JP4908467B2 - Method for producing group III nitride compound semiconductor crystal - Google Patents

Method for producing group III nitride compound semiconductor crystal Download PDF

Info

Publication number
JP4908467B2
JP4908467B2 JP2008202899A JP2008202899A JP4908467B2 JP 4908467 B2 JP4908467 B2 JP 4908467B2 JP 2008202899 A JP2008202899 A JP 2008202899A JP 2008202899 A JP2008202899 A JP 2008202899A JP 4908467 B2 JP4908467 B2 JP 4908467B2
Authority
JP
Japan
Prior art keywords
group iii
iii nitride
compound semiconductor
gan
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008202899A
Other languages
Japanese (ja)
Other versions
JP2010037155A (en
Inventor
康英 薬師
史郎 山崎
誠二 永井
峻之 佐藤
勇介 森
康夫 北岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2008202899A priority Critical patent/JP4908467B2/en
Publication of JP2010037155A publication Critical patent/JP2010037155A/en
Application granted granted Critical
Publication of JP4908467B2 publication Critical patent/JP4908467B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、アルカリ金属を有する混合フラックスの中で、ガリウム(Ga)、アルミニウム(Al)又はインジウム(In)のIII族元素と窒素(N)とを反応させることによってIII族窒化物系化合物半導体を結晶成長させる、いわゆるフラックス法によるIII族窒化物系化合物半導体の製造方法に関する。本願においてIII族窒化物系化合物半導体とは、AlxGayIn1-x-yN(x、y、x+yはいずれも0以上1以下)で示される半導体、及び、n型化/p型化等のために任意の元素を添加したものを含む。更には、III族元素及びV族元素の組成の一部を、B又はTl、或いは、P、As、Sb又はBiで置換したものをも含むものとする。 The present invention relates to a group III nitride compound semiconductor by reacting a group III element of gallium (Ga), aluminum (Al) or indium (In) with nitrogen (N) in a mixed flux having an alkali metal. The present invention relates to a method for producing a group III nitride compound semiconductor by a so-called flux method. In the present application, the group III nitride compound semiconductor is a semiconductor represented by Al x Ga y In 1-xy N (where x, y, and x + y are all 0 or more and 1 or less), n-type / p-type, etc. For which any element is added. Furthermore, it is intended to include those in which a part of the composition of the group III element and the group V element is substituted with B or Tl, or P, As, Sb or Bi.

III族窒化物系化合物半導体の結晶成長方法としては、長らくエピタキシャル気相成長方法のみが実用化されていた。例えば他の半導体結晶の製造時に用いられる液相成長は、III族窒化物系化合物半導体の結晶成長方法としては、実用化されていなかった。
近年、加熱且つ加圧下のナトリウムフラックス中で、例えば自立GaN基板、又は異種基板上に形成されたGaN膜を種結晶として厚さ数mm以上の厚膜のGaN結晶を析出させる方法が検討されている。この際、III族元素はナトリウムフラックスに溶融させ、窒素源はアンモニアや窒素分子としてナトリウムフラックス表面等に供給するものが知られている。
特許文献1は、本願出願人らによる先行特許出願の公開公報である。
更に他の公知文献は例えば特許文献1に記載されている。
特開2007−246341号公報
As a method for crystal growth of group III nitride compound semiconductors, only the epitaxial vapor phase growth method has long been put to practical use. For example, liquid phase growth used in the production of other semiconductor crystals has not been put into practical use as a crystal growth method for group III nitride compound semiconductors.
In recent years, in a sodium flux under heating and pressure, for example, a method of depositing a GaN crystal having a thickness of several mm or more using a GaN film formed on a self-supporting GaN substrate or a heterogeneous substrate as a seed crystal has been studied. Yes. At this time, it is known that the group III element is melted in the sodium flux and the nitrogen source is supplied to the surface of the sodium flux as ammonia or nitrogen molecules.
Patent Document 1 is a publication of a prior patent application filed by the present applicants.
Still another known document is described in, for example, Patent Document 1.
JP 2007-246341 A

自立GaN基板、又は異種基板上に形成されたGaN膜としては、通常、GaN結晶のc面を主面としている。
ところで、GaN基板上に、エピタキシャル成長により多層膜を積層して半導体素子を形成する場合、基板であるGaNの主面がc面であると、全ての層の界面がc面となる。この際、c軸方向の歪によるピエゾ電界が積層方向(膜厚方向)に生じる。この問題は特に多重量子井戸構造の発光層において、電子とホールの高濃度部分が異なる結果を生じ、発光効率の低下が生じるとされている。このため、III族窒化物系化合物半導体基板として、主面がc面でないものが求められるようになった。
そこで本発明は、フラックス法により主面がc面でないIII族窒化物系化合物半導体厚膜結晶を得ることを目的とする。
As a GaN film formed on a self-standing GaN substrate or a heterogeneous substrate, the c-plane of a GaN crystal is usually the main surface.
By the way, when a semiconductor element is formed by laminating a multilayer film by epitaxial growth on a GaN substrate, if the main surface of GaN as a substrate is the c-plane, the interfaces of all layers become the c-plane. At this time, a piezoelectric field due to strain in the c-axis direction is generated in the stacking direction (film thickness direction). This problem is said to be caused particularly in the light emitting layer having a multiple quantum well structure, in which the high concentration portions of electrons and holes are different, and the light emission efficiency is lowered. For this reason, a group III nitride compound semiconductor substrate whose main surface is not c-plane has been required.
Accordingly, an object of the present invention is to obtain a Group III nitride compound semiconductor thick film crystal whose principal surface is not c-plane by a flux method.

