WO2018139704A1 - Procédé de formation de film mince de silicium polycristallin - Google Patents
Procédé de formation de film mince de silicium polycristallin Download PDFInfo
- Publication number
- WO2018139704A1 WO2018139704A1 PCT/KR2017/002623 KR2017002623W WO2018139704A1 WO 2018139704 A1 WO2018139704 A1 WO 2018139704A1 KR 2017002623 W KR2017002623 W KR 2017002623W WO 2018139704 A1 WO2018139704 A1 WO 2018139704A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thin film
- oxide layer
- polycrystalline silicon
- metal layer
- silicon thin
- Prior art date
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 70
- 229910021420 polycrystalline silicon Inorganic materials 0.000 title claims abstract description 69
- 238000000034 method Methods 0.000 title claims abstract description 48
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 83
- 229910052751 metal Inorganic materials 0.000 claims abstract description 79
- 239000002184 metal Substances 0.000 claims abstract description 79
- 229910052814 silicon oxide Inorganic materials 0.000 claims abstract description 75
- 238000000151 deposition Methods 0.000 claims abstract description 57
- 230000008021 deposition Effects 0.000 claims abstract description 46
- 239000000758 substrate Substances 0.000 claims abstract description 45
- 238000000137 annealing Methods 0.000 claims abstract description 21
- 238000010438 heat treatment Methods 0.000 claims abstract description 9
- 239000003054 catalyst Substances 0.000 claims abstract description 6
- 239000007789 gas Substances 0.000 claims description 27
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical group [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 claims description 27
- 229910052782 aluminium Inorganic materials 0.000 claims description 19
- 230000015572 biosynthetic process Effects 0.000 claims description 18
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 15
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 claims description 12
- 229910052760 oxygen Inorganic materials 0.000 claims description 10
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 7
- 239000008096 xylene Substances 0.000 claims description 7
- 239000001272 nitrous oxide Substances 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 5
- 229910021364 Al-Si alloy Inorganic materials 0.000 claims description 4
- 230000005496 eutectics Effects 0.000 claims description 4
- 125000004429 atom Chemical group 0.000 description 18
- 229910021417 amorphous silicon Inorganic materials 0.000 description 16
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 11
- 239000011521 glass Substances 0.000 description 10
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 7
- 238000009826 distribution Methods 0.000 description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 231100000331 toxic Toxicity 0.000 description 4
- 230000002588 toxic effect Effects 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 231100000252 nontoxic Toxicity 0.000 description 3
- 230000003000 nontoxic effect Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 229910018516 Al—O Inorganic materials 0.000 description 2
- 238000003841 Raman measurement Methods 0.000 description 2
- 238000001237 Raman spectrum Methods 0.000 description 2
- 229910018557 Si O Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000000879 optical micrograph Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 241000219289 Silene Species 0.000 description 1
- VRAIHTAYLFXSJJ-UHFFFAOYSA-N alumane Chemical compound [AlH3].[AlH3] VRAIHTAYLFXSJJ-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- -1 oxygen ions Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000011856 silicon-based particle Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/02274—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02175—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
- H01L21/02178—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02595—Microstructure polycrystalline
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28158—Making the insulator
- H01L21/28229—Making the insulator by deposition of a layer, e.g. metal, metal compound or poysilicon, followed by transformation thereof into an insulating layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/28556—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
Definitions
- the present invention relates to a method of forming a polycrystalline silicon thin film.
- Silicon has been widely applied as a semiconductor device in electronic devices because of its economic advantages of raw materials and easy integration with existing devices.
- polycrystalline silicon thin films have a contact resistance with a metal and thermoelectric photoelectric properties. Due to the characteristics of photoelectronic properties and high conversion efficiency, application possibilities are emerging for manufacturing devices such as solar cells and transistors.
- Korean Patent Publication No. 10-1011806 (filed date: April 30, 2009, published date: January 24, 2011) is given below.
- Technology has been proposed to form a polycrystalline silicon thin film using amorphous silicon.
- the prior art uses a metal induced crystallization method (MIC) to induce crystallization of amorphous silicon by coating a metal catalyst, that is, a metal layer on the amorphous silicon and then heat treatment.
- MIC metal induced crystallization method
- MIC metal induction crystallization method
- a double layer composed of an aluminum layer and an amorphous silicon layer deposited on the substrate is annealed at a temperature below the Al-Si alloy-based eutectic temperature ( ⁇ 557 ° C.), where amorphous Si atoms separated from the silicon layer diffuse into the aluminum layer across the oxide layer located at the interface between the aluminum layer and the amorphous silicon layer, and then Si nucleation occurs in the Al layer.
