WO2019221584A9 - Layered ge, manufacturing method therefor, ge nanosheet peeled therefrom, and electrode comprising same for lithium ion battery - Google Patents

Layered ge, manufacturing method therefor, ge nanosheet peeled therefrom, and electrode comprising same for lithium ion battery Download PDF

Info

Publication number
WO2019221584A9
WO2019221584A9 PCT/KR2019/008903 KR2019008903W WO2019221584A9 WO 2019221584 A9 WO2019221584 A9 WO 2019221584A9 KR 2019008903 W KR2019008903 W KR 2019008903W WO 2019221584 A9 WO2019221584 A9 WO 2019221584A9
Authority
WO
WIPO (PCT)
Prior art keywords
layered
crystal structure
space group
nanosheet
trigonal
Prior art date
Application number
PCT/KR2019/008903
Other languages
French (fr)
Korean (ko)
Other versions
WO2019221584A3 (en
WO2019221584A2 (en
Inventor
심우영
김혜수
이수운
김민정
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2019221584A2 publication Critical patent/WO2019221584A2/en
Publication of WO2019221584A3 publication Critical patent/WO2019221584A3/en
Publication of WO2019221584A9 publication Critical patent/WO2019221584A9/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/68Crystals with laminate structure, e.g. "superlattices"
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a layered Ge, a method for preparing the same, and a Ge nanosheet peeled from the same. More specifically, the present invention relates to a layered Ge, and, more particularly, has a two-dimensional crystal structure unlike a conventional bulk Ge, and has excellent peelability. The present invention relates to a layered Ge having a wide surface area and excellent ion capacity, a method for preparing the same, a Ge nanosheet peeled from the same, and an electrode for a lithium ion battery including the same.
  • 2D materials Due to the limitations of the previous research methods, 2D materials have been very limitedly studied for materials such as graphene and transition metal chalcogenides. It is limited in that it is not suitable for the development of low-dimensional future materials of a myriad of 3D bulk materials that are not layered.
  • lithium ion batteries have high energy density and are widely used as a power supply device for complex applications such as portable electronic devices and electric vehicles.
  • lithium ions In order to improve the performance of lithium ion batteries, lithium ions must be easily moved and charged. As the discharge is repeated, structural stability of the electrode should be ensured.
  • Ge When Ge is used as an electrode material, it has the advantage of having a high theoretical capacity of 1,384 mAh / g, but has a problem of rapidly decreasing ion storage capacity due to a volume change of 300 to 400% during the insertion and desorption of lithium ions. . Accordingly, when the Ge material is manufactured in a low dimensional structure, structural stability may be improved to minimize the reduction of the ion storage capacity.
  • the present invention has been made in view of the above, and unlike the conventional 3D bulk Ge, it has a two-dimensional crystal structure, has excellent peelability and is easy to peel in the form of a nanosheet, and has a large surface area and excellent ion capacity. It is an object to provide a layered Ge having, a method for producing the same, and a Ge nanosheet peeled therefrom.
  • Another object of the present invention is to provide an electrode for a lithium ion battery having excellent ion storage capacity and minimizing capacity loss, including the layered Ge or Ge nanosheets according to the present invention.
  • the present invention (1) a trigonal crystal having a space group of Rm-3m by cooling a mixture containing Ca powder and Ge powder and cooling at a predetermined temperature reduction rate.
  • It provides a method for producing a layered Ge comprising treating the layered compound with a solution to prepare a layered Ge having a trigonal crystal structure of amorphous, space group (Rm-3m). .
  • the salt is a method of producing a layered Ge represented by the following formula (1):
  • M is any one selected from Sn, Al, and Ga
  • X is any one selected from Cl, F, and I.
  • the solvent may be at least one selected from ethanol, water, acetone and isopropanol.
  • the heat treatment may be performed for 5 to 10 days at 730 ⁇ 830 °C or 2 to 24 hours at 830 ⁇ 1000 °C.
  • the cooling may be performed at a temperature reduction rate of 3 ⁇ 20 °C / hour.
  • the step (2) is carried out at -40 ⁇ 0 °C to produce a layered Ge having a trigonal crystal structure with a space group (Rm-3m). Can be.
  • step (2) may be carried out at 15 ⁇ 60 °C to produce a layered Ge having an amorphous crystal structure.
  • the present invention also provides a layered Ge having a trigonal crystal structure having an amorphous or space group of Rm-3m.
  • the layered Ge having a trigonal crystal structure having the space group of Rm-3m has an X-ray diffraction diagram obtained by a powder X-ray diffraction method using Cu-K ⁇ rays. With peaks at 2 ⁇ values of 15.5 ⁇ 0.2, 26.4 ⁇ 0.2, 35.6 ⁇ 0.2, 45.7 ⁇ 0.2, 48.5 ⁇ 0.2 and 53.6 ⁇ 0.2, of 27.4 ⁇ 0.2, 45.6 ⁇ 0.2, 54.0 ⁇ 0.2 and 66.4 ⁇ 0.2 It may not have a peak at 2 ⁇ .
  • the present invention also provides a Ge nanosheet exfoliated from the layered Ge according to the present invention and having an amorphous or triangular symmetric crystal structure.
  • the thickness of the Ge nanosheets may be 100 nm or less.
  • the present invention (1) the layered CaGe 2 and space group having a trigonal crystal structure having a trigonal crystal structure of the space group (Rm-3m) after quenching the mixture containing the Ca powder and Ge powder Preparing a compound comprising Ge having a cubic crystal structure of Fd-3m, and (2) a salt capable of selectively removing Ca ions contained in the layered CaGe 2 and dissolving the salt.
  • Treating the layered compound with a mixed solution containing a solvent which can be used to form a Ge nanosheet having a trigonal crystal structure of amorphous or space group (Rm-3m), and the space group is Fd-3m It provides a method for producing a Ge nanosheet comprising the step of producing a Ge nanosheet having a monoclinic (cubic) crystal structure.
  • the heat treatment may be performed for 2 to 24 hours at 830 ⁇ 1,000 °C.
  • step (1) may be performed at 10 ⁇ 40 °C.
  • the present invention also provides a layered Ge having a trigonal crystal structure having an amorphous or space group of Rm-3m, a Ge nanosheet having an amorphous or triangular symmetric crystal structure, and an amorphous or triangular symmetric crystal structure.
  • an electrode for a lithium ion battery including at least one selected from a Ge nanosheet having a Ge nanosheet including a Ge nanosheet having a monoclinic (cubic) crystal structure having a space group of Fd-3m.
  • the layered Ge according to the present invention has a two-dimensional crystal structure, has excellent peelability and is easily peeled off in the form of a nanosheet, and has a large surface area and excellent ion capacity. It is included to implement a lithium ion battery with excellent ion storage capacity and minimized capacity loss.
  • FIG. 1 is a schematic view of a layered Ge manufacturing method according to an embodiment of the present invention.
  • Figure 2 is a photograph of the samples prepared in Ge, Preparation Example 1, Example 1 of Comparative Example 1.
  • Example 3 is a graph showing the XRD analysis results of the samples prepared in Ge of Preparation Example 1, Preparation Example 1, Example 1 and Example 2.
  • Figure 4 is a graph showing the Raman spectrum analysis results for the samples prepared in 3D Ge, Preparation Example 1 and Example 1 of Comparative Example 1.
  • 5A is an SEM image of a conventional 3D bulk Ge.
  • 5B is an SEM image of the layered CaGe 2 according to an embodiment of the present invention.
  • 5C is an SEM image of a layered Ge in accordance with one embodiment of the present invention.
  • 5D is an SEM image of the sample prepared in Example 1.
  • FIG. 6A is a TEM image of a sample prepared in Example 1.
  • FIG. 6B is a TEM image of a sample prepared in 3D Ge, Preparation Example 1, and Example 1 of Comparative Example 1.
  • FIG. 6B is a TEM image of a sample prepared in 3D Ge, Preparation Example 1, and Example 1 of Comparative Example 1.
  • 6C is a TEM image of layered Ge according to Example 1 and Example 2.
  • FIG. 6C is a TEM image of layered Ge according to Example 1 and Example 2.
  • 6D is a TEM image of a Ge nanosheet according to Example 4.
  • 7A is an EDS image of layered CaGe 2 according to Preparation Example 2.
  • FIG. 7A is an EDS image of layered CaGe 2 according to Preparation Example 2.
  • 9A is a graph showing charge and discharge curves of the lithium ion battery of Preparation Example 1.
  • 9B is a graph showing discharge capacity according to cycles of the lithium ion battery prepared in Preparation Example 1 and Comparative Preparation Example 1.
  • FIG. 9B is a graph showing discharge capacity according to cycles of the lithium ion battery prepared in Preparation Example 1 and Comparative Preparation Example 1.
  • FIG. 9C is a graph showing capacity characteristics according to discharge rates of the lithium ion batteries prepared in Preparation Example 1 and Comparative Preparation Example 1.
  • FIG. 9C is a graph showing capacity characteristics according to discharge rates of the lithium ion batteries prepared in Preparation Example 1 and Comparative Preparation Example 1.
  • the method of manufacturing a layered Ge according to the present invention can produce a bulk Ge of a conventional 3D structure in a two-dimensional structure, and unlike the existing bulk Ge, it is easy to peel, manufacturing a layered Ge having a wide surface area and excellent ion capacity. can do.
  • step (1) the mixture including Ca powder and Ge powder is heat-treated and then cooled to have a trigonal crystal structure having a space group of Rm-3m and a layer type represented by the formula CaGe 2 . Obtain the compound.
  • the mixture may be heat treated after being encapsulated in a reaction vessel, and the inside of the reaction vessel may be maintained in an inert gas atmosphere or a vacuum atmosphere.
  • the material of the reaction vessel may be, for example, alumina, molybdenum, tungsten or quartz, but any material that does not react with the sample and does not break at a high temperature may be used without limitation.
  • CaGe 2 prepared through step (1) has a 2D crystal structure different from Ge of a 3D crystal structure, and in step (2) described later, a layer is formed by selectively removing Ca ions of CaGe 2 .
  • Pictographic Ge can be prepared.
  • the heat treatment may be performed for 6 to 24 hours at 830 ⁇ 1,000 °C or for 5 to 10 days at 730 ⁇ 830 °C.
  • CaGe 2 When the heat treatment temperature is 830 ⁇ 1,000 ° C, CaGe 2 may have a layered structure. When the heat treatment temperature is 730 ⁇ 830 ° C, the layered CaGe 2 may be formed of polycrystal. When the layered CaGe 2 is a single crystal, the layered CaGe 2 may have better charge mobility than the polycrystal.
  • the heat treatment is performed at less than 730 ° C., the sintering reaction of the mixture may not be completed, and thus unreacted raw materials may remain, resulting in lowered yield of the layered compound prepared. have.
  • the heat treatment is carried out in excess of 1,000 °C, there may be a problem such as the reaction vessel used in the sintering reaction by the vaporization of Ca ions, or the yield of the layered compound produced is lowered.
  • the heat treatment temperature is 830 ⁇ 1,000 °C
  • the heat treatment is carried out in less than 2 hours, the sintering reaction of the mixture is not completed, the unreacted raw material may remain, the layered compound prepared accordingly There may be a problem such as a decrease in yield.
  • the heat treatment is performed for more than 24 hours, there is a fear that the manufacturing process time unnecessarily increases.
  • the heat treatment temperature is 730 ⁇ 830 °C
  • the heat treatment is performed less than 5 days, the sintering reaction of the mixture is not completed, the unreacted raw material may remain, the yield of the layered compound prepared accordingly There may be a problem such as deterioration.
  • the heat treatment is performed for more than 10 days, there is a fear that the manufacturing process time unnecessarily increases.
  • the cooling process may vary depending on the temperature of the heat treatment.
  • the cooling may be natural cooling.
  • the cooling may be carried out at a temperature reduction rate of 3 ⁇ 20 °C / hour, through which the heat-treated layered compound can be single crystallized. Cooling at the temperature reduction rate may increase the size of the single crystal of the layered compound prepared. As the size of the single crystal of the layered compound increases, grain boundaries of the particles may decrease, thereby increasing charge mobility, and the aspect ratio of the nanosheet peeled off when the layered compound is peeled off may increase.
  • the temperature reduction rate is less than 3 °C / hour, a change in the composition of the material produced due to the vaporization of Ca ions may occur, and when the temperature reduction rate exceeds 20 °C / hour, the layered compound prepared is polycrystalline Can be.
  • step (2) the layered compound prepared in step (1) is mixed with a salt capable of selectively removing Ca ions contained in the layered compound and a solvent capable of dissolving the salt. Treated with solution to produce layered Ge.
  • the salt may include an anion having a high electronegativity and a cation having an electronegativity value between the alkaline earth metal ion and the Ge ion in order to easily react with the alkaline earth metal ion (Ca ion) included in the layered compound.
  • the salt may be represented by the following Chemical Formula 1, wherein the salt is a cation having an electronegativity value between the alkaline earth metal ions and Ge ions, and M and Cl ions having high electronegativity. It consists of.
  • M may be any one selected from Sn, Al, and Ga
  • X may be any one selected from Cl, F, and I.
  • the solvent may include at least one selected from ethanol, water, acetone and isopropanol, and the composition of the solvent may vary depending on the temperature at which step (2) is performed.
  • the salt may be used in an amount sufficient to remove alkaline earth metal ions of the layered compound, but preferably, the layered compound and the salt in the mixed solution may be included in a molar ratio of 1: 1 to 1: 3. If the molar ratio of the layered compound and salt is less than 1: 1, alkaline earth metal ions of the layered compound may not be removed to the desired level, and if the molar ratio exceeds 1: 3, the salt There may be a problem such as a precipitate is not dissolved in the mixed solution.
  • the crystal structure of the layered Ge may be changed depending on the temperature at which step (2) is performed.
  • the layered Ge may have a trigonal crystal structure having a space group of Rm-3m, and the step (2) may be 15 to 60 ° C.
  • the layered Ge prepared when carried out at ° C. may have an amorphous crystal structure.
  • step (2) In the preparation of layered Ge having a trigonal crystal structure, if step (2) is performed at less than -40 ° C, the crystallinity of the layered Ge to be produced is increased, but the reaction time for removing alkaline earth metal ions is excessive. It may increase, and if the crystallinity of the layered Ge produced is not expressed to the desired level when it exceeds 0 ° C., or the layered Ge produced may have an amorphous crystal structure.
  • step (2) In preparing a layered Ge having an amorphous crystal structure, if step (2) is performed at less than 15 ° C., the crystallinity of the layered Ge to be produced may be increased and the reaction time for removing alkaline earth metal ions may be increased. When the reaction time exceeds 60 ° C, the reaction time for removing the alkaline earth metal ions may decrease, but the layered structure of the layered Ge may be disrupted.
  • the step (2) may be performed a plurality of times depending on the composition of the mixed solution and the removal rate of Ca ions, but is preferably performed once to maintain the layered structure of the layered Ge.
  • step (2) there may be a reactant formed by reacting alkaline earth metal ions with a salt in addition to the layered Ge.
  • a reactant formed by reacting alkaline earth metal ions with a salt in addition to the layered Ge.
  • the powder obtained through step (2) may be washed with a solvent. Can be.
  • the solvent for removing the reactant may be at least one selected from water, deionized water, methanol and ethanol.
  • the layered Ge according to the present invention has a trigonal crystal structure having an amorphous or space group of Rm-3m, which is different from the existing 3D bulk Ge, and has excellent peelability and has a form of nanosheets. It is easy to peel off, and has a large surface area and excellent ion capacity.
  • the space group has a trigonal crystal structure of Rm-3m.
  • Phase Ge is 2 ⁇ of 15.5 ⁇ 0.2, 26.4 ⁇ 0.2, 35.6 ⁇ 0.2, 45.7 ⁇ 0.2, 48.5 ⁇ 0.2 and 53.6 ⁇ 0.2 in the X-ray diffractogram obtained by powder X-ray diffraction using Cu-K ⁇ rays. It may have a peak at the value and may not have a peak at 2 ⁇ values of 27.4 ⁇ 0.2, 45.6 ⁇ 0.2, 54.0 ⁇ 0.2 and 66.4 ⁇ 0.2.
  • the Ge nanosheets according to the present invention can be obtained by peeling from the layered Ge according to the present invention and have an amorphous or triangular symmetric crystal structure.
  • the Ge nanosheets may have a thickness of 100 nm or less, and if the thickness exceeds 100 nm, the surface area of the Ge nanosheets may be lowered to decrease ion storage capacity or the Ge nanosheets. May be difficult to stack.
  • a method of peeling a layered material known in the art may be used, and for example, a method of peeling with energy by ultrasonic waves, a peeling method by invasion of a solvent, a peeling method using a tape, and adhesion Any of the methods of stripping using a substance having a surface may be used.
  • step (1) the mixture comprising Ca powder and Ge powder is heat-treated and then quenched so that the layered CaGe 2 and space group having a trigonal crystal structure having a space group of Rm-3m are formed.
  • a compound containing Ge having a cubic crystal structure of Fd-3m is prepared.
  • the heat treatment may be performed for 6 to 24 hours at 830 ⁇ 1,000 °C, quenching the heat-treated mixture to form a layered CaGe 2 and trigonal (trigonal) crystal structure of the space group (space group) Rm-3m
  • a compound having a lamella structure including Ge having a cubic crystal structure in which the group is Fd-3m can be prepared.
  • Such a lamellar structure is formed only when the molten mixture is quenched, and Ge nanosheets may be prepared from the lamellar structure in step (2) described later.
  • the quench may be performed at 10 ⁇ 40 °C.
  • the lamellar structure may be formed by alternately stacking a first layer including the layered CaGe 2 and a second layer including the Ge, and the layered type in step (2) described later.
  • the first layer is formed of Ge nanosheets having an amorphous or triangular symmetric crystal structure
  • the second layer has a cubic crystal structure having a space group of Fd-3m. It can be formed of a Ge nanosheet having.
  • step (2) is performed by treating the layered compound with a mixed solution containing a salt capable of selectively removing Ca ions contained in the layered CaGe 2 and a solvent capable of dissolving the salt.
  • a mixed solution containing a salt capable of selectively removing Ca ions contained in the layered CaGe 2 and a solvent capable of dissolving the salt are prepared.
  • composition of the mixed solution for removing Ca ions, the temperature condition of step (2) and the crystal structure of the Ge nanosheets prepared from the layered CaGe 2 are the same as described above in the manufacturing method of the layered Ge. Detailed description thereof will be omitted.
  • the Ge nanosheets having a trigonal crystal structure and the Ge nanosheets having a monoclinic crystal structure may be peeled off without a separate peeling process.
  • Ge nanosheets prepared by the method of manufacturing Ge nanosheets of the present invention include Ge nanosheets having an amorphous or triangular symmetric crystal structure and Ge nanosheets having a cubic crystal structure having a space group of Fd-3m. .
  • the layered Ge and Ge nanosheets according to the present invention have a wide surface area and excellent ion capacity, when used as an electrode for a lithium ion battery, it is possible to implement a lithium ion battery with a minimum capacity loss.
  • the lithium ion battery may include an electrode, a counter electrode, an separator provided between the electrode and the counter electrode, and an electrolyte.
  • the electrode includes the layered Ge or Ge nanosheets according to the present invention, capacity loss due to volume expansion of the electrode generated during charging and discharging may be minimized, and thus life of a lithium ion battery may be improved.
  • the counter electrode, the separator, and the electrolyte included in the lithium ion battery may adopt a well-known configuration in the field of lithium ion batteries, and thus the present invention will not be described in detail.
  • layered CaGe 2 For the synthesis of layered CaGe 2 , Ca powder and Ge powder were mixed and then heat treated at 800 ° C. for 7 days and cooled to give a layered trigonal crystal structure with a space group of Rm-3m. CaGe 2 was obtained.
  • Example 1 The layered Ge prepared in Example 1 was peeled off with Scotch tape (3M) to prepare Ge nanosheets.
  • the Lamellar structure prepared in Preparation Example 2 was mixed with ethanol and SnCl 2 at -20 ° C to remove Ca ions, thereby preparing Ge nanosheets.
  • a commercial 3D bulk Ge (Sigma Aldrich, product no .: 203351) was prepared.
  • the layered Ge (0.08 g) prepared in Example 1 was mixed with Super P (0.01 g) and PVDF (0.01 g). After mixing with NMP solvent to prepare a slurry for the electrode, this was applied to the copper thin film by a doctor blade method 2 ⁇ m and then heat-treated to prepare a Ge electrode.
  • the Ge electrode was laminated with a lithium metal electrode, a separator was inserted between the two electrodes, and an electrolyte solution containing LiPF 6 (1.0 M) dissolved in an organic solvent in which EC and DEC were mixed at a volume ratio of 1: 1 was injected.
  • a coin-type half cell was assembled to fabricate a lithium ion battery.
  • the crystal structure of the layered CaGe 2 (preparation example 1) is a trigonal having a space group of Rm-3m, and the layered types of Examples 1 and 2 It can be confirmed that Ge has a crystal structure different from the bulk Ge of the existing 3D crystal structure.
  • the layered Ge of Example 1 has a higher crystallinity than the layered Ge of Example 2.
  • the layered Ge (Example 1) has a stronger Ge-Ge in-plane strain than 3D Ge (Comparative Example 1), which is a buckle angle of Ge. Means increased.
  • Ge prepared from layered CaGe 2 is layered. It can be seen that this has a significantly different structure compared to the 3D bulk Ge shown in FIG. 5A.
  • 5D shows an SEM image of the layered structure of Example 1 at different magnifications, and the layered structure of the layered Ge according to Example 1 can be clearly seen.
  • the crystal structures of 3D bulk Ge and layered CaGe 2 are different.
  • the layered Ge (Example 1) having Ca ions removed at ⁇ 20 ° C. has higher crystallinity and has a trigonal crystal structure than the layered Ge having removed Ca ions at room temperature (Example 2). You can check it.
  • AFM analysis was performed on the Ge nanosheets according to Example 3, and the results are shown in FIG. 8. Referring to Figure 8, it can be seen that the thickness of the Ge nanosheets are 9nm, 29nm.
  • FIG. 9A is a graph showing charge and discharge curves of a lithium ion battery (manufacture example 1) including a layered Ge. Referring to FIG. 9A, it can be seen that the lithium ion battery of Preparation Example 1 has stable charge and discharge characteristics. .
  • Figure 9b is a discharge capacity graph according to the cycle, the lithium ion battery according to Preparation Example 1 shows that the first cycle efficiency of about 80% performance, but from the second cycle it can be seen that the cycle efficiency increased to about 96%.
  • the charge-discharge experiment was conducted in the region of 0 V (at discharge) and 2.5 V (at charge) at a current of 100 mA / g, the discharge capacity was measured in the first cycle.
  • Comparative Preparation Example 1 had a capacity of about 1,396 mAh / g, but after 50 cycles Preparation Example 1 shows a capacity of about 163 mAh / g, while Comparative Production Example 1 has a capacity of about 46 mAh Had Through this, it can be seen that when using the layered Ge electrode according to the present invention, capacity loss due to volume expansion of the electrode can be minimized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to layered Ge, a manufacturing method therefor, and a Ge nanosheet released therefrom and, more specifically, to layered Ge, which has a two-dimensional crystalline structure unlike conventional bulky Ge, is easy to release in the form of a nanosheet due to excellent releasability thereof, and has a large surface area and excellent ion capacity, to a manufacturing method therefor, to a GE nanosheet released therefrom, and to an electrode comprising same for a lithium ion battery.

