WO2014189271A1 - Large-surface-area single-crystal monolayer graphene and production method therefor - Google Patents

Large-surface-area single-crystal monolayer graphene and production method therefor Download PDF

Info

Publication number
WO2014189271A1
WO2014189271A1 PCT/KR2014/004517 KR2014004517W WO2014189271A1 WO 2014189271 A1 WO2014189271 A1 WO 2014189271A1 KR 2014004517 W KR2014004517 W KR 2014004517W WO 2014189271 A1 WO2014189271 A1 WO 2014189271A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
single crystal
crystal
substrate
catalyst layer
Prior art date
Application number
PCT/KR2014/004517
Other languages
French (fr)
Korean (ko)
Inventor
박호범
김한수
윤희욱
박선미
이민용
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140057218A external-priority patent/KR101701237B1/en
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to US14/892,658 priority Critical patent/US20160108546A1/en
Priority to CN201480029328.4A priority patent/CN105229196A/en
Publication of WO2014189271A1 publication Critical patent/WO2014189271A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/188Preparation by epitaxial growth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/02Single layer graphene

Definitions

  • the present invention relates to a large area single crystal single film graphene and a method for manufacturing the same, and more particularly, to a large area single crystal single crystal having a graphene layer formed on a single crystal metal catalyst layer oriented only on a (111) crystal plane without a substrate or without a substrate.
  • the present invention relates to a film graphene and a method for producing a single-crystal single film graphene having a large area oriented only to the (111) crystal plane through heat treatment and chemical vapor deposition of a metal precursor.
  • Graphene is a two-dimensional structure of one atom thick in which carbon atoms are each connected by sp 2 bonds, and benzene-shaped hexagonal carbon rings form a honeycomb crystal structure.
  • Such graphene is very transparent and exhibits high transmittance with respect to visible light, and has excellent mechanical properties and excellent conductivity, and thus has been spotlighted as a transparent electrode material, a semiconductor device, a separator, or various sensor materials.
  • a single crystal transition metal catalyst layer is formed on a single crystal substrate such as sapphire or magnesium oxide by thermal evaporation, electron beam evaporation or sputtering, and the graphene is deposited on the catalyst layer by CVD.
  • a single crystal substrate such as sapphire or magnesium oxide
  • CVD chemical vapor deposition
  • a graphitization catalyst such as a commercially available copper foil may be pre-heated at 500 to 3,000 ° C. for 10 minutes to 24 hours, and chemically polished to prepare a single layer graphene.
  • a graphitization catalyst such as a commercially available copper foil may be pre-heated at 500 to 3,000 ° C. for 10 minutes to 24 hours, and chemically polished to prepare a single layer graphene.
  • Patent Document 1 Korean Patent Publication No. 10-2013-0020351
  • Patent Document 2 Korean Registered Patent No. 10-1132706
  • Patent Document 3 Korean Patent Publication No. 10-2013-0014182
  • Non-Patent Document 1 Zheng Yan et al., ACS Nano 2012, 6 (10), 9110-9117
  • the present invention has been made in view of the above problems, and an object of the present invention is to form a single crystal metal catalyst layer oriented only on the (111) crystal plane on or without a substrate, and a large area in which a graphene layer is formed on the catalyst layer. It is to provide a method for producing a single-crystal single film graphene of a large area of the single crystal graphene oriented only to the (111) crystal surface through the heat treatment and chemical vapor deposition of the metal catalyst layer.
  • the present invention for achieving the above object is a single crystal metal catalyst layer oriented only on the (111) crystal plane on or without a substrate; And a graphene layer formed on the single crystal metal catalyst layer.
  • the substrate is characterized in that the single crystal substrate or non-monocrystalline substrate.
  • the substrate may be a silicon substrate, a metal oxide substrate, or a ceramic substrate.
  • the substrate is silicon (Si), silicon dioxide (SiO 2 ), silicon nitride (Si 3 N 4 ), zinc oxide (ZnO), zirconium dioxide (ZrO 2 ), nickel oxide (NiO), hafnium oxide (HfO 2 ), oxidizing agent Cobalt (CoO), cupric oxide (CuO), ferric oxide (FeO), magnesium oxide (MgO), alpha-aluminum oxide (a-Al 2 O 3 ), aluminum oxide (Al 2 O 3 ), strontium titanate (SrTiO 3 ), lanthanum aluminate (LaAlO 3 ), titanium dioxide (TiO 2 ), tantalum dioxide (TaO 2 ), niobium dioxide (NbO 2 ), and boron nitride (BN) It is done.
  • the single crystal metal catalyst layer is copper (Cu), nickel (Ni), cobalt (Co), iron (Fe), ruthenium (Ru), platinum (Pt), palladium (Pd), gold (Au), silver (Ag), Aluminum (Al), Chromium (Cr), Magnesium (Mg), Manganese (Mn), Molybdenum (Mo), Rhodium (Rh), Silicon (Si), Tantalum (Ta), Titanium (Ti), Tungsten (W) ), Uranium (U), vanadium (V), iridium (Ir), and zirconium (Zr) is characterized in any one selected from the group consisting of.
  • the single crystal metal catalyst layer is characterized in that the shape of the foil, plate, block or tube.
  • the present invention comprises the steps of: i) preparing a polycrystalline metal precursor having a variety of crystal plane orientation without the crystal plane is biased in either direction;
  • the metal precursor of step i) is copper (Cu), nickel (Ni), cobalt (Co), iron (Fe), ruthenium (Ru), platinum (Pt), palladium (Pd), gold (Au), silver ( Ag), aluminum (Al), chromium (Cr), magnesium (Mg), manganese (Mn), molybdenum (Mo), rhodium (Rh), silicon (Si), tantalum (Ta), titanium (Ti), It is characterized in that any one selected from the group consisting of tungsten (W), uranium (U), vanadium (V), iridium (Ir), and zirconium (Zr).
  • the metal precursor of step i) is characterized in that the shape of the foil, plate, block or tubular.
  • the metal precursor of step i) is characterized in that the commercialized copper foil.
  • the commercialized copper foil is characterized in that the thickness ranges from 5 ⁇ m to 18 ⁇ m.
  • Heat treatment of step ii) is characterized in that performed for 1 to 5 hours at 900 ⁇ 1,200 °C, 1 torr ⁇ 760 torr in a hydrogen or mixed gas atmosphere of hydrogen and argon.
  • the hydrogen, or a mixed gas atmosphere of hydrogen and argon is characterized in that the injection of hydrogen 10 ⁇ 100 sccm, or hydrogen 10 ⁇ 100 sccm / argon 10 ⁇ 100 sccm.
  • step ii) Chemical vapor deposition of step ii) is carried out for 10 minutes to 3 hours at 900 ⁇ 1,200 °C, 0.1 torr ⁇ 760 torr in a mixed gas atmosphere of hydrogen and carbon-containing gas.
  • the mixed gas atmosphere of the hydrogen and carbon-containing gas is characterized in that the injection of hydrogen 1 ⁇ 100 sccm / carbon-containing gas 10 ⁇ 100 sccm.
  • the carbon-containing gas is characterized in that any one selected from the group consisting of hydrocarbon gas, gaseous hydrocarbon compound, gaseous alcohol having 1 to 6 carbon atoms, carbon monoxide, and mixtures thereof.
  • the hydrocarbon gas is characterized in that any one selected from the group consisting of methane, ethane, propane, butane, ethylene, propylene, butylene, acetylene, butadiene, and mixtures thereof.
  • the gaseous hydrocarbon compound is characterized in that any one selected from the group consisting of pentane, hexane, cyclohexane, benzene, toluene, xylene, and mixtures thereof.
  • step iii characterized in that it further comprises an artificial cooling step.
  • the cooling step is characterized in that it is carried out slowly at a cooling rate of 10 ⁇ 50 °C / min.
  • the cooling step is characterized in that it is carried out while injecting hydrogen at 10 ⁇ 1,000 sccm.
  • the present invention provides a transparent electrode including the large area single crystal graphene graphene.
  • the present invention provides a display device including the large area single crystal single layer graphene.
  • the present invention provides a semiconductor device including the large area single crystal single film graphene.
  • the present invention provides a separation membrane comprising the large area single crystal graphene graphene.
  • the present invention provides a fuel cell comprising the large area single crystal single film graphene.
  • the present invention provides a solar cell including the large area single crystal single film graphene.
  • the present invention provides a sensor comprising the large area single crystal single film graphene.
  • Example 2 is a scanning electron microscope (SEM) image of a commercialized copper foil according to Example 1 of the present invention.
  • Example 3 is an X-ray diffraction (XRD) pattern of a commercialized copper foil according to Example 1 of the present invention.
  • SEM 4 is a scanning electron microscope (SEM) image when graphene is formed on a commercialized copper foil catalyst layer according to Example 1 of the present invention.
  • Example 5 is an X-ray diffraction (XRD) pattern when graphene is formed on a commercialized copper foil catalyst layer according to Example 1 of the present invention.
  • XRD X-ray diffraction
  • Example 6 is an electron backscattering diffraction (EBSD) pattern of a copper catalyst layer formed according to Example 1 of the present invention.
  • EBSD electron backscattering diffraction
  • Example 8 is a Raman map of the graphene layer formed according to Example 1 of the present invention.
  • SEM 9 is a scanning electron microscope (SEM) image when graphene is formed on a commercially available copper foil catalyst layer according to Comparative Example 1 of the present invention.
  • SEM 10 is a scanning electron microscope (SEM) image when graphene is formed on a copper foil catalyst layer commercialized according to Comparative Example 2 of the present invention.
  • EBSD electron backscattering diffraction
  • XRD 12 is an X-ray diffraction (XRD) pattern when graphene is formed on a copper foil catalyst layer commercialized according to Comparative Example 2 of the present invention.
  • FIG. 13 is a scanning electron microscope (SEM) image of graphene formed on a copper foil catalyst layer commercialized according to Comparative Example 3 of the present invention.
  • SEM scanning electron microscope
  • FIG. 14 is a graph showing sheet resistance values of single crystal single layer graphene prepared from Example 1 of the present invention and sheet resistance values of polycrystalline single layer graphene published in the related art.
  • FIG. 15 is a graph showing values of carrier mobility of single crystal single layer graphene prepared from Example 1 of the present invention and values of current carrier mobility of polycrystalline single layer graphene published in the related art. .
  • FIG. 16 is a graph showing values of the transmittance of single crystal single layer graphene prepared from Example 1 of the present invention and values of the polycrystalline single layer graphene published in the related art.
  • the metal catalyst layer when a metal catalyst layer is formed on an amorphous substrate such as a silicon oxide film (SiO 2 ), the metal catalyst layer has a polycrystalline structure and is formed on a metal foil or sheet such as copper, nickel, or cobalt without a substrate. Even when the graphene is formed directly on the metal foil or the sheet itself is polycrystalline by the conventional chemical vapor deposition method, the formed graphene also has domains and domain boundaries, resulting in poor quality and difficult to realize large area graphene. .
  • the graphene layer formed by the chemical vapor deposition method on the copper 100 single crystal grown directly on the conventional single crystal 100 sapphire substrate has two (0, 30 degree) directions
  • the graphene layer formed by the chemical vapor deposition method on the copper (111) single crystal grown directly on the conventional single crystal (111) magnesium oxide substrate produces a single surface without grain boundary, that is, a single crystal single film. can do.
  • an expensive single crystal (111) magnesium oxide or sapphire substrate was necessary.
  • a special heat treatment of a polycrystalline metal foil having various crystal surface orientations without any bias in any direction and simultaneously performed without expensive substrates for single crystal growth having a copper (111) crystal surface unlike conventional By forming an in-situ chemical vapor deposition, a single crystal metal foil layer oriented only to the (111) crystal plane and a graphene layer formed on the single crystal metal foil layer could realize a large area of single crystal single film graphene. .
  • the present invention provides a single crystal metal catalyst layer oriented only on the (111) crystal plane on or without a substrate; And a graphene layer formed on the single crystal metal catalyst layer.
  • the single crystal metal catalyst layer can be formed without an expensive single crystal substrate such as magnesium oxide or sapphire, but, of course, the conventional single crystal substrate can be used to form the single crystal metal catalyst layer.
  • the conventional single crystal substrate can be used to form the single crystal metal catalyst layer.
  • Non single-crystalline substrates may also be used.
  • the substrate may be a silicon substrate, a metal oxide substrate, or a ceramic substrate, and examples thereof include silicon (Si), silicon dioxide (SiO 2 ), and silicon nitride (Si 3 N 4).
  • BN boron nitride
  • the single crystal metal catalyst layer oriented only to the (111) crystal plane of the present invention includes copper (Cu), nickel (Ni), cobalt (Co), iron (Fe), ruthenium (Ru), platinum (Pt), and palladium (Pd).
  • the catalyst layer is more preferred, but is not limited thereto.
  • the single crystal metal catalyst layer oriented only to the (111) crystal plane of the present invention may be formed regardless of its shape, and may be in any form including a foil, a flat plate, a block, or a tubular shape, but a foil shape is preferable. Do.
  • a graphene layer is formed on the single crystal metal catalyst layer oriented only to the (111) crystal plane to obtain a large area single crystal graphene graphene according to the present invention.
  • a large area single crystal graphene graphene is prepared by the following manufacturing method. It can be manufactured.
  • step ii) thermally treating the metal precursor of step i) and simultaneously forming a single crystal metal catalyst layer oriented only to the (111) crystal plane through chemical vapor deposition;
  • Examples of the polycrystalline metal precursors having various crystal plane orientations include copper (Cu), nickel (Ni), cobalt (Co), iron (Fe), ruthenium (Ru), platinum (Pt), palladium (Pd), and gold (Au).
  • It may be of any type, including flat, block, or tubular, but is preferably in the form of a foil for the formation of a homogeneous single crystal metal catalyst layer by heat treatment, and particularly preferably a commercially available copper foil, which is readily available and inexpensive. Can be used.
  • the crystal plane of the polycrystalline metal precursor has various crystal plane orientations without being biased in one direction, and in fact, the (100) crystal plane has a predominantly dominant orientation ( 111) Since the polycrystalline metal precursors having a predominant orientation in a crystal plane direction other than the crystal plane do not have various crystal plane orientations, the crystal plane direction does not change even by heat treatment or cannot have a single crystal structure oriented only in the (111) crystal plane. do.
  • the thickness is another important variable as an important factor capable of forming a single crystal metal catalyst layer oriented only on the (111) crystal plane.
  • the metal precursor is in the form of a foil, since it affects the solid solubility of carbon in the process of graphene formation by recrystallization and chemical vapor deposition after heat treatment according to the thickness, according to the present invention It is preferable that the thickness of a metal precursor is 5 micrometers-18 micrometers.
  • the thickness of the metal precursor is less than 5 ⁇ m, it is too thin to perform a smooth heat treatment and chemical vapor deposition process, so recrystallization cannot be expected, and when it exceeds 18 ⁇ m, only the (111) crystal plane is oriented even if heat treatment is performed under the same conditions.
  • a single crystal metal catalyst layer can never be obtained, only a metal catalyst layer having various crystal plane directions as a metal precursor or having a crystalline structure in which the (100) crystal plane is dominant is obtained, and also formed by chemical vapor deposition carried out simultaneously with the heat treatment. In the graphene layer, a large number of grain boundaries exist, such that a single layer is not obtained.
  • step ii) the crystal plane prepared in step i) is crystallized by heat treatment and chemical vapor deposition at the same time without crystallization in either direction and crystallized by chemical vapor deposition.
  • a single crystal metal catalyst layer is formed.
  • step ii) is performed in a hydrogen atmosphere to prevent oxidation of the metal catalyst layer, or in a mixed gas atmosphere of hydrogen and argon for 1 to 5 hours at 900 ⁇ 1,200 °C, 1 torr ⁇ 760 torr,
  • hydrogen, or a mixed gas atmosphere of hydrogen and argon is preferably heat treatment while injecting hydrogen 10 ⁇ 100 sccm, or hydrogen 10 ⁇ 100 sccm / argon 10 ⁇ 100 sccm.
  • the heat treatment process is a variable temperature, pressure, time and hydrogen, or the rate of injection of hydrogen and argon gas, especially the pressure conditions are very important, out of the above range, single crystal metal oriented only to the (111) crystal plane A catalyst layer is not formed, and thus a high quality graphene thin film is difficult to obtain. Therefore, in the present invention, by controlling the process parameters for the heat treatment of step ii) within the above range to crystallize the metal precursor to form a single crystal metal catalyst layer oriented only to the (111) crystal plane, and then in step iii) high quality single crystal A single layer graphene layer can be formed.
  • the present invention is fundamentally different from the technical idea of forming a single crystalline metal thin film on a substrate using a conventional single crystal substrate, or forming a polycrystalline metal catalyst layer by heat treating a metal precursor even when the substrate is not used.
  • the present invention is heat-treated and chemical vapor phase of the metal precursor having any size as it is, regardless of the size of the metal precursor Since it is possible to produce single crystal single film graphene having a large area (arbitrary area) by evaporation, commercialization by mass production can be realized.
  • step ii) is carried out for 10 minutes to 3 hours at 900 ⁇ 1,200 °C, 0.1 torr ⁇ 760 torr in a mixed gas atmosphere of hydrogen and carbon containing gas, wherein the hydrogen and carbon containing gas
  • the mixed gas atmosphere is preferably injected at 1-100 sccm of hydrogen / 10-100 sccm of carbon-containing gas.
  • the carbon-containing gas may be any one selected from the group consisting of a hydrocarbon gas, a gaseous hydrocarbon compound, a gaseous alcohol having 1 to 6 carbon atoms, carbon monoxide, and a mixture thereof, and in particular, a hydrocarbon gas may be preferably used.
  • hydrocarbon gas any one selected from the group consisting of methane, ethane, propane, butane, ethylene, propylene, butylene, acetylene, butadiene, and mixtures thereof, and using methane gas that is easy to handle is used. More preferred.
  • the gaseous hydrocarbon compound may be any one selected from the group consisting of pentane, hexane, cyclohexane, benzene, toluene, xylene, and mixtures thereof, but is not limited thereto.
  • step ii) when the process of step ii) is finished, it is possible to obtain a single crystal single layer graphene having a large area as a target in step iii), but may further include an artificial cooling step after the step iii), if necessary.
  • the cooling step is preferably carried out slowly at a cooling rate of 10 ⁇ 50 °C / min.
  • the rapid cooling over the range of the cooling rate is necessary to pay attention because the graphene is uniformly grown and can be cracked in the process of uniformly arranged.
  • the cooling step may be cooled while injecting hydrogen at 10 ⁇ 1,000 sccm.
  • a transparent electrode a display device, a semiconductor device, a separator, a fuel cell, a solar cell or various sensors including the large-area single crystal single film graphene produced in the present invention.
  • a copper foil (HOHSEN, 99.9%, Japan) having a thickness of 18 ⁇ m and a length of 10 cm x 10 cm was placed in a chamber, and heat-treated while injecting hydrogen at 100 sccm for 2 hours at 1,005 ° C and 500 torr.
  • the copper catalyst layer was formed, and at the same time, a graphene layer was formed on the copper catalyst layer by performing a chemical vapor deposition (CVD) process while injecting hydrogen / methane at a ratio of 5 sccm / 20 sccm for 60 minutes at 1,005 ° C. and 0.5 torr.
  • CVD chemical vapor deposition
  • Table 1 shows the heat treatment and CVD process parameters according to Examples 1-3 and Comparative Examples 1-3.
  • Example 2 18 1,005 500 50 sccm2 hours 1,005 0.5 5/20 sccm60 minutes
  • Example 3 18 1,005 500 100 sccm2 hours 1,020 500 5/20 sccm30 minutes Comparative Example 1 18 None None None 1,005 0.5 5/20 sccm60 minutes Comparative Example 2 18 1,005 0.5 20 sccm2 hours 1,005 0.5 5/20 sccm60 minutes Comparative Example 3 75 1,005 500 100 sccm2 hours 1,005 0.5 5/20 sccm60 minutes
  • FIG. 2 shows a scanning electron microscope (SEM) image of a commercially available copper foil as a metal precursor according to Example 1 of the present invention. As shown in FIG. 2, it can be seen that grains and grain boundaries exist. And Figure 3 is to measure the X-ray diffraction pattern to determine the crystallinity of the commercialized copper foil, it was confirmed that the polycrystalline (polycrystalline) having a variety of crystal plane orientation.
  • SEM scanning electron microscope
  • FIG. 4 is a scanning electron microscope (SEM) image when graphene is formed after heat treatment and chemical vapor deposition (CVD) of the commercialized copper foil according to Example 1 of the present invention, and the copper catalyst layer has a grain boundary. From the X-ray diffraction pattern of FIG. 5, it was confirmed that a single crystal catalyst layer oriented only to the (111) crystal plane was formed due to recrystallization by heat treatment and chemical vapor deposition.
  • Example 6 shows electron backscatter diffraction (EBSD) characteristics in order to further analyze the crystal plane orientation of the copper catalyst layer formed according to Example 1 of the present invention, and has no grain boundaries and defects in the entire area. It was confirmed that the single crystal catalyst layer oriented only on the (111) plane was formed.
  • EBSD electron backscatter diffraction
  • Figure 7 shows the Raman spectrum of the graphene layer formed in accordance with Example 1 of the present invention, the G peak, which is a characteristic peak of graphene is found around 1580 cm -1 , in particular around 2700 cm -1 A strong and sharp 2D peak was found at, indicating that the graphene layer was formed as a monolayer.
  • the D peak intensity near 1340 cm ⁇ 1 found in conventional graphene was measured so weakly that it was unknown, and it was found that the graphene formed according to Example 1 of the present invention had almost no defects, and the G peak intensity The relative ratio of the D peak intensity to about was also measured about 0.22 to confirm that the crystallinity is very high.
  • Example 2 which differs only in the hydrogen injection rate as a heat treatment atmosphere
  • Example 3 which changed the CVD process conditions
  • Example 1 the heat treatment of the copper foil commercialized according to Comparative Example 2 of the present invention under relatively low pressure was carried out in Example 1 and Even though the CVD process is performed under the same conditions, it can be seen that the copper grains and grain boundaries are still present in the copper catalyst layer. Also, from the X-ray diffraction pattern of FIG. It was confirmed that it did not change even after performing.
  • FIG. 14 is a graph showing the measurement of sheet resistance of single crystal single-layer graphene prepared from Example 1 of the present invention using a 4-point probe according to ASTM D257.
  • ASTM D257 [ACS NANO, VOL 5, 6916 (2011)] is shown with the sheet resistance value of the polycrystalline single-layer graphene, the single crystal single-layer graphene prepared from Example 1 of the present invention has a sheet resistance value compared to the conventional polycrystalline single-layer graphene
  • the improvement effect is about 80%. This is because the electron mean free path is improved by decreasing the defect density such as grain boundary in the single crystal single film. Therefore, the single crystal single layer graphene manufactured in the present invention is expected to be applicable to a flexible OLED or a solar cell device as a display device of low power and high efficiency beyond the touch screen level.
  • Figure 15 is measured according to the conventional Hall effect measurement (carrier mobility) of the single crystal single-film graphene prepared from Example 1 of the present invention known Appl. Phys. Lett., 102, 163102 (2013) is shown with the current carrier mobility value of the polycrystalline single-layer graphene published in the present invention, the monocrystalline single-layer graphene prepared from Example 1 of the present invention is a conventional polycrystalline single-layer graphene
  • the improvement effect is about 300%. This is because the scattering rate of the charge carrier is improved by reducing the defect density such as grain boundary in the single crystal single film. Therefore, the single crystal single layer graphene manufactured in the present invention may be applied to low power rapid next generation semiconductor logic devices or next generation 10 nm or less ultra fine channel materials.
  • FIG. 16 shows the transmittances of the single crystal single layer graphene prepared from Example 1 of the present invention and the polycrystalline single layer graphene published in the publication [Nature Nanotechnology, Vol 5, August (2010)].
  • the monocrystalline single film graphene prepared from Example 1 of the present invention has an increase in the transmittance value of about 0.8% compared to the conventional polycrystalline single film graphene, which is the highest value ever published. This result is interpreted to be due to the improvement of scattering and refraction upon transmission of light by decreasing defect density such as grain boundary in the single crystal single film according to the present invention.
  • the transmittance is improved as the thickness decreases and the resistance is increased as the thickness increases, so that the transmittance and resistance have a trade-off relationship with respect to the thickness. It can be seen that the effect is shown.
  • the single crystal single film graphene prepared from the embodiment of the present invention has a grain and grain boundary through heat treatment and chemical vapor deposition of the metal precursor without an expensive substrate, compared to the single layer graphene prepared by the comparative example or the conventional method. It is possible to obtain high quality single crystal single layer graphene which does not exist, and in particular, since the metal precursor is heat-treated and chemical vapor deposition as it is, irrespective of the size and shape of the metal precursor, the large area of the metal precursor intact is as large as it is. Has a surprising effect of producing single crystal single layer graphene.
  • the large-area single crystal graphene graphene prepared according to the present invention is expected to be applicable to transparent electrodes, display devices, semiconductor devices, separators, fuel cells, solar cells or various sensors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention relates to: large-surface-area single-crystal monolayer graphene in which a graphene layer is formed on a single-crystal metal catalyst layer oriented only in the (111) crystal plane, on a substrate or without a substrate; and a method for producing large-surface-area single-crystal monolayer graphene oriented only in the (111) crystal plane, by means of a heat treatment of a metal precursor and chemical vapour deposition. According to the present invention, a single-crystal metal catalyst layer oriented only in the (111) crystal plane can be formed, on a substrate or even without a substrate, in various modes of foil, flat plate, block or tube, and, by producing large-surface-area single-crystal monolayer graphene in which a graphene layer is formed on the catalyst layer, it is possible to commercialise high-quality large-surface-area graphene thin films by means of volume production, and it is possible to use the invention as a transparent electrode material and a material for display elements, semiconductor elements, separating films, fuel cells, solar cells or various types of sensor.

