원소를 포함하는 화합물로서 동일한 물질일 수 있으며, 일 예로 Ca3N2일 수 있으나 이에 제한되지 않는다. 상기 Al 전구체는 Al 이온을 포함하는 화합물일 수 있으며, 일예로 AlN일 수 있으나 이에 제한되지 않는다.Specifically, the N precursor may be a compound including N ions, the Ca precursor may be a compound including Ca ions, and the N precursor and the Ca precursor may be the same material as the compound including Ca and N elements. For example, it may be Ca 3 N 2 but is not limited thereto. The Al precursor may be a compound including Al ions, for example, may be AlN, but is not limited thereto.
상기 혼합물은 반응용기에 봉입한 후 열처리될 수 있으며, 상기 반응용기 내부는 불활성 기체 분위기 또는 진공 분위기로 유지될 수 있다.The mixture may be heat treated after being encapsulated in a reaction vessel, and the inside of the reaction vessel may be maintained in an inert gas atmosphere or a vacuum atmosphere.
또한, 상기 반응용기의 소재는 일예로 알루미나, 몰리브덴, 텅스텐 또는 석영일 수 있으나, 시료와 반응하지 않고, 고온에서 파손되지 않는 물질이라면 소재에 제한 없이 사용할 수 있다.In addition, the material of the reaction vessel may be, for example, alumina, molybdenum, tungsten or quartz, but any material that does not react with the sample and does not break at a high temperature may be used without limitation in the material.
도 1에 도시된 바와 같이 (1) 단계를 통해 준비되는 Ca3Al2N4는 3D 결정 구조의 AlN와 상이한 2D 결정 구조를 가지며, 후술되는 (2)단계에서 상기 Ca3Al2N4의 Ca 이온을 선택적으로 제거하여 상기 Ca3Al2N4의 결정 구조 변화 없이 층상형 AlN를 제조할 수 있다.In the Ca 3 Al 2 N 4 is (2) has an AlN different 2D crystal structure of the 3D crystal structure, which will be described later stage be prepared through the step (1) As shown in Figure 1 of the Ca 3 Al 2 N 4 By selectively removing Ca ions, a layered AlN may be prepared without changing the crystal structure of Ca 3 Al 2 N 4 .
상기 열처리는 1000~1200℃에서 80~200시간 동안 수행될 수 있다.The heat treatment may be performed at 1000 to 1200 ° C. for 80 to 200 hours.
만일, 상기 열처리가 1000℃ 미만으로 수행될 경우, 상기 혼합물의 소결 반응이 완료되지 않아 미반응된 원재료가 잔류할 수 있고, 이에 따라 제조되는 층상형 화합물의 수율이 저하되는 등의 문제가 있을 수 있다. 또한, 상기 열처리가 1200℃를 초과하여 수행될 경우, Ca 이온의 기화로 소결 반응시 사용되는 반응 용기가 파손되거나, 제조되는 층상형 화합물의 수율이 저하되는 등의 문제가 있을 수 있다.If the heat treatment is performed at less than 1000 ° C., the sintering reaction of the mixture may not be completed, and thus unreacted raw materials may remain, resulting in a decrease in yield of the layered compound prepared. have. In addition, when the heat treatment is performed in excess of 1200 ℃, there may be a problem such as the reaction vessel used in the sintering reaction by the vaporization of Ca ions, or the yield of the layered compound produced is lowered.
만일, 상기 열처리가 80시간 미만으로 수행될 경우, 상기 혼합물의 소결 반응이 완료되지 않아 미반응된 원재료가 잔류할 수 있고, 이에 따라 제조되는 층상형 화합물의 수율이 저하되는 등의 문제가 있을 수 있다. 또한, 상기 열처리가 200시간을 초과하여 수행될 경우, 제조 공정 시간이 불필요하게 증가할 우려가 있다.If the heat treatment is performed for less than 80 hours, the sintering reaction of the mixture may not be completed, so that unreacted raw materials may remain, and thus the yield of the layered compound prepared may be deteriorated. have. In addition, when the heat treatment is performed for more than 200 hours, there is a fear that the manufacturing process time unnecessarily increases.
상기 (1)단계에서 열처리한 후 냉각하는 과정은 층상형 화합물의 결정화를 위해 필요하며, 냉각 속도에 따라 결정의 단결정 크기가 변할 수 있다.The cooling process after the heat treatment in step (1) is necessary for crystallization of the layered compound, and the single crystal size of the crystal may change according to the cooling rate.