Description

층상형 GE, 이의 제조 방법, 이로부터 박리된 GE 나노시트 및 이를 포함하는 리튬이온전지용 전극Layered GE, a method of manufacturing the same, GE nanosheets peeled from the same, and an electrode for a lithium ion battery comprising the same
본 발명은 층상형 Ge, 이의 제조 방법 및 이로부터 박리된 Ge 나노시트에 관한 것이며, 더욱 상세하게는 종래의 벌크형 Ge와 달리 2차원 결정 구조를 갖고, 박리성이 우수하여 나노시트의 형태로 박리하기 용이하며, 표면적이 넓고 우수한 이온 용량을 갖는 층상형 Ge, 이의 제조 방법 및 이로부터 박리된 Ge 나노시트 및 이를 포함하는 리튬이온전지용 전극에 관한 것이다.The present invention relates to a layered Ge, a method for preparing the same, and a Ge nanosheet peeled from the same. More specifically, the present invention relates to a layered Ge, and, more particularly, has a two-dimensional crystal structure unlike a conventional bulk Ge, and has excellent peelability. The present invention relates to a layered Ge having a wide surface area and excellent ion capacity, a method for preparing the same, a Ge nanosheet peeled from the same, and an electrode for a lithium ion battery including the same.
그래핀을 비롯한 다양한 초박막 이차원(2D) 재료들은 새로운 물리적, 화학적, 기계적 및 광학적 특성을 바탕으로 다양한 분야에서 활발히 연구가 되고 있다. 이러한 저차원의 소재는 기존의 벌크 소재가 가지지 못하는 획기적인 신기능이 기대되고 기존소재를 대체할 차세대 미래 소재로서 가능성이 매우 크다.Graphene and other ultra-thin two-dimensional (2D) materials are being actively studied in various fields based on new physical, chemical, mechanical and optical properties. This low-dimensional material is expected to be a breakthrough new function that the existing bulk material does not have and is very likely as a next-generation future material to replace the existing material.
기존 2D 소재에 대한 연구는 층간(interlayer)의 결합력이 약한 반데르발스 결합을 물리적 및 화학적 방법으로 분리하는 Top-down법, 기상증착법에 기반한 대면적 박막을 성장시키는 Bottom-up법을 기반으로 진행되고 있다. 특히 Top-down법은 박리(exfoliation) 대상 물질의 모상(pristine)이 반드시 2차원적 층상결정구조를 가져야 하므로 밴드갭이 없는 그래핀, 전하 이동도가 낮은 층상 금속 산화물/질화물, 전자이동도/전기전도도가 낮은 전이금속 칼코겐화합물 등 연구 대상이 매우 제한적인 문제점이 있다.Research on existing 2D materials is based on top-down method for separating van der Waals bonds with weak interlayer bondability by physical and chemical methods, and bottom-up method for growing large-area thin films based on vapor deposition. It is becoming. In particular, in the top-down method, since the pristine of the material to be exfoliated must have a two-dimensional layered crystal structure, graphene without band gap, layered metal oxide / nitride with low charge mobility, electron mobility / Research subjects such as transition metal chalcogenides with low electrical conductivity have very limited problems.
종래 연구 방법의 한계로 인해 2D 소재는 그래핀이나 전이금속 칼코겐화합물 등의 물질을 대상으로 매우 제한적으로 연구가 진행되었으며, 이는 본질적으로 저차원 소재의 개발 가능 여부가 사용하고자 하는 원소의 종류에 따라 제한된다는 점에서 한계를 가지며 층상구조가 아닌 무수히 많은 3D 벌크 소재의 저차원 미래 소재 개발에는 적합하지 않은 방법이다.Due to the limitations of the previous research methods, 2D materials have been very limitedly studied for materials such as graphene and transition metal chalcogenides. It is limited in that it is not suitable for the development of low-dimensional future materials of a myriad of 3D bulk materials that are not layered.
한편, 리튬 이온 전지는 높은 에너지 밀도를 가져 휴대용 전자 기기 및 전기 자동차와 같은 복잡한 애플리케이션에 전력 공급 장치로 전 세계적으로 널리 사용되고 있으며, 리튬 이온 전지의 성능을 높이기 위해서 리튬 이온의 이동이 용이하여야 하며 충방전이 반복됨에 따라 전극의 구조적 안정성이 확보되어야 한다.On the other hand, lithium ion batteries have high energy density and are widely used as a power supply device for complex applications such as portable electronic devices and electric vehicles.In order to improve the performance of lithium ion batteries, lithium ions must be easily moved and charged. As the discharge is repeated, structural stability of the electrode should be ensured.
전극 소재로서 Ge를 사용할 경우, 1,384 mAh/g 의 높은 이론 용량을 갖는 장점이 있으나 리튬 이온이 삽입 및 탈리되는 과정에서 300~400 %의 부피변화가 동반되어 이온 저장 용량이 급격히 감소하는 문제점이 있다. 따라서, Ge 소재를 저차원 구조로 제조할 경우 구조적 안정성이 향상되어 이온 저장 용량의 감소를 최소화시킬 수 있다.When Ge is used as an electrode material, it has the advantage of having a high theoretical capacity of 1,384 mAh / g, but has a problem of rapidly decreasing ion storage capacity due to a volume change of 300 to 400% during the insertion and desorption of lithium ions. . Accordingly, when the Ge material is manufactured in a low dimensional structure, structural stability may be improved to minimize the reduction of the ion storage capacity.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 종래의 3D 벌크형 Ge와 달리 2차원 결정 구조를 갖고, 박리성이 우수하여 나노시트의 형태로 박리하기 용이하며, 표면적이 넓고 우수한 이온 용량을 갖는 층상형 Ge, 이의 제조 방법 및 이로부터 박리된 Ge 나노시트를 제공하는데 목적이 있다.The present invention has been made in view of the above, and unlike the conventional 3D bulk Ge, it has a two-dimensional crystal structure, has excellent peelability and is easy to peel in the form of a nanosheet, and has a large surface area and excellent ion capacity. It is an object to provide a layered Ge having, a method for producing the same, and a Ge nanosheet peeled therefrom.
또한, 본 발명은 본 발명에 따른 층상형 Ge 또는 Ge 나노시트를 포함하는 이온 저장 용량이 우수하고 용량 손실이 최소화된 리튬이온전지용 전극을 제공하는데 다른 목적이 있다.Another object of the present invention is to provide an electrode for a lithium ion battery having excellent ion storage capacity and minimizing capacity loss, including the layered Ge or Ge nanosheets according to the present invention.
상술한 과제를 해결하기 위하여 본 발명은 (1) Ca 분말 및 Ge 분말을 포함하는 혼합물을 열처리한 후 소정의 감온 속도로 냉각하여 공간군(space group)이 Rm-3m인 삼방정계(trigonal) 결정구조를 갖는 화학식 CaGe2로 표시되는 층상형 화합물을 제조하는 단계 및 (2) 상기 층상형 화합물에 포함된 Ca 이온을 선택적으로 제거할 수 있는 염 및 상기 염을 용해시킬 수 있는 용매를 포함하는 혼합용액으로 상기 층상형 화합물을 처리하여 비정질, 공간군(space group)이 Rm-3m인 삼방정계(trigonal) 결정구조를 갖는 층상형 Ge를 제조하는 단계를 포함하는 층상형 Ge의 제조 방법을 제공한다.In order to solve the above problems, the present invention (1) a trigonal crystal having a space group of Rm-3m by cooling a mixture containing Ca powder and Ge powder and cooling at a predetermined temperature reduction rate. Preparing a layered compound represented by the formula CaGe 2 having a structure, and (2) a mixture comprising a salt capable of selectively removing Ca ions contained in the layered compound and a solvent capable of dissolving the salt. It provides a method for producing a layered Ge comprising treating the layered compound with a solution to prepare a layered Ge having a trigonal crystal structure of amorphous, space group (Rm-3m). .
본 발명의 일 실시예에 의하면, 상기 염은 하기 화학식 1로 표시되는 층상형 Ge의 제조 방법:According to one embodiment of the present invention, the salt is a method of producing a layered Ge represented by the following formula (1):
<화학식 1><Formula 1>
MXa(1≤a≤3)MX a (1≤a≤3)
상기 화학식 1에서 M은 Sn, Al, 및 Ga 중에서 선택된 어느 하나고, X는 Cl, F 및 I중에서 선택된 어느 하나다.In Formula 1, M is any one selected from Sn, Al, and Ga, and X is any one selected from Cl, F, and I.
또한 본 발명의 일 실시예에 의하면, 상기 용매는 에탄올, 물, 아세톤 및 이소프로판올 중에서 선택된 적어도 어느 하나일 수 있다.In addition, according to an embodiment of the present invention, the solvent may be at least one selected from ethanol, water, acetone and isopropanol.
또한 본 발명의 일 실시예에 의하면, 상기 열처리는 730~830℃에서 5~10일 또는 830~1000℃에서 2~24시간 동안 수행될 수 있다.In addition, according to an embodiment of the present invention, the heat treatment may be performed for 5 to 10 days at 730 ~ 830 ℃ or 2 to 24 hours at 830 ~ 1000 ℃.
또한 본 발명의 일 실시예에 의하면, 상기 냉각은 3~20℃/시간의 감온 속도로 수행될 수 있다.In addition, according to one embodiment of the present invention, the cooling may be performed at a temperature reduction rate of 3 ~ 20 ℃ / hour.
또한 본 발명의 일 실시예에 의하면, 상기 (2)단계는 -40~0℃에서 수행되어 공간군(space group)이 Rm-3m인 삼방정계(trigonal) 결정구조를 갖는 층상형 Ge를 제조할 수 있다.In addition, according to an embodiment of the present invention, the step (2) is carried out at -40 ~ 0 ℃ to produce a layered Ge having a trigonal crystal structure with a space group (Rm-3m). Can be.
또한 본 발명의 일 실시예에 의하면, 상기 (2)단계는 15~60℃에서 수행되어 비정질 결정구조를 갖는 층상형 Ge를 제조할 수 있다.In addition, according to an embodiment of the present invention, step (2) may be carried out at 15 ~ 60 ℃ to produce a layered Ge having an amorphous crystal structure.
또한 본 발명은 비정질 또는 공간군(space group)이 Rm-3m인 삼방정계(trigonal) 결정구조를 갖는 층상형 Ge를 제공한다.The present invention also provides a layered Ge having a trigonal crystal structure having an amorphous or space group of Rm-3m.
본 발명의 일 실시예에 의하면, 상기 공간군이 이 Rm-3m인 삼방정계(trigonal) 결정구조를 갖는 층상형 Ge는 Cu-Kα선을 사용하는 분말 X선 회절법에 의해 얻어지는 X선 회절도에 있어서, 15.5±0.2, 26.4±0.2, 35.6±0.2, 45.7±0.2, 48.5±0.2 및 53.6±0.2의 2θ값에서 피크를 갖고, 27.4±0.2, 45.6±0.2, 54.0±0.2 및 66.4±0.2의 2θ값에서 피크를 갖지 않을 수 있다.According to one embodiment of the present invention, the layered Ge having a trigonal crystal structure having the space group of Rm-3m has an X-ray diffraction diagram obtained by a powder X-ray diffraction method using Cu-Kα rays. With peaks at 2θ values of 15.5 ± 0.2, 26.4 ± 0.2, 35.6 ± 0.2, 45.7 ± 0.2, 48.5 ± 0.2 and 53.6 ± 0.2, of 27.4 ± 0.2, 45.6 ± 0.2, 54.0 ± 0.2 and 66.4 ± 0.2 It may not have a peak at 2θ.
또한 본 발명은 본 발명에 따른 층상형 Ge로부터 박리되고, 비정질 또는 삼각 대칭 결정구조를 갖는 Ge 나노시트를 제공한다.The present invention also provides a Ge nanosheet exfoliated from the layered Ge according to the present invention and having an amorphous or triangular symmetric crystal structure.
본 발명의 일 실시예에 의하면 상기 Ge 나노시트의 두께는 100nm 이하일 수 있다.According to an embodiment of the present invention, the thickness of the Ge nanosheets may be 100 nm or less.
