WO2008059901A1 - PROCESS FOR PRODUCTION OF GaN CRYSTALS, GaN CRYSTALS, GaN CRYSTAL SUBSTRATE, SEMICONDUCTOR DEVICES, AND APPARATUS FOR PRODUCTION OF GaN CRYSTALS - Google Patents

PROCESS FOR PRODUCTION OF GaN CRYSTALS, GaN CRYSTALS, GaN CRYSTAL SUBSTRATE, SEMICONDUCTOR DEVICES, AND APPARATUS FOR PRODUCTION OF GaN CRYSTALS Download PDF

Info

Publication number
WO2008059901A1
WO2008059901A1 PCT/JP2007/072135 JP2007072135W WO2008059901A1 WO 2008059901 A1 WO2008059901 A1 WO 2008059901A1 JP 2007072135 W JP2007072135 W JP 2007072135W WO 2008059901 A1 WO2008059901 A1 WO 2008059901A1
Authority
WO
WIPO (PCT)
Prior art keywords
gan crystal
melt
carbon
crystal
gan
Prior art date
Application number
PCT/JP2007/072135
Other languages
French (fr)
Japanese (ja)
Inventor
Yusuke Mori
Takatomo Sasaki
Fumio Kawamura
Masashi Yoshimura
Minoru Kawahara
Yasuo Kitaoka
Masanori Morishita
Original Assignee
Osaka University
Osaka Industrial Promotion Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University, Osaka Industrial Promotion Organization filed Critical Osaka University
Priority to JP2008544184A priority Critical patent/JP4538596B2/en
Priority to EP07831865A priority patent/EP2103721B1/en
Priority to CN2007800424346A priority patent/CN101583745B/en
Priority to US12/514,836 priority patent/US8187507B2/en
Priority to AT07831865T priority patent/ATE541074T1/en
Priority to KR1020097012010A priority patent/KR101192061B1/en
Publication of WO2008059901A1 publication Critical patent/WO2008059901A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state