상기 냉각은 10~15℃/시간 또는 0.5~3℃/시간의 감온 속도로 수행될 수 있으며, 상기 감온 속도가 10~15℃/시간일 경우 층상형 Ca3Al2N4를 다결정화할 수 있다. 상기 감온 속도가 0.5~3℃/시간일 경우 층상형 Ca3Al2N4를 단결정화할 수 있으며, 상기 층상형 Ca3Al2N4에 포함되는 Ca 이온 제거 후에도 층상형 AlN의 단결정 크기는 유지될 수 있다. 상기 층상형 AlN의 단결정 크기가 커질수록 입자의 그레인 바운더리(grain boundary)가 감소할 수 있고, 층상형 InAs 박리시 박리되는 InAs 나노시트의 종횡비(aspect ratio)가 증가할 수 있다.The cooling may be performed at a temperature reduction rate of 10 to 15 ° C./hour or 0.5 to 3 ° C./hour, and when the temperature reduction rate is 10 to 15 ° C./hour, the layered Ca 3 Al 2 N 4 may be polycrystalline. have. The heat-sensing and speed can be purified unity to 0.5 ~ 3 ℃ / hour day when the layered Ca 3 Al 2 N 4, a single crystal size of the layered AlN after Ca ion scavenging included in the layered Ca 3 Al 2 N 4 is Can be maintained. As the size of the single crystal of the layered AlN increases, grain boundaries of the particles may decrease, and the aspect ratio of the InAs nanosheets peeled off when the layered InAs is peeled off may increase.
만일 상기 감온 속도가 0.5℃/시간 미만일 경우, Ca 이온의 기화로 인해 제조되는 물질의 조성 변화가 발생할 수 있고, 상기 감온 속도가 3℃/시간을 초과할 경우, 제조되는 층상형 화합물이 다결정화될 수 있다.If the temperature reduction rate is less than 0.5 ℃ / hour, a change in the composition of the material produced due to the vaporization of Ca ions may occur, and if the temperature reduction rate exceeds 3 ℃ / hour, the layered compound prepared is polycrystalline Can be.
다음으로, (2)단계로서 상기 (1)단계에서 제조된 층상형 화합물을 상기 층상형 화합물에 포함된 Ca 이온을 선택적으로 제거할 수 있는 염 및 상기 염을 용해시킬 수 있는 용매를 포함하는 혼합용액으로 처리하여 상기 층상형 화합물의 결정구조 변화 없이 층상형 AlN를 제조한다.Next, as step (2), the layered compound prepared in step (1) includes a salt including a salt capable of selectively removing Ca ions contained in the layered compound and a solvent capable of dissolving the salt. Treated with solution to prepare a layered AlN without changing the crystal structure of the layered compound.
상기 염은 상기 층상형 화합물에 포함된 알칼리 금속 이온과 용이하게 반응하기 위하여 전기음성도가 큰 음이온 및 상기 알칼리 금속 이온과 Al 이온 사이의 전기음성도 값을 갖는 양이온을 포함할 수 있다.The salt may include an anion having a high electronegativity and a cation having an electronegativity value between the alkali metal ion and the Al ion in order to easily react with the alkali metal ion contained in the layered compound.
상기 염은 하기 화학식 1로 표시될 수 있으며, 상기 염은 상기 알칼리 금속 이온과 Al 이온 사이의 전기음성도 값을 갖는 양이온으로서 M 및 전기음성도가 큰 Cl 이온으로 구성된다.The salt may be represented by the following Chemical Formula 1, wherein the salt is a cation having an electronegativity value between the alkali metal ion and the Al ion, and is composed of M and Cl ions having a high electronegativity.
<화학식 1><Formula 1>
MaXb(1a2, 1b3)M a X b (1 a 2, 1 b 3)
상기 화학식 1에서 M은 Al, Mg, 및 Mn 중에서 선택된 어느 하나, X는 Cl, F 및 I 중에서 선택된 어느 하나일 수 있다.In Formula 1, M may be any one selected from Al, Mg, and Mn, and X may be any one selected from Cl, F, and I.
또한 상기 용매는 탈이온수, 테트라하이드로퓨란 및 다이클로로메탄 중에서 선택된 적어도 어느 하나를 포함할 수 있다.In addition, the solvent may include at least one selected from deionized water, tetrahydrofuran and dichloromethane.
상기 염은 상기 층상형 Ca3Al2N4의 Ca 이온 제거 효율을 증가시키고 Al이온의 제거를 방지하기 위하여 상기 용매에 용해될 수 있는 한 높은 농도로 상기 혼합용액에 포함될 수 있다.The salt may be included in the mixed solution at a high concentration that can be dissolved in the solvent in order to increase the Ca ion removal efficiency of the layered Ca 3 Al 2 N 4 and prevent the removal of Al ions.
상기 염은 상기 층상형 Ca3Al2N4의 Ca 이온을 제거하기에 충분한 양으로 사용될 수 있으나, 바람직하게는 상기 혼합용액 내 층상형 Ca3Al2N4 및 염은 1:1 내지 1:3의 몰비율로 포함될 수 있다. 만일 상기 층상형 Ca3Al2N4 및 염의 몰비율이 1:1 미만일 경우, 상기 층상형 Ca3Al2N4의 Ca 이온이 목적하는 수준으로 제거되지 않을 수 있고, 만일 상기 몰비율이 1:3을 초과할 경우 상기 염이 상기 혼합용액에 용해되지 않아 침전물이 발생하는 등의 문제가 있을 수 있다.The salt may be used in an amount sufficient to remove Ca ions of the layered Ca 3 Al 2 N 4 , but preferably the layered Ca 3 Al 2 N 4 and the salt in the mixed solution are 1: 1 to 1: It may be included in a molar ratio of three. If the molar ratio of the layered Ca 3 Al 2 N 4 and salt is less than 1: 1, Ca ions of the layered Ca 3 Al 2 N 4 may not be removed to the desired level, if the molar ratio is 1 If it exceeds 3, the salt may not be dissolved in the mixed solution, resulting in a precipitate.
