WO2019151644A1 - Layered kznsb, layered znsb, kznsb nanosheet, znsb nanosheet, and preparation methods therefor - Google Patents
Layered kznsb, layered znsb, kznsb nanosheet, znsb nanosheet, and preparation methods therefor Download PDFInfo
- Publication number
- WO2019151644A1 WO2019151644A1 PCT/KR2018/016085 KR2018016085W WO2019151644A1 WO 2019151644 A1 WO2019151644 A1 WO 2019151644A1 KR 2018016085 W KR2018016085 W KR 2018016085W WO 2019151644 A1 WO2019151644 A1 WO 2019151644A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layered
- znsb
- kznsb
- peeling
- synthesizing
- Prior art date
Links
- 239000002135 nanosheet Substances 0.000 title claims abstract description 24
- 238000002360 preparation method Methods 0.000 title abstract description 5
- 229910007657 ZnSb Inorganic materials 0.000 claims abstract description 71
- 238000000034 method Methods 0.000 claims abstract description 43
- 239000000463 material Substances 0.000 claims abstract description 15
- 230000002194 synthesizing effect Effects 0.000 claims description 27
- 239000002904 solvent Substances 0.000 claims description 26
- 239000013078 crystal Substances 0.000 claims description 17
- 150000002500 ions Chemical class 0.000 claims description 13
- 150000001875 compounds Chemical class 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 10
- 238000010791 quenching Methods 0.000 claims description 10
- 238000010583 slow cooling Methods 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 230000000171 quenching effect Effects 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 239000003960 organic solvent Substances 0.000 claims description 8
- 239000002994 raw material Substances 0.000 claims description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 6
- 239000000853 adhesive Substances 0.000 claims description 5
- 230000001070 adhesive effect Effects 0.000 claims description 5
- 230000009545 invasion Effects 0.000 claims description 5
- 150000003839 salts Chemical class 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 229910052787 antimony Inorganic materials 0.000 claims description 4
- 229910052700 potassium Inorganic materials 0.000 claims description 4
- 239000000376 reactant Substances 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 150000001408 amides Chemical class 0.000 claims description 3
- 150000005676 cyclic carbonates Chemical group 0.000 claims description 3
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 claims description 3
- 238000000048 melt cooling Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 3
- 150000002825 nitriles Chemical class 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 claims description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims 1
- 238000009831 deintercalation Methods 0.000 abstract description 2
- 230000002687 intercalation Effects 0.000 abstract description 2
- 238000009830 intercalation Methods 0.000 abstract description 2
- 239000010453 quartz Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000004626 scanning electron microscopy Methods 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 229910002665 PbTe Inorganic materials 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000005678 chain carbonates Chemical class 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- CZJCMXPZSYNVLP-UHFFFAOYSA-N antimony zinc Chemical compound [Zn].[Sb] CZJCMXPZSYNVLP-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000007716 flux method Methods 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/60—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
- C30B29/68—Crystals with laminate structure, e.g. "superlattices"
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B33/00—After-treatment of single crystals or homogeneous polycrystalline material with defined structure
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/851—Thermoelectric active materials comprising inorganic compositions
Definitions
- the present invention relates to a layered KZnSb, a layered ZnSb, KZnSb nanosheets, ZnSb nanosheets and methods for their preparation, and more specifically, two-dimensional P63 / mmc layered KZnSb different from the existing three-dimensional crystal structure (pbca)
- the present invention relates to a layered ZnSb and a KZnSb nanosheet and a ZnSb nanosheet manufactured through peeling thereof.
- Graphene and other ultra-thin two-dimensional (2D) materials are being actively studied in various fields based on new physical, chemical, mechanical and optical properties.
- Zinc antimonide inexpensive, non-toxic and abundant, is of great interest as an attractive alternative to Bi 2 Te 3 and PbTe materials for thermoelectric applications in the temperature range of 400K-600K. Is getting.
- thermoelectric efficiency is low due to its high thermal conductivity.
- Layered ZnSb structures and exfoliated ZnSb nanosheets made such that thermal transfer can be significantly hampered by phonon grain boundary scattering can be promising candidates for thermoelectric applications and development of thin film thermoelectric materials.
- the inventors of the present invention have fabricated a ZnSb layered structure of layered hexagonal symmetrical structure with potassium intercalation (inserted) layered KZnSb high quality single crystal growth and potassium ion deintercalation (etch) by flux method. It was.
- the ZnSb of the two-dimensional hexagonal symmetric layered structure thus obtained is expected to be nanosheeted by the conventional peeling method.
- the problem to be solved by the present invention is to provide a method for producing a ZnSb nanosheet by producing a ZnSb layered structure of the existing three-dimensional material, and peeling the prepared layered ZnSb.
- the problem to be solved by the present invention is to provide a layered ZnSb and ZnSb nanosheets having excellent thermoelectric properties through the above method.
- the present invention provides a layered compound represented by the following formula (1) or (2), and a nanosheet represented by formula (1) or formula (2).
- the compounds have a layered structure as shown in FIG. 3.
- the compound ZnSb has a two-dimensional P63 / mmc layered form different from the existing three-dimensional crystalline ZnSb (pbca).
- the compound has semiconductor properties.
- the present invention also provides
- the hot melting step is a method for synthesizing the layered KZnSb, characterized in that carried out at a temperature of 650 ⁇ 800 °C.
- the cooling step may be achieved by quenching or slow cooling the mixture.
- the slow cooling is a step of growing a crystal by cooling at a rate of 0.5-3 ° C. to a temperature of 300-500 ° C. to form a single crystal
- the quenching is a step of rapidly cooling the slow cooling to form a polycrystal.
- the present invention also provides
- Removing K ions from the layered KZnSb may remove K ions in the crystal using an organic solvent, water, or a mixture thereof.
- the organic solvent may be a cyclic carbonate solvent, a chain carbonate solvent, an ester solvent, an ether solvent, a nitrile solvent, an amide solvent, or a mixture thereof.
- peeling by energy of ultrasonic waves peeling by invasion of solvent, peeling by salts and reactants formed by solvent and K, peeling by tape, and peeling by a material having an adhesive surface. It can be done using two or more processes.
- the present invention also provides
- peeling by energy of ultrasonic waves peeling by invasion of solvent, peeling by salts and reactants formed by solvent and K, peeling by tape, and peeling by a material having an adhesive surface. It can be done using two or more processes.