請求項1に係る発明は、少なくともアルカリ金属を用いたフラックス法によるIII族窒化物系化合物半導体の製造方法において、種結晶として、主面の法線ベクトルが、m軸から+c軸方向に0.2度以上5度以下回転した方向であるIII族窒化物系化合物半導体基板を用いること、或いは、異種基板に形成した、主面の法線ベクトルが、m軸から+c軸方向に0.2度以上5度以下回転した方向であるIII族窒化物系化合物半導体膜を用いることを特徴とする。本明細書では+c面とはc軸方向に極性を有するIII族窒化物系化合物半導体において、III族原子が表面であるc面であり、窒素原子が表面であるc面を−c面と称する。また、+c面の法線ベクトルの方向(結晶内部から外部への向きのもの)を+c軸方向と呼ぶ。尚、m軸から+c軸方向の回転と共に、m軸からそれと垂直なa軸方向の回転を伴っていても良いが、その回転角は±0.5度以下のものが好ましい。
請求項2に係る発明は、アルカリ金属としてナトリウムを少なくとも用いることを特徴とする。
請求項3に係る発明は、種結晶としてGaN基板又は異種基板上に形成されたGaN膜を用いることを特徴とする。
請求項4に係る発明は、窒素源として、窒素ガスを用いることを特徴とする。
According to the first aspect of the present invention, in the method for producing a group III nitride compound semiconductor by a flux method using at least an alkali metal, the normal vector of the main surface is 0. 0 in the + c-axis direction from the m-axis as a seed crystal. Use a group III nitride compound semiconductor substrate rotated in a direction of 2 degrees or more and 5 degrees or less, or the normal vector of the principal surface formed on a different substrate is 0.2 degrees in the + c axis direction from the m-axis. A group III nitride compound semiconductor film having a direction rotated by 5 degrees or less is used. In this specification, the + c plane is a c-plane having a group III atom as a surface and a c-plane having a nitrogen atom as a surface in a group III nitride compound semiconductor having polarity in the c-axis direction. . The direction of the normal vector on the + c plane (the direction from the inside of the crystal to the outside) is called the + c axis direction. The rotation from the m-axis to the + c-axis direction and the rotation from the m-axis to the a-axis direction perpendicular thereto may be accompanied, but the rotation angle is preferably ± 0.5 degrees or less.
The invention according to claim 2 is characterized in that at least sodium is used as the alkali metal.
The invention according to claim 3 is characterized in that a GaN film formed on a GaN substrate or a heterogeneous substrate is used as a seed crystal.
The invention according to claim 4 is characterized in that nitrogen gas is used as a nitrogen source.

種結晶として主面の法線ベクトルが、m軸から+c軸方向に0.2度以上5度以下回転した方向である、III族窒化物系化合物半導体基板或いは異種基板に形成したIII族窒化物系化合物半導体膜を用いて、その上にフラックス法によりIII族窒化物系化合物半導体の厚膜結晶を形成すると、主面の法線が、m軸から+c軸方向に0.2度以上5度以下回転した方向であるIII族窒化物系化合物半導体の厚膜結晶が得られる。
このようにして得られたm面とわずかなオフ角を有するIII族窒化物系化合物半導体基板に、例えばエピタキシャル成長により、III族窒化物系化合物半導体を順次積層した場合、c軸方向の歪によるピエゾ電界が各層の積層方向(膜厚方向)には生じない。これにより積層方向(膜厚方向)に圧電効果の生じない半導体素子が形成できる。例えば発光素子においては積層方向(膜厚方向)に圧電効果の生じない多重量子井戸構造を形成でき、井戸層内部で、電子と正孔の濃度比の高い部分を、一致させることができ発光効率が向上する。
本発明のIII族窒化物系化合物半導体の製造方法においては、種結晶の主面がオフ角を有し、且つその表面は微細なステップを有し、段差が幅の狭い+c面となる。
このため、フラックス法によるIII族窒化物系化合物半導体の製造の際、種結晶からm軸方向に厚膜化する方向の他、+c軸方向にも結晶成長が生じる。言わば横方向の成長を伴うことで、III族窒化物系化合物半導体の成長が促進され、且つ、結晶粒界(グレインサイズ)も大きくなり、転移密度の大幅な低減と言う効果をもたらす。即ち、本発明により、III族窒化物系化合物半導体の、表面の平坦性が高い、高品質な大型の単結晶を得ることが可能となる。
A group III nitride formed on a group III nitride compound semiconductor substrate or a heterogeneous substrate in which the normal vector of the principal surface as a seed crystal is a direction rotated from 0.2 to 5 degrees in the + c axis direction from the m-axis When a thick film crystal of a group III nitride compound semiconductor is formed on the base compound semiconductor film by a flux method, the normal of the main surface is 0.2 degrees or more and 5 degrees in the + c axis direction from the m-axis. Thereafter, a thick film crystal of a group III nitride compound semiconductor in the rotated direction is obtained.
When group III nitride compound semiconductors are sequentially stacked on the group III nitride compound semiconductor substrate having the m-plane and a slight off-angle obtained in this manner, for example, by epitaxial growth, the piezoelectric due to strain in the c-axis direction is obtained. An electric field does not occur in the stacking direction (film thickness direction) of each layer. As a result, a semiconductor element that does not produce a piezoelectric effect in the stacking direction (film thickness direction) can be formed. For example, in a light emitting device, a multiple quantum well structure that does not produce a piezoelectric effect can be formed in the stacking direction (thickness direction), and the high concentration ratio of electrons and holes can be matched within the well layer. Will improve.
In the method for producing a group III nitride compound semiconductor of the present invention, the main surface of the seed crystal has an off angle, the surface has a fine step, and the step becomes a + c plane having a narrow width.
For this reason, when a group III nitride compound semiconductor is manufactured by the flux method, crystal growth occurs in the + c-axis direction as well as in the direction of increasing the thickness from the seed crystal in the m-axis direction. In other words, the accompanying growth in the lateral direction promotes the growth of the group III nitride compound semiconductor and increases the crystal grain boundary (grain size), which brings about the effect of greatly reducing the transition density. That is, according to the present invention, it is possible to obtain a large-sized single crystal of a group III nitride compound semiconductor having high surface flatness and high quality.

