WO2019221583A1 - Aln lamellaire, procédé pour la fabrication de celui-ci et nanofeuille d'aln exfoliée à partir de celui-ci - Google Patents
Aln lamellaire, procédé pour la fabrication de celui-ci et nanofeuille d'aln exfoliée à partir de celui-ci Download PDFInfo
- Publication number
- WO2019221583A1 WO2019221583A1 PCT/KR2019/006947 KR2019006947W WO2019221583A1 WO 2019221583 A1 WO2019221583 A1 WO 2019221583A1 KR 2019006947 W KR2019006947 W KR 2019006947W WO 2019221583 A1 WO2019221583 A1 WO 2019221583A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aln
- layered
- crystal structure
- powder
- precursor
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 239000002135 nanosheet Substances 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- 239000013078 crystal Substances 0.000 claims abstract description 34
- 150000001875 compounds Chemical class 0.000 claims description 22
- 239000002243 precursor Substances 0.000 claims description 20
- 150000003839 salts Chemical class 0.000 claims description 18
- 229910001424 calcium ion Inorganic materials 0.000 claims description 17
- 239000000843 powder Substances 0.000 claims description 11
- 239000002904 solvent Substances 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 10
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 9
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 8
- 239000011259 mixed solution Substances 0.000 claims description 7
- 239000008367 deionised water Substances 0.000 claims description 5
- 229910021641 deionized water Inorganic materials 0.000 claims description 5
- 238000000634 powder X-ray diffraction Methods 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 238000004299 exfoliation Methods 0.000 abstract 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 72
- 239000011575 calcium Substances 0.000 description 42
- 239000000463 material Substances 0.000 description 18
- 238000002360 preparation method Methods 0.000 description 12
- 239000000758 substrate Substances 0.000 description 8
- 150000002500 ions Chemical class 0.000 description 7
- -1 transition metal chalcogenides Chemical class 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 229910001413 alkali metal ion Inorganic materials 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229910021389 graphene Inorganic materials 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910000673 Indium arsenide Inorganic materials 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- XOJVVFBFDXDTEG-UHFFFAOYSA-N Norphytane Natural products CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/60—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
- C30B29/68—Crystals with laminate structure, e.g. "superlattices"
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/14—Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/14—Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
- H01L23/142—Metallic substrates having insulating layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/704—Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
- H10N30/706—Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings characterised by the underlying bases, e.g. substrates
Definitions
- the present invention relates to a layered AlN, a method for producing the same and an AlN nanosheet peeled from the same, more specifically, unlike a conventional bulk AlN has a two-dimensional crystal structure, and excellent peelability in the form of nanosheets
- the present invention relates to a layered AlN, a method for preparing the same, and an AlN nanosheet peeled therefrom, which is easy to do, and has excellent thermal conductivity and piezoelectric properties.
- the research on existing 2D materials is based on the top-down method for separating van der Waals bonds with weak interlayer bondability by physical and chemical methods, and the bottom-up method for growing large-area thin films based on vapor deposition. It is becoming.
- the top-down method since the pristine of the material to be exfoliated must have a two-dimensional layered crystal structure, graphene without band gap, layered metal oxide / nitride with low charge mobility, electron mobility / Research subjects such as transition metal chalcogenides with low electrical conductivity have very limited problems.
- 2D materials Due to the limitations of previous research methods, 2D materials have been very limitedly studied for materials such as graphene and transition metal chalcogenides. It is limited in that it is not suitable for the development of low-dimensional future materials of a myriad of 3D bulk materials that are not layered.
- AlN aluminum nitride
- the AlN is manufactured from a two-dimensional material, the above-described characteristics may be improved, and thus, the AlN may be applied to a semiconductor substrate or a component of high thermal conductivity ceramics.
- the present invention has a two-dimensional crystal structure, has excellent peelability and is easy to peel in the form of a nanosheet, and has a layered AlN and an AlN nanosheet peeled therefrom having excellent thermal conductivity and piezoelectric properties.
