WO2008029827A1 - PROCESS FOR PRODUCING AlN CRYSTAL - Google Patents

PROCESS FOR PRODUCING AlN CRYSTAL Download PDF

Info

Publication number
WO2008029827A1
WO2008029827A1 PCT/JP2007/067265 JP2007067265W WO2008029827A1 WO 2008029827 A1 WO2008029827 A1 WO 2008029827A1 JP 2007067265 W JP2007067265 W JP 2007067265W WO 2008029827 A1 WO2008029827 A1 WO 2008029827A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
molten
seed crystal
molten aluminum
interface
Prior art date
Application number
PCT/JP2007/067265
Other languages
French (fr)
Japanese (ja)
Inventor
Kanji Otsuka
Yoshihiro Seimiya
Kenji Takagi
Kaoru Sugita
Original Assignee
Tama-Tlo Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tama-Tlo Ltd. filed Critical Tama-Tlo Ltd.
Priority to JP2008533177A priority Critical patent/JP5229735B2/en
Publication of WO2008029827A1 publication Critical patent/WO2008029827A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/36Single-crystal growth by pulling from a melt, e.g. Czochralski method characterised by the seed, e.g. its crystallographic orientation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0722Preparation by direct nitridation of aluminium
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides

Definitions

  • the present invention relates to a novel method for producing an A1N crystal.
  • Compound semiconductor devices are used for semiconductor devices and high-luminance light-emitting devices.
  • the characteristics required for a substrate of a single device or a high-intensity light emitting device include that the compound semiconductor and the lattice constant are matched, that the band gap is large, and that the heat dissipation is good.
  • a compound semiconductor device has been formed by forming a buffer layer with a special structure on a Si single crystal substrate or a sapphire substrate, and forming a compound semiconductor layer on the buffer layer.
  • A1N has a large band gap in the ultraviolet region, high thermal conductivity, and good lattice constant matching with AlGaN, etc., so when A1N is used as a substrate for a compound semiconductor device, a buffer layer is used. There is no need to form. However, it was impossible to grow A1N crystals with good crystallinity to a sufficient size.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a novel A1N crystal manufacturing method capable of growing an A1N crystal having good crystallinity. Me ⁇ ⁇ .
  • A1 reacts with nitrogen in the atmosphere as a medium to produce A1N.
  • A1B which is a compound of A1 and ⁇
  • the frog A1N is generated by combining with B contained in A1B and then passing it to A1.
  • the present invention has been made based on this finding. That is, in the method for producing an A1N crystal according to the present invention, a seed crystal is brought into contact with the molten A1 located in a nitrogen atmosphere, and the free energy of formation of nitride is A at the interface between the seed crystal and the molten A1. Supply small elements,
  • A1N crystal is grown on the seed crystal by reacting nitrogen dissolved in the molten A1 with the element as a catalyst and the molten A1.
  • the element is at least one selected from the group consisting of, for example, boron, calcium, silicon, iron, molybdenum, chromium, vanadium, magnesium, manganese, indium, gallium, tantalum, hafnium, and thorium force. .
  • the nitrogen atmosphere is preferably 4 atm or more.
  • the temperature at the interface between the molten A1 and the seed crystal is preferably set to 800 ° C or higher.
  • the element may be supplied to the interface between the seed crystal and the molten A1 by mixing a gas of a compound containing the element in the nitrogen atmosphere and dissolving the gas in the molten A1.
  • an A1N crystal can be produced by a novel method.
  • FIG. 1 is a schematic vertical sectional view for explaining the configuration of an A1N manufacturing apparatus used in the A1N manufacturing method according to the first embodiment.
  • FIG. 2 is a schematic longitudinal sectional view for explaining the configuration of an A1N manufacturing apparatus used in the A1N manufacturing method according to the second embodiment.
  • FIG. 1 is a schematic longitudinal sectional view for explaining the configuration of an A1N manufacturing apparatus used in the A1N manufacturing method according to the first embodiment of the present invention.
  • This A1N manufacturing apparatus includes a container 10 for holding molten A12, a heater 20 for heating the molten A1 in the container 10, a seed crystal holding unit 30 for holding the seed crystal 4, and an A1 supply unit 32 for supplying A16 to the molten A12. And a catalytic element supply unit 34 for supplying a substance (hereinafter referred to as a catalyst element-containing material) containing an element functioning as a catalyst (hereinafter referred to as a catalytic element) to the molten A1.
