JP5229735B2 - Method for producing AlN crystal - Google Patents

Method for producing AlN crystal Download PDF

Info

Publication number
JP5229735B2
JP5229735B2 JP2008533177A JP2008533177A JP5229735B2 JP 5229735 B2 JP5229735 B2 JP 5229735B2 JP 2008533177 A JP2008533177 A JP 2008533177A JP 2008533177 A JP2008533177 A JP 2008533177A JP 5229735 B2 JP5229735 B2 JP 5229735B2
Authority
JP
Japan
Prior art keywords
aln
molten
crystal
seed crystal
aln crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008533177A
Other languages
Japanese (ja)
Other versions
JPWO2008029827A1 (en
Inventor
寛治 大塚
義博 清宮
健児 高木
薫 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAMA-TLO, LTD.
Original Assignee
TAMA-TLO, LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAMA-TLO, LTD. filed Critical TAMA-TLO, LTD.
Priority to JP2008533177A priority Critical patent/JP5229735B2/en
Publication of JPWO2008029827A1 publication Critical patent/JPWO2008029827A1/en
Application granted granted Critical
Publication of JP5229735B2 publication Critical patent/JP5229735B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/36Single-crystal growth by pulling from a melt, e.g. Czochralski method characterised by the seed, e.g. its crystallographic orientation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0722Preparation by direct nitridation of aluminium
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Catalysts (AREA)

Description

本発明は、新規なAlN結晶の製造方法に関する。   The present invention relates to a novel method for producing AlN crystals.

パワーデバイスや高輝度発光デバイスには化合物半導体装置が使用される。パワーデバイスや高輝度発光デバイスの基板に求められる特性として、化合物半導体と格子定数が整合していること、バンドギャップが大きいこと、放熱性が良いことなどが挙げられる。従来は、Si単結晶基板又はサファイア基板上に、構造を工夫したバッファ層を形成し、このバッファ層上に化合物半導体層を形成することにより、化合物半導体装置を形成していた。   Compound semiconductor devices are used for power devices and high-luminance light-emitting devices. The characteristics required for the substrate of a power device or a high-intensity light emitting device include that the compound semiconductor and the lattice constant are matched, that the band gap is large, and that heat dissipation is good. Conventionally, a compound semiconductor device is formed by forming a buffer layer with a devised structure on a Si single crystal substrate or a sapphire substrate, and forming a compound semiconductor layer on the buffer layer.

上記したように、従来方法では基板と半導体層の間に、構造を工夫したバッファ層を形成する必要があった。このため製造コストが高くなっていた。
一方、AlNは、バンドギャップが紫外域にあり大きく、熱伝導率も高く、かつAlGaN等との格子定数の整合性も良いため、AlNを化合物半導体装置の基板として使用した場合、バッファ層を形成する必要がない。しかし、結晶性の良いAlN結晶を十分な大きさに成長させることはできなかった。
As described above, in the conventional method, it is necessary to form a buffer layer with a devised structure between the substrate and the semiconductor layer. For this reason, the manufacturing cost was high.
On the other hand, since AlN has a large band gap in the ultraviolet region, high thermal conductivity, and good lattice constant matching with AlGaN, etc., a buffer layer is formed when AlN is used as a substrate of a compound semiconductor device. There is no need to do. However, an AlN crystal with good crystallinity could not be grown to a sufficient size.

本発明は上記のような事情を考慮してなされたものであり、その目的は、結晶性の良いAlN結晶を成長させることが可能な新規なAlN結晶の製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a novel method for producing an AlN crystal capable of growing an AlN crystal having good crystallinity.

本発明者等は、Alと窒化物の生成自由エネルギーがAlより小さい元素のいずれかを同一容器内に挿入し、窒素雰囲気下で加熱してAlを溶融させると、この元素を触媒としてAlと雰囲気中の窒素が反応し、AlNが生成することを見出した。例えばBNを用いる場合、まずAlとBの化合物であるAlB12が生成すると考えられる。そしてNがAlB12に含まれるBと結合し、その後Alに受け渡されることにより、AlNが生成する。When the present inventors insert either Al or an element whose free energy of formation of nitride is smaller than Al into the same container and heat it in a nitrogen atmosphere to melt Al, this element is used as a catalyst for Al and It was found that nitrogen in the atmosphere reacted to produce AlN. For example, when BN is used, it is considered that AlB 12 that is a compound of Al and B is first generated. And N couple | bonds with B contained in AlB 12 , and AlN produces | generates by passing to Al after that.