- thermoelectric properties As the layered KZnSb, ZnSb and ZnSb nanosheets of the present invention have a structure in which thermal movement is disturbed by phonon grain boundary scattering, they have excellent thermoelectric properties and replace thermoelectric materials in place of Bi 2 Te 3 and PbTe materials. Can be effectively used.
- Figure 2 is a SEM analysis of the layered ZnSb prepared according to Example 2. SEM analysis reveals that ZnSb from which K ions have been removed is a layered structure, which splits in a direction perpendicular to the C axis.
- 3 is a structure of three-dimensional ZnSb, KZnSb, layered ZnSb.
- FIG. 4 is a schematic diagram of a method for removing and removing K ions.
- Fig. 5 shows the results of X-ray diffraction analysis of the synthesized single crystal KZnSb (Example 1) (left), synthesized ZnSb KZnSb (Example 1) and layered ZnSb (Example 2).
- the layered ZnSb it can be confirmed that it has a different structure from the previously reported three-dimensional ZnSb.
- the present invention provides a layered compound represented by the following formula (1) or (2), and a nanosheet represented by the formula (2).
- the layered compounds have a layered structure as shown in FIG. 3.
- the layered compounds ZnSb have a two-dimensional P63 / mmc layered form different from the existing three-dimensional crystal ZnSb (pbca).
- the layered compound and nanosheets have semiconductor properties.
- the present invention also provides
- reaction vessel does not react with the sample and does not break at a high temperature.
- Representative examples include alumina crucibles, molybdenum crucibles and tungsten crucibles.
- the melting step is preferably performed at a temperature of 650 ⁇ 800 °C.
- the vapor pressure in the quartz tube encapsulated by evaporation of Alkali ions may increase, and if the temperature falls below the lower limit of the temperature range, the raw material may remain unreacted because the sintering of the material is not completed. It is not desirable.
- the cooling step may be achieved by quenching or slow cooling the mixture.
- the slow cooling is a step of growing a crystal by cooling at a rate of 0.5-3 ° C. to a temperature of 300-500 ° C. to form a single crystal
- the quenching is a step of rapidly cooling the slow cooling to form a polycrystal.
- the composition may change due to vaporization of alkali ions.
- quenching various methods may be used, such as putting a sample enclosed in a low temperature solvent such as water or oil to quench the temperature (quenching) or quenching to room temperature by removing the heat source.
- a low temperature solvent such as water or oil
- the present invention also provides
- Removing K ions from the layered KZnSb may remove K ions in the crystal using an organic solvent, water, or a mixture thereof.
- the organic solvent may be a cyclic carbonate solvent, a chain carbonate solvent, an ester solvent, an ether solvent, a nitrile solvent, an amide solvent, or a mixture thereof.
- the peeling of the layered ZnSb may include peeling with energy by ultrasonic waves, peeling due to invasion of a solvent, peeling with a salt and a reaction gas formed by a solvent and K, peeling using a tape, and a material having an adhesive surface. It can be made using one or two or more processes selected from the group consisting of used peeling.
- a well mixed amount of Zn and Sb powder and a quantity of K are inserted into the reaction vessel.
- the sample inserted into the reaction vessel is encapsulated in a quartz tube.
- the inside of the quartz tube maintains an inert gas atmosphere such as Ar or prevents oxidation or deterioration of the sample by making a vacuum.
- the present inventors used quartz enclosed in vacuum due to the fear of quartz damage due to volume expansion of the inert gas at high temperature. .
- the quartz tube containing the sample was reacted in an electric furnace, and maintained at 650-800 ° C. for 12 hours at which the sample could be melted, and then slowly cooled to 0.5-3 ° C./hr for recrystallization. After reaching 300-500 ° C, the power to the furnace is cut off to allow the sample to cool. This secured a high purity KZnSb single crystal (Fig. 1).
- the synthesized KZnSb sample was identified by X-ray diffraction pattern in FIG. 5 (left), and it was confirmed that high purity single crystal was synthesized.
- Various organic solvents can be used to remove K ions from the synthesized high purity KZnSb samples.
- the present inventors used Deionized water (H 2 O), and it was possible to obtain a layered ZnSb structure in a faster reaction time than other organic solvents.
- the structure of the fabricated layered ZnSb can be easily peeled by a method widely used for peeling existing two-dimensional materials, the schematic diagram of the structure and peeling is shown in FIG.
- Figure 2 is a SEM analysis of the layered ZnSb prepared according to Example 2. SEM analysis reveals that ZnSb from which K ions have been removed is a layered structure, which splits in a direction perpendicular to the C axis.
- ZnSb present in the existing natural system has a three-dimensional structure as shown in [Fig. 3], and the inventors have verified through X-ray diffraction analysis that the existing three-dimensional ZnSb is different from the two-dimensional ZnSb through synthesis (Fig. 5 (right)). ).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
The present invention relates to layered ZnSb, a ZnSb nanosheet, and preparation methods therefor. According to the present invention, a ZnSb nanosheet can be formed by efficiently releasing ZnSb, which is a polymorphic layered material having a structure different from that of a conventional three-dimensional ZnSb. A high-quality layered ZnSb nanosheet prepared by the process can be mass-produced so as to applicable to a thermoelectric material and the like. According to the present invention, a layered ZnSb structure can be prepared through K intercalation and deintercalation into/from a three-dimensional ZnSb structure, and a layered structure, having been newly manufactured, can be readily released.
Description
본 발명은 층상형 KZnSb, 층상형 ZnSb, KZnSb 나노시트, ZnSb 나노시트 및 이들의 제조방법에 관한 것으로, 더욱 상세하게는 기존 3차원 결정 구조(pbca)와는 다른 2차원 P63/mmc의 층상형 KZnSb, 층상형 ZnSb 및 이의 박리를 통해 제조된 KZnSb 나노시트, ZnSb 나노시트에 관한 것이다.The present invention relates to a layered KZnSb, a layered ZnSb, KZnSb nanosheets, ZnSb nanosheets and methods for their preparation, and more specifically, two-dimensional P63 / mmc layered KZnSb different from the existing three-dimensional crystal structure (pbca) The present invention relates to a layered ZnSb and a KZnSb nanosheet and a ZnSb nanosheet manufactured through peeling thereof.