Description

대면적의 단결정 단일막 그래핀 및 그 제조방법Large area single crystal single film graphene and its manufacturing method
본 발명은 대면적의 단결정 단일막 그래핀 및 그 제조방법에 관한 것으로, 보다 상세하게는 기판 위에, 또는 기판 없이 (111) 결정면으로만 배향된 단결정 금속 촉매층 위에 그래핀층이 형성된 대면적의 단결정 단일막 그래핀, 및 금속 전구체의 열처리와 화학기상증착을 통하여 (111) 결정면으로만 배향된 대면적의 단결정 단일막 그래핀을 제조하는 방법에 관한 것이다.The present invention relates to a large area single crystal single film graphene and a method for manufacturing the same, and more particularly, to a large area single crystal single crystal having a graphene layer formed on a single crystal metal catalyst layer oriented only on a (111) crystal plane without a substrate or without a substrate. The present invention relates to a film graphene and a method for producing a single-crystal single film graphene having a large area oriented only to the (111) crystal plane through heat treatment and chemical vapor deposition of a metal precursor.
그래핀은 탄소 원자들이 각각 sp2 결합으로 연결된 원자 하나 두께의 2차원 구조로, 벤젠 형태의 육각형 탄소 고리가 벌집 모양의 결정 구조를 이룬다. 이러한 그래핀은 매우 투명하여 가시광선에 대해 높은 투과율을 나타낼 뿐만 아니라, 기계적 물성이 우수하고, 전도성이 뛰어나 투명 전극 소재, 반도체 소자, 분리막 또는 각종 센서용 소재로 각광받고 있다.Graphene is a two-dimensional structure of one atom thick in which carbon atoms are each connected by sp 2 bonds, and benzene-shaped hexagonal carbon rings form a honeycomb crystal structure. Such graphene is very transparent and exhibits high transmittance with respect to visible light, and has excellent mechanical properties and excellent conductivity, and thus has been spotlighted as a transparent electrode material, a semiconductor device, a separator, or various sensor materials.
현재 그래핀 막을 제조하기 위한 방법으로서는 그라파이트의 기계적 박리, 그래핀의 산화-환원반응에 의한 화학적 박리, 실리콘 카바이드 기판 위에서 직성장(epitaxial growth), 전이금속 촉매층 위에서 화학기상증착(chemical vapor deposition : CVD) 등이 있다. 이 중에서도 저비용으로 대면적의 그래핀을 제조함으로써 상업화 가능성을 견인하는 것은 CVD 방법이라 할 수 있으나, 일반적으로 CVD 방법에 의하여 그래핀 막을 제조하는 경우에는 다결정성(polycrystalline) 전이금속 촉매층 위에서 그래핀을 증착하기 때문에, 그 성장하는 그래핀이 대면적에 걸쳐 단결정(single-crystal)이 되는 것은 불가능한 것으로 알려져 있다.Current methods for preparing graphene films include mechanical exfoliation of graphite, chemical exfoliation by oxidation-reduction reaction of graphene, epitaxial growth on silicon carbide substrates, chemical vapor deposition (CVD) on transition metal catalyst layers. ). Among these, CVD method is a CVD method that can lead to commercialization by producing large-area graphene at low cost, but in general, when graphene film is manufactured by CVD method, graphene is deposited on a polycrystalline transition metal catalyst layer. Because of the deposition, it is known that it is impossible for the growing graphene to become single-crystal over a large area.
또한, 대면적의 단결정 그래핀을 얻기 위하여 사파이어 또는 산화마그네슘 과 같은 단결정 기판위에 열증발법, 전자빔 증발법 또는 스퍼터링법에 의하여 단결정 전이금속 촉매층을 형성하고, 그 촉매층 위에 CVD 방법으로 그래핀을 증착시킴으로써 단결정 그래핀을 제조하는 기술이 공지되어 있으나, 단결정 전이금속 촉매층을 형성함에 있어서 사파이어 또는 산화마그네슘과 같은 고가의 단결정 기판을 필수적으로 사용하여야 하는 단점이 있으며, 그에 따라 대면적의 그래핀을 생산하는 것은 경제성이 떨어져 상업화가 곤란한 문제점이 있다(특허문헌 1).Further, in order to obtain a large area of single crystal graphene, a single crystal transition metal catalyst layer is formed on a single crystal substrate such as sapphire or magnesium oxide by thermal evaporation, electron beam evaporation or sputtering, and the graphene is deposited on the catalyst layer by CVD. There is a known technique for producing a single crystal graphene by the use, but there is a disadvantage that an expensive single crystal substrate such as sapphire or magnesium oxide must be used in forming the single crystal transition metal catalyst layer, thereby producing a large area of graphene There is a problem in that it is difficult to commercialize because it is economical (Patent Document 1).
그리고 기판 상에 구리 등의 전이금속 촉매층을 형성하고, 그 전이금속 촉매층을 800~1,000℃, 1~760 torr 조건하에서 열처리함으로써 결정화하는 단계를 포함하여 최종적으로 단일막 그래핀을 제조한 예가 있으나, 이 예도 역시 기판이 필연적으로 요구되며, 게다가 상기 열처리에 따라 결정화된 전이금속 촉매층은 단결정 구조를 갖지 않으므로 최종적으로 고품질의 대면적 단결정 단일막 그래핀으로 성장하지 못하여 상업화가 어렵다(특허문헌 2).In addition, there is an example of finally manufacturing a single-layer graphene, including forming a transition metal catalyst layer such as copper on the substrate and crystallizing the transition metal catalyst layer by heat treatment under a condition of 800 to 1,000 ° C. and 1 to 760 torr. This example also inevitably requires a substrate, and furthermore, since the transition metal catalyst layer crystallized according to the heat treatment does not have a single crystal structure, it is difficult to commercialize because it does not grow to a high quality large area single crystal single film graphene finally (Patent Document 2).
이에 따라 고가의 단결정 기판을 사용하지 않고 CVD 방법에 의하여 구리와 같은 금속 촉매층 위에 그래핀을 균일하게 증착시키기 위하여 온도 및 압력, 탄화수소 가스 전구체, 수소 또는 아르곤 등의 주입량 및 주입속도와 관련된 공정 변수를 조절함으로써 95~97% 수준에 이르는 단일막 그래핀을 제조하고 있으나, 이 단일막 그래핀 중에는 3~5% 정도의 이중층, 삼중층 또는 그 이상의 다중층이 혼재되어 있다. 이로 인하여 95~97%의 단일막 그래핀이라 하더라도 그레인과 그레인이 만나 마이그레이션(migration)을 이루어 큰 그레인의 단결정으로 성장하지 못하고 그레인 바운더리(grain boundary)가 있는 다수의 배향(orientation)을 갖는 다결정성 층을 형성하게 된다.Therefore, in order to uniformly deposit graphene on a metal catalyst layer such as copper by using a CVD method without using an expensive single crystal substrate, process variables related to injection rate and injection rate of hydrocarbon gas precursor, hydrogen or argon, etc. By controlling, 95-97% of single-layer graphene is produced, but the single-layer graphene contains about 3 to 5% of bilayers, triple layers, or more multilayers. As a result, even in the case of 95-97% single layer graphene, grains and grains meet and migrate to form a large grain single crystal, but do not grow into large crystals, but have multiple orientations with grain boundaries. To form a layer.
따라서 최근에는 고가의 단결정 기판을 사용하지 않으면서도 CVD 방법에 의하여 공정 변수를 조절함으로써 구리 촉매층 위에 결정핵을 가장 크게 성장시켜 거의 100% 수준에 이르는 단결정 단일막 그래핀을 제조한 연구결과가 공지된 바 있다. 그러나 여기서 제조된 육각형의 그래핀 도멘인들은 마주보는 모서리 사이의 거리(edge-to-edge distance)가 최대 2.3 mm, 그 표면적이 최대 4.5 mm2에 달하여 종래 보고된 것들과 비교하면 약 20배 이상 큰 것으로 보고하고 있지만, 실제로는 실험실적으로 기껏해야 1 cm x 1 cm 크기의 구리 호일(copper foil) 층 위에 형성된 것이어서 상업화를 위한 단결정 단일막 그래핀으로서는 여전히 그 면적이 매우 작은 한계를 갖고 있다(비특허문헌 1).Therefore, recently, a research result of producing single crystal single-layer graphene, which reaches almost 100% by growing the crystal nuclei on the copper catalyst layer by controlling the process variables by the CVD method without using an expensive single crystal substrate, is known. There is a bar. However, the hexagonal graphene domainrs manufactured here have an edge-to-edge distance of up to 2.3 mm and a surface area of up to 4.5 mm 2, which is about 20 times higher than those reported previously. It is reported as large, but in practice it is formed on top of a copper foil layer measuring at most 1 cm x 1 cm, so the area is still very small for single crystal monolayer graphene for commercialization. Non-Patent Document 1).
또한, 시판되는 구리 호일과 같은 그라파이트화 촉매를 500~3,000℃에서 10 분 내지 24시간 동안 예비 열처리하고 화학적으로 연마한 후 단일막 그래핀을 제조한 경우도 있으나, 이러한 예비 열처리 조건에서는 그라파이트화 촉매가 단결정 구조를 가질 수는 없으며, 1 cm x 1 cm 크기 정도의 구리 호일을 그라파이트화 촉매로 사용한 실험예의 경우에 있어서는 단일막 그래핀을 제조할 수는 있지만, 고품질을 결정 짖는 단결정 구조를 가지면서 단일막 그래핀을 대면적으로 제조할 수 없는 문제점이 있다(특허문헌 3).In addition, a graphitization catalyst such as a commercially available copper foil may be pre-heated at 500 to 3,000 ° C. for 10 minutes to 24 hours, and chemically polished to prepare a single layer graphene. Although it is not possible to have a single crystal structure, in the case of the experimental example using a copper foil having a size of about 1 cm x 1 cm as the graphitization catalyst, single film graphene can be prepared, but it has a single crystal structure that crystallizes high quality. There is a problem that single film graphene cannot be manufactured in a large area (Patent Document 3).
특허문헌 1. 한국공개특허 제10-2013-0020351호 Patent Document 1. Korean Patent Publication No. 10-2013-0020351
특허문헌 2. 한국등록특허 제10-1132706호Patent Document 2. Korean Registered Patent No. 10-1132706
특허문헌 3. 한국공개특허 제10-2013-0014182호Patent Document 3. Korean Patent Publication No. 10-2013-0014182
비특허문헌 1. Zheng Yan et al., ACS Nano 2012, 6(10), 9110-9117[Non-Patent Document 1] Zheng Yan et al., ACS Nano 2012, 6 (10), 9110-9117
본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 본 발명의 목적은 기판 위에, 또는 기판 없이도 (111) 결정면으로만 배향된 단결정 금속 촉매층을 형성고, 그 촉매층 위에 그래핀층이 형성되는 대면적의 단결정 단일막 그래핀, 및 금속 촉매층의 열처리와 화학기상증착을 통하여 (111) 결정면으로만 배향된 단결정 단일막 그래핀을 대면적으로 제조하는 방법을 제공하고자 하는 것이다.The present invention has been made in view of the above problems, and an object of the present invention is to form a single crystal metal catalyst layer oriented only on the (111) crystal plane on or without a substrate, and a large area in which a graphene layer is formed on the catalyst layer. It is to provide a method for producing a single-crystal single film graphene of a large area of the single crystal graphene oriented only to the (111) crystal surface through the heat treatment and chemical vapor deposition of the metal catalyst layer.
상기한 바와 같은 목적을 달성하기 위한 본 발명은, 기판 위에, 또는 기판 없이 (111) 결정면으로만 배향된 단결정 금속 촉매층; 및 상기 단결정 금속 촉매층 위에 형성된 그래핀층;을 포함하는 대면적의 단결정 단일막 그래핀을 제공한다.The present invention for achieving the above object is a single crystal metal catalyst layer oriented only on the (111) crystal plane on or without a substrate; And a graphene layer formed on the single crystal metal catalyst layer.
상기 기판은 단결정 기판 또는 비 단결정성 기판인 것을 특징으로 한다.The substrate is characterized in that the single crystal substrate or non-monocrystalline substrate.
상기 기판은 실리콘계 기판, 금속 산화물계 기판 또는 세라믹 기판인 것을 특징으로 한다.The substrate may be a silicon substrate, a metal oxide substrate, or a ceramic substrate.
상기 기판은 규소(Si), 이산화규소(SiO2), 질화규소(Si3N4), 산화아연(ZnO), 이산화지르코늄(ZrO2), 산화니켈(NiO), 산화하프늄(HfO2), 산화제이코발트(CoO), 산화제이구리(CuO), 산화제이철(FeO), 산화마그네슘(MgO), 알파-산화알루미늄(a-Al2O3), 산화알루미늄(Al2O3), 스트론듐티타네이트(SrTiO3), 란타늄알루미네이트(LaAlO3), 이산화티탄(TiO2), 이산화탄탈륨(TaO2), 이산화니오븀(NbO2), 및 질화붕소(BN)로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 한다.The substrate is silicon (Si), silicon dioxide (SiO 2 ), silicon nitride (Si 3 N 4 ), zinc oxide (ZnO), zirconium dioxide (ZrO 2 ), nickel oxide (NiO), hafnium oxide (HfO 2 ), oxidizing agent Cobalt (CoO), cupric oxide (CuO), ferric oxide (FeO), magnesium oxide (MgO), alpha-aluminum oxide (a-Al 2 O 3 ), aluminum oxide (Al 2 O 3 ), strontium titanate (SrTiO 3 ), lanthanum aluminate (LaAlO 3 ), titanium dioxide (TiO 2 ), tantalum dioxide (TaO 2 ), niobium dioxide (NbO 2 ), and boron nitride (BN) It is done.
상기 단결정 금속 촉매층은 구리(Cu), 니켈(Ni), 코발트(Co), 철(Fe), 루테늄(Ru), 백금(Pt), 팔라듐(Pd), 금(Au), 은(Ag), 알루미늄(Al), 크롬(Cr), 마그네슘(Mg), 망간(Mn), 몰리브데늄(Mo), 로듐(Rh), 실리콘(Si), 탄탈륨(Ta), 티탄(Ti), 텅스텐(W), 우라늄(U), 바나듐(V), 이리듐(Ir), 및 지르코늄(Zr)로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 한다.The single crystal metal catalyst layer is copper (Cu), nickel (Ni), cobalt (Co), iron (Fe), ruthenium (Ru), platinum (Pt), palladium (Pd), gold (Au), silver (Ag), Aluminum (Al), Chromium (Cr), Magnesium (Mg), Manganese (Mn), Molybdenum (Mo), Rhodium (Rh), Silicon (Si), Tantalum (Ta), Titanium (Ti), Tungsten (W) ), Uranium (U), vanadium (V), iridium (Ir), and zirconium (Zr) is characterized in any one selected from the group consisting of.
상기 단결정 금속 촉매층은 그 형태가 호일, 평판, 블록 또는 튜브형인 것을 특징으로 한다.The single crystal metal catalyst layer is characterized in that the shape of the foil, plate, block or tube.