  • a catalytic element supply unit 34 for supplying a substance (hereinafter referred to as a catalyst element-containing material) containing an element functioning as a catalyst (hereinafter referred to as a catalytic element) to the molten A1.
  • a catalytic element supply unit 34 for supplying a substance (
  • the catalytic element is an element whose free energy of formation of nitride is smaller than A1, for example, boron, calcium, silicon, iron, molybdenum, chromium, vanadium, magnesium, manganese, indium, gallium, tantalum, hafnium. And at least one selected from the group consisting of thorium.
  • the catalytic element-containing material may be a single element, nitride (eg, BN, Si N, or Ca N), or carbide (eg, B C).
  • the seed crystal has, for example, a force S, which is an A1N crystal, and the same hexagonal crystal structure as the A1N, and the lattice constant based on the lattice constant of A1N is 65% or more and 135% or less or It may be a crystal (for example, Si N, BN, or GaN) made of a material that is 150% or more and 250% or less and whose free energy of formation is closer to that of A1N.
  • the lattice constant of the seed crystal is A1N
  • the seed crystal and the A1N crystal have a one-to-one lattice match, and when the seed crystal has a lattice constant of 150% or more and 250% or less of the A1N lattice constant, The crystal and A1N crystal have a one-to-two lattice match.
  • a method for manufacturing A1N using the A1N manufacturing apparatus of FIG. 1 will be described. First, insert the A1 piece into the container 10. Next, after the inside of the chamber 50 is evacuated by the pump 54, the nitrogen gas is supplied into the chamber 50 by the nitrogen gas supply unit 52. As a result, the inside of the chamber 150 becomes a nitrogen atmosphere.
  • the pressure in the nitrogen atmosphere is preferably 4 atm or more and 30 atm or less, but may be normal pressure.
  • a predetermined amount of catalyst element-containing material is supplied into the container 10 and the A1 piece is melted using the heater 20.
  • molten A12 in which the catalytic element is dissolved is generated in the container 10.
  • the temperature of the melted A12 at this time is preferably 800 ° C or higher and 1300 ° C or lower.
  • the concentration of the catalyst element contained in the molten A12 is controlled to an optimum value by adding A16 and the catalyst element-containing material as appropriate by the A1 supply unit 32 and the catalyst element supply unit 34.
  • the growth of the A1 N crystal in the seed crystal 4 is continued, and an A1N crystal rod is formed. Also, by adjusting the conditions, an A1N single crystal rod can be produced.
  • the temperature of the molten A1 and the pressure of the nitrogen atmosphere are set to the conditions immediately before the A1N formation reaction occurs, and heating means for heating the temperature of the interface between the seed crystal 4 and the molten A12 (not shown) ) To increase only the interface temperature.
  • A1N crystal rods by the pulling method (CZ method).
  • A1N single crystal rods can be produced by adjusting the conditions.
  • FIG. 2 is a schematic longitudinal sectional view for explaining the configuration of an A1N manufacturing apparatus used in the A1N manufacturing method according to the second embodiment of the present invention.
  • the A1N manufacturing apparatus shown in the figure has the first element except that the catalyst element-containing gas supply unit 56 is provided instead of the catalyst element supply unit 34.
  • the configuration is the same as that of the AIN manufacturing apparatus according to the embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the catalyst element-containing gas supply unit 56 mixes a gas of a compound containing a catalyst element (for example, B H or SiH) in a nitrogen atmosphere. By making these gases melt and infuse into the molten A1

Abstract

A novel process for producing an AlN crystal. The process for AlN crystal production comprises bringing a seed crystal (4) into contact with molten aluminum (2) located in a nitrogenous atmosphere, supplying to the interface between the seed crystal (4) and the molten aluminum (2) an element having a smaller free energy concerning nitride formation than aluminum (e.g., boron, calcium, or silicon), and reacting nitrogen dissolved in the molten aluminum (2) with the molten aluminum (2) using that element as a catalyst to grow an AlN crystal on the seed crystal (4). The nitrogenous atmosphere is preferably regulated so as to have a pressure of 4 atm or higher. The temperature of the interface between the molten aluminum (2) and the seed crystal (4) is preferably regulated to 800°C or higher. The element serving as a catalyst may be supplied to the interface between the seed crystal (4) and the molten aluminum (2) by incorporating the gas of a compound containing the element serving as a catalyst into the nitrogenous atmosphere and dissolving this gas in the molten aluminum (2).