本発明は任意の組成のIII族窒化物系化合物半導体の製造方法として用いることができ、且つ不純物の添加も所望に設計できる。
フラックス法自体については、公知の任意の技術を用いることができる。フラックスにはアルカリ金属を使用できるが、特にナトリウムが好ましい。マグネシウムやカルシウム等のアルカリ土類金属や、リチウムを少量添加しても良い。
窒素源は、窒素ガスが取り扱いやすい。
The present invention can be used as a method for producing a group III nitride compound semiconductor having an arbitrary composition, and the addition of impurities can be designed as desired.
Any known technique can be used for the flux method itself. An alkali metal can be used for the flux, but sodium is particularly preferable. A small amount of alkaline earth metal such as magnesium or calcium, or lithium may be added.
Nitrogen gas is easy to handle as the nitrogen source.

本発明は、特に窒化ガリウム(GaN)の厚膜結晶を形成するのに有効である。フラックス法により厚膜又は大きなGaN結晶を得るための種結晶としては、m面に対してオフ角を有する面を主面とするGaN結晶を用いると良い。この際の種結晶は、いわゆる自立GaN基板であっても良く、サファイアその他の異種基板上にGaN薄膜の形成された、いわゆるテンプレート基板でも良い。異種基板上にGaN薄膜を形成する場合は、最上面がGaN膜となっていれば良く、異種基板からGaN膜までの構成は任意に設計できる。   The present invention is particularly effective in forming a gallium nitride (GaN) thick film crystal. As a seed crystal for obtaining a thick film or a large GaN crystal by the flux method, it is preferable to use a GaN crystal whose main surface is a surface having an off angle with respect to the m-plane. The seed crystal at this time may be a so-called self-standing GaN substrate or a so-called template substrate in which a GaN thin film is formed on a sapphire or other dissimilar substrate. In the case of forming a GaN thin film on a heterogeneous substrate, it is sufficient that the uppermost surface is a GaN film, and the configuration from the heterogeneous substrate to the GaN film can be arbitrarily designed.

本実施例では次のようにしてm面に対して1度のオフ角を有する面を主面とするGaN結晶を得た。
反応用坩堝に、金属ガリウムと金属ナトリウムをモル比で1:4となるように投入し、更にグラファイトをナトリウムに対して0.6mol%添加した。次に、主面の法線ベクトルが、m軸から+c軸方向に1度回転した方向である、厚さ200μmの自立GaN基板10を種結晶として反応用坩堝に入れた。尚、m軸から+c軸方向の回転と共に、m軸からそれと垂直なa軸方向の回転を伴っていても良いが、±0.5度以下のものが好ましい。より好ましくはm軸からそれと垂直なa軸方向の回転を伴わないものである。自立GaN基板10は図1.Aに示す通り、その表面が、微細なステップ状であって、主面から1度傾いた広いm面と、幅の狭い+c面のステップからなるものである。
反応用坩堝を圧力容器内に配置し、4.2MPaで窒素を供給しながら、870℃で120時間保持した。
この後、冷却したところ、厚さ約2mmのフラックス法による結晶成長部11が見られ、厚膜GaN結晶100が得られた(図1.B)。
図1.Aと図1.Bにおいては、デフォルメして極めて大きい段差を記載しているが、実際にはほとんど平坦である。
In this example, a GaN crystal having a main surface with an off angle of 1 degree with respect to the m-plane was obtained as follows.
Into the reaction crucible, metal gallium and metal sodium were charged in a molar ratio of 1: 4, and further 0.6 mol% of graphite was added to sodium. Next, a self-standing GaN substrate 10 having a thickness of 200 μm, which is a direction in which the normal vector of the main surface is rotated by 1 degree from the m-axis to the + c-axis direction, was placed in a reaction crucible as a seed crystal. The rotation from the m-axis to the + c-axis direction may be accompanied by the rotation from the m-axis to the a-axis direction perpendicular to the m-axis. More preferably, it does not involve rotation in the a-axis direction perpendicular to the m-axis. The free-standing GaN substrate 10 is shown in FIG. As shown to A, the surface is a fine step shape, and consists of a wide m-plane inclined by 1 degree from the main surface and a narrow + c-plane step.
The reaction crucible was placed in a pressure vessel and kept at 870 ° C. for 120 hours while supplying nitrogen at 4.2 MPa.
Thereafter, when cooled, a crystal growth portion 11 by a flux method having a thickness of about 2 mm was observed, and a thick GaN crystal 100 was obtained (FIG. 1.B).
FIG. A and FIG. In B, although the deformed and extremely large step is described, it is practically almost flat.