Definitions

  • GaN crystal manufacturing method GaN crystal, GaN crystal substrate, semiconductor device, and GaN crystal manufacturing device
  • the present invention relates to a GaN crystal manufacturing method, a GaN crystal, a GaN crystal substrate, a semiconductor device, and a GaN crystal manufacturing apparatus.
  • Group III element nitride crystal semiconductors are used in the fields of, for example, heterojunction high-speed electronic devices and photoelectric devices (semiconductor lasers, light-emitting diodes (LEDs), sensors, etc.).
  • GaN gallium and nitrogen gas are directly reacted.
  • 1300 ⁇ ; 1600. C from 8000 to 17000 atm (about 800 to 1700 MPa) is required.
  • Na flux method a technique for growing a gallium nitride single crystal in a sodium (Na) flux (melt)
  • the heating temperature is greatly reduced to 600 to 800 ° C, and the pressure can be reduced to about 50 atm (about 5 MPa).
  • Na flux method there is a method in which a seed crystal is put in the Na flux in advance and the crystal is grown using this seed crystal as a nucleus. According to this method, a Balta size crystal can be obtained.
  • the seed crystal when a GaN single crystal is grown, for example, a laminated substrate in which a GaN crystal thin film layer is formed on a sapphire substrate by MOCVD method or HVPE method is used. Such technology is also called “liquid phase epitaxial growth method”!
  • LEDs light emitting diodes
  • LEDs using a GaN single crystal can save a great deal of power compared to conventional lighting fixtures such as fluorescent lamps.
  • LEDs using conventional GaN single crystals have limitations in improving brightness, and could not achieve the theoretically predicted level of high brightness. There are three reasons for this: Because there is a problem.
  • the LED is formed on a substrate 1 made of sapphire or silicon carbide, on a low-temperature buffer layer 2, a GaN crystal (Si-doped) layer 3, an n-AlGaN (Si-doped) layer 5, and an InGaN layer 6 P-AlGaN (Mg-doped) layer 7, p-GaN (Mg-doped) layer 8, transparent electrode layer 9 and p-layer electrode 10 are laminated in this order, and the GaN crystal (Si-doped) layer 3
  • the n-layer electrode 4 is arranged on a part of the!! In conventional LED fabrication, as shown in FIG.
  • a GaN crystal layer 3 is grown on a substrate 1 such as sapphire via a low-temperature buffer layer 2 by a liquid phase epitaxial growth method.
  • the GaN crystal can grow only on the c-plane, and the side surface 32 of the GaN crystal layer 3 becomes the M-plane, but the upper surface 31 of the GaN crystal layer 3 becomes the c-plane.
  • the actual situation is that the brightness cannot be improved due to the poor quality of the crystals obtained.
  • the graph in Fig. 8 shows an example of the relationship between the nitrogen gas pressure and the thickness (film thickness) of the GaN crystal formed on the substrate.
  • the pressure of nitrogen gas is increased, the force S that increases the thickness of the GaN crystal S, and when the nitrogen gas pressure exceeds a certain point (about 34 atm in Fig. 8), the thickness of the GaN crystal is reversed. Go thin. This is because, as shown in the figure, nuclei other than seed crystals are generated in the Na flux.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-327495
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-102316
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-292400
  • Non-Patent Document 1 J. Phys. Chem. Solids, 1995, 56, 639
  • Non-Patent Document 2 Journal of Japanese Society for Crystal Growth 30, 2, pp38 -45 (2003)
  • Non-Patent Document 3 J. J. Appl. Phys. 42, ppL879-L881 (2003)
  • the present invention provides a GaN crystal manufacturing method, a GaN crystal, a GaN crystal substrate, a semiconductor device, and a GaN crystal manufacturing capable of realizing at least one of prevention of nucleation and growth of a highly crystalline nonpolar surface.
  • An object is to provide an apparatus.
  • the production method of the present invention is a method of producing a GaN crystal in a melt containing at least an alkali metal and gallium (Ga),
  • the GaN crystal of the present invention has a non-polar surface as a main surface, the full width at half maximum of the rocking curve by two-crystal method X-ray diffraction is in the range of more than 0 to 200 seconds, and the dislocation density is 0. Over 1
  • the GaN crystal substrate of the present invention includes the GaN crystal of the present invention, and the nonpolar surface is a substrate surface on which a semiconductor layer is formed.
  • a semiconductor device of the present invention includes the GaN crystal substrate of the present invention, and is formed on the substrate surface.
  • a semiconductor device in which a semiconductor layer is formed is formed.
  • the GaN crystal production apparatus of the present invention is a production apparatus for producing a GaN crystal in a melt containing at least an alkali metal and gallium,
  • the GaN crystal manufacturing apparatus includes a reaction section where the gallium and nitrogen react.
  • the present inventors have adjusted the carbon content in the melt containing an alkali metal (for example, containing carbon in the melt). Let The inventors have found that at least one of prevention of nucleation in the melt and growth of a high-quality nonpolar surface can be realized, and the present invention has been made. Further, as described above, the GaN crystal of the present invention has a nonpolar surface as a main surface, and has physical properties of a full width at half maximum of the rocking curve within a predetermined range and a dislocation density within the predetermined range. Has higher crystallinity than those produced by conventional methods such as the gas phase method. Such a high-quality GaN crystal of the present invention can be produced by the production method of the present invention, but the force production method is not limited to this. The “main surface” refers to the widest surface in the crystal.
  • FIG. 1 is a configuration diagram illustrating an example of a semiconductor device.
  • FIG. 2 is a configuration diagram showing an example of a GaN crystal formed on a substrate.
  • FIG. 3 is a structural diagram showing an example of a GaN crystal formed on the substrate of the present invention.
  • FIG. 4 is a photograph of a GaN crystal in Example 1 of the present invention.
  • FIG. 5 is another photograph of the GaN crystal in Example 1.
  • FIG. 6 is a photograph of a GaN crystal in Comparative Example 1.
  • FIG. 7 is a graph showing the relationship between the carbon addition ratio and the crystal yield in Example 1 and Comparative Example 1.
  • FIG. 8 is a graph showing an example of the relationship between nitrogen gas pressure and GaN crystal thickness (film thickness).
  • FIG. 9 is a graph showing the relationship between the carbon addition ratio and the crystal yield in Example 2 and Comparative Examples 2 to 3 of the present invention.
  • FIG. 10 is a graph showing the relationship between the carbon addition ratio and crystal yield in Example 3 and Comparative Examples 4 to 6 of the present invention.
  • FIG. 11 is a configuration diagram showing an example of a manufacturing apparatus used in the method for manufacturing a GaN crystal of the present invention.
  • FIG. 12 is a photograph of a GaN single crystal in Example 4 of the present invention.
  • FIG. 13 is a schematic diagram showing an example of the structure of a GaN crystal.
  • the adjusting step includes at least one of a removing step of removing a part of carbon in the melt and an adding step of adding carbon to the melt. Is preferred.
  • the production method of the present invention includes a seed crystal providing step of providing a seed crystal in the melt, and the seed crystal is preferably a GaN crystal.
  • the form of the carbon is not particularly limited, and may be a single element of carbon or a carbon compound!
  • the seed crystal is preferably a GaN crystal layer formed on a substrate.
  • the carbon content in the melt for example, by containing carbon in the melt
  • the content ratio of carbon in the melt is, for example, in the range of 0.;! To 5 atom% with respect to the total of the melt, the gallium, and the carbon.
  • the nonpolar plane of the GaN crystal is grown. It is preferable to make it.
  • the content ratio of carbon in the melt is, for example, in the range of 0.3 to 8 atomic% with respect to the total of the melt, the gallium, and the carbon.
  • a surface other than the nonpolar surface may be grown, and this surface may be cut to expose the nonpolar surface on the surface.
  • the seed crystal is preferably a GaN crystal layer on a substrate.
  • the upper surface of the GaN crystal layer of the substrate is a nonpolar plane (at least one of the a plane and the M plane).
  • the manufacturing method of the present invention is not limited to this, and a plane other than the M-plane and the a-plane and other than the c-plane may be grown.
  • the manufacturing method of the present invention when a GaN crystal is grown, an angular force S formed on the M plane and the a plane is grown, and a plane smaller than the c plane is grown, and the grown plane is cut. Then, the M face or a face may be exposed on the surface.
  • the melt is preferably a melt containing Na, for example.
  • the production method of the present invention may further include a stirring step of stirring the melt.
  • the step of performing the stirring step is not particularly limited, and may be performed, for example, at least one before the reaction step, simultaneously with the reaction step, and after the reaction step. More specifically, for example, it may be performed before the reaction step, simultaneously with the reaction step, or both.
  • the GaN crystal of the present invention may contain carbon.
  • the GaN crystal of the present invention is preferably produced by the production method of the present invention.
  • the semiconductor device of the present invention is preferably, for example, an LED, a semiconductor laser, or a power high-frequency electronic element.
  • the production method of the present invention is a method for producing a GaN crystal in a melt containing at least an alkali metal and gallium, and is an adjustment for adjusting the carbon content in the melt. And a reaction step in which gallium and nitrogen react.
  • the adjustment step may include at least one of a removal step of removing a part of carbon in the melt and an addition step of adding carbon to the melt.
  • a seed crystal providing step for providing a seed crystal containing a group III element nitride may be included in the melt.
  • the manufacturing method of the present invention is a GaN crystal manufacturing method in which a GaN crystal is grown by reacting gallium and nitrogen with a GaN seed crystal that has been put in advance in a melt containing an alkali metal.
  • carbon is contained in the melt to grow the GaN crystal.
  • the present invention is also a method for controlling a growth surface of a GaN crystal by containing carbon in the melt in the method for producing the GaN crystal, and / or generating nuclei in the melt. It is also a way to prevent this.
  • the alkali metal in the melt functions as a flat in the liquid phase epitaxial growth method.
  • the alkali metal is lithium (Li), sodium (Na), potassium (K ), Norevidium (Rb), cesium (Cs) and francium (Fr), of which Li and Na are preferred, and Na is more preferred.
  • the melt may contain other components, for example, gallium (Ga) and nitrogen (N), which are raw materials for GaN crystals, and flux raw materials other than alkali metals.
  • the nitrogen is not limited in its form such as gas, nitrogen molecule, nitrogen compound and the like.
  • Examples of the flux raw material include alkaline earth metals, and specific examples include calcium (Ca), magnesium (Mg), strontium (Sr), norlium (Br), and radium (Ra). Among them, Ca is more preferable than Ca and Mg.
  • the addition ratio of the alkali metal to gallium is, for example, 0.;! To 99.9 mol%, preferably;! To 99 mol%, more preferably 5 to 98 mol%.
  • the purity of the melt is preferably high.
  • the purity of Na is preferably 99.95% or more, and high-purity flux components (for example, Na) may be commercially available products of high purity, or may be distilled after purchase of commercial products. You may use what raised purity by methods, such as.
  • reaction conditions between gallium and nitrogen are, for example, a temperature of 100 to; 1500 ° C, a pressure of 100 Pa to
  • the reaction is preferably carried out in a nitrogen-containing gas atmosphere. This is because the nitrogen-containing gas dissolves in the flats and becomes a raw material for growing GaN crystals.
  • the nitrogen-containing gas is, for example, nitrogen) gas, ammonia (NH 2) gas, etc., and these may be mixed at a mixing ratio
  • ammonia gas is preferable because the reaction pressure can be reduced.
  • the seed crystal may be dissolved by the flux until the nitrogen concentration increases.
  • nitride is present in the flux at least at the initial stage of the reaction.
  • the nitride include CaN, LiN, NaN, BN, SiN, InN, and the like.
  • the nitride of the nitride The ratio in tas is, for example, 0.0001 mol% to 99 mol%, preferably 0.00 lmol% to 50 mol%, more preferably 0.005 mol% to 10 mol%.
  • impurities may be present in the mixed flux.
  • impurities include silicon (Si), alumina (Al 2 O 3), indium (In), aluminum (A1), and nitrogen.
  • Indium phosphide InN
  • silicon oxide SiO 2
  • indium oxide In 2 O 3
  • magnetic particles Indium phosphide (InN), silicon oxide (SiO 2), indium oxide (In 2 O 3), zinc (Zn), magnetic particles, InN, silicon oxide (SiO 2), indium oxide (In 2 O 3), zinc (Zn), magnetic particles, and the like.
  • Examples include shim (Mg), zinc oxide (ZnO), magnesium oxide (MgO), and germanium (Ge).
  • the carbon content in the melt is adjusted. For example, in order to make the carbon content a predetermined amount, at least one of a step of removing a part of carbon in the melt and a step of adding carbon to the melt is performed.
  • the carbon may be a simple carbon or a carbon compound. Preferred are simple carbon and carbon compounds that generate cyan (CN) in the melt. Carbon may be a gaseous organic substance. Examples of such carbon simple substance and carbon compound include cyanide, graphite, diamond, fullerene, carbon nanotube, methane, ethane, propane, butane, and benzene.
  • the carbon content is not particularly limited.
  • the melt Based on the sum of the gallium and the carbon, for example, 0.0;! To 20 atoms (at.)% Range, 0.05 to 15 atoms (at.)% Range, 0.;! To 10 Atom (at.)% Range, 0;;! To 5 atom (at.)% Range, 0.25-7.
  • the melt Based on the sum of the gallium and the carbon, for example, 0.0;!
  • the “melt” in the total of the melt, the gallium and the carbon means the total of the components constituting the melt. For example, when the melt is a flux of Na alone, it means only Na, and when it is a mixed flux of Na and Ca, it means the sum of Na and Ca.
  • the seed crystal is preferably a GaN layer formed on a substrate.
  • the substrate the sapphire substrate, the silicon carbide (SiC) substrate, or the like can be used.
  • the GaN layer may be, for example, a crystal or may be amorphous, and in the case of a crystal, it may be a single crystal or a polycrystal. Good.
  • the form of the GaN layer is not particularly limited, but for example, the form of a thin film layer is preferable.
  • the thickness of the thin film layer is not particularly limited. For example, 0.005 to 100000 111, 0.00;! To 50000 m, 0.01 to 5000 ⁇ 111, 0.01 to 500 ⁇ 111, 0 01 ⁇ 50 ⁇ 111, 0.
  • the surface (upper surface) of the GaN crystal layer is preferably a nonpolar plane of either the M plane or the a plane. If the surface (upper surface) of the GaN crystal layer on the substrate is a nonpolar surface, as shown in FIG. 2, by adding carbon to the melt, the GaN crystal layer 2 on the substrate 1 A GaN crystal 3 having a smooth nonpolar surface 31 on the surface can be grown. In this case, the side surface 32 of the GaN crystal 3 is a c-plane.
  • the surface (upper surface) of the GaN crystal layer on the substrate is the c-plane
  • carbon when carbon is added to the melt, it is formed on the GaN crystal layer 2 as shown in FIG.
  • the upper surface (surface) 31 of the GaN crystal 3 has a polygonal cross section. This is also the force by which both the a-plane and the M-plane grow in the GaN crystal 3 grown on the surface force Sc plane of the GaN crystal layer 2.
  • the side surface 32 of the GaN crystal 3 is a c-plane. Even a GaN crystal having such a cross-section with a polygonal surface (upper surface) can be put to practical use if the surface is polished to a smooth surface.
  • the thin film layer may be formed, for example, by metal organic chemical vapor deposition (MOCVD) or halide vapor deposition. It can be formed on the substrate by the long method (HVPE), the molecular beam epitaxy method (MBE method) or the like.
  • the maximum diameter of the thin film layer is, for example, 2 cm or more, preferably 3 cm or more, more preferably 5 cm or more, and the upper limit is not limited as it is larger.
  • the standard of the bulk compound semiconductor is 2 inches, from this viewpoint, the size of the maximum diameter is preferably 5 cm.
  • the range of the maximum diameter is, for example, 2 to 5 cm. It is preferably 3 to 5 cm, more preferably 5 cm.
  • the maximum diameter is, for example, the length of the longest line that connects a point on the outer periphery of the surface of the thin film layer with another point.
  • the GaN crystal In the case of providing a seed crystal containing GaN in the melt, the GaN crystal can be easily grown as compared to the case of not providing the seed crystal.
  • the structure of the GaN crystal will be described based on the schematic diagram of FIG.
  • the M plane and the a plane are parallel to the c axis, in other words, the M plane and the a plane are orthogonal to the c plane.
  • the a-plane exists in the direction of the middle angle between the two adjacent M-planes.
  • the GaN crystal to be produced may be, for example, either a single crystal or a polycrystal, but is preferably a single crystal.
  • the GaN crystal production apparatus of the present invention is a production apparatus for producing a GaN crystal in a melt containing at least an alkali metal and gallium.
  • An apparatus for producing a GaN crystal comprising a preparation unit for adjusting the carbon content and a reaction unit for reacting the gallium and nitrogen.
  • the manufacturing method of the present invention may be performed using any manufacturing apparatus, but is preferably performed using, for example, the GaN crystal manufacturing apparatus of the present invention.
  • FIG. 11 shows an example of the GaN crystal production apparatus of the present invention.
  • the GaN crystal production apparatus of the present invention includes an adjustment unit that adjusts the carbon content in the melt, and a reaction unit in which gallium and nitrogen react. With.
  • this apparatus includes a gas tank 11, a pressure regulator 12, an electric furnace 14, a heat and pressure-resistant container 13, and a vacuum pump 17.
  • An example of the electric furnace 14 is a resistance heater.
  • the electric furnace 14 may use a heat insulating material.
  • a cantilever wire can be used as a heating element, thereby simplifying the configuration of the apparatus.
  • MoSi or the like is used.
  • the gas tank 11 and the vacuum pump 17 are connected to the pressure and heat resistant container 13 by pipes, and the pressure regulator 12 is disposed in the middle thereof.
  • the pressure regulator 12 can adjust the gas pressure to, for example, a gas pressure of! ⁇ LOOatm and supply the nitrogen-containing gas into the pressure-resistant heat-resistant container 13, and the pressure can be reduced by the vacuum pump 17.
  • 16 is a leak valve.
  • the heat-resistant and pressure-resistant container 13 is disposed in the electric furnace 14 and is heated by heat.
  • a crucible 15 is arranged in the heat-resistant pressure-resistant container 13, and materials such as alumina (Al 2 O 3), tungsten (W), platinum (Pt), and SUS are used as the crucible material.
  • a crucible formed from a carbon-based material such as a graphite crucible or a silicon carbide crucible may be used.
  • a crucible formed from a carbon-based material such as a graphite crucible or a silicon carbide crucible
  • the amount of carbon eluted from the crucible is so small that the effect of the present invention cannot be obtained unless carbon is added separately.
  • gallium (Ga) as a crystal raw material, alkali metal (Na or the like) and carbon (for example, graphite) as a melt raw material are put.
  • other components may be put in the crucible. For example, doping impurities may be added.
  • Mg is used as the P-type doping material
  • Si is used as the N-type doping material.
  • the shape of the crucible is not particularly limited and is, for example, a cylindrical shape (a circular cross section), but is not limited to a cylindrical shape.
  • the shape of the crucible may be a cylinder with a non-circular cross section. When using a crucible with a non-circular cross section, the stirring efficiency of the melt by swinging the crucible is better than when using a crucible with a circular cross section.
  • Manufacture of a GaN single crystal using this apparatus can be performed, for example, as follows. First, a sapphire substrate on which a GaN crystal thin film layer is formed is placed in the crucible. On the other hand, in the glove box, gallium (Ga), metallic sodium (Na), carbon (C) Are weighed and placed in a crucible 15, and the crucible 15 is set in a pressure and heat resistant container 13. Then, nitrogen gas is supplied from the gas tank 11 into the heat and pressure resistant container 13. At this time, the pressure is adjusted to a predetermined pressure by the pressure regulator 12. Then, the inside of the heat and pressure resistant container 13 is heated by the electric furnace 14.
  • Ga gallium
  • Na metallic sodium
  • C carbon
  • the crucible 15 corresponds to the “adjustment unit for adjusting the carbon content in the melt” of the present invention.
  • the crucible 15 corresponds to the “reaction portion where gallium and nitrogen react” of the present invention.
  • the growth mechanism of the GaN crystal of the present invention is, for example, because carbon in the melt reacts with nitrogen and exists in the form of CN_ in the vicinity of the gas-liquid interface of the flux. It is estimated that the formation of miscellaneous crystals in can be avoided. Therefore, the production method of the present invention can also be used for the production of Group III element nitride crystals other than gallium as long as nitrogen and carbon are present.
  • the gallium may be replaced with another group III element (A1, in, etc.) or they may be used in combination.
  • Examples of the group III element nitride crystal include Al Ga In (l—s—t) N (where 0 ⁇ s ⁇ l, 0 ⁇ t ⁇ l, s + t ⁇ l).
  • the production method of the present invention may further include a stirring step of stirring the melt.
  • a stirring step of stirring the melt For example, if the reaction between gallium and nitrogen in the melt is performed in a state in which the melt and gallium are stirred and mixed, the dissolution rate of nitrogen in the mixture increases and the gallium in the melt Nitrogen is evenly distributed and fresh raw materials can be constantly supplied to the crystal growth surface, so that transparent, uniform dislocation density, low thickness, high quality and large, buttery transparent gallium nitride crystals can be produced quickly. Since it can manufacture, it is more preferable. In addition, for example, a GaN crystal having a smooth surface can be obtained.
  • the agitation step is not particularly limited. It may be performed with reference to the description, or may be performed by any other method.
  • the agitation step of the present invention can be carried out, for example, by swinging the heat and pressure resistant container, rotating the heat and pressure resistant container, or combining them.
  • the melt can be stirred by giving a temperature difference to the melt in the crucible. This is because thermal convection occurs in the melt. More specifically, for example, in addition to heating the heat and pressure resistant container for forming a melt, the heat and pressure resistant container is heated to generate thermal convection. Can be stirred and mixed. Furthermore, you may implement the said stirring process using a stirring blade. These stirring and mixing means can be combined with each other with a force S.
  • the swinging of the heat and pressure resistant container is not particularly limited.
  • the direction is opposite to the direction described above.
  • rocking that tilts the heat and pressure resistant container in a certain direction.
  • the rocking may be regular rocking or intermittent and irregular rocking.
  • the rotational motion may be used in combination with the swing.
  • the inclination of the heat-resistant and pressure-resistant container during swing is not particularly limited.
  • the period of oscillation in the regular case is, for example, 1 second to 10 hours, preferably 30 seconds to 1 hour, and more preferably 1 minute to 20 minutes.
  • the maximum inclination of the heat-resistant pressure-resistant container in swinging is, for example, 5 to 70 degrees, preferably 10 to 50 degrees, more preferably 15 to 45 degrees with respect to the center line in the height direction of the heat-resistant pressure-resistant container. is there. Further, as will be described later, when the substrate is disposed at the bottom of the heat-resistant pressure-resistant vessel, the gallium nitride thin film on the substrate is always covered with the melt and may be swung. When the heat and pressure resistant container is tilted, the melt may be removed from the substrate.
  • Heating of the heat-resistant and pressure-resistant vessel for heat convection is not particularly limited as long as heat convection occurs.
  • the heating position of the heat and pressure resistant container is not particularly limited, and for example, the bottom of the heat and pressure resistant container may be used, or the lower side wall of the heat and pressure resistant container may be heated.
  • the heating temperature of the heat and pressure resistant container for the heat convection is, for example, 0.01 ° C to 500 ° C higher than the heating temperature for forming the melt, preferably 0.1 °. C to 300 ° C higher temperature, more preferably 1 ° C to higher; 100 ° C higher temperature.
  • a normal heater can be used for the heating.
  • the stirring step using the stirring blade is not particularly limited, and may be, for example, a rotational motion, a reciprocating motion, or a combination of the both motions of the stirring blade. Further, the stirring step using the stirring blade may be based on a rotational motion or a reciprocating motion of the heat and pressure resistant container with respect to the stirring blade, or a combination of the both motions. The stirring step using the stirring blade may be a combination of the motion of the stirring blade itself and the motion of the heat and pressure resistant container itself! /.
  • the stirring blade is not particularly limited, and its shape and material are, for example, a force S that can be appropriately determined according to the size and shape of the heat and pressure resistant container, a nitrogen-free material having a melting point or decomposition temperature of 2000 ° C or higher. Formed by! /, Preferable to be! / ,. This is because a stirring blade formed of such a material can be prevented from being melted by the melt, and crystal nucleus formation on the surface of the stirring blade can be prevented.
  • Examples of the material of the stirring blade include rare earth oxides, alkaline earth metal oxides, W, SiC, diamond, diamond-like carbon, and the like. This is because, similarly to the above, the stirring blade formed of such a material can be prevented from being melted by the melt and can prevent crystal nucleation on the surface of the stirring blade.
  • Examples of the rare earth and the alkaline earth metal include Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Be, Mg. , Ca, Sr, Ba, Ra force S.
  • Preferred materials for the stirring blade are Y 2 O, CaO, MgO, W, SiC, diamond, and die.
  • yomon is the most preferred.
  • the full width at half maximum of the rocking curve of the two-crystal method X-ray diffraction of the GaN crystal of the present invention is preferably as low as possible within a range exceeding 0 and not exceeding 200 seconds.
  • the full width at half maximum of the rocking curve of the two-crystal method X-ray diffraction is such that the X-ray incident from the X-ray source is highly monochromatic by the first crystal, irradiated to the GaN crystal as the second crystal, and diffracted from the GaN crystal It can be measured by calculating the FWHM (Full width at half maximum) centered on the peak of the X-ray.
  • the X-ray source is not particularly limited, but for example, a CuKa line can be used.
  • the first crystal is not particularly limited! /, But, for example, an InP crystal or Ge crystal can be used.
  • the dislocation density of the GaN crystal of the present invention is in the range of more than 0 and 10 6 pieces / cm 2 or less, and the lower the better.
  • the type of dislocation density is not particularly limited, for example, edge dislocation There is a screw dislocation.
  • the method for measuring the dislocation density is not particularly limited. For example, it can be measured with a force S by observing and measuring the crystal structure of a group III element nitride crystal with a transmission electron microscope (TEM).
  • the GaN crystal of the present invention may contain carbon.
  • the carbon may be derived from carbon in the melt, for example.
  • the form of carbon contained in the group III element nitride crystal may be an atom, a molecule, or a compound with another element.
  • the carbon content of the group III element nitride crystal is not particularly limited, if example embodiment, 10 15 ⁇ ; 10 22 / cm 3, preferably in the range from 10 16 to; 10 21 / cm 3 The range is more preferably 10 17 to; 10 2 ° / cm 3 . Since the GaN crystal obtained by the production method of the present invention contains carbon derived from carbon in the melt, if carbon is detected in a certain GaN crystal, it is the crystal produced by the production method of the present invention.
  • the method for producing the GaN crystal of the present invention is not particularly limited, carbon may not be included when produced by a method other than the production method of the present invention.
  • the method for detecting carbon from the GaN crystal is not particularly limited, and can be detected by, for example, secondary ion mass spectrometry.
  • the carbon ratio in the GaN crystal of the present invention is the same as described above.
  • the GaN crystal of the present invention may be a P-type semiconductor.
  • the substrate of the present invention includes the GaN crystal of the present invention.
  • the substrate of the present invention may be one in which a GaN crystal is formed on a GaN crystal thin film on a substrate such as sapphire by the production method of the present invention.
  • the sapphire substrate or the like is peeled off to make a GaN crystal alone free-standing substrate.
  • a semiconductor device such as an LED
  • a high-performance semiconductor device can be obtained, for example, a high-brightness LED.
  • the type of the semiconductor device of the present invention is not particularly limited, and examples thereof include an LED, a semiconductor laser, and a power high frequency electronic element.
  • a GaN crystal was manufactured using the apparatus shown in FIG. That is, first, the alumina crucible 1 5, a sapphire substrate on which a GaN thin film layer (the upper surface is c-plane) was formed. Further, sodium (Na), gallium (Ga) and carbon (C: graphite) were put into the alumina crucible 15 described above.
  • Oat.% Is Comparative Example 1.
  • the crucible 15 was placed in a stainless steel container 13, and the stainless steel container 13 was placed in a heat and pressure resistant container 14. Nitrogen gas is introduced into the stainless steel container 13 from the gas tank 11 and simultaneously heated by a heater (not shown) to heat the heat and pressure resistant container 14 to 850 ° C., 40 atm (about 4. OMPa).
  • the target GaN crystal was manufactured under the high-temperature and high-pressure conditions of 96 hours.
  • FIG. 4 A photograph of the GaN crystal when the carbon addition is lat.% Is shown in FIG. 4, a photograph of the GaN crystal when the carbon addition ratio is 5 at.% Is shown in FIG. 5, and the carbon addition ratio is Oat Figure 6 shows a photograph of a GaN crystal in the case of% (Comparative Example 1).
  • the [0001] (c-plane) and [10-11] planes grow in the GaN crystal without carbon.
  • the [10 10] plane (M plane) grew in the GaN crystal when carbon was added at a rate of lat.
  • the [10-10] plane (M plane) grew greatly in the GaN crystal when carbon was added at a rate of 5 at.%.
  • the graph in Fig. 7 shows the yield of GaN crystals at each carbon addition ratio.
  • the part represented by the white bar graph indicates the yield of GaN crystals grown on the GaN crystal thin film layer (LPE yield), and the part represented by the black bar graph represents nucleation in the melt. This is the yield of GaN crystals grown as a result (nucleation yield).
  • nuclei were generated when carbon was not added, but when carbon was added, nucleation was prevented and there was no decrease in LPE yield due to an increase in the amount of carbon added. It was.
  • the reaction conditions for crystal growth were a temperature of 800 ° C, a pressure of 50 atm (about 5. OMPa), and the carbon addition ratio was Oat.% (Comparative Examples 2 and 3), lat.%, 2 at.%, 3 at A GaN crystal was produced in the same manner as in Example 1 except that it was changed to%.
  • the result is shown in the graph of FIG.
  • the white bar graph represents the GaN crystal grown on the GaN crystal thin film layer.
  • the portion represented by the black bar graph is the yield of the GaN crystal that is nucleated and grown in the melt (nucleation yield).
  • additive-free 1 is Comparative Example 2
  • additive-free 2 is Comparative Example 3. As shown in the graph of FIG.
  • the reaction conditions during crystal growth were a temperature of 750 ° C, a pressure of 50 atm (about 5. OMPa), and the carbon addition ratio was Oat.% (Comparative Examples 4, 5, 6), lat.%, 2 at.%
  • a GaN crystal was produced in the same manner as in Example 1 except that the content was 3 at.%.
  • the result is shown in the graph of FIG.
  • the white bar graph represents the yield of GaN crystals grown on the GaN crystal thin film layer (LPE yield), and the black bar graph represents nucleation in the melt. It is the yield (nucleation yield) of the grown GaN crystal.
  • additive-free 1 is Comparative Example 4
  • additive-free 2 is Comparative Example 5
  • additive-free 3 is Comparative Example 6.
  • a 2inch-GaN thin film (GaN thin film with a diameter of 5 cm, top surface is M-plane) grown on a sapphire substrate by MOCVD method was used as seed crystal, and carbon was added during the growth of Balta GaN single crystal. It was confirmed.
  • the specific experimental procedure is as follows. That is, first, Gal 5 g and Nal 4.8 g were filled in an alumina crucible together with the seed substrate, and then a graphite as a carbon source was added so as to be 0.5 mol% with respect to Na. Then, epitaxial growth was performed for 96 hours at a growth temperature of 860 ° C and a growth pressure of 45 atm.
  • a GaN single crystal (diameter about 5 cm) was epitaxially grown on the seed crystal substrate with a thickness of about 2 mm.
  • This GaN single crystal is shown in the photograph in Fig. 12.
  • the GaN crystal of this example is the world's largest crystal as a GaN single crystal currently reported.
  • the ratio of crystals (b) (a: b) was 2: 8.
  • the ratio (a: b) was 95: 5. Therefore, in the present invention, the addition of carbon suppresses the generation of nuclei on the crucible, promotes the epitaxial growth, and as a result, enables the growth of large crystals. It can be said that it was done.
  • the GaN crystal manufacturing method of the present invention at least one of prevention of nucleation and growth of a high-quality nonpolar surface can be realized. If the GaN crystal of the present invention is used as, for example, a substrate, a high-performance semiconductor device can be manufactured. Therefore, the present invention is useful in the field of group III element nitride crystal semiconductors such as heterojunction high-speed electronic devices and optoelectronic devices (semiconductor lasers, light-emitting diodes, sensors, etc.).
  • group III element nitride crystal semiconductors such as heterojunction high-speed electronic devices and optoelectronic devices (semiconductor lasers, light-emitting diodes, sensors, etc.).

Abstract

The invention provides a process for the production of GaN crystals which can realize at least either of the prevention of nucleation and the growth of high-quality nonpolar planes. The invention relates to a process of producing GaN crystals in a melt containing both an alkali metal and gallium as the essential components which comprises the step of adjusting the carbon content of the melt and the step of reacting the gallium with nitrogen. The process can realize the prevention of nucleation and/or the growth of nonpolar planes as shown in Fig. 4.