Description

明 細 書  Specification
A1N結晶の製造方法  A1N crystal manufacturing method
技術分野  Technical field
[0001] 本発明は、新規な A1N結晶の製造方法に関する。  [0001] The present invention relates to a novel method for producing an A1N crystal.
背景技術  Background art
[0002] ノ ヮ一デバイスや高輝度発光デバイスには化合物半導体装置が使用される。パヮ 一デバイスや高輝度発光デバイスの基板に求められる特性として、化合物半導体と 格子定数が整合していること、バンドギャップが大きいこと、放熱性が良いことなどが 挙げられる。従来は、 Si単結晶基板又はサファイア基板上に、構造を工夫したバッフ ァ層を形成し、このバッファ層上に化合物半導体層を形成することにより、化合物半 導体装置を形成していた。  [0002] Compound semiconductor devices are used for semiconductor devices and high-luminance light-emitting devices. The characteristics required for a substrate of a single device or a high-intensity light emitting device include that the compound semiconductor and the lattice constant are matched, that the band gap is large, and that the heat dissipation is good. Conventionally, a compound semiconductor device has been formed by forming a buffer layer with a special structure on a Si single crystal substrate or a sapphire substrate, and forming a compound semiconductor layer on the buffer layer.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 上記したように、従来方法では基板と半導体層の間に、構造を工夫したバッファ層 を形成する必要があった。このため製造コストが高くなつてレ、た。 [0003] As described above, in the conventional method, it is necessary to form a buffer layer with a devised structure between the substrate and the semiconductor layer. For this reason, the manufacturing cost is high.
一方、 A1Nは、バンドギャップが紫外域にあり大きぐ熱伝導率も高ぐかつ AlGaN 等との格子定数の整合性も良いため、 A1Nを化合物半導体装置の基板として使用し た場合、バッファ層を形成する必要がない。しかし、結晶性の良い A1N結晶を十分な 大きさに成長させることはできな力、つた。  On the other hand, A1N has a large band gap in the ultraviolet region, high thermal conductivity, and good lattice constant matching with AlGaN, etc., so when A1N is used as a substrate for a compound semiconductor device, a buffer layer is used. There is no need to form. However, it was impossible to grow A1N crystals with good crystallinity to a sufficient size.
[0004] 本発明は上記のような事情を考慮してなされたものであり、その目的は、結晶性の 良い A1N結晶を成長させることが可能な新規な A1N結晶の製造方法を提供すること にめ ·ο。 [0004] The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a novel A1N crystal manufacturing method capable of growing an A1N crystal having good crystallinity. Me · ο.
課題を解決するための手段  Means for solving the problem
[0005] 本発明者等は、 A1と窒化物の生成自由エネルギーが A1より小さい元素のいずれか を同一容器内に挿入し、窒素雰囲気下で加熱して A1を溶融させると、この元素を触 媒として A1と雰囲気中の窒素が反応し、 A1Nが生成することを見出した。例えば ΒΝ を用いる場合、まず A1と Βの化合物である A1B が生成すると考えられる。そして Νが A1B に含まれる Bと結合し、その後 A1に受け渡されることにより、 A1Nが生成する。[0005] When the present inventors insert A1 and any element whose free energy of formation of nitride is smaller than A1 into the same container and heat it in a nitrogen atmosphere to melt A1, the element is touched. We have found that A1 reacts with nitrogen in the atmosphere as a medium to produce A1N. For example, when ΒΝ is used, it is considered that A1B, which is a compound of A1 and Β, is generated first. And the frog A1N is generated by combining with B contained in A1B and then passing it to A1.
12 12
[0006] 本発明は、この知見に基づいてなされたものである。すなわち本発明に係る A1N結 晶の製造方法は、窒素雰囲気下に位置している溶融 A1に種結晶を接触させ、 前記種結晶と前記溶融 A1の界面に、窒化物の生成自由エネルギーが Aはり小さい 元素を供給し、  [0006] The present invention has been made based on this finding. That is, in the method for producing an A1N crystal according to the present invention, a seed crystal is brought into contact with the molten A1 located in a nitrogen atmosphere, and the free energy of formation of nitride is A at the interface between the seed crystal and the molten A1. Supply small elements,
前記元素を触媒として前記溶融 A1に溶解した窒素と前記溶融 A1を反応させること により、前記種結晶に A1N結晶を成長させるものである。  A1N crystal is grown on the seed crystal by reacting nitrogen dissolved in the molten A1 with the element as a catalyst and the molten A1.