- the purpose is to provide.
- the present invention is (1) heat treatment and cooling the mixture containing Ca precursor or Ca powder, Al precursor or Al powder, and N precursor, the space group (C2 / 2 or P2) obtaining a layered compound represented by the formula Ca 3 Al 2 N 4 having a monoclinic crystal structure of / c and (2) Ca included in the layered compound without changing the crystal structure of the layered compound
- It provides a method for producing a layered AlN comprising the step of treating the layered compound with a mixed solution comprising a salt capable of selectively removing ions and a solvent capable of dissolving the salt.
- the salt may be represented by the following formula (1).
- M is any one selected from Al, Mg, and Mn
- X is any one selected from Cl, F, and I.
- the solvent may be at least one selected from deionized water, tetrahydrofuran and dichloromethane.
- the heat treatment of step (1) may be performed for 80 to 200 hours at 1000 ⁇ 1200 °C.
- the cooling of the step (1) may be performed at a temperature reduction rate of 0.5 ⁇ 3 °C / hour or 10 ⁇ 15 °C / hour.
- the present invention also provides a layered AlN having a monoclinic crystal structure in which the space group is C2 / 2 or P2 / c.
- the layered AlN having a monoclinic crystal structure having a space group of C2 / 2 is 1354 in an X-ray diffractogram obtained by a powder X-ray diffraction method using Cu-K ⁇ rays. Peaks at 2 ⁇ values of ⁇ 02, 1668 ⁇ 02, 2079 ⁇ 02, 2125 ⁇ 02, 2685 ⁇ 02, 2743 ⁇ 02, 3146 ⁇ 02, and 3233 ⁇ 02, 3304 ⁇ 02, 3577 ⁇ 02, 377 ⁇ 02, It may not have peaks at 2 ⁇ values of 4948 ⁇ 02, 5902 ⁇ 02, 6554 ⁇ 02 and 7095 ⁇ 02.
- the layered AlN having a monoclinic crystal structure in which the space group is P2 / c has an X-ray diffraction diagram obtained by a powder X-ray diffraction method using Cu-K ⁇ rays. It has peaks at 2 ⁇ values of 994 ⁇ 02, 1824 ⁇ 02, 1873 ⁇ 02, 1895 ⁇ 02, 1996 ⁇ 02, 2424 ⁇ 02, 2521 ⁇ 02 and 3011 ⁇ 02, and 3304 ⁇ 02, 3577 ⁇ 02, 377 ⁇ 02 , 4948 ⁇ 02, 5902 ⁇ 02, 6554 ⁇ 02 and 7095 ⁇ 02 may not have peaks at 2 ⁇ values.
- the present invention also provides an AlN nanosheet peeled from the layered AlN according to the present invention and having an amorphous crystal structure.
- the thickness of the AlN nanosheets may be 300 nm or less.
- the layered AlN according to the present invention has a two-dimensional crystal structure, has excellent peelability and is easily peeled off in the form of a nanosheet, and has a high thermal conductivity and piezoelectric semiconductor substrate. It can be widely used for the substrate of a thyristor and a piezoelectric element.
- FIG. 1 is a schematic diagram of a layered AlN manufacturing method according to an embodiment of the present invention.
- FIG. 2 is a graph showing XRD analysis results of 3D bulk AlN of Comparative Example 1, layered Ca 3 Al 2 N 4 of Preparation Example 1, and layered AlN of Example 1.
- FIG. 2 is a graph showing XRD analysis results of 3D bulk AlN of Comparative Example 1, layered Ca 3 Al 2 N 4 of Preparation Example 1, and layered AlN of Example 1.
- FIG. 3A is an SEM image of the layered Ca 3 Al 2 N 4 of Preparation Example 1.
- FIG. 3B is an SEM image of the layered Ca 3 Al 2 N 4 of Preparation Example 1.
- 3C is an SEM image of the layered AlN of Example 1.