まず、直径50mm、厚さ0.5mmの、サファイア等の異種基板上に、m面に対して1度のオフ角を有するGaN膜が形成されたいわゆるGaNテンプレート基板101を用意した。GaNテンプレート基板101の表面は、図1.AのGaN自立基板10と同様に、その表面が微細なステップ状であって、主面から1度傾いた広いm面と、幅の狭い+c面の段差から成るものである。また、GaNテンプレート基板101は、所望の半導体結晶のフラックス法による成長が開始されるまでの間に、GaN層の表面が幾らかはフラックスに溶け出す場合がある。その際に消失されない厚さのGaN層が必要である。   First, a so-called GaN template substrate 101 was prepared in which a GaN film having an off angle of 1 degree with respect to the m-plane was formed on a heterogeneous substrate such as sapphire having a diameter of 50 mm and a thickness of 0.5 mm. The surface of the GaN template substrate 101 is shown in FIG. Similar to the GaN free-standing substrate 10 of A, the surface has a fine step shape, and is composed of a wide m-plane inclined by 1 degree from the main surface and a narrow + c-plane step. In addition, the GaN template substrate 101 may dissolve some of the surface of the GaN layer in the flux until the growth of the desired semiconductor crystal by the flux method is started. In this case, a GaN layer having a thickness that does not disappear is required.

なお、この様な消失(種結晶の溶解)を防止または緩和するためのその他の方法としては、例えば後述の結晶成長処理ではその実施前に、混合フラックスの中にCa32,Li3N,NaN3,BN,Si34またはInNなどの窒化物を予め添加しておいてもよい。 In addition, as another method for preventing or mitigating such disappearance (dissolution of seed crystals), for example, in the crystal growth treatment described later, before the implementation, Ca 3 N 2 , Li 3 N is contained in the mixed flux. , NaN 3 , BN, Si 3 N 4 or InN may be added in advance.

図2に、本実施例で用いる結晶成長装置20の構成を示す。この結晶成長装置20は、フラックス法に基づく結晶成長処理を実行するためのものであり、高温、高圧の窒素ガス(N2)を供給するための給気管21と、窒素ガスを排気するための排気管22とを有する電気炉(外部容器)25の中には、ヒーターHと、断熱材23と、ステンレス容器(内部容器)24が具備されている。電気炉(外部容器)25、給気管21、排気管22等は、耐熱性、耐圧性、反応性などを考慮し、ステンレス系(SUS系)またはアルミナ系の材料から形成されている。 FIG. 2 shows the configuration of the crystal growth apparatus 20 used in this embodiment. This crystal growth apparatus 20 is for performing crystal growth processing based on the flux method, and is provided with a supply pipe 21 for supplying high-temperature and high-pressure nitrogen gas (N 2 ), and exhausting the nitrogen gas. In an electric furnace (external container) 25 having an exhaust pipe 22, a heater H, a heat insulating material 23, and a stainless steel container (internal container) 24 are provided. The electric furnace (external container) 25, the air supply pipe 21, the exhaust pipe 22, and the like are made of a stainless steel (SUS) or alumina material in consideration of heat resistance, pressure resistance, reactivity, and the like.

そして、ステンレス容器24の中には、坩堝26(反応容器)がセットされている。この坩堝26は、例えば、タングステン(W)、モリブデン(Mo)、窒化ボロン(BN)、熱分解(パイロリティック)窒化ボロン(PBN)、またはアルミナ(Al23)などから形成することができる。
また、電気炉25内の温度は、1000℃以下の範囲内で任意に昇降温制御することができる。また、ステンレス容器24の中の結晶雰囲気圧力は、1.0×107Pa以下の範囲内で任意に昇降圧制御することができる。
A crucible 26 (reaction container) is set in the stainless steel container 24. The crucible 26 can be formed from, for example, tungsten (W), molybdenum (Mo), boron nitride (BN), pyrolytic boron nitride (PBN), or alumina (Al 2 O 3 ). .
The temperature in the electric furnace 25 can be arbitrarily controlled to rise and fall within a range of 1000 ° C. or less. Further, the pressure of the crystal atmosphere in the stainless steel container 24 can be arbitrarily controlled within the range of 1.0 × 10 7 Pa or less.