[0007] 前記元素は、例えばボロン、カルシウム、シリコン、鉄、モリブデン、クロム、バナジゥ ム、マグネシウム、マンガン、インジウム、ガリウム、タンタル、ハフニウム、及びトリウム 力、らなる群から選ばれた少なくとも一種である。前記窒素雰囲気を 4気圧以上にする のが好ましい。また前記溶融 A1と前記種結晶の界面の温度を 800°C以上にするのが 好ましい。前記窒素雰囲気に、前記元素を含む化合物の気体を混入させ、前記溶融 A1に前記気体を溶かし込むことにより、前記種結晶と前記溶融 A1の界面に前記元素 を供給してもよい。 [0007] The element is at least one selected from the group consisting of, for example, boron, calcium, silicon, iron, molybdenum, chromium, vanadium, magnesium, manganese, indium, gallium, tantalum, hafnium, and thorium force. . The nitrogen atmosphere is preferably 4 atm or more. Further, the temperature at the interface between the molten A1 and the seed crystal is preferably set to 800 ° C or higher. The element may be supplied to the interface between the seed crystal and the molten A1 by mixing a gas of a compound containing the element in the nitrogen atmosphere and dissolving the gas in the molten A1.
発明の効果  The invention's effect
[0008] 本発明によれば、新規な方法で A1N結晶を製造することができる。  [0008] According to the present invention, an A1N crystal can be produced by a novel method.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]第 1の実施形態に係る A1Nの製造方法で用いられる A1N製造装置の構成を説 明する為の縦断面概略図。  FIG. 1 is a schematic vertical sectional view for explaining the configuration of an A1N manufacturing apparatus used in the A1N manufacturing method according to the first embodiment.
[図 2]第 2の実施形態に係る A1Nの製造方法で用いられる A1N製造装置の構成を説 明する為の縦断面概略図。  FIG. 2 is a schematic longitudinal sectional view for explaining the configuration of an A1N manufacturing apparatus used in the A1N manufacturing method according to the second embodiment.
符号の説明  Explanation of symbols
[0010] 2…溶融 A1 [0010] 2… Melting A1
4· · ·種結晶  4 ...
10· · ·容器  10 · · · Container
20…ヒータ  20 ... Heater
30· · ·種結晶保持部  30 · · · Seed crystal holding part
32· · ·Α1供給部 34· · ·触媒元素供給部 32 ··· 1 Supply Department 34 ··· Catalyst element supply section
50…チャンバ一  50 ... Chamber one
52· · ·窒素ガス供給部  52 ··· Nitrogen gas supply section
54…ポンプ  54 ... Pump
56 · · ·触媒元素含有ガス供給部  56 · · · Gas supply section containing catalyst element
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下、図面を参照して本発明の実施形態について説明する。図 1は、本発明の第 1 の実施形態に係る A1Nの製造方法に用いられる A1N製造装置の構成を説明する為 の縦断面概略図である。この A1N製造装置は、溶融 A12を保持する容器 10、容器 1 0内の溶融 A1を加熱するヒータ 20、種結晶 4を保持する種結晶保持部 30、溶融 A12 に A16を供給する A1供給部 32、及び触媒として機能する元素(以下、触媒元素と記 載)を含有する物質 (以下、触媒元素含有物と記載)を溶融 A1に供給する触媒元素 供給部 34を有している。これらの各構成要素はチャンバ一 50内に配置されている。 チャンバ一 50の内部は、窒素ガス供給部 52によって加圧された窒素雰囲気にする こと力 Sできる。またチャンバ一 50の内部はポンプ 54によって排気可能である。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic longitudinal sectional view for explaining the configuration of an A1N manufacturing apparatus used in the A1N manufacturing method according to the first embodiment of the present invention. This A1N manufacturing apparatus includes a container 10 for holding molten A12, a heater 20 for heating the molten A1 in the container 10, a seed crystal holding unit 30 for holding the seed crystal 4, and an A1 supply unit 32 for supplying A16 to the molten A12. And a catalytic element supply unit 34 for supplying a substance (hereinafter referred to as a catalyst element-containing material) containing an element functioning as a catalyst (hereinafter referred to as a catalytic element) to the molten A1. Each of these components is disposed within the chamber 50. The inside of the chamber 50 can be made into a nitrogen atmosphere pressurized by the nitrogen gas supply unit 52. The inside of the chamber 50 can be evacuated by a pump 54.