Description

明 細 書  Specification
GaN結晶の製造方法、 GaN結晶、 GaN結晶基板、半導体装置および G aN結晶製造装置  GaN crystal manufacturing method, GaN crystal, GaN crystal substrate, semiconductor device, and GaN crystal manufacturing device
技術分野  Technical field
[0001] 本発明は、 GaN結晶の製造方法、 GaN結晶、 GaN結晶基板、半導体装置および GaN結晶製造装置に関する。  The present invention relates to a GaN crystal manufacturing method, a GaN crystal, a GaN crystal substrate, a semiconductor device, and a GaN crystal manufacturing apparatus.
背景技術  Background art
[0002] III族元素窒化物結晶の半導体は、例えば、ヘテロ接合高速電子デバイスや光電 子デバイス(半導体レーザー、発光ダイオード(LED)、センサ等)等の分野に使用さ れており、特に窒化ガリウム(GaN)結晶が注目されている。従来では、窒化ガリウム の単結晶を得るために、ガリウムと窒素ガスとを直接反応させることが行われていた( 非特許文献 1参照)。し力、し、この場合、 1300〜; 1600。C、 8000〜; 17000atm (約 8 00〜; 1700MPa)という超高温高圧を必要とする。この問題を解決するために、ナトリ ゥム(Na)フラックス(融液)中で窒化ガリウム単結晶を育成する技術 (以下、「Naフラ ックス法」ともいう)が開発された (例えば、特許文献;!〜 3、非特許文献 2、 3参照)。こ の方法によれば、加熱温度が 600〜800°Cと大幅に下がり、また圧力も、約 50atm ( 約 5MPa)程度まで下げることができる。前記 Naフラックス法において、予め、前記 N aフラックス中に種結晶を入れておき、この種結晶を核として結晶を育成させる方法が ある。この方法によれば、バルタサイズの結晶を得ることもできる。前記種結晶として は、 GaN単結晶を育成する場合、例えば、 MOCVD法や HVPE法によりサファイア 基板の上に GaN結晶薄膜層が形成された積層基板が使用される。このような技術を 、「液相ェピタキシャル成長法」とも!/、う。  [0002] Group III element nitride crystal semiconductors are used in the fields of, for example, heterojunction high-speed electronic devices and photoelectric devices (semiconductor lasers, light-emitting diodes (LEDs), sensors, etc.). (GaN) crystals are attracting attention. Conventionally, in order to obtain a single crystal of gallium nitride, gallium and nitrogen gas are directly reacted (see Non-Patent Document 1). In this case, 1300 ~; 1600. C, from 8000 to 17000 atm (about 800 to 1700 MPa) is required. In order to solve this problem, a technique for growing a gallium nitride single crystal in a sodium (Na) flux (melt) (hereinafter also referred to as “Na flux method”) has been developed (for example, patent literature). ;!-3, see Non-Patent Documents 2 and 3). According to this method, the heating temperature is greatly reduced to 600 to 800 ° C, and the pressure can be reduced to about 50 atm (about 5 MPa). In the Na flux method, there is a method in which a seed crystal is put in the Na flux in advance and the crystal is grown using this seed crystal as a nucleus. According to this method, a Balta size crystal can be obtained. As the seed crystal, when a GaN single crystal is grown, for example, a laminated substrate in which a GaN crystal thin film layer is formed on a sapphire substrate by MOCVD method or HVPE method is used. Such technology is also called “liquid phase epitaxial growth method”!
[0003] GaN単結晶を用いた電子デバイスの中で、発光ダイオード(LED)の照明への応 用が期待され、研究開発が盛んである。これは、 GaN単結晶を用いた LEDであれば 、蛍光灯等の従来の照明器具に比べて大幅に電力を節約できるからである。しかし ながら、従来の GaN単結晶を用いた LEDは、輝度を向上させるのに限界があり、理 論的に予測されるレベルの高輝度を実現できなかった。その理由は、下記の 3つの 問題があるからである。 [0003] Among electronic devices using GaN single crystals, application to illumination of light emitting diodes (LEDs) is expected, and research and development are thriving. This is because an LED using a GaN single crystal can save a great deal of power compared to conventional lighting fixtures such as fluorescent lamps. However, LEDs using conventional GaN single crystals have limitations in improving brightness, and could not achieve the theoretically predicted level of high brightness. There are three reasons for this: Because there is a problem.
(1) LED内部での電荷の偏り  (1) Charge bias inside the LED
(2)高輝度化による発光波長の変化  (2) Change in emission wavelength due to higher brightness
(3) LED内部における高抵抗部分の存在  (3) Presence of a high resistance part inside the LED
[0004] 前記(1)から(3)の三つの問題は、 GaN結晶基板の無極性面上に LEDを作製す れば、理論上は解決できる。前記無極性面とは、電荷の偏りがない面である。しかし ながら、従来の技術では、 GaN結晶基板の無極性面上に LEDを作製することは不 可能であった。図 1に、 LEDの基本構成を示す。図示のように、 LEDは、サファイア 若しくは炭化シリコンから形成された基板 1の上に、低温緩衝層 2、 GaN結晶(Siドー プ)層 3、 n— AlGaN (Siドープ)層 5、 InGaN層 6、 p— AlGaN (Mgドープ)層 7、 p— GaN (Mgドープ)層 8、透明電極層 9および p層電極 10が、この順序で積層され、力、 つ前記 GaN結晶(Siドープ)層 3の一部の上に n層電極 4が配置されて!/、ると!/、う構 成である。従来の LEDの作製において、図 2に示すように、サファイア等の基板 1の 上に、低温緩衝層 2を介して、液相ェピタキシャル成長法により GaN結晶層 3を成長 させることになるため、前記 GaN結晶は、 c面のみしか成長できず、前記 GaN結晶層 3の側面 32は M面になるが、前記 GaN結晶層 3の上面 31は、 c面になってしまう。ま た、無理に M面等の無極性面を形成しょうとしても、得られる結晶の品質が劣悪なた めに、輝度の向上が図れないのが実情である。  [0004] The above three problems (1) to (3) can be theoretically solved by fabricating an LED on a nonpolar surface of a GaN crystal substrate. The nonpolar surface is a surface having no charge bias. However, with conventional technology, it was impossible to fabricate LEDs on the nonpolar surface of a GaN crystal substrate. Figure 1 shows the basic LED configuration. As shown in the figure, the LED is formed on a substrate 1 made of sapphire or silicon carbide, on a low-temperature buffer layer 2, a GaN crystal (Si-doped) layer 3, an n-AlGaN (Si-doped) layer 5, and an InGaN layer 6 P-AlGaN (Mg-doped) layer 7, p-GaN (Mg-doped) layer 8, transparent electrode layer 9 and p-layer electrode 10 are laminated in this order, and the GaN crystal (Si-doped) layer 3 The n-layer electrode 4 is arranged on a part of the!! In conventional LED fabrication, as shown in FIG. 2, a GaN crystal layer 3 is grown on a substrate 1 such as sapphire via a low-temperature buffer layer 2 by a liquid phase epitaxial growth method. The GaN crystal can grow only on the c-plane, and the side surface 32 of the GaN crystal layer 3 becomes the M-plane, but the upper surface 31 of the GaN crystal layer 3 becomes the c-plane. In addition, even if an attempt is made to forcibly form a non-polar surface such as an M-plane, the actual situation is that the brightness cannot be improved due to the poor quality of the crystals obtained.
[0005] さらに、 Naフラックス(融液)を用いた液相ェピタキシャル成長法では、種結晶以外 の核が前記フラックス中に発生し、これが原因で GaN結晶の品質および収率が悪く なるという問題がある。図 8のグラフに、窒素ガス圧力と、基板上に形成される GaN結 晶の厚み(膜厚)との関係の一例を示す。図示のように、窒素ガスの圧力を上げると、 GaN結晶の厚みも向上する力 S、窒素ガス圧力が、ある点(図 8においては、約 34atm )を越えると、逆に GaN結晶の厚みが薄くなつていく。これは、同図に示すように、 Na フラックス中に、種結晶以外の核が発生するためである。  [0005] Furthermore, in the liquid phase epitaxial growth method using Na flux (melt), nuclei other than seed crystals are generated in the flux, which causes the quality and yield of GaN crystals to deteriorate. There is. The graph in Fig. 8 shows an example of the relationship between the nitrogen gas pressure and the thickness (film thickness) of the GaN crystal formed on the substrate. As shown in the figure, when the pressure of nitrogen gas is increased, the force S that increases the thickness of the GaN crystal S, and when the nitrogen gas pressure exceeds a certain point (about 34 atm in Fig. 8), the thickness of the GaN crystal is reversed. Go thin. This is because, as shown in the figure, nuclei other than seed crystals are generated in the Na flux.
[0006] このように、無極性面の成長の問題および核発生の問題は、 GaN結晶の製造にお いて解決すべき重要な問題であるが、その他の III族元素窒化物結晶の製造方法に おいても、解決すべき重要な問題である。 [0007] 特許文献 1 :特開 2000— 327495号公報 [0006] As described above, the problem of nonpolar plane growth and the problem of nucleation are important problems to be solved in the production of GaN crystals. However, there are other methods for producing Group III element nitride crystals. However, it is an important problem to be solved. Patent Document 1: Japanese Patent Application Laid-Open No. 2000-327495
特許文献 2 :特開 2001— 102316号公報  Patent Document 2: Japanese Patent Laid-Open No. 2001-102316
特許文献 3:特開 2003— 292400号公報  Patent Document 3: Japanese Patent Laid-Open No. 2003-292400
非特許文献 1 :J. Phys. Chem. Solids, 1995、 56、 639  Non-Patent Document 1: J. Phys. Chem. Solids, 1995, 56, 639
非特許文献 2 :日本結晶成長学会誌 30、 2、 pp38 -45 (2003)  Non-Patent Document 2: Journal of Japanese Society for Crystal Growth 30, 2, pp38 -45 (2003)
非特許文献 3 :J. J. Appl. Phys. 42, ppL879-L881 (2003)  Non-Patent Document 3: J. J. Appl. Phys. 42, ppL879-L881 (2003)
発明の開示  Disclosure of the invention
[0008] そこで、本発明は、核発生の防止および高結晶性無極性面の成長の少なくとも一 方を実現可能な GaN結晶の製造方法、 GaN結晶、 GaN結晶基板、半導体装置お よび GaN結晶製造装置を提供することを目的とする。  [0008] Therefore, the present invention provides a GaN crystal manufacturing method, a GaN crystal, a GaN crystal substrate, a semiconductor device, and a GaN crystal manufacturing capable of realizing at least one of prevention of nucleation and growth of a highly crystalline nonpolar surface. An object is to provide an apparatus.
[0009] 前記目的を達成するために、本発明の製造方法は、少なくともアルカリ金属とガリウ ム(Ga)とを含む融液中において、 GaN結晶を製造する方法であって、 [0009] In order to achieve the above object, the production method of the present invention is a method of producing a GaN crystal in a melt containing at least an alkali metal and gallium (Ga),
前記融液中の炭素の含有量を調整する調整工程と、  An adjusting step of adjusting the carbon content in the melt;
前記ガリウム(Ga)と窒素とが反応する反応工程と  A reaction step in which the gallium (Ga) and nitrogen react;
を包含する GaN結晶製造方法である。  A GaN crystal manufacturing method.
[0010] 本発明の GaN結晶は、主要面として無極性面を有し、 2結晶法 X線回析によるロッ キングカーブの半値全幅が 0を超え 200秒以下の範囲であり、転位密度が 0を超え 1[0010] The GaN crystal of the present invention has a non-polar surface as a main surface, the full width at half maximum of the rocking curve by two-crystal method X-ray diffraction is in the range of more than 0 to 200 seconds, and the dislocation density is 0. Over 1
06個/ cm2以下の範囲である GaN結晶である。 0 GaN crystals in a range of 6 pieces / cm 2 or less.
[0011] 本発明の GaN結晶基板は、前記本発明の GaN結晶を含み、前記無極性面が、半 導体層が形成される基板面である。 [0011] The GaN crystal substrate of the present invention includes the GaN crystal of the present invention, and the nonpolar surface is a substrate surface on which a semiconductor layer is formed.
[0012] 本発明の半導体装置は、前記本発明の GaN結晶基板を含み、前記基板面の上に [0012] A semiconductor device of the present invention includes the GaN crystal substrate of the present invention, and is formed on the substrate surface.
、半導体層が形成された半導体装置である。 A semiconductor device in which a semiconductor layer is formed.
[0013] 本発明の GaN結晶製造装置は、少なくともアルカリ金属とガリウムとを含む融液中 において、 GaN結晶を製造する製造装置であって、 [0013] The GaN crystal production apparatus of the present invention is a production apparatus for producing a GaN crystal in a melt containing at least an alkali metal and gallium,
前記融液中の炭素の含有量を調整する調製部と、  A preparation unit for adjusting the content of carbon in the melt;
前記ガリウムと窒素とが反応する反応部とを備えた GaN結晶製造装置である。  The GaN crystal manufacturing apparatus includes a reaction section where the gallium and nitrogen react.
[0014] 本発明者等は、前記目的を達成するために、一連の研究を重ねた結果、アルカリ 金属を含む融液中の炭素の含有量を調整すると(例えば、融液中に炭素を含有させ ると)、前記融液中における核発生の防止および高品質無極性面の成長の少なくとも 一方が実現可能であることを見出し、本発明をなすに至った。また、本発明の GaN結 晶は、前述のように、無極性面が主要面であり、所定範囲の前記ロッキングカーブの 半値全幅および前記所定の範囲の転位密度の物性を有するものであり、これは、気 相法等の従来法により製造されたものよりも、結晶性が高品位である。このような高品 位の本発明の GaN結晶は、前記本発明の製造方法により製造することが可能である 力 製造方法は、これに限定されない。なお、前記「主要面」とは、結晶中で最も広い 面をいう。 [0014] As a result of a series of studies to achieve the above object, the present inventors have adjusted the carbon content in the melt containing an alkali metal (for example, containing carbon in the melt). Let The inventors have found that at least one of prevention of nucleation in the melt and growth of a high-quality nonpolar surface can be realized, and the present invention has been made. Further, as described above, the GaN crystal of the present invention has a nonpolar surface as a main surface, and has physical properties of a full width at half maximum of the rocking curve within a predetermined range and a dislocation density within the predetermined range. Has higher crystallinity than those produced by conventional methods such as the gas phase method. Such a high-quality GaN crystal of the present invention can be produced by the production method of the present invention, but the force production method is not limited to this. The “main surface” refers to the widest surface in the crystal.
図面の簡単な説明 Brief Description of Drawings
[図 1]図 1は、半導体装置の一例を示す構成図である。 FIG. 1 is a configuration diagram illustrating an example of a semiconductor device.
[図 2]図 2は、基板上に形成された GaN結晶の一例を示す構成図である。  FIG. 2 is a configuration diagram showing an example of a GaN crystal formed on a substrate.
[図 3]図 3は、本発明の基板上に形成された GaN結晶の一例を示す構成図である。  FIG. 3 is a structural diagram showing an example of a GaN crystal formed on the substrate of the present invention.
[図 4]図 4は、本発明の実施例 1における GaN結晶の写真である。  FIG. 4 is a photograph of a GaN crystal in Example 1 of the present invention.
[図 5]図 5は、前記実施例 1における GaN結晶のその他の写真である。  FIG. 5 is another photograph of the GaN crystal in Example 1.
[図 6]図 6は、比較例 1における GaN結晶の写真である。  FIG. 6 is a photograph of a GaN crystal in Comparative Example 1.
[図 7]図 7は、前記実施例 1および前記比較例 1における、炭素添加割合と結晶収率 との関係を示すグラフである。  FIG. 7 is a graph showing the relationship between the carbon addition ratio and the crystal yield in Example 1 and Comparative Example 1.
[図 8]図 8は、窒素ガス圧力と GaN結晶の厚み(膜厚)との関係の一例を示すグラフで ある。  FIG. 8 is a graph showing an example of the relationship between nitrogen gas pressure and GaN crystal thickness (film thickness).
[図 9]図 9は、本発明の実施例 2および比較例 2〜3における炭素添加割合と結晶収 率との関係を示すグラフである。  FIG. 9 is a graph showing the relationship between the carbon addition ratio and the crystal yield in Example 2 and Comparative Examples 2 to 3 of the present invention.
[図 10]図 10は、本発明の実施例 3および比較例 4〜6における炭素添加割合と結晶 収率との関係を示すグラフである。  FIG. 10 is a graph showing the relationship between the carbon addition ratio and crystal yield in Example 3 and Comparative Examples 4 to 6 of the present invention.
[図 11]図 11は、本発明の GaN結晶の製造方法に使用する製造装置の一例を示す 構成図である。  FIG. 11 is a configuration diagram showing an example of a manufacturing apparatus used in the method for manufacturing a GaN crystal of the present invention.
[図 12]図 12は、本発明の実施例 4における GaN単結晶の写真である。  FIG. 12 is a photograph of a GaN single crystal in Example 4 of the present invention.
[図 13]図 13は、 GaN結晶の構造の一例を示す模式図である。 FIG. 13 is a schematic diagram showing an example of the structure of a GaN crystal.
発明を実施するための最良の形態 [0016] 本発明の製造方法において、前記調整工程は、前記融液中の炭素の一部を除去 する除去工程および前記融液中に炭素を添加する添加工程のうちの少なくとも一方 を包含することが好ましい。 BEST MODE FOR CARRYING OUT THE INVENTION In the production method of the present invention, the adjusting step includes at least one of a removing step of removing a part of carbon in the melt and an adding step of adding carbon to the melt. Is preferred.
[0017] 本発明の製造方法において、前記融液中に種結晶を提供する種結晶提供工程を 包含し、前記種結晶は、 GaN結晶であることが好ましい。 [0017] The production method of the present invention includes a seed crystal providing step of providing a seed crystal in the melt, and the seed crystal is preferably a GaN crystal.
[0018] 本発明の製造方法において、前記炭素の形態は、特に制限されず、炭素単体およ び炭素化合物の!/、ずれであってもよ!/、。 [0018] In the production method of the present invention, the form of the carbon is not particularly limited, and may be a single element of carbon or a carbon compound!
[0019] 本発明の製造方法において、前記種結晶は、基板上に形成された GaN結晶層で あることが好ましい。 In the production method of the present invention, the seed crystal is preferably a GaN crystal layer formed on a substrate.
[0020] 本発明の製造方法において、前記融液中の炭素の含有量を調整することにより(例 えば、前記融液中に炭素を含有させることにより)、前記融液中において前記種結晶 以外の結晶核の発生を防止することが好ましい。この場合の前記融液中の炭素の含 有割合は、前記融液、前記ガリウムおよび前記炭素の合計に対し、例えば、 0. ;!〜 5 原子%の範囲である。  [0020] In the production method of the present invention, by adjusting the carbon content in the melt (for example, by containing carbon in the melt), in the melt other than the seed crystal. It is preferable to prevent the generation of crystal nuclei. In this case, the content ratio of carbon in the melt is, for example, in the range of 0.;! To 5 atom% with respect to the total of the melt, the gallium, and the carbon.
[0021] 本発明の製造方法において、前記融液中の炭素の含有量を調整することにより(例 えば、前記融液中に炭素を含有させることにより)、前記 GaN結晶の無極性面を成長 させることが好ましい。この場合の前記融液中の炭素の含有割合は、前記融液、前 記ガリウムおよび前記炭素の合計に対し、例えば、 0. 3〜8原子%の範囲である。な お、本発明の製造方法において、無極性面以外の面を成長させ、この面を切削して 無極性面を表面に出してもよい。  [0021] In the production method of the present invention, by adjusting the carbon content in the melt (for example, by containing carbon in the melt), the nonpolar plane of the GaN crystal is grown. It is preferable to make it. In this case, the content ratio of carbon in the melt is, for example, in the range of 0.3 to 8 atomic% with respect to the total of the melt, the gallium, and the carbon. In the production method of the present invention, a surface other than the nonpolar surface may be grown, and this surface may be cut to expose the nonpolar surface on the surface.