尚、図2では記載を省略したが、上述したGaNテンプレート基板101は、ガリウム面FGaを露出した状態として坩堝26(反応容器)内に配置した。 Although omitted from FIG. 2, the GaN template substrate 101 described above was placed in the crucible 26 (reaction vessel) with the gallium surface F Ga exposed.

以下、上記の結晶成長装置を用いた本実施例2の結晶成長工程について説明する。
まず、GaNテンプレート基板101を配置した反応容器(坩堝26)の中に、30gのナトリウム(Na)と30gのガリウム(Ga)と80mgの炭素(C)を入れ、その反応容器(坩堝26)を結晶成長装置の反応室(ステンレス容器24)の中に配置してから、該反応室の中のガスを排気する。すなわち、ナトリウムのモル量に対する炭素のモル量の比は、0.51mol%とした。
炭素の量は、ナトリウムに対して0.1〜3mol%が好適である。炭素がナトリウムに対して3mol%よりも多いと、横方向成長を阻害し、平坦な膜が得られない。一方、炭素がナトリウムに対して0.1mol%より少ないと、フラックス法によるGaN結晶の育成効率が低下する。
ただし、これらの作業を空気中で行うとNaがすぐに酸化してしまうため、基板や原材料を反応容器にセットする作業は、Arガスなどの不活性ガスで満たされたグローブボックス内で実施する。また、この坩堝中には必要に応じて、例えばアルカリ土類金属等の前述の任意の添加物を予め投入しておいても良い。
Hereinafter, the crystal growth process of Example 2 using the crystal growth apparatus will be described.
First, 30 g of sodium (Na), 30 g of gallium (Ga), and 80 mg of carbon (C) are placed in a reaction vessel (crucible 26) in which the GaN template substrate 101 is placed, and the reaction vessel (crucible 26) is placed. After being placed in the reaction chamber (stainless steel container 24) of the crystal growth apparatus, the gas in the reaction chamber is exhausted. That is, the ratio of the molar amount of carbon to the molar amount of sodium was 0.51 mol%.
The amount of carbon is preferably 0.1 to 3 mol% with respect to sodium. When the amount of carbon is more than 3 mol% with respect to sodium, lateral growth is inhibited and a flat film cannot be obtained. On the other hand, when carbon is less than 0.1 mol% with respect to sodium, the growth efficiency of the GaN crystal by a flux method will fall.
However, when these operations are performed in the air, Na is immediately oxidized. Therefore, the operation of setting the substrate and raw materials in the reaction vessel is performed in a glove box filled with an inert gas such as Ar gas. . In addition, if necessary, any of the above-mentioned additives such as alkaline earth metals may be introduced into the crucible in advance.

次に、この坩堝の温度を約880℃に調整しつつ、この温度調整工程と並行して、結晶成長装置の反応室には、新たに窒素ガス(N2)を送り込み、これによって、この反応室の窒素ガス(N2)のガス圧を約4.3MPaに維持する。この時、上記のGaNテンプレート基板101は、図3に示すように、上記の昇温の結果生成される融液(混合フラックス)中に、鉛直方向に対して傾斜して、浸され、坩堝26内で保持された。尚、GaNテンプレート基板101の結晶成長のための主面101aの法線ベクトルSと、鉛直上向きベクトルMとの成す角θは、70度に設定した。この角度θは、50〜80度が望ましい。 Next, while adjusting the temperature of the crucible to about 880 ° C., in parallel with the temperature adjustment step, nitrogen gas (N 2 ) is newly fed into the reaction chamber of the crystal growth apparatus, and this reaction is thereby performed. The gas pressure of nitrogen gas (N 2 ) in the chamber is maintained at about 4.3 MPa. At this time, as shown in FIG. 3, the GaN template substrate 101 is immersed in the melt (mixed flux) generated as a result of the temperature increase, tilted with respect to the vertical direction, and the crucible 26 Held in. The angle θ formed between the normal vector S of the main surface 101a for crystal growth of the GaN template substrate 101 and the vertically upward vector M was set to 70 degrees. This angle θ is preferably 50 to 80 degrees.

この時、m面に対して1度のオフ角を有するGaNテンプレート基板101の主面である、結晶成長面FGaは、混合フラックスに常時浸されていることが望ましい。また、ヒータHは、坩堝26の下部(鉛直下方向)を坩堝26の上部に比べて5℃から15℃程高くなるように調整する。これにより、混合フラックスは、GaNテンプレート基板101の主面101a上には、溶液が下方から上方に向かうUベクトルの方向に沿って、流れる。この状態により、所望の半導体結晶の成長速度を向上させることができる。 At this time, it is desirable that the crystal growth surface F Ga which is the main surface of the GaN template substrate 101 having an off angle of 1 degree with respect to the m-plane is always immersed in the mixed flux. Further, the heater H is adjusted so that the lower part (vertically downward direction) of the crucible 26 is higher by about 5 ° C. to 15 ° C. than the upper part of the crucible 26. As a result, the mixed flux flows on the main surface 101a of the GaN template substrate 101 along the direction of the U vector from the bottom to the top. In this state, the growth rate of a desired semiconductor crystal can be improved.

