JPH07277897A - Synthesis of aluminum nitride single crystal - Google Patents

Synthesis of aluminum nitride single crystal

Info

Publication number
JPH07277897A
JPH07277897A JP10165494A JP10165494A JPH07277897A JP H07277897 A JPH07277897 A JP H07277897A JP 10165494 A JP10165494 A JP 10165494A JP 10165494 A JP10165494 A JP 10165494A JP H07277897 A JPH07277897 A JP H07277897A
Authority
JP
Japan
Prior art keywords
nitrogen
single crystal
contg
alkaline earth
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10165494A
Other languages
Japanese (ja)
Inventor
Katsutoshi Yoneya
勝利 米屋
Takeji Meguro
竹司 目黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP10165494A priority Critical patent/JPH07277897A/en
Publication of JPH07277897A publication Critical patent/JPH07277897A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To cost economically obtain a high-grade aluminum nitride single crystal by heating an aluminum alloy contg. alkali (alkaline earth) metals in a non-oxidizing atmosphere contg. nitrogen. CONSTITUTION:The desired aluminum nitride single crystal is obtd. by heating the aluminum alloy totally contg. one or >=2 kinds among the alkali metals or alkaline earth metals in a range of 0.001 to 2wt.% in the non-oxidizing atmosphere contg. the nitrogen at 700 to 1300 deg.C. The alkali metals and the alkaline earth metals are more particularly preferable as alloy element of the aluminum alloy. the atoms of a high vapor pressure, such as Li, react with impurity oxygen and form Li2O when the allay contg. these elements is heated in the nitrogen atmosphere. Since the Li2O evaporates from the surface, the Li migrates from the inside to the surface and the nitrogen in the atmosphere penetrates the inside as its counter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、窒化アルミニウム単結
晶の合成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for synthesizing an aluminum nitride single crystal.

【0002】[0002]

【従来の技術】ALNはその結合と結晶構造に由来し
て、高熱伝導性と優れた圧電性を示し、極めて有用な材
料であるが、その結晶構造はウルツ鉱型で、2200℃
の高温で分解し、共有結合性が強く強固な結合を有する
ため、難焼結性で緻密な焼結体を作製することが困難で
ある。また、単結晶の合成も高温メルトが得られないた
めに極めて困難である。これまで試みられたALN単結
晶の合成方法としては、ALNを高温で分解させて再
結合させる方法、CVDによる方法等が実施されてき
たが、前者は結晶が小さく高価であり、後者はコスト高
に加えて配向性が劣るため満足できる結晶は得られてい
ないのが現状である。
2. Description of the Related Art ALN is a very useful material because of its high thermal conductivity and excellent piezoelectricity due to its bond and crystal structure, but its crystal structure is wurtzite type, 2200 ° C.
Since it decomposes at a high temperature and has a strong covalent bond and a strong bond, it is difficult to produce a sintered compact that is difficult to sinter. Further, it is extremely difficult to synthesize a single crystal because a high temperature melt cannot be obtained. As methods of synthesizing ALN single crystals that have been attempted so far, methods of decomposing ALN at high temperature and recombining, methods by CVD, etc. have been carried out, but the former is small and expensive, and the latter is expensive. In addition to this, the present situation is that satisfactory crystals have not been obtained due to poor orientation.

【0003】[0003]

【発明が解決する課題】本発明は、かかる問題点に鑑み
てなされたもので、高品位の窒化アルミニウム単結晶を
経済的なコストで作製できる新規な方法を提供せんとす
るものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object thereof is to provide a novel method for producing a high-quality aluminum nitride single crystal at an economical cost.