[0022] 本発明の製造方法において、前記種結晶は、基板上の GaN結晶層であることが好 ましい。この場合、前記融液中の炭素の含有量を調整することにより(例えば、前記 融液中に炭素を含有させることにより)、 M面および a面の少なくとも一方の面を成長 させることが好ましい。さらに、この場合、前記基板の GaN結晶層の上面が、無極性 面(a面および M面の少なくとも一方)であることが好ましい。ただし、本発明の製造方 法は、これに限定されず、 M面および a面以外で、かつ c面以外の面を成長させても よい。すなわち、本発明の製造方法において、 GaN結晶を成長させる場合、 M面お よび a面に対して形成する角度力 S、 c面よりも小さい面を成長させ、成長した面を切削 して M面若しくは a面を表面に出してもよい。 In the production method of the present invention, the seed crystal is preferably a GaN crystal layer on a substrate. In this case, it is preferable to grow at least one of the M-plane and the a-plane by adjusting the carbon content in the melt (for example, by containing carbon in the melt). Furthermore, in this case, it is preferable that the upper surface of the GaN crystal layer of the substrate is a nonpolar plane (at least one of the a plane and the M plane). However, the manufacturing method of the present invention is not limited to this, and a plane other than the M-plane and the a-plane and other than the c-plane may be grown. That is, in the manufacturing method of the present invention, when a GaN crystal is grown, an angular force S formed on the M plane and the a plane is grown, and a plane smaller than the c plane is grown, and the grown plane is cut. Then, the M face or a face may be exposed on the surface.
[0023] 本発明の製造方法において、前記融液は、例えば、 Naを含む融液であることが好 ましい。 [0023] In the production method of the present invention, the melt is preferably a melt containing Na, for example.
[0024] 本発明の製造方法において、前記融液を撹拌する撹拌工程をさらに含んでもよい 。前記撹拌工程を行う段階は、特に制限されないが、例えば、前記反応工程の前、 前記反応工程と同時、および前記反応工程の後における少なくとも一つにおいて行 つてもよい。より具体的には、例えば、前記反応工程の前に行っても、前記反応工程 と同時に行っても、その両方で行ってもよい。  [0024] The production method of the present invention may further include a stirring step of stirring the melt. The step of performing the stirring step is not particularly limited, and may be performed, for example, at least one before the reaction step, simultaneously with the reaction step, and after the reaction step. More specifically, for example, it may be performed before the reaction step, simultaneously with the reaction step, or both.
[0025] 本発明の GaN結晶は、炭素を含んでいてもよい。また、本発明の GaN結晶は、前 記本発明の製造方法により製造されたものであることが好ましい。  [0025] The GaN crystal of the present invention may contain carbon. The GaN crystal of the present invention is preferably produced by the production method of the present invention.
[0026] 本発明の半導体装置は、例えば、 LED、半導体レーザーまたはパワー高周波電子 素子であることが好ましい。  [0026] The semiconductor device of the present invention is preferably, for example, an LED, a semiconductor laser, or a power high-frequency electronic element.
[0027] つぎに、本発明について詳細に説明する。  [0027] Next, the present invention will be described in detail.
[0028] 前述のように、本発明の製造方法は、少なくともアルカリ金属とガリウムとを含む融 液中において、 GaN結晶を製造する方法であって、融液中の炭素の含有量を調整 する調整工程と、ガリウムと窒素とが反応する反応工程とを包含する。調整工程は、 融液中の炭素の一部を除去する除去工程および融液中に炭素を添加する添加工程 のうちの少なくとも一方を包含してもよい。  [0028] As described above, the production method of the present invention is a method for producing a GaN crystal in a melt containing at least an alkali metal and gallium, and is an adjustment for adjusting the carbon content in the melt. And a reaction step in which gallium and nitrogen react. The adjustment step may include at least one of a removal step of removing a part of carbon in the melt and an addition step of adding carbon to the melt.
更に、融液中に、 III族元素窒化物を含む種結晶を提供する種結晶提供工程を包 含してもよい。  Furthermore, a seed crystal providing step for providing a seed crystal containing a group III element nitride may be included in the melt.
例えば、本発明の製造方法は、アルカリ金属を含む融液中において、予め入れた GaNの種結晶を結晶核とし、ガリウムと窒素とを反応させて GaN結晶を成長させる G aN結晶の製造方法であって、前記融液中に炭素を含有させて前記 GaN結晶を成 長させる製造方法である。また、本発明は、前記 GaN結晶の製造方法において、前 記融液中に炭素を含有させることにより、 GaN結晶の成長面を制御する方法でもあり 、および/または、前記融液中の核発生を防止する方法でもある。  For example, the manufacturing method of the present invention is a GaN crystal manufacturing method in which a GaN crystal is grown by reacting gallium and nitrogen with a GaN seed crystal that has been put in advance in a melt containing an alkali metal. In the manufacturing method, carbon is contained in the melt to grow the GaN crystal. The present invention is also a method for controlling a growth surface of a GaN crystal by containing carbon in the melt in the method for producing the GaN crystal, and / or generating nuclei in the melt. It is also a way to prevent this.
[0029] 前記融液における前記アルカリ金属は、液相ェピタキシャル成長法におけるフラッ タスとして機能する。前記アルカリ金属は、リチウム(Li)、ナトリウム(Na)、カリウム(K )、 ノレビジゥム(Rb)、セシウム(Cs)およびフランシウム(Fr)であり、この中で、 Liおよ び Naが好ましぐより好ましくは Naである。前記融液は、その他の成分を含んでいて もよく、例えば、 GaN結晶の原料となるガリウム(Ga)や窒素(N)、アルカリ金属以外 のフラックス原料等を含んでいてもよい。前記窒素は、ガス、窒素分子、窒素化合物 等、その形態に制限はない。前記フラックス原料としては、例えば、アルカリ土類金属 があげられ、具体的には、カルシウム(Ca)、マグネシウム(Mg)、ストロンチウム(Sr) 、 ノ リウム(Br)およびラジウム(Ra)があり、この中で、 Caおよび Mgが好ましぐより好 ましくは Caである。ガリウムに対するアルカリ金属の添加割合は、例えば、 0. ;!〜 99 . 9mol%、好ましくは;!〜 99mol%、より好ましくは 5〜98mol%である。また、アル力 リ金属とアルカリ土類金属の混合フラックスを使用する場合のモル比は、例えば、ァ ノレカリ金属:ァノレカリ土類金属 = 99. 99—0. 01 : 0. 01—99. 99、好ましく (ま 99. 9 〜0. 05 : 0. 1—99. 95、より好ましくは 99. 5—1 : 0. 5〜99である。前記融液の純 度は、高いことが好ましい。例えば、 Naの純度は、 99. 95%以上の純度であることが 好ましい。高純度のフラックス成分 (例えば、 Na)は、高純度の市販品を用いてもよい し、市販品を購入後、蒸留等の方法により純度を上げたものを使用してもよい。 [0029] The alkali metal in the melt functions as a flat in the liquid phase epitaxial growth method. The alkali metal is lithium (Li), sodium (Na), potassium (K ), Norevidium (Rb), cesium (Cs) and francium (Fr), of which Li and Na are preferred, and Na is more preferred. The melt may contain other components, for example, gallium (Ga) and nitrogen (N), which are raw materials for GaN crystals, and flux raw materials other than alkali metals. The nitrogen is not limited in its form such as gas, nitrogen molecule, nitrogen compound and the like. Examples of the flux raw material include alkaline earth metals, and specific examples include calcium (Ca), magnesium (Mg), strontium (Sr), norlium (Br), and radium (Ra). Among them, Ca is more preferable than Ca and Mg. The addition ratio of the alkali metal to gallium is, for example, 0.;! To 99.9 mol%, preferably;! To 99 mol%, more preferably 5 to 98 mol%. In addition, the molar ratio when using a mixed flux of alkali metal and alkaline earth metal is, for example, anolelic metal: anolelic earth metal = 99. 99—0. 01: 0. 01—99. 99, Preferably (between 99.9 and 0.05: 0.1-99.95, more preferably 99.5-1: 0.5-99. The purity of the melt is preferably high. The purity of Na is preferably 99.95% or more, and high-purity flux components (for example, Na) may be commercially available products of high purity, or may be distilled after purchase of commercial products. You may use what raised purity by methods, such as.
[0030] ガリウムと窒素との前記反応条件は、例えば、温度 100〜; 1500°C、圧力 100Pa〜 [0030] The reaction conditions between gallium and nitrogen are, for example, a temperature of 100 to; 1500 ° C, a pressure of 100 Pa to
20MPaであり、好ましくは、温度 300〜; 1200。C、圧力 0. OlMPa〜; !OMPaであり、 より好ましくは、温度 500〜; 1100°C、圧力 0. lMPa〜6MPaである。前記反応は、 窒素含有ガス雰囲気下で実施することが好ましい。前記窒素含有ガスが、前記フラッ タスに溶けて GaN結晶の育成原料となるからである。前記窒素含有ガスは、例えば、 窒素 )ガス、アンモニア(NH )ガス等であり、これらは混合してもよく、混合比率 20 MPa, preferably 300 to 1200; C, pressure 0. OlMPa ~;! OMPa, more preferably 500 ~; 1100 ° C, pressure 0.1MPa ~ 6MPa. The reaction is preferably carried out in a nitrogen-containing gas atmosphere. This is because the nitrogen-containing gas dissolves in the flats and becomes a raw material for growing GaN crystals. The nitrogen-containing gas is, for example, nitrogen) gas, ammonia (NH 2) gas, etc., and these may be mixed at a mixing ratio
2 3 twenty three
は制限されない。特に、アンモニアガスを使用すると、反応圧力を低減できるので、 好ましい。  Is not limited. In particular, the use of ammonia gas is preferable because the reaction pressure can be reduced.
[0031] 前記本発明の製造方法において、前記フラックスによって、窒素濃度が上昇するま でに、前記種結晶が溶解するおそれがある。これを防止するために、少なくとも反応 初期において、窒化物を前記フラックス中に存在させておくことが好ましい。前記窒 化物としては、例えば、 Ca N , Li N、 NaN、 BN、 Si N、 InN等があり、これらは  [0031] In the production method of the present invention, the seed crystal may be dissolved by the flux until the nitrogen concentration increases. In order to prevent this, it is preferable that nitride is present in the flux at least at the initial stage of the reaction. Examples of the nitride include CaN, LiN, NaN, BN, SiN, InN, and the like.
3 2 3 3 3 4  3 2 3 3 3 4
単独で使用してもよぐ 2種類以上で併用してもよい。また、前記窒化物の前記フラッ タスにおける割合は、例えば、 0. 0001mol%〜99mol%であり、好ましくは、 0. 00 lmol%〜50mol%であり、より好ましくは 0· 005mol%〜; 10mol%である。 It may be used alone or in combination of two or more. In addition, the nitride of the nitride The ratio in tas is, for example, 0.0001 mol% to 99 mol%, preferably 0.00 lmol% to 50 mol%, more preferably 0.005 mol% to 10 mol%.
[0032] 前記本発明の製造方法において、前記混合フラックス中に、不純物を存在させるこ とも可能である。このようにすれば、不純物含有の GaN結晶を製造できる。前記不純 物は、例えば、珪素(Si)、アルミナ(Al O )、インジウム(In)、アルミニウム(A1)、窒 [0032] In the production method of the present invention, impurities may be present in the mixed flux. In this way, an impurity-containing GaN crystal can be produced. Examples of the impurities include silicon (Si), alumina (Al 2 O 3), indium (In), aluminum (A1), and nitrogen.
2 3  twenty three
化インジウム(InN)、酸化珪素(SiO )、酸化インジウム(In O )、亜鉛 (Zn)、マグネ  Indium phosphide (InN), silicon oxide (SiO 2), indium oxide (In 2 O 3), zinc (Zn), magne
2 2 3  2 2 3
シゥム(Mg)、酸化亜鉛 (ZnO)、酸化マグネシウム(MgO)、ゲルマニウム(Ge)等が ある。  Examples include shim (Mg), zinc oxide (ZnO), magnesium oxide (MgO), and germanium (Ge).
[0033] 前述のように、前記融液中の炭素の含有量を調整する。例えば、炭素の含有量を 所定の量にするために、融液中の炭素の一部を除去する工程および融液中に炭素 を添加する工程のうちの少なくとも一方を実行する。前記炭素は、炭素単体でもよい し、炭素化合物であってもよい。好ましいのは、前記融液において、シアン(CN)を発 生する炭素単体および炭素化合物である。また、炭素は、気体状の有機物であって もよい。このような炭素単体および炭素化合物としては、例えば、シアン化物、グラフ アイト、ダイヤモンド、フラーレン、カーボンナノチューブ、メタン、ェタン、プロパン、ブ タン、ベンゼン等があげられる。また、前記炭素の含有量は、特に制限されない。前 記融液中における核発生防止の目的で、融液中に炭素を添加する工程および融液 中の炭素の一部を除去する工程のうちの少なくとも一方を実行する場合は、前記融 液、前記ガリウムおよび前記炭素の合計を基準として、例えば、 0. 0;!〜 20原子(at. )%の範囲、 0. 05〜; 15原子(at. ) %の範囲、 0. ;!〜 10原子(at. ) %の範囲、 0. ;!〜 5原子(at. ) %の範囲、 0. 25-7. 5原子(at. ) %の範囲、 0. 25〜5原子(at. ) % の範囲、 0· 5〜5原子(at. ) %の範囲、 0. 5〜2· 5原子(at. ) %の範囲、 0. 5〜2原 子(at. ) %の範囲、 0. 5〜1原子(at. ) %の範囲、 1〜5原子(at. ) %の範囲、また は;!〜 2原子(at. ) %の範囲である。この中でも、 0· 5〜5原子(at. ) %の範囲、 0. 5 〜2· 5原子(at. ) %の範囲、 0· 5〜2原子(at. ) %の範囲、 0· 5〜;!原子(at. ) % の範囲、 1〜5原子(at. ) %の範囲、または 1〜2原子(at. ) %の範囲が好ましい。 G aN結晶の無極性面の成長の目的で、融液中に炭素を添加する工程および融液中 の炭素の一部を除去する工程のうちの少なくとも一方を実行する場合は、前記融液、 前記ガリウムおよび前記炭素の合計を基準として、例えば、 0. 0;!〜 25原子(at. ) % の範囲、 0· 05〜20原子(at. ) %の範囲、 0. 5〜; 15原子(at. ) %の範囲、 0. 3〜8 原子(at. ) %の範囲、 0. 75〜; 10原子(at. ) %の範囲、 1 · 0〜5原子(at. ) %の範 囲、または 2· 0〜5原子(at. ) %の範囲である。この中で、 1 · 0〜5原子(at. ) %の 範囲または 2. 0〜5原子(at. ) %の範囲が好ましい。なお、前記融液、前記ガリウム および前記炭素の合計における前記「融液」は、融液を構成する成分の合計を意味 する。例えば、前記融液が Na単独のフラックスの場合は、 Naのみを意味し、 Naと Ca の混合フラックスの場合は、 Naと Caの合計を意味する。 [0033] As described above, the carbon content in the melt is adjusted. For example, in order to make the carbon content a predetermined amount, at least one of a step of removing a part of carbon in the melt and a step of adding carbon to the melt is performed. The carbon may be a simple carbon or a carbon compound. Preferred are simple carbon and carbon compounds that generate cyan (CN) in the melt. Carbon may be a gaseous organic substance. Examples of such carbon simple substance and carbon compound include cyanide, graphite, diamond, fullerene, carbon nanotube, methane, ethane, propane, butane, and benzene. The carbon content is not particularly limited. For the purpose of preventing nucleation in the melt, when performing at least one of the step of adding carbon to the melt and the step of removing a part of carbon in the melt, the melt, Based on the sum of the gallium and the carbon, for example, 0.0;! To 20 atoms (at.)% Range, 0.05 to 15 atoms (at.)% Range, 0.;! To 10 Atom (at.)% Range, 0;;! To 5 atom (at.)% Range, 0.25-7. 5 atom (at.)% Range, 0.25 to 5 atom (at.) % Range, 0.5 · 5 to 5 atom (at.)% Range, 0.5 to 2.5 · 5 atom (at.)% Range, 0.5 to 2 atomic (at.)% Range, 0 In the range of 5 to 1 atom (at.)%, In the range of 1 to 5 atom (at.)%, Or in the range of! To 2 atom (at.)%. Among these, the range of 0.5 · 5 to 5 atoms (at.)%, The range of 0.5 to 2.5 atoms (at.)%, The range of 0.5 · 2 to 2 atoms (at.)%, A range of ~ !! atom (at.)%, A range of 1-5 atom (at.)%, Or a range of 1-2 atom (at.)% Is preferred. When performing at least one of the step of adding carbon to the melt and the step of removing a part of the carbon in the melt for the purpose of growing a non-polar surface of the GaN crystal, the melt, Based on the sum of the gallium and the carbon, for example, 0.0;! To 25 atoms (at.)% Range, 0.05 to 20 atoms (at.)% Range, 0.5 to 15 atoms (At.)% Range, 0.3-8 atoms (at.)% Range, 0.75-; 10 atoms (at.)% Range, 1 · 0-5 atoms (at.)% Range Or within the range of 2 · 0-5 atoms (at.)%. Among these, a range of 1 · 0 to 5 atoms (at.)% Or a range of 2.0 to 5 atoms (at.)% Is preferable. The “melt” in the total of the melt, the gallium and the carbon means the total of the components constituting the melt. For example, when the melt is a flux of Na alone, it means only Na, and when it is a mixed flux of Na and Ca, it means the sum of Na and Ca.
前述のように、前記種結晶は、基板の上に形成された GaN層であることが好ましい 。前記基板は、前記サファイア基板や炭化ケィ素(SiC)基板等が使用できる。前記 G aN層は、例えば、結晶であってもよいし、非晶質(アモルファス)であってもよいし、結 晶の場合は、単結晶であってもよいし、多結晶であってもよい。また、前記 GaN層の 形態は、特に制限されないが、例えば、薄膜層の形態が好ましい。前記薄膜層の厚 みは、特に制限されず、 列えば、 0. 0005〜; 100000 111、 0. 00;!〜 50000 m、 0. 01~5000 ^ 111, 0. 01~500 ^ 111, 0. 01~50 ^ 111, 0. 1~50 ^ 111, 0. 1~10 ^ m, 0. ;!〜 5〃m、;!〜 10〃 mまたは;!〜 5〃 mの範囲である。前記 GaN結晶層の 表面(上面)は、 M面および a面のいずれかの無極性面であることが好ましい。前記 基板上の GaN結晶層の表面(上面)が、無極性面であれば、図 2に示すように、前記 融液中に炭素を添加することにより、基板 1の上の GaN結晶層 2の表面に、平滑な無 極性面 31を有する GaN結晶 3を育成することができる。この場合、前記 GaN結晶 3 の側面 32は、 c面となる。これに対し、基板上の GaN結晶層の表面(上面)が、 c面で ある場合、前記融液中に炭素を添加すると、図 3に示すように、前記 GaN結晶層 2の 上に形成される GaN結晶 3の上面(表面) 31が、断面が折れ線状になってしまう。こ れは、 GaN結晶層 2の表面力 Sc面であると、この上で成長する GaN結晶 3において、 a面および M面の双方が成長する力もである。なお、図 3において、 GaN結晶 3の側 面 32は、 c面である。し力、し、このような断面が折れ線状の表面(上面)を有する GaN 結晶であっても、前記表面を研磨して平滑面にすれば、実用に供することが可能で ある。前記薄膜層は、例えば、有機金属気相成長法 (MOCVD法)、ハライド気相成 長法 (HVPE)、分子線エピタキシー法 (MBE法)等によって、前記基板上に形成で きる。前記薄膜層の最大径は、例えば、 2cm以上であり、好ましくは 3cm以上であり、 より好ましくは 5cm以上であり、大きいほどよぐその上限は、限定されない。また、バ ルク状化合物半導体の規格が 2インチであるから、この観点から、前記最大径の大き さは 5cmであることが好ましぐこの場合、前記最大径の範囲は、例えば、 2〜5cmで あり、好ましくは 3〜5cmであり、より好ましくは 5cmである。なお、前記最大径とは、 例えば、前記薄膜層表面の外周のある点と、その他の点を結ぶ線であって、最も長 い線の長さをいう。 As described above, the seed crystal is preferably a GaN layer formed on a substrate. As the substrate, the sapphire substrate, the silicon carbide (SiC) substrate, or the like can be used. The GaN layer may be, for example, a crystal or may be amorphous, and in the case of a crystal, it may be a single crystal or a polycrystal. Good. The form of the GaN layer is not particularly limited, but for example, the form of a thin film layer is preferable. The thickness of the thin film layer is not particularly limited. For example, 0.005 to 100000 111, 0.00;! To 50000 m, 0.01 to 5000 ^ 111, 0.01 to 500 ^ 111, 0 01 ~ 50 ^ 111, 0. 1 ~ 50 ^ 111, 0. 1 ~ 10 ^ m, 0.;! ~ 5〃m, !! ~ 10〃m or;! ~ 5〃m. The surface (upper surface) of the GaN crystal layer is preferably a nonpolar plane of either the M plane or the a plane. If the surface (upper surface) of the GaN crystal layer on the substrate is a nonpolar surface, as shown in FIG. 2, by adding carbon to the melt, the GaN crystal layer 2 on the substrate 1 A GaN crystal 3 having a smooth nonpolar surface 31 on the surface can be grown. In this case, the side surface 32 of the GaN crystal 3 is a c-plane. On the other hand, when the surface (upper surface) of the GaN crystal layer on the substrate is the c-plane, when carbon is added to the melt, it is formed on the GaN crystal layer 2 as shown in FIG. The upper surface (surface) 31 of the GaN crystal 3 has a polygonal cross section. This is also the force by which both the a-plane and the M-plane grow in the GaN crystal 3 grown on the surface force Sc plane of the GaN crystal layer 2. In FIG. 3, the side surface 32 of the GaN crystal 3 is a c-plane. Even a GaN crystal having such a cross-section with a polygonal surface (upper surface) can be put to practical use if the surface is polished to a smooth surface. The thin film layer may be formed, for example, by metal organic chemical vapor deposition (MOCVD) or halide vapor deposition. It can be formed on the substrate by the long method (HVPE), the molecular beam epitaxy method (MBE method) or the like. The maximum diameter of the thin film layer is, for example, 2 cm or more, preferably 3 cm or more, more preferably 5 cm or more, and the upper limit is not limited as it is larger. In addition, since the standard of the bulk compound semiconductor is 2 inches, from this viewpoint, the size of the maximum diameter is preferably 5 cm. In this case, the range of the maximum diameter is, for example, 2 to 5 cm. It is preferably 3 to 5 cm, more preferably 5 cm. The maximum diameter is, for example, the length of the longest line that connects a point on the outer periphery of the surface of the thin film layer with another point.