또한, 상기 (2)단계는 상기 Ca 이온의 제거 반응이 원활하게 일어날 수 있는 온도에서 수행될 수 있으며, 상기 혼합용액의 조성에 따라 온도가 달라질 수 있으나, 바람직하게는 20 ℃ 이상의 온도, 더욱 바람직하게는 20~60℃의 온도에서 수행될 수 있다. 만일 20℃ 미만에서 수행될 경우, Ca 이온이 목적하는 수준으로 제거되지 않을 수 있고, 60℃를 초과하는 온도에서 수행될 경우 제조되는 층상형 Ca3Al2N4의 층상형 구조가 붕괴될 수 있다. 또한, 20~60℃의 온도에서 수행될 경우 제조되는 층상형 Ca3Al2N4의 층상형 구조를 유지하면서 알칼리 금속 이온 제거율이 우수할 수 있다.In addition, the step (2) may be carried out at a temperature at which the Ca ion removal reaction may occur smoothly, the temperature may vary depending on the composition of the mixed solution, preferably at least 20 ℃, more preferably Preferably it may be carried out at a temperature of 20 ~ 60 ℃. If carried out below 20 ° C., Ca ions may not be removed to the desired level, and if carried out at temperatures above 60 ° C., the layered structure of the layered Ca 3 Al 2 N 4 produced may collapse. have. In addition, the alkali metal ion removal rate may be excellent while maintaining the layered structure of the layered Ca 3 Al 2 N 4 prepared when performed at a temperature of 20 ~ 60 ℃.
또한, 상기 (2)단계는 상기 혼합용액의 조성, Ca 이온의 제거율에 따라 복수회 실시할 수 있으나, 제조되는 층상형 AlN의 층상형 구조를 유지하기 위해 1회 실시하는 것이 바람직하다.In addition, the step (2) may be performed a plurality of times depending on the composition of the mixed solution, the removal rate of Ca ions, but is preferably performed once to maintain the layered structure of the layered AlN.
또한, 상기 (2)단계를 수행한 후 층상형 AlN외에 Ca 이온과 상기 염이 반응하여 생성된 반응물, 일예로 염화칼슘이 존재할 수 있으며, 이를 제거하기 위해 상기 (2)단계를 통해 수득된 분말을 용매로 세척할 수 있다.In addition, after performing step (2), a reactant produced by reacting Ca ions with the salt in addition to the layered AlN may be present, for example, calcium chloride, and the powder obtained through step (2) may be removed to remove it. It can be washed with a solvent.
상기 반응물을 제거하기 위한 용매는 염화칼슘에 대한 용해도가 있는 용매라면 제한없이 사용될수 있으며 일예로 물, 탈이온수 및 에탄올 중에서 선택된 적어도 어느 하나일 수 있다.The solvent for removing the reactant may be used without limitation as long as it is a solvent having solubility in calcium chloride and may be at least one selected from water, deionized water and ethanol.
다음으로, 본 발명의 층상형 AlN에 대하여 설명한다.Next, the layered AlN of the present invention will be described.
본 발명에 따른 층상형 AlN는 공간군(space group)이 C2/2 또는 P2/c인 단사정계 (monoclinic) 결정구조를 가지며, 이는 기존 3D 벌크형 AlN와 상이한 결정 구조로서 박리성이 우수하여 나노시트의 형태로 박리하기 용이하며, 우수한 열전도 특성을 가질 수 있다.Layered AlN according to the present invention has a monoclinic (monoclinic) crystal structure of the space group (space group) of C2 / 2 or P2 / c, which is different from the existing 3D bulk AlN as a nanocrystalline sheet with excellent peelability It is easy to peel off in the form of, and may have excellent thermal conductivity characteristics.