- a problem of this process is that the oxide layer formed on the aluminum layer, that is, the difficulty of controlling the formation of the aluminum oxide layer and the high cost of manufacturing the amorphous silicon layer are involved.
- the layer exchange between the amorphous silicon layer and the metal layer is not performed, so that the crystallization of the amorphous silicon is not performed smoothly.
- prior art requires forming an oxide layer separately from depositing a metal layer and an amorphous silicon layer on a substrate in order to achieve a layer exchange between the metal layer and the amorphous silicon layer in forming a polycrystalline silicon thin film. It had to be included.
- An object of the present invention is to provide a method of forming a polycrystalline silicon thin film in which the formation process is simplified by replacing amorphous silicon and solving the above problems.
- a method of forming a polycrystalline silicon thin film includes depositing a metal layer on a substrate, which serves as a catalyst for forming the polycrystalline silicon thin film; A silicon oxide layer deposition step of depositing a silicon oxide layer on the metal layer deposited in the metal layer deposition step; And annealing to heat-treat the polycrystalline silicon thin film layer to be formed on the substrate on which the metal layer and the silicon oxide layer are deposited through the metal layer deposition step and the silicon oxide layer deposition step.
- the metal layer may be aluminum (Al).
- the silicon oxide layer deposition step may use a plasma enhanced chemical vapor deposition (PECVD, "PECVD”) method.
- PECVD plasma enhanced chemical vapor deposition
- the silicon oxide layer deposition step by placing the substrate on which the metal layer is deposited in the metal layer deposition step in a PECVD reactor, and supplying a mixed gas in the PECVD reactor to deposit a silicon oxide layer on the metal layer, the mixing
- the gas may include xylene (SiH 4 ) and nitrous oxide (N 2 O).
- the metal layer is exposed to an oxygen plasma generated by oxygen atoms included in the mixed gas such that an oxide layer is formed at an interface between the metal layer and the silicon oxide layer. Can be formed.
- the silicon oxide layer is a Si-rich oxide (Si-rich oxide) is SiO x , where 0 ⁇ x ⁇ 2.
- the annealing step may be annealed at a temperature below the Al-Si alloy eutectic temperature range.
- the annealing step may be annealed at a temperature within the range of 500 °C to 600 °C.
- the substrate on which the polycrystalline silicon thin film is formed may be manufactured by the aforementioned polycrystalline silicon thin film forming method.
- the solar cell may be manufactured using the substrate on which the polycrystalline silicon thin film is formed.
- a transistor can be manufactured using a substrate on which a polycrystalline silicon thin film is formed.
- the mixed gas (SiH 4 + N 2 O) to be supplied in the course of using the plasma chemical vapor deposition (PECVD) method depositing a silicon layer (SiO x) oxidizing the metal layer upper portion
- the oxide layer is naturally formed on the metal layer by the oxygen plasma generated by the oxygen atom, which is a process of forming the polycrystalline silicon thin film because the oxide layer is naturally formed during the formation of the silicon oxide in the silicon oxide layer deposition step.
- the polycrystalline silicon thin film forming method of the present invention can also reduce the manufacturing cost of a solar cell or a transistor manufactured using a substrate on which a polycrystalline silicon thin film is formed.
- FIG. 1 is a flowchart illustrating a method of forming a polycrystalline silicon thin film according to an embodiment of the present invention.
- FIG. 2 is a schematic diagram schematically showing a method of forming a polycrystalline silicon thin film according to an embodiment of the present invention.
- FIG. 3 is a schematic diagram illustrating a substrate on which a metal layer, an oxide layer, and a silicon oxide layer are deposited to form a polycrystalline silicon thin film according to an embodiment of the present invention.
- 4 (a) is then annealed at 550 °C for 5 hours, EDX (energy dispersive x-ray spectroscopy ) SiO 1 .45 for measurement (220nm) / Al (60nm) / glass cross-section of the sample TEM (transmission electron consisting of microscope image. I, II, III, and IV shown are identifiers for identifying layers.
- 4 (b), 4 (c) and 4 (d) show an energy dispersive x-ray spectroscopy (EDX) mapping distribution of Si, O and Al atoms, respectively.