なお、本発明の製造方法において、アルカリ金属を含む融液中に予め GaNの種結 晶を結晶核として入れることは必ずしも必要ではない。融液中の炭素の含有量を所 定の量に調整しさえすれば、予め GaNの種結晶を結晶核として入れなくても、上述し た本発明の効果(融液中における核発生の防止および高品質無極性面の成長の少 なくとも一方が実現可能であること)を得ることができる。  In the production method of the present invention, it is not always necessary to put a seed crystal of GaN as a crystal nucleus in advance in a melt containing an alkali metal. As long as the carbon content in the melt is adjusted to a predetermined amount, the above-described effects of the present invention (prevention of nucleation in the melt can be avoided) even if a GaN seed crystal is not added as a crystal nucleus in advance. And at least one of the growth of high quality non-polar surfaces is feasible).
なお、融液中に GaNを含む種結晶を提供する場合には、種結晶を提供しない場合 と比較して、 GaN結晶が容易に成長し得る。  In the case of providing a seed crystal containing GaN in the melt, the GaN crystal can be easily grown as compared to the case of not providing the seed crystal.
[0035] ここで、 GaN結晶の構造を、図 13の模式図に基づき説明する。図示のように、 GaN 結晶において、 M面および a面は、 c軸に平行であり、換言すれば、 M面および a面は 、 c面に直交している。そして、隣接する二つの M面相互が形成する角度の中間の角 度の方向に a面は存在している。これらの関係は、 M面と a面を逆にしても成立する。  Here, the structure of the GaN crystal will be described based on the schematic diagram of FIG. As shown, in the GaN crystal, the M plane and the a plane are parallel to the c axis, in other words, the M plane and the a plane are orthogonal to the c plane. And the a-plane exists in the direction of the middle angle between the two adjacent M-planes. These relationships hold even if the M and a planes are reversed.
[0036] 本発明の GaN結晶の製造方法において、製造対象となる前記 GaN結晶は、例え ば、単結晶および多結晶のいずれであってもよいが、単結晶が好ましい。  [0036] In the method for producing a GaN crystal of the present invention, the GaN crystal to be produced may be, for example, either a single crystal or a polycrystal, but is preferably a single crystal.
[0037] つぎに、本発明の GaN結晶製造装置は、前述の通り、少なくともアルカリ金属とガリ ゥムとを含む融液中において、 GaN結晶を製造する製造装置であって、前記融液中 の炭素の含有量を調整する調製部と、前記ガリウムと窒素とが反応する反応部とを備 えた GaN結晶製造装置である。本発明の製造方法は、どのような製造装置を用いて 行ってもよいが、例えば、本発明の GaN結晶製造装置を用いて行うことが好ましい。 図 11に、本発明の GaN結晶製造装置の一例を示す。本発明の GaN結晶製造装置 は、融液中の炭素の含有量を調整する調整部と、ガリウムと窒素とが反応する反応部 とを備える。図示のように、この装置は、ガスタンク 11、圧力調節器 12、電気炉 14お よび耐熱耐圧容器 13、真空ポンプ 17から構成されている。前記電気炉 14としては、 例えば、抵抗加熱ヒータがある。また、前記電気炉 14は、断熱材を使用してもよい。 前記抵抗加熱ヒータにおいて、 1000°C以下で使用する場合は、発熱体としてカンタ ノレ線を用いることができるため、装置の構成が簡単になる。また、前記抵抗加熱ヒー タにおいて、 1500°Cまで加熱する場合には、 MoSiなどが用いられる。ガスタンク 1 [0037] Next, as described above, the GaN crystal production apparatus of the present invention is a production apparatus for producing a GaN crystal in a melt containing at least an alkali metal and gallium. An apparatus for producing a GaN crystal, comprising a preparation unit for adjusting the carbon content and a reaction unit for reacting the gallium and nitrogen. The manufacturing method of the present invention may be performed using any manufacturing apparatus, but is preferably performed using, for example, the GaN crystal manufacturing apparatus of the present invention. FIG. 11 shows an example of the GaN crystal production apparatus of the present invention. The GaN crystal production apparatus of the present invention includes an adjustment unit that adjusts the carbon content in the melt, and a reaction unit in which gallium and nitrogen react. With. As shown in the figure, this apparatus includes a gas tank 11, a pressure regulator 12, an electric furnace 14, a heat and pressure-resistant container 13, and a vacuum pump 17. An example of the electric furnace 14 is a resistance heater. The electric furnace 14 may use a heat insulating material. When the resistance heater is used at a temperature of 1000 ° C. or lower, a cantilever wire can be used as a heating element, thereby simplifying the configuration of the apparatus. In addition, when heating up to 1500 ° C. in the resistance heating heater, MoSi or the like is used. Gas tank 1
2  2
1には、窒素ガスやアンモニアガス等の窒素含有ガスが充填されている。ガスタンク 1 1および真空ポンプ 17は、パイプで耐圧耐熱容器 13と連結しており、その途中に圧 力調節器 12が配置されている。圧力調節器 12より、例えば、;!〜 lOOatmのガス圧 に調整して窒素含有ガスを耐圧耐熱容器 13中に供給でき、また真空ポンプ 17により 減圧することもできる。なお、同図において、 16はリーク用バルブである。耐圧耐熱 容器 13は、例えば、ステンレス容器等が使用される。耐熱耐圧容器 13は、電気炉 14 内に配置され、これによりカロ熱される。耐熱耐圧容器 13内には坩堝 15が配置され、 坩堝材料としては、アルミナ(Al O )、タングステン (W)、白金(Pt)、 SUS等の材料  1 is filled with a nitrogen-containing gas such as nitrogen gas or ammonia gas. The gas tank 11 and the vacuum pump 17 are connected to the pressure and heat resistant container 13 by pipes, and the pressure regulator 12 is disposed in the middle thereof. The pressure regulator 12 can adjust the gas pressure to, for example, a gas pressure of! ~ LOOatm and supply the nitrogen-containing gas into the pressure-resistant heat-resistant container 13, and the pressure can be reduced by the vacuum pump 17. In the figure, 16 is a leak valve. As the pressure and heat resistant container 13, for example, a stainless steel container or the like is used. The heat-resistant and pressure-resistant container 13 is disposed in the electric furnace 14 and is heated by heat. A crucible 15 is arranged in the heat-resistant pressure-resistant container 13, and materials such as alumina (Al 2 O 3), tungsten (W), platinum (Pt), and SUS are used as the crucible material.
2 3  twenty three
が用いられる。なお、黒鉛坩堝やシリコンカーバイト坩堝等のように、炭素系素材から 形成された坩堝を使用してもよい。ただし、炭素系材料から形成された坩堝を使用し ても、これから溶出する炭素は微量であるため、別途、炭素を添加しない限り、本発 明の効果を得ることはできない。前記坩堝 15中には、結晶原料であるガリウム(Ga)、 融液原料であるアルカリ金属(Na等)および炭素(例えば、グラフアイト)を入れる。な お、本発明において、その他の成分を前記坩堝に入れてもよぐ例えば、ドーピング 用の不純物を加えてもよい。 P型ドーピング材料としては Mgがあり、 N型ドーピング材 料としては Siなどがある。坩堝の形状は、特に制限されず、例えば円筒状(断面が円 形)であるが、円筒状に限定されない。坩堝の形状は、断面が非円形である筒状でよ い。断面が非円形である坩堝を用いる場合は、断面が円である坩堝を用いる場合と 比較して、坩堝を揺動することによる融液の撹拌効率がよい。 Is used. A crucible formed from a carbon-based material such as a graphite crucible or a silicon carbide crucible may be used. However, even if a crucible formed from a carbon-based material is used, the amount of carbon eluted from the crucible is so small that the effect of the present invention cannot be obtained unless carbon is added separately. In the crucible 15, gallium (Ga) as a crystal raw material, alkali metal (Na or the like) and carbon (for example, graphite) as a melt raw material are put. In the present invention, other components may be put in the crucible. For example, doping impurities may be added. Mg is used as the P-type doping material, and Si is used as the N-type doping material. The shape of the crucible is not particularly limited and is, for example, a cylindrical shape (a circular cross section), but is not limited to a cylindrical shape. The shape of the crucible may be a cylinder with a non-circular cross section. When using a crucible with a non-circular cross section, the stirring efficiency of the melt by swinging the crucible is better than when using a crucible with a circular cross section.
この装置を用いた GaN単結晶の製造は、例えば、次のようにして実施することがで きる。まず、 GaN結晶薄膜層が形成されたサファイア基板を前記坩堝内に配置する 。一方、グローブボックスの中で、ガリウム(Ga)と、金属ナトリウム(Na)と、炭素(C)と を秤量して坩堝 15内に入れ、この坩堝 15を耐圧耐熱容器 13内にセットする。そして 、ガスタンク 11から、前記耐熱耐圧容器 13内に窒素ガスを供給する。この際、圧力 調節器 12により所定の圧力に調節する。そして、電気炉 14によって耐熱耐圧容器 1 3内を加熱する。すると、坩堝 15内では、ナトリウムが溶解して融液が形成され、この 融液中に前記窒素ガスが溶け込んで、炭素の存在下、前記窒素とガリウムとが反応 して、前記基板上の GaN薄膜層の上で GaN結晶が成長する。この結晶成長におい て、前記融液中に炭素が存在しているため、前記融液中において GaN結晶核の発 生が防止され、かつ、前記基板上の GaN薄膜層の上で成長する GaN結晶は、無極 性面(a面若しくは M面)が成長する。例えば、坩堝 15は、本発明の「融液中の炭素 の含有量を調整する調整部」に対応する。例えば、坩堝 15は、本発明の「ガリウムと 窒素とが反応する反応部」にも対応する。本発明の GaN結晶の成長メカニズムは、 例えば、前記融液中の炭素が窒素と反応し、フラックスの気液界面近傍において CN _の形態で存在するため、窒素の過飽和度が抑制され、前記近傍における雑晶形成 を回避できると推測される。したがって、本発明の製造方法は、窒素と炭素の存在下 であれば、ガリウム以外の III族元素窒化物結晶の製造にも利用することができる。前 記 III族元素窒化物結晶の製造の場合には、前記ガリウムを、その他の III族元素 (A1 , in等)に置換、あるいはそれらを併用すればよい。前記 III族元素窒化物結晶として は、例えば、 Al Ga In (l— s— t) N (ただし、 0≤s≤l , 0≤t≤l , s + t≤l)が挙げら Manufacture of a GaN single crystal using this apparatus can be performed, for example, as follows. First, a sapphire substrate on which a GaN crystal thin film layer is formed is placed in the crucible. On the other hand, in the glove box, gallium (Ga), metallic sodium (Na), carbon (C) Are weighed and placed in a crucible 15, and the crucible 15 is set in a pressure and heat resistant container 13. Then, nitrogen gas is supplied from the gas tank 11 into the heat and pressure resistant container 13. At this time, the pressure is adjusted to a predetermined pressure by the pressure regulator 12. Then, the inside of the heat and pressure resistant container 13 is heated by the electric furnace 14. Then, in the crucible 15, sodium dissolves to form a melt, and the nitrogen gas dissolves in the melt, and the nitrogen and gallium react in the presence of carbon, and the GaN on the substrate A GaN crystal grows on the thin film layer. In this crystal growth, since carbon is present in the melt, the generation of GaN crystal nuclei is prevented in the melt, and the GaN crystal grows on the GaN thin film layer on the substrate. The nonpolar plane (a-plane or M-plane) grows. For example, the crucible 15 corresponds to the “adjustment unit for adjusting the carbon content in the melt” of the present invention. For example, the crucible 15 corresponds to the “reaction portion where gallium and nitrogen react” of the present invention. The growth mechanism of the GaN crystal of the present invention is, for example, because carbon in the melt reacts with nitrogen and exists in the form of CN_ in the vicinity of the gas-liquid interface of the flux. It is estimated that the formation of miscellaneous crystals in can be avoided. Therefore, the production method of the present invention can also be used for the production of Group III element nitride crystals other than gallium as long as nitrogen and carbon are present. In the case of producing the group III element nitride crystal, the gallium may be replaced with another group III element (A1, in, etc.) or they may be used in combination. Examples of the group III element nitride crystal include Al Ga In (l—s—t) N (where 0≤s≤l, 0≤t≤l, s + t≤l).
s t  s t
れる。なお、本発明は、前記推測によりなんら限定されない。  It is. In addition, this invention is not limited at all by the said estimation.
[0039] 本発明の製造方法は、前述のように、前記融液を撹拌する撹拌工程をさらに含ん でもよい。例えば、前記融液中におけるガリウムと窒素との反応を、前記融液および ガリウムを撹拌混合した状態で行えば、前記混合液中への窒素の溶解速度が増大 するとともに、融液中のガリウムと窒素とが均一に分布し、しかも結晶の成長面に常に 新鮮な原料を供給できるため、透明で転位密度が少なぐ均一厚みで、高品位で大 きなバルタ状の透明窒化ガリウム結晶を、早く製造できるため、より好ましい。また、こ のようにすれば、例えば、表面がスムースな GaN結晶を得ることができる。  [0039] As described above, the production method of the present invention may further include a stirring step of stirring the melt. For example, if the reaction between gallium and nitrogen in the melt is performed in a state in which the melt and gallium are stirred and mixed, the dissolution rate of nitrogen in the mixture increases and the gallium in the melt Nitrogen is evenly distributed and fresh raw materials can be constantly supplied to the crystal growth surface, so that transparent, uniform dislocation density, low thickness, high quality and large, buttery transparent gallium nitride crystals can be produced quickly. Since it can manufacture, it is more preferable. In addition, for example, a GaN crystal having a smooth surface can be obtained.
[0040] 本発明において、前記撹拌工程は、特に制限されず、例えば、本発明と発明者一 部同一の特願 2005— 503673 (国際公開 WO2004/083498号パンフレツ卜)の 記載を参考にして行ってもよいし、その他の任意の方法により行ってもよい。本発明 の前記撹拌工程は、具体的には、例えば、前記耐熱耐圧容器を揺動させたり、前記 耐熱耐圧容器を回転させたり、若しくはこれらを組み合わせることにより、実施できる 。その他に、例えば、坩堝中の融液に温度差を与えることによつても、融液を攪拌し える。融液に熱対流が生じるからである。より具体的には、例えば、融液形成のため の前記耐熱耐圧容器の加熱に加え、前記耐熱耐圧容器を加熱して熱対流を発生さ せることによつても、前記融液とガリウムとを撹拌混合できる。さらに、前記撹拌工程は 、撹拌羽根を用いて実施してもよい。これらの撹拌混合手段は、それぞれ組み合わ せること力 Sでさる。 [0040] In the present invention, the agitation step is not particularly limited. It may be performed with reference to the description, or may be performed by any other method. Specifically, the agitation step of the present invention can be carried out, for example, by swinging the heat and pressure resistant container, rotating the heat and pressure resistant container, or combining them. In addition, for example, the melt can be stirred by giving a temperature difference to the melt in the crucible. This is because thermal convection occurs in the melt. More specifically, for example, in addition to heating the heat and pressure resistant container for forming a melt, the heat and pressure resistant container is heated to generate thermal convection. Can be stirred and mixed. Furthermore, you may implement the said stirring process using a stirring blade. These stirring and mixing means can be combined with each other with a force S.
[0041] 本発明にお!/、て、前記耐熱耐圧容器の揺動は、特に制限されず、例えば、前記耐 熱耐圧容器を一定の方向に傾けた後、前記方向とは逆の方向に傾けるという耐熱耐 圧容器を一定方向に揺り動かす揺動がある。また、前記揺動は、規則正しい揺動で もよいし、間欠的で不規則な揺動であってもよい。また、揺動に回転運動を併用して も良い。揺動における耐熱耐圧容器の傾きも特に制限されない。規則的な場合の揺 動の周期は、例えば、 1秒〜 10時間であり、好ましくは 30秒〜 1時間であり、より好ま しくは 1分〜 20分である。揺動における耐熱耐圧容器の最大傾きは、耐熱耐圧容器 の高さ方向の中心線に対し、例えば、 5度〜 70度、好ましくは 10度〜 50度、より好ま しくは 15度〜 45度である。また、後述のように、前記基板が前記耐熱耐圧容器の底 に配置されている場合、前記基板上の窒化ガリウム薄膜が、常に、前記融液で覆わ れてレ、る状態の揺動でもよレ、し、前記耐熱耐圧容器が傾レ、たときに前記基板上から 前記融液が無くなってレ、る状態でもよレ、。  [0041] In the present invention, the swinging of the heat and pressure resistant container is not particularly limited. For example, after the heat and pressure resistant container is tilted in a certain direction, the direction is opposite to the direction described above. There is rocking that tilts the heat and pressure resistant container in a certain direction. Further, the rocking may be regular rocking or intermittent and irregular rocking. Moreover, the rotational motion may be used in combination with the swing. The inclination of the heat-resistant and pressure-resistant container during swing is not particularly limited. The period of oscillation in the regular case is, for example, 1 second to 10 hours, preferably 30 seconds to 1 hour, and more preferably 1 minute to 20 minutes. The maximum inclination of the heat-resistant pressure-resistant container in swinging is, for example, 5 to 70 degrees, preferably 10 to 50 degrees, more preferably 15 to 45 degrees with respect to the center line in the height direction of the heat-resistant pressure-resistant container. is there. Further, as will be described later, when the substrate is disposed at the bottom of the heat-resistant pressure-resistant vessel, the gallium nitride thin film on the substrate is always covered with the melt and may be swung. When the heat and pressure resistant container is tilted, the melt may be removed from the substrate.
[0042] 前記熱対流のための耐熱耐圧容器の加熱は、熱対流が起こる条件であれば特に 制限されない。前記耐熱耐圧容器の加熱位置は、特に制限されず、例えば、耐熱耐 圧容器の底部でもよいし、耐熱耐圧容器の下部の側壁を加熱してもよい。前記熱対 流のための耐熱耐圧容器の加熱温度は、例えば、融液形成のための加熱温度に対 して、 0. 01°C〜500°C高い温度であり、好ましくは 0. 1°C〜300°C高い温度であり、 より好ましくは 1°C〜; 100°C高い温度である。前記加熱は、通常のヒータが使用できる [0043] 前記撹拌羽根を用いた撹拌工程は、特に制限されず、例えば、前記撹拌羽根の回 転運動又は往復運動若しくは前記両運動の組み合わせによるものであってもよい。 また、前記撹拌羽根を用いた撹拌工程は、前記撹拌羽根に対する前記耐熱耐圧容 器の回転運動又は往復運動若しくは前記両運動の組み合わせによるものであっても よい。そして、前記撹拌羽根を用いた撹拌工程は、前記撹拌羽根自身の運動と、前 記耐熱耐圧容器自身の運動とを組み合わせたものであってもよ!/、。前記撹拌羽根は 、特に制限されず、その形状や材質は、例えば、前記耐熱耐圧容器のサイズや形状 等に応じて適宜決定できる力 S、融点若しくは分解温度が 2000°C以上の窒素非含有 材質により形成されて!/、ることが好まし!/、。このような材質で形成された撹拌羽根であ れば、前記融液により溶解することがなぐまた、前記撹拌羽根表面上での結晶核生 成を防止できるからである。 [0042] Heating of the heat-resistant and pressure-resistant vessel for heat convection is not particularly limited as long as heat convection occurs. The heating position of the heat and pressure resistant container is not particularly limited, and for example, the bottom of the heat and pressure resistant container may be used, or the lower side wall of the heat and pressure resistant container may be heated. The heating temperature of the heat and pressure resistant container for the heat convection is, for example, 0.01 ° C to 500 ° C higher than the heating temperature for forming the melt, preferably 0.1 °. C to 300 ° C higher temperature, more preferably 1 ° C to higher; 100 ° C higher temperature. A normal heater can be used for the heating. [0043] The stirring step using the stirring blade is not particularly limited, and may be, for example, a rotational motion, a reciprocating motion, or a combination of the both motions of the stirring blade. Further, the stirring step using the stirring blade may be based on a rotational motion or a reciprocating motion of the heat and pressure resistant container with respect to the stirring blade, or a combination of the both motions. The stirring step using the stirring blade may be a combination of the motion of the stirring blade itself and the motion of the heat and pressure resistant container itself! /. The stirring blade is not particularly limited, and its shape and material are, for example, a force S that can be appropriately determined according to the size and shape of the heat and pressure resistant container, a nitrogen-free material having a melting point or decomposition temperature of 2000 ° C or higher. Formed by! /, Preferable to be! / ,. This is because a stirring blade formed of such a material can be prevented from being melted by the melt, and crystal nucleus formation on the surface of the stirring blade can be prevented.