Cu-Kα선을 사용하는 분말 X선 회절법에 의해 얻어지는 X선 회절도에 있어서, 상기 공간군이 C2/2인 단사정계 결정구조를 갖는 층상형 AlN는 1354±02, 1668±02, 2079±02, 2125±02, 2685±02, 2743±02, 3146±02 및 3233±02의 2θ값에서 피크를 갖고, 3304±02, 3577±02, 377±02, 4948±02, 5902±02, 6554±02 및 7095±02의 2θ값에서 피크를 갖지 않을 수 있다. 또한, 상기 공간군이 P2/c인 단사정계 결정구조를 갖는 층상형 AlN는 994±02, 1824±02, 1873±02, 1895±02, 1996±02, 2424±02, 2521±02 및 3011±02 의 2θ값에서 피크를 갖고, 3304±02, 3577±02, 377±02, 4948±02, 5902±02, 6554±02 및 7095±02의 2θ값에서 피크를 갖지 않을 수 있다.In the X-ray diffractogram obtained by the powder X-ray diffraction method using Cu-Kα rays, the layered AlN having a monoclinic crystal structure in which the space group is C2 / 2 is 1354 ± 02, 1668 ± 02, 2079 ±. 02, 2125 ± 02, 2685 ± 02, 2743 ± 02, 3146 ± 02 and 3233 ± 02 with peaks at 2θ values, 3304 ± 02, 3577 ± 02, 377 ± 02, 4948 ± 02, 5902 ± 02, 6554 It may not have peaks at 2θ values of ± 02 and 7095 ± 02. In addition, the layered AlN having a monoclinic crystal structure in which the space group is P2 / c is 994 ± 02, 1824 ± 02, 1873 ± 02, 1895 ± 02, 1996 ± 02, 2424 ± 02, 2521 ± 02, and 3011 ±. It may have a peak at a 2θ value of 02 and may not have a peak at a 2θ value of 3304 ± 02, 3577 ± 02, 377 ± 02, 4948 ± 02, 5902 ± 02, 6554 ± 02 and 7095 ± 02.
다음으로, 본 발명의 AlN 나노시트에 대하여 설명한다.Next, the AlN nanosheet of this invention is demonstrated.
본 발명에 따른 AlN 나노시트는 본 발명에 따른 층상형 AlN로부터 박리되어 수득할 수 있으며, 비정질 결정구조를 갖는다.The AlN nanosheets according to the present invention can be obtained by peeling from the layered AlN according to the present invention and have an amorphous crystal structure.
본 발명의 일 실시예에 의하면, 상기 AlN 나노시트는 300nm 이하의 두께를 가질 수 있으며, 만일 상기 두께가 300nm를 초과할 경우 AlN 나노시트의 표면적이 저하되어 열전도 및 압전 특성이 저하되거나 상기 AlN 나노시트의 적층이 어려워 질 수 있다.According to an embodiment of the present invention, the AlN nanosheets may have a thickness of 300 nm or less, and if the thickness exceeds 300 nm, the surface area of the AlN nanosheets may be lowered to lower thermal conductivity and piezoelectric properties, or the AlN nanosheets. Lamination of sheets can be difficult.
상기 층상형 AlN의 박리 방법은 당업계에서 공지된 층상형 물질의 박리 방법을 사용할 수 있으며, 일예로 초음파에 의한 에너지로 박리하는 방법, 용매의 침입에 의한 박리 방법, 테이프를 이용한 박리 방법 및 접착성 표면을 가진 물질을 이용한 박리 방법 중 어느 하나의 방법을 사용할 수 있다.As the peeling method of the layered AlN, a peeling method of a layered material known in the art may be used, and for example, a peeling method using energy by ultrasonic waves, a peeling method by invasion of a solvent, a peeling method using a tape, and adhesion Any of the stripping methods using a substance having a surface may be used.
한편, 상술한 본 발명에 따른 층상형 AlN 및 AlN 나노시트는 우수한 열전도 및 압전 특성을 갖기 때문에 고열전도세라믹스의 반도체 기판, 다이리스터의 기판이나 압전 소자에 활용될 수 있다.Meanwhile, since the layered AlN and AlN nanosheets according to the present invention have excellent thermal conductivity and piezoelectric properties, they may be used for semiconductor substrates of high thermal conductivity ceramics, substrates of thyristors, or piezoelectric elements.
본 발명에 따른 층상형 AlN 및 AlN 나노시트가 압전 소자에 활용될 경우, 압전 소자에 포함되는 압전체로서 본 발명에 따른 층상형 AlN 또는 AlN 나노시트가 포함되어 압전 특성이 우수할 수 있다. 상기 압전 소자에 포함되는 압전체 이외의 구성은 당업계에서 공지된 구성을 채용할 수 있어서 본 발명은 이에 대한 구체적인 설명은 생략한다.When the layered AlN and AlN nanosheets according to the present invention are utilized in piezoelectric elements, the layered AlN or AlN nanosheets according to the present invention may be included as piezoelectric elements included in the piezoelectric elements, thereby providing excellent piezoelectric properties. The configuration other than the piezoelectric element included in the piezoelectric element may adopt a configuration known in the art, and thus the detailed description thereof will be omitted.
