WO2019221249A1 - 低水分量ポリロタキサンモノマー、および該モノマーを含む硬化性組成物 - Google Patents

低水分量ポリロタキサンモノマー、および該モノマーを含む硬化性組成物 Download PDF

Info

Publication number
WO2019221249A1
WO2019221249A1 PCT/JP2019/019585 JP2019019585W WO2019221249A1 WO 2019221249 A1 WO2019221249 A1 WO 2019221249A1 JP 2019019585 W JP2019019585 W JP 2019019585W WO 2019221249 A1 WO2019221249 A1 WO 2019221249A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
monomer
polyrotaxane
curable composition
photochromic
Prior art date
Application number
PCT/JP2019/019585
Other languages
English (en)
French (fr)
Inventor
康智 清水
川崎 剛美
光喜 戸知
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to CN201980031995.9A priority Critical patent/CN112105676B/zh
Priority to US17/055,270 priority patent/US20210122874A1/en
Priority to KR1020207032666A priority patent/KR20210010455A/ko
Priority to SG11202011161QA priority patent/SG11202011161QA/en
Priority to JP2020519928A priority patent/JP7352540B2/ja
Priority to EP19804383.8A priority patent/EP3795608B1/en
Publication of WO2019221249A1 publication Critical patent/WO2019221249A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/321Polymers modified by chemical after-treatment with inorganic compounds
    • C08G65/323Polymers modified by chemical after-treatment with inorganic compounds containing halogens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
    • B24D11/001Manufacture of flexible abrasive materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • B24D18/0009Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for using moulds or presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/20Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
    • B24D3/28Resins or natural or synthetic macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • C08B37/0015Inclusion compounds, i.e. host-guest compounds, e.g. polyrotaxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3802Low-molecular-weight compounds having heteroatoms other than oxygen having halogens
    • C08G18/3814Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • C08G18/3876Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing mercapto groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • C08G18/6484Polysaccharides and derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/664Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • C08G18/6644Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203 having at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7628Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group
    • C08G18/7642Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the aromatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate groups, e.g. xylylene diisocyanate or homologues substituted on the aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/775Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/007Polyrotaxanes; Polycatenanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1545Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/16Cyclodextrin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • C09K9/02Organic tenebrescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a novel polyrotaxane monomer, a novel curable composition containing the monomer, and a novel cured product obtained from the curable composition.
  • a polyrotaxane has a cyclic molecule and is arranged at both ends of the linear molecule (axial molecule) penetrating the cyclic molecule in a skewered manner, so that the cyclic molecule and the axial molecule are separated (desorbed).
  • axial molecule linear molecule
  • the cyclic molecule can move relatively on the axial molecule, it has various characteristics, particularly excellent mechanical characteristics, and various application developments are expected. In order to impart these characteristics to various materials, many attempts have been made to introduce a polymerizable functional group into the polyrotaxane structure and introduce it into various polymer materials.
  • an optical material such as a contact lens, or as described in Patent Documents 2 to 4
  • a roller can be developed by spreading on a thermosetting polyurethane. Belts, sealings, electronic materials and optical products.
  • the polyrotaxane monomer is used in the following applications. Specifically, it is the field of photochromic eyeglass lenses.
  • a photochromic eyeglass lens is a lens that quickly colors and functions as sunglasses when exposed to light containing ultraviolet rays such as sunlight, and fades and is normally transparent indoors without such light irradiation.
  • the demand has increased.
  • a photochromic composition containing a polyrotaxane monomer has been disclosed as a photochromic composition for photochromic glasses (see Patent Documents 5 to 8).
  • Patent Documents 5 to 8 by incorporating a polyrotaxane monomer into a photochromic composition, mechanical strength is improved by crosslinking of the polyrotaxane monomer, and excellent photochromic properties (color density and fading due to the presence of free space around the polyrotaxane (monomer) are disclosed. Speed). In Patent Documents 5 to 8, some methods for molding such an optical material are also disclosed.
  • the polyrotaxane monomer to a polishing pad material, which is a polishing member, is being studied. Specifically, it is used as a pad material (hereinafter sometimes referred to as a polishing pad) in a CMP (Chemical Mechanical Polishing) method.
  • the CMP method is a polishing method that imparts excellent surface flatness, and is particularly employed in the manufacturing processes of liquid crystal displays (LCDs), glass substrates for hard disks, silicon wafers, and semiconductor devices.
  • the CMP method generally employs a method of polishing by supplying a slurry (polishing liquid) in which abrasive grains are dispersed in an alkali solution or an acid solution during polishing. That is, the object to be polished is flattened by a mechanical action by abrasive grains in the slurry and by a chemical action by an alkali solution or an acid solution.
  • the surface of the polishing object is flattened by supplying the slurry to the surface of the object to be polished and bringing the polishing pad material into contact with the surface while sliding.
  • Patent Document 9 As a material of such a polishing pad, an abrasive obtained from a urethane curable composition is known (see Patent Document 9). Furthermore, an abrasive using p-phenylene diisocyanate as a polyisocyanate compound is known as one that can further improve the wear resistance (see Patent Document 10). If a polyrotaxane monomer is introduced into such a polishing pad material, it can be predicted that a higher performance pad can be produced. In fact, Patent Documents 2 to 4 describe that a urethane resin using a polyrotaxane monomer can be used for a polishing pad because it can exhibit its excellent mechanical properties.