【0004】[0004]

【課題を解決するための手段】上記課題は次の手段によ
って解決できる。 1.アルカリ金属あるいはアルカリ土類金属の中から選
ばれた一種あるいは二種以上の元素を総量で0.001
〜2wt.%の範囲で含有するアルミニウム合金を窒素
を含む非酸化性雰囲気中で700〜1300℃に加熱す
ることを特徴とする窒化アルミニウム単結晶の合成方
法。 2.上記アルカリ金属がLiである上記1に記載の合成
方法。 3.上記アルカリ土類金属がCaである上記1に記載の
合成方法。 4.上記元素の総量が0.1〜1wt.%である請求項
1〜3に記載の合成方法。 5.上記加熱温度が800〜1200℃である請求項1
〜3に記載の合成方法。
The above-described problems can be solved by the following means. 1. The total amount of one or more elements selected from alkali metals or alkaline earth metals is 0.001.
~ 2 wt. %, The aluminum alloy contained in the range of 700 is heated to 700 to 1300 ° C. in a non-oxidizing atmosphere containing nitrogen, and a method for synthesizing an aluminum nitride single crystal. 2. 2. The synthesis method according to 1 above, wherein the alkali metal is Li. 3. 2. The synthesis method according to 1 above, wherein the alkaline earth metal is Ca. 4. The total amount of the above elements is 0.1 to 1 wt. %, The synthetic method according to claim 1. 5. The heating temperature is 800 to 1200 ° C.
~ 3.

【0005】[0005]

【作用】本発明はアルミニウム合金を窒素含有雰囲気下
でメルトさせ、窒素をアルミニウム溶湯にゆっくり拡散
させてALN単結晶を合成する方法である。
The present invention is a method for synthesizing an ALN single crystal by melting an aluminum alloy in a nitrogen-containing atmosphere and slowly diffusing nitrogen into an aluminum melt.

【0006】アルミニウム合金において、合金元素とし
ては、特にアルカリ金属、アルカリ土類金属が好まし
く、これらの元素を含む合金を、窒素雰囲気下で加熱す
ると、Liなどのような蒸気圧の高い原子は表面で不純
物酸素と反応してLiOを生成して表面から蒸発する
為に内部から表面にLiが移動し、そのカウンターとし
て雰囲気中の窒素が内部に浸透する。
In the aluminum alloy, as an alloying element, an alkali metal and an alkaline earth metal are particularly preferable. When an alloy containing these elements is heated in a nitrogen atmosphere, atoms having a high vapor pressure such as Li are surfaced. Then, Li reacts with the impurity oxygen to generate Li 2 O and evaporates from the surface, so that Li moves from the inside to the surface, and nitrogen in the atmosphere permeates inside as a counter.

【0007】アルミニウムの窒化反応は発熱反応である
ので窒化反応が進行すると、自己発熱して試料が昇温す
るので省エネルギーの観点からは大変有効であるが、し
かし自己発熱に伴って、試料が原形を止めないほどに変
形するので、通常アルミニウムの窒化反応を利用して成
形体の作製や単結晶の作製は不可能であった。
Since the nitriding reaction of aluminum is an exothermic reaction, the progress of the nitriding reaction is very effective from the viewpoint of energy saving because self-heating causes the temperature of the sample to rise. However, the self-heating causes the sample to become the original form. Since it deforms so as not to stop, it is usually impossible to make a molded body or a single crystal by utilizing the nitriding reaction of aluminum.

【0008】また、発熱反応を抑制あるいはなくす為に
Li等の合金量を少量にする考えは、本来反応そのもの
が十分進行しないものとして従来は看過されてきたので
あるが、本発明はこの従来の考えを覆して、少量の合金
成分のごく限られた範囲に於いて、自己発熱なく、窒化
反応が促進されることを発見したのである。また、この
反応に伴ってALNの単結晶が合成されることを見出だ
したのである。
Further, the idea of reducing the amount of an alloy such as Li in order to suppress or eliminate the exothermic reaction has been conventionally overlooked as the reaction itself does not sufficiently proceed, but the present invention is not limited to this. Contrary to my thoughts, I discovered that the nitriding reaction was promoted without self-heating in a very limited range of a small amount of alloy components. In addition, they have found that a single crystal of ALN is synthesized with this reaction.

【0009】自己発熱を起こさせることなく窒化反応を
達成させる。これが本発明の最も重要なポイントであ
る。
A nitriding reaction is achieved without causing self-heating. This is the most important point of the present invention.