또한 본 발명은 (1) Ca 분말 및 Ge 분말을 포함하는 혼합물을 열처리한 후 급냉하여 공간군(space group)이 Rm-3m인 삼방정계(trigonal) 결정구조를 갖는 층상형 CaGe2 및 공간군이 Fd-3m인 단사정계(cubic) 결정구조를 갖는 Ge를 포함하는 화합물을 제조하는 단계 및 (2) 상기 층상형 CaGe2에 포함된 Ca 이온을 선택적으로 제거할 수 있는 염 및 상기 염을 용해시킬 수 있는 용매를 포함하는 혼합용액으로 상기 층상형 화합물을 처리하여 비정질 또는 공간군(space group)이 Rm-3m인 삼방정계(trigonal) 결정구조를 갖는 Ge 나노시트, 및 공간군이 Fd-3m인 단사정계(cubic) 결정구조를 갖는 Ge 나노시트를 제조하는 단계를 포함하는 Ge 나노시트의 제조 방법을 제공한다.In addition, the present invention (1) the layered CaGe 2 and space group having a trigonal crystal structure having a trigonal crystal structure of the space group (Rm-3m) after quenching the mixture containing the Ca powder and Ge powder Preparing a compound comprising Ge having a cubic crystal structure of Fd-3m, and (2) a salt capable of selectively removing Ca ions contained in the layered CaGe 2 and dissolving the salt. Treating the layered compound with a mixed solution containing a solvent which can be used to form a Ge nanosheet having a trigonal crystal structure of amorphous or space group (Rm-3m), and the space group is Fd-3m It provides a method for producing a Ge nanosheet comprising the step of producing a Ge nanosheet having a monoclinic (cubic) crystal structure.
본 발명의 일 실시예에 의하면, 상기 열처리는 830~1,000℃에서 2~24 시간 동안 수행될 수 있다.According to one embodiment of the present invention, the heat treatment may be performed for 2 to 24 hours at 830 ~ 1,000 ℃.
또한 본 발명의 일 실시예에 의하면, 상기 (1)단계의 급냉은 10~40℃에서 수행될 수 있다.In addition, according to an embodiment of the present invention, the quenching of step (1) may be performed at 10 ~ 40 ℃.
또한 본 발명은 비정질 또는 공간군(space group)이 Rm-3m인 삼방정계(trigonal) 결정구조를 갖는 층상형 Ge, 비정질 또는 삼각 대칭 결정구조를 갖는 Ge 나노시트, 및 비정질 또는 삼각 대칭 결정구조를 갖는 Ge 나노시트와 공간군이 Fd-3m인 단사정계(cubic) 결정구조를 갖는 Ge 나노시트를 포함하는 Ge 나노시트 중에서 선택된 적어도 어느 하나를 포함하는 리튬이온전지용 전극을 제공한다.The present invention also provides a layered Ge having a trigonal crystal structure having an amorphous or space group of Rm-3m, a Ge nanosheet having an amorphous or triangular symmetric crystal structure, and an amorphous or triangular symmetric crystal structure. Provided is an electrode for a lithium ion battery including at least one selected from a Ge nanosheet having a Ge nanosheet including a Ge nanosheet having a monoclinic (cubic) crystal structure having a space group of Fd-3m.
본 발명에 따른 층상형 Ge는 종래의 벌크형 Ge와 달리 2차원 결정구조를 갖고, 박리성이 우수하여 나노시트의 형태로 박리하기 용이하며, 표면적이 넓고 우수한 이온 용량을 갖기 때문에 리튬이온전지용 전극에 포함되어 이온 저장용량이 우수하고 용량 손실이 최소화된 리튬이온전지를 구현할 수 있다.Unlike the conventional bulk Ge, the layered Ge according to the present invention has a two-dimensional crystal structure, has excellent peelability and is easily peeled off in the form of a nanosheet, and has a large surface area and excellent ion capacity. It is included to implement a lithium ion battery with excellent ion storage capacity and minimized capacity loss.
도 1은 본 발명의 일 실시예에 따른 층상형 Ge 제조 방법에 대한 모식도이다.1 is a schematic view of a layered Ge manufacturing method according to an embodiment of the present invention.
도 2는 비교예 1의 Ge, 준비예1, 실시예1에서 제조된 시료들의 사진이다.Figure 2 is a photograph of the samples prepared in Ge, Preparation Example 1, Example 1 of Comparative Example 1.
도 3은 비교예 1의 Ge, 준비예 1, 실시예 1 및 실시예 2에서 제조된 시료들에 대한 XRD 분석 결과를 도시한 그래프이다.3 is a graph showing the XRD analysis results of the samples prepared in Ge of Preparation Example 1, Preparation Example 1, Example 1 and Example 2.
도 4는 비교예1의 3D Ge, 준비예 1 및 실시예 1에서 제조된 시료에 대한 라만 스펙트럼 분석 결과를 도시한 그래프이다.Figure 4 is a graph showing the Raman spectrum analysis results for the samples prepared in 3D Ge, Preparation Example 1 and Example 1 of Comparative Example 1.
도 5a는 종래의 3D 벌크형 Ge의 SEM 이미지이다.5A is an SEM image of a conventional 3D bulk Ge.
도 5b는 본 발명의 일 실시예에 따른 층상형 CaGe2의 SEM 이미지이다.5B is an SEM image of the layered CaGe 2 according to an embodiment of the present invention.
도 5c는 본 발명의 일 실시예에 따른 층상형 Ge의 SEM 이미지이다.5C is an SEM image of a layered Ge in accordance with one embodiment of the present invention.
도 5d는 실시예 1에서 제조된 시료에 대한 SEM 이미지이다.5D is an SEM image of the sample prepared in Example 1. FIG.
도 6a는 실시예 1에서 제조된 시료에 대한 TEM 이미지이다.6A is a TEM image of a sample prepared in Example 1. FIG.
도 6b는 비교예1의 3D Ge, 준비예 1 및 실시예 1에서 제조된 시료에 대한 TEM 이미지이다.6B is a TEM image of a sample prepared in 3D Ge, Preparation Example 1, and Example 1 of Comparative Example 1. FIG.
도 6c는 실시예 1 및 실시예 2에 따른 층상형 Ge의 TEM 이미지이다.6C is a TEM image of layered Ge according to Example 1 and Example 2. FIG.
도 6d는 실시예 4에 따른 Ge 나노시트의 TEM 이미지이다.6D is a TEM image of a Ge nanosheet according to Example 4. FIG.
[규칙 제91조에 의한 정정 23.09.2019] 
도 7a는 준비예 2에따른 층상형 CaGe2에 대한 EDS 이미지이다.
[Revision 23.09.2019 under Rule 91]
7A is an EDS image of layered CaGe 2 according to Preparation Example 2. FIG.
[규칙 제91조에 의한 정정 23.09.2019] 
도 7b는 실시예 1에따른 층상형 Ge에 대한 EDS 이미지이다.
[Revision 23.09.2019 under Rule 91]
7B is an EDS image for the layered Ge according to Example 1. FIG.
[규칙 제91조에 의한 정정 23.09.2019] 
도 8는 본 발명의 일 실시예에 따른 Ge 나노시트의 AFM 이미지 및 분석 결과를 도시한 그래프이다.
[Revision 23.09.2019 under Rule 91]
8 is a graph showing the AFM image and analysis results of the Ge nanosheets according to an embodiment of the present invention.
[규칙 제91조에 의한 정정 23.09.2019] 
도 9a는 제조예 1의 리튬이온전지의 충방전 곡선을 도시한 그래프이다.
[Revision 23.09.2019 under Rule 91]
9A is a graph showing charge and discharge curves of the lithium ion battery of Preparation Example 1. FIG.
[규칙 제91조에 의한 정정 23.09.2019] 
도 9b는 제조예 1 및 비교제조예 1에서 제조된 리튬이온전지의 사이클에 따른 방전용량을 도시한 그래프이다.
[Revision 23.09.2019 under Rule 91]
9B is a graph showing discharge capacity according to cycles of the lithium ion battery prepared in Preparation Example 1 and Comparative Preparation Example 1. FIG.
[규칙 제91조에 의한 정정 23.09.2019] 
도 9c는 제조예 1 및 비교제조예 1에서 제조된 리튬이온전지의 방전 속도에 따른 용량 특성을 도시한 그래프이다.
[Revision 23.09.2019 under Rule 91]
FIG. 9C is a graph showing capacity characteristics according to discharge rates of the lithium ion batteries prepared in Preparation Example 1 and Comparative Preparation Example 1. FIG.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
본 발명에 따른 층상형 Ge의 제조 방법은 기존 3D 구조의 벌크형 Ge를 이차원 구조로 제조할 수 있으며, 기존 벌크형 Ge과는 달리 박리가 용이하고, 표면적이 넓고 우수한 이온 용량을 갖는 층상형 Ge를 제조할 수 있다.The method of manufacturing a layered Ge according to the present invention can produce a bulk Ge of a conventional 3D structure in a two-dimensional structure, and unlike the existing bulk Ge, it is easy to peel, manufacturing a layered Ge having a wide surface area and excellent ion capacity. can do.
먼저 (1)단계로서, Ca 분말 및 Ge 분말을 포함하는 혼합물을 열처리한 후 냉각하여 공간군(space group)이 Rm-3m인 삼방정계(trigonal) 결정구조를 갖고 화학식 CaGe2로 표시되는 층상형 화합물을 수득한다.First, as step (1), the mixture including Ca powder and Ge powder is heat-treated and then cooled to have a trigonal crystal structure having a space group of Rm-3m and a layer type represented by the formula CaGe 2 . Obtain the compound.
상기 혼합물은 반응용기에 봉입한 후 열처리될 수 있으며, 상기 반응용기 내부는 불활성 기체 분위기 또는 진공 분위기로 유지될 수 있다.The mixture may be heat treated after being encapsulated in a reaction vessel, and the inside of the reaction vessel may be maintained in an inert gas atmosphere or a vacuum atmosphere.
또한, 상기 반응용기의 소재는 일 예로 알루미나, 몰리브덴, 텅스텐 또는 석영일 수 있으나, 시료와 반응하지 않고, 고온에서 파손되지 않는 물질이라면 소재에 제한 없이 사용할 수 있다.In addition, the material of the reaction vessel may be, for example, alumina, molybdenum, tungsten or quartz, but any material that does not react with the sample and does not break at a high temperature may be used without limitation.
도 1에 도시된 바와 같이 (1) 단계를 통해 준비되는 CaGe2는 3D 결정 구조의 Ge와 상이한 2D 결정 구조를 가지며, 후술되는 (2)단계에서 상기 CaGe2의 Ca 이온을 선택적으로 제거하여 층상형 Ge를 제조할 수 있다.As shown in FIG. 1, CaGe 2 prepared through step (1) has a 2D crystal structure different from Ge of a 3D crystal structure, and in step (2) described later, a layer is formed by selectively removing Ca ions of CaGe 2 . Pictographic Ge can be prepared.
본 발명의 일 실시예에 의하면, 상기 열처리는 830~1,000℃에서 6~24시간 동안 또는 730~830℃에서 5~10일 동안 수행될 수 있다.According to one embodiment of the invention, the heat treatment may be performed for 6 to 24 hours at 830 ~ 1,000 ℃ or for 5 to 10 days at 730 ~ 830 ℃.
상기 열처리 온도가 830~1,000℃일 경우, 제조되는 CaGe2가 층상형 구조를 가질 수 있으며, 상기 열처리 온도가 730~830℃일 경우, 제조되는 층상형 CaGe2는 다결정으로 형성될 수 있다. 상기 층상형 CaGe2가 단결정일 경우 다결정보다 우수한 전하 이동도를 가질 수 있다.When the heat treatment temperature is 830 ~ 1,000 ° C, CaGe 2 may have a layered structure. When the heat treatment temperature is 730 ~ 830 ° C, the layered CaGe 2 may be formed of polycrystal. When the layered CaGe 2 is a single crystal, the layered CaGe 2 may have better charge mobility than the polycrystal.
만일, 상기 열처리가 730℃ 미만으로 수행될 경우, 상기 혼합물의 소결 반응이 완료되지 않아 미반응된 원재료가 잔류할 수 있고, 이에 따라 제조되는 층상형 화합물의 수율이 저하되는 등의 문제가 있을 수 있다. 또한, 상기 열처리가 1,000℃를 초과하여 수행될 경우, Ca 이온의 기화로 소결 반응시 사용되는 반응 용기가 파손되거나, 제조되는 층상형 화합물의 수율이 저하되는 등의 문제가 있을 수 있다.If the heat treatment is performed at less than 730 ° C., the sintering reaction of the mixture may not be completed, and thus unreacted raw materials may remain, resulting in lowered yield of the layered compound prepared. have. In addition, when the heat treatment is carried out in excess of 1,000 ℃, there may be a problem such as the reaction vessel used in the sintering reaction by the vaporization of Ca ions, or the yield of the layered compound produced is lowered.