本発明は、この知見に基づいてなされたものである。すなわち本発明に係るAlN結晶の製造方法は、窒素雰囲気下に位置している溶融Alに種結晶を接触させ、
前記種結晶と前記溶融Alの界面に、窒化物の生成自由エネルギーがAlより小さい元素を供給し、
前記元素を触媒として前記溶融Alに溶解した窒素と前記溶融Alを反応させることにより、前記種結晶にAlN結晶を成長させるものである。
The present invention has been made based on this finding. That is, in the method for producing an AlN crystal according to the present invention, the seed crystal is brought into contact with molten Al located under a nitrogen atmosphere,
An element having a free energy of formation of nitride smaller than Al is supplied to the interface between the seed crystal and the molten Al.
An AlN crystal is grown on the seed crystal by reacting nitrogen dissolved in the molten Al and the molten Al using the element as a catalyst.

前記元素は、例えばボロン、カルシウム、シリコン、鉄、モリブデン、クロム、バナジウム、マグネシウム、マンガン、インジウム、ガリウム、タンタル、ハフニウム、及びトリウムからなる群から選ばれた少なくとも一種である。前記窒素雰囲気を4気圧以上にするのが好ましい。また前記溶融Alと前記種結晶の界面の温度を800℃以上にするのが好ましい。前記窒素雰囲気に、前記元素を含む化合物の気体を混入させ、前記溶融Alに前記気体を溶かし込むことにより、前記種結晶と前記溶融Alの界面に前記元素を供給してもよい。   The element is at least one selected from the group consisting of, for example, boron, calcium, silicon, iron, molybdenum, chromium, vanadium, magnesium, manganese, indium, gallium, tantalum, hafnium, and thorium. The nitrogen atmosphere is preferably 4 atm or more. Moreover, it is preferable that the temperature of the interface between the molten Al and the seed crystal is 800 ° C. or higher. The element may be supplied to the interface between the seed crystal and the molten Al by mixing a gas of a compound containing the element in the nitrogen atmosphere and dissolving the gas in the molten Al.

本発明によれば、新規な方法でAlN結晶を製造することができる。   According to the present invention, an AlN crystal can be produced by a novel method.

第1の実施形態に係るAlNの製造方法で用いられるAlN製造装置の構成を説明する為の縦断面概略図。The longitudinal cross-sectional schematic for demonstrating the structure of the AlN manufacturing apparatus used with the manufacturing method of AlN which concerns on 1st Embodiment. 第2の実施形態に係るAlNの製造方法で用いられるAlN製造装置の構成を説明する為の縦断面概略図。The longitudinal cross-sectional schematic for demonstrating the structure of the AlN manufacturing apparatus used with the manufacturing method of AlN which concerns on 2nd Embodiment.

符号の説明Explanation of symbols

2…溶融Al
4…種結晶
10…容器
20…ヒータ
30…種結晶保持部
32…Al供給部
34…触媒元素供給部
50…チャンバー
52…窒素ガス供給部
54…ポンプ
56…触媒元素含有ガス供給部
2 ... Molten Al
4 ... Seed crystal 10 ... Container 20 ... Heater 30 ... Seed crystal holding unit 32 ... Al supply unit 34 ... Catalytic element supply unit 50 ... Chamber 52 ... Nitrogen gas supply unit 54 ... Pump 56 ... Catalyst element-containing gas supply unit

以下、図面を参照して本発明の実施形態について説明する。図1は、本発明の第1の実施形態に係るAlNの製造方法に用いられるAlN製造装置の構成を説明する為の縦断面概略図である。このAlN製造装置は、溶融Al2を保持する容器10、容器10内の溶融Alを加熱するヒータ20、種結晶4を保持する種結晶保持部30、溶融Al2にAl6を供給するAl供給部32、及び触媒として機能する元素(以下、触媒元素と記載)を含有する物質(以下、触媒元素含有物と記載)を溶融Alに供給する触媒元素供給部34を有している。これらの各構成要素はチャンバー50内に配置されている。チャンバー50の内部は、窒素ガス供給部52によって加圧された窒素雰囲気にすることができる。またチャンバー50の内部はポンプ54によって排気可能である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic longitudinal sectional view for explaining the configuration of an AlN manufacturing apparatus used in an AlN manufacturing method according to the first embodiment of the present invention. This AlN manufacturing apparatus includes a container 10 that holds molten Al2, a heater 20 that heats molten Al in the container 10, a seed crystal holding unit 30 that holds a seed crystal 4, an Al supply unit 32 that supplies Al6 to the molten Al2, And a catalytic element supply unit 34 for supplying a substance (hereinafter referred to as a catalyst element-containing material) containing an element functioning as a catalyst (hereinafter referred to as a catalyst element) to molten Al. Each of these components is disposed in the chamber 50. The interior of the chamber 50 can be a nitrogen atmosphere pressurized by the nitrogen gas supply unit 52. The inside of the chamber 50 can be evacuated by a pump 54.