- FIG. 4 (e) shows the positional distribution of Si, O, and Al atoms determined by EDX line scanning along the line shown in FIG. 4 (a).
- FIG. 5 (a) is then annealed at 550 °C for 5 hours, an optical microscope image of a sample consisting of SiO 1 .45 (220nm) / Al (60nm) / glass (optical microscopic image). Red dots and markers indicate Raman measurement points.
- FIG. 5 (b) shows Raman spectra measured at different points shown in FIG. 5 (a).
- FIG. 1 is a flowchart illustrating a method of forming a polycrystalline silicon thin film according to an embodiment of the present invention
- FIG. 2 is a schematic view illustrating a method of forming a polycrystalline silicon thin film according to an embodiment of the present invention
- the polycrystalline silicon thin film forming method using a silicon oxide thin film according to an embodiment of the present invention is a metal layer deposition step (S100), silicon oxide layer deposition step (S200) and annealing step (S300) It may include.
- the metal layer deposition step S100 is a step of depositing the metal layer 120 on the substrate 110.
- the metal layer 120 may act as a catalyst for forming the polycrystalline silicon thin film.
- the metal layer 120 may be made of aluminum (Al).
- the deposition of the metal layer 120 may be performed by a thermal vapeation method at room temperature, but is not limited thereto.
- the metal layer 120 may have a thickness of about 60 nm.
- a glass substrate may be used as the substrate 110, and when the glass substrate is used as the substrate 110, a Corning No. 7059 glass substrates may be used.
- the buffer layer deposition step (not shown) may be preceded by the metal layer deposition step S100, but the buffer layer deposition step (not shown) may be omitted since the buffer layer SiO 2 is a component such as glass.
- Silicon oxide layer deposition step (S200) is a step of depositing the silicon oxide layer 140 on the metal layer 120 deposited on the substrate 110 in the above-described metal layer forming step (S100).
- the silicon oxide layer deposition step (S200) may be formed using a PECVD method.
- the silicon oxide layer deposition step (S200) is located in the above-described metal layer deposition step (S100) the substrate coated with the metal layer 110 in a PECVD reactor capable of vacuum formation, and supplies a mixed gas in the PECVD reactor.
- the mixed gas is ionized by the electrode generating the plasma in the PECVD reactor, and the ionized mixed gas reaches the substrate on which the metal layer located in the PECVD reactor is deposited to deposit the silicon oxide layer 140.
- the silicon oxide layer 140 may have a thickness of about 220 nm.
- the mixed gas may be made of 5% xylene (SiH 4 ) and nitrous oxide (N 2 O) diluted with nitrogen, and SiO x (0 ⁇ x ⁇ 2) having different x values depending on the mixing ratio of the two gases. That is, the silicon oxide layer 140 may be formed.
- xylene (SiH 4 ) gas may be used by mixing expensive xylene (SiH 4 ) gas with nitrous oxide (N 2 O) to reduce the manufacturing cost of polycrystalline silicon thin film formation.
- SiO 1 .45 done, but not limited thereto.
- the temperature of the substrate 110 may be maintained at 200 ° C. to 400 ° C., preferably about 300 ° C., during the PECVD method.
- the silicon oxide layer 140 is preferably an oxide containing excess Si, that is, a Si rich oxide having SiO x (0 ⁇ x ⁇ 2).
- oxygen ions in a plasma state generated by ionization of nitrous oxide (N 2 O) in the PECVD reactor are deposited on the metal layer 120, that is, on the substrate. , May react with aluminum (Al).
- aluminum (Al), that is, aluminum oxide (Al 2 O 3 ), that is, the oxide layer 130 is formed on the metal layer 120.
- aluminum oxide may be formed while the silicon oxide layer 140 is deposited, and the silicon oxide layer 140 may be formed on the aluminum oxide (Al 2 O 3 ).
- the present invention is a metal layer in the silicon oxide layer deposition step (S200) without forming a separate oxide layer 130
- An oxide layer 130 may be formed at an interface between the 120 and the silicon oxide thin film layer 150.
- Annealing step (S300) is a heat treatment to form a polycrystalline silicon thin film layer 220 on the substrate 110, the metal layer 120, the silicon oxide layer 140 is deposited through the above-described metal layer deposition step and silicon oxide layer deposition step Step.
- the substrate 110 on which the silicon oxide layer 140 and the metal layer 120 are deposited is placed in a quartz tube reactor using high purity nitrogen (99.999%) as an ambient gas, and the Al-Si alloy-based eutectic temperature ( ⁇ Heat treatment, that is, annealing, at a temperature of 577 ° C. or less.