또한, 상기 열처리 온도가 830~1,000℃일 때, 상기 열처리가 2시간 미만으로 수행될 경우, 상기 혼합물의 소결 반응이 완료되지 않아 미반응된 원재료가 잔류할 수 있고, 이에 따라 제조되는 층상형 화합물의 수율이 저하되는 등의 문제가 있을 수 있다. 또한, 상기 열처리가 24시간을 초과하여 수행될 경우, 제조 공정 시간이 불필요하게 증가할 우려가 있다.In addition, when the heat treatment temperature is 830 ~ 1,000 ℃, when the heat treatment is carried out in less than 2 hours, the sintering reaction of the mixture is not completed, the unreacted raw material may remain, the layered compound prepared accordingly There may be a problem such as a decrease in yield. In addition, when the heat treatment is performed for more than 24 hours, there is a fear that the manufacturing process time unnecessarily increases.
또한, 상기 열처리 온도가 730~830℃일 경우, 상기 열처리가 5일 미만으로 수행되면 상기 혼합물의 소결 반응이 완료되지 않아 미반응된 원재료가 잔류할 수 있고, 이에 따라 제조되는 층상형 화합물의 수율이 저하되는 등의 문제가 있을 수 있다. 또한, 상기 열처리가 10일을 초과하여 수행될 경우, 제조 공정 시간이 불필요하게 증가할 우려가 있다.In addition, when the heat treatment temperature is 730 ~ 830 ℃, if the heat treatment is performed less than 5 days, the sintering reaction of the mixture is not completed, the unreacted raw material may remain, the yield of the layered compound prepared accordingly There may be a problem such as deterioration. In addition, when the heat treatment is performed for more than 10 days, there is a fear that the manufacturing process time unnecessarily increases.
상기 (1)단계에서 열처리한 후 냉각하는 과정은 상기 열처리의 온도에 따라 냉각 속도가 달라질 수 있다. 상기 열처리가 730~830℃에서 수행될 경우 상기 냉각은 자연 냉각일 수 있다.After the heat treatment in step (1), the cooling process may vary depending on the temperature of the heat treatment. When the heat treatment is performed at 730 ~ 830 ℃ the cooling may be natural cooling.
상기 열처리가 830~1,000℃에서 수행될 경우, 상기 냉각은 3~20℃/시간의 감온 속도로 수행될 수 있으며, 이를 통해 열처리된 층상형 화합물을 단결정화할 수 있다. 상기 감온 속도로 냉각할 경우 제조되는 층상형 화합물의 단결정 크기가 커질 수 있다. 상기 층상형 화합물의 단결정 크기가 커질수록 입자의 그레인 바운더리(grain boundary)가 감소하여 전하 이동도가 증가할 수 있고, 층상형 화합물 박리시 박리되는 나노시트의 종횡비(aspect ratio)가 높아질 수 있다.When the heat treatment is performed at 830 ~ 1,000 ℃, the cooling may be carried out at a temperature reduction rate of 3 ~ 20 ℃ / hour, through which the heat-treated layered compound can be single crystallized. Cooling at the temperature reduction rate may increase the size of the single crystal of the layered compound prepared. As the size of the single crystal of the layered compound increases, grain boundaries of the particles may decrease, thereby increasing charge mobility, and the aspect ratio of the nanosheet peeled off when the layered compound is peeled off may increase.
만일 상기 감온 속도가 3℃/시간 미만일 경우, Ca 이온의 기화로 인해 제조되는 물질의 조성 변화가 발생할 수 있고, 상기 감온 속도가 20℃/시간을 초과할 경우, 제조되는 층상형 화합물이 다결정화 될 수 있다.If the temperature reduction rate is less than 3 ℃ / hour, a change in the composition of the material produced due to the vaporization of Ca ions may occur, and when the temperature reduction rate exceeds 20 ℃ / hour, the layered compound prepared is polycrystalline Can be.
다음으로, (2)단계로서 상기 (1)단계에서 제조된 층상형 화합물을 상기 층상형 화합물에 포함된 Ca 이온을 선택적으로 제거할 수 있는 염 및 상기 염을 용해시킬 수 있는 용매를 포함하는 혼합용액으로 처리하여 층상형 Ge를 제조한다.Next, as step (2), the layered compound prepared in step (1) is mixed with a salt capable of selectively removing Ca ions contained in the layered compound and a solvent capable of dissolving the salt. Treated with solution to produce layered Ge.
상기 염은 상기 층상형 화합물에 포함된 알칼리 토금속 이온(Ca 이온)과 용이하게 반응하기 위하여 전기음성도가 큰 음이온 및 상기 알칼리 토금속 이온과 Ge 이온 사이의 전기음성도 값을 갖는 양이온을 포함할 수 있다The salt may include an anion having a high electronegativity and a cation having an electronegativity value between the alkaline earth metal ion and the Ge ion in order to easily react with the alkaline earth metal ion (Ca ion) included in the layered compound. have
본 발명의 일 실시예에 의하면, 상기 염은 하기 화학식 1로 표시될 수 있으며, 상기 염은 상기 알칼리 토금속 이온과 Ge 이온 사이의 전기음성도 값을 갖는 양이온으로서 M 및 전기음성도가 큰 Cl 이온으로 구성된다.According to an embodiment of the present invention, the salt may be represented by the following Chemical Formula 1, wherein the salt is a cation having an electronegativity value between the alkaline earth metal ions and Ge ions, and M and Cl ions having high electronegativity. It consists of.
<화학식 1><Formula 1>
MXa(1≤a≤3)MX a (1≤a≤3)
상기 화학식 1에서 M은 Sn, Al, 및 Ga 중에서 선택된 어느 하나고, X는 Cl, F 및 I중에서 선택된 어느 하나일 수 있다.In Formula 1, M may be any one selected from Sn, Al, and Ga, and X may be any one selected from Cl, F, and I.
또한 상기 용매는 에탄올, 물, 아세톤 및 이소프로판올 중에서 중에서 선택된 적어도 어느 하나를 포함할 수 있으며, 상기 (2)단계가 수행되는 온도에 따라 용매의 조성이 달라질 수 있다.In addition, the solvent may include at least one selected from ethanol, water, acetone and isopropanol, and the composition of the solvent may vary depending on the temperature at which step (2) is performed.
상기 염은 상기 층상형 화합물의 알칼리 토금속 이온을 제거하기에 충분한 양으로 사용될 수 있으나, 바람직하게는 상기 혼합용액 내 층상형 화합물 및 염은 1:1 내지 1:3의 몰비율로 포함될 수 있다. 만일 상기 층상형 화합물 및 염의 몰비율이 1:1 미만일 경우, 상기 층상형 화합물의 알칼리 토금속 이온이 목적하는 수준으로 제거되지 않을 수 있고, 만일 상기 몰비율이 1:3을 초과할 경우 상기 염이 상기 혼합용액에 용해되지 않아 침전물이 발생하는 등의 문제가 있을 수 있다.The salt may be used in an amount sufficient to remove alkaline earth metal ions of the layered compound, but preferably, the layered compound and the salt in the mixed solution may be included in a molar ratio of 1: 1 to 1: 3. If the molar ratio of the layered compound and salt is less than 1: 1, alkaline earth metal ions of the layered compound may not be removed to the desired level, and if the molar ratio exceeds 1: 3, the salt There may be a problem such as a precipitate is not dissolved in the mixed solution.
또한, 상기 (2)단계가 수행되는 온도에 따라 제조되는 층상형 Ge의 결정 구조가 달라질 수 있다. 상기 (2)단계가 -40 내지 0℃에서 수행될 경우 제조되는 층상형 Ge는 공간군(space group)이 Rm-3m인 삼방정계 결정구조를 가질 수 있고, 상기 (2)단계가 15~60℃에서 수행될 경우 제조되는 층상형 Ge는 비정질 결정 구조를 가질 수 있다.In addition, the crystal structure of the layered Ge may be changed depending on the temperature at which step (2) is performed. When the step (2) is performed at -40 to 0 ° C., the layered Ge may have a trigonal crystal structure having a space group of Rm-3m, and the step (2) may be 15 to 60 ° C. The layered Ge prepared when carried out at ° C. may have an amorphous crystal structure.
삼방정계 결정 구조를 갖는 층상형 Ge를 제조함에 있어서, 만일 상기 (2)단계가 -40℃ 미만에서 수행될 경우, 제조되는 층상형 Ge의 결정성은 높아지나 알칼리 토금속 이온의 제거 반응 시간이 과도하게 증가할 수 있고, 0℃를 초과할 경우 제조되는 층상형 Ge의 결정성이 목적하는 수준으로 발현되지 않거나 제조되는 층상형 Ge가 비정질 결정 구조를 가질 수 있다.In the preparation of layered Ge having a trigonal crystal structure, if step (2) is performed at less than -40 ° C, the crystallinity of the layered Ge to be produced is increased, but the reaction time for removing alkaline earth metal ions is excessive. It may increase, and if the crystallinity of the layered Ge produced is not expressed to the desired level when it exceeds 0 ° C., or the layered Ge produced may have an amorphous crystal structure.
비정질 결정 구조를 갖는 층상형 Ge를 제조함에 있어서, 만일 상기 (2)단계가 15℃ 미만에서 수행될 경우, 제조되는 층상형 Ge의 결정성이 높아지고 알칼리 토금속 이온의 제거 반응 시간이 증가할 수 있고, 60℃를 초과할 경우 알칼리 토금속 이온의 제거 반응 시간은 감소할 수 있으나 제조되는 층상형 Ge의 층상형 구조가 붕괴될 수 있다.In preparing a layered Ge having an amorphous crystal structure, if step (2) is performed at less than 15 ° C., the crystallinity of the layered Ge to be produced may be increased and the reaction time for removing alkaline earth metal ions may be increased. When the reaction time exceeds 60 ° C, the reaction time for removing the alkaline earth metal ions may decrease, but the layered structure of the layered Ge may be disrupted.
또한, 상기 (2)단계는 상기 혼합용액의 조성 및 Ca 이온의 제거율에 따라 복수회 실시할 수 있으나, 제조되는 층상형 Ge의 층상형 구조를 유지하기 위해 1회 실시하는 것이 바람직하다.In addition, the step (2) may be performed a plurality of times depending on the composition of the mixed solution and the removal rate of Ca ions, but is preferably performed once to maintain the layered structure of the layered Ge.
또한, 상기 (2)단계를 수행한 후 층상형 Ge 외에 알칼리 토금속 이온과 염이 반응하여 생성된 반응물이 존재할 수 있으며, 이를 제거하기 위해 상기 (2)단계를 통해 수득된 분말을 용매로 세척할 수 있다.In addition, after performing step (2), there may be a reactant formed by reacting alkaline earth metal ions with a salt in addition to the layered Ge. To remove this, the powder obtained through step (2) may be washed with a solvent. Can be.
상기 반응물을 제거하기 위한 용매는 물, 탈이온수, 메탄올 및 에탄올 중에서 선택된 적어도 어느 하나일 수 있다.The solvent for removing the reactant may be at least one selected from water, deionized water, methanol and ethanol.
다음으로, 본 발명의 층상형 Ge에 대하여 설명한다.Next, the layered Ge of this invention is demonstrated.
본 발명에 따른 층상형 Ge는 비정질 또는 공간군(space group)이 Rm-3m인 삼방정계(trigonal) 결정구조를 가지며, 이는 기존 3D 벌크형 Ge와 상이한 결정 구조로서 박리성이 우수하여 나노시트의 형태로 박리하기 용이하며, 표면적이 넓고 우수한 이온 용량을 가질 수 있다.The layered Ge according to the present invention has a trigonal crystal structure having an amorphous or space group of Rm-3m, which is different from the existing 3D bulk Ge, and has excellent peelability and has a form of nanosheets. It is easy to peel off, and has a large surface area and excellent ion capacity.