그래핀을 비롯한 다양한 초박막 이차원(2D) 재료들은 새로운 물리적, 화학적, 기계적 및 광학적 특성을 바탕으로 다양한 분야에서 활발히 연구가 되고 있다.Graphene and other ultra-thin two-dimensional (2D) materials are being actively studied in various fields based on new physical, chemical, mechanical and optical properties.
안티몬화 아연 (Zinc antimonide), 는 저렴하고 독성이 없으며, 풍부하기 때문에 400K-600K의 온도범위에서 열전응용을 위한 Bi2Te3계 재료와 PbTe계 재료를 대신할 수 있는 매력적인 대체물질로 큰 관심을 받고있다.Zinc antimonide, inexpensive, non-toxic and abundant, is of great interest as an attractive alternative to Bi 2 Te 3 and PbTe materials for thermoelectric applications in the temperature range of 400K-600K. Is getting.
기존 3차원 구조 ZnSb는 상당한 전기적 특성을 나타내지만, 높은 열 전도도 때문에 열전 효율이 떨어진다. 열적 이동이 포논 입계 스케터링에 의한 상당히 방해 받을 수 있게 제작된 층상형 ZnSb 구조 및 박리된 ZnSb 나노시트는 열전 응용 및 박막형 열전소재 개발의 유망한 후보가 될 수 있다.Conventional three-dimensional ZnSb exhibits significant electrical properties, but its thermoelectric efficiency is low due to its high thermal conductivity. Layered ZnSb structures and exfoliated ZnSb nanosheets made such that thermal transfer can be significantly hampered by phonon grain boundary scattering can be promising candidates for thermoelectric applications and development of thin film thermoelectric materials.
본 발명의 발명자들은 flux method를 통한 포타슘 삽입(intercalation, insertion)된 층상형 KZnSb 고품질 대량의 단 결정 성장과, 포타슘 이온 제거(deintercalation, etch)를 통한 층상형 육각대칭 구조의 ZnSb 층상형 구조 제작을 하였다. 이를 통해 얻어진 2차원 육각 대칭 층상구조의 ZnSb는 기존의 박리 방법에 의해 나노시트화가 가능 할 수 있을 것으로 예측한다.The inventors of the present invention have fabricated a ZnSb layered structure of layered hexagonal symmetrical structure with potassium intercalation (inserted) layered KZnSb high quality single crystal growth and potassium ion deintercalation (etch) by flux method. It was. The ZnSb of the two-dimensional hexagonal symmetric layered structure thus obtained is expected to be nanosheeted by the conventional peeling method.
본 발명이 해결하고자 하는 과제는 기존 3차원 물질인 ZnSb를 층상구조로 제조하고, 제조된 층상형 ZnSb를 박리하여 ZnSb 나노시트를 형성 할 수 있는 방법을 제공하는 데 있다.The problem to be solved by the present invention is to provide a method for producing a ZnSb nanosheet by producing a ZnSb layered structure of the existing three-dimensional material, and peeling the prepared layered ZnSb.
또한, 본 발명이 해결하고자 하는 과제는 위와 같은 방법을 통해 우수한 열전 특성을 갖는 층상형 ZnSb 및 ZnSb 나노시트를 제공하는 데 있다.In addition, the problem to be solved by the present invention is to provide a layered ZnSb and ZnSb nanosheets having excellent thermoelectric properties through the above method.
본 발명은, 하기 화학식 1 또는 화학식 2로 표시되는 층상형 화합물, 화학식 1 또는 화학식 2로 표시되는 나노시트를 제공한다.The present invention provides a layered compound represented by the following formula (1) or (2), and a nanosheet represented by formula (1) or formula (2).
<화학식 1><Formula 1>
KZnSbKZnSb
<화학식 2><Formula 2>
ZnSbZnSb
상기 화합물들은 도 3과 같은 층상 구조를 갖는다. 상기 화합물 ZnSb는 기존 3차원 결정 ZnSb (pbca)와는 다른 2차원 P63/mmc 층상형 형태를 갖는다.The compounds have a layered structure as shown in FIG. 3. The compound ZnSb has a two-dimensional P63 / mmc layered form different from the existing three-dimensional crystalline ZnSb (pbca).
상기 화합물은 반도체 특성을 갖는다.The compound has semiconductor properties.
본 발명은 또한, The present invention also provides
(a) K, Zn, Sb를 포함하는 합성 원료를 반응 용기에 삽입하는 단계;(a) inserting a synthetic raw material comprising K, Zn, Sb into a reaction vessel;
(b) 상기 반응 용기에 삽입된 합성 원료를 용융-냉각을 통해 결정화 하는 단계; 를 포함하는 층상형 KZnSb를 합성하는 방법을 제공한다.(b) crystallizing the synthetic raw material inserted into the reaction vessel through melt-cooling; It provides a method for synthesizing a layered KZnSb comprising a.
상기 고온 용융하는 단계는 650~800℃의 온도에서 수행되는 것을 특징으로 하는 층상형 KZnSb를 합성하는 방법.The hot melting step is a method for synthesizing the layered KZnSb, characterized in that carried out at a temperature of 650 ~ 800 ℃.
상기 냉각 단계는 상기 혼합물을 급냉 또는 서냉을 통해 이루어질 수 있다.The cooling step may be achieved by quenching or slow cooling the mixture.
상기 서냉은 300-500℃의 온도까지 시간당 0.5-3℃의 속도로 냉각함으로써 결정을 성장시켜 단결정을 형성하는 단계이며, 상기 급냉은 상기 서냉의 속도보다 급속도로 냉각하여 다결정을 형성하는 단계이다.The slow cooling is a step of growing a crystal by cooling at a rate of 0.5-3 ° C. to a temperature of 300-500 ° C. to form a single crystal, and the quenching is a step of rapidly cooling the slow cooling to form a polycrystal.
본 발명은 또한,The present invention also provides
(c) 상기 본 발명의 층상형 KZnSb를 합성하는 방법에 따라 층상형 KZnSb를 합성하는 단계;(c) synthesizing the layered KZnSb according to the method for synthesizing the layered KZnSb of the present invention;
(d) 상기 층상형 KZnSb에서 K 이온을 제거하는 단계를 포함하는 층상형 ZnSb의 합성 방법을 제공한다.(d) providing a method for synthesizing a layered ZnSb comprising removing K ions from the layered KZnSb.