- ⁇ Heat treatment that is, annealing, at a temperature of 577 ° C. or less.
- the oxide layer 130 formed as the silicon oxide layer 140 is deposited, that is, aluminum oxide, is a metal atom of the metal layer 120, that is, aluminum (Al) acts as a catalyst.
- the silicon oxide layer 140 may act as a diffusion path that is diffused into the silicon oxide layer 140, and the oxide layer 130 may contribute to layer exchange between the silicon oxide layer 140 and the metal layer 120.
- the heating rate in the annealing step (S300) was maintained at a constant 5 °C / min as an example, the substrate 110 on which the silicon oxide layer 140, the metal layer 120 and the like is deposited within the range of 500 °C to 600 °C Heat treatment at temperature.
- the diffusion of the material through the oxide layer 130 may not be performed well, on the contrary, when the temperature is higher than the above-mentioned range, the silicon oxide layer 140, the metal layer ( 120 may cause damage to the deposited substrate 110.
- the above-described range may be directly connected to the crystallinity of the polycrystalline silicon thin film layer 220 formed through annealing.
- the polycrystalline silicon thin film layer 220 formed when heat-treated at 550 ° C. for 5 hours is used.
- the crystallinity of was excellent.
- the cooling rate may also be maintained at 5 ° C./min, as described above, and when the temperature of the substrate 110 on which the silicon oxide layer 140 and the metal layer 120 are deposited is less than 100 ° C., the quartz tube reactor Can be taken out from within.
- the polycrystalline silicon thin film layer 220 may be formed on the substrate.
- the substrate 200 in which the polycrystalline silicon thin film is formed may be manufactured by the aforementioned polycrystalline silicon thin film forming method, and the solar cell, the transistor, and the like may be manufactured using the substrate 200 in which the polycrystalline silicon thin film is formed.
- 4 (a) is then annealed at 550 °C for 5 hours, EDX (energy dispersive x-ray spectroscopy ) SiO 1 .45 for measurement (220nm) / Al (60nm) / glass cross-section of the sample TEM (transmission electron consisting of microscope image. I, II, III, and IV shown are identifiers for identifying layers.
- 4 (b), 4 (c) and 4 (d) show an energy dispersive x-ray spectroscopy (EDX) mapping distribution of Si, O and Al atoms, respectively.
- FIG. 4 (e) shows the positional distribution of Si, O, and Al atoms determined by EDX line scanning along the line shown in FIG. 4 (a).
- Fig. 4 (a) clearly shows the four-layer structure after annealing, wherein I, II, III, and IV shown are identification symbols for identifying the layers.
- the Si atoms of the II layer is induced by the heat treatment performed in the annealing step (S300) described above, and shows that the II layer is no longer the metal layer 120 as a result of EDX mapping and line scanning.
- Al atoms are mainly distributed at the interface between the I layer and the II layer. This result is due to the diffusion of Al atoms from the Al layer to the II layer having the Si phase.
- the I layer is confirmed, but by changing the annealing conditions such as increasing the annealing time, the I layer can be crystallized to form the polycrystalline silicon thin film. have.
- Is also 5 (a) is then annealed at 550 °C for 5 hours SiO 1 .45 (220nm) / Al (60nm) / an optical microscope image (optical microscopic image) of the sample made of a glass. Red dots and markers indicate Raman measurement points.
- FIG. 5 (b) shows Raman spectra measured at different points shown in FIG. 5 (a).
- Figure 5 (a) was taken using a built-in optical microscope attached to a micro-Raman spectrometer
- Figure 8 (a) shows a different color depending on the crystallinity and the crystal orientation of the particles.
- Fig. 5 (b) is measured at different positions indicated by a to f in Fig. 5 (a), and as shown in Fig. 5 (b), regardless of the measurement position, the characteristics of crystalline silicon can be said. 520cm that - the symmetrical spectrum with a peak in the vicinity of one was confirmed.
- the above-mentioned data means that the produced polycrystalline silicon has preferential orientation in the (111) direction, and is consistent with the result shown in FIG.
- the diffraction peaks related to the ⁇ -Al 2 O 3 phase are due to the reaction between aluminum and oxygen in the silicon oxide layer 140 made of SiOx and the metal layer 120 made of aluminum.