본 발명의 일 실시예에 따르면, Cu-Kα선을 사용하는 분말 X선 회절법에 의해 얻어지는 X선 회절도에 있어서, 상기 공간군이 이 Rm-3m인 삼방정계(trigonal) 결정구조를 갖는 층상형 Ge는 Cu-Kα선을 사용하는 분말 X선 회절법에 의해 얻어지는 X선 회절도에 있어서, 15.5±0.2, 26.4±0.2, 35.6±0.2, 45.7±0.2, 48.5±0.2 및 53.6±0.2의 2θ값에서 피크를 갖고, 27.4±0.2, 45.6±0.2, 54.0±0.2 및 66.4±0.2의 2θ값에서 피크를 갖지 않을 수 있다.According to an embodiment of the present invention, in the X-ray diffractogram obtained by powder X-ray diffraction using Cu-Kα rays, the space group has a trigonal crystal structure of Rm-3m. Phase Ge is 2θ of 15.5 ± 0.2, 26.4 ± 0.2, 35.6 ± 0.2, 45.7 ± 0.2, 48.5 ± 0.2 and 53.6 ± 0.2 in the X-ray diffractogram obtained by powder X-ray diffraction using Cu-Kα rays. It may have a peak at the value and may not have a peak at 2θ values of 27.4 ± 0.2, 45.6 ± 0.2, 54.0 ± 0.2 and 66.4 ± 0.2.
다음으로, 본 발명의 Ge 나노시트에 대하여 설명한다.Next, the Ge nanosheet of this invention is demonstrated.
본 발명에 따른 Ge 나노시트는 본 발명에 따른 층상형 Ge로부터 박리되어 수득할 수 있으며, 비정질 또는 삼각 대칭 결정구조를 갖는다.The Ge nanosheets according to the present invention can be obtained by peeling from the layered Ge according to the present invention and have an amorphous or triangular symmetric crystal structure.
본 발명의 일 실시예에 의하면, 상기 Ge 나노시트는 100nm 이하의 두께를 가질 수 있으며, 만일 상기 두께가 100nm를 초과할 경우 Ge 나노시트의 표면적이 저하되어 이온저장 능력이 저하되거나 상기 Ge 나노시트의 적층이 어려워질 수 있다.According to an embodiment of the present invention, the Ge nanosheets may have a thickness of 100 nm or less, and if the thickness exceeds 100 nm, the surface area of the Ge nanosheets may be lowered to decrease ion storage capacity or the Ge nanosheets. May be difficult to stack.
상기 층상형 Ge의 박리 방법은 당업계에서 공지된 층상형 물질의 박리 방법을 사용할 수 있으며, 일예로 초음파에 의한 에너지로 박리하는 방법, 용매의 침입에 의한 박리 방법, 테이프를 이용한 박리 방법 및 접착성 표면을 가진 물질을 이용한 박리 방법 중 어느 하나의 방법을 사용할 수 있다.As the method of peeling the layered Ge, a method of peeling a layered material known in the art may be used, and for example, a method of peeling with energy by ultrasonic waves, a peeling method by invasion of a solvent, a peeling method using a tape, and adhesion Any of the methods of stripping using a substance having a surface may be used.
다음으로 본 발명의 Ge 나노시트 제조 방법에 대하여 설명한다.Next, the Ge nanosheet manufacturing method of this invention is demonstrated.
먼저, (1)단계로서 Ca 분말 및 Ge 분말을 포함하는 혼합물을 열처리한 후 급냉하여 공간군(space group)이 Rm-3m인 삼방정계(trigonal) 결정구조를 갖는 층상형 CaGe2 및 공간군이 Fd-3m인 단사정계(cubic) 결정구조를 갖는 Ge를 포함하는 화합물을 제조한다.First, in step (1), the mixture comprising Ca powder and Ge powder is heat-treated and then quenched so that the layered CaGe 2 and space group having a trigonal crystal structure having a space group of Rm-3m are formed. A compound containing Ge having a cubic crystal structure of Fd-3m is prepared.
상기 열처리는 830~1,000℃에서 6~24시간 동안 수행될 수 있고, 열처리된 혼합물을 급냉하여 공간군(space group)이 Rm-3m인 삼방정계(trigonal) 결정구조를 갖는 층상형 CaGe2 및 공간군이 Fd-3m인 단사정계(cubic) 결정구조를 갖는 Ge를 포함하는 라멜라(lamella) 구조의 화합물을 제조할 수 있다. 이러한 라멜라 구조의 화합물을 용융된 혼합물을 급냉할 경우에만 형성되며, 후술되는 (2)단계에서 상기 라멜라 구조의 화합물로부터 Ge 나노시트를 제조할 수 있다.The heat treatment may be performed for 6 to 24 hours at 830 ~ 1,000 ℃, quenching the heat-treated mixture to form a layered CaGe 2 and trigonal (trigonal) crystal structure of the space group (space group) Rm-3m A compound having a lamella structure including Ge having a cubic crystal structure in which the group is Fd-3m can be prepared. Such a lamellar structure is formed only when the molten mixture is quenched, and Ge nanosheets may be prepared from the lamellar structure in step (2) described later.
상기 급냉은 10~40℃에서 수행될 수 있다.The quench may be performed at 10 ~ 40 ℃.
도 x에 도시된 바와 같이 상기 라멜라 구조는 상기 층상형 CaGe2를 포함하는 제1층 및 상기 Ge를 포함하는 제2층이 교번 적층되어 형성될 수 있으며, 후술되는 (2)단계에서 상기 층상형 CaGe2에 포함된 Ca 이온을 제거할 경우 상기 제1층은 비정질 또는 삼각 대칭 결정구조를 갖는 Ge 나노시트로 형성되고 상기 제2층은 공간군이 Fd-3m인 단사정계(cubic) 결정구조를 갖는 Ge 나노시트로 형성될 수 있다.As shown in FIG. X, the lamellar structure may be formed by alternately stacking a first layer including the layered CaGe 2 and a second layer including the Ge, and the layered type in step (2) described later. When the Ca ions contained in CaGe 2 are removed, the first layer is formed of Ge nanosheets having an amorphous or triangular symmetric crystal structure, and the second layer has a cubic crystal structure having a space group of Fd-3m. It can be formed of a Ge nanosheet having.
다음으로, (2)단계는 상기 층상형 CaGe2에 포함된 Ca 이온을 선택적으로 제거할 수 있는 염 및 상기 염을 용해시킬 수 있는 용매를 포함하는 혼합용액으로 상기 층상형 화합물을 처리하여 비정질 또는 공간군(space group)이 Rm-3m인 삼방정계(trigonal) 결정구조를 갖는 Ge 나노시트, 및 공간군이 Fd-3m인 단사정계(cubic) 결정구조를 갖는 Ge 나노시트를 제조한다.Next, step (2) is performed by treating the layered compound with a mixed solution containing a salt capable of selectively removing Ca ions contained in the layered CaGe 2 and a solvent capable of dissolving the salt. Ge nanosheets having a trigonal crystal structure having a space group of Rm-3m and Ge nanosheets having a cubic crystal structure having a space group of Fd-3m are prepared.
상기 Ca 이온을 제거하기 위한 혼합용액의 구성, (2)단계의 온도 조건 및 이에 따른 층상형 CaGe2로부터 제조되는 Ge 나노시트의 결정 구조는 앞서 층상형 Ge의 제조 방법에서 상술한 내용과 동일하므로 이에 대한 구체적인 설명은 생략한다.The composition of the mixed solution for removing Ca ions, the temperature condition of step (2) and the crystal structure of the Ge nanosheets prepared from the layered CaGe 2 are the same as described above in the manufacturing method of the layered Ge. Detailed description thereof will be omitted.
상기 층상형 CaGe2에 포함된 Ca 이온을 제거하는 과정에서 삼방정계 결정구조의 Ge 나노시트와 단사정계 결정구조의 Ge 나노시트가 별도의 박리 공정 없이 박리될 수 있다.In the process of removing Ca ions contained in the layered CaGe 2 , the Ge nanosheets having a trigonal crystal structure and the Ge nanosheets having a monoclinic crystal structure may be peeled off without a separate peeling process.
본 발명의 Ge 나노시트 제조 방법에 의하여 제조된 Ge 나노시트는 비정질 또는 삼각 대칭 결정구조를 갖는 Ge 나노시트 및 공간군이 Fd-3m인 단사정계(cubic) 결정구조를 갖는 Ge 나노시트를 포함한다.Ge nanosheets prepared by the method of manufacturing Ge nanosheets of the present invention include Ge nanosheets having an amorphous or triangular symmetric crystal structure and Ge nanosheets having a cubic crystal structure having a space group of Fd-3m. .
한편, 상술한 본 발명에 따른 층상형 Ge 및 Ge 나노시트는 표면적이 넓고 우수한 이온 용량을 갖기 때문에 리튬이온전지용 전극으로 활용될 경우, 용량 손실이 최소화된 리튬이온전지를 구현할 수 있다.Meanwhile, since the layered Ge and Ge nanosheets according to the present invention have a wide surface area and excellent ion capacity, when used as an electrode for a lithium ion battery, it is possible to implement a lithium ion battery with a minimum capacity loss.
구체적으로 리튬이온전지는 전극, 상대전극, 상기 전극과 상대전극 사이에 구비되는 격리막 및 전해액을 포함할 수 있다. 상기 전극에 본 발명에 따른 층상형 Ge 또는 Ge 나노시트가 포함될 경우 충방전시 발생하는 상기 전극의 부피팽창에 기인한 용량 손실을 최소화시킬 수 있으며 이에 따라 리튬이온전지의 수명이 향상될 수 있다. 리튬이온전지에 포함되는 상기 상대전극, 격리막 및 전해액의 구성은 리튬이온전지 분야의 공지된 구성을 채용할 수 있어서 본 발명은 이에 대한 구체적인 설명을 생략한다.In detail, the lithium ion battery may include an electrode, a counter electrode, an separator provided between the electrode and the counter electrode, and an electrolyte. When the electrode includes the layered Ge or Ge nanosheets according to the present invention, capacity loss due to volume expansion of the electrode generated during charging and discharging may be minimized, and thus life of a lithium ion battery may be improved. The counter electrode, the separator, and the electrolyte included in the lithium ion battery may adopt a well-known configuration in the field of lithium ion batteries, and thus the present invention will not be described in detail.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.Although one embodiment of the present invention has been described above, the spirit of the present invention is not limited to the embodiments set forth herein, and those skilled in the art who understand the spirit of the present invention may add components within the scope of the same idea. Other embodiments may be easily proposed by changing, deleting, adding, etc., but this will also fall within the spirit of the present invention.
(준비예 1) 층상형 CaGe2 제조Preparation Example 1 Layered CaGe 2 Preparation
층상형 CaGe2의 합성을 위해 Ca 분말과 Ge 분말을 혼합한 후 800℃에서 7일 동안 열처리하고, 냉각하여 공간군(space group)이 Rm-3m인 삼방정계(trigonal) 결정구조를 갖는 층상형 CaGe2를 수득하였다.For the synthesis of layered CaGe 2 , Ca powder and Ge powder were mixed and then heat treated at 800 ° C. for 7 days and cooled to give a layered trigonal crystal structure with a space group of Rm-3m. CaGe 2 was obtained.
(준비예 2) 층상형 CaGe2 및 Ge가 교번 적층된 라멜라 구조의 화합물 제조(Preparation Example 2) Preparation of lamellae compound in which layered CaGe 2 and Ge were alternately laminated
Ca 분말과 Ge 분말을 혼합한 후 900℃에서 12시간 동안 열처리한 후, 상온에서 급냉하여 라멜라 구조의 화합물을 제조하였다.After mixing Ca powder and Ge powder, heat treatment at 900 ℃ for 12 hours, and then quenched at room temperature to prepare a lamellae compound.
(실시예 1) 층상형 Ge 제조Example 1 Manufacture of Layered Ge