[0044] また、前記撹拌羽根の材質としては、例えば、希土類酸化物、アルカリ土類金属酸 化物、 W、 SiC、ダイヤモンド、ダイヤモンドライクカーボン等があげられる。このような 材質で形成された撹拌羽根も、前記同様に、前記融液により溶解することがなぐま た、前記撹拌羽根表面上での結晶核生成を防止できるからである。前記希土類およ び前記アルカリ土類金属としては、例えば、 Sc、 Y、 La、 Ce、 Pr、 Nd、 Pm、 Sm、 Eu 、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb、 Be、 Mg、 Ca、 Sr、 Ba、 Ra力 Sあげられる。前記撹 拌羽根の材質として好ましいのは、 Y O、 CaO、 MgO、 W、 SiC、ダイヤモンド、ダイ  [0044] Examples of the material of the stirring blade include rare earth oxides, alkaline earth metal oxides, W, SiC, diamond, diamond-like carbon, and the like. This is because, similarly to the above, the stirring blade formed of such a material can be prevented from being melted by the melt and can prevent crystal nucleation on the surface of the stirring blade. Examples of the rare earth and the alkaline earth metal include Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Be, Mg. , Ca, Sr, Ba, Ra force S. Preferred materials for the stirring blade are Y 2 O, CaO, MgO, W, SiC, diamond, and die.
2 3  twenty three
ャモンドライクカーボン等であり、このなかでも Y oが最も好ましい。  For example, yomon is the most preferred.
2 3  twenty three
[0045] つぎに、本発明の GaN結晶の 2結晶法 X線回析のロッキングカーブの半値全幅は 、 0を超え 200秒以下の範囲である力 低いほど好ましい。 2結晶法 X線回析のロッキ ングカーブの半値全幅は、 X線源から入射した X線を第 1結晶により高度に単色化し 、第 2結晶である前記 GaN結晶に照射し、前記 GaN結晶から回折される X線のピー クを中心とする FWHM (Full width at half maximum)を求めることで測定できる。なお 、前記 X線源は、特に制限されないが、例えば、 CuK a線等が使用できる。また、前 記第 1結晶も特に制限されな!/、が、例えば、 InP結晶や Ge結晶等が使用できる。  Next, the full width at half maximum of the rocking curve of the two-crystal method X-ray diffraction of the GaN crystal of the present invention is preferably as low as possible within a range exceeding 0 and not exceeding 200 seconds. The full width at half maximum of the rocking curve of the two-crystal method X-ray diffraction is such that the X-ray incident from the X-ray source is highly monochromatic by the first crystal, irradiated to the GaN crystal as the second crystal, and diffracted from the GaN crystal It can be measured by calculating the FWHM (Full width at half maximum) centered on the peak of the X-ray. The X-ray source is not particularly limited, but for example, a CuKa line can be used. Also, the first crystal is not particularly limited! /, But, for example, an InP crystal or Ge crystal can be used.
[0046] 本発明の GaN結晶の転位密度は、 0を超え 106個/ cm2以下の範囲であり、低い ほど好ましい。前記転位密度の転位の種類は、特に制限されず、例えば、刃状転位 、螺旋転位がある。前記転位密度の測定方法は、特に制限されないが、例えば、透 過型電子顕微鏡 (TEM)により、 III族元素窒化物結晶の結晶構造を観察して測定 すること力 Sでさる。 [0046] The dislocation density of the GaN crystal of the present invention is in the range of more than 0 and 10 6 pieces / cm 2 or less, and the lower the better. The type of dislocation density is not particularly limited, for example, edge dislocation There is a screw dislocation. The method for measuring the dislocation density is not particularly limited. For example, it can be measured with a force S by observing and measuring the crystal structure of a group III element nitride crystal with a transmission electron microscope (TEM).
[0047] 本発明の GaN結晶は、炭素を含んでいても良い。前記炭素は、例えば、前記融液 中の炭素由来のものであってもよい。前記 III族元素窒化物結晶に含まれる炭素の形 態は、原子であってもよいし、分子であってもよいし、他の元素との化合物の形態で あってもよい。前記 III族元素窒化物結晶中の炭素の含有量は、特に制限されず、例 えば、 1015〜; 1022個/ cm3の範囲、好ましくは、 1016〜; 1021個/ cm3の範囲、より好 ましくは、 1017〜; 102°個 /cm3の範囲である。本発明の製造方法により得られた GaN 結晶は、前記融液中の炭素由来の炭素を含んでいるため、ある GaN結晶において 炭素が検出されたら、それは、本発明の製造方法により製造された結晶ということに なる。また、本発明の GaN結晶の製造方法は、特に制限されないため、本発明の製 造方法以外で製造した場合は、炭素を含まない場合がある。前記 GaN結晶からの炭 素の検出方法は、特に制限されず、例えば、二次イオン質量分析法により検出でき る。なお、本発明の GaN結晶における炭素の割合は、前述と同様である。また、本発 明の GaN結晶が、炭素を含む場合、 P型半導体になる場合があると考えられる。 [0047] The GaN crystal of the present invention may contain carbon. The carbon may be derived from carbon in the melt, for example. The form of carbon contained in the group III element nitride crystal may be an atom, a molecule, or a compound with another element. The carbon content of the group III element nitride crystal is not particularly limited, if example embodiment, 10 15 ~; 10 22 / cm 3, preferably in the range from 10 16 to; 10 21 / cm 3 The range is more preferably 10 17 to; 10 2 ° / cm 3 . Since the GaN crystal obtained by the production method of the present invention contains carbon derived from carbon in the melt, if carbon is detected in a certain GaN crystal, it is the crystal produced by the production method of the present invention. It turns out that. In addition, since the method for producing the GaN crystal of the present invention is not particularly limited, carbon may not be included when produced by a method other than the production method of the present invention. The method for detecting carbon from the GaN crystal is not particularly limited, and can be detected by, for example, secondary ion mass spectrometry. The carbon ratio in the GaN crystal of the present invention is the same as described above. In addition, when the GaN crystal of the present invention contains carbon, it may be a P-type semiconductor.
[0048] つぎに、本発明の基板は、前記本発明の GaN結晶を含む。本発明の基板は、例え ば、サファイア等の基板の上の GaN結晶薄膜の上に、本発明の製造方法により GaN 結晶を形成したものであってもよい。この場合、前記サファイア等の基板を剥離して、 GaN結晶単独の自立基板とすることが好ましい。図 1に示すように、本発明の基板 1 の上に、 LED等の半導体装置を構成すれば、高性能の半導体装置となり、例えば、 高輝度の LEDとすることができる。本発明の半導体装置の種類は、特に制限されず 、例えば、 LED、半導体レーザー、パワー高周波電子素子があげられる。  Next, the substrate of the present invention includes the GaN crystal of the present invention. For example, the substrate of the present invention may be one in which a GaN crystal is formed on a GaN crystal thin film on a substrate such as sapphire by the production method of the present invention. In this case, it is preferable that the sapphire substrate or the like is peeled off to make a GaN crystal alone free-standing substrate. As shown in FIG. 1, when a semiconductor device such as an LED is formed on the substrate 1 of the present invention, a high-performance semiconductor device can be obtained, for example, a high-brightness LED. The type of the semiconductor device of the present invention is not particularly limited, and examples thereof include an LED, a semiconductor laser, and a power high frequency electronic element.
実施例  Example
[0049] つぎに、本発明の実施例について説明する。ただし、本発明は下記の実施例によ つて限定されない。  Next, examples of the present invention will be described. However, the present invention is not limited to the following examples.
[0050] (実施例 1) [0050] (Example 1)
図 11に示す装置を用いて、 GaN結晶を製造した。すなわち、まず、アルミナ坩堝 1 5中に、 GaN薄膜層(上面は c面)が形成されたサファイア基板を配置した。また、前 記アルミナ坩堝 15の中に、ナトリウム(Na)、ガリウム(Ga)および炭素(C :グラフアイト )を入れた。前記ナトリウム(Na)とガリウム(Ga)のモル比は、 Na: Ga = 73: 27である 。また、炭素(C)の添加割合は、ナトリウム(Na)、ガリウム(Ga)および炭素(C)の合 計(Na + Ga + C)に対し、原子0 /0 (at. %)で、 0、0. 02、 0. 1、 0. 5、 1、 2、 5at. % とした。なお、 Oat. %は、比較例 1となる。前記坩堝 15をステンレス容器 13の中にい れ、前記ステンレス容器 13を、耐熱耐圧容器 14の中に入れた。前記ガスタンク 11か ら、窒素ガスを前記ステンレス容器 13内に導入すると同時に、ヒータ(図示せず)によ り加熱して前記耐熱耐圧容器 14内を、 850°C、 40atm (約 4. OMPa)の高温高圧条 件下とし、 96時間処理を行い、 目的とする GaN結晶を製造した。 A GaN crystal was manufactured using the apparatus shown in FIG. That is, first, the alumina crucible 1 5, a sapphire substrate on which a GaN thin film layer (the upper surface is c-plane) was formed. Further, sodium (Na), gallium (Ga) and carbon (C: graphite) were put into the alumina crucible 15 described above. The molar ratio of sodium (Na) to gallium (Ga) is Na: Ga = 73: 27. Also, the addition ratio of carbon (C), compared sodium (Na), the sum of gallium (Ga) and carbon (C) (Na + Ga + C), in atomic 0/0 (at.%) , 0 , 0.02, 0.1, 0.5, 1, 2, 5at.%. Oat.% Is Comparative Example 1. The crucible 15 was placed in a stainless steel container 13, and the stainless steel container 13 was placed in a heat and pressure resistant container 14. Nitrogen gas is introduced into the stainless steel container 13 from the gas tank 11 and simultaneously heated by a heater (not shown) to heat the heat and pressure resistant container 14 to 850 ° C., 40 atm (about 4. OMPa). The target GaN crystal was manufactured under the high-temperature and high-pressure conditions of 96 hours.
[0051] 前記炭素添加が lat. %の場合の GaN結晶の写真を図 4に示し、前記炭素添加割 合が 5at. %の場合の GaN結晶の写真を図 5に示し、炭素添加割合が Oat. %の場 合(比較例 1)の GaN結晶の写真を図 6に示す。図 6に示すように、炭素を添加しない 場合の GaN結晶において、 [0001] (c面)と [10— 11]面が成長している。これに対 し、図 4に示すように、炭素を lat. %の割合で添加した場合の GaN結晶では、 [10 10]面(M面)が成長した。また、図 5に示すように、炭素を 5at. %の割合で添加し た場合の GaN結晶では、 [10— 10]面(M面)が大きく成長した。また、図 7のグラフ に、炭素の各添加割合における GaN結晶の収率を示す。同図において、白の棒ダラ フで表す部分は、前記 GaN結晶薄膜層上で成長した GaN結晶の収率 (LPE収率) を示し、黒の棒グラフで表す部分は、前記融液中で核発生して成長した GaN結晶の 収率 (核発生収率)である。図 7のグラフに示すように、炭素無添加の場合は、核が発 生したが、炭素を添加すると、核発生が防止され、また、炭素の添加量の増加による LPE収率の低下はなかった。  [0051] A photograph of the GaN crystal when the carbon addition is lat.% Is shown in FIG. 4, a photograph of the GaN crystal when the carbon addition ratio is 5 at.% Is shown in FIG. 5, and the carbon addition ratio is Oat Figure 6 shows a photograph of a GaN crystal in the case of% (Comparative Example 1). As shown in Fig. 6, the [0001] (c-plane) and [10-11] planes grow in the GaN crystal without carbon. On the other hand, as shown in Fig. 4, the [10 10] plane (M plane) grew in the GaN crystal when carbon was added at a rate of lat. As shown in Fig. 5, the [10-10] plane (M plane) grew greatly in the GaN crystal when carbon was added at a rate of 5 at.%. The graph in Fig. 7 shows the yield of GaN crystals at each carbon addition ratio. In the figure, the part represented by the white bar graph indicates the yield of GaN crystals grown on the GaN crystal thin film layer (LPE yield), and the part represented by the black bar graph represents nucleation in the melt. This is the yield of GaN crystals grown as a result (nucleation yield). As shown in the graph of Fig. 7, nuclei were generated when carbon was not added, but when carbon was added, nucleation was prevented and there was no decrease in LPE yield due to an increase in the amount of carbon added. It was.
[0052] (実施例 2)  [0052] (Example 2)
結晶成長の際の反応条件を、温度 800°C、圧力 50atm (約 5. OMPa)とし、炭素の 添加割合を、 Oat. % (比較例 2、 3)、 lat. %、 2at. %、 3at. %とした以外は、実施 例 1と同様にして、 GaN結晶を製造した。その結果を、図 9のグラフに示す。同図に おいて、白の棒グラフで表す部分は、前記 GaN結晶薄膜層上で成長した GaN結晶 の収率 (LPE収率)を示し、黒の棒グラフで表す部分は、前記融液中で核発生して成 長した GaN結晶の収率(核発生収率)である。同図において、無添加 1は、比較例 2 であり、無添加 2は、比較例 3である。図 9のグラフに示すように、炭素無添加の場合 は、核が発生し、前記 GaN結晶薄膜層上での GaN結晶の成長が阻害されたが、炭 素を添加すると、核発生が防止され、前記 GaN結晶薄膜層上で、高品質の無極性 面を有する GaN結晶が成長した。 The reaction conditions for crystal growth were a temperature of 800 ° C, a pressure of 50 atm (about 5. OMPa), and the carbon addition ratio was Oat.% (Comparative Examples 2 and 3), lat.%, 2 at.%, 3 at A GaN crystal was produced in the same manner as in Example 1 except that it was changed to%. The result is shown in the graph of FIG. In the figure, the white bar graph represents the GaN crystal grown on the GaN crystal thin film layer. The portion represented by the black bar graph is the yield of the GaN crystal that is nucleated and grown in the melt (nucleation yield). In the figure, additive-free 1 is Comparative Example 2, and additive-free 2 is Comparative Example 3. As shown in the graph of FIG. 9, when no carbon was added, nuclei were generated and the growth of GaN crystals on the GaN crystal thin film layer was inhibited. However, when carbon was added, nucleation was prevented. On the GaN crystal thin film layer, a GaN crystal having a high-quality nonpolar surface was grown.
[0053] (実施例 3) [0053] (Example 3)
結晶成長の際の反応条件を、温度 750°C、圧力 50atm (約 5. OMPa)とし、炭素の 添加割合を、 Oat. % (比較例 4、 5、 6)、 lat. %、 2at. %、 3at. %とした以外は、実 施例 1と同様にして、 GaN結晶を製造した。その結果を、図 10のグラフに示す。同図 において、白の棒グラフで表す部分は、前記 GaN結晶薄膜層上で成長した GaN結 晶の収率 (LPE収率)を示し、黒の棒グラフで表す部分は、前記融液中で核発生して 成長した GaN結晶の収率(核発生収率)である。同図において、無添加 1は、比較例 4であり、無添加 2は、比較例 5であり、無添加 3は、比較例 6である。図 10のグラフに 示すように、炭素無添加の場合は、核が発生し、前記 GaN結晶薄膜層上での GaN 結晶の成長が阻害されたが、炭素を添加すると、核発生が防止され、前記 GaN結晶 薄膜層上で、高品質の無極性面を有する GaN結晶が成長した。  The reaction conditions during crystal growth were a temperature of 750 ° C, a pressure of 50 atm (about 5. OMPa), and the carbon addition ratio was Oat.% (Comparative Examples 4, 5, 6), lat.%, 2 at.% A GaN crystal was produced in the same manner as in Example 1 except that the content was 3 at.%. The result is shown in the graph of FIG. In the figure, the white bar graph represents the yield of GaN crystals grown on the GaN crystal thin film layer (LPE yield), and the black bar graph represents nucleation in the melt. It is the yield (nucleation yield) of the grown GaN crystal. In the figure, additive-free 1 is Comparative Example 4, additive-free 2 is Comparative Example 5, and additive-free 3 is Comparative Example 6. As shown in the graph of FIG. 10, when no carbon was added, nuclei were generated and the growth of GaN crystals on the GaN crystal thin film layer was inhibited, but when carbon was added, nucleation was prevented, A GaN crystal having a high-quality nonpolar surface was grown on the GaN crystal thin film layer.
[0054] (実施例 4) [Example 4]
本実施例では、 MOCVD法によってサファイア基板上に育成した 2inch— GaN薄 膜(直径 5cmの GaN薄膜、上面は M面)を種結晶として、バルタ GaN単結晶育成時 に炭素を添加し、その効果を確認した。具体的な実験手順は、つぎの通りである。す なわち、まず、 Gal 5g、 Nal4. 8gを、前記種基板と共にアルミナ坩堝に充填した後 、炭素源、としてのグラフアイトを、 Naに対して、 0. 5mol%となるように加えた。そして、 育成温度 860°C、育成圧力 45atmで 96時間ェピタキシャル成長を行った。その結 果、前記種結晶基板上に、約 2mmの厚さで GaN単結晶(直径約 5cm)がェピタキシ ャル成長した。この GaN単結晶を、図 12の写真に示す。本実施例の GaN結晶は、 現在報告されている GaN単結晶としては世界最大の結晶である。本実施例において 、坩堝上で成長した GaN結晶(a)と、前記種結晶上にェピタキシャル成長した GaN 結晶(b)の比率(a : b)は、 2 : 8であった。一方、炭素を添加しなかった以外は、同一 の条件で GaN単結晶の育成を行った場合の前記比率(a : b)は、 95 : 5であった。こ れらのことから、本発明において、炭素を添加することにより、坩堝上での核発生を抑 制し、ェピタキシャル成長が促進され、その結果、大型結晶の育成が可能になること 1S 実証されたといえる。 In this example, a 2inch-GaN thin film (GaN thin film with a diameter of 5 cm, top surface is M-plane) grown on a sapphire substrate by MOCVD method was used as seed crystal, and carbon was added during the growth of Balta GaN single crystal. It was confirmed. The specific experimental procedure is as follows. That is, first, Gal 5 g and Nal 4.8 g were filled in an alumina crucible together with the seed substrate, and then a graphite as a carbon source was added so as to be 0.5 mol% with respect to Na. Then, epitaxial growth was performed for 96 hours at a growth temperature of 860 ° C and a growth pressure of 45 atm. As a result, a GaN single crystal (diameter about 5 cm) was epitaxially grown on the seed crystal substrate with a thickness of about 2 mm. This GaN single crystal is shown in the photograph in Fig. 12. The GaN crystal of this example is the world's largest crystal as a GaN single crystal currently reported. In this example, a GaN crystal (a) grown on a crucible and a GaN crystal grown epitaxially on the seed crystal The ratio of crystals (b) (a: b) was 2: 8. On the other hand, when the GaN single crystal was grown under the same conditions except that no carbon was added, the ratio (a: b) was 95: 5. Therefore, in the present invention, the addition of carbon suppresses the generation of nuclei on the crucible, promotes the epitaxial growth, and as a result, enables the growth of large crystals. It can be said that it was done.
産業上の利用可能性 Industrial applicability
以上のように、本発明の GaN結晶の製造方法によれば、核発生防止および高品質 無極性面の成長の少なくとも一方を実現可能である。本発明の GaN結晶を、例えば 、基板として用いれば、高性能の半導体装置を作製することができる。したがって、本 発明は、例えば、ヘテロ接合高速電子デバイスや光電子デバイス(半導体レーザー 、発光ダイオード、センサ等)等の III族元素窒化物結晶半導体の分野に有用である  As described above, according to the GaN crystal manufacturing method of the present invention, at least one of prevention of nucleation and growth of a high-quality nonpolar surface can be realized. If the GaN crystal of the present invention is used as, for example, a substrate, a high-performance semiconductor device can be manufactured. Therefore, the present invention is useful in the field of group III element nitride crystal semiconductors such as heterojunction high-speed electronic devices and optoelectronic devices (semiconductor lasers, light-emitting diodes, sensors, etc.).