또한, 본 발명은 i) 결정면이 어느 한 방향으로 치우치지 않고 다양한 결정면 배향을 갖는 다결정성 금속 전구체를 준비하는 단계; In addition, the present invention comprises the steps of: i) preparing a polycrystalline metal precursor having a variety of crystal plane orientation without the crystal plane is biased in either direction;
ii) 상기 i) 단계의 금속 전구체를 열처리, 및 동시에 화학기상증착을 통하여 (111) 결정면으로만 배향된 단결정 금속 촉매층이 형성되는 단계; 및 ii) forming a single crystal metal catalyst layer oriented only to the (111) crystal plane by heat-treating the metal precursor of step i) and simultaneously chemical vapor deposition; And
iii) 상기 ii) 단계의 단결정 금속 촉매층 위에 그래핀층이 형성되는 단계;를 포함하는 대면적의 단결정 단일막 그래핀의 제조방법을 제공한다.iii) forming a graphene layer on the single crystal metal catalyst layer of step ii).
상기 i) 단계의 금속 전구체는 구리(Cu), 니켈(Ni), 코발트(Co), 철(Fe), 루테늄(Ru), 백금(Pt), 팔라듐(Pd), 금(Au), 은(Ag), 알루미늄(Al), 크롬(Cr), 마그네슘(Mg), 망간(Mn), 몰리브데늄(Mo), 로듐(Rh), 실리콘(Si), 탄탈륨(Ta), 티탄(Ti), 텅스텐(W), 우라늄(U), 바나듐(V), 이리듐(Ir), 및 지르코늄(Zr)로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 한다.The metal precursor of step i) is copper (Cu), nickel (Ni), cobalt (Co), iron (Fe), ruthenium (Ru), platinum (Pt), palladium (Pd), gold (Au), silver ( Ag), aluminum (Al), chromium (Cr), magnesium (Mg), manganese (Mn), molybdenum (Mo), rhodium (Rh), silicon (Si), tantalum (Ta), titanium (Ti), It is characterized in that any one selected from the group consisting of tungsten (W), uranium (U), vanadium (V), iridium (Ir), and zirconium (Zr).
상기 i) 단계의 금속 전구체는 그 형태가 호일, 평판, 블록 또는 튜브형인 것을 특징으로 한다.The metal precursor of step i) is characterized in that the shape of the foil, plate, block or tubular.
상기 i) 단계의 금속 전구체는 상업화된 구리 호일인 것을 특징으로 한다.The metal precursor of step i) is characterized in that the commercialized copper foil.
상기 상업화된 구리 호일은 두께가 5 μm~18 μm 범위인 것을 특징으로 한다.The commercialized copper foil is characterized in that the thickness ranges from 5 μm to 18 μm.
상기 ii) 단계의 열처리는 수소, 또는 수소와 아르곤의 혼합 가스 분위기로900~1,200℃, 1 torr~760 torr에서 1~5시간 동안 수행되는 것을 특징으로 한다.Heat treatment of step ii) is characterized in that performed for 1 to 5 hours at 900 ~ 1,200 ℃, 1 torr ~ 760 torr in a hydrogen or mixed gas atmosphere of hydrogen and argon.
상기 수소, 또는 수소와 아르곤의 혼합 가스 분위기는 수소 10~100 sccm, 또는 수소 10~100 sccm/아르곤 10~100 sccm으로 주입되는 것을 특징으로 한다.The hydrogen, or a mixed gas atmosphere of hydrogen and argon is characterized in that the injection of hydrogen 10 ~ 100 sccm, or hydrogen 10 ~ 100 sccm / argon 10 ~ 100 sccm.
상기 ii) 단계의 화학기상증착은 수소와 탄소함유 가스의 혼합 가스 분위기로 900~1,200℃, 0.1 torr~760 torr에서 10분~3시간 동안 수행되는 것을 특징으로 한다.Chemical vapor deposition of step ii) is carried out for 10 minutes to 3 hours at 900 ~ 1,200 ℃, 0.1 torr ~ 760 torr in a mixed gas atmosphere of hydrogen and carbon-containing gas.
상기 수소와 탄소함유 가스의 혼합 가스 분위기는 수소 1~100 sccm/탄소함유 가스 10~100 sccm으로 주입되는 것을 특징으로 한다.The mixed gas atmosphere of the hydrogen and carbon-containing gas is characterized in that the injection of hydrogen 1 ~ 100 sccm / carbon-containing gas 10 ~ 100 sccm.
상기 탄소함유 가스는 탄화수소가스, 기상 탄화수소화합물, 탄소수 1 내지 6의 기상 알코올, 일산화탄소, 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 한다.The carbon-containing gas is characterized in that any one selected from the group consisting of hydrocarbon gas, gaseous hydrocarbon compound, gaseous alcohol having 1 to 6 carbon atoms, carbon monoxide, and mixtures thereof.
상기 탄화수소가스는 메탄, 에탄, 프로판, 부탄, 에틸렌, 프로필렌, 부틸렌, 아세틸렌, 부타디엔, 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 한다.The hydrocarbon gas is characterized in that any one selected from the group consisting of methane, ethane, propane, butane, ethylene, propylene, butylene, acetylene, butadiene, and mixtures thereof.
상기 기상 탄화수소화합물은 펜탄, 헥산, 사이클로헥산, 벤젠, 톨루엔, 자일렌, 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 한다.The gaseous hydrocarbon compound is characterized in that any one selected from the group consisting of pentane, hexane, cyclohexane, benzene, toluene, xylene, and mixtures thereof.
상기 iii) 단계 후, 인위적인 냉각 단계를 더 포함하는 것을 특징으로 한다.After the step iii), characterized in that it further comprises an artificial cooling step.
상기 냉각 단계는 10~50℃/min의 냉각 속도로 서서히 수행되는 것을 특징으로 한다.The cooling step is characterized in that it is carried out slowly at a cooling rate of 10 ~ 50 ℃ / min.
상기 냉각 단계는 수소를 10~1,000 sccm으로 주입하면서 수행되는 것을 특징으로 한다.The cooling step is characterized in that it is carried out while injecting hydrogen at 10 ~ 1,000 sccm.
또한, 본 발명에서는 상기 대면적의 단결정 단일막 그래핀을 포함하는 투명 전극을 제공한다.In addition, the present invention provides a transparent electrode including the large area single crystal graphene graphene.
또한, 본 발명에서는 상기 대면적의 단결정 단일막 그래핀을 포함하는 표시소자를 제공한다.In addition, the present invention provides a display device including the large area single crystal single layer graphene.
또한, 본 발명에서는 상기 대면적의 단결정 단일막 그래핀을 포함하는 반도체 소자를 제공한다.In addition, the present invention provides a semiconductor device including the large area single crystal single film graphene.
또한, 본 발명에서는 상기 대면적의 단결정 단일막 그래핀을 포함하는 분리막을 제공한다.In addition, the present invention provides a separation membrane comprising the large area single crystal graphene graphene.
또한, 본 발명에서는 상기 대면적의 단결정 단일막 그래핀을 포함하는 연료전지를 제공한다.In addition, the present invention provides a fuel cell comprising the large area single crystal single film graphene.
또한, 본 발명에서는 상기 대면적의 단결정 단일막 그래핀을 포함하는 태양전지를 제공한다.In addition, the present invention provides a solar cell including the large area single crystal single film graphene.
또한, 본 발명에서는 상기 대면적의 단결정 단일막 그래핀을 포함하는 센서를 제공한다.In addition, the present invention provides a sensor comprising the large area single crystal single film graphene.
본 발명에 따르면, 기판 위에, 또는 기판 없이도 (111) 결정면으로만 배향된 단결정 금속 촉매층을 호일, 평판, 블록 또는 튜브형의 다양한 형태로 형성하는 것이 가능하고, 그 촉매층 위에 그래핀층이 형성되는 대면적의 단결정 단일막 그래핀을 제조함으로써, 대량생산에 의하여 고품질의 대면적 그래핀 박막을 상업화 할 수 있으며, 투명 전극 소재, 표시 소자, 반도체 소자, 분리막, 연료전지, 태양전지 또는 각종 센서용 소재에 응용할 수 있다.According to the present invention, it is possible to form a single crystal metal catalyst layer oriented on the (111) crystal plane only on a substrate or without a substrate in various shapes such as foil, flat plate, block, or tubular shape, and the graphene layer is formed on the catalyst layer. It is possible to commercialize high-quality large-area graphene thin film by mass production by manufacturing single crystal single film graphene, which can be applied to transparent electrode material, display device, semiconductor device, separator, fuel cell, solar cell or various sensor materials. It can be applied.
도 1 (a) 및 (b)는 각각 종래 단결정 (100) 사파이어 기판 위에 직성장된 구리 (100) 단결정 상에 화학기상증착된 그래핀층, 및 단결정 (111) 산화마그네슘 기판 위에 직성장된 구리 (111) 단결정 상에 화학기상증착된 그래핀층을 나타낸 그림.1 (a) and (b) show a graphene layer chemically vapor deposited on a copper 100 single crystal grown on a conventional single crystal 100 sapphire substrate, and a copper grown directly on a single crystal (111) magnesium oxide substrate, respectively. 111) A graph showing the chemical vapor deposition on the single crystal.
도 2는 본 발명의 실시예 1에 따른 상업화된 구리 호일의 주사전자현미경(SEM) 이미지.2 is a scanning electron microscope (SEM) image of a commercialized copper foil according to Example 1 of the present invention.
도 3은 본 발명의 실시예 1에 따른 상업화된 구리 호일의 X선 회절(XRD) 패턴.3 is an X-ray diffraction (XRD) pattern of a commercialized copper foil according to Example 1 of the present invention.
도 4는 본 발명의 실시예 1에 따른 상업화된 구리 호일 촉매층에 그래핀을 형성한 경우의 주사전자현미경(SEM) 이미지.4 is a scanning electron microscope (SEM) image when graphene is formed on a commercialized copper foil catalyst layer according to Example 1 of the present invention.
도 5는 본 발명의 실시예 1에 따른 상업화된 구리 호일 촉매층에 그래핀을 형성한 경우의 X선 회절(XRD) 패턴.5 is an X-ray diffraction (XRD) pattern when graphene is formed on a commercialized copper foil catalyst layer according to Example 1 of the present invention.
도 6은 본 발명의 실시예 1에 따라 형성된 구리 촉매층의 전자후방산란회절(EBSD) 패턴.6 is an electron backscattering diffraction (EBSD) pattern of a copper catalyst layer formed according to Example 1 of the present invention.
도 7은 본 발명의 실시예 1에 따라 형성된 그래핀층의 라만 스펙트럼(Raman Spectrum).7 is a Raman Spectrum (Raman Spectrum) of the graphene layer formed according to Example 1 of the present invention.
도 8은 본 발명의 실시예 1에 따라 형성된 그래핀층의 라만 맵(Raman Map).8 is a Raman map of the graphene layer formed according to Example 1 of the present invention.
도 9는 본 발명의 비교예 1에 따라 상업화된 구리 호일 촉매층에 그래핀을 형성한 경우의 주사전자현미경(SEM) 이미지.9 is a scanning electron microscope (SEM) image when graphene is formed on a commercially available copper foil catalyst layer according to Comparative Example 1 of the present invention.
도 10은 본 발명의 비교예 2에 따라 상업화된 구리 호일 촉매층에 그래핀을 형성한 경우의 주사전자현미경(SEM) 이미지.10 is a scanning electron microscope (SEM) image when graphene is formed on a copper foil catalyst layer commercialized according to Comparative Example 2 of the present invention.
도 11은 본 발명의 비교예 2에 따라 형성된 구리 촉매층의 전자후방산란회절(EBSD) 패턴.11 is an electron backscattering diffraction (EBSD) pattern of a copper catalyst layer formed according to Comparative Example 2 of the present invention.
도 12는 본 발명의 비교예 2에 따라 상업화된 구리 호일 촉매층에 그래핀을 형성한 경우의 X선 회절(XRD) 패턴.12 is an X-ray diffraction (XRD) pattern when graphene is formed on a copper foil catalyst layer commercialized according to Comparative Example 2 of the present invention.
도 13은 본 발명의 비교예 3에 따라 상업화된 구리 호일 촉매층에 그래핀을 형성한 경우의 주사전자현미경(SEM) 이미지.FIG. 13 is a scanning electron microscope (SEM) image of graphene formed on a copper foil catalyst layer commercialized according to Comparative Example 3 of the present invention. FIG.
도 14는 본 발명의 실시예 1로부터 제조된 단결정 단일막 그래핀의 면저항(sheet resistance)을 측정한 값과 공지문헌에 게재된 다결정 단일막 그래핀의 면저항 값을 나타낸 그래프.FIG. 14 is a graph showing sheet resistance values of single crystal single layer graphene prepared from Example 1 of the present invention and sheet resistance values of polycrystalline single layer graphene published in the related art.
도 15는 본 발명의 실시예 1로부터 제조된 단결정 단일막 그래핀의 전류운반체 이동도(carrier mobility)를 측정한 값과 공지문헌에 게재된 다결정 단일막 그래핀의 전류운반체 이동도 값을 나타낸 그래프.FIG. 15 is a graph showing values of carrier mobility of single crystal single layer graphene prepared from Example 1 of the present invention and values of current carrier mobility of polycrystalline single layer graphene published in the related art. .
도 16은 본 발명의 실시예 1로부터 제조된 단결정 단일막 그래핀의 투과도(transmittance)를 측정한 값과 공지문헌에 게재된 다결정 단일막 그래핀의 투과도 값을 나타낸 그래프.FIG. 16 is a graph showing values of the transmittance of single crystal single layer graphene prepared from Example 1 of the present invention and values of the polycrystalline single layer graphene published in the related art.
이하에서는 본 발명에 따른 기판 위에, 또는 기판 없이 (111) 결정면으로만 배향된 단결정 금속 촉매층; 및 상기 단결정 금속 촉매층 위에 형성된 그래핀층;을 포함하는 대면적의 단결정 단일막 그래핀 및 그 제조방법에 관하여 도면과 함께 상세히 설명하기로 한다.Hereinafter, a single crystal metal catalyst layer oriented only on the (111) crystal plane on or without a substrate according to the present invention; And a graphene layer formed on the single crystal metal catalyst layer; a large-area single crystal single film graphene including a method and a manufacturing method thereof will be described in detail with reference to the accompanying drawings.