[0012] 触媒元素とは、窒化物の生成自由エネルギーが A1より小さい元素であり、例えばボ ロン、カルシウム、シリコン、鉄、モリブデン、クロム、バナジウム、マグネシウム、マンガ ン、インジウム、ガリウム、タンタル、ハフニウム、及びトリウムからなる群から選ばれた 少なくとも一種である。触媒元素含有物は、その元素単体であってもよいし、窒化物( 例えば BN、 Si N、又は Ca N )であっても良いし、炭化物(例えば B C)であっても  [0012] The catalytic element is an element whose free energy of formation of nitride is smaller than A1, for example, boron, calcium, silicon, iron, molybdenum, chromium, vanadium, magnesium, manganese, indium, gallium, tantalum, hafnium. And at least one selected from the group consisting of thorium. The catalytic element-containing material may be a single element, nitride (eg, BN, Si N, or Ca N), or carbide (eg, B C).
3 4 3 2 4  3 4 3 2 4
良い。  good.
[0013] 種結晶は、例えば A1N結晶である力 S、 A1Nと同じ六方晶系の結晶構造を有しており 、 A1Nの格子定数を基準とした場合の格子定数が 65 %以上 135 %以下又は 150 % 以上 250%以下の物質であって、生成自由エネルギーが A1Nより近い物質からなる 結晶(例えば Si N、 BN、又は GaN)であってもよい。種結晶の格子定数が A1Nの  [0013] The seed crystal has, for example, a force S, which is an A1N crystal, and the same hexagonal crystal structure as the A1N, and the lattice constant based on the lattice constant of A1N is 65% or more and 135% or less or It may be a crystal (for example, Si N, BN, or GaN) made of a material that is 150% or more and 250% or less and whose free energy of formation is closer to that of A1N. The lattice constant of the seed crystal is A1N
3 4  3 4
格子定数の 65 %以上 135 %以下の場合は、種結晶と A1Nの結晶は格子が一対一 で整合し、種結晶の格子定数が A1Nの格子定数の 150 %以上 250 %以下の場合は 、種結晶と A1Nの結晶は格子が一対二で整合する。 [0014] 次に、図 1の A1N製造装置を用いて A1Nを製造する方法を説明する。まず、容器 1 0の内部に A1片を揷入する。次いで、ポンプ 54でチャンバ一 50の内部を排気した後 、窒素ガス供給部 52によってチャンバ一 50の内部に窒素ガスを供給する。これによ り、チャンバ一 50の内部は窒素雰囲気になる。窒素雰囲気の圧力は 4気圧以上 30 気圧以下であるのが好ましいが、常圧であってもよい。次いで、所定量の触媒元素含 有物を容器 10の内部に供給し、ヒータ 20を用いて A1片を溶融する。これにより、容 器 10内に、触媒元素が溶け込んだ溶融 A12が生成する。このときの溶融 A12の温度 は、 800°C以上 1300°C以下であるのが好ましい。 When the lattice constant is 65% or more and 135% or less, the seed crystal and the A1N crystal have a one-to-one lattice match, and when the seed crystal has a lattice constant of 150% or more and 250% or less of the A1N lattice constant, The crystal and A1N crystal have a one-to-two lattice match. Next, a method for manufacturing A1N using the A1N manufacturing apparatus of FIG. 1 will be described. First, insert the A1 piece into the container 10. Next, after the inside of the chamber 50 is evacuated by the pump 54, the nitrogen gas is supplied into the chamber 50 by the nitrogen gas supply unit 52. As a result, the inside of the chamber 150 becomes a nitrogen atmosphere. The pressure in the nitrogen atmosphere is preferably 4 atm or more and 30 atm or less, but may be normal pressure. Next, a predetermined amount of catalyst element-containing material is supplied into the container 10 and the A1 piece is melted using the heater 20. As a result, molten A12 in which the catalytic element is dissolved is generated in the container 10. The temperature of the melted A12 at this time is preferably 800 ° C or higher and 1300 ° C or lower.
[0015] 次!/、で、種結晶保持部 30に保持された種結晶 4を回転させながら、種結晶 4の下 面を溶融 A12に浸す。種結晶 4と溶融 A12の界面には触媒元素が位置している。この 状態において、触媒元素は溶融 A12に溶解した窒素と反応して窒化する。上記した ように触媒元素は、窒化物の生成自由エネルギーがアルミニウムより小さい。このた め、触媒元素と結合した窒素がアルミニウムに受け渡され、アルミニウムが窒化する。 このようにして、触媒元素を触媒としたアルミニウムの窒化反応が進行し、これにより、 種結晶 4に A1N結晶が成長する。 A1N結晶が成長する間、 A1供給部 32及び触媒元 素供給部 34によって、適宜 A16及び触媒元素含有物を追加することにより、溶融 A1 2に含まれる触媒元素の濃度を最適値に制御する。これにより、種結晶 4における A1 N結晶の成長が持続し、 A1Nの結晶棒が生成する。また、条件を調整することにより 、 A1Nの単結晶棒を生成することができる。  [0015] Next! /, The bottom surface of the seed crystal 4 is immersed in the molten A12 while rotating the seed crystal 4 held by the seed crystal holding unit 30. A catalytic element is located at the interface between seed crystal 4 and molten A12. In this state, the catalytic element reacts with the nitrogen dissolved in the molten A12 and nitrides. As described above, the catalytic element has a lower free energy of formation of nitride than aluminum. For this reason, the nitrogen combined with the catalytic element is transferred to the aluminum, and the aluminum is nitrided. In this way, the nitriding reaction of aluminum using the catalytic element as a catalyst proceeds, and thereby an A1N crystal grows on the seed crystal 4. While the A1N crystal grows, the concentration of the catalyst element contained in the molten A12 is controlled to an optimum value by adding A16 and the catalyst element-containing material as appropriate by the A1 supply unit 32 and the catalyst element supply unit 34. As a result, the growth of the A1 N crystal in the seed crystal 4 is continued, and an A1N crystal rod is formed. Also, by adjusting the conditions, an A1N single crystal rod can be produced.
[0016] なお、溶融 A1の温度及び窒素雰囲気の圧力を、 A1Nの生成反応が起こる寸前の 条件に設定しておき、種結晶 4と溶融 A12の界面の温度を加熱する加熱手段(図示 せず)を用いて界面の温度のみを上昇させても良レ、。  [0016] It should be noted that the temperature of the molten A1 and the pressure of the nitrogen atmosphere are set to the conditions immediately before the A1N formation reaction occurs, and heating means for heating the temperature of the interface between the seed crystal 4 and the molten A12 (not shown) ) To increase only the interface temperature.
[0017] 以上、本実施形態によれば、引き上げ法(CZ法)により A1Nの結晶棒を生成するこ と力 Sできる。また、条件を調整することにより、 A1Nの単結晶棒を生成することができる [0017] As described above, according to the present embodiment, it is possible to generate A1N crystal rods by the pulling method (CZ method). A1N single crystal rods can be produced by adjusting the conditions.
Yes
[0018] 図 2は、本発明の第 2の実施形態に係る A1Nの製造方法で用いられる A1N製造装 置の構成を説明する為の縦断面概略図である。本図に示す A1N製造装置は、触媒 元素供給部 34の代わりに触媒元素含有ガス供給部 56を有する点を除いて、第 1の 実施形態に係る AIN製造装置と同様の構成である。以下、第 1の実施形態と同様の 構成については同一の符号を付して説明を省略する。 FIG. 2 is a schematic longitudinal sectional view for explaining the configuration of an A1N manufacturing apparatus used in the A1N manufacturing method according to the second embodiment of the present invention. The A1N manufacturing apparatus shown in the figure has the first element except that the catalyst element-containing gas supply unit 56 is provided instead of the catalyst element supply unit 34. The configuration is the same as that of the AIN manufacturing apparatus according to the embodiment. Hereinafter, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
[0019] 触媒元素含有ガス供給部 56は、窒素雰囲気に、触媒元素を含む化合物の気体( 例えば B H又は SiH )を混入させ。これら気体を溶融 A1に溶力、し込ませることにより [0019] The catalyst element-containing gas supply unit 56 mixes a gas of a compound containing a catalyst element (for example, B H or SiH) in a nitrogen atmosphere. By making these gases melt and infuse into the molten A1
2 6 4  2 6 4
、溶融 A1に触媒元素を溶力も込ませる。  Then, melt the catalyst element into the molten A1.
[0020] 本実施形態に係る A1Nの製造方法は、触媒元素供給部 34の代わりに触媒元素含 有ガス供給部 56を用いて溶融 A1に触媒元素を溶力、し込ませる点を除いて、第 1の実 施形態に係る A1Nの製造方法と同様である。 [0020] The manufacturing method of A1N according to the present embodiment, except that the catalytic element-containing gas supply unit 56 is used instead of the catalytic element supply unit 34, and the catalytic element is melted and injected into the molten A1. This is the same as the manufacturing method of A1N according to the first embodiment.
本実施形態によっても第 1の実施形態と同様の効果を得ることができる。  According to this embodiment, the same effect as that of the first embodiment can be obtained.
[0021] 尚、本発明は上述した実施形態に限定されるものではなぐ本発明の主旨を逸脱し ない範囲内で種々変更して実施することが可能である。 It should be noted that the present invention is not limited to the above-described embodiment, and can be implemented with various modifications without departing from the spirit of the present invention.