상기 층상형 KZnSb에서 K 이온을 제거하는 단계는, 유기용매, 물 또는 이들의 혼합물을 이용하여 결정 내의 K 이온을 제거할 수 있다.Removing K ions from the layered KZnSb may remove K ions in the crystal using an organic solvent, water, or a mixture thereof.
상기 유기용매는 환상 카보네이트계 용매, 쇄상 카보네이트계 용매, 에스테르계 용매, 에테르계 용매, 니트릴계 용매, 아미드계 용매 또는 이들의 혼합물일 수 있다.The organic solvent may be a cyclic carbonate solvent, a chain carbonate solvent, an ester solvent, an ether solvent, a nitrile solvent, an amide solvent, or a mixture thereof.
본 발명은,The present invention,
(e) 상기 본 발명의 층상형 ZnSb의 합성 방법에 따라 층상형 ZnSb를 합성하는 단계;(e) synthesizing the layered ZnSb according to the method for synthesizing the layered ZnSb of the present invention;
(f)상기 층상형 ZnSb를 박리하는 단계를 포함하는 ZnSb 나노시트 제조방법을 제공한다.(f) It provides a ZnSb nanosheet manufacturing method comprising the step of peeling the layered ZnSb.
상기 층상형 ZnSb를 박리하는 단계는, Peeling the layered ZnSb,
초음파에 의한 에너지로 박리, 용매의 침입에 의한 박리, 용매와 K가 형성하는 염 및 반응 기체에 의한 박리, Tape를 이용한 박리 및 접착성 표면을 가진 물질을 이용한 박리로 이루어진 군에서 선택되는 1 또는 2 이상의 공정을 이용하여 이루어질 수 있다.1 or 2 selected from the group consisting of peeling by energy of ultrasonic waves, peeling by invasion of solvent, peeling by salts and reactants formed by solvent and K, peeling by tape, and peeling by a material having an adhesive surface. It can be done using two or more processes.
본 발명은 또한,The present invention also provides
(g) 제7항 내지 제10항 중 어느 한 항에 따른 층상형 KZnSb를 합성하는 방법에 따라 층상형 KZnSb를 합성하는 단계;(g) synthesizing the layered KZnSb according to the method for synthesizing the layered KZnSb according to any one of claims 7 to 10;
(h) 상기 층상형 KZnSb를 박리하는 단계를 포함하는 KZnSb 나노시트 제조방법을 제공한다.(h) it provides a method for producing a KZnSb nanosheet comprising the step of peeling the layered KZnSb.
상기 층상형 KZnSb를 박리하는 단계는, Peeling the layered KZnSb,
초음파에 의한 에너지로 박리, 용매의 침입에 의한 박리, 용매와 K가 형성하는 염 및 반응 기체에 의한 박리, Tape를 이용한 박리 및 접착성 표면을 가진 물질을 이용한 박리로 이루어진 군에서 선택되는 1 또는 2 이상의 공정을 이용하여 이루어질 수 있다.1 or 2 selected from the group consisting of peeling by energy of ultrasonic waves, peeling by invasion of solvent, peeling by salts and reactants formed by solvent and K, peeling by tape, and peeling by a material having an adhesive surface. It can be done using two or more processes.
본 발명의 층상형 KZnSb, ZnSb와 ZnSb 나노시트는 열적 이동이 포논 입계 스케터링에 의해 방해 받는 구조를 가짐에 따라, 우수한 열전 특성을 가져 Bi2Te3계 재료와 PbTe계 재료를 대신하여 열전 소재로 효과적으로 활용될 수 있다.As the layered KZnSb, ZnSb and ZnSb nanosheets of the present invention have a structure in which thermal movement is disturbed by phonon grain boundary scattering, they have excellent thermoelectric properties and replace thermoelectric materials in place of Bi 2 Te 3 and PbTe materials. Can be effectively used.
도 1은 KZnSb 합성공정을 도식적으로 나타낸 것이다.1 schematically shows a KZnSb synthesis process.
도 2는 실시예 2에 따라 제조된 층상형 ZnSb의 SEM 분석 사진이다. SEM 분석을 통해 K 이온이 제거된 ZnSb는 층상형 구조로, C축과 수직인 방항으로 갈라지는 것을 확인할 수 있다.Figure 2 is a SEM analysis of the layered ZnSb prepared according to Example 2. SEM analysis reveals that ZnSb from which K ions have been removed is a layered structure, which splits in a direction perpendicular to the C axis.
도 3은 3차원 ZnSb, KZnSb, 층상형 ZnSb의 구조이다.3 is a structure of three-dimensional ZnSb, KZnSb, layered ZnSb.
도 4는 K 이온 제거 및 박리 방법에 대한 모식도이다.4 is a schematic diagram of a method for removing and removing K ions.
도 5는 합성된 단결정 KZnSb(실시예1)의 X선 회절분석(좌), 합성된 ZnSb KZnSb(실시예 1), 층상형 ZnSb(실시예 2)의 회절분석 결과이다. 층상형 ZnSb의 경우 기 보고된 3차원 ZnSb와는 다른 구조를 가지는 것을 확인할 수 있다.Fig. 5 shows the results of X-ray diffraction analysis of the synthesized single crystal KZnSb (Example 1) (left), synthesized ZnSb KZnSb (Example 1) and layered ZnSb (Example 2). In the case of the layered ZnSb, it can be confirmed that it has a different structure from the previously reported three-dimensional ZnSb.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되는 실시예를 참조하면 명확해질 것이다.Advantages and features of the present invention, and methods for achieving them will be apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings.
그러나 본 발명은 이하에서 개시되는 실시예로 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있다.However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various forms.
본 명세서에서 실시예는 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며 본 발명은 청구항의 범주에 의해 정의될 뿐이다.The embodiments herein are provided to make the disclosure of the present invention complete, and to fully convey the scope of the invention to those skilled in the art, and the present invention is defined by the scope of the claims. It will be.
따라서, 몇몇 실시예에서, 잘 알려진 구성 요소, 잘 알려진 동작 및 잘 알려진 기술들은 본 발명이 모호하게 해석되는 것을 피하기 위하여 구체적 설명이 생략될 수 있다.Thus, in some embodiments, well-known components, well-known operations and well-known techniques may be omitted from specific description in order to avoid obscuring the present invention.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함하며, '포함(또는, 구비)한다'로 언급된 구성 요소 및 동작은 하나 이상의 다른 구성요소 및 동작의 존재 또는 추가를 배제하지 않는다.As used herein, the singular forms "a", "an" and "the" include plural unless the context clearly dictates otherwise, and the elements and acts referred to as 'comprises' or 'do' not exclude the presence or addition of one or more other components and acts. .
