WO2016200108A1 - Method and apparatus for growing organic material monocrystals using ionic liquid - Google Patents

Method and apparatus for growing organic material monocrystals using ionic liquid Download PDF

Info

Publication number
WO2016200108A1
WO2016200108A1 PCT/KR2016/005975 KR2016005975W WO2016200108A1 WO 2016200108 A1 WO2016200108 A1 WO 2016200108A1 KR 2016005975 W KR2016005975 W KR 2016005975W WO 2016200108 A1 WO2016200108 A1 WO 2016200108A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic material
single crystal
ionic liquid
condition
growing
Prior art date
Application number
PCT/KR2016/005975
Other languages
French (fr)
Korean (ko)
Inventor
신동찬
오용택
박세연
Original Assignee
조선대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조선대학교산학협력단 filed Critical 조선대학교산학협력단
Priority to CN201680028867.5A priority Critical patent/CN107660240A/en
Publication of WO2016200108A1 publication Critical patent/WO2016200108A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/54Organic compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a method and apparatus for growing an organic material single crystal, and more particularly, to a method and apparatus for growing a single crystal after mixing an organic material in an ionic liquid.
  • organic materials in electronic devices such as organic electroluminescence (EL) devices, organic semiconductor devices, organic photoelectric conversion devices, and organic sensor devices
  • EL organic electroluminescence
  • organic semiconductor devices organic semiconductor devices
  • organic photoelectric conversion devices organic photoelectric conversion devices
  • organic sensor devices interest in single crystal organic materials is increasing.
  • organic materials in an amorphous state are mostly used in organic electronic devices.
  • Conventional organic material single crystal growth method is a method in which the single crystal is grown by dissolving the organic material in the solvent and then gradually volatilizing the solvent at a predetermined temperature.
  • this method not only takes too much time for single crystal growth, but also has difficulty in controlling the processes required to grow high quality single crystals. These problems ultimately lead to an increase in the cost of single crystal growth, which makes it an obstacle to industrial use of single crystal.
  • the conventional organic material single crystal growth method has a problem in that impurities are not easily removed. Therefore, in order to obtain high-purity single crystals, the organic materials must be first purified to high purity by a method such as the sublimation purification method disclosed in HJ Wagner, el al., Journal of Materials Science, 17, 2781 (1982), and then single crystal growth is performed. There was a hassle.
  • An object of the present invention is to provide a novel organic material single crystal growth method and apparatus that can solve the problems of the conventional purification method as described above.
  • Another object of the present invention is to provide a single crystal growth method and apparatus capable of efficiently growing high-purity organic single crystal at low cost.
  • Organic material single crystal growth method for achieving the above object, the mixing step of mixing the organic material with the ionic liquid; A solution step of liquefying an organic material mixed with the ionic liquid by heat treatment under a first condition; Nucleating step of seeding the ionic liquid including the liquefied organic material under a second condition and nucleating the seed surface; A single crystal growing step of growing the single crystal under the third condition; And a separation step (S50) of separating the grown organic material single crystal from the ionic liquid, thereby obtaining a purified organic material single crystal with higher purity than before mixing with the ionic liquid.
  • the first condition, the second condition, or the third condition may be a condition that changes with time.
  • the seed introduced into the ionic liquid may be a single crystal or a hollow microtube of the same material as the organic material to be crystallized, and the solution may be at least one of melting or melting.
  • a high purity single crystal organic material of 99% or more can be obtained, and the organic material single crystal separated from the ionic liquid It may further comprise the step of washing and drying.
  • a sweating process may be further performed to remove surface impurities of the separated organic material single crystal, and the filtering step may be performed to filter out unliquefied organic material between the solution step and the nucleation step. You can proceed further.
  • Organic material single crystal growth apparatus the stage; A container body supported by the stage and containing a mixture of organic material and ionic liquid; A temperature control unit for heating the mixture of the organic material and the ionic liquid contained in the container body; And a seed holder having a seed fixed to an end thereof, the seed being introduced into a mixture of an organic material and an ionic liquid contained in the container body, wherein the container body and the seed holder are relatively movable.
  • the seed may be a single crystal or a hollow microtube of the same material as the organic material, and the relative movement may be at least one of vertical movement and rotational movement.
  • a gas inlet for introducing gas into the container body; And a gas discharge part for discharging gas from the inside of the container body.
  • the organic material single crystal according to another aspect of the present invention may be grown by any one of the above-described methods, the X-ray half-value width may be 0.1 o or less.
  • FIG. 1 is a main flowchart of a method for growing an organic material single crystal using an ionic liquid according to the present invention.
  • FIG. 3 is a schematic cross-sectional view of an organic material single crystal growth apparatus according to the present invention.
  • FIG 4 is an exemplary diagram using a micro tube for self-seed formation.
  • Figure 5 (a) is an XRD analysis of the NPB single crystal grown in accordance with the present invention
  • Figure 5 (b) is an XRD analysis of the NPB polycrystalline.
  • FIG. 6 (a) shows the XRD analysis of the Alq3 single crystal grown in accordance with the present invention
  • FIG. 6 (b) shows the XRD analysis of the Alq3 polycrystal.
  • Figure 7 (a) is an Alq3 single crystal grown in accordance with the present invention
  • Figure 7 (b) is a scanning electron micrograph of the Alq3 polycrystals.
  • a single crystal is grown in an ionic liquid, and the organic material is liquefied by heat treatment under a first condition, followed by single crystal growth under a second condition. It is characterized in that to grow a single crystal of high purity organic material through the process of introducing a seed (Seed) for generating a single crystal nucleus, and then growing a single crystal under a third condition.
  • the first, second and third conditions mean process conditions such as temperature, pressure, and process atmosphere.
  • Ionic liquid refers to a liquid composed of only ions, and is generally a molten salt composed of a large cation and a smaller anion.
  • the ionic liquid is not particularly limited but includes cations constituting the ionic liquid.
  • the cation of 1] can be used.
  • R1, R2, R3, and R4 may be an alkyl group having n linear or branched carbon atoms.
  • ionic liquids Due to its structural characteristics, ionic liquids have a low melting point and have a very low vapor pressure and thus exist as a stable liquid over a wide temperature range. In addition, it has excellent thermal stability and ion conductivity, can dissolve various hydrophilic and hydrophobic organic materials, inorganic materials, and high molecular materials, and is low in volatility, flame retardancy, and low explosiveness, making it an environmentally friendly material compared to general organic solvents.
  • FIG. 1 is a main flowchart of a method for growing an organic material single crystal using an ionic liquid according to the present invention.
  • a method of growing an organic material single crystal is a mixing step (S10) of mixing an organic material to be grown single crystal with an ionic liquid, followed by heat treatment under a first condition to organic in ionic liquid.
  • Solution liquefaction step (S20) to liquefy the material, the seed is added to the ionic liquid containing the organic material liquefied at the second condition and nucleation step (S30) to generate nuclei on the seed surface, single crystal at the third condition
  • the mixing step (S10) of mixing the organic material with the ionic liquid is a step of mixing the organic material to be grown single crystal into the ionic liquid.
  • the agitation may be performed by mechanical stirring, magnetic stirring, or the like so that the organic material in the solid state may be more uniformly mixed with the ionic liquid.
  • the organic material is an organic material intended to grow high purity single crystals using the method according to the present invention, but the material is not specifically limited, but the electron injection layer, the electron transport layer, the hole injection layer and the hole transport of the organic EL device.
  • the organic material mixed with the ionic liquid may be a low purity organic material containing impurities.
  • the ionic liquid may also be appropriately selected depending on the organic materials to be mixed.
  • imidazolium based ionic liquids having long alkyl substituents are suitable as the ionic liquid of the present invention.
  • the ionic liquid can be used in a myriad of combinations of theoretically 10 18 by the combination of cations and anions, and thus can cope with various organic materials. That is, it is possible to select and use an ionic liquid having suitable characteristics according to the organic material to grow high purity single crystal.
  • most of the commercially available conductive organic materials such as conductive organic materials for organic electroluminescent devices have similar basic structure and polarity, and since some of the reactors are substituted based on the basic structure, similar crystallization behavior appears.
  • the single crystal growth method according to the present invention can be used for various conductive organic materials by optimizing process conditions using some ionic liquids such as [Omim] [TFSI].
  • solution solution (S20) to liquefy the organic material in the ionic liquid.
  • Solution may mean dissolution or melting, and may also be a mixture of dissolution and melting. Whether dissolution or melting is the main mechanism of solution can be determined depending on the organic material and the ionic liquid pair and the first condition.
  • the first condition refers to a heat treatment process condition such as a first temperature, a first pressure, and a first atmosphere condition, and may be a condition that varies with time rather than any fixed condition.
  • the organic material may be liquefied while mixing the organic material and the ionic liquid while maintaining the predetermined temperature at the first temperature, or may be liquefied while changing the temperature at a predetermined rate.
  • the first condition does not require to be uniform depending on the position.
  • a container in which an organic material and an ionic liquid are mixed may be heat-treated to produce a predetermined temperature gradient depending on the position.
  • the first condition for high process yield is at least 80%, preferably at least 90%, more preferably of the organic material mixed in the ionic material.
  • the seed is added to the ionic liquid containing the liquefied organic material and the nucleation step (S30) for generating a nucleus on the seed surface is performed.
  • Injecting the seed does not necessarily mean that the seed is completely submerged in the ionic liquid, but it is to be understood that at least a portion of the seed is in contact with the ionic liquid.
  • the nucleation step is carried out under a second condition, which may be a condition in which nucleation of organic material crystals is easily performed at the seed surface.
  • the second condition may be a condition of temperature lower than the first condition.
  • a driving force for crystallization is increased under the second condition, which is lower than the first condition, so that nucleation can be easily performed on the seed surface.
  • the second condition may be a condition of higher temperature than the first condition.
  • the driving force for crystallization may be increased at a higher temperature than the melting temperature, so that nucleation can be easily performed on the seed surface at a second condition at a temperature higher than the first condition.
  • the second condition does not necessarily mean a fixed condition, but may be a condition that changes with time. That is, although the nucleation may be induced while maintaining the temperature at a lower or higher temperature after the heat treatment under the first condition, the nucleation may be performed while the temperature is gradually decreased or increased. Also, the second condition does not require to be uniform depending on the position. For example, a predetermined temperature gradient may be generated depending on the seed injection direction.
  • the seed may be a high purity single crystal of the same material as the molten organic material, or may use a hollow microtube for self-seed formation.
  • the molten organic material may crystallize as the seed is raised by the capillary phenomenon to the hollow portion of the microtube, so that the diameter of the hollow region of the microtube may be 800 ⁇ m or less.
  • the third condition refers to process conditions for growing single crystals of an organic material liquefied in an ionic liquid, such as a third temperature, a third pressure, and a third atmospheric condition, and depending on the time rather than any fixed condition. It may be a changing condition. Also, the third condition does not require to be uniform depending on the position. For example, a predetermined temperature gradient may be generated depending on the seed injection direction.
  • the third condition may be a condition in which at least one of the first condition and / or the second condition is different from the temperature, the pressure, and the atmosphere, and the pressure and the atmosphere are preferably the same and the temperature is different.
  • the third temperature may be lower than the first or second temperature if the main mechanism of solution is dissolution, and the third temperature is higher than the first or second temperature if the main mechanism of solution is melting. Can be.
  • the nucleation step (S20) and / or single crystal growth step (S30) it is possible to move the injected seed relative to the container containing the organic material and the ionic liquid.
  • the relative movement may include rotation or vertical movement.
  • the seed may be moved upwards at a speed of 2 mm or less while rotating the seed at a speed of 9 rph or less, and in this process, single crystals may be grown from the seed.
  • the organic material dissolved or melted in the ionic liquid is precipitated as a high purity single crystal in which impurities are excluded, when the organic material single crystal is separated from the ionic liquid containing impurities, the organic material is highly purified.
  • a single crystal can be obtained (S50).
  • step S50 a process of washing and drying the organic material single crystal separated from the ionic liquid may be further performed.
  • the surface may be heated or heated to an appropriate temperature. Sweating processes, such as melting only a portion slightly, can be further performed.
  • the low-purity organic material is high purity in the separation step (S50) Since it may be mixed with the single crystal, a filtering step for filtering the unliquefied organic material may be further performed between the solution step (S20) and the nucleation step (S30).
  • the ionic liquid can be heat-treated to a relatively high temperature due to the wide temperature range that is stably present as a liquid, so that a large amount of organic materials can be dissolved or melted, and there is little change in properties even at such high temperatures. Since the amount of the organic material to be dissolved or melted eventually affects the single crystal process yield, it is possible to grow the organic material single crystal at low cost according to the present invention in which the single crystal is grown using the ionic liquid.
  • the organic material single crystals could be grown with high purity of 99.9% or more by only one step of growing a single crystal after liquefying a low purity organic material in an ionic liquid.
  • the ionic liquid has a very low vapor pressure, so that the ratio of the ionic liquid to the organic material is maintained even at high temperature, so that the process design and control is easy, and the chemical stability is also negligible. .
  • the organic material is liquefied by raising the temperature to the first temperature T1 at a predetermined rate and maintaining the predetermined time (t2-t1).
  • the first temperature can be set to a temperature at which the organic material can be liquefied as much as possible according to the combination of the organic material and the ionic liquid, and the liquefaction temperature of the organic material can be greatly reduced by using the ionic liquid. Can be.
  • the mixed organic material may contain low-quality initial crystals, it is preferable to set the time to maintain the first temperature T1 to a time sufficient to allow the entire amount of the organic material including the initial crystals to be liquefied.
  • the temperature is lowered to a second temperature T2, which is a single crystal growth temperature after seed injection, at a predetermined speed, and the predetermined time t4-t3 is maintained at the second temperature T2.
  • the single crystal growth rate and the grown single crystal quality may be different according to the second temperature T2, and the purity of the crystal may vary. In order to form a high purity single crystal, it is preferable that the second temperature T2 is as high as possible.
  • the time maintained at the second temperature T2 is It is desirable to set the time sufficient to allow the solutiond organic material to be crystallized mostly.
  • the temperature may be lowered at a predetermined speed and the separation step S50 may be performed.
  • the temperature change curve of FIG. 2 is merely an example, and the present invention is not limited thereto.
  • the solution instead of maintaining a predetermined time at the first temperature for the solution of the organic material, the solution may be liquefied in the process of raising the temperature to the first temperature at a predetermined rate, in which case the temperature increase rate is relatively small. good.
  • the second temperature although the second temperature is lower than the first temperature, the second temperature may be higher than the first temperature, and in the process of changing the temperature at a predetermined speed instead of maintaining the predetermined temperature at the second temperature Single crystal growth can also be achieved.
  • the temperature at which the mixing step (S10) and the separating step (S50) are performed is not limited to room temperature, for example, an organic material may be mixed with the ionic liquid at the first temperature (T1).
  • the organic material single crystal growth method according to the present invention since the organic material is mixed and liquefied in the ionic liquid, the seed is added and the single crystal growth is carried out. Can grow.
  • the method according to the present invention enables high-purity single crystal growth up to 99.9% or more with only one process.
  • the present invention also has an advantageous effect in terms of ease of design and control of process conditions. That is, general organic solvents have high volatility, so they are difficult to apply to organic materials requiring high temperature for solution, and the organic solvents are volatilized during heat treatment, so that the process does not proceed as designed, such as uniform nucleation.
  • the soluble liquid is compatible with most organic materials and exists not only in the liquid phase over a wide temperature range but also chemically stable, so that the mixing ratio of the ionic liquid and the organic material remains substantially the same during the heat treatment process.
  • the organic material single crystal growth apparatus 100 includes a stage body 110, a container body 120 supported by the stage, in which a mixture 200 of an organic material and an ionic liquid is accommodated. ), A temperature control unit 130 provided around the container body 120 to heat the mixture 200 of the organic material and the ionic liquid, and a gas inlet unit for introducing gas into the container body 120. 140, a gas discharge part 150 for discharging gas from the inside of the container body 120, a container cover 160 for covering and sealing the container body 120, and a seed holder for fixing the seed 310. And 300.
  • the stage 110 may be configured to enable vertical movement and / or rotational movement as a configuration for supporting the container body 120.
  • the container body 120 accommodates therein an ionic liquid mixed with an organic material for growing single crystals.
  • the container body 120 may be formed of a material having excellent heat resistance, such as ceramic, and is preferably formed of a material that does not react with the ionic liquid and the organic material at high temperature.
  • the temperature control unit 130 is configured to heat the organic material to liquefy the ionic liquid, and may be a resistance heating heater.
  • the temperature controller 130 is illustrated as a coil-type heater that wraps around the container body 120, but the shape, type, and installation position of the temperature controller 130 are not limited thereto.
  • the temperature controller 130 may be a heater capable of heating up to 400 ° C. or higher, and may be designed such that a temperature gradient is constant in all directions of the container body 120.
  • the gas inlet 140 and the gas outlet 150 are configured to control the gas atmosphere inside the container body 140.
  • the gas inlet 140 may be connected to an inert gas supply source such as nitrogen or argon to maintain the inside of the container body 140 in an inert gas atmosphere.
  • the gas discharge unit 150 may be connected to a vacuum pump so that the process may be performed while maintaining the inside of the container body 140 in a vacuum atmosphere.
  • the container cover 160 covers the upper portion of the container body 140 to form a sealed space.
  • the seed holder 300 is configured to inject the seed into the ionic liquid by fixing the seed 310 at an end thereof, and may be configured to enable vertical movement and / or rotational movement.
  • the seed 310 may be a high purity single crystal of the same material as the organic material to be grown single crystal.
  • a micro tube for self-seed formation may be fixed and introduced into the ionic liquid, which is illustrated in FIG. 4.
  • the hollow microtube 320 is fixed to the end of the seed holder 300 instead of the seed 310, and the diameter of the hollow region may be 800 ⁇ m or less.
  • the organic material solution may rise to the hollow region of the microtube by the capillary phenomenon and may be crystallized by a minute temperature difference to form the seed 330.
  • the organic material single crystal may be grown without a separate single crystal seed 310.
  • the container body 12 and the seed holder 300 may be relatively moved in the vertical direction or the rotation direction, and the vertical movement speed may be 2 mm or less per hour, and the rotational speed may be 9 rph or less.
  • both the stage 110 and the seed holder 300 are shown to be capable of vertically moving and rotating. However, only one of the stage 110 and the seed holder 300 may be configured to vertically move or rotate.
  • the apparatus of FIG. 3 is exemplary and that the organic material single crystal growth apparatus according to the present invention is not limited to the configuration of FIG. 3. Some components of FIG. 3 may be omitted or changed, or configurations not shown in FIG. 3 may be added.
  • the container body 120 or the container cover 160 may be provided with a measuring unit that can measure the process conditions, such as temperature, pressure, and control the temperature control unit 130 by receiving the measurement results of the measuring unit A control device may be provided.
  • Example 1 is N, N′-bis- (1-naphyl) -N, N′-diphenyl-1,1′-biphenyl-4,4′-diamine, which is a conductive organic material used as a material of the organic EL device.
  • 'NPB' is an example of single crystal growth using [Omim] [TFSI] ionic liquid.
  • the chemical formula of NPB is shown below in [Formula 2].
  • the low purity NBP before purification was pulverized and mixed with the [Omim] [TFSI] ionic liquid at a mixing ratio of 10 wt%, and then 5 ° C./min from normal temperature to 260 ° C. in a heat treatment furnace maintained in an argon (Ar) gas atmosphere.
  • NPB was liquefied at elevated temperature.
  • the NPB single crystal formed was separated from the ionic liquid, washed with isopropyl alcohol (IPA) and dried in an oven at 60 ° C. for 24 hours to obtain final NPB crystals.
  • the crystallinity of the crystal thus obtained was analyzed by X-ray diffraction (XRD; X-ray Diffractometry), and its purity was confirmed by HPLC.
  • FIG. 5 (a) shows the XRD analysis results of the NPB single crystal grown in Example 1, and the XRD analysis results of the NPB polycrystals are shown in FIG. 5 (b).
  • the excellent NPB single crystal with an X-ray half-value width of 0.1 o or less was grown by the method of the present invention.
  • HPLC purity analysis showed that the grown NPB single crystal had a high purity of 99.92%. That is, according to the method of the present invention, it can be seen that a high purity NPB single crystal of 99.9% or more can be obtained through only one simple heat treatment process.
  • Example 2 is an example in which tris- (8-hydroxyquinoline) aluminum (hereinafter, abbreviated as 'Alq3'), a conductive organic material used as a material of an organic EL device, is purified using [Omim] [TFSI] ionic liquid to be. Compared with Example 1, only the organic material was changed from NPB to Alq3, and the remaining process conditions were performed in the same manner.
  • the chemical formula of Alq3 is shown below in [Formula 3].
  • FIG. 6 (a) shows the XRD analysis results of Alq3 single crystals grown in Example 2, and the XRD analysis results of Alq3 polycrystals are shown in FIG. 6 (b).
  • X-ray full width at half maximum by the method of the present invention are excellent in 0.1 o Alq3 was grown single crystal or less.
  • HPLC purity analysis showed that the grown Alq3 single crystal had high purity similar to that of NPB single crystal.
  • FIG. 7 (a) and 7 (b) are scanning electron micrographs of Alq3 single crystals and Alq3 polycrystals grown in Example 2, respectively. From Fig. 7, it was confirmed that Alq3 polycrystals were needles of several micrometers or less in size, whereas crystal growth of several hundred micrometers or more was achieved after the single crystal growth process according to the present invention.
  • the composition and molecular weight are similar to the ionic liquid, so it is easy to mix. It can be presumed that the kinetics is very advantageous in solution and shows excellent behavior in crystallization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The present invention relates to a method and apparatus for growing high-purity organic material monocrystals using an ionic liquid, the method comprising: a mixing step for mixing an organic material with an ionic liquid; a solutionization step for solutionizing the organic material mixed with the ionic liquid through thermal treatment under the first condition; a nucleation step for feeding seeds into the ionic liquid, which contains the solutionized organic material, under the second condition; a monocrystalline growth step for growing monocrystals under the third condition; and a separation step for separating the grown organic material monocrystals from the ionic liquid, and thus, organic material monocrystals are obtained that are purified at high purity compared with before the mixing with the ionic liquid. According to the present invention, high-purity organic material monocrystals can be grown at low costs through a simple process.