일반적으로 실리콘 산화막(SiO2)과 같은 무정형(amorphous) 기판 상에 금속 촉매층을 형성하면, 그 금속 촉매층은 다결정성 구조를 갖게 되며, 또한 기판 없이 구리, 니켈, 또는 코발트 등의 금속 호일이나 시트 상에 직접 그래핀을 형성하는 경우에도 통상적인 화학기상증착 방법에 의해서는 금속 호일이나 시트 자체가 다결정성이므로 형성된 그래핀도 도메인과 도메인 바운더리를 갖게 되어 품질이 떨어지고 대면적의 그래핀을 구현하기 어렵다.In general, when a metal catalyst layer is formed on an amorphous substrate such as a silicon oxide film (SiO 2 ), the metal catalyst layer has a polycrystalline structure and is formed on a metal foil or sheet such as copper, nickel, or cobalt without a substrate. Even when the graphene is formed directly on the metal foil or the sheet itself is polycrystalline by the conventional chemical vapor deposition method, the formed graphene also has domains and domain boundaries, resulting in poor quality and difficult to realize large area graphene. .
도 1(a)에서 보는 바와 같이 종래 단결정 (100) 사파이어 기판 위에 직성장된 구리 (100) 단결정 상에 화학기상증착 방법에 의해 형성된 그래핀층은 두 면(0, 30도) 방향을 갖는 반면, 도 1(b)에서 보는 바와 같이 종래 단결정 (111) 산화마그네슘 기판 위에 직성장된 구리 (111) 단결정 상에 화학기상증착 방법에 의해 형성된 그래핀층은 그레인 바운더리가 없는 단일 면, 즉 단결정 단일막을 제조할 수 있다. 그러나 이러한 (111) 결정면을 갖는 구리 박막을 직성장 시키기 위해서는 고가의 단결정 (111) 산화마그네슘 또는 사파이어 기판이 반드시 필요하였다.As shown in FIG. 1 (a), the graphene layer formed by the chemical vapor deposition method on the copper 100 single crystal grown directly on the conventional single crystal 100 sapphire substrate has two (0, 30 degree) directions, As shown in FIG. 1 (b), the graphene layer formed by the chemical vapor deposition method on the copper (111) single crystal grown directly on the conventional single crystal (111) magnesium oxide substrate produces a single surface without grain boundary, that is, a single crystal single film. can do. However, in order to directly grow a copper thin film having such a (111) crystal plane, an expensive single crystal (111) magnesium oxide or sapphire substrate was necessary.
그런데 그래핀은 그 물리적 특성으로 인하여 육각형 (111) 면상의 그래핀 육각 구조층이 화학반응에 의한 결합으로 층상에서 형성될 때, 각각의 핵이 어느 방향으로 회전하여 성장하더라도 결함 없이 만나 마이그레이션(migration)을 이루므로 그레인 바운더리가 없는 단결정 단일막을 형성할 수 있다.However, when the graphene hexagonal structure layer on the hexagonal (111) plane is formed on the layer due to the chemical reaction due to its physical properties, the graphene meets and migrates without defects even if each nucleus grows in any direction. ), It is possible to form a single crystal single film without grain boundaries.
따라서 본 발명에서는, 종래와는 달리 구리 (111) 결정면을 갖는 단결정 성장을 위한 고가의 기판 없이도, 결정면이 어느 한 방향으로 치우치지 않고 다양한 결정면 배향을 갖는 다결정성 금속 호일의 특수한 열처리, 및 동시에 수행되는 (in-situ) 화학기상증착에 의하여 (111) 결정면으로만 배향된 단결정 금속 호일층을 형성하고, 그 단결정 금속 호일층에 그래핀층을 형성함으로써 단결정 단일막 그래핀을 대면적으로 구현할 수 있었다.Thus, in the present invention, a special heat treatment of a polycrystalline metal foil having various crystal surface orientations without any bias in any direction and simultaneously performed without expensive substrates for single crystal growth having a copper (111) crystal surface unlike conventional By forming an in-situ chemical vapor deposition, a single crystal metal foil layer oriented only to the (111) crystal plane and a graphene layer formed on the single crystal metal foil layer could realize a large area of single crystal single film graphene. .
즉, 본 발명은 기판 위에, 또는 기판 없이 (111) 결정면으로만 배향된 단결정 금속 촉매층; 및 상기 단결정 금속 촉매층 위에 형성된 그래핀층;을 포함하는 대면적의 단결정 단일막 그래핀을 제공한다.That is, the present invention provides a single crystal metal catalyst layer oriented only on the (111) crystal plane on or without a substrate; And a graphene layer formed on the single crystal metal catalyst layer.
본 발명에서는 산화마그네슘 또는 사파이어와 같은 고가의 단결정 기판 없이도 단결정 금속 촉매층을 형성할 수 있음이 기술적 특징 중의 하나이지만, 단결정 금속 촉매층을 형성하기 위하여 종래와 같은 단결정 기판을 사용할 수 있음은 물론이고, 비 단결정성(non single-crystalline) 기판을 사용하여도 무방하다.In the present invention, it is one of the technical features that the single crystal metal catalyst layer can be formed without an expensive single crystal substrate such as magnesium oxide or sapphire, but, of course, the conventional single crystal substrate can be used to form the single crystal metal catalyst layer. Non single-crystalline substrates may also be used.
단결정 기판 또는 비 단결정성 기판을 사용하는 경우, 상기 기판은 실리콘계 기판, 금속 산화물계 기판 또는 세라믹 기판을 사용할 수 있으며, 그 예로서는 규소(Si), 이산화규소(SiO2), 질화규소(Si3N4), 산화아연(ZnO), 이산화지르코늄(ZrO2), 산화니켈(NiO), 산화하프늄(HfO2), 산화제이코발트(CoO), 산화제이구리(CuO), 산화제이철(FeO), 산화마그네슘(MgO), 알파-산화알루미늄(a-Al2O3), 산화알루미늄(Al2O3), 스트론듐티타네이트(SrTiO3), 란타늄알루미네이트(LaAlO3), 이산화티탄(TiO2), 이산화탄탈륨(TaO2), 이산화니오븀(NbO2), 및 질화붕소(BN)로 이루어진 군으로부터 선택된 어느 하나의 것을 사용할 수 있으나, 이에 한정되는 것은 아니다.In the case of using a single crystal substrate or a non-single crystal substrate, the substrate may be a silicon substrate, a metal oxide substrate, or a ceramic substrate, and examples thereof include silicon (Si), silicon dioxide (SiO 2 ), and silicon nitride (Si 3 N 4). ), Zinc oxide (ZnO), zirconium dioxide (ZrO 2 ), nickel oxide (NiO), hafnium oxide (HfO 2 ), cobalt oxide (CoO), cuprous oxide (CuO), ferric oxide (FeO), magnesium oxide (MgO ), Alpha-aluminum oxide (a-Al 2 O 3 ), aluminum oxide (Al 2 O 3 ), strontium titanate (SrTiO 3 ), lanthanum aluminate (LaAlO 3 ), titanium dioxide (TiO 2 ), dioxide Any one selected from the group consisting of tantalum (TaO 2 ), niobium dioxide (NbO 2 ), and boron nitride (BN) may be used, but is not limited thereto.
또한, 본 발명의 (111) 결정면으로만 배향된 단결정 금속 촉매층은 구리(Cu), 니켈(Ni), 코발트(Co), 철(Fe), 루테늄(Ru), 백금(Pt), 팔라듐(Pd), 금(Au), 은(Ag), 알루미늄(Al), 크롬(Cr), 마그네슘(Mg), 망간(Mn), 몰리브데늄(Mo), 로듐(Rh), 실리콘(Si), 탄탈륨(Ta), 티탄(Ti), 텅스텐(W), 우라늄(U), 바나듐(V), 이리듐(Ir), 및 지르코늄(Zr)으로 이루어진 군으로부터 선택된 어느 하나의 것일 수 있고, 구리(Cu) 촉매층이 더욱 바람직하나, 이에 한정되는 것은 아니다.In addition, the single crystal metal catalyst layer oriented only to the (111) crystal plane of the present invention includes copper (Cu), nickel (Ni), cobalt (Co), iron (Fe), ruthenium (Ru), platinum (Pt), and palladium (Pd). ), Gold (Au), silver (Ag), aluminum (Al), chromium (Cr), magnesium (Mg), manganese (Mn), molybdenum (Mo), rhodium (Rh), silicon (Si), tantalum (Ta), titanium (Ti), tungsten (W), uranium (U), vanadium (V), iridium (Ir), and zirconium (Zr), any one selected from the group consisting of, copper (Cu) The catalyst layer is more preferred, but is not limited thereto.
또한, 본 발명의 상기 (111) 결정면으로만 배향된 단결정 금속 촉매층은 그 형태에 관계없이 형성될 수 있는 것으로서, 호일, 평판, 블록 또는 튜브형을 포함하여 어떠한 형태의 것도 가능하지만, 호일 형태가 바람직하다.In addition, the single crystal metal catalyst layer oriented only to the (111) crystal plane of the present invention may be formed regardless of its shape, and may be in any form including a foil, a flat plate, a block, or a tubular shape, but a foil shape is preferable. Do.
상기 (111) 결정면으로만 배향된 단결정 금속 촉매층 위에 그래핀층이 형성됨으로써 본 발명에 따른 대면적의 단결정 단일막 그래핀이 얻어지는데, 하기와 같은 제조방법에 의하여 대면적의 단결정 단일막 그래핀을 제조할 수 있는 것이다.A graphene layer is formed on the single crystal metal catalyst layer oriented only to the (111) crystal plane to obtain a large area single crystal graphene graphene according to the present invention. A large area single crystal graphene graphene is prepared by the following manufacturing method. It can be manufactured.
즉, 본 발명에서는 i) 결정면이 어느 한 방향으로 치우치지 않고 다양한 결정면 배향을 갖는 다결정성 금속 전구체를 준비하는 단계; That is, in the present invention, i) preparing a polycrystalline metal precursor having a variety of crystal surface orientation without the crystal plane is biased in either direction;
ii) 상기 i) 단계의 금속 전구체를 열처리, 및 동시에 화학기상증착을 통하여 (111) 결정면으로만 배향된 단결정 금속 촉매층을 형성하는 단계; 및 ii) thermally treating the metal precursor of step i) and simultaneously forming a single crystal metal catalyst layer oriented only to the (111) crystal plane through chemical vapor deposition; And
iii) 상기 ii) 단계의 단결정 금속 촉매층 위에 그래핀층을 형성하는 단계;를 포함하는 대면적의 단결정 단일막 그래핀의 제조방법을 제공한다.iii) forming a graphene layer on the single crystal metal catalyst layer of step ii).
먼저 본 발명에서는, 종래 화학기상증착 방법에 의하여 그래핀 막을 제조하는 경우에는 다결정성 전이금속 촉매층 위에서 그래핀을 증착하기 때문에, 그 성장하는 그래핀이 대면적에 걸쳐 단결정이 되는 것은 불가능한 것으로 알려져 있던 한계를 극복하고자, 단결정 금속 촉매층을 형성하기 위한 전구체로서 종래와 같이 결정면이 어느 한 방향으로 치우치지 않고 다양한 결정면 배향을 갖는 다결정성 금속 전구체를 준비한다.First, in the present invention, since graphene is deposited on a polycrystalline transition metal catalyst layer when a graphene film is manufactured by a conventional chemical vapor deposition method, it is known that it is impossible for the growing graphene to become a single crystal over a large area. In order to overcome the limitation, as a precursor for forming a single crystal metal catalyst layer, a polycrystalline metal precursor having various crystal surface orientations is prepared without shifting the crystal plane in one direction as in the prior art.
상기 다양한 결정면 배향을 갖는 다결정성 금속 전구체로서는 구리(Cu), 니켈(Ni), 코발트(Co), 철(Fe), 루테늄(Ru), 백금(Pt), 팔라듐(Pd), 금(Au), 은(Ag), 알루미늄(Al), 크롬(Cr), 마그네슘(Mg), 망간(Mn), 몰리브데늄(Mo), 로듐(Rh), 실리콘(Si), 탄탈륨(Ta), 티탄(Ti), 텅스텐(W), 우라늄(U), 바나듐(V), 이리듐(Ir), 및 지르코늄(Zr)로 이루어진 군으로부터 선택된 어느 하나의 것을 사용할 수 있고, 게다가 그 금속 전구체의 형태에 있어서도 호일, 평판, 블록 또는 튜브형을 포함하여 어떠한 형태의 것도 가능하지만, 열처리에 의한 균일한 단결정 금속 촉매층의 형성을 위해서는 호일 형태가 바람직하며, 특히 입수가 용이하고 가격이 저렴한 상업화된 구리 호일을 더욱 바람직하게 사용할 수 있다.Examples of the polycrystalline metal precursors having various crystal plane orientations include copper (Cu), nickel (Ni), cobalt (Co), iron (Fe), ruthenium (Ru), platinum (Pt), palladium (Pd), and gold (Au). , Silver (Ag), aluminum (Al), chromium (Cr), magnesium (Mg), manganese (Mn), molybdenum (Mo), rhodium (Rh), silicon (Si), tantalum (Ta), titanium ( Any one selected from the group consisting of Ti), tungsten (W), uranium (U), vanadium (V), iridium (Ir), and zirconium (Zr) can be used, and also in the form of the metal precursor. It may be of any type, including flat, block, or tubular, but is preferably in the form of a foil for the formation of a homogeneous single crystal metal catalyst layer by heat treatment, and particularly preferably a commercially available copper foil, which is readily available and inexpensive. Can be used.
본 발명에서는 상기 ii) 단계의 열처리를 위한 전구체로서 다결정성 금속 전구체의 결정면이 어느 한 방향으로 치우치지 않고 다양한 결정면 배향을 갖는 것이 중요한바, 실제로 (100) 결정면이 지배적으로 우세한 배향을 갖고 있거나 (111) 결정면이 아닌 다른 결정면 방향으로 미리 우세한 배향을 갖는 다결정성 금속 전구체는 다양한 결정면 배향을 갖고 있지 않기 때문에, 열처리에 의해서도 결정면 방향이 바뀌지 않거나 (111) 결정면으로만 배향된 단결정 구조를 가질 수 없게 된다.In the present invention, as the precursor for the heat treatment of step ii), it is important that the crystal plane of the polycrystalline metal precursor has various crystal plane orientations without being biased in one direction, and in fact, the (100) crystal plane has a predominantly dominant orientation ( 111) Since the polycrystalline metal precursors having a predominant orientation in a crystal plane direction other than the crystal plane do not have various crystal plane orientations, the crystal plane direction does not change even by heat treatment or cannot have a single crystal structure oriented only in the (111) crystal plane. do.