준비예 1에서 제조된 층상형 CaGe2를 에탄올 및 SnCl2와 혼합한 후 -20℃에서 상기 층상형 CaGe2로부터 Ca 이온을 제거하였으며, 이를 통해 공간군(space group)이 Rm-3m인 삼방정계(trigonal) 결정구조를 갖는 층상형 Ge를 수득하였다.After mixing the layered CaGe 2 prepared in Preparation Example 1 with ethanol and SnCl 2 and removed the Ca ions from the layered CaGe 2 at -20 ℃, through which the trigonal system (space group) Rm-3m A layered Ge having a (trigonal) crystal structure was obtained.
(실시예 2) 층상형 Ge 제조Example 2 Manufacture of Layered Ge
실시예 1과 동일하게 실시하되, 상온에서 Ca 이온을 제거하여 층상형 Ge를 수득하였다.In the same manner as in Example 1, Ca ions were removed at room temperature to obtain a layered Ge.
(실시예 3) Ge 나노시트 제조Example 3 Ge Nanosheet Preparation
실시예 1에서 제조된 층상형 Ge를 스카치 테이프(3M)로 박리하여 Ge 나노시트를 제조하였다.The layered Ge prepared in Example 1 was peeled off with Scotch tape (3M) to prepare Ge nanosheets.
(실시예 4) Ge 나노시트 제조Example 4 Ge Nanosheet Preparation
준비예 2에서 제조된 라멜라 구조의 화합물을 에탄올 및 SnCl2와 -20℃에서 혼합하여 Ca 이온을 제거하여 Ge 나노시트를 제조하였다.The Lamellar structure prepared in Preparation Example 2 was mixed with ethanol and SnCl 2 at -20 ° C to remove Ca ions, thereby preparing Ge nanosheets.
(비교예 1) 3D 벌크형 GeComparative Example 1 3D Bulk Ge
상용 제품인 3D 벌크형 Ge(시그마 알드리치, 제품번호: 203351)를 준비하였다.A commercial 3D bulk Ge (Sigma Aldrich, product no .: 203351) was prepared.
(제조예 1) 층상형 Ge 를 포함하는 리튬이온전지용 전극(Manufacture example 1) The electrode for lithium ion batteries containing layered Ge
실시예 1에서 제조된 층상형 Ge(0.08 g)를 Super P(0.01 g) 및 PVDF(0.01 g)과 혼합하였다. 이후에 NMP 용매와 혼합하여 전극용 슬러리를 제조하였고, 이를 닥터 블레이드 방법을 통해 구리 박막 상에 2 ㎛ 도포한 후 열처리하여 Ge 전극을 제조하였다.The layered Ge (0.08 g) prepared in Example 1 was mixed with Super P (0.01 g) and PVDF (0.01 g). After mixing with NMP solvent to prepare a slurry for the electrode, this was applied to the copper thin film by a doctor blade method 2 ㎛ and then heat-treated to prepare a Ge electrode.
제조된 Ge 전극을 리튬금속 전극과 적층하고 두 전극 사이에 격리막을 삽입하고, EC 및 DEC가 1:1의 부피비율로 혼합된 유기 용매에 LiPF6(1.0 M)가 용해되어 있는 전해액을 주입하고 코인 타입의 하프셀을 조립하여 리튬이온전지를 제작하였다.The Ge electrode was laminated with a lithium metal electrode, a separator was inserted between the two electrodes, and an electrolyte solution containing LiPF 6 (1.0 M) dissolved in an organic solvent in which EC and DEC were mixed at a volume ratio of 1: 1 was injected. A coin-type half cell was assembled to fabricate a lithium ion battery.
(비교제조예 1) 3D 벌크형 Ge를 포함하는 리튬이온전지용 전극Comparative Production Example 1 Lithium-ion Battery Electrode Containing 3D Bulk Ge
제조예 1과 동일하게 제조하되, 실시예 1에서 제조된 층상형 Ge 대신 비교예 1의 Ge를 사용하여 Ge 전극을 제조한 후 이를 포함하는 리튬이온전지를 제작하였다.Prepared in the same manner as in Preparation Example 1, instead of the layered Ge prepared in Example 1 using the Ge of Comparative Example 1 to prepare a Ge electrode and to produce a lithium ion battery comprising the same.
(실험예 1) XRD 분석Experimental Example 1 XRD Analysis
비교예 1의 Ge, 준비예 1, 실시예 1 및 실시예 2에서 제조된 시료들에 대하여 XRD 분석을 실시하였으며, 그 결과를 도 3에 도시하였다.XRD analysis was performed on the samples prepared in Ge of Preparation Example 1, Preparation Example 1, Example 1, and Example 2, and the results are shown in FIG. 3.
도 3을 참조하면 층상형 CaGe2(준비예 1)의 결정 구조가 공간군(space group)이 Rm-3m인 삼방정계(trigonal)인 것을 확인할 수 있고, 실시예 1 및 실시예 2의 층상형 Ge는 기존 3D 결정 구조의 벌크형 Ge와는 상이한 결정 구조를 갖는 것을 확인할 수 있다.Referring to FIG. 3, it can be seen that the crystal structure of the layered CaGe 2 (preparation example 1) is a trigonal having a space group of Rm-3m, and the layered types of Examples 1 and 2 It can be confirmed that Ge has a crystal structure different from the bulk Ge of the existing 3D crystal structure.
또한, 실시예 2의 층상형 Ge보다 실시예 1의 층상형 Ge가 결정성이 높은 것을 확인할 수 있다.In addition, it can be confirmed that the layered Ge of Example 1 has a higher crystallinity than the layered Ge of Example 2.
(실험예 2) Raman 스펙트럼 분석Experimental Example 2 Raman Spectrum Analysis
비교예 1의 3D Ge, 준비예 1 및 실시예 1에서 제조된 시료에 대한 라만 스펙트럼 분석을 수행하였으며, 그 결과를 도 4에 도시하였다.Raman spectrum analysis was performed on the samples prepared in 3D Ge, Preparation Example 1 and Example 1 of Comparative Example 1, and the results are shown in FIG.
도 4를 참조하면, 층상형 Ge(실시예 1)는 3D Ge(비교예 1)보다 Ge-Ge 면상 변형(in-plane strain)이 강한 것을 확인할 수 있고, 이는 Ge의 버클 각도(buckled angle)가 증가한 것을 의미한다.Referring to FIG. 4, it can be seen that the layered Ge (Example 1) has a stronger Ge-Ge in-plane strain than 3D Ge (Comparative Example 1), which is a buckle angle of Ge. Means increased.
(실험예 3) SEM 분석Experimental Example 3 SEM Analysis
비교예 1과 실시예 1 및 실시예 2에서 제조된 시료들에 대한 SEM 이미지를 촬영하였으며, 그 결과를 도 5a 내지 도 5d에 도시하였다.SEM images of the samples prepared in Comparative Example 1 and Examples 1 and 2 were taken, and the results are shown in FIGS. 5A to 5D.
도 5b 및 도 5c를 참조하면, 층상형 CaGe2로부터 제조된 Ge가 층상형인 것을 확인할 수 있다. 이는 도 5a에 도시된 3D 벌크형 Ge와 비교하면 현저하게 다른 구조를 가짐을 알 수 있다. 도 5d에는 배율을 달리 하여 실시예 1의 층상 구조를 SEM 촬영한 이미지가 도시되어 있으며, 실시예 1에 따른 층상형 Ge의 층상 구조를 명확하게 확인할 수 있다. 5B and 5C, it can be seen that Ge prepared from layered CaGe 2 is layered. It can be seen that this has a significantly different structure compared to the 3D bulk Ge shown in FIG. 5A. 5D shows an SEM image of the layered structure of Example 1 at different magnifications, and the layered structure of the layered Ge according to Example 1 can be clearly seen.
(실험예4) TEM 분석Experimental Example 4 TEM Analysis
비교예 1의 3D Ge, 준비예 1 및 실시예 1에서 제조된 시료에 대하여 TEM 분석을 실시하였으며, 그 결과를 도 6a 내지 도 6d에 도시하였다.TEM analysis was performed on the samples prepared in Comparative Example 1, 3D Ge, Preparation Example 1 and Example 1, and the results are shown in FIGS. 6A to 6D.
도 6b를 참조하면, 3D 벌크형 Ge와 층상형 CaGe2의 결정 구조가 상이한 것을 확인할 수 있다. 또한 도 6c를 참조하면 -20℃에서 Ca 이온을 제거한 층상형 Ge(실시예 1)가 상온에서 Ca 이온을 제거한 층상형 Ge(실시예 2)보다 결정성이 높고, 삼방정계 결정구조를 갖는 것을 확인할 수 있다. Referring to FIG. 6B, it can be seen that the crystal structures of 3D bulk Ge and layered CaGe 2 are different. Referring to FIG. 6C, the layered Ge (Example 1) having Ca ions removed at −20 ° C. has higher crystallinity and has a trigonal crystal structure than the layered Ge having removed Ca ions at room temperature (Example 2). You can check it.
(실험예 5) EDS 분석Experimental Example 5 EDS Analysis
준비예 2 및 실시예 1에서 제조된 시료에 대하여 EDS 분석을 실시하였으며, 그 결과를 도 7a 및 도 7b에 도시하였다.EDS analysis was performed on the samples prepared in Preparation Example 2 and Example 1, and the results are shown in FIGS. 7A and 7B.
도 7a를 참조하면, 층상형 CaGe2 및 Ge가 교번 적층된 라멜라 구조인 것을 확인할 수 있다.Referring to FIG. 7A, it can be seen that lamellar structures in which layered CaGe 2 and Ge are alternately stacked.
도 7b를 참조하면, 층상형 CaGe2의 Ca 이온을 제거한 후 층상형 Ge(실시예 1)는 Ca 원소 함량이 현저히 감소한 것을 확인할 수 있다.Referring to FIG. 7B, after removing Ca ions of the layered CaGe 2, it is confirmed that the Ca element content of the layered Ge (Example 1) is significantly reduced.
(실험예 6) AFM 분석Experimental Example 6 AFM Analysis
실시예 3에 따른 Ge 나노시트에 대하여 AFM 분석을 실시하였으며, 그 결과를 도 8에 도시하였다. 도 8을 참조하면, Ge 나노시트의 두께가 9nm, 29nm인 것을 확인할 수 있다.AFM analysis was performed on the Ge nanosheets according to Example 3, and the results are shown in FIG. 8. Referring to Figure 8, it can be seen that the thickness of the Ge nanosheets are 9nm, 29nm.
(실험예7) 방전용량 및 충방전 특성 평가Experimental Example 7 Evaluation of Discharge Capacity and Charge / Discharge Characteristics
제조예 1 및 비교제조예 1에서 제조된 리튬이온전지의 방전용량 및 충방전 특성을 평가하였으며, 그 결과를 도 9a 내지 도 9c에 도시하였다.Discharge capacity and charge / discharge characteristics of the lithium ion battery prepared in Preparation Example 1 and Comparative Preparation Example 1 were evaluated, and the results are shown in FIGS. 9A to 9C.
도 9a는 층상형 Ge를 포함하는 리튬이온전지(제조예1)의 충방전 곡선을 도시한 그래프이며, 도 9a를 참조하면 제조예 1의 리튬이온전지가 안정적인 충방전 특성을 갖는 것을 확인할 수 있다.9A is a graph showing charge and discharge curves of a lithium ion battery (manufacture example 1) including a layered Ge. Referring to FIG. 9A, it can be seen that the lithium ion battery of Preparation Example 1 has stable charge and discharge characteristics. .
도 9b는 사이클에 따른 방전용량 그래프로, 제조예 1에 따른 리튬이온전지는 첫 사이클 효율은 약 80 %의 성능을 보이나 두 번째 사이클부터는 약 96%로 사이클 효율이 증가한 것을 확인할 수 있다. 또한, 전류 100 mA/g으로 Cut-off voltage를 0 V (방전시)와 2.5 V (충전시) 영역에서 충방전 실험을 진행하였을 때, 첫 사이클에서 방전(lithiation) 용량은 제조예1의 경우 약 1,230 mAh/g, 비교제조예1의 경우 약 1,396 mAh/g의 용량을 가졌으나, 50 싸이클 후 제조예1은 약 163mAh/g의 용량을 나타내는 반면 비교제조예 1의 경우 약 46 mAh의 용량을 가졌다. 이를 통해 본 발명에 따른 층상형 Ge 전극을 사용할 경우 전극의 부피팽창으로 인한 용량 손실을 최소화할 수 있는 것을 알 수 있다.Figure 9b is a discharge capacity graph according to the cycle, the lithium ion battery according to Preparation Example 1 shows that the first cycle efficiency of about 80% performance, but from the second cycle it can be seen that the cycle efficiency increased to about 96%. In addition, when the charge-discharge experiment was conducted in the region of 0 V (at discharge) and 2.5 V (at charge) at a current of 100 mA / g, the discharge capacity was measured in the first cycle. About 1,230 mAh / g, Comparative Preparation Example 1 had a capacity of about 1,396 mAh / g, but after 50 cycles Preparation Example 1 shows a capacity of about 163 mAh / g, while Comparative Production Example 1 has a capacity of about 46 mAh Had Through this, it can be seen that when using the layered Ge electrode according to the present invention, capacity loss due to volume expansion of the electrode can be minimized.