또한, 본 발명에 따른 층상형 AlN 및 AlN 나노시트는 열전도 특성이 우수하기 때문에 고열전도세라믹스의 반도체 기판 또는 다이리스터의 기판에 활용될 경우, 열전도 특성이 우수할 수 있다. 상기 기판 이외의 구성은 당업계에서 공지된 구성을 채용할 수 있어서 본 발명은 이에 대한 구체적인 설명은 생략한다.In addition, since the layered AlN and AlN nanosheets according to the present invention have excellent thermal conductivity, when used in a semiconductor substrate or a substrate of a high thermal conductivity ceramic, the thermal conductivity may be excellent. Configurations other than the substrate may employ a configuration known in the art, so the detailed description thereof will be omitted.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.Although one embodiment of the present invention has been described above, the spirit of the present invention is not limited to the embodiments set forth herein, and those skilled in the art who understand the spirit of the present invention may add components within the same scope. Other embodiments may be easily proposed by changing, deleting, adding, and the like, but this will also fall within the spirit of the present invention.
(준비예1) - 층상형 Ca3Al2N4 제조Preparation Example 1 Preparation of Layered Ca 3 Al 2 N 4
층상형 Ca3Al2N4의 합성을 위해 Ca3N2 분말과 Al분말을 혼합한 후 진공 분위기의 쿼츠 튜브에 봉입하였다. 시료가 담긴 쿼츠 튜브를 1050℃에서 100시간 동안 열처리하였다. 이후 재 결정화를 위해 2℃/시간의 감온 속도로 냉각하여 고 순도의 층상형 Ca3Al2N4 단결정을 수득하였다.In order to synthesize the layered Ca 3 Al 2 N 4 , Ca 3 N 2 powder and Al powder were mixed and encapsulated in a quartz tube in a vacuum atmosphere. The quartz tube containing the sample was heat-treated at 1050 ° C. for 100 hours. Thereafter, cooling was performed at a temperature reduction rate of 2 ° C./hour for recrystallization to obtain a high purity layered Ca 3 Al 2 N 4 single crystal.
(실시예1) - 층상형 AlN 제조Example 1 Preparation of Layered AlN
준비예1에서 제조된 층상형 Ca3Al2N4를 탈이온수, 테트라하이드로퓨란 및 AlCl3와 혼합하여 상기 Ca3Al2N4에서 Ca 이온을 제거하였으며, 이를 통해 층상형 AlN를 제조하였다.The layered Ca 3 Al 2 N 4 prepared in Preparation Example 1 was mixed with deionized water, tetrahydrofuran and AlCl 3 to remove Ca ions from the Ca 3 Al 2 N 4 , through which a layered AlN was prepared.
(실시예3) - AlN 나노시트 제조Example 3 Preparation of AlN Nanosheets
실시예1에서 제조된 층상형 AlN를 테이프로 박리하여 AlN 나노시트를 제조하였다.The layered AlN prepared in Example 1 was peeled off with a tape to prepare an AlN nanosheet.
(비교예1) 3D 벌크형 AlNComparative Example 1 3D Bulk AlN
상용 제품인 3D 벌크형 AlN(시그마알드리치)를 준비하였다.A commercial 3D bulk AlN (Sigma Aldrich) was prepared.
(실험예1) XRD 분석Experimental Example 1 XRD Analysis
비교예1의 3D AlN, 준비예1의 층상형 Ca3Al2N4 및 실시예1의 층상형 AlN에 대하여 XRD 분석을 실시하였으며, 그 결과를 도 2에 도시하였다.XRD analysis was performed on 3D AlN of Comparative Example 1, layered Ca 3 Al 2 N 4 of Preparation Example 1, and layered AlN of Example 1, and the results are shown in FIG. 2.
도 2를 참조하면 층상형 Ca3Al2N4(준비예1)는 공간군이 C2/2 및 P2/c인 단사정계 결정구조를 갖는 것을 확인할 수 있다.Referring to FIG. 2, it can be seen that the layered Ca 3 Al 2 N 4 (preparation example 1) has a monoclinic crystal structure of space groups C2 / 2 and P2 / c.
또한, 층상형 Ca3Al2N4에서 Ca 이온을 제거한 층상형 AlN(실시예1)은 공간군이 C2/2 및 P2/c인 단사정계 결정구조를 갖는 것을 확인할 수 있고 이는 3D 구조의 벌크형 AlN과는 상이한 결정 구조이다.In addition, it can be seen that the layered AlN (Example 1) having Ca ions removed from the layered Ca 3 Al 2 N 4 has a monoclinic crystal structure of C2 / 2 and P2 / c, which is a bulk of 3D structure. It is a crystal structure different from AlN.
(실험예2) SEM 분석Experimental Example 2 SEM Analysis
준비예1의 층상형 Ca3Al2N4 및 실시예1의 층상형 AlN에 대하여 SEM 이미지를 촬영하였으며, 그 결과를 도 3a 및 3c에 도시하였다.SEM images were taken of the layered Ca 3 Al 2 N 4 of Preparation Example 1 and the layered AlN of Example 1, and the results are shown in FIGS. 3A and 3C.
도 3a 및 도 3c를 참조하면, 층상형 Ca3Al2N4의 Ca 이온 제거 후 제조된 AlN가 층상형 구조를 갖는 것을 확인할 수 있다.3A and 3C, it can be seen that AlN prepared after removing Ca ions of the layered Ca 3 Al 2 N 4 has a layered structure.