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 공통적 으로 이해될 수 있는 의미로 사용될 수 있을 것이다.Unless otherwise defined, all terms used in the present specification (including technical and scientific terms) may be used in a sense that can be commonly understood by those skilled in the art.
이하, 본 발명을 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
본 발명은, 하기 화학식 1 또는 화학식 2로 표시되는 층상형 화합물, 화학식 2로 표시되는 나노시트를 제공한다.The present invention provides a layered compound represented by the following formula (1) or (2), and a nanosheet represented by the formula (2).
<화학식 1><Formula 1>
KZnSbKZnSb
<화학식 2><Formula 2>
ZnSbZnSb
상기 층상형 화합물들은 도 3과 같은 층상 구조를 갖는다. 상기 층상형 화합물들 ZnSb는 기존 3차원 결정 ZnSb (pbca)와는 다른 2차원 P63/mmc 층상형 형태를 갖는다.The layered compounds have a layered structure as shown in FIG. 3. The layered compounds ZnSb have a two-dimensional P63 / mmc layered form different from the existing three-dimensional crystal ZnSb (pbca).
상기 층상형 화합물 및 나노시트는 반도체 특성을 갖는다. The layered compound and nanosheets have semiconductor properties.
본 발명은 또한, The present invention also provides
(a)K, Zn, Sb를 포함하는 합성 원료를 반응 용기에 삽입하는 단계;(a) inserting a synthetic raw material comprising K, Zn, Sb into a reaction vessel;
(b)상기 반응 용기에 삽입된 합성 원료를 용융-냉각을 통해 결정화 하는 단계; 를 포함하는 층상형 KZnSb를 합성하는 방법을 제공한다.(b) crystallizing the synthetic raw material inserted into the reaction vessel through melt-cooling; It provides a method for synthesizing a layered KZnSb comprising a.
상기 반응용기는 시료와 반응을 하지 않고, 고온에서 파손되지 않는 것이 적합하다. 대표적인 예로 알루미나 도가니, 몰리브덴 도가니 텅스텐도가니 등이 있다. It is preferable that the reaction vessel does not react with the sample and does not break at a high temperature. Representative examples include alumina crucibles, molybdenum crucibles and tungsten crucibles.
상기 용융하는 단계는 650~800℃의 온도에서 수행되는 것이 바람직하다.The melting step is preferably performed at a temperature of 650 ~ 800 ℃.
상기 온도범위의 상한을 초과하면 Alkali ion의 기화로 봉입된 쿼츠 튜브 내의 증기압이 높아져 터질 수 있으며, 상기 온도범위의 하한에 미달하는 경우 재료의 소결반응이 완료되지 않아 반응되지 않은 원재료가 남아 있을 수 있어 바람직하지 못하다.If the upper limit of the temperature range is exceeded, the vapor pressure in the quartz tube encapsulated by evaporation of Alkali ions may increase, and if the temperature falls below the lower limit of the temperature range, the raw material may remain unreacted because the sintering of the material is not completed. It is not desirable.
상기 냉각 단계는 상기 혼합물을 급냉 또는 서냉을 통해 이루어질 수 있다.The cooling step may be achieved by quenching or slow cooling the mixture.
상기 서냉은 300-500℃의 온도까지 시간당 0.5-3℃의 속도로 냉각함으로써 결정을 성장시켜 단결정을 형성하는 단계이며, 상기 급냉은 상기 서냉의 속도보다 급속도로 냉각하여 다결정을 형성하는 단계이다. The slow cooling is a step of growing a crystal by cooling at a rate of 0.5-3 ° C. to a temperature of 300-500 ° C. to form a single crystal, and the quenching is a step of rapidly cooling the slow cooling to form a polycrystal.
서냉시 상기 온도범위의 상한을 초과하는 경우 단결정의 크기 확보가 어렵고(다결정화), 상기 하한에 미달하는 경우 alkali ion의 기화로 인해 조성의 변화가 생길 수 있으므로 바람직하지 못하다.It is not preferable to secure the size of the single crystal in the case of exceeding the upper limit of the temperature range in slow cooling (polycrystallization), and if it is less than the lower limit, the composition may change due to vaporization of alkali ions.
급냉은 물 또는 기름 등의 저온 용매에 봉입된 시료를 넣어 온도를 급냉하거나(담금질), 열 공급원 제거를 통해 상온으로 급냉하는 등 다양한 방법이 이용될 수 있다.In the quenching, various methods may be used, such as putting a sample enclosed in a low temperature solvent such as water or oil to quench the temperature (quenching) or quenching to room temperature by removing the heat source.
본 발명은 또한,The present invention also provides
(c)상기 본 발명의 층상형 KZnSb를 합성하는 방법에 따라 층상형 KZnSb를 합성하는 단계;(c) synthesizing the layered KZnSb according to the method for synthesizing the layered KZnSb of the present invention;
(d)상기 층상형 KZnSb에서 K 이온을 제거하는 단계를 포함하는 층상형 ZnSb의 합성 방법을 제공한다.(d) it provides a method for synthesizing the layered ZnSb comprising the step of removing K ions from the layered KZnSb.
상기 층상형 KZnSb에서 K 이온을 제거하는 단계는, 유기용매, 물 또는 이들의 혼합물을 이용하여 결정 내의 K 이온을 제거할 수 있다.Removing K ions from the layered KZnSb may remove K ions in the crystal using an organic solvent, water, or a mixture thereof.
상기 유기용매는 환상 카보네이트계 용매, 쇄상 카보네이트계 용매, 에스테르계 용매, 에테르계 용매, 니트릴계 용매, 아미드계 용매 또는 이들의 혼합물일 수 있다.The organic solvent may be a cyclic carbonate solvent, a chain carbonate solvent, an ester solvent, an ether solvent, a nitrile solvent, an amide solvent, or a mixture thereof.
본 발명은,The present invention,
(e) 상기 본 발명의 층상형 ZnSb의 합성 방법에 따라 층상형 ZnSb를 합성하는 단계;(e) synthesizing the layered ZnSb according to the method for synthesizing the layered ZnSb of the present invention;
(f) 상기 층상형 ZnSb를 박리하는 단계를 포함하는 ZnSb 나노시트 제조방법을 제공한다.(f) it provides a method for producing a ZnSb nanosheet comprising the step of peeling the layered ZnSb.