Claims (16)

  1. (1) Ca 분말 및 Ge 분말을 포함하는 혼합물을 열처리한 후 소정의 감온 속도로 냉각하여 공간군(space group)이 Rm-3m인 삼방정계(trigonal) 결정구조를 갖는 화학식 CaGe2로 표시되는 층상형 화합물을 제조하는 단계; 및(1) a layer represented by the formula CaGe 2 having a trigonal crystal structure having a space group of Rm-3m by cooling the mixture including Ca powder and Ge powder at a predetermined temperature reduction rate Preparing a phase compound; And
    (2) 상기 층상형 화합물에 포함된 Ca 이온을 선택적으로 제거할 수 있는 염 및 상기 염을 용해시킬 수 있는 용매를 포함하는 혼합용액으로 상기 층상형 화합물을 처리하여 비정질, 공간군(space group)이 Rm-3m인 삼방정계(trigonal) 결정구조를 갖는 층상형 Ge를 제조하는 단계;(2) an amorphous, space group by treating the layered compound with a mixed solution comprising a salt capable of selectively removing Ca ions contained in the layered compound and a solvent capable of dissolving the salt. Preparing a layered Ge having a trigonal crystal structure of Rm-3m;
    를 포함하는 층상형 Ge의 제조 방법.Method for producing a layered Ge comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 염은 하기 화학식 1로 표시되는 층상형 Ge의 제조 방법:The salt is a method for producing a layered Ge represented by the following formula (1):
    <화학식 1><Formula 1>
    MXa(1≤a≤3)MX a (1≤a≤3)
    상기 화학식 1에서 M은 Sn, Al, 및 Ga 중에서 선택된 어느 하나고, X는 Cl, F 및 I중에서 선택된 어느 하나다.In Formula 1, M is any one selected from Sn, Al, and Ga, and X is any one selected from Cl, F, and I.
  3. 제1항에 있어서,The method of claim 1,
    상기 용매는 에탄올, 물, 아세톤 및 이소프로판올 중에서 선택된 적어도 어느 하나인 층상형 Ge의 제조 방법.The solvent is a method of producing a layered Ge is at least one selected from ethanol, water, acetone and isopropanol.
  4. 제1항에 있어서,The method of claim 1,
    상기 열처리는 730~830℃에서 5~10일 또는 830~1,000℃에서 2~24시간 동안 수행되는 층상형 Ge의 제조 방법.The heat treatment is a method of producing a layered Ge is performed for 5 to 10 days at 730 ~ 830 ℃ or 2 ~ 24 hours at 830 ~ 1,000 ℃.
  5. 제1항에 있어서,The method of claim 1,
    상기 냉각은 3~20℃/시간의 감온 속도로 수행되는 층상형 Ge의 제조 방법.The cooling method of manufacturing a layered Ge is carried out at a temperature reduction rate of 3 ~ 20 ℃ / hour.
  6. 제1항에 있어서,The method of claim 1,
    상기 (2)단계는 -40~0℃에서 수행되어 공간군(space group)이 Rm-3m인 삼방정계(trigonal) 결정구조를 갖는 층상형 Ge를 제조하는 층상형 Ge의 제조 방법.Step (2) is carried out at -40 ~ 0 ℃ to produce a layered Ge having a trigonal (trigonal) crystal structure of the group (space group (Rm-3m) layered Ge manufacturing method.
  7. 제1항에 있어서,The method of claim 1,
    상기 (2)단계는 15~60℃에서 수행되어 비정질 결정구조를 갖는 층상형 Ge를 제조하는 층상형 Ge의 제조 방법.Step (2) is carried out at 15 ~ 60 ℃ to produce a layered Ge having an amorphous crystal structure layered Ge manufacturing method.
  8. 비정질 또는 공간군(space group)이 Rm-3m인 삼방정계(trigonal) 결정구조를 갖는 층상형 Ge.Layered Ge having a trigonal crystal structure with an amorphous or space group of Rm-3m.
  9. 제8항에 있어서,The method of claim 8,
    상기 공간군이 이 Rm-3m인 삼방정계(trigonal) 결정구조를 갖는 층상형 Ge는 Cu-Kα선을 사용하는 분말 X선 회절법에 의해 얻어지는 X선 회절도에 있어서, 15.5±0.2, 26.4±0.2, 35.6±0.2, 45.7±0.2, 48.5±0.2 및 53.6±0.2의 2θ값에서 피크를 갖고, 27.4±0.2, 45.6±0.2, 54.0±0.2 및 66.4±0.2의 2θ값에서 피크를 갖지 않는 층상형 Ge.In the X-ray diffractogram obtained by the powder X-ray diffraction method using a Cu-Kα ray, the layered Ge having a trigonal crystal structure having the space group of Rm-3m is 15.5 ± 0.2, 26.4 ±. Layered, with peaks at 2θ values of 0.2, 35.6 ± 0.2, 45.7 ± 0.2, 48.5 ± 0.2 and 53.6 ± 0.2, and no peaks at 2θ values of 27.4 ± 0.2, 45.6 ± 0.2, 54.0 ± 0.2 and 66.4 ± 0.2 Ge.
  10. 제8항에 따른 층상형 Ge로부터 박리되고, 비정질 또는 삼각 대칭 결정구조를 갖는 Ge 나노시트.A Ge nanosheet exfoliated from the layered Ge according to claim 8 and having an amorphous or triangular symmetric crystal structure.
  11. 제10항에 있어서,The method of claim 10,
    상기 Ge 나노시트의 두께는 100nm 이하인 Ge 나노시트.The Ge nanosheets have a thickness of 100 nm or less.
  12. (1) Ca 분말 및 Ge 분말을 포함하는 혼합물을 열처리한 후 급냉하여 공간군(space group)이 Rm-3m인 삼방정계(trigonal) 결정구조를 갖는 층상형 CaGe2 및 공간군이 Fd-3m인 단사정계(cubic) 결정구조를 갖는 Ge를 포함하는 화합물을 제조하는 단계; 및(1) After heat-treating the mixture containing Ca powder and Ge powder, it is quenched to form a layered CaGe2 having a trigonal crystal structure having a space group of Rm-3m and a single yarn having a space group of Fd-3m Preparing a compound comprising Ge having a cubic crystal structure; And
    (2) 상기 층상형 CaGe2에 포함된 Ca 이온을 선택적으로 제거할 수 있는 염 및 상기 염을 용해시킬 수 있는 용매를 포함하는 혼합용액으로 상기 층상형 CaGe2를 처리하여 비정질 또는 공간군(space group)이 Rm-3m인 삼방정계(trigonal) 결정구조를 갖는 Ge 나노시트, 및 공간군이 Fd-3m인 단사정계(cubic) 결정 구조를 갖는 Ge 나노시트를 제조하는 단계;(2) an amorphous or space group by treating the layered CaGe 2 with a mixed solution containing a salt capable of selectively removing Ca ions contained in the layered CaGe2 and a solvent capable of dissolving the salt. Preparing a Ge nanosheet having a trigonal crystal structure having Rm-3m and a cubic crystal structure having a space group of Fd-3m;
    를 포함하는 Ge 나노시트의 제조 방법.Method of producing a Ge nanosheet comprising a.
  13. 제12항에 있어서,The method of claim 12,
    상기 열처리는 830~1,000℃에서 2~24시간 동안 수행되는 Ge 나노시트의 제조 방법.The heat treatment is a method of producing a Ge nanosheet is carried out for 2 to 24 hours at 830 ~ 1,000 ℃.
  14. 제12항에 있어서,The method of claim 12,
    상기 (1)단계의 급냉은 10~40℃에서 수행되는 Ge 나노시트의 제조 방법.The quenching of step (1) is a method for producing a Ge nanosheets is carried out at 10 ~ 40 ℃.
  15. 비정질 또는 삼각 대칭 결정구조를 갖는 Ge 나노시트 및 공간군이 Fd-3m인 단사정계(cubic) 결정구조를 갖는 Ge 나노시트를 포함하는 Ge 나노시트.A Ge nanosheet comprising a Ge nanosheet having an amorphous or triangular symmetric crystal structure and a Ge nanosheet having a cubic crystal structure having a space group of Fd-3m.
  16. 제8항에 따른 층상형 Ge, 제10항에 따른 Ge 나노시트 및 제15항에 따른 Ge 나노시트 중에서 선택된 적어도 어느 하나를 포함하는 리튬이온전지용 전극.A lithium ion battery electrode comprising at least one selected from the layered Ge according to claim 8, the Ge nanosheets according to claim 10, and the Ge nanosheets according to claim 15.
PCT/KR2019/008903 2018-05-18 2019-07-18 Layered ge, manufacturing method therefor, ge nanosheet peeled therefrom, and electrode comprising same for lithium ion battery WO2019221584A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0057451 2018-05-18
KR1020180057451A KR102080829B1 (en) 2018-05-18 2018-05-18 Layered Ge, manufacturing method thereof, exfoliated Ge nanosheet therefrom and electrode for lithium ion batteries containing the same