【0010】合金元素としては、アルカリ金属、アルカ
リ土類金属が有効であり、これらの中の元素を単独で、
あるいは適宜二種以上の元素を混ぜて添加してもよい。
Alkali metals and alkaline earth metals are effective as alloying elements.
Alternatively, two or more kinds of elements may be appropriately mixed and added.

【0011】この中で最も好ましい元素は、Li,Ca
である。
The most preferable elements among these are Li and Ca.
Is.

【0012】合金元素の量は、上記アルカリ金属、アル
カリ土類金属の総量が0.001〜2wt.%の範囲、
とりわけ0.05〜1wt.%の範囲が好ましい。
The amount of alloying elements is 0.001 to 2 wt.% Of the total amount of the above-mentioned alkali metals and alkaline earth metals. % Range,
Especially 0.05-1 wt. % Range is preferred.

【0013】2wt%を越えると、発熱反応が起こるの
で好ましくない。0.001%未満では、反応が十分に
進行しないので好ましくない。
If it exceeds 2 wt%, an exothermic reaction occurs, which is not preferable. If it is less than 0.001%, the reaction does not proceed sufficiently, which is not preferable.

【0014】温度は、通常の1気圧前後では、700〜
1300℃の範囲、とりわけ800〜1200℃が好ま
しい。雰囲気を加圧した場合(HIP数千気圧や超高圧
の数万気圧まで)はさらに2000℃までの高温でもよ
い。
The temperature is about 700 to about 1 atm.
The range of 1300 ° C., particularly 800 to 1200 ° C. is preferable. When the atmosphere is pressurized (HIP several thousand atmospheric pressure or ultra-high pressure of tens of thousands atmospheric pressure), the temperature may further be as high as 2000 ° C.

【0015】雰囲気は、窒素を含有する非酸化性雰囲気
にすることが必要で、窒素単体ガス、N2−H2等の窒
素混合ガス、さらにアンモニア等の窒素化合物ガスまで
全て有効である。
The atmosphere is required to be a non-oxidizing atmosphere containing nitrogen, and it is effective to use nitrogen alone gas, nitrogen mixed gas such as N2-H2, and nitrogen compound gas such as ammonia.

【0016】雰囲気の圧力は、上記したように、常圧か
ら数万気圧まで有効である。特に高圧は分解防止に有効
であるので、Liの気散を防ぐことができる。
As described above, the pressure of the atmosphere is effective from atmospheric pressure to tens of thousands of atmospheric pressure. In particular, high pressure is effective for preventing decomposition, so that vaporization of Li can be prevented.

【0017】なお、本発明では、雰囲気に微量の酸素を
含むことが必須で、その量は厳密な規定は難しいが、概
ね10−3以下であることが好ましい。
In the present invention, it is essential that the atmosphere contains a very small amount of oxygen, and although it is difficult to strictly define the amount, it is preferably 10 −3 or less.

【0018】結晶成長には核の生成が必要で、核となる
種結晶あるいはALN粉を置いておくと、結晶成長が加
速される。
Nucleation is necessary for crystal growth, and if seed crystals or ALN powder to serve as nuclei are placed, crystal growth is accelerated.

【0019】結晶化の為の時間は、例えば大きさが5×
5×5mmで、Liを0.5wt.%含むAL合金の場
合、1000℃で約40時間程度で反応が完了する。こ
の場合、内部に約100μmの6角状の単結晶が得られ
る。
The time for crystallization is, for example, 5 ×
5 × 5 mm, Li 0.5 wt. %, The reaction is completed at 1000 ° C. in about 40 hours. In this case, a hexagonal single crystal of about 100 μm is obtained inside.