Claims

請求の範囲 The scope of the claims
[I] 少なくともアルカリ金属とガリウムとを含む融液中において、 GaN結晶を製造する方 法であって、  [I] A method for producing a GaN crystal in a melt containing at least an alkali metal and gallium,
前記融液中の炭素の含有量を調整する調整工程と、  An adjusting step of adjusting the carbon content in the melt;
前記ガリウムと窒素とが反応する反応工程と  A reaction step in which the gallium and nitrogen react;
を包含する GaN結晶製造方法。  A method for producing a GaN crystal.
[2] 前記調整工程は、前記融液中の炭素の一部を除去する除去工程および前記融液 中に炭素を添加する添加工程のうちの少なくとも一方を包含する、請求の範囲 1に記 載の GaN結晶製造方法。 [2] The adjustment step according to claim 1, including at least one of a removal step of removing a part of carbon in the melt and an addition step of adding carbon to the melt. GaN crystal manufacturing method.
[3] 前記融液中に種結晶を提供する種結晶提供工程を包含し、 [3] including a seed crystal providing step of providing a seed crystal in the melt,
前記種結晶は、 GaN結晶である、請求の範囲 1に記載の GaN結晶製造方法。  The GaN crystal manufacturing method according to claim 1, wherein the seed crystal is a GaN crystal.
[4] 前記炭素が、炭素単体および炭素化合物の少なくとも一方である、請求の範囲 1に 記載の GaN結晶製造方法。 [4] The GaN crystal manufacturing method according to claim 1, wherein the carbon is at least one of a carbon simple substance and a carbon compound.
[5] 前記種結晶が、基板上に形成された GaN結晶層である、請求の範囲 3に記載の Ga[5] The Ga according to claim 3, wherein the seed crystal is a GaN crystal layer formed on a substrate.
N結晶製造方法。 N crystal manufacturing method.
[6] 前記融液中の炭素の含有量を調整することにより、前記種結晶以外の結晶核の発生 を防止する、請求の範囲 3に記載の GaN結晶製造方法。  [6] The method for producing a GaN crystal according to claim 3, wherein generation of crystal nuclei other than the seed crystal is prevented by adjusting a carbon content in the melt.
[7] 前記融液中の炭素の含有量が、前記融液、前記ガリウムおよび前記炭素の合計に 対し、 0. ;!〜 5原子%の範囲である、請求の範囲 6に記載の GaN結晶製造方法。 [7] The GaN crystal according to claim 6, wherein a content of carbon in the melt is in a range of 0.;! To 5 atomic% with respect to a total of the melt, the gallium, and the carbon. Production method.
[8] 前記融液中の炭素の含有量を調整することにより、前記 GaN結晶の無極性面が成 長する、請求の範囲 1に記載の GaN結晶製造方法。 [8] The method for producing a GaN crystal according to claim 1, wherein the nonpolar plane of the GaN crystal is grown by adjusting the content of carbon in the melt.
[9] 前記融液中の炭素の含有量が、前記融液、前記ガリウムおよび前記炭素の合計に 対し、 0. 3〜8原子%の範囲である、請求の範囲 8に記載の GaN結晶製造方法。 [9] The GaN crystal production according to claim 8, wherein a content of carbon in the melt is in a range of 0.3 to 8 atomic% with respect to a total of the melt, the gallium, and the carbon. Method.
[10] 前記融液が、 Naを含む融液である、請求の範囲 1に記載の GaN結晶製造方法。 [10] The method for producing a GaN crystal according to claim 1, wherein the melt is a melt containing Na.
[I I] 前記融液中の炭素の含有量を調整することにより、前記 GaN結晶の M面および a面 の少なくとも一方の無極性面が成長する、請求の範囲 10に記載の GaN結晶製造方 法。  [II] The method for producing a GaN crystal according to claim 10, wherein a nonpolar plane of at least one of the M plane and the a plane of the GaN crystal grows by adjusting a carbon content in the melt. .
[12] 前記基板上の前記 GaN結晶層の上面が、無極性面である、請求の範囲 11に記載 の GaN結晶製造方法。 [12] The upper surface of the GaN crystal layer on the substrate is a nonpolar surface. GaN crystal manufacturing method.
[13] 前記融液を撹拌する撹拌工程をさらに含む請求の範囲 1に記載の GaN結晶製造方 法。  [13] The method for producing a GaN crystal according to claim 1, further comprising a stirring step of stirring the melt.
[14] 主要面として無極性面を有し、 2結晶法 X線回析によるロッキングカーブの半値全幅 力 SOを超え 200秒以下の範囲であり、転位密度が 0を超え 106個/ cm2以下の範囲で ある、 GaN結晶。 [14] Non-polar surface as the main surface, full width at half maximum of rocking curve by two-crystal method X-ray diffraction, exceeding SO and within 200 seconds or less, dislocation density exceeding 0 10 6 / cm 2 A GaN crystal in the following range.
[15] 炭素を含む、請求の範囲 14に記載の GaN結晶。  [15] The GaN crystal according to claim 14, containing carbon.
[16] 請求項 1に記載の製造方法により製造された、請求の範囲 14に記載の GaN結晶。  [16] The GaN crystal according to claim 14, manufactured by the manufacturing method according to claim 1.
[17] 請求の範囲 14に記載の GaN結晶を含み、前記無極性面が、半導体層が形成される 基板面である、 GaN結晶基板。 [17] A GaN crystal substrate comprising the GaN crystal according to claim 14, wherein the nonpolar surface is a substrate surface on which a semiconductor layer is formed.
[18] 請求の範囲 17に記載の基板を含み、前記基板面の上に、半導体層が形成されてい る、半導体装置。 [18] A semiconductor device comprising the substrate according to claim 17, wherein a semiconductor layer is formed on the substrate surface.
[19] 前記半導体装置が、 LED,半導体レーザーまたはパワー高周波電子素子である請 求の範囲 18に記載の半導体装置。  [19] The semiconductor device according to claim 18, wherein the semiconductor device is an LED, a semiconductor laser, or a power high-frequency electronic element.
[20] 少なくともアルカリ金属とガリウムとを含む融液中において、 GaN結晶を製造する製 造装置であって、 [20] A production apparatus for producing a GaN crystal in a melt containing at least an alkali metal and gallium,
前記融液中の炭素の含有量を調整する調製部と、  A preparation unit for adjusting the content of carbon in the melt;
前記ガリウムと窒素とが反応する反応部とを備えた GaN結晶製造装置。  An apparatus for producing a GaN crystal, comprising: a reaction section in which the gallium and nitrogen react.
PCT/JP2007/072135 2006-11-14 2007-11-14 PROCESS FOR PRODUCTION OF GaN CRYSTALS, GaN CRYSTALS, GaN CRYSTAL SUBSTRATE, SEMICONDUCTOR DEVICES, AND APPARATUS FOR PRODUCTION OF GaN CRYSTALS WO2008059901A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008544184A JP4538596B2 (en) 2006-11-14 2007-11-14 GaN crystal manufacturing method
EP07831865A EP2103721B1 (en) 2006-11-14 2007-11-14 METHOD FOR PRODUCTION OF GaN CRYSTAL AND APPARATUS FOR PRODUCTION OF GaN CRYSTAL
CN2007800424346A CN101583745B (en) 2006-11-14 2007-11-14 Process for production of GaN crystals, GaN crystals, GaN crystal substrate, semiconductor devices, and apparatus for production of GaN crystals
US12/514,836 US8187507B2 (en) 2006-11-14 2007-11-14 GaN crystal producing method, GaN crystal, GaN crystal substrate, semiconductor device and GaN crystal producing apparatus
AT07831865T ATE541074T1 (en) 2006-11-14 2007-11-14 METHOD FOR PRODUCING A GAN CRYSTAL AND DEVICE FOR PRODUCING A GAN CRYSTAL
KR1020097012010A KR101192061B1 (en) 2006-11-14 2007-11-14 GaN CRYSTAL PRODUCING METHOD, GaN CRYSTAL, GaN CRYSTAL SUBSTRATE, SEMICONDUCTOR DEVICE AND GaN CRYSTAL PRODUCING APPARATUS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006308170 2006-11-14
JP2006-308170 2006-11-14