- FIG. 4 is a photograph of layered Ca 3 Al 2 N 4 of Preparation Example 1.
- the method of manufacturing a layered AlN according to the present invention can produce a bulk AlN of a conventional 3D structure in a two-dimensional structure, and unlike the existing bulk AlN can be easily peeled, and can produce a layered AlN having excellent thermal conductivity properties. .
- step (1) the mixture comprising Ca precursor or Ca powder, Al precursor or Al powder, and N precursor is heat-treated and then cooled to give a monoclinic system having a space group of C2 / 2 or P2 / c. monoclinic) to obtain a layered compound having a crystal structure represented by the formula Ca 3 Al 2 N 4 .
- the Ca precursor or Ca powder, Al precursor or Al powder, and N precursor may be mixed independently of each other, the N precursor may be included in the mixture with the same material as the Ca precursor or Al precursor.
- the N precursor may be a compound including N ions
- the Ca precursor may be a compound including Ca ions
- the N precursor and the Ca precursor may be the same material as the compound including Ca and N elements.
- it may be Ca 3 N 2 but is not limited thereto.
- the Al precursor may be a compound including Al ions, for example, may be AlN, but is not limited thereto.
- the mixture may be heat treated after being encapsulated in a reaction vessel, and the inside of the reaction vessel may be maintained in an inert gas atmosphere or a vacuum atmosphere.
- the material of the reaction vessel may be, for example, alumina, molybdenum, tungsten or quartz, but any material that does not react with the sample and does not break at a high temperature may be used without limitation in the material.
- the Ca 3 Al 2 N 4 is (2) has an AlN different 2D crystal structure of the 3D crystal structure, which will be described later stage be prepared through the step (1) As shown in Figure 1 of the Ca 3 Al 2 N 4 By selectively removing Ca ions, a layered AlN may be prepared without changing the crystal structure of Ca 3 Al 2 N 4 .
- the heat treatment may be performed at 1000 to 1200 ° C. for 80 to 200 hours.
- the heat treatment is performed at less than 1000 ° C., the sintering reaction of the mixture may not be completed, and thus unreacted raw materials may remain, resulting in a decrease in yield of the layered compound prepared. have.
- the heat treatment is performed in excess of 1200 °C, there may be a problem such as the reaction vessel used in the sintering reaction by the vaporization of Ca ions, or the yield of the layered compound produced is lowered.
- the heat treatment is performed for less than 80 hours, the sintering reaction of the mixture may not be completed, so that unreacted raw materials may remain, and thus the yield of the layered compound prepared may be deteriorated. have.
- the heat treatment is performed for more than 200 hours, there is a fear that the manufacturing process time unnecessarily increases.
- the cooling process after the heat treatment in step (1) is necessary for crystallization of the layered compound, and the single crystal size of the crystal may change according to the cooling rate.
- the cooling may be performed at a temperature reduction rate of 10 to 15 ° C./hour or 0.5 to 3 ° C./hour, and when the temperature reduction rate is 10 to 15 ° C./hour, the layered Ca 3 Al 2 N 4 may be polycrystalline. have.
- the heat-sensing and speed can be purified unity to 0.5 ⁇ 3 °C / hour day when the layered Ca 3 Al 2 N 4, a single crystal size of the layered AlN after Ca ion scavenging included in the layered Ca 3 Al 2 N 4 is Can be maintained.
- grain boundaries of the particles may decrease, and the aspect ratio of the InAs nanosheets peeled off when the layered InAs is peeled off may increase.
- the temperature reduction rate is less than 0.5 °C / hour, a change in the composition of the material produced due to the vaporization of Ca ions may occur, and if the temperature reduction rate exceeds 3 °C / hour, the layered compound prepared is polycrystalline Can be.
- the layered compound prepared in step (1) includes a salt including a salt capable of selectively removing Ca ions contained in the layered compound and a solvent capable of dissolving the salt. Treated with solution to prepare a layered AlN without changing the crystal structure of the layered compound.