상기 층상형 ZnSb를 박리하는 단계는, 초음파에 의한 에너지로 박리, 용매의 침입에 의한 박리, 용매와 K가 형성하는 염 및 반응 기체에 의한 박리, Tape를 이용한 박리 및 접착성 표면을 가진 물질을 이용한 박리로 이루어진 군에서 선택되는 1 또는 2 이상의 공정을 이용하여 이루어질 수 있다.The peeling of the layered ZnSb may include peeling with energy by ultrasonic waves, peeling due to invasion of a solvent, peeling with a salt and a reaction gas formed by a solvent and K, peeling using a tape, and a material having an adhesive surface. It can be made using one or two or more processes selected from the group consisting of used peeling.
이하, 실시예 및 실험예를 통하여 본 발명을 보다 상세히 설명하기로 한다. 이들 실시예 및 실험예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예 및 실험예에 의해 제한되지 않는다는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명한 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples and Experimental Examples. These Examples and Experimental Examples are only for illustrating the present invention in more detail, and the scope of the present invention is not limited by these Examples and Experimental Examples according to the gist of the present invention having ordinary knowledge in the art. It is self-evident to him.
실시예 1) KZnSb 단결정의 제조Example 1 Preparation of KZnSb Single Crystal
잘 혼합된 정량의 Zn과 Sb 분말과 정량의 K를 반응용기에 삽입한다, 반응용기에 삽입된 시료는 쿼츠 튜브에 봉입한다. 이때 쿼츠 튜브 내부는 Ar등 불활성 기체 분위기를 유지하거나, 진공을 만들어 시료의 산화나 변질을 막아준다, 본 발명자는 고온에서 불활성 기체의 부피 팽창에 의한 쿼츠 파손의 우려로 진공 봉입된 쿼츠를 사용하였다. 시료가 들어간 쿼츠 튜브는 전기로에서 반응을 하였으며, 시료가 용융 될 수 있는 온도 650-800℃에서 12시간 유지, 이후 재 결정화를 위해 0.5-3℃/hr로 서냉한다. 300-500℃에 도달한 후 전기로의 전원을 차단하여 시료가 냉각될 수 있도록 한다. 이를 통해 고 순도의 KZnSb 단결정을 확보하였다(도 1).A well mixed amount of Zn and Sb powder and a quantity of K are inserted into the reaction vessel. The sample inserted into the reaction vessel is encapsulated in a quartz tube. At this time, the inside of the quartz tube maintains an inert gas atmosphere such as Ar or prevents oxidation or deterioration of the sample by making a vacuum. The present inventors used quartz enclosed in vacuum due to the fear of quartz damage due to volume expansion of the inert gas at high temperature. . The quartz tube containing the sample was reacted in an electric furnace, and maintained at 650-800 ° C. for 12 hours at which the sample could be melted, and then slowly cooled to 0.5-3 ° C./hr for recrystallization. After reaching 300-500 ° C, the power to the furnace is cut off to allow the sample to cool. This secured a high purity KZnSb single crystal (Fig. 1).
합성된 KZnSb 시료는 도 5 (좌)에서 X선 회절 패턴으로 상을 확인하였고, 고순도의 단결정 합성이 된 것을 확인하였다. The synthesized KZnSb sample was identified by X-ray diffraction pattern in FIG. 5 (left), and it was confirmed that high purity single crystal was synthesized.
실시예 2) 층상형 ZnSb 제조Example 2 Preparation of Layered ZnSb
합성된 고 순도의 KZnSb 시료에서 K ion을 제거하기 위해 다양한 유기 용매가 사용될 수 있다. 그중 본 발명자는 Deionized water(H2O)를 이용하였으며, 타 유기용매에 비해 빠른 반응시간에 층상형 ZnSb 구조를 얻을 수 있어 해당 유기용매를 선정 하였다. 제작된 층상형 ZnSb의 구조는 기존 이차원 소재 박리에 널리 쓰이는 방법으로 쉽게 박리가 될 수 있을 것으로, 구조와 박리에 대한 모식도는 도 4에 나타내었다.Various organic solvents can be used to remove K ions from the synthesized high purity KZnSb samples. Among them, the present inventors used Deionized water (H 2 O), and it was possible to obtain a layered ZnSb structure in a faster reaction time than other organic solvents. The structure of the fabricated layered ZnSb can be easily peeled by a method widely used for peeling existing two-dimensional materials, the schematic diagram of the structure and peeling is shown in FIG.
도 2는 실시예 2에 따라 제조된 층상형 ZnSb의 SEM 분석 사진이다. SEM 분석을 통해 K 이온이 제거된 ZnSb는 층상형 구조로, C축과 수직인 방항으로 갈라지는 것을 확인할 수 있다.Figure 2 is a SEM analysis of the layered ZnSb prepared according to Example 2. SEM analysis reveals that ZnSb from which K ions have been removed is a layered structure, which splits in a direction perpendicular to the C axis.
비교예 1) 기존 자연계에서 존재하는 ZnSb Comparative Example 1) ZnSb Existing in Existing Nature
기존 자연계에 존재하는 ZnSb는 [도 3]과 같이 3차원 구조이며, 본 발명자는 합성을 통해 기존 3차원 ZnSb는 2차원 ZnSb와 다른 구조임을 X선 회절 분석을 통해 확인하였다(도 5 (우)). ZnSb present in the existing natural system has a three-dimensional structure as shown in [Fig. 3], and the inventors have verified through X-ray diffraction analysis that the existing three-dimensional ZnSb is different from the two-dimensional ZnSb through synthesis (Fig. 5 (right)). ).
Claims (15)
- 하기 화학식 1 또는 화학식 2로 표시되는 층상형 화합물.Layered compound represented by the following formula (1) or (2).<화학식 1><Formula 1>KZnSb KZnSb<화학식 2><Formula 2>ZnSb ZnSb
- 제 1항에 있어서.The method of claim 1.상기 ZnSb는 기존 3차원 결정 ZnSb (pbca)와는 다른 2차원 P63/mmc 또는 층상형 형태를 갖는 층상형 화합물. The ZnSb is a layered compound having a two-dimensional P63 / mmc or layered form different from the existing three-dimensional crystalline ZnSb (pbca).