Claims (10)

  1. (1) Ca 전구체 또는 Ca 분말, Al 전구체 또는 Al 분말, 및 N 전구체를 포함(1) Ca precursor or Ca powder, Al precursor or Al powder, and N precursor
    하는 혼합물을 열처리한 후 냉각하여 공간군(space group)이 C2/2 또는 P2/c인 단사정계(monoclinic) 결정구조를 갖는 화학식 Ca3Al2N4로 표시되는 층상형 화합물을 수득하는 단계; 및Heat treating and then cooling the mixture to obtain a layered compound represented by Chemical Formula Ca 3 Al 2 N 4 having a monoclinic (monoclinic) crystal structure having a space group of C2 / 2 or P2 / c; And
    (2) 상기 층상형 화합물의 결정구조 변화 없이 상기 층상형 화합물에 포함된 Ca 이온을 선택적으로 제거할 수 있는 염 및 상기 염을 용해시킬 수 있는 용매를 포함하는 혼합용액으로 상기 층상형 화합물을 처리하는 단계;를 포함하는 층상형 AlN의 제조 방법.(2) treating the layered compound with a mixed solution containing a salt capable of selectively removing Ca ions contained in the layered compound and a solvent capable of dissolving the salt, without changing the crystal structure of the layered compound. Method of producing a layered AlN comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 염은 하기 화학식 1로 표시되는 층상형 AlN의 제조 방법:The salt is a method for producing a layered AlN represented by the following formula (1):
    <화학식 1><Formula 1>
    MaXb(1a2, 1b3)M a X b (1 a 2, 1 b 3)
    상기 화학식 1에서 M은 Al, Mg, 및 Mn 중에서 선택된 어느 하나, X는 Cl, F 및 I 중에서 선택된 어느 하나다.In Formula 1, M is any one selected from Al, Mg, and Mn, and X is any one selected from Cl, F, and I.
  3. 제1항에 있어서,The method of claim 1,
    상기 용매는 탈이온수, 테트라하이드로퓨란 및 다이클로로메탄 중에서 선택된 적어도 어느 하나인 층상형 AlN의 제조 방법.Said solvent is at least one selected from deionized water, tetrahydrofuran and dichloromethane.
  4. 제1항에 있어서,The method of claim 1,
    상기 (1)단계의 열처리는 1000~1200℃에서 80~200시간 동안 수행되는 층상형 AlN의 제조 방법.The heat treatment of step (1) is a method of producing a layered AlN is carried out for 80 to 200 hours at 1000 ~ 1200 ℃.
  5. 제1항에 있어서,The method of claim 1,
    상기 (1)단계의 냉각은 0.5~3℃/시간 또는 10~15℃/시간의 감온 속도로 수행되는 층상형 AlN의 제조 방법.The cooling of step (1) is a method of producing a layered AlN is carried out at a temperature reduction rate of 0.5 ~ 3 ℃ / hour or 10 ~ 15 ℃ / hour.
  6. 공간군(space group)이 C2/2 또는 P2/c인 단사정계(monoclinic) 결정구조를 갖는 층상형 AlN.Layered AlN having a monoclinic crystal structure with a space group of C2 / 2 or P2 / c.
  7. 제6항에 있어서,The method of claim 6,
    상기 공간군이 C2/2인 단사정계 결정구조를 갖는 층상형 AlN는 Cu-Kα선을 사용하는 분말 X선 회절법에 의해 얻어지는 X선 회절도에 있어서, 1354±02, 1668±02, 2079±02, 2125±02, 2685±02, 2743±02, 3146±02 및 3233±02의 2θ값에서 피크를 갖고, 3304±02, 3577±02, 377±02, 4948±02, 5902±02, 6554±02 및 7095±02의 2θ값에서 피크를 갖지 않는 층상형 AlN.In the X-ray diffractogram obtained by the powder X-ray diffraction method using Cu-Kα rays, the layered AlN having a monoclinic crystal structure of the space group C2 / 2 is 1354 ± 02, 1668 ± 02, 2079 ±. 02, 2125 ± 02, 2685 ± 02, 2743 ± 02, 3146 ± 02 and 3233 ± 02 with peaks at 2θ values, 3304 ± 02, 3577 ± 02, 377 ± 02, 4948 ± 02, 5902 ± 02, 6554 Layered AlN without peaks at 2θ values of ± 02 and 7095 ± 02.
  8. 제6항에 있어서,The method of claim 6,
    상기 공간군이 P2/c인 단사정계 결정구조를 갖는 층상형 AlN는 Cu-Kα선을 사용하는 분말 X선 회절법에 의해 얻어지는 X선 회절도에 있어서, 994±02, 1824±02, 1873±02, 1895±02, 1996±02, 2424±02, 2521±02 및 3011±02 의 2θ값에서 피크를 갖고, 3304±02, 3577±02, 377±02, 4948±02, 5902±02, 6554±02 및 7095±02의 2θ값에서 피크를 갖지 않는 층상형 AlN.In the X-ray diffractogram obtained by the powder X-ray diffraction method using Cu-Kα rays, the layered AlN having a monoclinic crystal structure of the space group P2 / c is 994 ± 02, 1824 ± 02, 1873 ±. 02, 1895 ± 02, 1996 ± 02, 2424 ± 02, 2521 ± 02 and 3011 ± 02 with peaks at 2θ values, 3304 ± 02, 3577 ± 02, 377 ± 02, 4948 ± 02, 5902 ± 02, 6554 Layered AlN without peaks at 2θ values of ± 02 and 7095 ± 02.
  9. 제6항에 따른 층상형 AlN로부터 박리되고, 비정질 결정구조를 갖는 AlN 나노시트.An AlN nanosheet exfoliated from the layered AlN according to claim 6 and having an amorphous crystal structure.
  10. 제9항에 있어서,The method of claim 9,
    상기 AlN 나노시트의 두께는 300 nm 이하인 AlN 나노시트.AlN nanosheets having a thickness of 300 nm or less.
PCT/KR2019/006947 2018-05-18 2019-06-10 Layered aln, method for manufacturing same, and aln nanosheet exfoliated therefrom WO2019221583A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180057454A KR102271060B1 (en) 2018-05-18 2018-05-18 Layered AlN, manufacturing method thereof and exfoliated AlN nanosheet therefrom
KR10-2018-0057454 2018-05-18