- the salt may include an anion having a high electronegativity and a cation having an electronegativity value between the alkali metal ion and the Al ion in order to easily react with the alkali metal ion contained in the layered compound.
- the salt may be represented by the following Chemical Formula 1, wherein the salt is a cation having an electronegativity value between the alkali metal ion and the Al ion, and is composed of M and Cl ions having a high electronegativity.
- M may be any one selected from Al, Mg, and Mn, and X may be any one selected from Cl, F, and I.
- the solvent may include at least one selected from deionized water, tetrahydrofuran and dichloromethane.
- the salt may be included in the mixed solution at a high concentration that can be dissolved in the solvent in order to increase the Ca ion removal efficiency of the layered Ca 3 Al 2 N 4 and prevent the removal of Al ions.
- the salt may be used in an amount sufficient to remove Ca ions of the layered Ca 3 Al 2 N 4 , but preferably the layered Ca 3 Al 2 N 4 and the salt in the mixed solution are 1: 1 to 1: It may be included in a molar ratio of three. If the molar ratio of the layered Ca 3 Al 2 N 4 and salt is less than 1: 1, Ca ions of the layered Ca 3 Al 2 N 4 may not be removed to the desired level, if the molar ratio is 1 If it exceeds 3, the salt may not be dissolved in the mixed solution, resulting in a precipitate.
- the step (2) may be carried out at a temperature at which the Ca ion removal reaction may occur smoothly, the temperature may vary depending on the composition of the mixed solution, preferably at least 20 °C, more preferably Preferably it may be carried out at a temperature of 20 ⁇ 60 °C. If carried out below 20 ° C., Ca ions may not be removed to the desired level, and if carried out at temperatures above 60 ° C., the layered structure of the layered Ca 3 Al 2 N 4 produced may collapse. have.
- the alkali metal ion removal rate may be excellent while maintaining the layered structure of the layered Ca 3 Al 2 N 4 prepared when performed at a temperature of 20 ⁇ 60 °C.
- the step (2) may be performed a plurality of times depending on the composition of the mixed solution, the removal rate of Ca ions, but is preferably performed once to maintain the layered structure of the layered AlN.
- a reactant produced by reacting Ca ions with the salt in addition to the layered AlN may be present, for example, calcium chloride, and the powder obtained through step (2) may be removed to remove it. It can be washed with a solvent.
- the solvent for removing the reactant may be used without limitation as long as it is a solvent having solubility in calcium chloride and may be at least one selected from water, deionized water and ethanol.
- Layered AlN according to the present invention has a monoclinic (monoclinic) crystal structure of the space group (space group) of C2 / 2 or P2 / c, which is different from the existing 3D bulk AlN as a nanocrystalline sheet with excellent peelability It is easy to peel off in the form of, and may have excellent thermal conductivity characteristics.
- the layered AlN having a monoclinic crystal structure in which the space group is C2 / 2 is 1354 ⁇ 02, 1668 ⁇ 02, 2079 ⁇ . 02, 2125 ⁇ 02, 2685 ⁇ 02, 2743 ⁇ 02, 3146 ⁇ 02 and 3233 ⁇ 02 with peaks at 2 ⁇ values, 3304 ⁇ 02, 3577 ⁇ 02, 377 ⁇ 02, 4948 ⁇ 02, 5902 ⁇ 02, 6554 It may not have peaks at 2 ⁇ values of ⁇ 02 and 7095 ⁇ 02.
- the layered AlN having a monoclinic crystal structure in which the space group is P2 / c is 994 ⁇ 02, 1824 ⁇ 02, 1873 ⁇ 02, 1895 ⁇ 02, 1996 ⁇ 02, 2424 ⁇ 02, 2521 ⁇ 02, and 3011 ⁇ . It may have a peak at a 2 ⁇ value of 02 and may not have a peak at a 2 ⁇ value of 3304 ⁇ 02, 3577 ⁇ 02, 377 ⁇ 02, 4948 ⁇ 02, 5902 ⁇ 02, 6554 ⁇ 02 and 7095 ⁇ 02.