Claims

請求の範囲 The scope of the claims
[1] 窒素雰囲気下に位置してレ、る溶融 A1に種結晶を接触させ、  [1] Place the seed crystal in contact with the molten A1 located in a nitrogen atmosphere,
前記種結晶と前記溶融 A1の界面に、窒化物の生成自由エネルギーが Aはり小さい 元素を供給し、  An element having a small free energy of formation of nitride is supplied to the interface between the seed crystal and the molten A1,
前記元素を触媒として前記溶融 A1に溶解した窒素と前記溶融 A1を反応させること により、前記種結晶に A1N結晶を成長させる、 A1N結晶の製造方法。  A method for producing an A1N crystal, wherein an A1N crystal is grown on the seed crystal by reacting the molten A1 with nitrogen dissolved in the molten A1 using the element as a catalyst.
[2] 前記元素はボロン、カルシウム、シリコン、鉄、モリブデン、クロム、バナジウム、マグ ネシゥム、マンガン、インジウム、ガリウム、タンタル、ハフニウム、及びトリウムからなる 群から選ばれた少なくとも一種である請求項 1に記載の A1N結晶の製造方法。  [2] The element according to claim 1, wherein the element is at least one selected from the group consisting of boron, calcium, silicon, iron, molybdenum, chromium, vanadium, magnesium, manganese, indium, gallium, tantalum, hafnium, and thorium. The manufacturing method of A1N crystal of description.
[3] 前記窒素雰囲気を 4気圧以上にする請求項 1又は 2に記載の A1N結晶の製造方法 [3] The method for producing an A1N crystal according to claim 1 or 2, wherein the nitrogen atmosphere is 4 atm or more.
Yes
[4] 前記溶融 A1と前記種結晶の界面の温度を 800°C以上にする請求項;!〜 3のいずれ か一項に記載の A1N結晶の製造方法。  [4] The method for producing an A1N crystal according to any one of claims 1 to 3, wherein a temperature at an interface between the molten A1 and the seed crystal is set to 800 ° C or higher.
[5] 前記窒素雰囲気に、前記元素を含む化合物の気体を混入させ、前記溶融 A1に前 記気体を溶かし込むことにより、前記種結晶と前記溶融 A1の界面に前記元素を供給 する請求項 1〜4のいずれか一項に記載の A1N結晶の製造方法。  [5] The element is supplied to an interface between the seed crystal and the molten A1 by mixing a gas of the compound containing the element in the nitrogen atmosphere and dissolving the gas in the molten A1. The manufacturing method of the A1N crystal as described in any one of -4.
PCT/JP2007/067265 2006-09-07 2007-09-05 PROCESS FOR PRODUCING AlN CRYSTAL WO2008029827A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008533177A JP5229735B2 (en) 2006-09-07 2007-09-05 Method for producing AlN crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006242973 2006-09-07
JP2006-242973 2006-09-07

Publications (1)

Publication Number Publication Date
WO2008029827A1 true WO2008029827A1 (en) 2008-03-13

Family

ID=39157253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067265 WO2008029827A1 (en) 2006-09-07 2007-09-05 PROCESS FOR PRODUCING AlN CRYSTAL

Country Status (2)

Country Link
JP (1) JP5229735B2 (en)
WO (1) WO2008029827A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009234862A (en) * 2008-03-27 2009-10-15 Tama Tlo Ltd Treating method of aluminum nitride powder and aluminum nitride
US9623015B2 (en) 2012-11-05 2017-04-18 Commissariat À L'energie Atomique Et Aux Energies Alternatives (Cea) Combination of an anti-cancer agent such as a tyrosinekinase inhibitor and a STAT5 antagonist, preferably a thiazolidinedione, for eliminating hematologic cancer stem cells in vivo and for preventing hematologic cancer relapse

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102271060B1 (en) * 2018-05-18 2021-06-29 연세대학교 산학협력단 Layered AlN, manufacturing method thereof and exfoliated AlN nanosheet therefrom