【0020】[0020]

【実施例】実施例によって本発明を説明する。 実施例1 Liを0.5wt.%含有するAL−Li系合金を5×
5×3mmの大きさに切断し、これをアルミナ板に載せ
て管状の電気炉に挿入した。この管状炉に0.5L/m
inの窒素ガスを流しながら、1000℃に3時間で昇
温し、さらに35時間加熱した後、放冷した。得られた
ブロックは完全に窒化が完了しており、X線解析によっ
てALNに変換していることが確認された。
The present invention will be described with reference to examples. Example 1 Li was added at 0.5 wt. % AL-Li alloy containing 5%
It was cut into a size of 5 × 3 mm, placed on an alumina plate and inserted into a tubular electric furnace. 0.5L / m in this tubular furnace
While flowing in nitrogen gas, the temperature was raised to 1000 ° C. over 3 hours, heated for 35 hours, and then allowed to cool. It was confirmed that the obtained block had been completely nitrided and was converted into ALN by X-ray analysis.

【0021】実施例2 種々の組成の合金を用いて実施例1に準じた実験を行
い、その条件を調整することによって種々の大きさの単
結晶を得ることができた。結果を表1に示す。
Example 2 Experiments according to Example 1 were conducted using alloys having various compositions, and single crystals of various sizes could be obtained by adjusting the conditions. The results are shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】実施例3 Liを0.2および0.3wt%含有するAL−Li系
合金をφ15×5mmの板状に切断し、これを図1に示
すような、ALN粉末を下部に敷いたALNルツボにい
れて管状の電気炉に挿入した。この管状炉に0.5L/
minの窒素ガスを流しながら、1000℃に3時間で
昇温し、さらに54時間加熱した後、放冷した。得られ
たブロックは完全に窒化が完了しており、X線解析によ
ってALNに変換していることが確認された。内部を切
断して観察した結果、それぞれ480,350μmの単
結晶の生成が確認された。
Example 3 An AL-Li alloy containing 0.2 and 0.3 wt% of Li was cut into a plate of φ15 × 5 mm, and ALN powder as shown in FIG. 1 was laid on the bottom. It was put in an ALN crucible and inserted into a tubular electric furnace. 0.5L / in this tubular furnace
The temperature was raised to 1000 ° C. over 3 hours while flowing a nitrogen gas of min, heated for further 54 hours, and then allowed to cool. It was confirmed that the obtained block had been completely nitrided and was converted into ALN by X-ray analysis. As a result of cutting and observing the inside, formation of single crystals of 480 and 350 μm was confirmed.

【0024】実施例4 Liを1.0および2wt%含有するAL−Li系合金
と、Caを2wt%含有するAL−Ca系合金を5×5
×3mmの大きさに切断し、これをそれぞれHIPの焼
成炉中に装着した。これを1000気圧の窒素ガス中、
1400℃で6時間加熱した後、放冷した。得られたブ
ロックは完全に窒化が完了しており、X線解析によって
ALNに変換していることが確認された。内部を切断し
て観察した結果、それぞれ0.5〜1mmの6角柱状の
単結晶の生成が確認された。
Example 4 An AL-Li-based alloy containing 1.0 and 2 wt% of Li and an AL-Ca-based alloy containing 2 wt% of Ca were 5 × 5.
Each piece was cut into a size of 3 mm and mounted in a HIP firing furnace. In 1000 nitrogen nitrogen gas,
After heating at 1400 ° C. for 6 hours, it was allowed to cool. It was confirmed that the obtained block had been completely nitrided and was converted into ALN by X-ray analysis. As a result of cutting and observing the inside, generation of hexagonal columnar single crystals of 0.5 to 1 mm was confirmed.

【0025】[0025]