その後、混合フラックスの熱対流を継続的に発生させ、これによって混合フラックスを攪拌混合しつつ、結晶成長条件を約200時間維持して、結晶成長を継続させた。   Thereafter, thermal convection of the mixed flux was continuously generated, whereby the mixed flux was stirred and mixed, and the crystal growth conditions were maintained for about 200 hours to continue the crystal growth.

以上の様な条件設定により、種結晶の結晶成長面付近は、継続的にIII族窒化物系化合物半導体の材料原子(GaとN)の過飽和状態となるので、所望の半導体結晶(GaN単結晶)をGaNテンプレート基板101の結晶成長面である面FGa上に順調に成長させることができる。 By setting the conditions as described above, the vicinity of the crystal growth surface of the seed crystal is continuously supersaturated with the material atoms (Ga and N) of the group III nitride compound semiconductor, so that the desired semiconductor crystal (GaN single crystal) ) On the surface F Ga which is the crystal growth surface of the GaN template substrate 101.

次に、結晶成長装置の反応室を室温近傍にまで降温してから、成長したGaN単結晶(所望の半導体結晶)を取り出し、その周辺も30℃以下に維持して、そのGaN単結晶の周りに付着したフラックス(Na)をエタノールを用いて除去する。
以上の各工程を順次実行することによって、高品質の半導体単結晶(成長したGaN単結晶)を低コストで製造することができる。この半導体単結晶は、種結晶であるGaNテンプレート基板101と略同等の面積で、m軸方向の厚さは約2mmであり、透明度が高く、結晶性も良好であった。
Next, after the temperature of the reaction chamber of the crystal growth apparatus is lowered to near room temperature, the grown GaN single crystal (desired semiconductor crystal) is taken out, and its periphery is also maintained at 30 ° C. or less to surround the GaN single crystal. The flux (Na) adhering to is removed with ethanol.
By sequentially executing the above steps, a high-quality semiconductor single crystal (grown GaN single crystal) can be manufactured at a low cost. This semiconductor single crystal had substantially the same area as the seed crystal GaN template substrate 101, the thickness in the m-axis direction was about 2 mm, high transparency, and good crystallinity.

ガリウム3g、ナトリウム4.8g、炭素10mgを露点−90℃、酸素濃度0.1ppm以下に管理されたグローブボックス中で秤量し、内径17mmのアルミナ坩堝に種基板と共に配置し、ステンレス製の圧力容器内に封入した。この際、主面の法線ベクトルが、m軸から+c軸方向に1度回転した方向である、厚さ500μmの自立GaN基板10を種結晶として反応用坩堝に入れた。自立GaN基板10は図1.Aに示す通り、その表面が、微細なステップ状であって、主面から1度傾いた広いm面と、幅の狭い+c面の段差からなるものである。また、種結晶である自立GaN基板10は、アルミナ坩堝の側壁に斜めに立てかけた。この際の傾斜角度は5〜80度が良い。この角度でフラックスの流動が促進され、均一且つ高品質の結晶が得られる。
ステンレス製の圧力容器をグローブボックスから取り出し、実施例2と同様に電気炉内に配置して窒化ガリウム単結晶を成長させた。温度は870℃、窒素下4.2MPa、100時間とした。尚、室温から870℃までは1時間で昇温した。電気炉の内部では、坩堝下部の温度が上部の温度よりも若干高くなるようにして、坩堝内部でフラックスの熱対流を発生させた。
こののち、室温まで冷却して、エタノールを用いてナトリウムフラックスを除去し、結晶成長した基板を回収した。計測したところ、3mm厚の窒化ガリウムの結晶成長が確認された。フラックス法による結晶成長部11が見られ、厚膜GaN結晶100が得られた。図1.Bに示す通り、厚膜GaN結晶100の結晶成長部11の表面は、m面から1度傾いた表面であった。この結晶の品質をエッチング法、カソードルミネッセンスなどにより評価したところ、計測位置により差は生じたが、概ね、転移密度は105/cm2、積層欠陥は104/cmであった。このように、極めて高品質の窒化ガリウム単結晶が得られた。
3 g of gallium, 4.8 g of sodium and 10 mg of carbon are weighed in a glove box controlled at a dew point of −90 ° C. and an oxygen concentration of 0.1 ppm or less, and placed in an alumina crucible with an inner diameter of 17 mm together with a seed substrate, and a stainless steel pressure vessel Encapsulated inside. At this time, a self-standing GaN substrate 10 having a thickness of 500 μm, which is a direction in which the normal vector of the main surface is rotated by 1 degree from the m-axis to the + c-axis direction, was placed in a reaction crucible as a seed crystal. The free-standing GaN substrate 10 is shown in FIG. As shown in A, the surface has a fine step shape and is composed of a step between a wide m-plane inclined by 1 degree from the main surface and a narrow + c-plane. In addition, the self-standing GaN substrate 10 which is a seed crystal leans diagonally against the side wall of the alumina crucible. In this case, the inclination angle is preferably 5 to 80 degrees. At this angle, flux flow is promoted, and uniform and high-quality crystals are obtained.
A stainless steel pressure vessel was taken out of the glove box and placed in an electric furnace as in Example 2 to grow a gallium nitride single crystal. The temperature was 870 ° C., nitrogen under 4.2 MPa, and 100 hours. In addition, it heated up from room temperature to 870 degreeC in 1 hour. Inside the electric furnace, the temperature in the lower part of the crucible was slightly higher than the temperature in the upper part, and heat convection of the flux was generated inside the crucible.
After that, it was cooled to room temperature, sodium flux was removed using ethanol, and the crystal-grown substrate was collected. When measured, crystal growth of gallium nitride having a thickness of 3 mm was confirmed. Crystal growth part 11 by the flux method was observed, and thick GaN crystal 100 was obtained. FIG. As shown in B, the surface of the crystal growth portion 11 of the thick GaN crystal 100 was a surface inclined by 1 degree from the m-plane. When the quality of this crystal was evaluated by an etching method, cathodoluminescence, or the like, a difference occurred depending on the measurement position, but in general, the transition density was 10 5 / cm 2 and the stacking fault was 10 4 / cm. Thus, an extremely high quality gallium nitride single crystal was obtained.