또한 본 발명에서는, (111) 결정면으로만 배향된 단결정 금속 촉매층을 형성할 수 있는 중요한 인자로서 상기 금속 전구체의 결정성 및 결정면 배향 이외에, 그 두께가 또 하나의 중요한 변수가 된다. 특히, 상기 금속 전구체가 호일 형태인 경우에는 그 두께에 따라 열처리 후 재결정화 및 화학기상증착에 의한 그래핀 형성 과정에서 탄소에 대한 고용도(solid solubility)에 영향을 미치므로, 본 발명에 따른 상기 금속 전구체의 두께는 5 μm~18 μm 범위인 것이 바람직하다. 상기 금속 전구체의 두께가 5 μm미만이면 너무 박막이라서 원활한 열처리 및 화학기상증착 공정을 수행하기 어려워 재결정화를 기대할 수 없고, 18 μm를 초과하면 동일한 조건에서 열처리를 하더라도 (111) 결정면으로만 배향된 단결정 금속 촉매층을 절대로 얻을 수 없으며, 단지 금속 전구체처럼 다양한 결정면 방향을 그대로 갖거나 (100) 결정면이 지배적인 결정 구조를 갖는 금속 촉매층이 얻어질 뿐이며, 열처리와 동시에 수행되는 화학기상증착에 의해서도 그 형성되는 그래핀층은 그레인 바운더리가 다수 존재하는 등 단일막이 얻어지지 않는다.In the present invention, in addition to the crystallinity and crystal surface orientation of the metal precursor, the thickness is another important variable as an important factor capable of forming a single crystal metal catalyst layer oriented only on the (111) crystal plane. In particular, when the metal precursor is in the form of a foil, since it affects the solid solubility of carbon in the process of graphene formation by recrystallization and chemical vapor deposition after heat treatment according to the thickness, according to the present invention It is preferable that the thickness of a metal precursor is 5 micrometers-18 micrometers. When the thickness of the metal precursor is less than 5 μm, it is too thin to perform a smooth heat treatment and chemical vapor deposition process, so recrystallization cannot be expected, and when it exceeds 18 μm, only the (111) crystal plane is oriented even if heat treatment is performed under the same conditions. A single crystal metal catalyst layer can never be obtained, only a metal catalyst layer having various crystal plane directions as a metal precursor or having a crystalline structure in which the (100) crystal plane is dominant is obtained, and also formed by chemical vapor deposition carried out simultaneously with the heat treatment. In the graphene layer, a large number of grain boundaries exist, such that a single layer is not obtained.
다음으로, 상기 ii) 단계에서는 i) 단계에서 준비한 결정면이 어느 한 방향으로 치우치지 않고 다양한 결정면 배향을 갖는 다결정성 금속 전구체를 열처리, 및 동시에 화학기상증착함으로써 결정화하여 (111) 결정면으로만 배향된 단결정 금속 촉매층을 형성한다.Next, in step ii), the crystal plane prepared in step i) is crystallized by heat treatment and chemical vapor deposition at the same time without crystallization in either direction and crystallized by chemical vapor deposition. A single crystal metal catalyst layer is formed.
상기 ii) 단계의 열처리는 금속 촉매층의 산화를 방지하기 위하여 수소 분위기에서 수행하거나, 또는 수소와 아르곤의 혼합 가스 분위기로 900~1,200℃, 1 torr~760 torr에서 1~5시간 동안 수행하며, 이 때 수소, 또는 수소와 아르곤의 혼합 가스 분위기는 수소 10~100 sccm, 또는 수소 10~100 sccm/아르곤 10~100 sccm으로 주입하면서 열처리 하는 것이 바람직하다. 상기 열처리 공정은 온도, 압력, 시간 및 수소, 또는 수소와 아르곤 가스의 주입속도가 변수가 되는데, 그 중에서도 특히 압력 조건이 매우 중요하며, 상기 범위를 벗어나면 (111) 결정면으로만 배향된 단결정 금속 촉매층이 형성되지 않고, 그에 따라 고품질의 그래핀 박막을 얻기 어렵다. 따라서 본 발명에서는 상기 ii) 단계의 열처리를 위한 공정변수를 상기 범위 내에서 조절하여 금속 전구체를 결정화함으로써 (111) 결정면으로만 배향된 단결정 금속 촉매층을 형성하고, 이어서 상기 iii) 단계에서 고품질의 단결정 단일막 그래핀층이 형성될 수 있는 것이다.The heat treatment of step ii) is performed in a hydrogen atmosphere to prevent oxidation of the metal catalyst layer, or in a mixed gas atmosphere of hydrogen and argon for 1 to 5 hours at 900 ~ 1,200 ℃, 1 torr ~ 760 torr, When hydrogen, or a mixed gas atmosphere of hydrogen and argon is preferably heat treatment while injecting hydrogen 10 ~ 100 sccm, or hydrogen 10 ~ 100 sccm / argon 10 ~ 100 sccm. The heat treatment process is a variable temperature, pressure, time and hydrogen, or the rate of injection of hydrogen and argon gas, especially the pressure conditions are very important, out of the above range, single crystal metal oriented only to the (111) crystal plane A catalyst layer is not formed, and thus a high quality graphene thin film is difficult to obtain. Therefore, in the present invention, by controlling the process parameters for the heat treatment of step ii) within the above range to crystallize the metal precursor to form a single crystal metal catalyst layer oriented only to the (111) crystal plane, and then in step iii) high quality single crystal A single layer graphene layer can be formed.
결국, 본 발명은 종래 단결정 기판을 사용하여 그 기판 위에 단결정 금속 박막을 형성하는 것, 또는 기판을 사용하지 않더라도 금속 전구체를 열처리하여 다결정성 금속 촉매층을 형성하던 것과는 근본적으로 기술적 사상을 달리하는 것이며, 실제로 종래 기껏해야 1 cm x 1 cm 크기의 구리 호일 전구체를 이용하여 그래핀을 형성하던 것과 비교하면, 본 발명은 금속 전구체의 크기에 상관없이 임의의 크기를 갖는 그 금속 전구체를 그대로 열처리 및 화학기상증착하여 대면적(임의의 면적)의 단결정 단일막 그래핀을 제조할 수 있는 것이므로 대량생산에 의한 상업화를 실현할 수 있다.As a result, the present invention is fundamentally different from the technical idea of forming a single crystalline metal thin film on a substrate using a conventional single crystal substrate, or forming a polycrystalline metal catalyst layer by heat treating a metal precursor even when the substrate is not used. In fact, compared to conventional graphene forming using a copper foil precursor of 1 cm x 1 cm at most, the present invention is heat-treated and chemical vapor phase of the metal precursor having any size as it is, regardless of the size of the metal precursor Since it is possible to produce single crystal single film graphene having a large area (arbitrary area) by evaporation, commercialization by mass production can be realized.
마지막으로, 상기 ii) 단계의 화학기상증착은 수소와 탄소함유 가스의 혼합 가스 분위기로 900~1,200℃, 0.1 torr~760 torr에서 10분~3시간 동안 수행하며, 이 때수소와 탄소함유 가스의 혼합 가스 분위기는 수소 1~100 sccm/탄소함유 가스 10~100 sccm으로 주입하는 것이 바람직하다. 여기서 상기 탄소함유 가스는 탄화수소가스, 기상 탄화수소화합물, 탄소수 1 내지 6의 기상 알코올, 일산화탄소, 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나의 것을 사용할 수 있으며, 특히 탄화수소가스가 바람직하게 사용될 수 있다.Finally, the chemical vapor deposition of step ii) is carried out for 10 minutes to 3 hours at 900 ~ 1,200 ℃, 0.1 torr ~ 760 torr in a mixed gas atmosphere of hydrogen and carbon containing gas, wherein the hydrogen and carbon containing gas The mixed gas atmosphere is preferably injected at 1-100 sccm of hydrogen / 10-100 sccm of carbon-containing gas. The carbon-containing gas may be any one selected from the group consisting of a hydrocarbon gas, a gaseous hydrocarbon compound, a gaseous alcohol having 1 to 6 carbon atoms, carbon monoxide, and a mixture thereof, and in particular, a hydrocarbon gas may be preferably used.
또한, 탄화수소가스로서는 메탄, 에탄, 프로판, 부탄, 에틸렌, 프로필렌, 부틸렌, 아세틸렌, 부타디엔, 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나의 것을 사용하며, 취급이 용이한 메탄 가스를 사용하는 것이 더욱 바람직하다. 또한, 기상 탄화수소화합물로서는 펜탄, 헥산, 사이클로헥산, 벤젠, 톨루엔, 자일렌, 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나의 것을 사용할 수 있으며, 이에 한정되는 것은 아니다.As the hydrocarbon gas, any one selected from the group consisting of methane, ethane, propane, butane, ethylene, propylene, butylene, acetylene, butadiene, and mixtures thereof, and using methane gas that is easy to handle is used. More preferred. The gaseous hydrocarbon compound may be any one selected from the group consisting of pentane, hexane, cyclohexane, benzene, toluene, xylene, and mixtures thereof, but is not limited thereto.
한편, 본 발명에서는 상기 ii) 단계의 공정이 마무리되면 iii) 단계에서 목적물인 대면적의 단결정 단일막 그래핀을 얻을 수 있으나, 필요에 따라 상기 iii) 단계 후, 인위적인 냉각 단계를 더 포함할 수 있는데, 상기 냉각 단계는 10~50℃/min의 냉각 속도로 서서히 수행되는 것이 바람직하다. 특히, 상기 냉각 속도의 범위를 초과하여 급하게 냉각하면 그래핀이 균일하게 성장하여 일정하게 배열하는 과정에서 그래핀에 균열이 생길 수 있으므로 주의를 요한다. 아울러 상기 냉각 단계에서 발생할 수 있는 산화분위기를 방지하기 위하여 수소를 10~1,000 sccm으로 주입하면서 냉각할 수도 있다.On the other hand, in the present invention, when the process of step ii) is finished, it is possible to obtain a single crystal single layer graphene having a large area as a target in step iii), but may further include an artificial cooling step after the step iii), if necessary. There is, the cooling step is preferably carried out slowly at a cooling rate of 10 ~ 50 ℃ / min. In particular, if the rapid cooling over the range of the cooling rate is necessary to pay attention because the graphene is uniformly grown and can be cracked in the process of uniformly arranged. In addition, in order to prevent the oxidation atmosphere that may occur in the cooling step may be cooled while injecting hydrogen at 10 ~ 1,000 sccm.
또한 본 발명에 따르면, 본 발명에서 제조된 대면적의 단결정 단일막 그래핀을 포함하는 투명 전극, 표시 소자, 반도체 소자, 분리막, 연료전지, 태양전지 또는 각종 센서를 제공할 수 있다.In addition, according to the present invention, it is possible to provide a transparent electrode, a display device, a semiconductor device, a separator, a fuel cell, a solar cell or various sensors including the large-area single crystal single film graphene produced in the present invention.
이하 구체적인 실시예를 상세히 설명한다.Hereinafter, specific embodiments will be described in detail.
(실시예 1)(Example 1)
금속 전구체로서 두께가 18 μm이고 가로 세로 길이가 10 cm x 10 cm인 구리 호일(HOHSEN, 99.9%, Japan)을 챔버 내에 넣고, 1,005℃, 500 torr에서 2시간 동안 수소를 100 sccm로 주입하면서 열처리하여 구리 촉매층을 형성하였고, 동시에 1,005℃, 0.5 torr에서 60분 동안 수소/메탄을 5 sccm/20 sccm 비율로 주입하면서 화학기상증착(CVD) 공정을 수행하여 구리 촉매층 위에 그래핀층을 형성하였다.As a metal precursor, a copper foil (HOHSEN, 99.9%, Japan) having a thickness of 18 μm and a length of 10 cm x 10 cm was placed in a chamber, and heat-treated while injecting hydrogen at 100 sccm for 2 hours at 1,005 ° C and 500 torr. The copper catalyst layer was formed, and at the same time, a graphene layer was formed on the copper catalyst layer by performing a chemical vapor deposition (CVD) process while injecting hydrogen / methane at a ratio of 5 sccm / 20 sccm for 60 minutes at 1,005 ° C. and 0.5 torr.
하기 표 1에 실시예 1 내지 3 및 비교예 1 내지 3에 따른 열처리 및 CVD 공정 변수를 나타내었다.Table 1 below shows the heat treatment and CVD process parameters according to Examples 1-3 and Comparative Examples 1-3.
표 1
실시예 두께(μm) 온도1)(℃) 압력1)(torr) 분위기(수소)1)시간 온도2)(℃) 압력2)(torr) 분위기(수소/메탄)2)시간
실시예 1 18 1,005 500 100 sccm2시간 1,005 0.5 5/20 sccm60분
실시예 2 18 1,005 500 50 sccm2시간 1,005 0.5 5/20 sccm60분
실시예 3 18 1,005 500 100 sccm2시간 1,020 500 5/20 sccm30분
비교예 1 18 None None None 1,005 0.5 5/20 sccm60분
비교예 2 18 1,005 0.5 20 sccm2시간 1,005 0.5 5/20 sccm60분
비교예 3 75 1,005 500 100 sccm2시간 1,005 0.5 5/20 sccm60분
Table 1
Example Thickness (μm) Temperature 1) (℃) Pressure 1) (torr) Atmosphere (Hydrogen) 1) Time Temperature 2) (℃) Pressure 2) (torr) Atmosphere (Hydrogen / Methane) 2) Time
Example 1 18 1,005 500 100 sccm2 hours 1,005 0.5 5/20 sccm60 minutes
Example 2 18 1,005 500 50 sccm2 hours 1,005 0.5 5/20 sccm60 minutes
Example 3 18 1,005 500 100 sccm2 hours 1,020 500 5/20 sccm30 minutes
Comparative Example 1 18 None None None 1,005 0.5 5/20 sccm60 minutes
Comparative Example 2 18 1,005 0.5 20 sccm2 hours 1,005 0.5 5/20 sccm60 minutes
Comparative Example 3 75 1,005 500 100 sccm2 hours 1,005 0.5 5/20 sccm60 minutes
* 구리 호일의 크기는 모두 10 cm x 10 cm(가로 x 세로)* Copper foil all measures 10 cm x 10 cm (width x length)
1) 열처리 1) heat treatment
2) CVD 2) CVD
도 2는 본 발명의 실시예 1에 따른 금속 전구체로서 상업화된 구리 호일의 주사전자현미경(SEM) 이미지를 나타낸 것이다. 도 2에서 보는 바와 같이 그레인과 그레인 바운더리들이 존재함을 알 수 있다. 그리고 도 3은 상기 상업화된 구리 호일의 결정성을 알아보기 위하여 X선 회절 패턴을 측정한 것인데, 다양한 결정면 배향을 갖는 다결정성(polycrystalline)임을 확인할 수 있었다.2 shows a scanning electron microscope (SEM) image of a commercially available copper foil as a metal precursor according to Example 1 of the present invention. As shown in FIG. 2, it can be seen that grains and grain boundaries exist. And Figure 3 is to measure the X-ray diffraction pattern to determine the crystallinity of the commercialized copper foil, it was confirmed that the polycrystalline (polycrystalline) having a variety of crystal plane orientation.
도 4는 본 발명의 실시예 1에 따라 상기 상업화된 구리 호일을 열처리 및 화학기상증착(CVD) 후 그래핀을 형성한 경우의 주사전자현미경(SEM) 이미지를 나타낸 것으로, 구리 촉매층은 그레인 바운더리가 없어짐을 확인하였고, 도 5의 X선 회절 패턴으로부터는 열처리 및 화학기상증착에 의한 재결정화로 인하여 (111) 결정면으로만 배향된 단결정 촉매층이 형성되었음을 확인할 수 있었다.FIG. 4 is a scanning electron microscope (SEM) image when graphene is formed after heat treatment and chemical vapor deposition (CVD) of the commercialized copper foil according to Example 1 of the present invention, and the copper catalyst layer has a grain boundary. From the X-ray diffraction pattern of FIG. 5, it was confirmed that a single crystal catalyst layer oriented only to the (111) crystal plane was formed due to recrystallization by heat treatment and chemical vapor deposition.
그리고 도 6은 본 발명의 실시예 1에 따라 형성된 구리 촉매층의 결정면 배향을 추가로 분석하기 위하여 전자후방산란회절(EBSD : Electron backscatter diffraction) 특성을 나타낸 것으로, 전 면적에서 그레인 바운더리 및 결함이 없으며, (111) 면으로만 배향된 단결정 촉매층이 형성되어 있음을 확인할 수 있었다.6 shows electron backscatter diffraction (EBSD) characteristics in order to further analyze the crystal plane orientation of the copper catalyst layer formed according to Example 1 of the present invention, and has no grain boundaries and defects in the entire area. It was confirmed that the single crystal catalyst layer oriented only on the (111) plane was formed.