【発明の効果】以上詳記したように、本発明は、高品位
の単結晶を経済的コストで製造できる特徴を有し、しか
もその大きさも任意に調整することが可能であり、AL
N単結晶の今後の普及に大いに貢献するものである。
As described in detail above, the present invention has the feature that a high-quality single crystal can be produced at an economical cost, and its size can be adjusted arbitrarily.
This will greatly contribute to the future spread of N single crystals.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 アルカリ金属あるいはアルカリ土類金属
の中から選ばれた一種あるいは二種以上の元素を総量で
0.001〜2wt.%の範囲で含有するアルミニウム
合金を窒素を含む非酸化性雰囲気中で700〜1300
℃に加熱することを特徴とする窒化アルミニウム単結晶
の合成方法。
1. A total amount of one or more elements selected from alkali metals or alkaline earth metals of 0.001 to 2 wt. % Aluminum alloy containing 700 to 1300 in a non-oxidizing atmosphere containing nitrogen.
A method for synthesizing an aluminum nitride single crystal, which comprises heating to ℃.
【請求項2】 上記アルカリ金属がLiである請求項1
に記載の合成方法。
2. The alkali metal is Li.
The synthetic method described in.
【請求項3】 上記アルカリ土類金属がCaである請求
項1に記載の合成方法。
3. The synthetic method according to claim 1, wherein the alkaline earth metal is Ca.
【請求項4】 上記元素の総量が0.1〜1wt.%で
ある請求項1〜3に記載の合成方法。
4. The total amount of the above elements is 0.1 to 1 wt. %, The synthetic method according to claim 1.
【請求項5】 上記加熱温度が800〜1200℃であ
る請求項1〜3に記載合成方法。
5. The synthesis method according to claim 1, wherein the heating temperature is 800 to 1200 ° C.
JP10165494A 1994-04-04 1994-04-04 Synthesis of aluminum nitride single crystal Pending JPH07277897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10165494A JPH07277897A (en) 1994-04-04 1994-04-04 Synthesis of aluminum nitride single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10165494A JPH07277897A (en) 1994-04-04 1994-04-04 Synthesis of aluminum nitride single crystal

Publications (1)

Publication Number Publication Date
JPH07277897A true JPH07277897A (en) 1995-10-24

Family

ID=14306377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10165494A Pending JPH07277897A (en) 1994-04-04 1994-04-04 Synthesis of aluminum nitride single crystal

Country Status (1)

Country Link
JP (1) JPH07277897A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2326160A (en) * 1997-06-11 1998-12-16 Hitachi Cable Making group III metal nitride crystals; crystal growth methods
US6001748A (en) * 1996-06-04 1999-12-14 Sumitomo Electric Industries, Ltd. Single crystal of nitride and process for preparing the same
JP2005060216A (en) * 2003-07-29 2005-03-10 Ngk Insulators Ltd Method and apparatus for manufacturing group iii nitride single crystal
WO2006022302A3 (en) * 2004-08-24 2006-04-20 Univ Osaka Process for producing aluminum nitride crystal and aluminum nitride crystal obtained thereby
CN1327044C (en) * 2002-07-31 2007-07-18 财团法人大阪产业振兴机构 Method for producing group III element nitride single crystal and group III element nitride transparent single crystal prepared thereby
US7294199B2 (en) 2004-06-10 2007-11-13 Sumitomo Electric Industries, Ltd. Nitride single crystal and producing method thereof
WO2008029827A1 (en) * 2006-09-07 2008-03-13 Tama-Tlo Ltd. PROCESS FOR PRODUCING AlN CRYSTAL
EP1942211A1 (en) * 2003-10-31 2008-07-09 Sumitomo Electric Industries, Ltd. Method of and equipment for manufacturing group III nitride crystal
CN100447310C (en) * 2004-07-15 2008-12-31 住友电气工业株式会社 Nitride single-crystal and production process thereof
WO2015182477A1 (en) * 2014-05-30 2015-12-03 国立大学法人名古屋大学 Aln crystal preparation method, aln crystals, and organic compound including aln crystals
WO2019221583A1 (en) * 2018-05-18 2019-11-21 연세대학교 산학협력단 Layered aln, method for manufacturing same, and aln nanosheet exfoliated therefrom