- 제1항에 있어서,The method of claim 1,상기 화합물은 반도체 특성을 가지는 것을 특징으로 하는 화합물The compound is characterized in that it has a semiconductor characteristic
- (a)K, Zn, Sb를 포함하는 합성 원료를 반응 용기에 삽입하는 단계;(a) inserting a synthetic raw material comprising K, Zn, Sb into a reaction vessel;(b)상기 반응 용기에 삽입된 합성 원료를 용융-냉각을 통해 결정화하는 단계; 를 포함하는 층상형 KZnSb를 합성하는 방법.(b) crystallizing the synthetic raw material inserted into the reaction vessel through melt-cooling; Method of synthesizing a layered KZnSb comprising a.
- 제4항에 있어서,The method of claim 4, wherein상기 고온 용융하는 단계는 650~800℃의 온도에서 수행되는 것을 특징으로 하는 층상형 KZnSb를 합성하는 방법.The hot melting step is a method for synthesizing the layered KZnSb, characterized in that carried out at a temperature of 650 ~ 800 ℃.
- 제4항에 있어서,The method of claim 4, wherein상기 냉각 단계는 상기 혼합물을 급냉 또는 서냉을 통해 이루어지는 것을 특징으로 하는 층상형 KZnSb를 합성하는 방법.The cooling step is a method of synthesizing the layered KZnSb, characterized in that the mixture is made through quenching or slow cooling.
- 제4항에 있어서,The method of claim 4, wherein상기 서냉은 300-500℃의 온도까지 시간당 0.5-3℃의 속도로 냉각함으로써 결정을 성장시켜 단결정을 형성하는 단계이며, 상기 급냉은 상기 서냉의 속도보다 급속도로 냉각하여 다결정을 형성하는 것을 특징으로 하는 층상형 KZnSb를 합성하는 방법.The slow cooling is a step of forming a single crystal by growing a crystal by cooling at a rate of 0.5-3 ℃ per hour to a temperature of 300-500 ℃, the quenching is cooled faster than the rate of slow cooling to form a polycrystal A method of synthesizing layered KZnSb.
- (c)제4항 내지 제7항 중 어느 한 항에 따른 층상형 KZnSb를 합성하는 방법에 따라 층상형 KZnSb를 합성하는 단계;(c) synthesizing the layered KZnSb according to the method for synthesizing the layered KZnSb according to any one of claims 4 to 7;(d)상기 층상형 KZnSb에서 K를 제거하는 단계를 포함하는 층상형 ZnSb의 합성 방법.(d) A method of synthesizing a layered ZnSb comprising the step of removing K from the layered KZnSb.
- 제8항에 있어서,The method of claim 8,상기 층상형 KZnSb에서 K를 제거하는 단계는 유기용매, 물 또는 이들의 혼합물을 이용하여 결정 내의 K 이온을 제거하는 것을 특징으로 하는 층상형 ZnSb의 합성 방법.Removing K from the layered KZnSb is a method of synthesizing the layered ZnSb, characterized in that to remove the K ions in the crystal using an organic solvent, water or a mixture thereof.
- 제9항에 있어서,The method of claim 9,상기 유기용매는 환상 카보네이트계 용매, 쇄상 카보네이트계 용매, 에스테르계 용매, 에테르계 용매, 니트릴계 용매, 아미드계 용매 또는 이들의 혼합물인 것을 특징으로 하는 층상형 ZnSb의 합성 방법.The organic solvent is a cyclic carbonate solvent, a linear carbonate solvent, an ester solvent, an ether solvent, a nitrile solvent, an amide solvent, or a mixture thereof.
- (e)제8항의 층상형 ZnSb의 합성 방법에 따라 층상형 ZnSb를 합성하는 단계;(e) synthesizing the layered ZnSb according to the method for synthesizing the layered ZnSb of claim 8;(f)상기 층상형 ZnSb를 박리하는 단계를 포함하는 ZnSb 나노시트 제조방법.(f) ZnSb nanosheet manufacturing method comprising the step of peeling the layered ZnSb.
- 제11항에 있어서, The method of claim 11,상기 층상형 ZnSb를 박리하는 단계는, Peeling the layered ZnSb,초음파에 의한 에너지로 박리, 용매의 침입에 의한 박리, 용매와 K가 형성하는 염 및 반응 기체에 의한 박리, Tape를 이용한 박리 및 접착성 표면을 가진 물질을 이용한 박리로 이루어진 군에서 선택되는 1 또는 2 이상의 공정을 이용하여 이루어지는 것을 특징으로 하는 ZnSb 나노시트 제조방법.1 or 2 selected from the group consisting of peeling by energy of ultrasonic waves, peeling by invasion of solvent, peeling by salts and reactants formed by solvent and K, peeling by tape, and peeling by a material having an adhesive surface. ZnSb nanosheets manufacturing method characterized in that using two or more processes.
- (g) 제4항 내지 제7항 중 어느 한 항에 따른 층상형 KZnSb를 합성하는 방법에 따라 층상형 KZnSb를 합성하는 단계;(g) synthesizing the layered KZnSb according to the method for synthesizing the layered KZnSb according to any one of claims 4 to 7;(h) 상기 층상형 KZnSb를 박리하는 단계를 포함하는 KZnSb 나노시트 제조방법.(H) KZnSb nanosheet manufacturing method comprising the step of peeling the layered KZnSb.
- 제13항에 있어서, The method of claim 13,상기 층상형 KZnSb를 박리하는 단계는, Peeling the layered KZnSb,초음파에 의한 에너지로 박리, 용매의 침입에 의한 박리, 용매와 K가 형성하는 염 및 반응 기체에 의한 박리, Tape를 이용한 박리 및 접착성 표면을 가진 물질을 이용한 박리로 이루어진 군에서 선택되는 1 또는 2 이상의 공정을 이용하여 이루어지는 것을 특징으로 하는 KZnSb 나노시트 제조방법.1 or 2 selected from the group consisting of peeling by energy of ultrasonic waves, peeling by invasion of solvent, peeling by salts and reactants formed by solvent and K, peeling by tape, and peeling by a material having an adhesive surface. KZnSb nanosheet manufacturing method characterized in that using two or more processes.