- the formation of the polycrystalline silicon thin film may be generally performed by Al induced layer exchange (ALILE), and the silicon oxide layer deposition step (S200) in the polycrystalline silicon thin film formation method according to an embodiment of the present invention.
- the oxide layer 130 generated, i.e., Al 2 O 3 is formed at the interface between the silicon oxide layer 140 and the metal layer 120 to serve as a diffusion path of Si atoms diffused into the metal layer 120.
- the Si atoms generated by the Al atoms and the existing excess Si atoms present in the silicon oxide layer 140 diffuse across the oxide layer 130 to the metal layer 120 to generate Si crystal nuclei, and subsequently As a result, polycrystalline silicon particles with a preferential (111) orientation grow.
- the ⁇ -Al 2 O 3 layer which induces Si atoms oriented in the (111) direction is preferentially formed and positioned at the interface between the silicon oxide layer 140 and the polycrystalline silicon thin film layer 220.
- the present invention by the oxygen atom contained in the mixed gas (SiH 4 + N 2 O) supplied in the process of depositing the silicon oxide layer (SiO x ) on the metal layer by the plasma chemical vapor deposition (PECVD) method
- the oxide layer is naturally generated on the metal layer by the generated oxygen plasma, which can simplify the formation process in forming the polycrystalline silicon thin film because the oxide layer is naturally formed during the formation of the silicon oxide in the silicon oxide layer deposition step.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Plasma & Fusion (AREA)
- General Chemical & Material Sciences (AREA)
- Thin Film Transistor (AREA)
- Recrystallisation Techniques (AREA)
- Photovoltaic Devices (AREA)
Abstract
La présente invention concerne un procédé de formation d'un film mince de silicium polycristallin, le procédé comprenant : une étape de dépôt de couche métallique consistant à déposer, sur un substrat, un métal servant de catalyseur pour former un film mince de silicium polycristallin; une étape de dépôt de couche d'oxyde de silicium consistant à déposer une couche d'oxyde de silicium sur la couche métallique déposée dans l'étape de dépôt de couche métallique; et une étape de recuit consistant à effectuer un traitement thermique de manière à former une couche de film mince de silicium polycristallin sur le substrat sur lequel la couche métallique et la couche d'oxyde de silicium ont été déposées par l'étape de dépôt de couche métallique et l'étape de dépôt de couche d'oxyde de silicium.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2017-0011764 | 2017-01-25 | ||
KR1020170011764A KR101919086B1 (ko) | 2017-01-25 | 2017-01-25 | 다결정 실리콘 박막 형성 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018139704A1 true WO2018139704A1 (fr) | 2018-08-02 |
Family
ID=62977991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/002623 WO2018139704A1 (fr) | 2017-01-25 | 2017-03-10 | Procédé de formation de film mince de silicium polycristallin |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101919086B1 (fr) |
WO (1) | WO2018139704A1 (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102708283B1 (ko) | 2019-07-01 | 2024-09-20 | 주식회사 엘지화학 | 실리콘 웨이퍼 제조 방법 |
KR102601668B1 (ko) | 2019-07-01 | 2023-11-10 | 주식회사 엘지화학 | 실리콘 웨이퍼 제조 방법 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040051075A (ko) * | 2002-12-11 | 2004-06-18 | 엘지.필립스 엘시디 주식회사 | 다결정 실리콘의 형성 방법 |
KR20100100187A (ko) * | 2009-03-05 | 2010-09-15 | 삼성모바일디스플레이주식회사 | 다결정 실리콘층의 제조방법 |
KR100994236B1 (ko) * | 2009-05-22 | 2010-11-12 | 노코드 주식회사 | 다결정 실리콘 박막의 제조방법 |
US20110189841A1 (en) * | 2006-03-23 | 2011-08-04 | Board Of Trustees Of The University Of Arkansas | Fabrication of large grain polycrystalline silicon film by nano aluminum-induced crystallization of amorphous silicon |
KR101057147B1 (ko) * | 2010-03-23 | 2011-08-16 | 노코드 주식회사 | 다결정 실리콘 박막의 제조방법 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4105811B2 (ja) * | 1998-09-30 | 2008-06-25 | 京セラ株式会社 | 多結晶シリコン膜の形成方法 |
-
2017