또한, 도 7은 본 발명의 실시예 1에 따라 형성된 그래핀층의 라만(Raman) 스펙트럼을 나타낸 것인데, 1580 cm-1 부근에서 그래핀의 특성 피크인 G 피크가 발견되고, 특히 2700 cm-1 부근에서 강하고 샤프한 하나의 2D 피크가 발견되어 그래핀층은 단일막(monolayer)으로 형성되었음을 알 수 있었다. 아울러 통상의 그래핀에서 발견되는 1340 cm-1 부근에서의 D 피크 강도가 알 수 없을 정도로 매우 약하게 측정되어 본 발명의 실시예 1에 따라 형성된 그래핀은 그 결함이 거의 없음을 알았고, G 피크 강도에 대한 D 피크 강도의 상대적인 비율도 0.22 정도로 측정되어 결정성이 매우 높은 것으로 확인되었다.In addition, Figure 7 shows the Raman spectrum of the graphene layer formed in accordance with Example 1 of the present invention, the G peak, which is a characteristic peak of graphene is found around 1580 cm -1 , in particular around 2700 cm -1 A strong and sharp 2D peak was found at, indicating that the graphene layer was formed as a monolayer. In addition, the D peak intensity near 1340 cm −1 found in conventional graphene was measured so weakly that it was unknown, and it was found that the graphene formed according to Example 1 of the present invention had almost no defects, and the G peak intensity The relative ratio of the D peak intensity to about was also measured about 0.22 to confirm that the crystallinity is very high.
또한, 도 8은 본 발명의 실시예 1에 따라 형성된 그래핀층의 라만 맵(Raman Map)을 나타낸 것으로, D1의 맵핑 시 주름(wrinkle), 크랙(crack), 그레인 바운더리 등의 결함이 발견되지 않은 것을 확인할 수 있으며, D2의 맵핑 시 전면이 D2 피크로만 측정되어 그래핀이 단일층만으로 이루어져 있음을 알 수 있었는바, 라만 맵핑을 통해서도 본 발명에 따라 제조된 대면적의 단결정 단일막 그래핀이 확인되었다.8 shows a Raman map of the graphene layer formed according to Example 1 of the present invention, in which defects such as wrinkles, cracks, grain boundaries, etc. are not found when D1 is mapped. When the mapping of D2, the entire surface was measured only by the peak of D2, and it was found that the graphene was composed of only a single layer. The Raman mapping also confirmed the large-area single-crystal single-layer graphene prepared according to the present invention. It became.
아울러 본 발명의 실시예 1과 대비하여 열처리 분위기로서 수소의 주입속도만 상이한 실시예 2, 및 CVD 공정 조건을 달리한 실시예 3에 의해서도 본 발명의 실시예 1과 동일한 결과를 얻을 수 있었다(미도시).In addition, compared with Example 1 of the present invention, Example 2, which differs only in the hydrogen injection rate as a heat treatment atmosphere, and Example 3, which changed the CVD process conditions, were able to obtain the same result as Example 1 of the present invention (not shown). city).
반면, 도 9에서 확인할 수 있는 바와 같이 본 발명의 비교예 1에 따라 구리 호일의 열처리를 수행하지 않은 경우에는, 실시예 1과 동일한 조건에서 화학기상증착을 하더라도 그레인과 그레인 바운더리들이 그대로 존재하여 고품질의 단결정 단일막 그래핀을 얻을 수 없음을 알았다.On the other hand, when the heat treatment of the copper foil according to Comparative Example 1 of the present invention as can be seen in Figure 9, even if the chemical vapor deposition under the same conditions as in Example 1, grains and grain boundaries exist as it is It was found that the single crystal monolayer graphene could not be obtained.
또한, 도 10의 주사전자현미경(SEM) 이미지 및 도 11의 EBSD 이미지에서 보는 바와 같이 본 발명의 비교예 2에 따라 상업화된 구리 호일을 상대적으로 저압인 조건에서 열처리를 수행하면, 실시예 1과 동일한 조건에서 CVD 공정을 수행하더라도 여전히 구리 촉매층에 구리 그레인들과 그레인 바운더리들이 그대로 존재함을 알 수 있으며, 또한 도 12의 X선 회절 패턴으로부터는 금속 전구체인 구리 호일의 다결정성이 열처리 및 CVD 공정을 수행한 후에도 변하지 않았음을 확인할 수 있었다.In addition, as shown in the scanning electron microscope (SEM) image of FIG. 10 and the EBSD image of FIG. 11, the heat treatment of the copper foil commercialized according to Comparative Example 2 of the present invention under relatively low pressure was carried out in Example 1 and Even though the CVD process is performed under the same conditions, it can be seen that the copper grains and grain boundaries are still present in the copper catalyst layer. Also, from the X-ray diffraction pattern of FIG. It was confirmed that it did not change even after performing.
또한, 도 13에 나타낸 바와 같이 비교예 3에서처럼 금속 전구체로서 두께가 75 m인 구리 호일을 사용한 경우에는, 실시예 1 내지 3과 동일한 조건에서 열처리 및 CVD 공정을 수행하더라도 구리 촉매층에 구리 그레인들과 그레인 바운더리들이 그대로 존재함을 알 수 있고, 상기 표 1에는 기재하지 않았지만 다양한 두께의 구리 호일을 대상으로 열처리 및 CVD 공정을 수행한 결과, 구리 호일의 두께가 18 m를 초과하면 단결정 단일막 그래핀을 얻을 수 없으며, 한편으로 그 두께가 5 m 미만이면 너무 박막이어서 원활한 열처리 및 CVD 공정을 수행할 수 없었다.In addition, as shown in FIG. 13, when the copper foil having a thickness of 75 m was used as the metal precursor as in Comparative Example 3, the copper catalyst layer was coated with copper grains even though the heat treatment and CVD processes were performed under the same conditions as in Examples 1 to 3. It can be seen that the grain boundaries exist as it is, but the heat treatment and CVD process for copper foils of various thicknesses, which are not described in Table 1 above, show that the single-crystal single film graphene has a thickness of more than 18 m. On the other hand, if the thickness was less than 5 m, it was too thin to perform a smooth heat treatment and CVD process.
또한, 본 발명에서 제조된 단결정 단일막 그래핀의 전기적, 광학적 특성을 확인하고자 면저항(sheet resistance), 전류운반체 이동도(carrier mobility) 및 투과도(transmittance)를 측정하였고, 개선된 효과를 평가하기 위하여 종래 공지된 문헌에 발표된 값과 함께 도 14 내지 도 16에 그 결과를 나타내었다.In addition, sheet resistance, current carrier mobility, and transmittance were measured to confirm the electrical and optical properties of the single crystal single layer graphene prepared in the present invention. The results are shown in FIGS. 14-16 with the values published in the prior art.
도 14는 ASTM D257 방법에 따라 4-탐침(4-point probe)을 사용하여 본 발명의 실시예 1로부터 제조된 단결정 단일막 그래핀의 면저항을 측정한 값을 종래 공지된 문헌[ACS NANO, VOL 5, 6916(2011)]에 게재된 다결정 단일막 그래핀의 면저항 값과 함께 나타내었는바, 본 발명의 실시예 1로부터 제조된 단결정 단일막 그래핀은 종래 다결정 단일막 그래핀에 비하여 면저항 값이 현저하게 줄어든 결과, 약 80% 정도의 개선 효과를 나타냄을 알 수 있다. 이는 단결정 단일막에 있어서 그레인 바운더리와 같은 결함 밀도(defect density)가 감소함으로써 전자의 평균자유행로(electron mean free path)가 개선되기 때문인 것으로 해석된다. 따라서 본 발명에서 제조된 단결정 단일막 그래핀은 터치 스크린 수준을 넘어 저전력 고효율의 표시소자로서 플렉시블 OLED 또는 태양전지 소자 등에 적용이 가능할 것으로 기대된다. FIG. 14 is a graph showing the measurement of sheet resistance of single crystal single-layer graphene prepared from Example 1 of the present invention using a 4-point probe according to ASTM D257. [ACS NANO, VOL 5, 6916 (2011)] is shown with the sheet resistance value of the polycrystalline single-layer graphene, the single crystal single-layer graphene prepared from Example 1 of the present invention has a sheet resistance value compared to the conventional polycrystalline single-layer graphene As a result of the significant reduction, it can be seen that the improvement effect is about 80%. This is because the electron mean free path is improved by decreasing the defect density such as grain boundary in the single crystal single film. Therefore, the single crystal single layer graphene manufactured in the present invention is expected to be applicable to a flexible OLED or a solar cell device as a display device of low power and high efficiency beyond the touch screen level.
또한, 도 15는 본 발명의 실시예 1로부터 제조된 단결정 단일막 그래핀의 전류운반체 이동도(carrier mobility)를 통상의 홀 효과 측정(Hall effect measurement)법에 따라 측정하여 공지된 문헌[Appl. Phys. Lett., 102, 163102(2013)]에 게재된 다결정 단일막 그래핀의 전류운반체 이동도 값과 함께 나타내었는바, 본 발명의 실시예 1로부터 제조된 단결정 단일막 그래핀은 종래 다결정 단일막 그래핀에 비하여 전류운반체 이동도 값이 현저하게 상승한 결과, 약 300% 정도의 개선 효과를 나타냄을 알 수 있다. 이는 단결정 단일막에 있어서 그레인 바운더리와 같은 결함 밀도(defect density)가 감소함으로써 전하운반체의 산란율(scattering rate of charge carrier)이 개선되기 때문인 것으로 해석된다. 따라서 본 발명에서 제조된 단결정 단일막 그래핀은 저전력 급속형의 차세대 반도체 논리 소자(logic devices) 또는 차세대 10nm 이하의 초미세 채널 물질로 응용할 수 있을 것이다.In addition, Figure 15 is measured according to the conventional Hall effect measurement (carrier mobility) of the single crystal single-film graphene prepared from Example 1 of the present invention known Appl. Phys. Lett., 102, 163102 (2013) is shown with the current carrier mobility value of the polycrystalline single-layer graphene published in the present invention, the monocrystalline single-layer graphene prepared from Example 1 of the present invention is a conventional polycrystalline single-layer graphene As a result of the significant increase of the current carrier mobility compared to the fin, it can be seen that the improvement effect is about 300%. This is because the scattering rate of the charge carrier is improved by reducing the defect density such as grain boundary in the single crystal single film. Therefore, the single crystal single layer graphene manufactured in the present invention may be applied to low power rapid next generation semiconductor logic devices or next generation 10 nm or less ultra fine channel materials.
또한, 도 16에는 본 발명의 실시예 1로부터 제조된 단결정 단일막 그래핀과 공지문헌[Nature Nanotechnology, Vol 5, August(2010)]에 게재된 다결정 단일막 그래핀의 투과도를 함께 나타내었는바, 본 발명의 실시예 1로부터 제조된 단결정 단일막 그래핀은 종래 다결정 단일막 그래핀에 비하여 투과도 값이 약 0.8% 정도 증가하였는데, 이는 지금까지 발표된 것으로는 가장 높은 값을 나타내는 것이다. 이러한 결과는 본 발명에 따른 단결정 단일막에 있어서 그레인 바운더리와 같은 결함 밀도(defect density)가 감소함으로써 빛의 투과시 산란 및 굴절이 개선되기 때문인 것으로 해석된다. 나아가 일반적인 경우에 투과도는 두께가 감소할수록, 저항은 두께가 증가할수록 개선되어 투과도와 저항은 두께에 대하여 트레이드-오프 관계를 갖지만, 본 발명에서는 상술한 바와 같이 저항이 개선되면서도 투과도도 함께 개선되는 상승된 작용효과를 나타냄을 확인할 수 있다.In addition, FIG. 16 shows the transmittances of the single crystal single layer graphene prepared from Example 1 of the present invention and the polycrystalline single layer graphene published in the publication [Nature Nanotechnology, Vol 5, August (2010)]. The monocrystalline single film graphene prepared from Example 1 of the present invention has an increase in the transmittance value of about 0.8% compared to the conventional polycrystalline single film graphene, which is the highest value ever published. This result is interpreted to be due to the improvement of scattering and refraction upon transmission of light by decreasing defect density such as grain boundary in the single crystal single film according to the present invention. Furthermore, in the general case, the transmittance is improved as the thickness decreases and the resistance is increased as the thickness increases, so that the transmittance and resistance have a trade-off relationship with respect to the thickness. It can be seen that the effect is shown.
따라서 본 발명의 실시예로부터 제조된 단결정 단일막 그래핀은 비교예 또는 종래의 방법으로 제조되는 단일층 그래핀에 비하여, 고가의 기판 없이도 금속 전구체의 열처리 및 화학기상증착을 통하여 그레인 및 그레인 바운더리가 존재하지 않는 고품질의 단결정 단일막 그래핀을 얻을 수 있으며, 특히 금속 전구체의 크기 및 형태에 상관없이 금속 전구체를 원래의 상태 그대로 열처리 및 화학기상증착 하는 것이므로, 금속 전구체 본래의 임의의 면적 그대로 대면적의 단결정 단일막 그래핀을 제조할 수 있는 놀라운 작용효과를 갖는다.Therefore, the single crystal single film graphene prepared from the embodiment of the present invention has a grain and grain boundary through heat treatment and chemical vapor deposition of the metal precursor without an expensive substrate, compared to the single layer graphene prepared by the comparative example or the conventional method. It is possible to obtain high quality single crystal single layer graphene which does not exist, and in particular, since the metal precursor is heat-treated and chemical vapor deposition as it is, irrespective of the size and shape of the metal precursor, the large area of the metal precursor intact is as large as it is. Has a surprising effect of producing single crystal single layer graphene.
그러므로 본 발명에 따라 제조된 대면적의 단결정 단일막 그래핀은 투명 전극, 표시 소자, 반도체 소자, 분리막, 연료전지, 태양전지 또는 각종 센서 등에 응용이 가능할 것으로 기대된다.Therefore, the large-area single crystal graphene graphene prepared according to the present invention is expected to be applicable to transparent electrodes, display devices, semiconductor devices, separators, fuel cells, solar cells or various sensors.