- the AlN nanosheets according to the present invention can be obtained by peeling from the layered AlN according to the present invention and have an amorphous crystal structure.
- the AlN nanosheets may have a thickness of 300 nm or less, and if the thickness exceeds 300 nm, the surface area of the AlN nanosheets may be lowered to lower thermal conductivity and piezoelectric properties, or the AlN nanosheets. Lamination of sheets can be difficult.
- a peeling method of the layered AlN a peeling method of a layered material known in the art may be used, and for example, a peeling method using energy by ultrasonic waves, a peeling method by invasion of a solvent, a peeling method using a tape, and adhesion Any of the stripping methods using a substance having a surface may be used.
- the layered AlN and AlN nanosheets according to the present invention have excellent thermal conductivity and piezoelectric properties, they may be used for semiconductor substrates of high thermal conductivity ceramics, substrates of thyristors, or piezoelectric elements.
- the layered AlN and AlN nanosheets according to the present invention may be included as piezoelectric elements included in the piezoelectric elements, thereby providing excellent piezoelectric properties.
- the configuration other than the piezoelectric element included in the piezoelectric element may adopt a configuration known in the art, and thus the detailed description thereof will be omitted.
- the layered AlN and AlN nanosheets according to the present invention have excellent thermal conductivity, when used in a semiconductor substrate or a substrate of a high thermal conductivity ceramic, the thermal conductivity may be excellent.
- Configurations other than the substrate may employ a configuration known in the art, so the detailed description thereof will be omitted.
- the layered Ca 3 Al 2 N 4 prepared in Preparation Example 1 was mixed with deionized water, tetrahydrofuran and AlCl 3 to remove Ca ions from the Ca 3 Al 2 N 4 , through which a layered AlN was prepared.
- Example 2 The layered AlN prepared in Example 1 was peeled off with a tape to prepare an AlN nanosheet.
- the layered Ca 3 Al 2 N 4 (preparation example 1) has a monoclinic crystal structure of space groups C2 / 2 and P2 / c.
- the layered AlN (Example 1) having Ca ions removed from the layered Ca 3 Al 2 N 4 has a monoclinic crystal structure of C2 / 2 and P2 / c, which is a bulk of 3D structure. It is a crystal structure different from AlN.
- AlN prepared after removing Ca ions of the layered Ca 3 Al 2 N 4 has a layered structure.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Ceramic Products (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
La présente invention concerne de l'AlN lamellaire, un procédé pour la fabrication de celui-ci et une nanofeuille d'AlN exfoliée à partir de celui-ci et, plus précisément : de l'AlN lamellaire qui a une structure cristalline bidimensionnelle, contrairement à de l'AlN massif classique, une facilité d'exfoliation permettant une exfoliation facile sous la forme d'une nanofeuille et une excellente conductivité thermique; un procédé pour la fabrication de celui-ci; et une nanofeuille d'AlN exfoliée à partir de celui-ci.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180057454A KR102271060B1 (ko) | 2018-05-18 | 2018-05-18 | 층상형 AlN, 이의 제조 방법 및 이로부터 박리된 AlN 나노시트 |