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07277897A (en) * 1994-04-04 1995-10-24 Katsutoshi Yoneya Synthesis of aluminum nitride single crystal
JP2003505331A (en) * 1999-07-22 2003-02-12 クリー インコーポレイテッド Growth of aluminum nitride bulk single crystals from the melt.
JP2004189549A (en) * 2002-12-12 2004-07-08 Sumitomo Metal Mining Co Ltd Method of manufacturing aluminum nitride single crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07277897A (en) * 1994-04-04 1995-10-24 Katsutoshi Yoneya Synthesis of aluminum nitride single crystal
JP2003505331A (en) * 1999-07-22 2003-02-12 クリー インコーポレイテッド Growth of aluminum nitride bulk single crystals from the melt.
JP2004189549A (en) * 2002-12-12 2004-07-08 Sumitomo Metal Mining Co Ltd Method of manufacturing aluminum nitride single crystal

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SEIMIYA Y. AND SHINODA T.: "Al to Bn no Koeki Hanno ni yoru AlN Seisei Joken no Kaimei", THE JAPAN INSTITUTE OF METALS KOEN GAIYO, vol. 136TH, 29 March 2005 (2005-03-29), pages 327, XP003021639 *
SEIMIYA Y. ET AL.: "Al to BN no Koeki Hanno ni yoru AlN Seisei Joken no Kaimei", ABSTRACTS OF THE MEETING OF JAPAN INSTITUTE OF LIGHT METALS, vol. 109TH, 20 October 2005 (2005-10-20), pages 351 - 352, XP003021638 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009234862A (en) * 2008-03-27 2009-10-15 Tama Tlo Ltd Treating method of aluminum nitride powder and aluminum nitride
US9623015B2 (en) 2012-11-05 2017-04-18 Commissariat À L'energie Atomique Et Aux Energies Alternatives (Cea) Combination of an anti-cancer agent such as a tyrosinekinase inhibitor and a STAT5 antagonist, preferably a thiazolidinedione, for eliminating hematologic cancer stem cells in vivo and for preventing hematologic cancer relapse

Also Published As

Publication number Publication date
JPWO2008029827A1 (en) 2010-01-21
JP5229735B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
CN101583745B (en) Process for production of GaN crystals, GaN crystals, GaN crystal substrate, semiconductor devices, and apparatus for production of GaN crystals
JP4801315B2 (en) Method for producing group III nitride crystal
JP2001064098A (en) Method and device for growing crystal, and group iii nitride crystal
JP2003313098A (en) Method and apparatus for growing group iii nitride crystal
JP4245822B2 (en) Method for producing group III nitride crystal
CN106460228A (en) Process for producing group iii nitride crystal and apparatus for producing group iii nitride crystal
JP3868156B2 (en) Crystal growth method, crystal growth apparatus and group III nitride crystal
KR101356381B1 (en) Method and apparatus for manufacturing gallium nitride free-standing substrate
JP2005225681A5 (en)
JP2004231447A (en) Method for growing group iii nitride crystal, group iii nitride crystal, and semiconductor device
JP2003313099A (en) Apparatus for growing group iii nitride crystal
WO2008029827A1 (en) PROCESS FOR PRODUCING AlN CRYSTAL
JP4053336B2 (en) Group III nitride crystal production method and group III nitride crystal production apparatus
JP4159303B2 (en) Group III nitride crystal manufacturing method and group III nitride crystal manufacturing apparatus
JP4094878B2 (en) Group III nitride crystal production method and group III nitride crystal production apparatus
JP5464004B2 (en) Group III nitride semiconductor crystal manufacturing method
JP2002068897A (en) Method and device for growing group iii nitride crystal, the group iii nitride crystal and semiconductor element
JP4077643B2 (en) Group III nitride crystal growth apparatus and group III nitride crystal growth method
WO2008035632A1 (en) PROCESS FOR PRODUCING GaN SINGLE-CRYSTAL, GaN THIN-FILM TEMPLATE SUBSTRATE AND GaN SINGLE-CRYSTAL GROWING APPARATUS
WO2014141959A1 (en) METHOD AND DEVICE FOR MANUFACTURING GALLIUM NITRIDE (GaN) FREE-STANDING SUBSTRATE
WO2006011361A1 (en) Iii group nitride single crystal and method for preparation thereof, and semiconductor device
CN101194053A (en) Method for producing gaxin1-xn(0<=x<=1=1) crystal, gaxin1-xn(0<=x<=1=1) crystalline substrate, method for producing gan crystal, gan crystalline substrate, and product
JP6797398B2 (en) Manufacturing method of aluminum nitride crystal
JP4956515B2 (en) Method for producing group III nitride crystal
JP4271408B2 (en) Group III nitride crystal production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828193

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008533177

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07828193

Country of ref document: EP

Kind code of ref document: A1