Claims (28)

  1. 기판 위에, 또는 기판 없이 (111) 결정면으로만 배향된 단결정 금속 촉매층; 및 A single crystal metal catalyst layer oriented only on the (111) crystal plane on or without a substrate; And
    상기 단결정 금속 촉매층 위에 형성된 그래핀층;을 포함하는 대면적의 단결정 단일막 그래핀.Single-crystal graphene graphene having a large area comprising a; graphene layer formed on the single crystal metal catalyst layer.
  2. 제1항에 있어서, 상기 기판은 단결정 기판 또는 비 단결정성 기판인 것을 특징으로 하는 대면적의 단결정 단일막 그래핀.The large-area single crystal single layer graphene of claim 1, wherein the substrate is a single crystal substrate or a non-monocrystalline substrate.
  3. 제1항 또는 제2항에 있어서, 상기 기판은 실리콘계 기판, 금속 산화물계 기판 또는 세라믹 기판인 것을 특징으로 하는 대면적의 단결정 단일막 그래핀.The large-area single crystal graphene of claim 1 or 2, wherein the substrate is a silicon substrate, a metal oxide substrate, or a ceramic substrate.
  4. 제3항에 있어서, 상기 기판은 규소(Si), 이산화규소(SiO2), 질화규소(Si3N4), 산화아연(ZnO), 이산화지르코늄(ZrO2), 산화니켈(NiO), 산화하프늄(HfO2), 산화제이코발트(CoO), 산화제이구리(CuO), 산화제이철(FeO), 산화마그네슘(MgO), 알파-산화알루미늄(a-Al2O3), 산화알루미늄(Al2O3), 스트론듐티타네이트(SrTiO3), 란타늄알루미네이트(LaAlO3), 이산화티탄(TiO2), 이산화탄탈륨(TaO2), 이산화니오븀(NbO2), 및 질화붕소(BN)로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 하는 대면적의 단결정 단일막 그래핀.The substrate of claim 3, wherein the substrate is silicon (Si), silicon dioxide (SiO 2 ), silicon nitride (Si 3 N 4 ), zinc oxide (ZnO), zirconium dioxide (ZrO 2 ), nickel oxide (NiO), hafnium oxide. (HfO 2 ), cobalt oxide (CoO), cupric oxide (CuO), ferric oxide (FeO), magnesium oxide (MgO), alpha-aluminum oxide (a-Al 2 O 3 ), aluminum oxide (Al 2 O 3 ) , Strontium titanate (SrTiO 3 ), lanthanum aluminate (LaAlO 3 ), titanium dioxide (TiO 2 ), tantalum dioxide (TaO 2 ), niobium dioxide (NbO 2 ), and boron nitride (BN) Large-area single crystal single layer graphene, characterized in that any one selected.
  5. 제1항에 있어서, 상기 단결정 금속 촉매층은 구리(Cu), 니켈(Ni), 코발트(Co), 철(Fe), 루테늄(Ru), 백금(Pt), 팔라듐(Pd), 금(Au), 은(Ag), 알루미늄(Al), 크롬(Cr), 마그네슘(Mg), 망간(Mn), 몰리브데늄(Mo), 로듐(Rh), 실리콘(Si), 탄탈륨(Ta), 티탄(Ti), 텅스텐(W), 우라늄(U), 바나듐(V), 이리듐(Ir), 및 지르코늄(Zr)로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 하는 대면적의 단결정 단일막 그래핀.The method of claim 1, wherein the single crystal metal catalyst layer is copper (Cu), nickel (Ni), cobalt (Co), iron (Fe), ruthenium (Ru), platinum (Pt), palladium (Pd), gold (Au) , Silver (Ag), aluminum (Al), chromium (Cr), magnesium (Mg), manganese (Mn), molybdenum (Mo), rhodium (Rh), silicon (Si), tantalum (Ta), titanium ( A large-area single crystal graphene graphene, characterized in that any one selected from the group consisting of Ti), tungsten (W), uranium (U), vanadium (V), iridium (Ir), and zirconium (Zr).
  6. 제1항에 있어서, 상기 단결정 금속 촉매층은 그 형태가 호일, 평판, 블록 또는 튜브형인 것을 특징으로 하는 대면적의 단결정 단일막 그래핀.2. The large-area single crystal single film graphene of claim 1, wherein the single crystal metal catalyst layer is in the form of a foil, a plate, a block, or a tube.
  7. i) 결정면이 어느 한 방향으로 치우치지 않고 다양한 결정면 배향을 갖는 다결정성 금속 전구체를 준비하는 단계; i) preparing a polycrystalline metal precursor having a variety of crystal plane orientations without the crystal planes biased in either direction;
    ii) 상기 i) 단계의 금속 전구체를 열처리, 및 동시에 화학기상증착을 통하여 (111) 결정면으로만 배향된 단결정 금속 촉매층을 형성하는 단계; 및 ii) thermally treating the metal precursor of step i) and simultaneously forming a single crystal metal catalyst layer oriented only to the (111) crystal plane through chemical vapor deposition; And
    iii) 상기 ii) 단계의 단결정 금속 촉매층 위에 그래핀층이 형성되는 단계;를 포함하는 대면적의 단결정 단일막 그래핀의 제조방법.iii) forming a graphene layer on the single crystal metal catalyst layer of step ii).
  8. 제7항에 있어서, 상기 i) 단계의 금속 전구체는 구리(Cu), 니켈(Ni), 코발트(Co), 철(Fe), 루테늄(Ru), 백금(Pt), 팔라듐(Pd), 금(Au), 은(Ag), 알루미늄(Al), 크롬(Cr), 마그네슘(Mg), 망간(Mn), 몰리브데늄(Mo), 로듐(Rh), 실리콘(Si), 탄탈륨(Ta), 티탄(Ti), 텅스텐(W), 우라늄(U), 바나듐(V), 이리듐(Ir), 및 지르코늄(Zr)로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 하는 대면적의 단결정 단일막 그래핀의 제조방법.The metal precursor of step i) is copper (Cu), nickel (Ni), cobalt (Co), iron (Fe), ruthenium (Ru), platinum (Pt), palladium (Pd), gold (Au), silver (Ag), aluminum (Al), chromium (Cr), magnesium (Mg), manganese (Mn), molybdenum (Mo), rhodium (Rh), silicon (Si), tantalum (Ta) , Single crystal single layer graphene, characterized in that any one selected from the group consisting of titanium (Ti), tungsten (W), uranium (U), vanadium (V), iridium (Ir), and zirconium (Zr) Method of manufacturing pins.
  9. 제7항에 있어서, 상기 i) 단계의 금속 전구체는 그 형태가 호일, 평판, 블록 또는 튜브형인 것을 특징으로 하는 대면적의 단결정 단일막 그래핀의 제조방법.8. The method of claim 7, wherein the metal precursor of step i) is in the form of a foil, a plate, a block, or a tube.
  10. 제7항 또는 제9항에 있어서, 상기 i) 단계의 금속 전구체는 상업화된 구리 호일인 것을 특징으로 하는 대면적의 단결정 단일막 그래핀의 제조방법.10. The method of claim 7 or 9, wherein the metal precursor of step i) is a commercialized copper foil.
  11. 제10항에 있어서, 상기 상업화된 구리 호일의 두께가 5 μm~18 μm 범위인 것을 특징으로 하는 대면적의 단결정 단일막 그래핀의 제조방법.The method of claim 10, wherein the commercially available copper foil has a thickness in the range of 5 μm to 18 μm.
  12. 제7항에 있어서, 상기 ii) 단계의 열처리는 수소, 또는 수소와 아르곤의 혼합 가스 분위기로 900~1,200℃, 1 torr~760 torr에서 1~5시간 동안 수행되는 것을 특징으로 하는 대면적의 단결정 단일막 그래핀의 제조방법.8. The large-area single crystal of claim 7, wherein the heat treatment in step ii) is performed at 900 to 1,200 ° C. and 1 torr to 760 torr in a mixed gas atmosphere of hydrogen or hydrogen and argon. Method of manufacturing single film graphene.
  13. 제12항에 있어서, 상기 수소, 또는 수소와 아르곤의 혼합 가스 분위기는 수소 10~100 sccm, 또는 수소 10~100 sccm/아르곤 10~100 sccm으로 주입되는 것을 특징으로 하는 대면적의 단결정 단일막 그래핀의 제조방법.13. The large-area single crystal single layer graphene of claim 12, wherein the hydrogen or a mixed gas atmosphere of hydrogen and argon is injected at 10-100 sccm of hydrogen or 10-100 sccm of hydrogen / 10-100 sccm of argon. Method of manufacturing pins.
  14. 제7항에 있어서, 상기 ii) 단계의 화학기상증착은 수소와 탄소함유 가스의 혼합 가스 분위기로 900~1,200℃, 0.1 torr~760 torr에서 10분~3시간 동안 수행되는 것을 특징으로 하는 대면적의 단결정 단일막 그래핀의 제조방법.The method according to claim 7, wherein the chemical vapor deposition of step ii) is carried out for 10 minutes to 3 hours at 900 ~ 1,200 ℃, 0.1 torr ~ 760 torr in a mixed gas atmosphere of hydrogen and carbon-containing gas Method for producing single crystal single film graphene.
  15. 제14항에 있어서, 상기 수소와 탄소함유 가스의 혼합 가스 분위기는 수소 1~100 sccm/탄소함유 가스 10~100 sccm으로 주입되는 것을 특징으로 하는 대면적의 단결정 단일막 그래핀의 제조방법.15. The method of claim 14, wherein the mixed gas atmosphere of hydrogen and carbon-containing gas is injected at 1-100 sccm of hydrogen / 10-100 sccm of carbon-containing gas.
  16. 제14항 또는 제15항에 있어서, 상기 탄소함유 가스는 탄화수소가스, 기상 탄화수소화합물, 탄소수 1 내지 6의 기상 알코올, 일산화탄소, 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 하는 대면적의 단결정 단일막 그래핀의 제조방법.The carbon-containing gas according to claim 14 or 15, wherein the carbon-containing gas is any one selected from the group consisting of hydrocarbon gas, gaseous hydrocarbon compound, gaseous alcohol having 1 to 6 carbon atoms, carbon monoxide, and mixtures thereof. Method for producing single crystal single film graphene.
  17. 제16항에 있어서, 상기 탄화수소가스는 메탄, 에탄, 프로판, 부탄, 에틸렌, 프로필렌, 부틸렌, 아세틸렌, 부타디엔, 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 하는 대면적의 단결정 단일막 그래핀의 제조방법.17. The single crystal single crystal of claim 16, wherein the hydrocarbon gas is any one selected from the group consisting of methane, ethane, propane, butane, ethylene, propylene, butylene, acetylene, butadiene, and mixtures thereof. Method for preparing membrane graphene.
  18. 제16항에 있어서, 상기 기상 탄화수소화합물은 펜탄, 헥산, 사이클로헥산, 벤젠, 톨루엔, 자일렌, 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 하는 대면적의 단결정 단일막 그래핀의 제조방법.18. The method of claim 16, wherein the gaseous hydrocarbon compound is any one selected from the group consisting of pentane, hexane, cyclohexane, benzene, toluene, xylene, and mixtures thereof. Manufacturing method.
  19. 제7항에 있어서, 상기 iii) 단계 후, 인위적인 냉각 단계를 더 포함하는 것을 특징으로 하는 대면적의 단결정 단일막 그래핀의 제조방법.The method of claim 7, further comprising an artificial cooling step after the step iii).
  20. 제19항에 있어서, 상기 냉각 단계는 10~50℃/min의 냉각 속도로 서서히 수행되는 것을 특징으로 하는 대면적의 단결정 단일막 그래핀의 제조방법.20. The method of claim 19, wherein the cooling step is performed slowly at a cooling rate of 10 to 50 DEG C / min.
  21. 제19항 또는 제20항에 있어서, 상기 냉각 단계는 수소를 10~1,000 sccm으로 주입하면서 수행되는 것을 특징으로 하는 대면적의 단결정 단일막 그래핀의 제조방법.21. The method of claim 19 or 20, wherein the cooling step is performed while injecting hydrogen at 10 to 1,000 sccm.
  22. 제1항에 따른 대면적의 단결정 단일막 그래핀을 포함하는 투명 전극.A transparent electrode comprising the large-area single crystal single film graphene according to claim 1.
  23. 제1항에 따른 대면적의 단결정 단일막 그래핀을 포함하는 표시 소자.A display device comprising the large-area single crystal single film graphene according to claim 1.
  24. 제1항에 따른 대면적의 단결정 단일막 그래핀을 포함하는 반도체 소자.A semiconductor device comprising the large-area single crystal single film graphene according to claim 1.
  25. 제1항에 따른 대면적의 단결정 단일막 그래핀을 포함하는 분리막.Separation membrane comprising a large area single crystal graphene graphene according to claim 1.
  26. 제1항에 따른 대면적의 단결정 단일막 그래핀을 포함하는 연료전지.A fuel cell comprising the large-area single crystal single film graphene according to claim 1.
  27. 제1항에 따른 대면적의 단결정 단일막 그래핀을 포함하는 태양전지.A solar cell comprising the large-area single crystal single film graphene according to claim 1.
  28. 제1항에 따른 대면적의 단결정 단일막 그래핀을 포함하는 센서.A sensor comprising a large area single crystal graphene graphene according to claim 1.
PCT/KR2014/004517 2013-05-21 2014-05-21 Large-surface-area single-crystal monolayer graphene and production method therefor WO2014189271A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/892,658 US20160108546A1 (en) 2013-05-21 2014-05-21 Large-area single-crystal monolayer graphene film and method for producing the same
CN201480029328.4A CN105229196A (en) 2013-05-21 2014-05-21 Big area monocrystalline single layer graphene film and preparation method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130057105 2013-05-21
KR10-2013-0057105 2013-05-21
KR10-2014-0057218 2014-05-13
KR1020140057218A KR101701237B1 (en) 2013-05-21 2014-05-13 Lare-size Single-crystal Monolayer Graphene and Manufacturing Method Thereof