Publications (1)

Publication Number Publication Date
WO2019221583A1 true WO2019221583A1 (en) 2019-11-21

Family

ID=68540422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/006947 WO2019221583A1 (en) 2018-05-18 2019-06-10 Layered aln, method for manufacturing same, and aln nanosheet exfoliated therefrom

Country Status (2)

Country Link
KR (1) KR102271060B1 (en)
WO (1) WO2019221583A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11634340B2 (en) 2020-09-09 2023-04-25 Industry-Academic Cooperation Foundation, Yonsei University Layered group III-V compound and nanosheet containing arsenic, and electrical device using the same
KR102425892B1 (en) 2020-09-09 2022-07-26 연세대학교 산학협력단 Layered compounds and nanosheets containing indium and phosphorus, and electrical devices using the same
US11597651B2 (en) 2020-09-09 2023-03-07 Industry-Academic Cooperation Foundation, Yonsei University Layered group III-V compound and nanosheet containing phosphorus, and electrical device using the same
KR102425893B1 (en) * 2020-09-14 2022-07-26 연세대학교 산학협력단 Layered compounds and nanosheets containing potassium, indium and arsenic, and electrical devices using the same
KR102425889B1 (en) * 2020-09-14 2022-07-26 연세대학교 산학협력단 Layered compounds and nanosheets containing indium and arsenic, and electrical devices using the same
KR102425891B1 (en) * 2020-09-14 2022-07-26 연세대학교 산학협력단 Layered compounds and nanosheets containing gallium and antimony, and electrical devices using the same
US11643753B2 (en) 2020-09-14 2023-05-09 Industry-Academic Cooperation Foundation, Yonsei University Layered group III-V compound and nanosheet containing antimony, and electrical device using the same
KR102425890B1 (en) * 2020-09-14 2022-07-26 연세대학교 산학협력단 Layered compounds and nanosheets containing aluminum and antimony, and electrical devices using the same
KR102425894B1 (en) * 2020-09-14 2022-07-26 연세대학교 산학협력단 Layered compounds and nanosheets containing indium and antimony, and electrical devices using the same
KR102514681B1 (en) 2020-11-10 2023-03-27 연세대학교 산학협력단 Ⅲ-Ⅴ compound with layered structure and ferroelectric-like properties