触媒元素とは、窒化物の生成自由エネルギーがAlより小さい元素であり、例えばボロン、カルシウム、シリコン、鉄、モリブデン、クロム、バナジウム、マグネシウム、マンガン、インジウム、ガリウム、タンタル、ハフニウム、及びトリウムからなる群から選ばれた少なくとも一種である。触媒元素含有物は、その元素単体であってもよいし、窒化物(例えばBN、Si、又はCa)であっても良いし、炭化物(例えばBC)であっても良い。The catalytic element is an element whose free energy of formation of nitride is smaller than Al, and is made of, for example, boron, calcium, silicon, iron, molybdenum, chromium, vanadium, magnesium, manganese, indium, gallium, tantalum, hafnium, and thorium. At least one selected from the group. The catalyst element-containing material may be a single element, nitride (eg, BN, Si 3 N 4 , or Ca 3 N 2 ), or carbide (eg, B 4 C). Also good.

種結晶は、例えばAlN結晶であるが、AlNと同じ六方晶系の結晶構造を有しており、AlNの格子定数を基準とした場合の格子定数が65%以上135%以下又は150%以上250%以下の物質であって、生成自由エネルギーがAlNより近い物質からなる結晶(例えばSi、BN、又はGaN)であってもよい。種結晶の格子定数がAlNの格子定数の65%以上135%以下の場合は、種結晶とAlNの結晶は格子が一対一で整合し、種結晶の格子定数がAlNの格子定数の150%以上250%以下の場合は、種結晶とAlNの結晶は格子が一対二で整合する。The seed crystal is, for example, an AlN crystal, and has the same hexagonal crystal structure as AlN, and the lattice constant based on the lattice constant of AlN is 65% to 135% or 150% to 250. % Or less of the material, and a crystal (for example, Si 3 N 4 , BN, or GaN) made of a material whose generation free energy is closer to that of AlN. When the lattice constant of the seed crystal is 65% or more and 135% or less of the lattice constant of AlN, the lattice of the seed crystal and the AlN crystal match one to one, and the lattice constant of the seed crystal is 150% or more of the lattice constant of AlN. In the case of 250% or less, the seed crystal and the AlN crystal have a one-to-two lattice match.

次に、図1のAlN製造装置を用いてAlNを製造する方法を説明する。まず、容器10の内部にAl片を挿入する。次いで、ポンプ54でチャンバー50の内部を排気した後、窒素ガス供給部52によってチャンバー50の内部に窒素ガスを供給する。これにより、チャンバー50の内部は窒素雰囲気になる。窒素雰囲気の圧力は4気圧以上30気圧以下であるのが好ましいが、常圧であってもよい。次いで、所定量の触媒元素含有物を容器10の内部に供給し、ヒータ20を用いてAl片を溶融する。これにより、容器10内に、触媒元素が溶け込んだ溶融Al2が生成する。このときの溶融Al2の温度は、800℃以上1300℃以下であるのが好ましい。   Next, a method of manufacturing AlN using the AlN manufacturing apparatus of FIG. 1 will be described. First, an Al piece is inserted into the container 10. Next, after the inside of the chamber 50 is evacuated by the pump 54, the nitrogen gas is supplied into the chamber 50 by the nitrogen gas supply unit 52. Thereby, the inside of the chamber 50 becomes a nitrogen atmosphere. The pressure in the nitrogen atmosphere is preferably 4 atm or more and 30 atm or less, but may be normal pressure. Next, a predetermined amount of the catalyst element-containing material is supplied into the container 10, and the Al piece is melted using the heater 20. Thereby, molten Al 2 in which the catalytic element is dissolved is generated in the container 10. The temperature of the molten Al 2 at this time is preferably 800 ° C. or higher and 1300 ° C. or lower.