Description

이온성 액체를 이용한 유기재료 단결정 성장 방법 및 장치 Method and apparatus for growing single crystal of organic material using ionic liquid
본 발명은 유기재료 단결정을 성장시키는 방법 및 장치에 관한 것으로, 특히 이온성 액체에 유기재료를 혼합한 후 단결정을 성장시키는 방법 및 장치에 관한 것이다.The present invention relates to a method and apparatus for growing an organic material single crystal, and more particularly, to a method and apparatus for growing a single crystal after mixing an organic material in an ionic liquid.
유기 전계 발광(EL; Electroluminescence) 소자, 유기 반도체 소자, 유기 광전 변환 소자, 유기 센서 소자 등 전자 소자에 유기재료를 사용하는 예가 점점 증가하면서, 단결정 유기재료에 대한 관심이 커지고 있다. 그러나, 효율적인 유기재료 단결정 성장 기술의 부재로 인해 유기전자소자에는 대부분 비정질 상태의 유기재료가 사용되고 있는 실정이다.As the use of organic materials in electronic devices such as organic electroluminescence (EL) devices, organic semiconductor devices, organic photoelectric conversion devices, and organic sensor devices is increasing, interest in single crystal organic materials is increasing. However, due to the absence of efficient organic material single crystal growth technology, organic materials in an amorphous state are mostly used in organic electronic devices.
종래의 유기재료 단결정 성장 방법으로는 용매에 유기재료를 용해시킨 후 일정 온도에서 서서히 용매를 휘발시킴으로써 단결정이 성장되도록 하는 방법이 있다. 그러나 이러한 방법은 단결정 성장 시간이 너무 오래 걸릴 뿐만 아니라, 고품질의 단결정을 성장시키기 위해 필요한 공정 제어도 어려운 문제가 있다. 이러한 문제들은 결국 단결정 성장 비용의 증가로 이어지므로, 유기재료 단결정이 산업적으로 이용되는데 걸림돌이 되고 있다.Conventional organic material single crystal growth method is a method in which the single crystal is grown by dissolving the organic material in the solvent and then gradually volatilizing the solvent at a predetermined temperature. However, this method not only takes too much time for single crystal growth, but also has difficulty in controlling the processes required to grow high quality single crystals. These problems ultimately lead to an increase in the cost of single crystal growth, which makes it an obstacle to industrial use of single crystal.
또한, 종래의 유기재료 단결정 성장 방법은 불순물 제거가 용이하지 않다는 문제가 있다. 따라서, 고순도 단결정을 얻기 위해서는 논문[H.J.Wagner, el al., Journal of Materials Science, 17, 2781 (1982)]에 개시된 승화정제법 등의 방법으로 유기재료를 우선 고순도로 정제한 후에 단결정 성장을 해야 하는 번거로움이 있었다.In addition, the conventional organic material single crystal growth method has a problem in that impurities are not easily removed. Therefore, in order to obtain high-purity single crystals, the organic materials must be first purified to high purity by a method such as the sublimation purification method disclosed in HJ Wagner, el al., Journal of Materials Science, 17, 2781 (1982), and then single crystal growth is performed. There was a hassle.
따라서, 종래 기술이 가지고 있는 다양한 문제점들을 해결하고 저비용의 간단한 공정으로 유기재료를 정제하면서 동시에 단결정을 성장시킬 수 있는 새로운 방법이 요구되고 있다.Therefore, there is a need for a new method that can solve various problems of the prior art and grow single crystals while simultaneously purifying organic materials in a low cost and simple process.
본 발명은 상기와 같은 종래의 정제방법이 가지고 있는 문제점을 해결할 수 있는 새로운 유기재료 단결정 성장 방법 및 장치를 제공하는 것을 목적으로 한다.An object of the present invention is to provide a novel organic material single crystal growth method and apparatus that can solve the problems of the conventional purification method as described above.
구체적으로는, 1회의 공정만으로도 99% 이상, 바람직하게는 99.5% 이상, 더욱 바람직하게는 99.9% 이상의 고순도 유기재료 단결정을 성장시킬 수 있는 단결정 성장 방법 및 장치를 제공하는 것을 목적으로 한다.Specifically, it is an object of the present invention to provide a single crystal growth method and apparatus capable of growing a high-purity organic material single crystal of 99% or more, preferably 99.5% or more, and more preferably 99.9% or more by only one process.
또한 본 발명은 저비용으로 고순도 유기재료 단결정을 효율적으로 성장시킬 수 있는 단결정 성장 방법 및 장치를 제공하는 것을 또 다른 목적으로 한다.In addition, another object of the present invention is to provide a single crystal growth method and apparatus capable of efficiently growing high-purity organic single crystal at low cost.
또한 본 발명은 공정 설계 및 제어가 용이하고 다양한 유기재료에 대응할 수 있는 단결정 성장 방법 및 장치를 제공하는 것을 또 다른 목적으로 한다.It is another object of the present invention to provide a single crystal growth method and apparatus which is easy to design and control and can cope with various organic materials.
상기한 목적을 달성하기 위한 본 발명의 일측면에 따른 유기재료 단결정 성장 방법은, 유기재료를 이온성 액체와 혼합하는 혼합 단계; 제1 조건에서 열처리하여 상기 이온성 액체에 혼합된 유기재료를 용액화키는 용액화 단계; 제2 조건에서 상기 용액화된 유기재료를 포함하는 이온성 액체에 시드를 투입하고 시드 표면에 핵을 생성시키는 핵생성 단계; 제3 조건에서 단결정을 성장시키는 단결정 성장 단계; 및 성장된 유기재료 단결정을 이온성 액체로부터 분리하는 분리 단계(S50)를 포함하여, 이온성 액체에 혼합되기 전보다 고순도로 정제된 유기재료 단결정을 얻는 것을 특징으로 한다. 이때, 상기 제1 조건, 제2 조건 또는 제3 조건은 시간에 따라 변화하는 조건일 수 있다.Organic material single crystal growth method according to an aspect of the present invention for achieving the above object, the mixing step of mixing the organic material with the ionic liquid; A solution step of liquefying an organic material mixed with the ionic liquid by heat treatment under a first condition; Nucleating step of seeding the ionic liquid including the liquefied organic material under a second condition and nucleating the seed surface; A single crystal growing step of growing the single crystal under the third condition; And a separation step (S50) of separating the grown organic material single crystal from the ionic liquid, thereby obtaining a purified organic material single crystal with higher purity than before mixing with the ionic liquid. In this case, the first condition, the second condition, or the third condition may be a condition that changes with time.
본 발명에 있어서, 이온성 액체에 투입되는 상기 시드는 결정화 대상인 유기재료와 동일한 물질의 단결정이거나 또는 중공의 마이크로 튜브일 수 있으며, 상기 용액화는 용해 또는 용융 중 적어도 어느 하나일 수 있다.In the present invention, the seed introduced into the ionic liquid may be a single crystal or a hollow microtube of the same material as the organic material to be crystallized, and the solution may be at least one of melting or melting.
또한, 상기 혼합 단계, 용액화 단계, 핵생성 단계, 단결정 성장 단계 및 분리 단계를 1회 진행하는 것에 의해 99% 이상의 고순도 단결정 유기재료가 얻어질 수 있고, 이온성 액체로부터 분리된 상기 유기재료 단결정을 세척 및 건조하는 단계를 더 포함할 수 있다.Further, by performing the mixing step, the solution step, the nucleation step, the single crystal growth step and the separation step once, a high purity single crystal organic material of 99% or more can be obtained, and the organic material single crystal separated from the ionic liquid It may further comprise the step of washing and drying.
상기 분리 단계 이후에는 상기 분리된 유기재료 단결정의 표면 불순물을 제거하기 위한 스웨팅 공정을 더 진행할 수 있으며, 상기 용액화 단계 및 상기 핵생성 단계 사이에 용액화되지 않은 유기재료를 걸러내기 위한 필터링 단계를 더 진행할 수 있다.After the separation step, a sweating process may be further performed to remove surface impurities of the separated organic material single crystal, and the filtering step may be performed to filter out unliquefied organic material between the solution step and the nucleation step. You can proceed further.
본 발명의 다른 측면에 따른 유기재료 단결정 성장 장치는, 스테이지; 상기 스테이지에 의해 지지되며 유기재료와 이온성 액체의 혼합물이 수용되는 용기 본체; 상기 용기 본체에 수용된 유기재료와 이온성 액체의 혼합물을 가열하는 온도조절부; 상기 용기 본체에 수용된 유기재료와 이온성 액체의 혼합물에 시드를 투입되는 시드가 단부에 고정된 시드 홀더;를 포함하며, 상기 용기 본체 및 상기 시드 홀더는 상대 이동 가능한 것을 특징으로 한다.Organic material single crystal growth apparatus according to another aspect of the present invention, the stage; A container body supported by the stage and containing a mixture of organic material and ionic liquid; A temperature control unit for heating the mixture of the organic material and the ionic liquid contained in the container body; And a seed holder having a seed fixed to an end thereof, the seed being introduced into a mixture of an organic material and an ionic liquid contained in the container body, wherein the container body and the seed holder are relatively movable.
여기서, 상기 시드는 상기 유기재료와 동일한 물질의 단결정 또는 중공의 마이크로 튜브일 수 있고, 상기 상대 이동은 상하 이동 및 회전 운동 중 하나 이상일 수 있다.Here, the seed may be a single crystal or a hollow microtube of the same material as the organic material, and the relative movement may be at least one of vertical movement and rotational movement.
또한, 상기 용기 본체 내부로 기체를 인입하기 위한 기체 인입부; 및 상기 용기 본체 내부로부터 기체를 배출하기 위한 기체 배출부를 더 포함할 수 있다.In addition, a gas inlet for introducing gas into the container body; And a gas discharge part for discharging gas from the inside of the container body.
본 발명의 또 다른 측면에 따른 유기재료 단결정은, 상기한 방법들 중 어느 하나의 방법에 의해 성장된 것일 수 있으며, X선 반치폭이 0.1o 이하일 수 있다.The organic material single crystal according to another aspect of the present invention may be grown by any one of the above-described methods, the X-ray half-value width may be 0.1 o or less.
본 발명에 의하면, 유기재료를 이온성 액체에 혼합하여 용액화시킨 후 단결정을 성장시키는 방법을 사용함으로써, 종래의 정제방법이 가지고 있는 다양한 문제점들을 해결할 수 있는 효과가 있다.According to the present invention, by using a method of growing a single crystal after mixing and liquefying an organic material in an ionic liquid, there is an effect that can solve various problems with the conventional purification method.
구체적으로는, 1회의 공정만으로도 99% 이상, 바람직하게는 99.5% 이상, 더욱 바람직하게는 99.9% 이상의 고순도로 유기재료 단결정을 성장시킬 수 있는 효과가 있다.Specifically, there is an effect capable of growing the organic material single crystal with high purity of 99% or more, preferably 99.5% or more, and more preferably 99.9% or more by only one process.
또한 본 발명에 의하면, 저비용으로 고순도 유기재료 단결정을 효율적으로 성장시킬 수 있는 효과가 있다.Moreover, according to this invention, there exists an effect which can grow a high purity organic material single crystal efficiently at low cost.
또한 본 발명에 의하면, 공정 설계 및 제어가 용이하고 다양한 유기재료에 대응할 수 있는 효과가 있다.In addition, according to the present invention, there is an effect that the process design and control is easy and can cope with various organic materials.
도 1은 본 발명에 따른 이온성 액체를 이용한 유기재료 단결정 성장 방법의 주요 흐름도이다.1 is a main flowchart of a method for growing an organic material single crystal using an ionic liquid according to the present invention.
도 2는 본 발명에 따른 유기재료 단결정 성장 방법을 진행하기 위한 온도 변화 곡선의 일례이다.2 is an example of a temperature change curve for carrying out the organic material single crystal growth method according to the present invention.
도 3은 본 발명에 따른 유기재료 단결정 성장 장치의 개략적인 단면도이다.3 is a schematic cross-sectional view of an organic material single crystal growth apparatus according to the present invention.
도 4는 자기-시드(self-seed) 형성을 위한 마이크로 튜브를 사용한 예시도이다.4 is an exemplary diagram using a micro tube for self-seed formation.
도 5(a)는 본 발명에 따라 성장된 NPB 단결정의 XRD 분석 결과이고, 도 5(b)는 NPB 다결정의 XRD 분석 결과이다.Figure 5 (a) is an XRD analysis of the NPB single crystal grown in accordance with the present invention, Figure 5 (b) is an XRD analysis of the NPB polycrystalline.
도 6(a)는 본 발명에 따라 성장된 Alq3 단결정의 XRD 분석 결과이고, 도 6(b)는 Alq3 다결정의 XRD 분석 결과이다. 6 (a) shows the XRD analysis of the Alq3 single crystal grown in accordance with the present invention, and FIG. 6 (b) shows the XRD analysis of the Alq3 polycrystal.
도 7(a)는 본 발명에 따라 성장된 Alq3 단결정, 도 7(b)는 Alq3 다결정의 주사전자현미경 사진이다.Figure 7 (a) is an Alq3 single crystal grown in accordance with the present invention, Figure 7 (b) is a scanning electron micrograph of the Alq3 polycrystals.
이하 첨부된 도면들을 참조하여 본 발명을 상세히 설명한다. 이하의 설명은 구체적인 실시예들을 포함하지만, 본 발명이 설명된 실시예들에 의해 한정되거나 제한되는 것은 아니다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. The following description includes specific embodiments, but the invention is not limited or limited by the described embodiments. In the following description of the present invention, if it is determined that the detailed description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.
본 발명에 따른 유기재료 단결정 성장 방법은 이온성 액체(ionic liquid)에 단결정 성장시키고자 하는 유기재료를 혼합한 다음, 제1 조건에서 열처리하여 유기재료를 용액화시킨 후, 제2 조건에서 단결정 성장을 위한 시드(Seed)를 투입하여 단결정 핵을 생성시키며, 이어서 제3 조건에서 단결정을 성장시키는 과정을 통해 고순도 유기재료 단결정을 성장시키는 것을 특징으로 하는 것이다. 여기서 제1, 2 및 3 조건은 온도, 압력, 공정 분위기 등의 공정 조건을 의미한다.In the organic material single crystal growth method according to the present invention, a single crystal is grown in an ionic liquid, and the organic material is liquefied by heat treatment under a first condition, followed by single crystal growth under a second condition. It is characterized in that to grow a single crystal of high purity organic material through the process of introducing a seed (Seed) for generating a single crystal nucleus, and then growing a single crystal under a third condition. Herein, the first, second and third conditions mean process conditions such as temperature, pressure, and process atmosphere.
이온성 액체는 이온만으로 구성된 액체를 말하며, 일반적으로 거대 양이온과 보다 작은 음이온으로 이루어져 있는 넓은 의미의 용융염(molten salt)으로서, 특별히 한정하는 것은 아니나 이온성 액체를 구성하는 양이온으로는 다음 [화학식 1]의 양이온이 사용될 수 있다. [화학식 1]에서 R1, R2, R3 및 R4은 탄소수 n개의 직쇄 또는 측쇄의 알킬기 일 수 있다.Ionic liquid refers to a liquid composed of only ions, and is generally a molten salt composed of a large cation and a smaller anion. The ionic liquid is not particularly limited but includes cations constituting the ionic liquid. The cation of 1] can be used. In Formula 1, R1, R2, R3, and R4 may be an alkyl group having n linear or branched carbon atoms.
[화학식 1] [Formula 1]
Figure PCTKR2016005975-appb-I000001
Figure PCTKR2016005975-appb-I000001
또한, 양이온과 함께 이온성 액체를 구성하는 음이온은 Cl-, Br-, NO3 -, BF4 -, PF6 -, AlCl4 -, Al2Cl7 -, AcO-, CH3COO-, CF3COO-, CH3SO3 -, CF3SO3 -, (CF3SO2)2N-, (CF3SO2)3C-, (CF3CF2SO2)2N-, C4F9SO3 -, C3F7COO-, (CF3SO2)(CF3CO)N-, C4F10N-, C2F6NO4S2 -, C2F6NO6S2 -, C4F10NO4S2 -, CF3SO2 -, C4F9SO2 -, C2H6NO4S2 -, C3F6NO3S-, CH3CH(OH)CO2 - 등의 음이온 중 하나 일 수 있다.Further, the anion constituting the ionic liquid with the cation is Cl -, Br -, NO 3 -, BF 4 -, PF 6 -, AlCl 4 -, Al 2 Cl 7 -, AcO -, CH 3 COO -, CF 3 COO -, CH 3 SO 3 -, CF 3 SO 3 -, (CF 3 SO 2) 2 N -, (CF 3 SO 2) 3 C -, (CF 3 CF 2 SO 2) 2 N -, C 4 F 9 SO 3 -, C 3 F 7 COO -, (CF 3 SO 2) (CF 3 CO) N -, C 4 F 10 N -, C 2 F 6 NO 4 S 2 -, C 2 F 6 NO 6 S 2 -, C 4 F 10 NO 4 S 2 -, CF 3 SO 2 -, C 4 F 9 SO 2 -, C 2 H 6 NO 4 S 2 -, C 3 F 6 NO 3 S -, CH 3 CH (OH) CO 2 - may be one of the anion and the like.
이온성 액체는 그 구조적 특징으로 인해 낮은 융점을 가지며 증기압이 매우 낮아 넓은 온도 범위에서 안정한 액체로 존재하는 특성이 있다. 또한, 열적 안정성 및 이온 전도성이 뛰어나고, 친수성 및 소수성의 다양한 유기물, 무기물, 고분자 물질들을 녹일 수 있으며, 휘발성이 낮고 난연성이며 폭발성도 낮아 일반 유기용매에 비해 친환경적인 물질이다.Due to its structural characteristics, ionic liquids have a low melting point and have a very low vapor pressure and thus exist as a stable liquid over a wide temperature range. In addition, it has excellent thermal stability and ion conductivity, can dissolve various hydrophilic and hydrophobic organic materials, inorganic materials, and high molecular materials, and is low in volatility, flame retardancy, and low explosiveness, making it an environmentally friendly material compared to general organic solvents.
도 1은 본 발명에 따른 이온성 액체를 이용한 유기재료 단결정 성장 방법의 주요 흐름도이다.1 is a main flowchart of a method for growing an organic material single crystal using an ionic liquid according to the present invention.
도 1을 참조하여 본 발명에 따른 유기재료 단결정 성장 방법을 설명하면, 단결정 성장시키고자 하는 유기재료를 이온성 액체와 혼합하는 혼합 단계(S10), 제1 조건에서 열처리하여 이온성 액체 내에서 유기재료를 용액화시키는 용액화 단계(S20), 제2 조건에서 용액화된 유기재료를 포함하는 이온성 액체에 시드를 투입하고 시드 표면에 핵을 생성시키는 핵생성 단계(S30), 제3 조건에서 단결정을 성장시키는 단결정 성장 단계(S40) 및 성장된 유기재료 단결정을 이온성 액체로부터 분리하는 분리 단계(S50)를 포함한다.Referring to FIG. 1, a method of growing an organic material single crystal according to an embodiment of the present invention is a mixing step (S10) of mixing an organic material to be grown single crystal with an ionic liquid, followed by heat treatment under a first condition to organic in ionic liquid. Solution liquefaction step (S20) to liquefy the material, the seed is added to the ionic liquid containing the organic material liquefied at the second condition and nucleation step (S30) to generate nuclei on the seed surface, single crystal at the third condition A single crystal growth step (S40) for growing a and a separation step (S50) for separating the grown organic material single crystal from the ionic liquid.
보다 구체적으로 설명하면, 우선 유기재료를 이온성 액체와 혼합하는 혼합 단계(S10)는, 단결정 성장시키고자 하는 유기재료를 이온성 액체 내에 넣고 혼합하는 단계이다. 이때 고체 상태의 유기재료가 이온성 액체와 보다 균일하게 혼합될 수 있도록 기계 교반, 자기 교반 등의 방법으로 교반을 수행할 수 있다. 유기재료는 본 발명에 따른 방법을 사용하여 고순도 단결정을 성장시키고자 하는 유기재료로서, 그 물질을 구체적으로 제한하는 것은 아니나 유기 전계 발광 소자의 전자 주입층, 전자 전달층, 정공 주입층, 정공 전달층, 발광층, 유기 광전 변환 소자의 광 흡수층, 유기 반도체 소자의 유기 반도체층 등에 사용되는 전도성 유기재료인 것이 바람직하다. 또한, 이온성 액체와 혼합되는 유기재료는 불순물이 포함된 저순도 유기재료일 수 있다.More specifically, first, the mixing step (S10) of mixing the organic material with the ionic liquid is a step of mixing the organic material to be grown single crystal into the ionic liquid. At this time, the agitation may be performed by mechanical stirring, magnetic stirring, or the like so that the organic material in the solid state may be more uniformly mixed with the ionic liquid. The organic material is an organic material intended to grow high purity single crystals using the method according to the present invention, but the material is not specifically limited, but the electron injection layer, the electron transport layer, the hole injection layer and the hole transport of the organic EL device. It is preferable that it is a conductive organic material used for a layer, a light emitting layer, the light absorption layer of an organic photoelectric conversion element, the organic semiconductor layer of an organic semiconductor element, etc. In addition, the organic material mixed with the ionic liquid may be a low purity organic material containing impurities.
또한 이온성 액체는 혼합되는 유기재료에 따라 적절히 선택될 수 있는데, 특히 긴 알킬 치환기를 갖는 이미다졸륨 기반의 이온성 액체가 본 발명의 이온성 액체로 적합하다. 예를 들어 1-옥틸-3-메틸이미다졸륨 트리플로로메틸술포닐이마이드[l-octyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide] (이하 '[Omim][TFSI]'로 약칭함), 1-부틸-3-메틸이미다졸륨 트리플로로메틸술포닐이마이드[l-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide], 1-에틸-3-메틸이미다졸륨 트리플로로메틸술포닐아마이드 [(l-Ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide], 1-데실-3-메틸이미다졸륨 트리플로로메틸술포닐아마이드[1-Decyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide], 1-도데실-3-메틸이미다졸륨 트리플로로메틸술포닐아마이드[1-Dodecyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide] 등이 사용될 수 있다.The ionic liquid may also be appropriately selected depending on the organic materials to be mixed. In particular, imidazolium based ionic liquids having long alkyl substituents are suitable as the ionic liquid of the present invention. Eg 1-octyl-3-methylimidazolium trifluoromethylsulfonylimide [l-octyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide] (hereinafter abbreviated as '[Omim] [TFSI]'), L-butyl-3-methylimidazolium trifluoromethylsulfonylamide [l-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide], 1-ethyl-3-methylimidazolium trifluoromethylsulfonylamide [(l-Ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide], 1-decyl-3-methylimidazolium trifluoromethylsulfonylamide [1-Decyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide], 1- Dodecyl-3-methylimidazolium trifluoromethylsulfonylamide [1-Dodecyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide] and the like can be used.
이온성 액체는 양이온과 음이온의 조합에 의해 이론적으로는 1018에 이르는 무수한 조합이 가능하므로 다양한 유기재료에 대응할 수 있다. 즉, 고순도 단결정을 성장시키고자 하는 유기재료에 따라 그에 적합한 특성을 갖는 이온성 액체를 선택하여 사용하는 것이 가능하다. 특히, 유기 전계 발광 소자용 전도성 유기재료 등 상업적으로 사용되는 전도성 유기재료는 대부분 유사한 기본구조 및 극성을 가지고 있고 이러한 기본구조를 바탕으로 일부분의 반응기가 치환된 구조여서 비슷한 결정화 거동이 나타나므로, 굳이 다양한 이온성 액체를 설계하지 않더라도 [Omim][TFSI] 등 일부 이온성 액체를 이용하여 공정 조건을 최적화하는 방법으로 본 발명에 따른 단결정 성장 방법은 다양한 전도성 유기재료에 사용될 수 있다.The ionic liquid can be used in a myriad of combinations of theoretically 10 18 by the combination of cations and anions, and thus can cope with various organic materials. That is, it is possible to select and use an ionic liquid having suitable characteristics according to the organic material to grow high purity single crystal. In particular, most of the commercially available conductive organic materials such as conductive organic materials for organic electroluminescent devices have similar basic structure and polarity, and since some of the reactors are substituted based on the basic structure, similar crystallization behavior appears. Even without designing various ionic liquids, the single crystal growth method according to the present invention can be used for various conductive organic materials by optimizing process conditions using some ionic liquids such as [Omim] [TFSI].
유기재료와 이온성 액체를 혼합한 후에는 제1 조건에서 열처리하여 이온성 액체 내에서 유기재료를 용액화시키는 용액화 단계(S20)를 수행한다. 여기서 용액화는 용해 또는 용융을 의미할 수 있으며, 용해와 용융이 혼합된 형태일 수도 있다. 용해와 용융 중 어느 쪽이 용액화의 주된 메커니즘인가는 유기재료와 이온성 액체 쌍(pair)과 제1 조건에 따라 결정될 수 있다. 제1 조건이란 제1 온도, 제1 압력 및 제1 분위기 조건 등 열처리 공정 조건을 의미하며, 어느 하나의 고정된 조건이 아닌 시간에 따라 변화되는 조건일 수도 있다. 예를 들어 유기재료와 이온성 액체를 혼합한 후 제1 온도로 소정 시간 유지하면서 유기재료를 용액화시킬 수도 있으나, 소정 속도로 온도를 변화시키면서 용액화시킬 수도 있다. 또한 제1 조건은 위치에 따라 균일할 것을 요구하는 것은 아니다. 가령 유기재료와 이온성 액체가 혼합된 용기는 위치에 따라 소정의 온도 구배가 생기도록 열처리될 수도 있다.After mixing the organic material and the ionic liquid, a heat treatment under the first condition is performed to solution solution (S20) to liquefy the organic material in the ionic liquid. Solution may mean dissolution or melting, and may also be a mixture of dissolution and melting. Whether dissolution or melting is the main mechanism of solution can be determined depending on the organic material and the ionic liquid pair and the first condition. The first condition refers to a heat treatment process condition such as a first temperature, a first pressure, and a first atmosphere condition, and may be a condition that varies with time rather than any fixed condition. For example, the organic material may be liquefied while mixing the organic material and the ionic liquid while maintaining the predetermined temperature at the first temperature, or may be liquefied while changing the temperature at a predetermined rate. Also, the first condition does not require to be uniform depending on the position. For example, a container in which an organic material and an ionic liquid are mixed may be heat-treated to produce a predetermined temperature gradient depending on the position.
단결정 성장을 위해서는 이온성 액체 내에서 유기재료가 우선 용액화되어야 하므로, 높은 공정 수율을 위해 제1 조건은 이온성 재료 내에 혼합된 유기재료의 80% 이상, 바람직하게는 90% 이상, 더욱 바람직하게는 실질적으로 전량 용액화되는 조건으로 설정될 수 있으며, 이는 유기재료가 전량 용액화되기에 충분한 고온으로 제1 온도 조건을 설정하는 것에 의해 달성될 수 있다.Since the organic material must first be liquefied in the ionic liquid for single crystal growth, the first condition for high process yield is at least 80%, preferably at least 90%, more preferably of the organic material mixed in the ionic material. Can be set to a condition that substantially totally liquefies, and this can be achieved by setting the first temperature condition to a high temperature sufficient for the total amount of organic material to be liquefied.
용액화 단계(S20) 후에는 용액화된 유기재료를 포함하는 이온성 액체에 시드를 투입하고 시드 표면에 핵을 생성시키는 핵생성 단계(S30)를 수행한다. 여기서 시드를 투입한다는 것은 시드가 이온성 액체 내에 완전히 잠기는 것을 반드시 의미하는 것은 아니며, 시드의 적어도 일부가 이온성 액체와 접하는 것을 의미하는 것으로 이해되어야 한다.After the solution step (S20), the seed is added to the ionic liquid containing the liquefied organic material and the nucleation step (S30) for generating a nucleus on the seed surface is performed. Injecting the seed here does not necessarily mean that the seed is completely submerged in the ionic liquid, but it is to be understood that at least a portion of the seed is in contact with the ionic liquid.
핵생성 단계는 제2 조건에서 수행되는데, 제2 조건은 시드 표면에서 유기재료 결정의 핵생성이 용이하게 이루어지는 조건일 수 있다. 예를 들어, 용액화의 주된 메커니즘이 용해인 경우, 제2 조건은 제1 조건보다 낮은 온도의 조건일 수 있다. 저온에서 용해도가 감소하는 유기재료의 경우 제1 조건보다 낮은 온도인 제2 조건 하에서는 결정화를 위한 구동력(Driving force)이 증가하므로, 시드 표면에 핵생성이 용이하게 이루어질 수 있다. 또한, 용액화의 주된 메커니즘이 용융인 경우, 제2 조건은 제1 조건보다 높은 온도의 조건일 수 있다. 유기재료-이온성 액체 쌍에 따라서는 용융 온도보다 고온에서 결정화를 위한 구동력이 증가할 수 있으므로, 제1 조건보다 높은 온도의 제2 조건에서 시드 표면에 핵생성이 용이하게 이루어질 수 있다.The nucleation step is carried out under a second condition, which may be a condition in which nucleation of organic material crystals is easily performed at the seed surface. For example, if the main mechanism of solution is dissolution, the second condition may be a condition of temperature lower than the first condition. In the case of an organic material having low solubility at low temperature, a driving force for crystallization is increased under the second condition, which is lower than the first condition, so that nucleation can be easily performed on the seed surface. In addition, when the main mechanism of solution is melting, the second condition may be a condition of higher temperature than the first condition. Depending on the organic material-ionic liquid pair, the driving force for crystallization may be increased at a higher temperature than the melting temperature, so that nucleation can be easily performed on the seed surface at a second condition at a temperature higher than the first condition.
한편, 제2 조건은 반드시 고정된 조건을 의미하는 것은 아니며, 시간에 따라 변하는 조건일 수 있다. 즉, 제1 조건에서 열처리 후 그보다 낮은 온도 또는 높은 온도로 일정하게 유지하면서 핵생성을 유발시킬 수도 있으나, 온도를 서서히 감소 또는 증가시키면서 핵생성이 이루어지도록 할 수도 있다. 또한 제2 조건은 위치에 따라 균일할 것을 요구하는 것은 아니다. 가령, 시드 투입 방향에 따라 소정의 온도 구배가 생기도록 할 수 있다.On the other hand, the second condition does not necessarily mean a fixed condition, but may be a condition that changes with time. That is, although the nucleation may be induced while maintaining the temperature at a lower or higher temperature after the heat treatment under the first condition, the nucleation may be performed while the temperature is gradually decreased or increased. Also, the second condition does not require to be uniform depending on the position. For example, a predetermined temperature gradient may be generated depending on the seed injection direction.
시드는 용융된 유기재료와 동일한 물질의 고순도 단결정일 수 있으며, 자기-시드(Self-seed) 형성을 위해 중공의 마이크로 튜브를 사용할 수도 있다. 마이크로 튜브를 사용할 경우, 용융된 유기재료가 마이크로 튜브의 중공 부분으로 모세관 현상에 의해 상승하면서 결정화되어 시드 역할을 할 수 있으며, 이를 위해 마이크로 튜브의 중공 영역 직경은 800㎛ 이하일 수 있다.The seed may be a high purity single crystal of the same material as the molten organic material, or may use a hollow microtube for self-seed formation. In the case of using a microtube, the molten organic material may crystallize as the seed is raised by the capillary phenomenon to the hollow portion of the microtube, so that the diameter of the hollow region of the microtube may be 800 μm or less.
핵생성 단계(S30) 이후에는 제3 조건에서 단결정을 성장시키는 단결정 성장 단계를 수행한다(S40). 여기서 제3 조건이란 제3 온도, 제3 압력 및 제3 분위기 조건 등 이온성 액체 내에서 용액화된 유기재료의 단결정을 성장시키는 공정 조건을 의미하며, 어느 하나의 고정된 조건이 아닌 시간에 따라 변화되는 조건일 수도 있다. 또한 제3 조건은 위치에 따라 균일할 것을 요구하는 것은 아니다. 가령, 시드 투입 방향에 따라 소정의 온도 구배가 생기도록 할 수 있다.After the nucleation step (S30) to perform a single crystal growth step of growing a single crystal in the third condition (S40). Here, the third condition refers to process conditions for growing single crystals of an organic material liquefied in an ionic liquid, such as a third temperature, a third pressure, and a third atmospheric condition, and depending on the time rather than any fixed condition. It may be a changing condition. Also, the third condition does not require to be uniform depending on the position. For example, a predetermined temperature gradient may be generated depending on the seed injection direction.
제3 조건은 제1 조건 및/또는 제2 조건과 온도, 압력, 분위기 중 적어도 어느 하나가 상이한 조건일 수 있으며, 압력 및 분위기는 동일하고 온도가 상이한 조건인 것이 바람직하다. 용액화의 주된 메커니즘이 용해인 경우 제3 온도는 제1 온도 또는 제2 온도보다 낮은 온도일 수 있고, 용액화의 주된 메커니즘이 용융인 경우 제3 온도는 제1 온도 또는 제2 온도보다 높은 온도일 수 있다. The third condition may be a condition in which at least one of the first condition and / or the second condition is different from the temperature, the pressure, and the atmosphere, and the pressure and the atmosphere are preferably the same and the temperature is different. The third temperature may be lower than the first or second temperature if the main mechanism of solution is dissolution, and the third temperature is higher than the first or second temperature if the main mechanism of solution is melting. Can be.
한편, 핵생성 단계(S20) 및/또는 단결정 성장 단계(S30)에서는 투입된 시드를 유기재료와 이온성 액체가 수용된 용기에 대하여 상대 이동시킬 수 있다. 여기서 상대 이동은 회전 또는 상하 이동을 포함할 수 있다. 예를 들어, 시드를 9rph 이하의 속도로 회전시키면서 시간당 2mm 이하의 속도로 상방향으로 이동시킬 수 있으며, 이 과정에서 시드로부터 단결정이 성장되도록 유도할 수 있다.On the other hand, in the nucleation step (S20) and / or single crystal growth step (S30) it is possible to move the injected seed relative to the container containing the organic material and the ionic liquid. Here, the relative movement may include rotation or vertical movement. For example, the seed may be moved upwards at a speed of 2 mm or less while rotating the seed at a speed of 9 rph or less, and in this process, single crystals may be grown from the seed.
한편, 이상의 설명에서는 온도를 변화시켜 유기재료를 용액화시키고 단결정을 성장시키는 예를 설명하였으나, 온도 대신 압력을 변화시키거나 온도와 압력을 모두 변화시키는 것에 의해 유기재료의 용액화 및 단결정화를 유도할 수도 있다.Meanwhile, in the above description, an example of liquefying an organic material and growing a single crystal by varying the temperature has been described, but the solution and the monocrystallization of the organic material are induced by changing the pressure instead of the temperature or changing both the temperature and pressure. You may.
단결정 성장 단계(S30)에서는 이온성 액체 내에 용해 또는 용융되었던 유기재료가 불순물이 배제된 상태의 고순도 단결정으로 석출되므로, 불순물을 포함한 이온성 액체로부터 유기재료 단결정을 분리하게 되면 고순도로 정제된 유기재료 단결정을 취득할 수 있다(S50). In the single crystal growth step (S30), since the organic material dissolved or melted in the ionic liquid is precipitated as a high purity single crystal in which impurities are excluded, when the organic material single crystal is separated from the ionic liquid containing impurities, the organic material is highly purified. A single crystal can be obtained (S50).
도 1에는 S50 단계까지만 도시하였으나, 이온성 액체로부터 분리된 유기재료 단결정을 세척한 후 건조하는 공정이 더 수행될 수 있으며, 유기재료 단결정 표면에 포함된 불순물을 제거하기 위하여 적정 온도로 가열하거나 표면 부분만 살짝 용융시키는 등의 스웨팅 공정을 더 진행할 수 있다. 또한, 이온성 액체에 혼합된 유기재료가 용액화 단계(S20)에서 전량 용액화되지 않고 일부가 용해 또는 용융되지 않은 상태에서 단결정을 성장시키는 경우, 분리 단계(S50)에서 저순도 유기재료가 고순도 단결정과 섞일 수 있으므로, 용액화 단계(S20) 및 핵생성 단계(S30) 사이에 용액화되지 않은 유기재료를 걸러내기 위한 필터링 단계를 더 진행할 수 있다.Although only up to step S50 is shown in FIG. 1, a process of washing and drying the organic material single crystal separated from the ionic liquid may be further performed. In order to remove impurities contained in the surface of the organic material single crystal, the surface may be heated or heated to an appropriate temperature. Sweating processes, such as melting only a portion slightly, can be further performed. In addition, when the organic material mixed in the ionic liquid is grown in the solution state (S20) in which the entire solution is not liquefied and partially dissolved or melted, the low-purity organic material is high purity in the separation step (S50) Since it may be mixed with the single crystal, a filtering step for filtering the unliquefied organic material may be further performed between the solution step (S20) and the nucleation step (S30).
많은 양의 유기재료가 용해되거나 용융될 정도의 고온에서는 일반 유기용매의 경우 휘발성이 강하여 안정한 액체상으로 존재하지 않는 경우가 많고, 액체로 존재하더라도 유기재료와의 비율이 일정하게 유지되지 않으며, 유기재료와의 반응 등으로 인한 불순물 혼입 등이 문제가 된다. 반면 이온성 액체는 액체로 안정하게 존재하는 온도 범위가 넓어 상대적으로 고온까지 열처리하는 것이 가능하므로 많은 양의 유기재료를 용해 또는 용융시킬 수 있고, 그러한 고온에서도 특성 변화가 적다. 용해 또는 용융되는 유기재료의 양은 결국 단결정 공정 수율에 영향을 미치므로, 이온성 액체를 이용하여 단결정을 성장시키는 본 발명에 따르면 저비용으로 유기재료 단결정을 성장시키는 것이 가능하다.At a high temperature at which a large amount of organic materials are dissolved or melted, general organic solvents are highly volatile and do not exist in a stable liquid phase, and even in the presence of liquids, the ratio with organic materials is not kept constant. Impurity mixing due to the reaction with, etc. becomes a problem. On the other hand, the ionic liquid can be heat-treated to a relatively high temperature due to the wide temperature range that is stably present as a liquid, so that a large amount of organic materials can be dissolved or melted, and there is little change in properties even at such high temperatures. Since the amount of the organic material to be dissolved or melted eventually affects the single crystal process yield, it is possible to grow the organic material single crystal at low cost according to the present invention in which the single crystal is grown using the ionic liquid.
특히 본 발명에 따르면 이온성 액체를 이용하여 단결정을 성장시킴으로써 사전 정제 공정을 거치지 않더라도 고순도 단결정 성장이 가능하다. 후술하는 실시예에 따르면, 이온성 액체 내에서 저순도 유기재료를 용액화한 후 단결정을 성장시키는 1회의 공정만으로 99.9% 이상의 고순도로 유기재료 단결정을 성장시킬 수 있었다. In particular, according to the present invention, by growing a single crystal using an ionic liquid, high-purity single crystal growth is possible without undergoing a prior purification process. According to the embodiments described later, the organic material single crystals could be grown with high purity of 99.9% or more by only one step of growing a single crystal after liquefying a low purity organic material in an ionic liquid.
또한, 이온성 액체는 증기압이 매우 작아 고온으로 열처리하여도 유기재료와의 비율이 일정하게 유지되므로 공정 설계 및 제어가 용이하며, 화학적으로 안정하여 유기재료 결정 내에 불순물로 혼입되는 양도 무시할만한 수준이다. 이러한 효과들은 일반 유기용매를 사용하는 종래의 단결정 성장 방법에서는 기대할 수 없는 특성이다. In addition, the ionic liquid has a very low vapor pressure, so that the ratio of the ionic liquid to the organic material is maintained even at high temperature, so that the process design and control is easy, and the chemical stability is also negligible. . These effects are characteristics that cannot be expected in the conventional single crystal growth method using a general organic solvent.
도 2는 본 발명에 따른 유기재료 단결정 성장 방법을 진행하기 위한 온도 변화 곡선의 일례이다. 도 2를 참조하면, 이온성 액체에 유기재료를 혼합한 후 소정의 속도로 제1 온도(T1)까지 승온하여 일정 시간(t2-t1) 유지함으로써 유기재료를 용액화시킨다. 제1 온도는 유기재료 및 이온성 액체의 조합에 따라 유기재료가 가급적 전량 용액화될 수 있을 정도의 온도로 설정할 수 있으며, 이온성 액체를 사용하는 것에 의해 유기재료의 용액화 온도를 크게 감소시킬 수 있다. 또한, 혼합된 유기재료에는 저품질의 초기 결정이 포함되어 있을 수 있으므로 제1 온도(T1)로 유지시키는 시간은 초기 결정을 포함한 유기재료가 전량 용액화될 수 있도록 충분한 시간으로 설정하는 것이 바람직하다.2 is an example of a temperature change curve for carrying out the organic material single crystal growth method according to the present invention. Referring to FIG. 2, after the organic material is mixed with the ionic liquid, the organic material is liquefied by raising the temperature to the first temperature T1 at a predetermined rate and maintaining the predetermined time (t2-t1). The first temperature can be set to a temperature at which the organic material can be liquefied as much as possible according to the combination of the organic material and the ionic liquid, and the liquefaction temperature of the organic material can be greatly reduced by using the ionic liquid. Can be. In addition, since the mixed organic material may contain low-quality initial crystals, it is preferable to set the time to maintain the first temperature T1 to a time sufficient to allow the entire amount of the organic material including the initial crystals to be liquefied.
제1 온도(T1)에서의 유지 시간이 종료된 후에는 시드 투입 후 단결정 성장 온도인 제2 온도(T2)까지 소정 속도로 강온시키고, 제2 온도(T2)에서 일정 시간(t4-t3) 유지시킨다. 제2 온도(T2)에 따라 단결정 성장 속도 및 성장된 단결정 품질은 각각 다를 수 있으며, 결정의 순도도 차이가 날 수 있다. 고순도의 단결정이 형성되도록 하기 위해서는 제2 온도(T2)가 가급적 높은 것이 바람직하다. 한편 제1 온도(T1)에서 제2 온도(T2)에서 강온시키는 과정 또는 제2 온도(T2)에서 유지되는 동안 핵생성 및 단결정 성장이 진행되게 되므로, 제2 온도(T2)에서 유지시키는 시간은 용액화된 유기재료가 대부분 결정화될 수 있을 정도로 충분한 시간으로 설정하는 것이 바람직하다.After the holding time at the first temperature T1 is completed, the temperature is lowered to a second temperature T2, which is a single crystal growth temperature after seed injection, at a predetermined speed, and the predetermined time t4-t3 is maintained at the second temperature T2. Let's do it. The single crystal growth rate and the grown single crystal quality may be different according to the second temperature T2, and the purity of the crystal may vary. In order to form a high purity single crystal, it is preferable that the second temperature T2 is as high as possible. Meanwhile, since nucleation and single crystal growth proceed while the temperature is lowered at the first temperature T1 at the second temperature T2 or while the temperature is maintained at the second temperature T2, the time maintained at the second temperature T2 is It is desirable to set the time sufficient to allow the solutiond organic material to be crystallized mostly.
제2 온도(T2)에서 단결정 성장을 진행한 후에는 소정의 속도로 온도를 내려 분리 단계(S50)을 진행할 수 있다. After the single crystal growth is performed at the second temperature T2, the temperature may be lowered at a predetermined speed and the separation step S50 may be performed.
도 2의 온도 변화 곡선은 단지 예시일 뿐이며, 본 발명은 이에 한정되는 것이 아니다. 예를 들어, 유기재료의 용액화를 위해 제1 온도에서 일정 시간 유지하는 대신, 소정의 속도로 제1 온도까지 승온시키는 과정에서 용액화되도록 할 수도 있으며, 이 경우 승온 속도는 상대적으로 작게 하는 것이 좋다. 또한, 도 2에서는 제2 온도가 제1 온도보다 낮은 것으로 도시하였으나 제2 온도는 제1 온도보다 높은 온도일 수도 있으며, 제2 온도에서 일정 시간 유지하는 대신 소정의 속도로 온도를 변화시키는 과정에서 단결정 성장이 이루어지도록 할 수도 있다. 혼합 단계(S10) 및 분리 단계(S50)가 이루어지는 온도도 상온으로 한정하는 것은 아니며, 예를 들어 제1 온도(T1)에서 이온성 액체에 유기재료를 혼합할 수도 있다.The temperature change curve of FIG. 2 is merely an example, and the present invention is not limited thereto. For example, instead of maintaining a predetermined time at the first temperature for the solution of the organic material, the solution may be liquefied in the process of raising the temperature to the first temperature at a predetermined rate, in which case the temperature increase rate is relatively small. good. In addition, in FIG. 2, although the second temperature is lower than the first temperature, the second temperature may be higher than the first temperature, and in the process of changing the temperature at a predetermined speed instead of maintaining the predetermined temperature at the second temperature Single crystal growth can also be achieved. The temperature at which the mixing step (S10) and the separating step (S50) are performed is not limited to room temperature, for example, an organic material may be mixed with the ionic liquid at the first temperature (T1).
이상 설명한 본 발명에 따른 유기재료 단결정 성장 방법에 의하면, 이온성 액체 내에 유기재료를 혼합하여 용액화한 후 시드를 투입하여 단결정 성장을 진행하기만 하면 되므로, 저비용의 간단한 공정으로 고순도의 유기재료 단결정을 성장시킬 수 있다. 특히, 실시예를 통해 설명하는 바와 같이, 본 발명에 따른 방법에 의하면 1회의 공정만으로도 99.9% 이상에 이를 정도의 고순도 단결정 성장이 가능하다. According to the organic material single crystal growth method according to the present invention described above, since the organic material is mixed and liquefied in the ionic liquid, the seed is added and the single crystal growth is carried out. Can grow. In particular, as described in the Examples, the method according to the present invention enables high-purity single crystal growth up to 99.9% or more with only one process.
또한, 이온성 액체를 이용한 이와 같은 공정은 상압 또는 저진공에서 단시간에 이루어질 수 있고 원재료의 손실이 거의 없어 공정 수율도 높으므로, 종래의 단결정 성장 또는 정제 방법 대비 소요 비용 측면에서 장점이 있다. In addition, such a process using an ionic liquid can be made in a short time at atmospheric pressure or low vacuum, and there is almost no loss of raw materials, so the process yield is high, which is advantageous in terms of cost compared to conventional single crystal growth or purification methods.
공정 조건의 설계 및 제어의 용이성 측면에서도 본 발명은 유리한 효과가 있다. 즉, 일반 유기용매는 휘발성이 크기 때문에, 용액화에 고온이 필요한 유기재료에는 적용하기 곤란하고, 열처리 과정에서 유기용매가 휘발되어 분균일한 핵생성 등 설계한 대로 공정이 이루어지지 않는 반면, 이온성 액체는 대부분의 유기재료에 대응이 가능하고 넓은 온도 범위에서 액체상으로 존재할 뿐만 아니라 화학적으로 안정하여 이온성 액체와 유기재료의 혼합비가 열처리 과정에서도 사실상 동일하게 유지된다. The present invention also has an advantageous effect in terms of ease of design and control of process conditions. That is, general organic solvents have high volatility, so they are difficult to apply to organic materials requiring high temperature for solution, and the organic solvents are volatilized during heat treatment, so that the process does not proceed as designed, such as uniform nucleation. The soluble liquid is compatible with most organic materials and exists not only in the liquid phase over a wide temperature range but also chemically stable, so that the mixing ratio of the ionic liquid and the organic material remains substantially the same during the heat treatment process.
도 3은 본 발명의 다른 측면에 따른 유기재료 단결정 성장 장치의 개략적인 단면도이다. 도 3을 참조하여 설명하면 본 발명에 따른 유기재료 단결정 성장 장치(100)는, 스테이지(110), 상기 스테이지에 의해 지지되며 유기재료와 이온성 액체의 혼합물(200)이 수용되는 용기 본체(120), 상기 용기 본체(120) 주위에 구비되어 유기재료와 이온성 액체의 혼합물(200)을 가열하는 온도조절부(130), 상기 용기 본체(120) 내부로 기체를 인입하기 위한 기체 인입부(140), 상기 용기 본체(120) 내부로부터 기체를 배출하기 위한 기체 배출부(150), 상기 용기 본체(120)를 덮어 밀폐시키기 위한 용기 커버(160), 시드(310)를 고정시키기 위한 시드 홀더(300)를 포함하여 구성된다.3 is a schematic cross-sectional view of an organic material single crystal growth apparatus according to another aspect of the present invention. Referring to FIG. 3, the organic material single crystal growth apparatus 100 according to the present invention includes a stage body 110, a container body 120 supported by the stage, in which a mixture 200 of an organic material and an ionic liquid is accommodated. ), A temperature control unit 130 provided around the container body 120 to heat the mixture 200 of the organic material and the ionic liquid, and a gas inlet unit for introducing gas into the container body 120. 140, a gas discharge part 150 for discharging gas from the inside of the container body 120, a container cover 160 for covering and sealing the container body 120, and a seed holder for fixing the seed 310. And 300.
보다 구체적으로 설명하면, 스테이지(110)는 용기 본체(120)를 지지하는 구성으로서 상하 이동 및/또는 회전 이동이 가능하도록 구성될 수 있다. 용기 본체(120)는 단결정을 성장시키고자 하는 유기재료를 혼합한 이온성 액체를 내부에 수용한다. 용기 본체(120)는 세라믹 등 내열성이 우수한 재질로 형성될 수 있으며, 고온 가열 시 이온성 액체 및 유기재료와 반응하지 않는 재질로 형성되는 것이 바람직하다. 온도조절부(130)는 유기재료를 이온성 액체 내에서 용액화시키기 위해 가열하기 위한 구성으로, 저항가열식 히터일 수 있다. 도 3에는 온도조절부(130)가 용기 본체(120) 둘레를 감싸는 코일 형태 히터로 도시하였으나, 온도조절부(130)의 형태나 종류, 설치 위치는 이에 한정되는 것은 아니다. 온도 조절부(130)는 400℃ 이상 승온 가능한 히터일 수 있으며, 용기 본체(120)의 모든 방향에서 온도 구배가 일정하도록 설계된 것일 수 있다.More specifically, the stage 110 may be configured to enable vertical movement and / or rotational movement as a configuration for supporting the container body 120. The container body 120 accommodates therein an ionic liquid mixed with an organic material for growing single crystals. The container body 120 may be formed of a material having excellent heat resistance, such as ceramic, and is preferably formed of a material that does not react with the ionic liquid and the organic material at high temperature. The temperature control unit 130 is configured to heat the organic material to liquefy the ionic liquid, and may be a resistance heating heater. In FIG. 3, the temperature controller 130 is illustrated as a coil-type heater that wraps around the container body 120, but the shape, type, and installation position of the temperature controller 130 are not limited thereto. The temperature controller 130 may be a heater capable of heating up to 400 ° C. or higher, and may be designed such that a temperature gradient is constant in all directions of the container body 120.
기체 인입부(140) 및 기체 배출부(150)는 용기 본체(140) 내부의 기체 분위기를 조절하기 위한 구성이다. 예를 들어, 기체 인입부(140)를 질소, 아르곤 등 비활성 가스 공급원에 연결하여 용기 본체(140) 내부를 비활성 가스 분위기로 유지한 상태에서 공정을 진행할 수 있다. 기체 배출부(150)에는 진공 펌프를 연결하여 용기 본체(140) 내부를 진공 분위기로 유지한 상태에서 공정을 진행할 수도 있다. 용기 본체(140) 내부 분위기나 압력을 유지하기 위해서는 밀폐 공간을 형성할 필요가 있는데, 용기 커버(160)는 용기 본체(140) 상부를 덮어 밀폐 공간을 형성하기 위한 것이다.The gas inlet 140 and the gas outlet 150 are configured to control the gas atmosphere inside the container body 140. For example, the gas inlet 140 may be connected to an inert gas supply source such as nitrogen or argon to maintain the inside of the container body 140 in an inert gas atmosphere. The gas discharge unit 150 may be connected to a vacuum pump so that the process may be performed while maintaining the inside of the container body 140 in a vacuum atmosphere. In order to maintain the atmosphere or pressure inside the container body 140, it is necessary to form a sealed space. The container cover 160 covers the upper portion of the container body 140 to form a sealed space.
시드 홀더(300)는 단부에 시드(310)를 고정하여 이온성 액체에 시드를 투입하기 위한 구성으로, 상하 이동 및/또는 회전 이동이 가능하도록 구성될 수 있다. 시드(310)는 단결정 성장시키고자 하는 유기재료와 동일한 물질의 고순도 단결정일 수 있다.The seed holder 300 is configured to inject the seed into the ionic liquid by fixing the seed 310 at an end thereof, and may be configured to enable vertical movement and / or rotational movement. The seed 310 may be a high purity single crystal of the same material as the organic material to be grown single crystal.
한편 시드 홀더(300)의 단부에 시드(310)를 고정하는 대신 자기-시드(self-seed) 형성을 위한 마이크로 튜브를 고정하여 이온성 액체에 투입할 수도 있는데, 이를 도 4에 도시하였다. 도 4와 같이, 시드 홀더(300) 단부에는 시드(310) 대신 중공의 마이크로 튜브(320)가 고정되어 있으며, 그 중공 영역의 직경은 800㎛ 이하일 수 있다. 이러한 마이크로 튜브를 유기재료가 용액화되어 있는 이온성 액체에 투입하면 모세관 현상에 의해 유기재료 용액이 마이크로 튜브의 중공 영역으로 상승하면서 미세한 온도 차이에 의해 결정화되어 시드(330)를 형성할 수 있다. 이처럼 마이크로 튜브를 사용하면, 별도의 단결정 시드(310) 없이도 유기재료 단결정을 성장시킬 수 있다.Meanwhile, instead of fixing the seed 310 at the end of the seed holder 300, a micro tube for self-seed formation may be fixed and introduced into the ionic liquid, which is illustrated in FIG. 4. As shown in FIG. 4, the hollow microtube 320 is fixed to the end of the seed holder 300 instead of the seed 310, and the diameter of the hollow region may be 800 μm or less. When the microtube is injected into the ionic liquid in which the organic material is liquefied, the organic material solution may rise to the hollow region of the microtube by the capillary phenomenon and may be crystallized by a minute temperature difference to form the seed 330. As such, when the microtube is used, the organic material single crystal may be grown without a separate single crystal seed 310.
단결정 성장 단계에서는 용기 본체(12)와 시드 홀더(300)를 상하 또는 회전 방향으로 상대 이동시킬 수 있으며, 상하 이동 속도는 시간당 2mm 이하, 회전 속도는 9 rph 이하일 수 있다. 도 3에는 스테이지(110) 및 시드 홀더(300) 모두 상하 이동 및 회전 운동할 수 있는 것으로 도시하였으나, 필요에 따라 어느 한쪽만 상하 이동 또는 회전 운동할 수 있도록 구성할 수 있다.In the single crystal growth step, the container body 12 and the seed holder 300 may be relatively moved in the vertical direction or the rotation direction, and the vertical movement speed may be 2 mm or less per hour, and the rotational speed may be 9 rph or less. In FIG. 3, both the stage 110 and the seed holder 300 are shown to be capable of vertically moving and rotating. However, only one of the stage 110 and the seed holder 300 may be configured to vertically move or rotate.
도 3의 장치는 예시적인 것으로, 본 발명에 따른 유기재료 단결정 성장 장치가 도 3의 구성으로 한정되는 것이 아님을 이해하여야 한다. 도 3의 일부 구성이 생략 또는 변경되거나, 도 3에 도시되지 않은 구성이 부가될 수 있다. 예를 들어 용기 본체(120) 또는 용기 커버(160)에는 온도, 압력 등 공정 조건을 측정할 수 있는 측정부가 설치될 수 있고, 상기 측정부의 측정 결과를 전달받아 온도조절부(130) 등을 제어하는 제어장치가 구비될 수 있다.It is to be understood that the apparatus of FIG. 3 is exemplary and that the organic material single crystal growth apparatus according to the present invention is not limited to the configuration of FIG. 3. Some components of FIG. 3 may be omitted or changed, or configurations not shown in FIG. 3 may be added. For example, the container body 120 or the container cover 160 may be provided with a measuring unit that can measure the process conditions, such as temperature, pressure, and control the temperature control unit 130 by receiving the measurement results of the measuring unit A control device may be provided.
이하 본 발명에 따라 이온성 액체를 이용하여 고순도 유기재료 단결정을 성장시킨 결과를 실시예를 통해 설명한다.Hereinafter, a result of growing a high-purity organic material single crystal using an ionic liquid according to the present invention will be described through examples.
<실시예 1><Example 1>
실시예 1은 유기 전계 발광 소자의 재료로 사용되는 전도성 유기재료인 N,N′-bis-(1-naphyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (이하 'NPB'로 약칭함)를 [Omim][TFSI] 이온성 액체를 이용하여 단결정 성장시킨 예이다. NPB의 화학식을 아래 [화학식 2]에 나타내었다.Example 1 is N, N′-bis- (1-naphyl) -N, N′-diphenyl-1,1′-biphenyl-4,4′-diamine, which is a conductive organic material used as a material of the organic EL device. (Hereinafter abbreviated as 'NPB') is an example of single crystal growth using [Omim] [TFSI] ionic liquid. The chemical formula of NPB is shown below in [Formula 2].
[화학식 2][Formula 2]
Figure PCTKR2016005975-appb-I000002
Figure PCTKR2016005975-appb-I000002
주사전자현미경(SEM; Scanning Electron Microscope) 관찰 결과 이온성 액체와 혼합하기 전의 NPB 입자는 1~2 ㎛ 정도의 무정형 형상이었으며, HPLC(High Performance Liquid Chromatography) 순도 분석 결과 82.4 %의 저순도였다.Scanning Electron Microscope (SEM) observations showed that the NPB particles before mixing with the ionic liquid had an amorphous shape of about 1 to 2 μm, and HPLC (High Performance Liquid Chromatography) analysis showed a low purity of 82.4%.
정제 전의 저순도 NBP 를 분쇄하여 [Omim][TFSI] 이온성 액체에 10 wt%의 혼합비로 혼합한 후, 아르곤(Ar) 가스 분위기로 유지되는 열처리로에서 상온부터 260℃까지 5℃/min의 속도로 승온하면서 NPB를 용액화시켰다. 다음 마이크로 튜브를 투입한 후 230℃까지 10℃/h의 속도로 서냉하면서 핵생성을 유도하고, 230℃에서 12시간 동안 등온 열처리하여 단결정을 성장시켰다. 형성된 NPB 단결정을 이온성 액체로부터 분리하여 이소프로필알콜(IPA)로 세척하고 60℃ 오븐에서 24시간 동안 건조함으로써 최종 NPB 결정을 얻었다. 이렇게 얻어진 결정의 결정화도를 X-선 회절분석법(XRD; X-ray Diffractometry)으로 분석하고, HPLC로 그 순도를 확인하였다.The low purity NBP before purification was pulverized and mixed with the [Omim] [TFSI] ionic liquid at a mixing ratio of 10 wt%, and then 5 ° C./min from normal temperature to 260 ° C. in a heat treatment furnace maintained in an argon (Ar) gas atmosphere. NPB was liquefied at elevated temperature. Next, after the introduction of the microtube, the slow cooling to 10 ℃ / h to 230 ℃ to induce nucleation, isothermal heat treatment for 12 hours at 230 ℃ to grow a single crystal. The NPB single crystal formed was separated from the ionic liquid, washed with isopropyl alcohol (IPA) and dried in an oven at 60 ° C. for 24 hours to obtain final NPB crystals. The crystallinity of the crystal thus obtained was analyzed by X-ray diffraction (XRD; X-ray Diffractometry), and its purity was confirmed by HPLC.
도 5(a)는 실시예 1에 의해 성장된 NPB 단결정의 XRD 분석 결과이며, 비교를 위해 NPB 다결정의 XRD 분석 결과를 도 5(b)에 나타내었다. 도 5에서 확인되는 바와 같이, 본 발명의 방법에 의해 X선 반치폭이 0.1o 이하인 우수한 NPB 단결정이 성장되었다. 또한 HPLC 순도 분석 결과 성장된 NPB 단결정은 99.92%의 고순도임이 확인되었다. 즉, 본 발명의 방법에 의할 경우, 단 1회의 간단한 열처리 공정을 통해 99.9% 이상의 고순도 NPB 단결정를 얻을 수 있음을 알 수 있다.FIG. 5 (a) shows the XRD analysis results of the NPB single crystal grown in Example 1, and the XRD analysis results of the NPB polycrystals are shown in FIG. 5 (b). As can be seen from FIG. 5, the excellent NPB single crystal with an X-ray half-value width of 0.1 o or less was grown by the method of the present invention. In addition, HPLC purity analysis showed that the grown NPB single crystal had a high purity of 99.92%. That is, according to the method of the present invention, it can be seen that a high purity NPB single crystal of 99.9% or more can be obtained through only one simple heat treatment process.
<실시예 2><Example 2>
실시예 2은 유기 전계 발광 소자의 재료로 사용되는 전도성 유기재료인 tris-(8-hydroxyquinoline) aluminum(이하 'Alq3'로 약칭함)를 [Omim][TFSI] 이온성 액체를 이용하여 정제한 예이다. 실시예 1과 비교하면 유기재료가 NPB에서 Alq3로 바뀌었을 뿐, 나머지 공정 조건은 동일하게 진행하였다. Alq3의 화학식을 아래 [화학식 3]에 나타내었다.Example 2 is an example in which tris- (8-hydroxyquinoline) aluminum (hereinafter, abbreviated as 'Alq3'), a conductive organic material used as a material of an organic EL device, is purified using [Omim] [TFSI] ionic liquid to be. Compared with Example 1, only the organic material was changed from NPB to Alq3, and the remaining process conditions were performed in the same manner. The chemical formula of Alq3 is shown below in [Formula 3].
[화학식 3][Formula 3]
Figure PCTKR2016005975-appb-I000003
Figure PCTKR2016005975-appb-I000003
도 6(a)는 실시예 2에 의해 성장된 Alq3 단결정의 XRD 분석 결과이며, 비교를 위해 Alq3 다결정의 XRD 분석 결과를 도 6(b)에 나타내었다. 도 6에서 확인되는 바와 같이, 본 발명의 방법에 의해 X선 반치폭이 0.1o 이하인 우수한 Alq3 단결정이 성장되었다. 또한 HPLC 순도 분석 결과 성장된 Alq3 단결정의 순도도 NPB 단결정과 유사한 수준의 고순도임이 확인되었다.FIG. 6 (a) shows the XRD analysis results of Alq3 single crystals grown in Example 2, and the XRD analysis results of Alq3 polycrystals are shown in FIG. 6 (b). As will be confirmed from FIG. 6, X-ray full width at half maximum by the method of the present invention are excellent in 0.1 o Alq3 was grown single crystal or less. Also, HPLC purity analysis showed that the grown Alq3 single crystal had high purity similar to that of NPB single crystal.
도 7(a) 및 도 7(b)는 각각 실시예 2에 의해 성장된 Alq3 단결정 및 Alq3 다결정의 주사전자현미경 사진이다. 도 7로부터, Alq3 다결정은 수 ㎛ 이하 크기의 침상인 반면, 본 발명에 따른 단결정 성장 공정 후에는 수백 ㎛ 이상 크기의 결정 성장이 이루어졌음이 확인되었다. 7 (a) and 7 (b) are scanning electron micrographs of Alq3 single crystals and Alq3 polycrystals grown in Example 2, respectively. From Fig. 7, it was confirmed that Alq3 polycrystals were needles of several micrometers or less in size, whereas crystal growth of several hundred micrometers or more was achieved after the single crystal growth process according to the present invention.
이상의 결과로부터, 본 발명에 개시된 이온성 액체를 이용한 단결정 성장 방법을 사용하면 유기재료를 단 1회의 간단하면서도 저비용의 공정을 통해 대략 99.9%에 이를 정도의 고순도 단결정으로 성장시키는 것이 가능함을 알 수 있고, 이는 종래의 방법이 가지고 있는 근본적인 한계를 극복한 것이라는 점에서 매우 중요한 의미가 있다. 실시예에서는 NPB 및 Alq3의 정제 결과만을 개시하였으나 이는 예시적인 것이며, 본 발명에 따른 단결정 성장 방법은 유기 전계 발광 소자, 유기 광전 변환 소자, 유기 반도체 소자 등에 사용되는 유기재료들 대부분에 효과적으로 적용될 수 있다. 이온성 액체를 이용한 단결정 성장 방법에 의해 이러한 우수한 효과가 나타나는 이유는 완전히 규명된 것은 아니나, 유기 전계 발광 소자 등에 사용되는 전도성 유기재료의 경우 이온성 액체와 구성 성분 및 분자량이 유사하므로 혼합이 용이하고, 용액 내에서 속도론(kinetics) 적으로 매우 유리하여, 결정화에 있어서 우수한 거동을 보이기 때문으로 추측할 수 있다.From the above results, it can be seen that using the single crystal growth method using the ionic liquid disclosed in the present invention, it is possible to grow an organic material into high purity single crystals of approximately 99.9% through only one simple and low-cost process. This is important because it overcomes the fundamental limitations of the conventional methods. In the embodiment, only the purification results of NPB and Alq3 are disclosed, but this is merely illustrative, and the single crystal growth method according to the present invention can be effectively applied to most organic materials used in organic electroluminescent devices, organic photoelectric conversion devices, organic semiconductor devices, and the like. . The reason why such an excellent effect is exhibited by the single crystal growth method using the ionic liquid is not fully understood. However, in the case of the conductive organic material used in the organic electroluminescent device, the composition and molecular weight are similar to the ionic liquid, so it is easy to mix. It can be presumed that the kinetics is very advantageous in solution and shows excellent behavior in crystallization.
이상 한정된 실시예 및 도면을 참조하여 설명하였으나, 이는 실시예일뿐이며, 본 발명의 기술사상의 범위 내에서 다양한 변형 실시가 가능하다는 점은 통상의 기술자에게 자명할 것이다. 예를 들어, 본 발명은 이온성 액체로 복수 종류의 이온성 액체를 혼합하여 사용하거나 다른 용매와 혼합하여 사용하는 것을 배제하는 것이 아님을 이해하여야 한다. 따라서, 본 발명의 보호범위는 특허청구범위의 기재 및 그 균등 범위에 의해 정해져야 한다.Although described above with reference to the limited embodiments and drawings, this is only an embodiment, it will be apparent to those skilled in the art that various modifications are possible within the scope of the technical idea of the present invention. For example, it should be understood that the present invention does not exclude the use of a plurality of types of ionic liquids in admixture with or in combination with other solvents. Therefore, the protection scope of the present invention should be defined by the description of the claims and their equivalents.

Claims (14)

  1. 유기재료를 이온성 액체와 혼합하는 혼합 단계;Mixing the organic material with the ionic liquid;
    제1 조건에서 열처리하여 상기 이온성 액체에 혼합된 유기재료를 용액화시키는 용액화 단계;A solution step of liquefying an organic material mixed in the ionic liquid by heat treatment under a first condition;
    제2 조건에서 상기 용액화된 유기재료를 포함하는 이온성 액체에 시드를 투입하고 시드 표면에 핵을 생성시키는 핵생성 단계;Nucleating step of seeding the ionic liquid including the liquefied organic material under a second condition and nucleating the seed surface;
    제3 조건에서 단결정을 성장시키는 단결정 성장 단계; 및 A single crystal growing step of growing the single crystal under the third condition; And
    성장된 유기재료 단결정을 이온성 액체로부터 분리하는 분리 단계(S50);A separation step of separating the grown organic material single crystal from the ionic liquid (S50);
    를 포함하여,Including,
    이온성 액체에 혼합되기 전보다 고순도로 정제된 유기재료 단결정을 얻는 것을 특징으로 하는 이온성 액체를 이용한 유기재료 단결정 성장 방법.A method of growing an organic material single crystal using an ionic liquid, characterized by obtaining an organic material single crystal purified at a higher purity than before mixing with an ionic liquid.
  2. 제1항에 있어서, The method of claim 1,
    상기 시드는 상기 유기재료와 동일한 물질의 단결정 또는 중공의 마이크로 튜브인 것을 특징으로 하는 이온성 액체를 이용한 유기재료 단결정 성장 방법.And the seed is a single crystal or hollow microtube of the same material as the organic material.
  3. 제1항에 있어서, The method of claim 1,
    상기 용액화는 용해 또는 용융 중 적어도 어느 하나인 것을 특징으로 하는 이온성 액체를 이용한 유기재료 단결정 성장 방법.The method of growing an organic material single crystal using an ionic liquid, characterized in that the solution is at least one of melting or melting.
  4. 제1항에 있어서, The method of claim 1,
    상기 혼합 단계, 용액화 단계, 핵생성 단계, 단결정 성장 단계 및 분리 단계를 1회 진행하는 것에 의해 99% 이상의 고순도 단결정 유기재료가 얻어지는 것을 특징으로 하는 이온성 액체를 이용한 유기재료 단결정 성장 방법.The method of growing an organic material single crystal using an ionic liquid, characterized in that a high purity single crystal organic material of 99% or more is obtained by performing the mixing step, solution solution, nucleation step, single crystal growth step and separation step once.
  5. 제1항에 있어서,The method of claim 1,
    이온성 액체로부터 분리된 상기 유기재료 단결정을 세척 및 건조하는 단계를 더 포함하는 것을 특징으로 하는 이온성 액체를 이용한 유기재료 단결정 성장 방법.The method of growing an organic material single crystal using an ionic liquid, further comprising the step of washing and drying the organic material single crystal separated from the ionic liquid.
  6. 제1항에 있어서,The method of claim 1,
    상기 제1 조건, 제2 조건 또는 제3 조건은 시간에 따라 변화하는 조건인 것을 특징으로 하는 이온성 액체를 이용한 유기재료 단결정 성장 방법.The first, second or third condition is a condition that changes with time, the organic material single crystal growth method using an ionic liquid.
  7. 제1항에 있어서,The method of claim 1,
    상기 분리 단계 이후에, 상기 분리된 유기재료 단결정의 표면 불순물을 제거하기 위한 스웨팅 공정을 더 진행하는 것을 특징으로 하는 이온성 액체를 이용한 유기재료 단결정 성장 방법.After the separation step, a method of growing an organic material single crystal using an ionic liquid, characterized in that for further performing a sweating process for removing surface impurities of the separated organic material single crystal.
  8. 제1항에 있어서,The method of claim 1,
    상기 용액화 단계 및 상기 핵생성 단계 사이에,Between the solution step and the nucleation step,
    용액화되지 않은 유기재료를 걸러내기 위한 필터링 단계를 더 진행하는 것을 특징으로 하는 이온성 액체를 이용한 유기재료 단결정 성장 방법.A method of growing an organic material single crystal using an ionic liquid, further comprising a filtering step for filtering out unliquefied organic material.
  9. 스테이지;stage;
    상기 스테이지에 의해 지지되며 유기재료와 이온성 액체의 혼합물이 수용되는 용기 본체;A container body supported by the stage and containing a mixture of organic material and ionic liquid;
    상기 용기 본체에 수용된 유기재료와 이온성 액체의 혼합물을 가열하는 온도조절부;A temperature control unit for heating the mixture of the organic material and the ionic liquid contained in the container body;
    상기 용기 본체에 수용된 유기재료와 이온성 액체의 혼합물에 시드를 투입되는 시드가 단부에 고정된 시드 홀더;A seed holder having a seed fixed to an end thereof, the seed being introduced into a mixture of an organic material and an ionic liquid contained in the container body;
    를 포함하며,Including;
    상기 용기 본체 및 상기 시드 홀더는 상대 이동 가능한 것을 특징으로 하는 유기재료 단결정 성장 장치.And said container body and said seed holder are movable relative to each other.
  10. 제9항에 있어서,The method of claim 9,
    상기 시드는 상기 유기재료와 동일한 물질의 단결정 또는 중공의 마이크로 튜브인 것을 특징으로 하는 유기재료 단결정 성장 장치.And the seed is a single crystal or hollow microtube of the same material as the organic material.
  11. 제9항에 있어서,The method of claim 9,
    상기 상대 이동은 상하 이동 및 회전 운동 중 하나 이상인 것을 특징으로 하는 유기재료 단결정 성장 장치.The relative movement is an organic material single crystal growth apparatus, characterized in that at least one of vertical movement and rotational movement.
  12. 제9항에 있어서,The method of claim 9,
    상기 용기 본체 내부로 기체를 인입하기 위한 기체 인입부; 및 A gas inlet for introducing gas into the container body; And
    상기 용기 본체 내부로부터 기체를 배출하기 위한 기체 배출부를 더 포함하는 것을 특징으로 하는 유기재료 단결정 성장 장치.The organic material single crystal growth apparatus further comprises a gas discharge unit for discharging gas from the inside of the container body.
  13. 제1항 내지 제8항 중 어느 한 항의 방법에 의해 성장된 유기재료 단결정.An organic material single crystal grown by the method of any one of claims 1 to 8.
  14. 제13항에 있어서,The method of claim 13,
    X선 반치폭이 0.1o 이하인 것을 특징으로 하는 유기재료 단결정.X-ray full width at half maximum is 0.1 o organic single crystal material, characterized in that not more than.
PCT/KR2016/005975 2015-06-11 2016-06-07 Method and apparatus for growing organic material monocrystals using ionic liquid WO2016200108A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680028867.5A CN107660240A (en) 2015-06-11 2016-06-07 Utilize the organic material single crystal growing method and device of ionic liquid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150082405A KR101932994B1 (en) 2015-06-11 2015-06-11 Method and apparatus for single crystal growth of organic materials using ionic liquid
KR10-2015-0082405 2015-06-11

Publications (1)

Publication Number Publication Date
WO2016200108A1 true WO2016200108A1 (en) 2016-12-15

Family

ID=57504073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005975 WO2016200108A1 (en) 2015-06-11 2016-06-07 Method and apparatus for growing organic material monocrystals using ionic liquid

Country Status (3)

Country Link
KR (1) KR101932994B1 (en)
CN (1) CN107660240A (en)
WO (1) WO2016200108A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114085425A (en) * 2021-11-08 2022-02-25 宁波福天新材料科技有限公司 Beta-crystal-form compound nucleating agent and application thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102482452B1 (en) 2017-09-28 2022-12-29 삼성디스플레이 주식회사 Organic material purification composition and method of purifying organic materials using the same
JP6851603B2 (en) * 2018-03-19 2021-03-31 国立大学法人東北大学 Organic compound precipitation method
CN110922356B (en) * 2019-12-03 2022-05-20 宁波南大光电材料有限公司 Preparation method of electronic grade high-purity 8-hydroxyquinoline aluminum

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002068899A (en) * 2000-08-28 2002-03-08 Univ Osaka Method of forming organic single crystal
KR20090057381A (en) * 2006-09-12 2009-06-05 술저 켐테크 악티엔게젤샤프트 Method of purifying ionic liquids
KR20130023870A (en) * 2011-08-30 2013-03-08 주식회사 엔티에스 Apparatus for single crystal growth
KR20140128676A (en) * 2013-04-29 2014-11-06 한국생산기술연구원 Organic material purification method and its refinery system using Ionic liquids
KR101495119B1 (en) * 2014-01-16 2015-02-24 한양대학교 산학협력단 Method for crystal growth of organic semiconducting nanostructure by eutectic solidification

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002068899A (en) * 2000-08-28 2002-03-08 Univ Osaka Method of forming organic single crystal
KR20090057381A (en) * 2006-09-12 2009-06-05 술저 켐테크 악티엔게젤샤프트 Method of purifying ionic liquids
KR20130023870A (en) * 2011-08-30 2013-03-08 주식회사 엔티에스 Apparatus for single crystal growth
KR20140128676A (en) * 2013-04-29 2014-11-06 한국생산기술연구원 Organic material purification method and its refinery system using Ionic liquids
KR101495119B1 (en) * 2014-01-16 2015-02-24 한양대학교 산학협력단 Method for crystal growth of organic semiconducting nanostructure by eutectic solidification

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114085425A (en) * 2021-11-08 2022-02-25 宁波福天新材料科技有限公司 Beta-crystal-form compound nucleating agent and application thereof
CN114085425B (en) * 2021-11-08 2023-03-28 宁波福天新材料科技有限公司 Beta-crystal-form compound nucleating agent and application thereof

Also Published As

Publication number Publication date
KR20160145971A (en) 2016-12-21
CN107660240A (en) 2018-02-02
KR101932994B1 (en) 2019-03-15

Similar Documents

Publication Publication Date Title
WO2016200108A1 (en) Method and apparatus for growing organic material monocrystals using ionic liquid
WO2012053782A2 (en) Process for growing silicon carbide single crystal and device for the same
WO2016107575A1 (en) Crystal form a of obeticholic acid and preparation method therefor
CN109411327B (en) All-inorganic perovskite nanowire CsPbX2Y and preparation method and application thereof
KR102220438B1 (en) Method and apparatus for single crystal growth of organic materials using ionic liquid
KR101605025B1 (en) Method for purifying organic materials using ionic liquid
CN112830492B (en) Device and method for preparing silicon carbide powder
WO2019151644A1 (en) Layered kznsb, layered znsb, kznsb nanosheet, znsb nanosheet, and preparation methods therefor
KR101539991B1 (en) Method and apparatus for purifying organic materials using ionic liquid
KR101542346B1 (en) Method and apparatus for purifying organic materials using ionic liquid
WO2015147487A1 (en) Purification method and apparatus of organic material using ionic liquid
Simonova et al. Growth of bulk β-BaB2O4 crystals from solution in LiF-Li2O melt and study of phase equilibria
WO2015160169A1 (en) Method and apparatus for purifying organic materials using ionic liquid
WO2019151643A1 (en) Layered znbi, znbi nanosheet, and preparation methods therefor
CN113336741B (en) Rabeprazole sodium anhydride crystal form and preparation method thereof
JPH10316409A (en) Production of lithium hexafluorophosphate
KR101573746B1 (en) Method for purifying organic materials using ionic liquid
KR101624610B1 (en) Method for purifying organic materials using ionic liquid
WO2011099680A9 (en) Single crystal cooler and single crystal grower including the same
JPH04132695A (en) Production of single crystal of alumina-based oxide having high melting point
WO2017126851A1 (en) Method for preparing lithium fluorosulfonylimide by using organic solvent
KR101536900B1 (en) Method for purifying organic materials using ionic liquid
JP2004203721A (en) Apparatus and method for growing single crystal
KR20220108373A (en) Method and apparatus for crystal growth of organic materials using ionic liquid
JP4655930B2 (en) Crystals of quinolinecarboxylic acid derivative solvates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16807748

Country of ref document: EP

Kind code of ref document: A1