KR10-2018-0057454 | 2018-05-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019221583A1 true WO2019221583A1 (fr) | 2019-11-21 |
Family
ID=68540422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/006947 WO2019221583A1 (fr) | 2018-05-18 | 2019-06-10 | Aln lamellaire, procédé pour la fabrication de celui-ci et nanofeuille d'aln exfoliée à partir de celui-ci |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102271060B1 (fr) |
WO (1) | WO2019221583A1 (fr) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102425892B1 (ko) | 2020-09-09 | 2022-07-26 | 연세대학교 산학협력단 | 인듐과 인을 포함하는 층상구조 화합물, 나노시트 및 이를 이용한 전기 소자 |
US11597651B2 (en) | 2020-09-09 | 2023-03-07 | Industry-Academic Cooperation Foundation, Yonsei University | Layered group III-V compound and nanosheet containing phosphorus, and electrical device using the same |
KR102425893B1 (ko) * | 2020-09-14 | 2022-07-26 | 연세대학교 산학협력단 | 칼륨, 인듐과 비소를 포함하는 층상구조 화합물, 나노시트 및 이를 이용한 전기 소자 |
US11634340B2 (en) | 2020-09-09 | 2023-04-25 | Industry-Academic Cooperation Foundation, Yonsei University | Layered group III-V compound and nanosheet containing arsenic, and electrical device using the same |
KR102425890B1 (ko) * | 2020-09-14 | 2022-07-26 | 연세대학교 산학협력단 | 알루미늄과 안티몬을 포함하는 층상구조 화합물, 나노시트 및 이를 이용한 전기 소자 |
KR102425889B1 (ko) * | 2020-09-14 | 2022-07-26 | 연세대학교 산학협력단 | 인듐과 비소를 포함하는 층상구조 화합물, 나노시트 및 이를 이용한 전기 소자 |
KR102425894B1 (ko) * | 2020-09-14 | 2022-07-26 | 연세대학교 산학협력단 | 인듐과 안티몬을 포함하는 층상구조 화합물, 나노시트 및 이를 이용한 전기 소자 |
US11643753B2 (en) | 2020-09-14 | 2023-05-09 | Industry-Academic Cooperation Foundation, Yonsei University | Layered group III-V compound and nanosheet containing antimony, and electrical device using the same |
KR102425891B1 (ko) * | 2020-09-14 | 2022-07-26 | 연세대학교 산학협력단 | 갈륨과 안티몬을 포함하는 층상구조 화합물, 나노시트 및 이를 이용한 전기 소자 |
KR102514681B1 (ko) | 2020-11-10 | 2023-03-27 | 연세대학교 산학협력단 | 층상구조를 가지고 강유전 유사 특성을 가지는 3-5족 화합물 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07277897A (ja) * | 1994-04-04 | 1995-10-24 | Katsutoshi Yoneya | 窒化アルミニウム単結晶の合成方法 |
KR100419285B1 (ko) * | 1997-06-11 | 2004-02-19 | 히다치 덴센 가부시키 가이샤 | 질화물 결정의 제조방법 |
JP2009091225A (ja) * | 2007-10-12 | 2009-04-30 | Ngk Insulators Ltd | 窒化物単結晶の製造方法 |
JP5181329B2 (ja) * | 2005-03-29 | 2013-04-10 | タマティーエルオー株式会社 | 窒化アルミニウム含有物の製造方法 |
JP5229735B2 (ja) * | 2006-09-07 | 2013-07-03 | タマティーエルオー株式会社 | AlN結晶の製造方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100954722B1 (ko) | 2008-07-04 | 2010-04-23 | (주) 아모엘이디 | AlN기판의 전극 재료와 AlN기판에 전극을 형성하는방법 및 AlN기판 |
-
2018
- 2018-05-18 KR KR1020180057454A patent/KR102271060B1/ko active IP Right Grant
-
2019
- 2019-06-10 WO PCT/KR2019/006947 patent/WO2019221583A1/fr active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07277897A (ja) * | 1994-04-04 | 1995-10-24 | Katsutoshi Yoneya | 窒化アルミニウム単結晶の合成方法 |
KR100419285B1 (ko) * | 1997-06-11 | 2004-02-19 | 히다치 덴센 가부시키 가이샤 | 질화물 결정의 제조방법 |
JP5181329B2 (ja) * | 2005-03-29 | 2013-04-10 | タマティーエルオー株式会社 | 窒化アルミニウム含有物の製造方法 |
JP5229735B2 (ja) * | 2006-09-07 | 2013-07-03 | タマティーエルオー株式会社 | AlN結晶の製造方法 |
JP2009091225A (ja) * | 2007-10-12 | 2009-04-30 | Ngk Insulators Ltd | 窒化物単結晶の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR102271060B1 (ko) | 2021-06-29 |