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001748A (en) * 1996-06-04 1999-12-14 Sumitomo Electric Industries, Ltd. Single crystal of nitride and process for preparing the same
GB2326160B (en) * 1997-06-11 1999-11-03 Hitachi Cable Nitride crystal fabricating method
KR100419285B1 (en) * 1997-06-11 2004-02-19 히다치 덴센 가부시키 가이샤 Method of fabricating nitride crystal
GB2326160A (en) * 1997-06-11 1998-12-16 Hitachi Cable Making group III metal nitride crystals; crystal growth methods
CN1327044C (en) * 2002-07-31 2007-07-18 财团法人大阪产业振兴机构 Method for producing group III element nitride single crystal and group III element nitride transparent single crystal prepared thereby
JP4493427B2 (en) * 2003-07-29 2010-06-30 日本碍子株式会社 Method for producing group III nitride single crystal
JP2005060216A (en) * 2003-07-29 2005-03-10 Ngk Insulators Ltd Method and apparatus for manufacturing group iii nitride single crystal
TWI399796B (en) * 2003-10-31 2013-06-21 Sumitomo Electric Industries Group iii nitride crystal, method of its manufacture, and equipment for manufacturing group iii nitride crystal
EP1942211A1 (en) * 2003-10-31 2008-07-09 Sumitomo Electric Industries, Ltd. Method of and equipment for manufacturing group III nitride crystal
US7294199B2 (en) 2004-06-10 2007-11-13 Sumitomo Electric Industries, Ltd. Nitride single crystal and producing method thereof
CN100447310C (en) * 2004-07-15 2008-12-31 住友电气工业株式会社 Nitride single-crystal and production process thereof
WO2006022302A3 (en) * 2004-08-24 2006-04-20 Univ Osaka Process for producing aluminum nitride crystal and aluminum nitride crystal obtained thereby
WO2008029827A1 (en) * 2006-09-07 2008-03-13 Tama-Tlo Ltd. PROCESS FOR PRODUCING AlN CRYSTAL
JP5229735B2 (en) * 2006-09-07 2013-07-03 タマティーエルオー株式会社 Method for producing AlN crystal
WO2015182477A1 (en) * 2014-05-30 2015-12-03 国立大学法人名古屋大学 Aln crystal preparation method, aln crystals, and organic compound including aln crystals
JPWO2015182477A1 (en) * 2014-05-30 2017-04-20 国立大学法人名古屋大学 Method for producing AlN crystal, AlN crystal, and organic compound containing AlN crystal
WO2019221583A1 (en) * 2018-05-18 2019-11-21 연세대학교 산학협력단 Layered aln, method for manufacturing same, and aln nanosheet exfoliated therefrom
KR20190132152A (en) * 2018-05-18 2019-11-27 연세대학교 산학협력단 Layered AlN, manufacturing method thereof and exfoliated AlN nanosheet therefrom

Similar Documents

Publication Publication Date Title
EP0811708B1 (en) Single crystal of nitride and process for preparing it
US5942455A (en) Synthesis of 312 phases and composites thereof
JPH07277897A (en) Synthesis of aluminum nitride single crystal
JP2004532788A (en) Method for producing metal-containing single phase composition
EP0371771A2 (en) Process for preparing aluminium nitride and aluminium nitride so produced
US5454999A (en) Composite silicide/silicon carbide mechanical alloy
JP5181329B2 (en) Method for producing aluminum nitride-containing material
JP4350484B2 (en) Method for producing aluminum nitride single crystal
JPH06212342A (en) Production of alloy of se2fe17-xtmxny type
JP4089398B2 (en) Method for producing AlN single crystal
US5665326A (en) Method for synthesizing titanium nitride whiskers
JP3896452B2 (en) Method for producing silicon magnesium nitride powder and product thereof
JPS58150427A (en) Preparation of fine powder of metal compound
JPH0250968B2 (en)
JP2000054009A (en) Production of alloy powder and production of thermoelement using it
JP4025810B2 (en) Method for producing silicon nitride particles
JP2612016B2 (en) Method for producing low oxygen aluminum nitride powder
JP3452741B2 (en) Method for producing aluminum nitride based composite material
WO2006103931A1 (en) Material containing aluminum nitride
JPS60195008A (en) Production of silicon nitride powder
JP2784060B2 (en) Manufacturing method of high purity silicon nitride powder
JP3472802B2 (en) Manufacturing method of Sialon sintered body
JP4289867B2 (en) Composite material manufacturing method and composite material manufactured by the manufacturing method
JP2003119099A (en) Method of producing aluminum nitride single crystal
JPH0696448B2 (en) Method for synthesizing boron carbonitride