Publications (1)

Publication Number Publication Date
WO2008059901A1 true WO2008059901A1 (en) 2008-05-22

Family

ID=39401705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072135 WO2008059901A1 (en) 2006-11-14 2007-11-14 PROCESS FOR PRODUCTION OF GaN CRYSTALS, GaN CRYSTALS, GaN CRYSTAL SUBSTRATE, SEMICONDUCTOR DEVICES, AND APPARATUS FOR PRODUCTION OF GaN CRYSTALS

Country Status (7)

Country Link
US (1) US8187507B2 (en)
EP (1) EP2103721B1 (en)
JP (2) JP4538596B2 (en)
KR (1) KR101192061B1 (en)
CN (1) CN101583745B (en)
AT (1) ATE541074T1 (en)
WO (1) WO2008059901A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010105850A (en) * 2008-10-30 2010-05-13 Panasonic Corp Method for producing group iii element nitride crystal, group iii element nitride crystal, substrate for forming semiconductor device and semiconductor device
JP2010269968A (en) * 2009-05-21 2010-12-02 Panasonic Corp Method and apparatus for producing nitride crystal
JP2011068548A (en) * 2009-08-31 2011-04-07 Ngk Insulators Ltd GROUP 3B NITRIDE CRYSTAL IN WHICH Zn IS DOPED, MANUFACTURING METHOD THEREFOR, AND ELECTRONIC DEVICE
JP2013159547A (en) * 2012-02-08 2013-08-19 Toyoda Gosei Co Ltd Method for producing group iii nitride semiconductor crystal
JP2015078121A (en) * 2014-12-12 2015-04-23 株式会社リコー Nitride crystal and its production method

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5015417B2 (en) * 2004-06-09 2012-08-29 住友電気工業株式会社 GaN crystal manufacturing method
JP4821007B2 (en) * 2007-03-14 2011-11-24 国立大学法人大阪大学 Method for producing group III element nitride crystal and group III element nitride crystal
JP2012012259A (en) 2010-07-01 2012-01-19 Ricoh Co Ltd Nitride crystal and method for producing the same
RU2477766C1 (en) * 2011-09-22 2013-03-20 Общество С Ограниченной Ответственностью "Инновационное Научно-Производственное Предприятие "Кристалл" Method for growing gallium nitride monocrystals
WO2013141617A1 (en) * 2012-03-21 2013-09-26 Seoul Opto Device Co., Ltd. Method of fabricating non-polar gallium nitride-based semiconductor layer, nonpolar semiconductor device, and method of fabricating the same
CN103219436B (en) * 2013-03-27 2015-09-02 上海萃智科技发展有限公司 The LED preparation technology of non-polar GaN epitaxial wafer
CN105378158B (en) * 2013-08-22 2018-02-16 日本碍子株式会社 The preparation method and liquation composition of 13 race's element nitrides
CN106068340B (en) 2014-03-10 2019-07-30 日本碍子株式会社 The manufacturing method of crystal of nitride
CN104445108A (en) * 2014-11-28 2015-03-25 中国科学院物理研究所 GaN microcrystalline and synthetic method thereof
CN107002287B (en) 2014-12-26 2019-08-16 日本碍子株式会社 The cultural method and device of 13 race's element nitride crystals
WO2016118862A1 (en) * 2015-01-22 2016-07-28 Sixpoint Materials, Inc. Seed selection and growth methods for reduced-crack group iii nitride bulk crystals
CN104862781B (en) * 2015-06-04 2017-08-04 北京大学东莞光电研究院 A kind of growing method of III group-III nitride crystal
JP6547506B2 (en) * 2015-08-05 2019-07-24 三菱ケミカル株式会社 Method of manufacturing nitride semiconductor crystal
CN105780124B (en) * 2016-03-12 2018-05-22 东莞市中镓半导体科技有限公司 A kind of laser assisted iii-v crystal growing apparatus and method
JP6222292B2 (en) * 2016-06-14 2017-11-01 株式会社リコー Gallium nitride crystal, method for producing group 13 nitride crystal, and group 13 nitride crystal substrate
CN107687022A (en) * 2016-08-04 2018-02-13 中国科学院苏州纳米技术与纳米仿生研究所 Promote the method for seed crystal liquid phase epitaxy in flux growth metrhod growth GaN single crystal system
JP6841191B2 (en) * 2016-09-06 2021-03-10 豊田合成株式会社 Method for manufacturing group III nitride semiconductor
JP2018043891A (en) * 2016-09-12 2018-03-22 デクセリアルズ株式会社 Production method of gallium nitride laminate
US11162189B2 (en) * 2018-03-02 2021-11-02 Dexerials Corporation Semiconductor substrate, gallium nitride single crystal, and method for producing gallium nitride single crystal
JP7072769B2 (en) 2018-03-02 2022-05-23 国立大学法人大阪大学 Method for Producing Group III Nitride Crystal
JP7221493B2 (en) 2019-02-18 2023-02-14 国立大学法人大阪大学 Method for producing group III nitride crystal
JP7264343B2 (en) 2019-02-20 2023-04-25 パナソニックホールディングス株式会社 Group III nitride crystal production method and seed substrate
JP7226026B2 (en) * 2019-03-30 2023-02-21 豊田合成株式会社 Group III nitride semiconductor device manufacturing method and Group III nitride semiconductor single crystal manufacturing method
CN111807315B (en) * 2020-07-20 2023-10-03 中国科学院长春光学精密机械与物理研究所 Conductive oxide plasmon nanometer optical antenna and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327495A (en) 1999-05-17 2000-11-28 Japan Science & Technology Corp Method for growing gallium nitride single crystal
JP2001102316A (en) 1999-09-29 2001-04-13 Ricoh Co Ltd Method and device for crystal growth and iii group nitride crystal and semiconductor device
JP2003292400A (en) 2002-01-29 2003-10-15 Ricoh Co Ltd Group iii nitride crystal growth method, group iii nitride crystal growth apparatus, group iii nitride crystal, and semiconductor device
WO2004013385A1 (en) * 2002-07-31 2004-02-12 Osaka Industrial Promotion Organization Method for producing group iii element nitride single crystal and group iii element nitride transparent single crystal prepared thereby
WO2004083498A1 (en) 2003-03-17 2004-09-30 Osaka Industrial Promotion Organization Method for producing group iii nitride single crystal and apparatus used therefor
JP2005503673A (en) 2001-09-14 2005-02-03 アクセリス テクノロジーズ インコーポレーテッド Ultraviolet curing treatment for porous low dielectric constant materials
JP2006514780A (en) * 2002-12-16 2006-05-11 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Growth of flat nonpolar a-plane gallium nitride by hydride vapor deposition
JP2006290677A (en) * 2005-04-11 2006-10-26 Hitachi Cable Ltd Method for manufacturing nitride-based compound semiconductor crystal and method for manufacturing nitride-based compound semiconductor substrate
JP2007182333A (en) * 2006-01-04 2007-07-19 Sumitomo Metal Ind Ltd Method of manufacturing single crystal

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3968968B2 (en) * 2000-07-10 2007-08-29 住友電気工業株式会社 Manufacturing method of single crystal GaN substrate
US6949140B2 (en) 2001-12-05 2005-09-27 Ricoh Company, Ltd. Crystal growth method, crystal growth apparatus, group-III nitride crystal and group-III nitride semiconductor device
US7091514B2 (en) 2002-04-15 2006-08-15 The Regents Of The University Of California Non-polar (Al,B,In,Ga)N quantum well and heterostructure materials and devices
JP2004083653A (en) * 2002-08-23 2004-03-18 Sharp Corp Light emitting device, phosphor and method for producing the same
US7427555B2 (en) * 2002-12-16 2008-09-23 The Regents Of The University Of California Growth of planar, non-polar gallium nitride by hydride vapor phase epitaxy
US7176115B2 (en) * 2003-03-20 2007-02-13 Matsushita Electric Industrial Co., Ltd. Method of manufacturing Group III nitride substrate and semiconductor device
US7309534B2 (en) * 2003-05-29 2007-12-18 Matsushita Electric Industrial Co., Ltd. Group III nitride crystals usable as group III nitride substrate, method of manufacturing the same, and semiconductor device including the same
US7227172B2 (en) * 2003-10-20 2007-06-05 Matsushita Electric Industrial Co., Ltd. Group-III-element nitride crystal semiconductor device
JP4821007B2 (en) * 2007-03-14 2011-11-24 国立大学法人大阪大学 Method for producing group III element nitride crystal and group III element nitride crystal

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327495A (en) 1999-05-17 2000-11-28 Japan Science & Technology Corp Method for growing gallium nitride single crystal
JP2001102316A (en) 1999-09-29 2001-04-13 Ricoh Co Ltd Method and device for crystal growth and iii group nitride crystal and semiconductor device
JP2005503673A (en) 2001-09-14 2005-02-03 アクセリス テクノロジーズ インコーポレーテッド Ultraviolet curing treatment for porous low dielectric constant materials
JP2003292400A (en) 2002-01-29 2003-10-15 Ricoh Co Ltd Group iii nitride crystal growth method, group iii nitride crystal growth apparatus, group iii nitride crystal, and semiconductor device
WO2004013385A1 (en) * 2002-07-31 2004-02-12 Osaka Industrial Promotion Organization Method for producing group iii element nitride single crystal and group iii element nitride transparent single crystal prepared thereby
JP2006514780A (en) * 2002-12-16 2006-05-11 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Growth of flat nonpolar a-plane gallium nitride by hydride vapor deposition
WO2004083498A1 (en) 2003-03-17 2004-09-30 Osaka Industrial Promotion Organization Method for producing group iii nitride single crystal and apparatus used therefor
JP2006290677A (en) * 2005-04-11 2006-10-26 Hitachi Cable Ltd Method for manufacturing nitride-based compound semiconductor crystal and method for manufacturing nitride-based compound semiconductor substrate
JP2007182333A (en) * 2006-01-04 2007-07-19 Sumitomo Metal Ind Ltd Method of manufacturing single crystal

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
J. J. APPL. PHYS., vol. 42, 2003, pages L879 - L881
J. PHYS. CHEM. SOLIDS, vol. 56, 1995, pages 639
JOURNAL OF THE JAPANESE ASSOCIATION FOR CRYSTAL GROWTH, vol. 30, no. 2, 2003, pages 38 - 45
MORISHITA M. ET AL.: "Tanso Tenka Na Flux o Mochiita 2 Inch Size no Atsumaku GaN Kiban no Ikusei", DAI 54 KAI OYO BUTSURIGAKU KANKEI RENGO KOENKAI KOEN YOKOSHU, vol. 54TH, no. 1, 2007, pages 379, XP003025810 *
TANPO M. ET AL.: "Na Flux o Mochiita GaN Tankessho Ikusei ni okeru Tanso Tenka Koka", DAI 54 KAI OYO BUTSURIGAKU KANKEI RENGO KOENKAI KOEN YOKOSHU, vol. 54TH, no. 1, 2007, pages 378, XP003025811 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010105850A (en) * 2008-10-30 2010-05-13 Panasonic Corp Method for producing group iii element nitride crystal, group iii element nitride crystal, substrate for forming semiconductor device and semiconductor device
JP2010269968A (en) * 2009-05-21 2010-12-02 Panasonic Corp Method and apparatus for producing nitride crystal
JP2011068548A (en) * 2009-08-31 2011-04-07 Ngk Insulators Ltd GROUP 3B NITRIDE CRYSTAL IN WHICH Zn IS DOPED, MANUFACTURING METHOD THEREFOR, AND ELECTRONIC DEVICE
JP2013159547A (en) * 2012-02-08 2013-08-19 Toyoda Gosei Co Ltd Method for producing group iii nitride semiconductor crystal
JP2015078121A (en) * 2014-12-12 2015-04-23 株式会社リコー Nitride crystal and its production method

Also Published As

Publication number Publication date
KR20090082475A (en) 2009-07-30
CN101583745A (en) 2009-11-18
JPWO2008059901A1 (en) 2010-03-04
EP2103721A4 (en) 2010-11-17
EP2103721A1 (en) 2009-09-23
CN101583745B (en) 2012-07-25
US8187507B2 (en) 2012-05-29
ATE541074T1 (en) 2012-01-15
KR101192061B1 (en) 2012-10-17
JP2010189270A (en) 2010-09-02
JP5305359B2 (en) 2013-10-02
US20100059717A1 (en) 2010-03-11
EP2103721B1 (en) 2012-01-11
JP4538596B2 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
JP5305359B2 (en) GaN crystal manufacturing method and GaN crystal manufacturing apparatus
JP4030125B2 (en) Method for producing group III element nitride single crystal and apparatus used therefor
JP4720441B2 (en) GaN substrate for blue light emitting diode
US20080008642A1 (en) Process For Producing Aluminum Nitride Crystal And Aluminum Nitride Crystal Obtained Thereby
JP6019542B2 (en) Group III nitride crystal manufacturing method and group III nitride crystal manufacturing apparatus
EP2664696A2 (en) Process for growth of low dislocation density gan
WO2007029655A1 (en) Process for producing hexagonal nitride single crystal, hexagonal nitride semiconductor crystal, and process for producing hexagonal nitride single-crystal wafer
JP2015166293A (en) Method for manufacturing group iii nitride crystal, group iii nitride crystal, semiconductor device, and apparatus for manufacturing group iii nitride crystal
JP2008222519A (en) Production method of group iii element nitride crystal and group iii element nitride crystal
JP2004137142A (en) Single crystal aluminum nitride membrane and forming method thereof, underlying substrate for group iii nitride membrane, luminescent element, as well as surface elastic wave device
JP2005213063A (en) Nitride semiconductor free-standing substrate, its production method, and nitride semiconductor luminescent element using the same
US20100247418A1 (en) Method for producing group III nitride semiconductor
JP2018058718A (en) Production method of group iii nitride crystal, semiconductor device, and group iii nitride crystal production apparatus
JP2008285401A (en) Method for manufacturing group iii nitride single crystal substrate, and stacked substrate obtained by stacking group iii nitride single crystal substrate
JP4398762B2 (en) Method for producing group III element nitride single crystal and reaction vessel used therefor
US10011921B2 (en) Method for producing group III element nitride crystal, group III element nitride crystal, semiconductor device, method for producing semiconductor device, and group III element nitride crystal production device
JP6211087B2 (en) Method for producing group 13 element nitride and method for producing melt composition
US11661673B1 (en) HVPE apparatus and methods for growing indium nitride and indium nitride materials and structures grown thereby
JP2008528414A (en) Method for producing c-plane oriented GaN or AlxGa1-xN substrate and method for using c-plane oriented GaN or AlxGa1-xN substrate
Wu Development of a novel growth method for AlN bulk single crystals using elemental aluminum and nitrogen gas
JP2014177367A (en) Nitride semiconductor crystal of group 13 metal in periodic table, device having nitride semiconductor crystal of group 13 metal in periodic table, and production method of nitride semiconductor crystal of group 13 metal in periodic table

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780042434.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831865

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008544184

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12514836

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007831865

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097012010

Country of ref document: KR

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)