次いで、種結晶保持部30に保持された種結晶4を回転させながら、種結晶4の下面を溶融Al2に浸す。種結晶4と溶融Al2の界面には触媒元素が位置している。この状態において、触媒元素は溶融Al2に溶解した窒素と反応して窒化する。上記したように触媒元素は、窒化物の生成自由エネルギーがアルミニウムより小さい。このため、触媒元素と結合した窒素がアルミニウムに受け渡され、アルミニウムが窒化する。このようにして、触媒元素を触媒としたアルミニウムの窒化反応が進行し、これにより、種結晶4にAlN結晶が成長する。AlN結晶が成長する間、Al供給部32及び触媒元素供給部34によって、適宜Al6及び触媒元素含有物を追加することにより、溶融Al2に含まれる触媒元素の濃度を最適値に制御する。これにより、種結晶4におけるAlN結晶の成長が持続し、AlNの結晶棒が生成する。また、条件を調整することにより、AlNの単結晶棒を生成することができる。   Next, the lower surface of the seed crystal 4 is immersed in the molten Al 2 while rotating the seed crystal 4 held by the seed crystal holding unit 30. A catalytic element is located at the interface between the seed crystal 4 and the molten Al2. In this state, the catalytic element reacts with nitrogen dissolved in molten Al2 and is nitrided. As described above, the catalytic element has a smaller free energy of formation of nitride than aluminum. For this reason, the nitrogen combined with the catalytic element is transferred to the aluminum, and the aluminum is nitrided. In this way, the nitriding reaction of aluminum using the catalyst element as a catalyst proceeds, whereby an AlN crystal grows on the seed crystal 4. During the growth of the AlN crystal, the concentration of the catalytic element contained in the molten Al 2 is controlled to an optimum value by appropriately adding Al 6 and a catalytic element-containing material by the Al supply unit 32 and the catalytic element supply unit 34. Thereby, the growth of the AlN crystal in the seed crystal 4 is continued, and an AlN crystal rod is generated. Further, by adjusting the conditions, a single crystal rod of AlN can be generated.

なお、溶融Alの温度及び窒素雰囲気の圧力を、AlNの生成反応が起こる寸前の条件に設定しておき、種結晶4と溶融Al2の界面の温度を加熱する加熱手段(図示せず)を用いて界面の温度のみを上昇させても良い。   The temperature of the molten Al and the pressure of the nitrogen atmosphere are set to the conditions just before the AlN formation reaction occurs, and a heating means (not shown) is used to heat the temperature at the interface between the seed crystal 4 and the molten Al 2. Only the temperature at the interface may be raised.

以上、本実施形態によれば、引き上げ法(CZ法)によりAlNの結晶棒を生成することができる。また、条件を調整することにより、AlNの単結晶棒を生成することができる。   As described above, according to the present embodiment, an AlN crystal rod can be generated by a pulling method (CZ method). Further, by adjusting the conditions, a single crystal rod of AlN can be generated.

図2は、本発明の第2の実施形態に係るAlNの製造方法で用いられるAlN製造装置の構成を説明する為の縦断面概略図である。本図に示すAlN製造装置は、触媒元素供給部34の代わりに触媒元素含有ガス供給部56を有する点を除いて、第1の実施形態に係るAlN製造装置と同様の構成である。以下、第1の実施形態と同様の構成については同一の符号を付して説明を省略する。   FIG. 2 is a schematic vertical cross-sectional view for explaining the configuration of an AlN manufacturing apparatus used in the AlN manufacturing method according to the second embodiment of the present invention. The AlN production apparatus shown in the figure has the same configuration as the AlN production apparatus according to the first embodiment except that a catalyst element-containing gas supply unit 56 is provided instead of the catalyst element supply unit 34. Hereinafter, the same components as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

触媒元素含有ガス供給部56は、窒素雰囲気に、触媒元素を含む化合物の気体(例えばB又はSiH)を混入させ。これら気体を溶融Alに溶かし込ませることにより、溶融Alに触媒元素を溶かし込ませる。The catalyst element-containing gas supply unit 56 mixes a compound gas containing a catalyst element (for example, B 2 H 6 or SiH 4 ) in a nitrogen atmosphere. By dissolving these gases in molten Al, the catalyst element is dissolved in molten Al.