〔比較例〕
実施例2において、m面に対して1度のオフ角を有する面を主面とするGaNテンプレート基板101に替えて、オフ角0のm面を主面とするGaNテンプレート基板を用いたほかは同様に行った。得られた結晶は表面の凹凸が激しく、黒く着色していた。
[Comparative Example]
In Example 2, instead of the GaN template substrate 101 having a main surface with an off-angle of 1 degree with respect to the m-plane, a GaN template substrate having a main surface with an m-plane having an off-angle of 0 was used. The same was done. The obtained crystal had a rugged surface and was colored black.

本発明により、III族窒化物系化合物半導体素子を形成するための、主面がc面でないIII族窒化物系化合物半導体結晶基板が提供される。   According to the present invention, there is provided a group III nitride compound semiconductor crystal substrate whose main surface is not c-plane for forming a group III nitride compound semiconductor device.

実施例1に係る厚膜GaN結晶100の製造方法を示す工程図(断面図)。Process drawing (sectional drawing) which shows the manufacturing method of the thick film GaN crystal 100 based on Example 1. FIG. 実施例2で用いた結晶成長装置20の構成を示す断面図。Sectional drawing which shows the structure of the crystal growth apparatus 20 used in Example 2. FIG. 実施例2の、坩堝26内でのGaNテンプレート基板101の保持状態を示す断面図。Sectional drawing which shows the holding state of the GaN template substrate 101 in the crucible 26 of Example 2. FIG.

符号の説明Explanation of symbols

10:種結晶である自立GaN基板
11:フラックス法による結晶成長部
100:厚膜GaN結晶
101:GaNテンプレート基板
Ga:m面に対して1度のオフ角を有するGaNテンプレート基板101の主面
H:ヒーター
23:断熱材
24:ステンレス容器(内部容器、圧力容器)
25:電気炉(外部容器)
10: Free-standing GaN substrate as seed crystal 11: Crystal growth part by flux method 100: Thick GaN crystal 101: GaN template substrate F Ga : Main surface of GaN template substrate 101 having an off angle of 1 degree with respect to the m-plane H: Heater 23: Heat insulating material 24: Stainless steel container (inner container, pressure container)
25: Electric furnace (outer container)

Claims (4)

少なくともアルカリ金属を用いたフラックス法によるIII族窒化物系化合物半導体の製造方法において、
種結晶として、主面の法線ベクトルが、m軸から+c軸方向に0.2度以上5度以下回転した方向であるIII族窒化物系化合物半導体基板を用いること、或いは、異種基板上に形成した、主面の法線ベクトルが、m軸から+c軸方向に0.2度以上5度以下回転した方向であるIII族窒化物系化合物半導体膜を用いることを特徴とするIII族窒化物系化合物半導体の製造方法。
In a method for producing a group III nitride compound semiconductor by a flux method using at least an alkali metal,
As a seed crystal, a group III nitride compound semiconductor substrate in which the normal vector of the main surface is rotated by 0.2 degrees or more and 5 degrees or less in the + c axis direction from the m axis is used, or on a different substrate A Group III nitride is used, wherein the Group III nitride compound semiconductor film is formed so that the normal vector of the principal surface is rotated in the + c axis direction by 0.2 degrees or more and 5 degrees or less from the m axis. Of a semiconductor compound semiconductor.
アルカリ金属としてナトリウムを少なくとも用いることを特徴とする請求項1に記載のIII族窒化物系化合物半導体の製造方法。 The method for producing a group III nitride compound semiconductor according to claim 1, wherein at least sodium is used as the alkali metal. 種結晶としてGaN基板又は異種基板上に形成されたGaN膜を用いることを特徴とする請求項1又は請求項2に記載のIII族窒化物系化合物半導体の製造方法。 3. The method for producing a group III nitride compound semiconductor according to claim 1, wherein a GaN film formed on a GaN substrate or a different substrate is used as a seed crystal. 窒素源として、窒素ガスを用いることを特徴とする請求項1乃至請求項3のいずれか1項に記載のIII族窒化物系化合物半導体の製造方法。 The method for producing a group III nitride compound semiconductor according to any one of claims 1 to 3, wherein nitrogen gas is used as the nitrogen source.
JP2008202899A 2008-08-06 2008-08-06 Method for producing group III nitride compound semiconductor crystal Active JP4908467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008202899A JP4908467B2 (en) 2008-08-06 2008-08-06 Method for producing group III nitride compound semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008202899A JP4908467B2 (en) 2008-08-06 2008-08-06 Method for producing group III nitride compound semiconductor crystal