Publications (3)

Publication Number Publication Date
WO2019221584A2 WO2019221584A2 (en) 2019-11-21
WO2019221584A3 WO2019221584A3 (en) 2020-01-09
WO2019221584A9 true WO2019221584A9 (en) 2020-02-27

Family

ID=68540503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/008903 WO2019221584A2 (en) 2018-05-18 2019-07-18 Layered ge, manufacturing method therefor, ge nanosheet peeled therefrom, and electrode comprising same for lithium ion battery

Country Status (2)

Country Link
KR (1) KR102080829B1 (en)
WO (1) WO2019221584A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102581119B1 (en) * 2020-06-16 2023-09-20 고려대학교 세종산학협력단 Germanium-Phosphide Nanosheets and Preparation Method Thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10014287A1 (en) * 2000-03-26 2001-09-27 Guenther Vogg Germanium sheet polymers useful in light-emitting opto-electronic applications are obtained by topochemical conversion of calcium germanide on a crystalline germanium substrate
JP5153065B2 (en) 2005-08-31 2013-02-27 株式会社オハラ Lithium ion secondary battery and solid electrolyte
JP6424735B2 (en) * 2015-05-21 2018-11-21 株式会社豊田中央研究所 Ca-Ge-F Compound, Composite Material, and Semiconductor

Also Published As

Publication number Publication date
WO2019221584A3 (en) 2020-01-09
KR102080829B1 (en) 2020-02-24
KR20190132150A (en) 2019-11-27
WO2019221584A2 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
WO2020111580A1 (en) Cathode additive for lithium secondary battery, preparation method therefor, cathode for lithium secondary battery, comprising same, and lithium secondary battery comprising same
WO2019107879A1 (en) Solid electrolyte, preparation method therefor, and solid-state battery comprising same
WO2019151813A1 (en) Anode active material, anode comprising same, and lithium secondary battery
WO2020045854A1 (en) Method for preparing carbon nanostructure comprising molybdenum disulfide, lithium secondary battery cathode comprising carbon nanostructure comprising molybdenum disulfide, prepared thereby, and lithium secondary battery comprising same
WO2017052281A1 (en) Anode active material for lithium secondary battery and method for producing same
WO2019221583A1 (en) Layered aln, method for manufacturing same, and aln nanosheet exfoliated therefrom
WO2017052278A1 (en) Anode active material for lithium secondary battery and method for producing same
WO2019151814A1 (en) Anode active material, anode comprising same, and lithium secondary battery
WO2015080450A1 (en) Secondary battery comprising solid electrolyte layer
WO2013005887A1 (en) Cathode active material using silicone-carbon core-shell for lithium secondary battery and method for manufacturing same
WO2015060686A1 (en) Solid electrolyte particles, method for preparing same, and lithium secondary battery containing same
WO2018194248A9 (en) Organic additive coating method for improving interface stability of lithium secondary battery positive electrode material
WO2019112325A1 (en) Negative electrode active material for non-aqueous electrolyte secondary battery and method for producing same
WO2019108050A1 (en) Anode active material for nonaqueous electrolyte secondary battery comprising silicon oxide composite and method for producing same
WO2018034553A1 (en) Negative electrode material comprising silicon flakes and method for preparing silicon flakes
WO2022080710A1 (en) Composite transition metal precursor for cathode active material, and secondary battery cathode active material prepared therefrom
WO2019066129A2 (en) Composite anode active material, manufacturing method therefor, and lithium secondary battery having anode including same
WO2016195360A1 (en) Negative electrode material for secondary battery, and non-aqueous electrolyte secondary battery using same
WO2019221584A9 (en) Layered ge, manufacturing method therefor, ge nanosheet peeled therefrom, and electrode comprising same for lithium ion battery
WO2021210739A1 (en) Apparatus and method for producing silicon oxides, and silicon oxide negative electrode material
WO2019078685A2 (en) Lithium secondary battery positive electrode active material, method for preparing same, and lithium secondary battery positive electrode and lithium secondary battery comprising same
WO2015088248A1 (en) Negative electrode material for secondary battery, and secondary battery using same
WO2022225287A1 (en) Sulfide-based solid electrolyte, preparation method thereof, and all-solid state battery prepared therefrom
WO2019022514A9 (en) Sodium ion storage material
WO2022169271A1 (en) Positive electrode active material and method for preparing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19802671

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19802671

Country of ref document: EP

Kind code of ref document: A2