本実施形態に係るAlNの製造方法は、触媒元素供給部34の代わりに触媒元素含有ガス供給部56を用いて溶融Alに触媒元素を溶かし込ませる点を除いて、第1の実施形態に係るAlNの製造方法と同様である。
本実施形態によっても第1の実施形態と同様の効果を得ることができる。
The method for producing AlN according to the present embodiment relates to the first embodiment except that the catalyst element is dissolved in molten Al using the catalyst element-containing gas supply unit 56 instead of the catalyst element supply unit 34. It is the same as the manufacturing method of AlN.
According to this embodiment, the same effect as that of the first embodiment can be obtained.

尚、本発明は上述した実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲内で種々変更して実施することが可能である。   Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

Claims (4)

窒素雰囲気下に位置している溶融Alに種結晶を接触させ、
前記種結晶と前記溶融Alの界面に、窒化物の生成自由エネルギーがAlより小さい元素を供給し、
前記元素を触媒として前記溶融Alに溶解した窒素と前記溶融Alを反応させることにより、前記種結晶にAlN結晶を成長させ
前記元素はシリコン、鉄、モリブデン、クロム、バナジウム、マンガン、インジウム、ガリウム、タンタル、ハフニウム、及びトリウムからなる群から選ばれた少なくとも一種である、AlN結晶の製造方法。
Bringing the seed crystal into contact with molten Al located under a nitrogen atmosphere;
An element having a free energy of formation of nitride smaller than Al is supplied to the interface between the seed crystal and the molten Al.
By reacting nitrogen dissolved in the molten Al with the element as a catalyst and the molten Al, an AlN crystal is grown on the seed crystal ,
The elements Ru silicon, iron, molybdenum, chromium, vanadium, manganese, indium, gallium, tantalum, hafnium, and at least one Der selected from the group consisting of thorium, method of manufacturing AlN crystal.
前記窒素雰囲気を4気圧以上にする請求項1に記載のAlN結晶の製造方法。 The method for producing an AlN crystal according to claim 1, wherein the nitrogen atmosphere is set to 4 atm or more. 前記溶融Alと前記種結晶の界面の温度を800℃以上にする請求項1又は2に記載のAlN結晶の製造方法。 The method for producing an AlN crystal according to claim 1 or 2 , wherein a temperature at an interface between the molten Al and the seed crystal is 800 ° C or higher. 前記窒素雰囲気に、前記元素を含む化合物の気体を混入させ、前記溶融Alに前記気体を溶かし込むことにより、前記種結晶と前記溶融Alの界面に前記元素を供給する請求項1〜のいずれか一項に記載のAlN結晶の製造方法。 The nitrogen atmosphere, is mixed gas of a compound containing the element, said by Komu dissolving the gas in the molten Al, either the seed crystal and the melt Al interface of claim 1 to 3 which supplies the elements of The method for producing an AlN crystal according to claim 1.
JP2008533177A 2006-09-07 2007-09-05 Method for producing AlN crystal Expired - Fee Related JP5229735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008533177A JP5229735B2 (en) 2006-09-07 2007-09-05 Method for producing AlN crystal

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006242973 2006-09-07
JP2006242973 2006-09-07
PCT/JP2007/067265 WO2008029827A1 (en) 2006-09-07 2007-09-05 PROCESS FOR PRODUCING AlN CRYSTAL
JP2008533177A JP5229735B2 (en) 2006-09-07 2007-09-05 Method for producing AlN crystal

Publications (2)

Publication Number Publication Date
JPWO2008029827A1 JPWO2008029827A1 (en) 2010-01-21
JP5229735B2 true JP5229735B2 (en) 2013-07-03

Family

ID=39157253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008533177A Expired - Fee Related JP5229735B2 (en) 2006-09-07 2007-09-05 Method for producing AlN crystal

Country Status (2)

Country Link
JP (1) JP5229735B2 (en)
WO (1) WO2008029827A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019221583A1 (en) * 2018-05-18 2019-11-21 연세대학교 산학협력단 Layered aln, method for manufacturing same, and aln nanosheet exfoliated therefrom

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5351426B2 (en) * 2008-03-27 2013-11-27 タマティーエルオー株式会社 Processing method of aluminum nitride powder
EP2914250B1 (en) 2012-11-05 2018-04-04 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Combination of an anti-cancer agent such as a tyrosinekinase inhibitor and a stat5 antagonist, preferably a thiazolidinedione, for eliminating hematologic cancer stem cells in vivo and for preventing hematologic cancer relapse