Publications (1)

Publication Number Publication Date
WO2014189271A1 true WO2014189271A1 (en) 2014-11-27

Family

ID=51933776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004517 WO2014189271A1 (en) 2013-05-21 2014-05-21 Large-surface-area single-crystal monolayer graphene and production method therefor

Country Status (1)

Country Link
WO (1) WO2014189271A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017041401A1 (en) * 2015-09-07 2017-03-16 Peking University Rapid growth of large single-crystal graphene assisted by adjacent oxide substrate
EP3444375A1 (en) * 2017-08-14 2019-02-20 INL - International Iberian Nanotechnology Laboratory Method for formation of a graphene layer
US20190390366A1 (en) * 2017-02-02 2019-12-26 Soitec Process for manufacturing a two-dimensional film of hexagonal crystalline structure
CN114481101A (en) * 2021-12-15 2022-05-13 中南大学 Metal material obtained by method for regulating crystal face orientation of metal coating and application
CN114525581A (en) * 2022-02-11 2022-05-24 中国科学院上海微系统与信息技术研究所 Preparation method of double-layer 30-degree torsion angle graphene single crystal wafer
CN115418714A (en) * 2022-07-18 2022-12-02 华南师范大学 Universal method for preparing single-crystal two-dimensional material on metal substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100021708A1 (en) * 2008-04-14 2010-01-28 Massachusetts Institute Of Technology Large-Area Single- and Few-Layer Graphene on Arbitrary Substrates
US20120196074A1 (en) * 2009-08-31 2012-08-02 Kyushu University Graphene sheet and method for producing the same
EP2540862A1 (en) * 2010-02-26 2013-01-02 National Institute of Advanced Industrial Science And Technology Carbon film laminate
KR20130000964A (en) * 2011-06-24 2013-01-03 삼성전자주식회사 Method for manufacturing graphene
KR20130020351A (en) * 2011-08-19 2013-02-27 한국전기연구원 Fabricaion method of high-quality graphen film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100021708A1 (en) * 2008-04-14 2010-01-28 Massachusetts Institute Of Technology Large-Area Single- and Few-Layer Graphene on Arbitrary Substrates
US20120196074A1 (en) * 2009-08-31 2012-08-02 Kyushu University Graphene sheet and method for producing the same
EP2540862A1 (en) * 2010-02-26 2013-01-02 National Institute of Advanced Industrial Science And Technology Carbon film laminate
KR20130000964A (en) * 2011-06-24 2013-01-03 삼성전자주식회사 Method for manufacturing graphene
KR20130020351A (en) * 2011-08-19 2013-02-27 한국전기연구원 Fabricaion method of high-quality graphen film

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017041401A1 (en) * 2015-09-07 2017-03-16 Peking University Rapid growth of large single-crystal graphene assisted by adjacent oxide substrate
US20190390366A1 (en) * 2017-02-02 2019-12-26 Soitec Process for manufacturing a two-dimensional film of hexagonal crystalline structure
US11913134B2 (en) * 2017-02-02 2024-02-27 Soitec Process for manufacturing a two-dimensional film of hexagonal crystalline structure using epitaxial growth on a transferred thin metal film
EP3444375A1 (en) * 2017-08-14 2019-02-20 INL - International Iberian Nanotechnology Laboratory Method for formation of a graphene layer
CN114481101A (en) * 2021-12-15 2022-05-13 中南大学 Metal material obtained by method for regulating crystal face orientation of metal coating and application
CN114481101B (en) * 2021-12-15 2023-09-29 中南大学 Metal material obtained by method for regulating and controlling crystal face orientation of metal coating and application
CN114525581A (en) * 2022-02-11 2022-05-24 中国科学院上海微系统与信息技术研究所 Preparation method of double-layer 30-degree torsion angle graphene single crystal wafer
CN114525581B (en) * 2022-02-11 2023-10-20 中国科学院上海微系统与信息技术研究所 Preparation method of double-layer 30-degree torsion angle graphene single crystal wafer
CN115418714A (en) * 2022-07-18 2022-12-02 华南师范大学 Universal method for preparing single-crystal two-dimensional material on metal substrate
CN115418714B (en) * 2022-07-18 2024-02-13 华南师范大学 Universal method for preparing monocrystal two-dimensional material on metal substrate

Similar Documents

Publication Publication Date Title
KR101701237B1 (en) Lare-size Single-crystal Monolayer Graphene and Manufacturing Method Thereof
WO2014189271A1 (en) Large-surface-area single-crystal monolayer graphene and production method therefor
Moses Ezhil Raj et al. Spray pyrolysis deposition and characterization of highly (100) oriented magnesium oxide thin films
KR101513136B1 (en) Method for manufacturing graphene film, graphene film manufactured by the method, electronic devices comprising the graphene film
Bartelt et al. Graphene growth on metal surfaces
US8470400B2 (en) Graphene synthesis by chemical vapor deposition
KR102360025B1 (en) Method for forming amorphous carbon monolayer and electronic device having the amorphous carbon monolayer
US9082682B2 (en) Insulating sheet having heterogeneous laminated structure, method of manufacturing the same, and transistor including the insulating sheet
US7960259B2 (en) Semiconductor structure with coincident lattice interlayer
CN104334495A (en) Methods of growing uniform, large-scale, multilayer graphene films
KR20140114199A (en) Heterogeneous layered structure, method for preparing the heterogeneous layered structure, and electric device including the heterogeneous layered structure
KR101466482B1 (en) Etching-free graphene growth method using oxidizable metal
Wang et al. Transparent conducting indium oxide thin films grown by low-temperature metal organic chemical vapor deposition
CN110453195B (en) Boron nitride composite film for metal surface corrosion protection, and preparation method and application thereof
Li et al. Effect of thermal annealing on the optical and structural properties of γ-Al2O3 films prepared on MgO substrates by MOCVD
Le et al. Synthesis and characterization of single-crystalline δ-Ta2O5 epitaxial films on Y-stabilized ZrO2 (111) substrates
Du et al. Thermal evaporation route to zinc stannate nanowires and the cathodoluminescence of the individual nanowires
Zhu et al. Microstructure and transport properties of sol–gel derived highly (100)-oriented lanthanum nickel oxide thin films on SiO2/Si substrate
Scardera et al. Formation of a Si–Si3N4 nanocomposite from plasma enhanced chemical vapour deposition multilayer structures
CN112110440B (en) Preparation method of high-quality uniform multilayer graphene film with specific stacking mode
Wang et al. Microstructure and electrical properties of lanthanum nickel oxide thin films deposited by metallo-organic decomposition method
WO2014209030A1 (en) Method for manufacturing graphene using cover member and method for manufacturing electronic element including same
Ai et al. Microstructure of epitaxial SrRuO3 thin films on MgO substrates
He et al. Large area uniformly oriented multilayer graphene with high transparency and conducting properties derived from highly oriented polyethylene films
Sun et al. Metal-free chemical vapor deposition growth of graphitic tubular structures on engineered perovskite oxide substrates

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480029328.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14800783

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14892658

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14800783

Country of ref document: EP

Kind code of ref document: A1