- 하기 화학식 1 또는 화학식 2로 표시되는 나노시트.Nanosheet represented by the following formula (1) or (2).<화학식 1><Formula 1>KZnSbKZnSb<화학식 2><Formula 2>ZnSbZnSb
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20170152728 | 2017-11-16 | ||
KR10-2018-0011428 | 2018-01-30 | ||
KR1020180011428A KR102124976B1 (en) | 2017-11-16 | 2018-01-30 | Layered KZnSb. Layered ZnSb, KZnSb nanosheet, ZnSb nanosheet and method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019151644A1 true WO2019151644A1 (en) | 2019-08-08 |
Family
ID=66680421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/016085 WO2019151644A1 (en) | 2017-11-16 | 2018-12-18 | Layered kznsb, layered znsb, kznsb nanosheet, znsb nanosheet, and preparation methods therefor |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102124976B1 (en) |
WO (1) | WO2019151644A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102329059B1 (en) * | 2018-11-21 | 2021-11-22 | 성균관대학교 산학협력단 | Two-dimension of three-dimensional matter through electrochemistry |
KR102263256B1 (en) * | 2018-11-21 | 2021-06-11 | 성균관대학교 산학협력단 | New hexagonal symmetric two-dimensional material and manufacturing method |
KR102386961B1 (en) * | 2019-12-10 | 2022-04-15 | 성균관대학교 산학협력단 | II-V Family Semiconductor Materials with Zinc Blende Structure |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101403091B1 (en) * | 2012-03-21 | 2014-07-01 | 주식회사 포스코 | Manufacturing method for device with nano structure |
JP5910887B2 (en) * | 2011-01-27 | 2016-05-11 | 国立研究開発法人物質・材料研究機構 | Water-swellable layered double hydroxide and production method thereof, gel-like or sol-like substance, double hydroxide nanosheet and production method thereof |
KR20170039851A (en) * | 2015-10-02 | 2017-04-12 | 한국세라믹기술원 | Manufacturing method of ZnSb nanosheet using chemical exfoliation |
KR20170039852A (en) * | 2015-10-02 | 2017-04-12 | 한국세라믹기술원 | Manufacturing method of ZnSb nanosheet using electrochemical lithiation |
-
2018
- 2018-01-30 KR KR1020180011428A patent/KR102124976B1/en active IP Right Grant
- 2018-12-18 WO PCT/KR2018/016085 patent/WO2019151644A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5910887B2 (en) * | 2011-01-27 | 2016-05-11 | 国立研究開発法人物質・材料研究機構 | Water-swellable layered double hydroxide and production method thereof, gel-like or sol-like substance, double hydroxide nanosheet and production method thereof |
KR101403091B1 (en) * | 2012-03-21 | 2014-07-01 | 주식회사 포스코 | Manufacturing method for device with nano structure |
KR20170039851A (en) * | 2015-10-02 | 2017-04-12 | 한국세라믹기술원 | Manufacturing method of ZnSb nanosheet using chemical exfoliation |
KR20170039852A (en) * | 2015-10-02 | 2017-04-12 | 한국세라믹기술원 | Manufacturing method of ZnSb nanosheet using electrochemical lithiation |
Non-Patent Citations (1)
Title |
---|
BENNETT, JOSEPH W. ET AL.: "Hexagonal ABC Semiconductors as Ferroelectrics", PHYSICAL REVIEW LETTERS, vol. 109, no. 16, 2012, pages 167602-1 - 167602-5, XP055629247 * |
Also Published As
Publication number | Publication date |
---|---|
KR20190056264A (en) | 2019-05-24 |
KR102124976B1 (en) | 2020-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019221583A1 (en) | Layered aln, method for manufacturing same, and aln nanosheet exfoliated therefrom | |
WO2019151644A1 (en) | Layered kznsb, layered znsb, kznsb nanosheet, znsb nanosheet, and preparation methods therefor | |
KR102057700B1 (en) | Layered GaAs, manufacturing method thereof and exfoliated GaAs nanosheet therefrom | |
WO2012053782A2 (en) | Process for growing silicon carbide single crystal and device for the same | |
WO2015016412A1 (en) | Mos2 thin film and method for manufacturing same | |
WO2019151643A1 (en) | Layered znbi, znbi nanosheet, and preparation methods therefor | |
WO2014157909A1 (en) | Natural-superlattice-structured thermoelectric material | |
KR102065681B1 (en) | Layered NaZnSb, Layered ZnSb, NaZnSb nanosheet, ZnSb nanosheet and method thereof | |
WO2014200232A1 (en) | Dispersion stabilizer for graphene exfoliation, graphene-alkali metal salt composite comprising same, and method for preparing graphene using same | |
CN109706525B (en) | Bismuth-based topological insulator material and preparation method thereof | |
KR102250674B1 (en) | Layered compound, nanosheet and preparing method thereof | |
WO2016200108A1 (en) | Method and apparatus for growing organic material monocrystals using ionic liquid | |
WO2019221584A9 (en) | Layered ge, manufacturing method therefor, ge nanosheet peeled therefrom, and electrode comprising same for lithium ion battery | |
KR20190055900A (en) | Layered LiZnSb. ZnSb, ZnSb nanosheet and method thereof | |
WO2015056944A1 (en) | Molybdenum compound or tungsten compound, method for preparing same and method for forming thin film using same | |
KR102072672B1 (en) | Layered FeAs, manufacturing method thereof and exfoliated FeAs nanosheet therefrom | |
WO2021054628A1 (en) | Method for preparing layered cobalt arsenide, layered cobalt arsenide prepared thereby, and cobalt arsenide nanosheet exfoliated therefrom | |
KR20190056265A (en) | Layered MnBi, MnBi nanosheet and method thereof | |
WO2015057018A1 (en) | Thermoelectric material and method for manufacturing same | |
JP5223432B2 (en) | Method for producing type I clathrate compound | |
WO2020130371A1 (en) | Monocrystalline metal film formed by abnormal grain growth of polycrystalline metal film, and method for manufacturing same | |
WO2020040607A1 (en) | Chalcogen compound, method for producing same, and thermoelement comprising same | |
JP2004035299A (en) | Single crystal of sodium cobalt oxide and its manufacturing method | |
WO2022154428A1 (en) | Method for preparing solid electrolyte, solid electrolyte prepared thereby, and all-solid-state battery comprising same | |
WO2022211488A1 (en) | Hydride and preparation method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18904039 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18904039 Country of ref document: EP Kind code of ref document: A1 |