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07277897A (en) * 1994-04-04 1995-10-24 Katsutoshi Yoneya Synthesis of aluminum nitride single crystal
JP2003505331A (en) * 1999-07-22 2003-02-12 クリー インコーポレイテッド Growth of aluminum nitride bulk single crystals from the melt.
JP2004189549A (en) * 2002-12-12 2004-07-08 Sumitomo Metal Mining Co Ltd Method of manufacturing aluminum nitride single crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07277897A (en) * 1994-04-04 1995-10-24 Katsutoshi Yoneya Synthesis of aluminum nitride single crystal
JP2003505331A (en) * 1999-07-22 2003-02-12 クリー インコーポレイテッド Growth of aluminum nitride bulk single crystals from the melt.
JP2004189549A (en) * 2002-12-12 2004-07-08 Sumitomo Metal Mining Co Ltd Method of manufacturing aluminum nitride single crystal

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6007009927; 清宮義博, 篠田哲守: 'AlとBNの固液反応によるAlN生成条件の解明' 日本金属学会講演概要 Vol.136th, 20050329, Page.327 *
JPN6007009929; 清宮義博, 小野寺健二, 山口俊久: 'AlとBNの固液反応によるAlN生成条件の解明' 軽金属学会大会講演概要 Vol.109th, 20051020, Page.351-352 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019221583A1 (en) * 2018-05-18 2019-11-21 연세대학교 산학협력단 Layered aln, method for manufacturing same, and aln nanosheet exfoliated therefrom

Also Published As

Publication number Publication date
WO2008029827A1 (en) 2008-03-13
JPWO2008029827A1 (en) 2010-01-21

Similar Documents

Publication Publication Date Title
JP6019542B2 (en) Group III nitride crystal manufacturing method and group III nitride crystal manufacturing apparatus
WO2008059901A1 (en) PROCESS FOR PRODUCTION OF GaN CRYSTALS, GaN CRYSTALS, GaN CRYSTAL SUBSTRATE, SEMICONDUCTOR DEVICES, AND APPARATUS FOR PRODUCTION OF GaN CRYSTALS
JP4056785B2 (en) Group III nitride crystal production method and group III nitride crystal production apparatus
JP2005252248A (en) Method for growing aluminum nitride epitaxial layer and vapor growth apparatus
JP4245822B2 (en) Method for producing group III nitride crystal
JP5229735B2 (en) Method for producing AlN crystal
JP2001064097A (en) Method and device for growing crystal, and group iii nitride crystal
JP4190711B2 (en) Crystal manufacturing method and crystal manufacturing apparatus for group III nitride crystal
JP4159303B2 (en) Group III nitride crystal manufacturing method and group III nitride crystal manufacturing apparatus
JP4094878B2 (en) Group III nitride crystal production method and group III nitride crystal production apparatus
JP4053336B2 (en) Group III nitride crystal production method and group III nitride crystal production apparatus
JP2009126771A (en) Method and apparatus for growing crystal
JP2012031027A (en) Method for producing single crystal aluminum nitride
JP4631071B2 (en) Crystal growth apparatus for gallium nitride crystal and method for producing gallium nitride crystal
WO2014141959A1 (en) METHOD AND DEVICE FOR MANUFACTURING GALLIUM NITRIDE (GaN) FREE-STANDING SUBSTRATE
JP4908467B2 (en) Method for producing group III nitride compound semiconductor crystal
JP6797398B2 (en) Manufacturing method of aluminum nitride crystal
JP4259414B2 (en) Method for producing group III nitride single crystal
JP2009221056A (en) Crystal growth method, crystal growth apparatus, and semiconductor device
JP4956515B2 (en) Method for producing group III nitride crystal
JP4779848B2 (en) Group 13 metal nitride crystal manufacturing method and semiconductor device manufacturing method using the same
JP4590636B2 (en) Method for producing aluminum nitride single crystal
JP4271408B2 (en) Group III nitride crystal production method
JP2006182596A (en) Method for manufacturing nitride crystal of group iii element, nitride crystal of group iii element obtained by the method, and semiconductor device including the nitride crystal
JP2008100860A (en) Method for producing single crystal aluminum nitride laminated substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5229735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees