WO2019151643A1 - Layered znbi, znbi nanosheet, and preparation methods therefor - Google Patents

Layered znbi, znbi nanosheet, and preparation methods therefor Download PDF

Info

Publication number
WO2019151643A1
WO2019151643A1 PCT/KR2018/016084 KR2018016084W WO2019151643A1 WO 2019151643 A1 WO2019151643 A1 WO 2019151643A1 KR 2018016084 W KR2018016084 W KR 2018016084W WO 2019151643 A1 WO2019151643 A1 WO 2019151643A1
Authority
WO
WIPO (PCT)
Prior art keywords
layered
znbi
aznbi
peeling
solvent
Prior art date
Application number
PCT/KR2018/016084
Other languages
French (fr)
Korean (ko)
Inventor
김성웅
이규형
송준성
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Publication of WO2019151643A1 publication Critical patent/WO2019151643A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/68Crystals with laminate structure, e.g. "superlattices"
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials

Definitions

  • the present invention is brought to, and more particularly, excellent thermal properties of the layered KZnBi, NaZnBi, LiZnBi, ZnBi, and the KZnBi, NaZnBi, LiZnBi, ZnBi nanosheets and methods for their preparation produced through these peeling Bi 2
  • the present invention relates to layered KZnBi, NaZnBi, LiZnBi and ZnBi, and KZnBi, NaZnBi, LiZnBi, and ZnBi nanosheets, which may be used as thermoelectric materials instead of Te 3 and PbTe materials.
  • Graphene and other ultra-thin two-dimensional (2D) materials are being actively studied in various fields based on new physical, chemical, mechanical and optical properties.
  • the inventors of the present invention intend to secure excellent low-dimensional materials having various physical properties by using ion implantation (alkali metal, alkaline earth metal, etc.) in order to overcome the limitation of the existing research, the parent structure is possible only two-dimensional material. .
  • KZnBi prepared by the present invention is a material having a p63 / mmc structure, and has a ZnBi layered structure that did not exist by K ion insertion.
  • ZnBi nanosheets with excellent physical properties can be obtained by removing and peeling K ions in the fabricated KZnBi structure.
  • NaZnBi prepared by the present invention is a material having a P4 / nmmz structure, and has a ZnBi layered structure that did not exist by Na ion insertion. It is possible to secure ZnBi nanosheets with excellent physical properties by removing and peeling Na ion of NaZnBi structure.
  • the LiZnBi produced by the present invention is a material having a p63mc structure, and has a ZnBi layered structure that did not exist by Li ion insertion. It is possible to secure ZnBi nanosheets with excellent physical properties by removing and removing Li ion of LiZnBi structure.
  • the problem to be solved by the present invention is to overcome the parent structure, which is a limitation of the existing two-dimensional material research, the present inventors intend to solve the above problems through the crystal structure transition using the ion insertion.
  • ZnBi layered structures and ZnBi nanosheets which do not exist in nature can be prepared.
  • the present invention provides a layered compound represented by the following formula (1) or (2), and a nanosheet represented by formula (1) or formula (2).
  • AZnBi (where A is any one of K, Na, Li)
  • layered KZnBi and layered ZnBi prepared by removing K ions therefrom have a layered structure as shown in FIGS. 3 to 5.
  • the compounds have a layered structure of p63 / mmc.
  • layered NaZnBi and layered ZnBi prepared by removing Na ions therefrom have a layered structure as shown in FIGS. 6 to 8.
  • the compound has a layered structure of P4 / nmmz.
  • layered LiZnBi and layered ZnBi prepared by removing Li ions therefrom have a layered structure as shown in FIGS. 9 to 11.
  • the compound has a layered structure of p63mc.
  • the present invention also provides
  • the melting step is preferably carried out at a temperature of 650 ⁇ 800 °C.
  • the cooling step may be achieved by quenching or slow cooling the mixture.
  • the slow cooling is a step of growing a crystal by cooling at a rate of 0.5-3 ° C. to a temperature of 300-500 ° C. to form a single crystal
  • the quenching is a step of rapidly cooling the slow cooling to form a polycrystal.
  • the present invention also provides
  • the A ions in the crystal may be removed using an organic solvent, water, or a mixture thereof.
  • the organic solvent may be a cyclic carbonate solvent, a chain carbonate solvent, an ester solvent, an ether solvent, a nitrile solvent, an amide solvent, or a mixture thereof.
  • the present invention also provides
  • the layered AZnBi (where A is any one of K, Na, and Li), ZnBi and ZnBi nanosheets of the present invention have excellent thermoelectric properties and effectively utilize as a thermoelectric material in place of Bi 2 Te 3 and PbTe materials. Can be.
  • 1 is a diagram schematically showing a synthesis process of KZnBi.
  • FIG. 2 is a diagram schematically illustrating a process for synthesizing NaZnBi.
  • FIG. 3 to 5 are diagrams showing the crystal structure (Fig. 3) and XRD diffraction (Fig. 4) of the synthesized KZnBi, comparing the XRD diffraction (Fig. 5) of KZnBi having a ZnBi three-dimensional structure and a two-dimensional ZnBi layer Drawing.
  • FIG. 6 to 8 show the crystal structure (Fig. 6) and XRD diffraction (Fig. 7) of the synthesized NaZnBi, and XRD diffraction of NaZnBi and Na-depleted layered ZnBi having a three-dimensional ZnBi, two-dimensional ZnBi layer (Fig. 6). 8) Comparison drawing.
  • FIGS. 9 to 11 are diagrams showing the crystal structure (Figs. 9 and 10) and XRD diffraction (Fig. 11) of the synthesized LiZnBi.
  • the present invention provides a layered compound represented by the following formula (1) or (2), and a nanosheet represented by the formula (2).
  • AZnBi (where A is any one of K, Na, Li)
  • the layered compound and the nanosheet may have excellent thermoelectric properties and may be used as a thermoelectric material in place of Bi 2 Te 3 based materials and PbTe based materials.
  • layered KZnBi and layered ZnBi prepared by removing K ions therefrom have a layered structure as shown in FIGS. 3 to 5.
  • the compounds have a layered structure of p63 / mmc.
  • layered NaZnBi and layered ZnBi prepared by removing Na ions therefrom have a layered structure as shown in FIGS. 6 to 8.
  • the compounds have a layered structure of P4 / nmmz.
  • layered LiZnBi and layered ZnBi prepared by removing Li ions therefrom have a layered structure as shown in FIGS. 9 to 11.
  • the compound has a layered structure of p63mc.
  • the present invention also provides a method for synthesizing layered AZnBi, where A is any one of K, Na, and Li.
  • reaction vessel does not react with the sample and does not break at a high temperature.
  • Representative examples include alumina crucibles, molybdenum crucibles and tungsten crucibles.
  • the melting step is preferably carried out at a temperature of 650 ⁇ 800 °C. If the upper limit of the temperature range is exceeded, the vapor pressure in the quartz tube encapsulated by evaporation of Alkali ions may increase, and if the temperature falls below the lower limit of the temperature range, the raw material may remain unreacted because the sintering reaction of the material is not completed. It is not desirable.
  • the cooling step may be achieved by quenching or slow cooling the mixture.
  • the slow cooling is a step of growing a crystal by cooling at a rate of 0.5-3 ° C. to a temperature of 300-500 ° C. to form a single crystal
  • the quenching is a step of rapidly cooling the slow cooling to form a polycrystal.
  • the composition may change due to vaporization of alkali ions.
  • the quenching may be performed by various methods such as quenching the temperature by putting a sample encapsulated in a low temperature solvent such as water or oil (quenching), or quenching to room temperature by removing a heat source.
  • a low temperature solvent such as water or oil
  • the present invention also provides
  • Removing A from the layered AZnBi may remove A ions in the crystal using an organic solvent, water, or a mixture thereof.
  • the organic solvent may be a cyclic carbonate solvent, a chain carbonate solvent, an ester solvent, an ether solvent, a nitrile solvent, an amide solvent, or a mixture thereof.
  • the present invention also provides
  • the peeling of the layered ZnBi may include peeling by energy using ultrasonic waves, peeling by invasion of a solvent, peeling by a salt and a reaction gas formed by an alkali metal such as a solvent and K, Na, Li, and peeling using a tape, and It can be made using one or two or more processes selected from the group consisting of peeling with a material having an adhesive surface.
  • the present invention also provides
  • the peeling of the layered ZnBi may include peeling by energy using ultrasonic waves, peeling by invasion of a solvent, peeling by a salt and a reaction gas formed by an alkali metal such as a solvent and K, Na, Li, and peeling using a tape, and It can be made using one or two or more processes selected from the group consisting of peeling with a material having an adhesive surface.
  • a well-mixed quantitative amount of Zn and Bi powders and a quantitative amount of K are inserted into the reaction vessel.
  • the inside of the quartz tube maintains an inert gas atmosphere such as Ar or prevents oxidation or deterioration of the sample by making a vacuum.
  • the present inventors used quartz enclosed in vacuum due to the fear of quartz damage due to volume expansion of the inert gas at high temperature. .
  • the quartz tube containing the sample was reacted in an electric furnace, and maintained at 650-800 ° C. for 12 hours at which the sample could be melted, and then slowly cooled to 0.5-3 ° C./hr for recrystallization. After reaching 300-500 ° C, the power to the furnace is cut off to allow the sample to cool. This secured high purity KZnBi crystals (FIG. 1).
  • a well mixed amount of Zn and Bi powder and a quantity of Na are inserted into the reaction vessel.
  • the sample inserted into the reaction vessel is encapsulated in a quartz tube.
  • the inside of the quartz tube maintains an inert gas atmosphere such as Ar or prevents oxidation or deterioration of the sample by making a vacuum.
  • the present inventors used quartz enclosed in vacuum due to the fear of quartz damage due to volume expansion of the inert gas at high temperature. .
  • the quartz tube containing the sample was reacted in an electric furnace, and maintained at 650-800 ° C. for 12 hours at which the sample could be melted, and then slowly cooled to 0.5-3 ° C./hr for recrystallization. After reaching 300-500 ° C, the power to the furnace is cut off to allow the sample to cool. This secured high purity NaZnBi crystals (FIG. 1).
  • the synthesized KZnBi samples were identified by X-ray diffraction patterns in FIGS. 3 to 5, and the calculated KZnBi samples corresponded to the p63 / mmc structures. Therefore, the synthesized KZnBi was a p63 / mmc crystal structure. It was confirmed (FIG. 3).
  • the synthesized NaZnBi samples were identified by X-ray diffraction patterns in FIGS. 6 to 8 and were found to be consistent with the p4 / nmmz structures through calculations. Thus, the synthesized NaZnBi is a p4 / nmmz crystal structure. It was confirmed (FIG. 6).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The present invention relates to layered AZnBi (wherein A is any one of K, Na, and Li), layered ZnBi, a ZnBi nanosheet, and preparation methods therefor. The purpose of the present invention is to overcome the structure of a parent phase, which is a limit in the existing research on two-dimensional materials. Layered KZnBi, NaZnBi, or LiZnBi can be prepared through crystal structure transition using ion insertion, and a ZnBi layered structure and a ZnBi nanosheet, which are not present in nature, can be prepared using the layered KZnBi, NaZnBi, or LiZnBi. The layered compound and nanosheet of the present invention have excellent thermoelectric characteristics, and thus can be utilized as a thermoelectric material in substitute for a Bi2Te3-based material and a PbTe-based material, and can also be applied as a magnetic semiconductor due to ferromagnetic characteristics.

Description

층상형 ZNBI, ZNBI 나노시트 및 이들의 제조방법Layered ZNBI, ZNBI Nanosheets and Manufacturing Method Thereof
본 발명은 층상형 KZnBi, NaZnBi, LiZnBi, ZnBi, 그리고 이들의 박리를 통해 제조된 KZnBi, NaZnBi, LiZnBi, ZnBi 나노시트 및 이들의 제조방법에 관한 것으로, 더욱 상세하게는 우수한 열전 특성을 가져 Bi2Te3계 재료와 PbTe계 재료를 대신하여 열전 소재로 활용될 수 있는 층상형 KZnBi, NaZnBi, LiZnBi와 ZnBi, 그리고 이의 박리를 통해 제조된 KZnBi, NaZnBi, LiZnBi, ZnBi 나노시트에 관한 것이다.The present invention is brought to, and more particularly, excellent thermal properties of the layered KZnBi, NaZnBi, LiZnBi, ZnBi, and the KZnBi, NaZnBi, LiZnBi, ZnBi nanosheets and methods for their preparation produced through these peeling Bi 2 The present invention relates to layered KZnBi, NaZnBi, LiZnBi and ZnBi, and KZnBi, NaZnBi, LiZnBi, and ZnBi nanosheets, which may be used as thermoelectric materials instead of Te 3 and PbTe materials.
그래핀을 비롯한 다양한 초박막 이차원(2D) 재료들은 새로운 물리적, 화학적, 기계적 및 광학적 특성을 바탕으로 다양한 분야에서 활발히 연구가 되고 있다.Graphene and other ultra-thin two-dimensional (2D) materials are being actively studied in various fields based on new physical, chemical, mechanical and optical properties.
기존 2차원 소재 연구는, 모상의 구조가 2차원 층상 화합물 구조를 가지는 소재에 국한되어 있다. 이에 다양한 물성을 가지는 우수한 재료 확보에 어려움을 가지고 있다.Existing two-dimensional material research is limited to the material whose parent structure has a two-dimensional layered compound structure. Therefore, it is difficult to secure excellent materials having various physical properties.
본 발명의 발명자들은 기존 연구의 한계인 모상의 구조가 2차원 물질만 가능한 것을 극복하기 위하여, 이온삽입 (alkali metal, alkaline earth metal 등)을 이용하여 다양한 물성을 가지는 우수한 저 차원 소재를 확보하고자 한다. The inventors of the present invention intend to secure excellent low-dimensional materials having various physical properties by using ion implantation (alkali metal, alkaline earth metal, etc.) in order to overcome the limitation of the existing research, the parent structure is possible only two-dimensional material. .
본 발명자가 제조한 KZnBi는 p63/mmc 구조를 가지는 물질로, K ion 삽입에 의해 기존에 존재하지 않았던 ZnBi 층상형 구조를 가지게 된다. 제작된 KZnBi 구조에서 K ion의 제거 및 박리를 통해 우수한 물성을 가진 ZnBi 나노시트를 확보할 수 있다.KZnBi prepared by the present invention is a material having a p63 / mmc structure, and has a ZnBi layered structure that did not exist by K ion insertion. ZnBi nanosheets with excellent physical properties can be obtained by removing and peeling K ions in the fabricated KZnBi structure.
또한, 본 발명자가 제조한 NaZnBi는 P4/nmmz 구조를 가지는 물질로, Na ion 삽입에 의해 기존에 존재하지 않았던 ZnBi 층상형 구조를 가지게 된다. 제작된 NaZnBi 구조의 Na ion의 제거 및 박리를 통해 우수한 물성을 가진 ZnBi 나노시트를 확보 할 수 있다.In addition, NaZnBi prepared by the present invention is a material having a P4 / nmmz structure, and has a ZnBi layered structure that did not exist by Na ion insertion. It is possible to secure ZnBi nanosheets with excellent physical properties by removing and peeling Na ion of NaZnBi structure.
또한, 본 발명자가 제조한 LiZnBi는 p63mc 구조를 가지는 물질로, Li ion 삽입에 의해 기존에 존재하지 않았던 ZnBi 층상형 구조를 가지게 된다. 제작된 LiZnBi 구조의 Li ion의 제거 및 박리를 통해 우수한 물성을 가진 ZnBi 나노시트를 확보 할 수 있다.In addition, the LiZnBi produced by the present invention is a material having a p63mc structure, and has a ZnBi layered structure that did not exist by Li ion insertion. It is possible to secure ZnBi nanosheets with excellent physical properties by removing and removing Li ion of LiZnBi structure.
본 발명이 해결하고자 하는 과제는 기존 2차원 소재 연구의 한계인 모상의 구조를 극복하는 것으로, 본 발명자는 이온 삽입을 이용하여 결정구조 전이를 통해 위 문제를 해결하고자 한다. The problem to be solved by the present invention is to overcome the parent structure, which is a limitation of the existing two-dimensional material research, the present inventors intend to solve the above problems through the crystal structure transition using the ion insertion.
본 발명자가 성공적으로 합성한 KZnBi, NaZnBi, LiZnBi 물질을 이용하여 자연계에서 존재하지 않는 ZnBi 층상구조 및 ZnBi 나노시트를 제조할 수 있다.Using the KZnBi, NaZnBi, and LiZnBi materials successfully synthesized by the present inventors, ZnBi layered structures and ZnBi nanosheets which do not exist in nature can be prepared.
본 발명은, 하기 화학식 1 또는 화학식 2로 표시되는 층상형 화합물, 화학식 1 또는 화학식 2로 표시되는 나노시트를 제공한다.The present invention provides a layered compound represented by the following formula (1) or (2), and a nanosheet represented by formula (1) or formula (2).
<화학식 1><Formula 1>
AZnBi (여기서, A는 K, Na, Li 중 어느 하나임) AZnBi (where A is any one of K, Na, Li)
<화학식 2><Formula 2>
ZnBi ZnBi
상기 화합물들 중 층상형 KZnBi와 이로부터 K 이온을 제거하여 제조된 층상형 ZnBi는 도 3 내지 도 5와 같은 층상 구조를 갖는다. 상기 화합물들은 p63/mmc의 층상형 구조를 갖는다.Among the compounds, layered KZnBi and layered ZnBi prepared by removing K ions therefrom have a layered structure as shown in FIGS. 3 to 5. The compounds have a layered structure of p63 / mmc.
상기 화합물들 중 층상형 NaZnBi와 이로부터 Na 이온을 제거하여 제조된 층상형 ZnBi는 도 6 내지 도 8과 같은 층상 구조를 갖는다. 상기 화합물은 P4/nmmz의 층상형 구조를 갖는다.Among the compounds, layered NaZnBi and layered ZnBi prepared by removing Na ions therefrom have a layered structure as shown in FIGS. 6 to 8. The compound has a layered structure of P4 / nmmz.
상기 화합물들 중 층상형 LiZnBi와 이로부터 Li 이온을 제거하여 제조된 층상형 ZnBi는 도 9 내지 도 11과 같은 층상 구조를 갖는다. 상기 화합물은 p63mc의 층상형 구조를 갖는다.Among the compounds, layered LiZnBi and layered ZnBi prepared by removing Li ions therefrom have a layered structure as shown in FIGS. 9 to 11. The compound has a layered structure of p63mc.
본 발명은 또한, The present invention also provides
(a) A, Zn, Bi를 포함하는 합성 원료를 반응 용기에 삽입하는 단계(여기서, A는 K, Na, Li 중 어느 하나임);(a) inserting a synthetic raw material comprising A, Zn, Bi into a reaction vessel, where A is any one of K, Na, and Li;
(b) 상기 반응 용기에 삽입된 합성 원료를 용융-냉각을 통해 결정화 하는 단계; 를 포함하는 층상형 AZnBi를 합성하는 방법을 제공한다.(b) crystallizing the synthetic raw material inserted into the reaction vessel through melt-cooling; It provides a method for synthesizing a layered AZnBi comprising a.
상기 용융 단계는 650~800℃의 온도에서 수행되는 것이 바람직하다.The melting step is preferably carried out at a temperature of 650 ~ 800 ℃.
상기 냉각 단계는 상기 혼합물을 급냉 또는 서냉을 통해 이루어질 수 있다.The cooling step may be achieved by quenching or slow cooling the mixture.
상기 서냉은 300-500℃의 온도까지 시간당 0.5-3℃의 속도로 냉각함으로써 결정을 성장시켜 단결정을 형성하는 단계이며, 상기 급냉은 상기 서냉의 속도보다 급속도로 냉각하여 다결정을 형성하는 단계이다. The slow cooling is a step of growing a crystal by cooling at a rate of 0.5-3 ° C. to a temperature of 300-500 ° C. to form a single crystal, and the quenching is a step of rapidly cooling the slow cooling to form a polycrystal.
본 발명은 또한,The present invention also provides
(c) 상기 본 발명의 층상형 AZnBi를 합성하는 방법에 따라 층상형 AZnBi를 합성하는 단계(여기서, A는 K, Na, Li 중 어느 하나임);(c) synthesizing the layered AZnBi according to the method for synthesizing the layered AZnBi of the present invention, wherein A is any one of K, Na, and Li;
(d) 상기 층상형 AZnBi에서 A 이온을 제거하는 단계를 포함하는 층상형 ZnBi의 합성 방법을 제공한다.(d) providing a method for synthesizing a layered ZnBi comprising the step of removing A ions from the layered AZnBi.
상기 층상형 AZnBi에서 A 이온을 제거하는 단계는, 유기용매, 물 또는 이들의 혼합물을 이용하여 결정 내의 A 이온을 제거할 수 있다.In the step of removing A ions in the layered AZnBi, the A ions in the crystal may be removed using an organic solvent, water, or a mixture thereof.
상기 유기용매는 환상 카보네이트계 용매, 쇄상 카보네이트계 용매, 에스테르계 용매, 에테르계 용매, 니트릴계 용매, 아미드계 용매 또는 이들의 혼합물일 수 있다.The organic solvent may be a cyclic carbonate solvent, a chain carbonate solvent, an ester solvent, an ether solvent, a nitrile solvent, an amide solvent, or a mixture thereof.
본 발명은,The present invention,
(e) 상기 본 발명의 층상형 ZnBi의 합성 방법에 따라 층상형 ZnBi를 합성하는 단계;(e) synthesizing the layered ZnBi according to the method for synthesizing the layered ZnBi of the present invention;
(f) 상기 층상형 ZnBi를 박리하는 단계를 포함하는 ZnBi 나노시트 제조방법을 제공한다.(f) It provides a ZnBi nanosheet manufacturing method comprising the step of peeling the layered ZnBi.
상기 층상형 ZnBi를 박리하는 단계는,  Peeling the layered ZnBi,
초음파에 의한 에너지로 박리, 용매의 침입에 의한 박리, 용매와 알칼리금속 이온이 형성하는 염 및 반응 기체에 의한 박리, Tape를 이용한 박리 및 접착성 표면을 가진 물질을 이용한 박리로 이루어진 군에서 선택되는 1 또는 2 이상의 공정을 이용하여 이루어질 수 있다.Selected from the group consisting of peeling by energy by ultrasonic waves, peeling by solvent intrusion, salts formed by solvents and alkali metal ions and reaction gases, peeling by tape, and peeling by a material having an adhesive surface. It can be made using one or two or more processes.
본 발명은 또한,The present invention also provides
(g) 상기 본 발명에 따른 층상형 AZnBi를 합성하는 방법에 따라 층상형 AZnBi를 합성하는 단계(여기서, A는 K, Na, Li 중 어느 하나임);(g) synthesizing the layered AZnBi according to the method for synthesizing the layered AZnBi according to the present invention, wherein A is any one of K, Na, and Li;
(h) 상기 층상형 AZnBi를 박리하는 단계를 포함하는 AZnBi 나노시트 제조방법을 제공한다.(h) it provides a method for producing AZnBi nanosheets comprising the step of peeling the layered AZnBi.
상기 층상형 AZnBi를 박리하는 단계는, Peeling the layered AZnBi,
초음파에 의한 에너지로 박리, 용매의 침입에 의한 박리, 용매와 A 이온이(여기서, A는 K, Na, Li 중 어느 하나임) 형성하는 염 및 반응 기체에 의한 박리, Tape를 이용한 박리 및 접착성 표면을 가진 물질을 이용한 박리로 이루어진 군에서 선택되는 1 또는 2 이상의 공정을 이용하여 이루어질 수 있다.Peeling with energy by ultrasonic waves, peeling by invasion of solvent, peeling by salt and reaction gas formed by solvent and A ions (where A is any one of K, Na and Li), peeling and adhesiveness using Tape It can be made using one or two or more processes selected from the group consisting of peeling with a material having a surface.
본 발명의 층상형 AZnBi(여기서, A는 K, Na, Li 중 어느 하나임), ZnBi와 ZnBi 나노시트는 우수한 열전 특성을 가져 Bi2Te3계 재료와 PbTe계 재료를 대신하여 열전 소재로 효과적으로 활용될 수 있다.The layered AZnBi (where A is any one of K, Na, and Li), ZnBi and ZnBi nanosheets of the present invention have excellent thermoelectric properties and effectively utilize as a thermoelectric material in place of Bi 2 Te 3 and PbTe materials. Can be.
도 1은 KZnBi의 합성공정을 도식적으로 나타낸 도면이다.1 is a diagram schematically showing a synthesis process of KZnBi.
도 2는 NaZnBi의 합성공정을 도식적으로 나타낸 도면이다.2 is a diagram schematically illustrating a process for synthesizing NaZnBi.
도 3 내지 도 5는 합성된 KZnBi의 결정구조(도 3)와 XRD 회절(도 4)을 나타낸 도면이고, ZnBi 3차원 구조와 2차원 ZnBi층을 가지는 KZnBi의 XRD 회절(도 5)을 비교한 도면이다.3 to 5 are diagrams showing the crystal structure (Fig. 3) and XRD diffraction (Fig. 4) of the synthesized KZnBi, comparing the XRD diffraction (Fig. 5) of KZnBi having a ZnBi three-dimensional structure and a two-dimensional ZnBi layer Drawing.
도 6 내지 도 8은 합성된 NaZnBi의 결정구조(도 6)와 XRD 회절(도 7)을 나타낸 것이고, 3차원 ZnBi, 2차원 ZnBi층을 가지는 NaZnBi 및 Na제거된 층상형 ZnBi의 XRD회절(도 8) 비교한 도면이다.6 to 8 show the crystal structure (Fig. 6) and XRD diffraction (Fig. 7) of the synthesized NaZnBi, and XRD diffraction of NaZnBi and Na-depleted layered ZnBi having a three-dimensional ZnBi, two-dimensional ZnBi layer (Fig. 6). 8) Comparison drawing.
도 9 내지 도 11은 합성된 LiZnBi의 결정구조(도 9 및 도 10)와 XRD 회절(도 11)을 나타낸 도면이다. 9 to 11 are diagrams showing the crystal structure (Figs. 9 and 10) and XRD diffraction (Fig. 11) of the synthesized LiZnBi.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되는 실시예를 참조하면 명확해질 것이다.Advantages and features of the present invention, and methods for achieving them will be apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings.
그러나 본 발명은 이하에서 개시되는 실시예로 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있다.However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various forms.
본 명세서에서 실시예는 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며 본 발명은 청구항의 범주에 의해 정의될 뿐이다.The embodiments herein are provided to make the disclosure of the present invention complete, and to fully convey the scope of the invention to those skilled in the art, and the present invention is defined by the scope of the claims. It will be.
따라서, 몇몇 실시예에서, 잘 알려진 구성 요소, 잘 알려진 동작 및 잘 알려진 기술들은 본 발명이 모호하게 해석되는 것을 피하기 위하여 구체적 설명이 생략될 수 있다.Thus, in some embodiments, well-known components, well-known operations and well-known techniques may be omitted from specific description in order to avoid obscuring the present invention.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함하며, '포함(또는, 구비)한다'로 언급된 구성 요소 및 동작은 하나 이상의 다른 구성요소 및 동작의 존재 또는 추가를 배제하지 않는다.As used herein, the singular forms "a", "an" and "the" include plural unless the context clearly dictates otherwise, and the elements and acts referred to as 'comprises' or 'do' not exclude the presence or addition of one or more other components and acts. .
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 공통적 으로 이해될 수 있는 의미로 사용될 수 있을 것이다.Unless otherwise defined, all terms used in the present specification (including technical and scientific terms) may be used in a sense that can be commonly understood by those skilled in the art.
이하, 본 발명을 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
본 발명은, 하기 화학식 1 또는 화학식 2로 표시되는 층상형 화합물, 화학식 2로 표시되는 나노시트를 제공한다.The present invention provides a layered compound represented by the following formula (1) or (2), and a nanosheet represented by the formula (2).
<화학식 1><Formula 1>
AZnBi (여기서, A는 K, Na, Li 중 어느 하나임) AZnBi (where A is any one of K, Na, Li)
<화학식 2><Formula 2>
ZnBi ZnBi
상기 층상형 화합물 및 나노시트는 우수한 열전 특성을 가져 Bi2Te3계 재료와 PbTe계 재료를 대신하여 열전 소재로 활용될 수 있다.,The layered compound and the nanosheet may have excellent thermoelectric properties and may be used as a thermoelectric material in place of Bi 2 Te 3 based materials and PbTe based materials.
상기 화합물들 중 층상형 KZnBi와 이로부터 K 이온을 제거하여 제조된 층상형 ZnBi는 도 3 내지 도 5와 같은 층상 구조를 갖는다. 상기 화합물들은 p63/mmc의 층상형 구조를 갖는다.Among the compounds, layered KZnBi and layered ZnBi prepared by removing K ions therefrom have a layered structure as shown in FIGS. 3 to 5. The compounds have a layered structure of p63 / mmc.
상기 화합물들 중 층상형 NaZnBi와 이로부터 Na 이온을 제거하여 제조된 층상형 ZnBi는 도 6 내지 도 8과 같은 층상 구조를 갖는다. 상기 화합물들은 P4/nmmz의 층상형 구조를 갖는다.Among the compounds, layered NaZnBi and layered ZnBi prepared by removing Na ions therefrom have a layered structure as shown in FIGS. 6 to 8. The compounds have a layered structure of P4 / nmmz.
상기 화합물들 중 층상형 LiZnBi와 이로부터 Li 이온을 제거하여 제조된 층상형 ZnBi는 도 9 내지 도 11과 같은 층상 구조를 갖는다. 상기 화합물은 p63mc의 층상형 구조를 갖는다.Among the compounds, layered LiZnBi and layered ZnBi prepared by removing Li ions therefrom have a layered structure as shown in FIGS. 9 to 11. The compound has a layered structure of p63mc.
본 발명은 또한 층상형 AZnBi(여기서, A는 K, Na, Li 중 어느 하나임)를 합성하는 방법을 제공한다.The present invention also provides a method for synthesizing layered AZnBi, where A is any one of K, Na, and Li.
상기 층상형 AZnBi를 합성하는 방법은,The method of synthesizing the layered AZnBi,
(a) A, Zn, Bi 분말을 포함하는 합성 원료를 반응 용기에 삽입하는 단계;(a) inserting a synthetic raw material comprising A, Zn, Bi powder into a reaction vessel;
(b) 상기 반응 용기에 삽입된 합성 원료를 용융-냉각을 통해 결정화하는 단계;를 포함한다.(b) crystallizing the synthetic raw material inserted into the reaction vessel through melt-cooling.
상기 반응용기는 시료와 반응을 하지 않고, 고온에서 파손되지 않는 것이 적합하다. 대표적인 예로 알루미나 도가니, 몰리브덴 도가니 텅스텐도가니 등이 있다. It is preferable that the reaction vessel does not react with the sample and does not break at a high temperature. Representative examples include alumina crucibles, molybdenum crucibles and tungsten crucibles.
상기 용융 단계는 650~800℃의 온도에서 수행되는 것이 바람직하다. 상기 온도범위의 상한을 초과하면 Alkali ion의 기화로 봉입된 쿼츠 튜브 내의 증기압이 높아져 터질 수 있으며, 상기 온도범위의 하한에 미달하는 경우 재료의 소결반응이 완료되지 않아 반응되지 않은 원재료가 남아 있을 수 있어 바람직하지 못하다.The melting step is preferably carried out at a temperature of 650 ~ 800 ℃. If the upper limit of the temperature range is exceeded, the vapor pressure in the quartz tube encapsulated by evaporation of Alkali ions may increase, and if the temperature falls below the lower limit of the temperature range, the raw material may remain unreacted because the sintering reaction of the material is not completed. It is not desirable.
상기 냉각 단계는 상기 혼합물을 급냉 또는 서냉을 통해 이루어질 수 있다. The cooling step may be achieved by quenching or slow cooling the mixture.
상기 서냉은 300-500℃의 온도까지 시간당 0.5-3℃의 속도로 냉각함으로써 결정을 성장시켜 단결정을 형성하는 단계이며, 상기 급냉은 상기 서냉의 속도보다 급속도로 냉각하여 다결정을 형성하는 단계이다.The slow cooling is a step of growing a crystal by cooling at a rate of 0.5-3 ° C. to a temperature of 300-500 ° C. to form a single crystal, and the quenching is a step of rapidly cooling the slow cooling to form a polycrystal.
서냉시 상기 온도범위의 상한을 초과하는 경우 단결정의 크기 확보가 어렵고(다결정화), 상기 하한에 미달하는 경우 alkali ion의 기화로 인해 조성의 변화가 생길 수 있으므로 바람직하지 못하다.It is not preferable to secure the size of the single crystal in the case of exceeding the upper limit of the temperature range in slow cooling (polycrystallization), and if it is less than the lower limit, the composition may change due to vaporization of alkali ions.
상기 급냉은 물 또는 기름 등의 저온 용매에 봉입된 시료를 넣어 온도를 급냉시키거나(담금질), 열 공급원 제거를 통해 상온으로 급냉시키는 등 다양한 방법으로 이루어질 수 있다.The quenching may be performed by various methods such as quenching the temperature by putting a sample encapsulated in a low temperature solvent such as water or oil (quenching), or quenching to room temperature by removing a heat source.
본 발명은 또한,The present invention also provides
(c) 상기의 층상형 AZnBi를 합성하는 방법에 따라 층상형 AZnBi를 합성하는 단계(여기서, A는 K, Na, Li 중 어느 하나임); 및(c) synthesizing the layered AZnBi according to the method for synthesizing the layered AZnBi, wherein A is any one of K, Na, and Li; And
(d) 상기 층상형 AZnBi에서 A 이온을 제거하는 단계를 포함하는 층상형 ZnBi의 합성 방법을 제공한다.(d) providing a method for synthesizing a layered ZnBi comprising the step of removing A ions from the layered AZnBi.
상기 층상형 AZnBi에서 A를 제거하는 단계는, 유기용매, 물 또는 이들의 혼합물을 이용하여 결정 내의 A 이온을 제거할 수 있다.Removing A from the layered AZnBi may remove A ions in the crystal using an organic solvent, water, or a mixture thereof.
상기 유기용매는 환상 카보네이트계 용매, 쇄상 카보네이트계 용매, 에스테르계 용매, 에테르계 용매, 니트릴계 용매, 아미드계 용매 또는 이들의 혼합물일 수 있다.The organic solvent may be a cyclic carbonate solvent, a chain carbonate solvent, an ester solvent, an ether solvent, a nitrile solvent, an amide solvent, or a mixture thereof.
본 발명은 또한,The present invention also provides
(e) 상기의 층상형 ZnBi의 합성 방법에 따라 층상형 ZnBi를 합성하는 단계;(e) synthesizing the layered ZnBi according to the method of synthesizing the layered ZnBi;
(f) 상기 층상형 ZnBi를 박리하는 단계를 포함하는 ZnBi 나노시트 제조방법을 제공한다.(f) It provides a ZnBi nanosheet manufacturing method comprising the step of peeling the layered ZnBi.
상기 층상형 ZnBi를 박리하는 단계는, 초음파에 의한 에너지로 박리, 용매의 침입에 의한 박리, 용매와 K, Na, Li 등 알칼리금속이 형성하는 염 및 반응 기체에 의한 박리, Tape를 이용한 박리 및 접착성 표면을 가진 물질을 이용한 박리로 이루어진 군에서 선택되는 1 또는 2 이상의 공정을 이용하여 이루어질 수 있다.The peeling of the layered ZnBi may include peeling by energy using ultrasonic waves, peeling by invasion of a solvent, peeling by a salt and a reaction gas formed by an alkali metal such as a solvent and K, Na, Li, and peeling using a tape, and It can be made using one or two or more processes selected from the group consisting of peeling with a material having an adhesive surface.
본 발명은 또한,The present invention also provides
(g) 상기의 층상형 AZnBi의 합성 방법에 따라 층상형 AZnBi를 합성하는 단계;(g) synthesizing the layered AZnBi according to the method for synthesizing the layered AZnBi;
(h) 상기 층상형 AZnBi를 박리하는 단계를 포함하는 AZnBi 나노시트 제조방법을 제공한다.(h) it provides a method for producing AZnBi nanosheets comprising the step of peeling the layered AZnBi.
상기 층상형 ZnBi를 박리하는 단계는, 초음파에 의한 에너지로 박리, 용매의 침입에 의한 박리, 용매와 K, Na, Li 등 알칼리금속이 형성하는 염 및 반응 기체에 의한 박리, Tape를 이용한 박리 및 접착성 표면을 가진 물질을 이용한 박리로 이루어진 군에서 선택되는 1 또는 2 이상의 공정을 이용하여 이루어질 수 있다.The peeling of the layered ZnBi may include peeling by energy using ultrasonic waves, peeling by invasion of a solvent, peeling by a salt and a reaction gas formed by an alkali metal such as a solvent and K, Na, Li, and peeling using a tape, and It can be made using one or two or more processes selected from the group consisting of peeling with a material having an adhesive surface.
이하, 실시예 및 실험예를 통하여 본 발명을 보다 상세히 설명하기로 한다. 이들 실시예 및 실험예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예 및 실험예에 의해 제한되지 않는다는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명한 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples and Experimental Examples. These Examples and Experimental Examples are only for illustrating the present invention in more detail, and the scope of the present invention is not limited by these Examples and Experimental Examples according to the gist of the present invention having ordinary knowledge in the art. It is self-evident to him.
<실시예 1> KZnBi 결정의 제조Example 1 Preparation of KZnBi Crystals
잘 혼합된 정량의 Zn과 Bi 분말과 정량의 K를 반응용기에 삽입한다, 반응용기에 삽입된 시료는 쿼츠 튜브에 봉입한다. 이때 쿼츠 튜브 내부는 Ar등 불활성 기체 분위기를 유지하거나, 진공을 만들어 시료의 산화나 변질을 막아준다, 본 발명자는 고온에서 불활성 기체의 부피 팽창에 의한 쿼츠 파손의 우려로 진공 봉입된 쿼츠를 사용하였다. 시료가 들어간 쿼츠 튜브는 전기로에서 반응을 하였으며, 시료가 용융 될 수 있는 온도 650-800℃에서 12시간 유지, 이후 재 결정화를 위해 0.5-3℃/hr로 서냉한다. 300-500℃에 도달한 후 전기로의 전원을 차단하여 시료가 냉각될 수 있도록 한다. 이를 통해 고 순도의 KZnBi 결정을 확보하였다(도 1).A well-mixed quantitative amount of Zn and Bi powders and a quantitative amount of K are inserted into the reaction vessel. At this time, the inside of the quartz tube maintains an inert gas atmosphere such as Ar or prevents oxidation or deterioration of the sample by making a vacuum. The present inventors used quartz enclosed in vacuum due to the fear of quartz damage due to volume expansion of the inert gas at high temperature. . The quartz tube containing the sample was reacted in an electric furnace, and maintained at 650-800 ° C. for 12 hours at which the sample could be melted, and then slowly cooled to 0.5-3 ° C./hr for recrystallization. After reaching 300-500 ° C, the power to the furnace is cut off to allow the sample to cool. This secured high purity KZnBi crystals (FIG. 1).
<실시예 2> NaZnBi 결정의 제조Example 2 Preparation of NaZnBi Crystals
잘 혼합된 정량의 Zn과 Bi 분말과 정량의 Na를 반응용기에 삽입한다, 반응용기에 삽입된 시료는 쿼츠 튜브에 봉입한다. 이때 쿼츠 튜브 내부는 Ar등 불활성 기체 분위기를 유지하거나, 진공을 만들어 시료의 산화나 변질을 막아준다, 본 발명자는 고온에서 불활성 기체의 부피 팽창에 의한 쿼츠 파손의 우려로 진공 봉입된 쿼츠를 사용하였다. 시료가 들어간 쿼츠 튜브는 전기로에서 반응을 하였으며, 시료가 용융 될 수 있는 온도 650-800℃에서 12시간 유지, 이후 재 결정화를 위해 0.5-3℃/hr로 서냉한다. 300-500℃에 도달한 후 전기로의 전원을 차단하여 시료가 냉각될 수 있도록 한다. 이를 통해 고 순도의 NaZnBi 결정을 확보하였다(도 1).A well mixed amount of Zn and Bi powder and a quantity of Na are inserted into the reaction vessel. The sample inserted into the reaction vessel is encapsulated in a quartz tube. At this time, the inside of the quartz tube maintains an inert gas atmosphere such as Ar or prevents oxidation or deterioration of the sample by making a vacuum. The present inventors used quartz enclosed in vacuum due to the fear of quartz damage due to volume expansion of the inert gas at high temperature. . The quartz tube containing the sample was reacted in an electric furnace, and maintained at 650-800 ° C. for 12 hours at which the sample could be melted, and then slowly cooled to 0.5-3 ° C./hr for recrystallization. After reaching 300-500 ° C, the power to the furnace is cut off to allow the sample to cool. This secured high purity NaZnBi crystals (FIG. 1).
합성된 KZnBi 시료는 도 3 내지 도5에서 X선 회절 패턴으로 상을 확인하였고 계산을 통해 p63/mmc 구조의 상과 일치하는 것을 확인하였다, 이에 본 연구자는 합성한 KZnBi는 p63/mmc 결정구조임을 확인하였다(도 3).The synthesized KZnBi samples were identified by X-ray diffraction patterns in FIGS. 3 to 5, and the calculated KZnBi samples corresponded to the p63 / mmc structures. Therefore, the synthesized KZnBi was a p63 / mmc crystal structure. It was confirmed (FIG. 3).
합성된 NaZnBi 시료는 도 6 내지 도 8에서 X선 회절 패턴으로 상을 확인하였고 계산을 통해 p4/nmmz 구조의 상과 일치하는 것을 확인하였다, 이에 본 연구자는 합성한 NaZnBi는 p4/nmmz 결정구조임을 확인하였다(도 6).The synthesized NaZnBi samples were identified by X-ray diffraction patterns in FIGS. 6 to 8 and were found to be consistent with the p4 / nmmz structures through calculations. Thus, the synthesized NaZnBi is a p4 / nmmz crystal structure. It was confirmed (FIG. 6).

Claims (16)

  1. 하기 화학식 1 또는 화학식 2로 표시되는 층상형 화합물.Layered compound represented by the following formula (1) or (2).
    <화학식 1><Formula 1>
    AZnBi(여기서, A는 K, Na, Li 중 어느 하나임)AZnBi, where A is any of K, Na, and Li
    <화학식 2><Formula 2>
    ZnBiZnBi
  2. 제1항에 있어서,The method of claim 1,
    상기 화합물은 열전 특성을 가지는 것을 특징으로 하는 화합물.The compound is characterized in that it has thermoelectric properties.
  3. 제1항에 있어서,The method of claim 1,
    상기 화학식 2의 층상형 화합물은 p63/mmc, P4/nmmz 또는 p63mc의 층상형 구조를 갖는 것을 특징으로 하는 화합물.The layered compound of Chemical Formula 2 has a layered structure of p63 / mmc, P4 / nmmz or p63mc.
  4. (a) A, Zn, Bi를 포함하는 합성 원료를 반응 용기에 삽입하는 단계(여기서, A는 K, Na, Li 중 어느 하나임);(a) inserting a synthetic raw material comprising A, Zn, Bi into a reaction vessel, where A is any one of K, Na, and Li;
    (b) 상기 반응 용기에 삽입된 합성 원료를 용융-냉각을 통해 결정화 하는 단계; 를 포함하는 층상형 AZnBi를 합성하는 방법.(b) crystallizing the synthetic raw material inserted into the reaction vessel through melt-cooling; How to synthesize a layered AZnBi comprising a.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 고온 용융하는 단계는 650~800℃의 온도에서 수행되는 것을 특징으로 하는 층상형 AZnBi를 합성하는 방법.The hot melting step is a method for synthesizing the layered AZnBi, characterized in that carried out at a temperature of 650 ~ 800 ℃.
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 냉각 단계는 상기 혼합물을 급냉 또는 서냉을 통해 이루어지는 것을 특징으로 하는 층상형 AZnBi를 합성하는 방법.The cooling step is a method of synthesizing the layered AZnBi, characterized in that the mixture is made through quenching or slow cooling.
  7. 제4항에 있어서,The method of claim 4, wherein
    상기 서냉은 300-500℃의 온도까지 시간당 0.5-3℃의 속도로 냉각함으로써 결정을 성장시켜 단결정을 형성하는 단계이며, 상기 급냉은 상기 서냉의 속도보다 급속도로 냉각하여 다결정을 형성하는 것을 특징으로 하는 층상형 AZnBi를 합성하는 방법.The slow cooling is a step of forming a single crystal by growing a crystal by cooling at a rate of 0.5-3 ℃ per hour to a temperature of 300-500 ℃, the quenching is cooled faster than the rate of slow cooling to form a polycrystal To synthesize a layered AZnBi.
  8. (c) 제4항 내지 제7항 중 어느 한 항에 따른 층상형 AZnBi를 합성하는 방법에 따라 층상형 AZnBi를 합성하는 단계(여기서, A는 K, Na, Li 중 어느 하나임);(c) synthesizing the layered AZnBi according to the method of synthesizing the layered AZnBi according to any one of claims 4 to 7, wherein A is any one of K, Na, and Li;
    (d) 상기 층상형 AZnBi에서 A 이온을 제거하는 단계를 포함하는 층상형 ZnBi의 합성 방법.(d) A method of synthesizing a layered ZnBi comprising the step of removing A ions from the layered AZnBi.
  9. 제8항에 있어서,The method of claim 8,
    상기 층상형 AZnBi에서 A 이온을 제거하는 단계는 유기용매, 물 또는 이들의 혼합물을 이용하여 결정 내의 A 이온을 제거하는 것을 특징으로 하는 층상형 ZnBi의 합성 방법.Removing the A ions from the layered AZnBi is a method of synthesizing the layered ZnBi, characterized in that to remove the A ions in the crystal using an organic solvent, water or a mixture thereof.
  10. 제7항에 있어서,The method of claim 7, wherein
    상기 유기용매는 환상 카보네이트계 용매, 쇄상 카보네이트계 용매, 에스테르계 용매, 에테르계 용매, 니트릴계 용매, 아미드계 용매 또는 이들의 혼합물인 것을 특징으로 하는 층상형 ZnBi의 합성 방법.The organic solvent is a cyclic carbonate solvent, a linear carbonate solvent, an ester solvent, an ether solvent, a nitrile solvent, an amide solvent, or a mixture thereof.
  11. (e) 제8항의 층상형 ZnBi의 합성 방법에 따라 층상형 ZnBi의 합성하는 단계;(e) synthesizing the layered ZnBi according to the method for synthesizing the layered ZnBi of claim 8;
    (f) 상기 층상형 ZnBi를 박리하는 단계를 포함하는 ZnBi 나노시트 제조방법.(f) ZnBi nanosheet manufacturing method comprising the step of peeling the layered ZnBi.
  12. 제11항에 있어서, The method of claim 11,
    상기 층상형 ZnBi를 박리하는 단계는, Peeling the layered ZnBi,
    초음파에 의한 에너지로 박리, 용매의 침입에 의한 박리, 용매와 A 이온이(여기서, A는 K, Na, Li 중 어느 하나임) 형성하는 염 및 반응 기체에 의한 박리, Tape를 이용한 박리 및 접착성 표면을 가진 물질을 이용한 박리로 이루어진 군에서 선택되는 1 또는 2 이상의 공정을 이용하여 이루어지는 것을 특징으로 하는 ZnBi 나노시트 제조방법.Peeling with energy by ultrasonic waves, peeling by invasion of solvent, peeling by salt and reaction gas formed by solvent and A ions (where A is any one of K, Na and Li), peeling and adhesiveness using Tape Method for producing a ZnBi nanosheets, characterized in that using one or two or more processes selected from the group consisting of peeling with a material having a surface.
  13. (g) 제4항 내지 제7항 중 어느 한 항에 따른 층상형 AZnBi를 합성하는 방법에 따라 층상형 AZnBi를 합성하는 단계(여기서, A는 K, Na, Li 중 어느 하나임);(g) synthesizing the layered AZnBi according to the method of synthesizing the layered AZnBi according to any one of claims 4 to 7, wherein A is any one of K, Na, and Li;
    (h) 상기 층상형 AZnBi를 박리하는 단계를 포함하는 AZnBi 나노시트 제조방법.(h) AZnBi nanosheet manufacturing method comprising the step of peeling the layered AZnBi.
  14. 제13항에 있어서, The method of claim 13,
    상기 층상형 AZnBi를 박리하는 단계는, Peeling the layered AZnBi,
    초음파에 의한 에너지로 박리, 용매의 침입에 의한 박리, 용매와 A 이온이(여기서, A는 K, Na, Li 중 어느 하나임) 형성하는 염 및 반응 기체에 의한 박리, Tape를 이용한 박리 및 접착성 표면을 가진 물질을 이용한 박리로 이루어진 군에서 선택되는 1 또는 2 이상의 공정을 이용하여 이루어지는 것을 특징으로 하는 AZnBi 나노시트 제조방법.Peeling with energy by ultrasonic waves, peeling by invasion of solvent, peeling by salt and reaction gas formed by solvent and A ions (where A is any one of K, Na and Li), peeling and adhesiveness using Tape Method for producing AZnBi nanosheets, characterized in that using one or two or more processes selected from the group consisting of peeling with a material having a surface.
  15. 하기 화학식 3 또는 화학식 4로 표시되는 나노시트.Nanosheets represented by the following formula (3) or (4).
    <화학식 3><Formula 3>
    AZnBi(여기서, A는 K, Na, Li 중 어느 하나임)AZnBi, where A is any of K, Na, and Li
    <화학식 4><Formula 4>
    ZnBiZnBi
  16. 제13항에 있어서,The method of claim 13,
    열전 특성을 가지는 것을 특징으로 하는 나노시트.Nanosheet characterized by having thermoelectric properties.
PCT/KR2018/016084 2017-11-16 2018-12-18 Layered znbi, znbi nanosheet, and preparation methods therefor WO2019151643A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170152724 2017-11-16
KR20170152726 2017-11-16
KR10-2018-0011427 2018-01-30
KR1020180011427A KR102124975B1 (en) 2017-11-16 2018-01-30 Layered ZnBi, ZnBi nanosheet and method thereof

Publications (1)

Publication Number Publication Date
WO2019151643A1 true WO2019151643A1 (en) 2019-08-08

Family

ID=66680149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016084 WO2019151643A1 (en) 2017-11-16 2018-12-18 Layered znbi, znbi nanosheet, and preparation methods therefor

Country Status (2)

Country Link
KR (1) KR102124975B1 (en)
WO (1) WO2019151643A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111719165A (en) * 2020-06-24 2020-09-29 江南大学 Method for preparing Bi nanosheet by electrochemical stripping method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102263257B1 (en) * 2018-11-21 2021-06-11 성균관대학교 산학협력단 NOVEL THREE-DIMENSIONAL PHASE DIRAC SEMIMETAL KZnBi AND MANUFACTURING METHOD OF SAME

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101360839B1 (en) * 2011-12-23 2014-02-12 성균관대학교산학협력단 METHOD OF MANUFACTURING 2D NANOSHEET ZnO BASED NANOGENERATOR DEVICE, AND NANOGENERATOR DEVICE THEREOF
KR20150044285A (en) * 2013-10-16 2015-04-24 이화여자대학교 산학협력단 Nanosheet containing metal-hybridized metal oxide, preparing method of the same, and photocatalyst including the same
KR20170039851A (en) * 2015-10-02 2017-04-12 한국세라믹기술원 Manufacturing method of ZnSb nanosheet using chemical exfoliation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101360839B1 (en) * 2011-12-23 2014-02-12 성균관대학교산학협력단 METHOD OF MANUFACTURING 2D NANOSHEET ZnO BASED NANOGENERATOR DEVICE, AND NANOGENERATOR DEVICE THEREOF
KR20150044285A (en) * 2013-10-16 2015-04-24 이화여자대학교 산학협력단 Nanosheet containing metal-hybridized metal oxide, preparing method of the same, and photocatalyst including the same
KR20170039851A (en) * 2015-10-02 2017-04-12 한국세라믹기술원 Manufacturing method of ZnSb nanosheet using chemical exfoliation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BRAGA, M. H. ET AL.: "The experimental study of the Bi-Sn, Bi-Zn and Bi-Sn-Zn systems", COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, vol. 31, 2007, pages 468 - 478, XP022297006, doi:10.1016/j.calphad.2007.04.004 *
C AO, W. ET AL.: "Dirac semimetal phase in hexagonal LiZnBi", PHYSICAL REVIEW B., vol. 96, no. 115203, 11 September 2017 (2017-09-11), pages 1 - 7, XP055628549 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111719165A (en) * 2020-06-24 2020-09-29 江南大学 Method for preparing Bi nanosheet by electrochemical stripping method
CN111719165B (en) * 2020-06-24 2021-04-30 江南大学 Method for preparing Bi nanosheet by electrochemical stripping method

Also Published As

Publication number Publication date
KR102124975B1 (en) 2020-06-22
KR20190056263A (en) 2019-05-24

Similar Documents

Publication Publication Date Title
WO2019221583A1 (en) Layered aln, method for manufacturing same, and aln nanosheet exfoliated therefrom
WO2019151644A1 (en) Layered kznsb, layered znsb, kznsb nanosheet, znsb nanosheet, and preparation methods therefor
WO2019151643A1 (en) Layered znbi, znbi nanosheet, and preparation methods therefor
WO2017090877A1 (en) Novel method for preparing lithium bis(fluorosulfonyl)imide
WO2012053782A2 (en) Process for growing silicon carbide single crystal and device for the same
WO2014200232A1 (en) Dispersion stabilizer for graphene exfoliation, graphene-alkali metal salt composite comprising same, and method for preparing graphene using same
KR102065681B1 (en) Layered NaZnSb, Layered ZnSb, NaZnSb nanosheet, ZnSb nanosheet and method thereof
WO2015057019A1 (en) Thermoelectric material and method for manufacturing same
WO2016200108A1 (en) Method and apparatus for growing organic material monocrystals using ionic liquid
CN102000815B (en) Negative pressure solid phase reaction preparation method for FeAs powder
WO2015056944A1 (en) Molybdenum compound or tungsten compound, method for preparing same and method for forming thin film using same
KR20200060677A (en) Layered compound, nanosheet and preparing method thereof
WO2019221584A2 (en) Layered ge, manufacturing method therefor, ge nanosheet peeled therefrom, and electrode comprising same for lithium ion battery
KR102057965B1 (en) Layered ferromagnetic metal, layered ferromagnetic semiconductor material and method thereof
KR20190056265A (en) Layered MnBi, MnBi nanosheet and method thereof
WO2015057018A1 (en) Thermoelectric material and method for manufacturing same
WO2017082541A1 (en) Metal precursor, manufacturing method therefor, and method for forming thin film by using same
KR20190055900A (en) Layered LiZnSb. ZnSb, ZnSb nanosheet and method thereof
WO2022211488A1 (en) Hydride and preparation method therefor
WO2016052948A1 (en) Compound semiconductor and manufacturing method thereof
KR102263257B1 (en) NOVEL THREE-DIMENSIONAL PHASE DIRAC SEMIMETAL KZnBi AND MANUFACTURING METHOD OF SAME
WO2019146913A1 (en) Catalyst for hydrogen evolution reaction, comprising copper promoter
WO2019146914A1 (en) Novel magnetocaloric material and method for manufacturing same
WO2015057000A1 (en) Thermoelectric material and method for manufacturing same
JP5223432B2 (en) Method for producing type I clathrate compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903639

Country of ref document: EP

Kind code of ref document: A1