- 2017-01-25 KR KR1020170011764A patent/KR101919086B1/ko active IP Right Grant
- 2017-03-10 WO PCT/KR2017/002623 patent/WO2018139704A1/fr active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040051075A (ko) * | 2002-12-11 | 2004-06-18 | 엘지.필립스 엘시디 주식회사 | 다결정 실리콘의 형성 방법 |
US20110189841A1 (en) * | 2006-03-23 | 2011-08-04 | Board Of Trustees Of The University Of Arkansas | Fabrication of large grain polycrystalline silicon film by nano aluminum-induced crystallization of amorphous silicon |
KR20100100187A (ko) * | 2009-03-05 | 2010-09-15 | 삼성모바일디스플레이주식회사 | 다결정 실리콘층의 제조방법 |
KR100994236B1 (ko) * | 2009-05-22 | 2010-11-12 | 노코드 주식회사 | 다결정 실리콘 박막의 제조방법 |
KR101057147B1 (ko) * | 2010-03-23 | 2011-08-16 | 노코드 주식회사 | 다결정 실리콘 박막의 제조방법 |
Also Published As
Publication number | Publication date |
---|---|
KR20180087595A (ko) | 2018-08-02 |
KR101919086B1 (ko) | 2018-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019103500A1 (fr) | Composition pour déposer un film mince contenant du silicium et procédé de production d'un film mince contenant du silicium l'utilisant | |
WO2012018210A2 (fr) | Procédé permettant de déposer un film mince de manière cyclique | |
WO2016122081A1 (fr) | Procédé de fabrication de couche mince de chalcogénure de métal | |
WO2019221583A1 (fr) | Aln lamellaire, procédé pour la fabrication de celui-ci et nanofeuille d'aln exfoliée à partir de celui-ci | |
WO2021096326A1 (fr) | Procédé de formation de film mince à l'aide d'un matériau de protection de surface | |
WO2015105337A1 (fr) | Nouveau dérivé trisilyl amine, procédé pour le préparer et couche mince contenant du silicium l'utilisant | |
WO2018139704A1 (fr) | Procédé de formation de film mince de silicium polycristallin | |
WO2010134691A2 (fr) | Procédé de fabrication de couche mince à base de silicium polycristallin | |
WO2017082695A2 (fr) | Film mince de métal-carbure-oxyde comprenant du carbone, un oxyde et du métal, et procédé de fabrication associé | |
WO2014084557A1 (fr) | Composés de précurseur de silicium et procédé de dépôt de film mince contenant du silicium l'utilisant | |
WO2017122985A1 (fr) | Procédé de préparation d'une couche mince d'oxyde, couche mince d'oxyde et dispositif électronique ainsi fabriqué | |
WO2018094806A1 (fr) | Procédé de fabrication d'un revêtement antireflet microstructuré ou nanostructuré, et dispositif d'affichage | |
WO2021141324A1 (fr) | Procédé de formation de film mince à l'aide d'un matériau de protection de surface | |
WO2018186535A1 (fr) | Procédé de préparation d'un matériau bidimensionnel à l'aide d'un traitement de surface par inhibiteur d'adsorption | |
WO2022075687A1 (fr) | Verre résistant au plasma et son procédé de fabrication | |
WO2017188546A1 (fr) | Procédé de dépôt de film mince | |
WO2019100427A1 (fr) | Procédé de fabrication de substrat de réseau souple, et substrat de réseau souple | |
WO2014209030A1 (fr) | Procédé pour la fabrication de graphène utilisant un élément couvercle et procédé pour la fabrication d'élément électronique comprenant celui-ci | |
WO2024117712A1 (fr) | Dispositif à semi-conducteurs et son procédé de fabrication | |
WO2014073892A1 (fr) | Procédé de fabrication de couche mince contenant du silicium | |
WO2022250343A1 (fr) | Procédé de fabrication de cuivre revêtu de silicium, cuivre anti-oxydation revêtu de silicium l'utilisant, et dispositif semi-conducteur l'utilisant | |
WO2024014766A1 (fr) | Procédé de fabrication d'un film mince de dichalcogénure de métal de transition ayant une structure hiérarchique tridimensionnelle hautement uniforme | |
WO2022034987A1 (fr) | Procédé de fabrication de pile solaire à couche mince de pérovskite | |
WO2010030068A1 (fr) | Procédé de transition de phase de matériau amorphe | |
WO2023075277A1 (fr) | Procédé de fabrication d'une couche mince à l'aide d'une couche de graphène à surface fonctionnalisée et couche mince fabriquée par ce procédé |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17894578 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17894578 Country of ref document: EP Kind code of ref document: A1 |