Publications (2)

Publication Number Publication Date
JP2010037155A JP2010037155A (en) 2010-02-18
JP4908467B2 true JP4908467B2 (en) 2012-04-04

Family

ID=42010076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008202899A Active JP4908467B2 (en) 2008-08-06 2008-08-06 Method for producing group III nitride compound semiconductor crystal

Country Status (1)

Country Link
JP (1) JP4908467B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10032958B2 (en) 2012-12-20 2018-07-24 Ngk Insulators, Ltd. Seed crystal substrates, composite substrates and functional devices

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101976713B (en) * 2010-09-10 2011-12-28 北京大学 Method for preparing efficient photoelectronic device based on homoepitaxy
JP6208416B2 (en) * 2012-09-10 2017-10-04 豊田合成株式会社 Manufacturing method of GaN semiconductor single crystal

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10335750A (en) * 1997-06-03 1998-12-18 Sony Corp Semiconductor substrate and semiconductor device
US7638815B2 (en) * 2002-12-27 2009-12-29 Momentive Performance Materials Inc. Crystalline composition, wafer, and semi-conductor structure
US7859008B2 (en) * 2002-12-27 2010-12-28 Momentive Performance Materials Inc. Crystalline composition, wafer, device, and associated method
JP4915128B2 (en) * 2005-04-11 2012-04-11 日亜化学工業株式会社 Nitride semiconductor wafer and method for manufacturing the same
JP4792802B2 (en) * 2005-04-26 2011-10-12 住友電気工業株式会社 Surface treatment method of group III nitride crystal
WO2007083768A1 (en) * 2006-01-20 2007-07-26 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting element, group iii nitride semiconductor substrate and method for manufacturing such group iii nitride semiconductor substrate
JP5332168B2 (en) * 2006-11-17 2013-11-06 住友電気工業株式会社 Method for producing group III nitride crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10032958B2 (en) 2012-12-20 2018-07-24 Ngk Insulators, Ltd. Seed crystal substrates, composite substrates and functional devices

Also Published As

Publication number Publication date
JP2010037155A (en) 2010-02-18

Similar Documents

Publication Publication Date Title
JP5665094B2 (en) n-type group III nitride compound semiconductor
JP2007277055A (en) Method for manufacturing semiconductor crystal and semiconductor substrate
JP5754191B2 (en) Method for producing group 13 nitride crystal and method for producing group 13 nitride crystal substrate
JP2008094704A (en) Growing method of nitride single crystal, nitride single crystal and nitride single crystal substrate
JP2012066983A (en) METHOD FOR GROWING GaN CRYSTAL AND GaN CRYSTAL SUBSTRATE
WO2013147326A1 (en) Method for manufacturing group 13 element nitride crystal and solvent composition
JP2010232623A (en) Hetero epitaxial growth method, hetero epitaxial crystal structure, hetero epitaxial crystal growth apparatus, and semiconductor device
JP5123423B2 (en) Method for producing group III nitride compound semiconductor
JP4908467B2 (en) Method for producing group III nitride compound semiconductor crystal
WO2010140665A1 (en) Process and apparatus for production of crystals of compound of metal belonging to group-13 on periodic table
WO2018042705A1 (en) Iii nitride microcrystal aggregate production method, gallium nitride microcrystal aggregate production method, iii nitride microcrystal aggregate, and sputtering target
JP7147644B2 (en) Method for manufacturing group III nitride semiconductor
JP2020093941A (en) Ramo4 substrate and method of manufacturing the same, and group iii nitride semiconductor
JP4248276B2 (en) Group III nitride crystal manufacturing method
JP2008230868A (en) Method for growing gallium nitride crystal and gallium nitride crystal substrate
CN1723302A (en) A substrate for epitaxy and a method of preparing the same
JP2015157760A (en) Group 13 nitride crystal and group 13 nitride crystal substrate
JP6168091B2 (en) Group III nitride crystal and group III nitride crystal substrate
JP2010024125A (en) Method for growing group iii nitride crystal
JP2010111556A (en) GROWTH METHOD OF GaN CRYSTAL
JP6720888B2 (en) Method for manufacturing group III nitride semiconductor
JP2018016497A (en) Method for manufacturing group iii nitride semiconductor
JP5754391B2 (en) Group III nitride semiconductor crystal manufacturing method
JP5491300B2 (en) Aluminum nitride manufacturing method
JP2011105574A (en) Method for producing compound crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4908467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250