KR20190132152A (ko) | 2019-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019221583A1 (fr) | Aln lamellaire, procédé pour la fabrication de celui-ci et nanofeuille d'aln exfoliée à partir de celui-ci | |
KR102057700B1 (ko) | 층상형 GaAs, 이의 제조 방법 및 이로부터 박리된 GaAs 나노시트 | |
KR20190132294A (ko) | 층상형 InAs, 이의 제조 방법 및 이로부터 박리된 InAs 나노시트 | |
WO2015106437A1 (fr) | Procédé de préparation à grande échelle de boîtes quantiques en graphène | |
WO2016192391A1 (fr) | Procédé de préparation d'un film mince de disulfure de molybdène et film mince de disulfure de molybdène | |
WO2012053782A2 (fr) | Procédé de croissance d'un monocristal de carbure de silicium et dispositif afférent | |
WO2020080856A1 (fr) | Procédé de régénération de sous-produit de carbure de silicium produit par un processus de dépôt en une matière première monocristallinne | |
WO2013089483A1 (fr) | Phosphate de fer cristallin dopé par un métal, son procédé de fabrication et oxyde phosphoré métallique composite de lithium préparé à partir de celui-ci | |
WO2019151644A1 (fr) | Kznsb stratifié, znsb stratifié, nanofeuille de kznsb, nanofeuille de znsb, et leurs procédés de préparation | |
WO2014189271A1 (fr) | Graphene en monocouche moncristalline a grande surface et procede de fabrication associe | |
WO2022059952A1 (fr) | Poudre de nitrure de bore cubique et sa méthode de fabrication | |
WO2022075576A1 (fr) | Procédé de production d'une nanopoudre de nickel et nanopoudre de nickel produite à l'aide de ce procédé | |
WO2019151643A1 (fr) | Znbi stratifié, nanofeuille de znbi et leurs procédés de préparation | |
WO2013055016A1 (fr) | Procédé de production pour poudre de carbure de silicium et poudre de carbure de silicium ainsi produite | |
WO2021125655A2 (fr) | Procédé de contrôle des tailles des particules du peroxyde de lithium et procédé de préparation d'oxyde de lithium à granulométrie contrôlée | |
WO2019221584A2 (fr) | Ge en couches, son procédé de fabrication, nanofeuille de ge pelée à partir de celui-ci, et électrode la comprenant pour batterie au lithium-ion | |
CN110498448B (zh) | 层状FeAs、其制备方法及由此剥离的FeAs纳米片 | |
KR20190056267A (ko) | 층상형 NaZnSb, 층상형 ZnSb, NaZnSb 나노시트, ZnSb 나노시트 및 이들의 제조방법 | |
WO2015056944A1 (fr) | Composé de molybdène ou de tungstène, son procédé de préparation et procédé de formation d'une couche mince l'utilisant | |
WO2021054628A1 (fr) | Procédé de préparation d'arséniure de cobalt feuilleté, arséniure de cobalt feuilleté ainsi préparé et nanofeuille d'arséniure de cobalt exfoliée à partir de ce dernier | |
WO2020130371A1 (fr) | Film métallique monocristallin formé par croissance de grain anormale d'un film métallique polycristallin, et son procédé de fabrication | |
WO2018139704A1 (fr) | Procédé de formation de film mince de silicium polycristallin | |
WO2014209030A1 (fr) | Procédé pour la fabrication de graphène utilisant un élément couvercle et procédé pour la fabrication d'élément électronique comprenant celui-ci | |
WO2023090540A1 (fr) | Procédé de fabrication d'une membrane monocristalline autoportante ayant une structure de pérovskite, et procédé de transfert de membrane monocristalline autoportante ayant une structure de pérovskite | |
WO2020226253A1 (fr) | Procédé de production de matériau en poudre de silicium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19803859 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19803859 Country of ref document: EP Kind code of ref document: A1 |