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07277897A (en) * 1994-04-04 1995-10-24 Katsutoshi Yoneya Synthesis of aluminum nitride single crystal
KR100419285B1 (en) * 1997-06-11 2004-02-19 히다치 덴센 가부시키 가이샤 Method of fabricating nitride crystal
JP2009091225A (en) * 2007-10-12 2009-04-30 Ngk Insulators Ltd Method for manufacturing nitride single crystal
JP5181329B2 (en) * 2005-03-29 2013-04-10 タマティーエルオー株式会社 Method for producing aluminum nitride-containing material
JP5229735B2 (en) * 2006-09-07 2013-07-03 タマティーエルオー株式会社 Method for producing AlN crystal

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100954722B1 (en) 2008-07-04 2010-04-23 (주) 아모엘이디 Electrode material of ??? substrate, method of formating electrode on ??? substrate and ??? substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07277897A (en) * 1994-04-04 1995-10-24 Katsutoshi Yoneya Synthesis of aluminum nitride single crystal
KR100419285B1 (en) * 1997-06-11 2004-02-19 히다치 덴센 가부시키 가이샤 Method of fabricating nitride crystal
JP5181329B2 (en) * 2005-03-29 2013-04-10 タマティーエルオー株式会社 Method for producing aluminum nitride-containing material
JP5229735B2 (en) * 2006-09-07 2013-07-03 タマティーエルオー株式会社 Method for producing AlN crystal
JP2009091225A (en) * 2007-10-12 2009-04-30 Ngk Insulators Ltd Method for manufacturing nitride single crystal

Also Published As

Publication number Publication date
KR20190132152A (en) 2019-11-27
KR102271060B1 (en) 2021-06-29

Similar Documents

Publication Publication Date Title
WO2019221583A1 (en) Layered aln, method for manufacturing same, and aln nanosheet exfoliated therefrom
KR20190132148A (en) Layered GaAs, manufacturing method thereof and exfoliated GaAs nanosheet therefrom
KR102285270B1 (en) Layered InAs, manufacturing method thereof and InAs nanosheet exfoliated therefrom
WO2015016412A1 (en) Mos2 thin film and method for manufacturing same
WO2015106437A1 (en) Large-scale preparation method for graphene quantum dots
WO2012053782A2 (en) Process for growing silicon carbide single crystal and device for the same
WO2020080856A1 (en) Method for regenerating silicon carbide byproduct generated from deposition process into single crystal raw material
WO2010082733A2 (en) Thermoelectric nanowire and method for manufacturing same
WO2013089483A1 (en) Crystalline iron phosphate doped with metal, method for preparing same, and lithium composite metal phosphor oxide prepared therefrom
WO2019151644A1 (en) Layered kznsb, layered znsb, kznsb nanosheet, znsb nanosheet, and preparation methods therefor
WO2012165855A2 (en) Method of development for the enhancement of thermoelectric efficiency of thermoelectric material through annealing process
WO2014189271A1 (en) Large-surface-area single-crystal monolayer graphene and production method therefor
WO2022059952A1 (en) Cubic boron nitride powder and manufacturing method therefor
WO2022075576A1 (en) Method for producing nickel nanopowder and nickel nanopowder produced using same
WO2019151643A1 (en) Layered znbi, znbi nanosheet, and preparation methods therefor
WO2019221584A2 (en) Layered ge, manufacturing method therefor, ge nanosheet peeled therefrom, and electrode comprising same for lithium ion battery
WO2013055016A1 (en) Production method for silicon carbide powder and silicon carbide powder produced thereby
CN110498448B (en) Layered FeAs, preparation method thereof and FeAs nanosheet stripped therefrom
JPS63277567A (en) Sintered aluminum nitride having high thermal conductivity
KR20190056267A (en) Layered NaZnSb, Layered ZnSb, NaZnSb nanosheet, ZnSb nanosheet and method thereof
WO2015056944A1 (en) Molybdenum compound or tungsten compound, method for preparing same and method for forming thin film using same
WO2021054628A1 (en) Method for preparing layered cobalt arsenide, layered cobalt arsenide prepared thereby, and cobalt arsenide nanosheet exfoliated therefrom
WO2016080801A1 (en) Method for producing silicon nitride nanofibers
WO2014209030A1 (en) Method for manufacturing graphene using cover member and method for manufacturing electronic element including same
WO2023090540A1 (en) Method for manufacturing free-standing single-crystal membrane having perovskite structure, and method for transferring free-standing single-crystal membrane having perovskite structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19803859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19803859

Country of ref document: EP

Kind code of ref document: A1