  • the above phenomenon is caused by the quality and physical properties of a cured product such as urethane foam or lens obtained in a curable composition having a relatively large amount of polyrotaxane monomer or a curable composition stored for a long period of time. There was a tendency for variations to occur.
  • an object of the present invention is to provide a polyrotaxane monomer that can produce a high-quality material with high productivity while maintaining the excellent mechanical properties of the polyrotaxane monomer.
  • the inventors of the present invention have made extensive studies in order to solve the above problems. And the identity of the curable composition containing a polyrotaxane monomer was investigated. Usually, the polyrotaxane monomer may not be a main component in the curable composition. In the said use, for example, the conventional urethane foam and lens use, the compounding quantity is 50 mass% or less. Therefore, the impurities of the polyrotaxane monomer in the curable composition have not been considered much. Accordingly, the present inventors paid attention and investigated impurities contained in the polyrotaxane monomer. As a result, it was found that the amount of water contained in the polyrotaxane monomer affects the variation in physical properties of the obtained cured product. And it discovered that the said subject could be solved by setting it as the polyrotaxane monomer below a specific moisture content, and came to complete this invention.
  • the first aspect of the present invention is A polyrotaxane monomer having a complex molecular structure comprising a cyclic molecule and an axial molecule having bulky groups at both ends so as to penetrate the ring of the ring molecule and prevent the ring from leaving, Is a polyrotaxane monomer having a polymerizable functional group and a water content of 5000 ppm or less.
  • the polyrotaxane monomer of this invention may be described as (A) polyrotaxane monomer.
  • a polyrotaxane monomer composition comprising a polyrotaxane monomer having a group and 5000 ppm or less of water.
  • 2nd this invention is a curable composition containing (B) polymerizable monomers other than the said (A) polyrotaxane monomer and the said (A) polyrotaxane monomer.
  • the third aspect of the present invention is a photochromic curable composition further comprising the second aspect of the present invention and (D) a photochromic compound.
  • the fourth aspect of the present invention is a polishing pad obtained by curing the second aspect of the present invention.
  • the fifth aspect of the present invention is a photochromic cured product obtained by curing the third aspect of the present invention.
  • the polyrotaxane monomer of the present invention exhibits a particularly excellent effect when used as a curable composition obtained by mixing with another polymerizable monomer. That is, it is possible to suppress variations in physical properties of a cured body obtained from the curable composition, for example, urethane foam and lenses (particularly, lenses including a photochromic compound) serving as a polishing pad. As a result, the yield of products (urethane foam, lenses) made of the cured product can be improved.
  • the photochromic cured product obtained from the curable composition containing the polyrotaxane monomer exhibits improved photochromic properties and improved productivity.
  • the polishing pad obtained from the curable composition containing the polyrotaxane monomer becomes a pad with less variation while exhibiting excellent polishing characteristics and wear resistance and excellent productivity.
  • the storage stability of the curable composition can also be improved.
  • the polyrotaxane monomer (A) of the present invention has a complex molecular structure composed of a cyclic molecule and an axial molecule having bulky groups at both ends so as not to leave the ring and penetrate the ring of the cyclic molecule. It is a polyrotaxane monomer having a polymerizable functional group in the molecule and having an impurity water content of 5000 ppm or less. In other words, it is a polyrotaxane monomer composition containing a polyrotaxane monomer having a polymerizable group and 5000 ppm or less of water.
  • component (A) The (A) polyrotaxane monomer of the present invention (hereinafter sometimes simply referred to as component (A)) will be described below.
  • a polyrotaxane monomer is a known compound. As shown in FIG. 1, the polyrotaxane molecule indicated as “1” as a whole is composed of a chain axial molecule “2” and a cyclic molecule “ It has a complex molecular structure formed from 3 ". That is, the cyclic molecule “3” includes the chain-shaped axial molecule “2”, and the axial molecule “2” penetrates the inside of the ring of the cyclic molecule “3”.
  • the cyclic molecule “3” can freely slide on the axial molecule “2”, but the end molecules “4” are formed at both ends of the axial molecule “2”, and the cyclic molecule Dropping of “3” from the axial molecule “2” is prevented.
  • the cyclic molecule “3” can slide on the axial molecule “2”. Therefore, if it uses for a photochromic hardening body, it will become easy to form free space around a photochromic compound. Furthermore, it is considered that the slidable effect can exhibit excellent mechanical properties such as improving the wear resistance of the cured body and exhibiting a low hysteresis loss. Therefore, if it is used for a polishing pad agent, excellent polishing characteristics and wear resistance can be exhibited. The reason is not clear, but it is thought that the water content must be set to a specific ratio because it is a polyrotaxane monomer having such unique movement characteristics.
  • the chain structure portion of the axial molecule is straight as long as it can penetrate the ring of the cyclic molecule. It may be a chain or a branched chain and is generally formed of a polymer.
  • Polymers that form such axial molecules include polyvinyl alcohol, polyvinyl pyrrolidone, cellulose resins (carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, etc.), polyacrylamide, polyethylene oxide, polyethylene glycol, polypropylene glycol, polyvinyl acetal, polyvinyl Methyl ether, polyamine, polyethyleneimine, casein, gelatin, starch, olefin resin (polyethylene, polypropylene, etc.), polyester, polyvinyl chloride, styrene resin (polystyrene, acrylonitrile-styrene copolymer resin, etc.), acrylic resin (poly (Meth) acrylate acid, polymethyl methacrylate, polymethyl acrylate, acrylonite -Methyl acrylate copolymer resin), polycarbonate, polyurethane, vinyl chloride, polyvinyl alcohol, polyvinyl pyrrolidone,
  • polyrotaxane monomers (A) used in the present invention those suitable as the polymer for forming the axial molecule are polyethylene glycol, polyisoprene, polyisobutylene, polybutadiene, polypropylene glycol, polytetrahydrofuran, polydimethylsiloxane, polyethylene, polypropylene, polyvinyl. Alcohol or polyvinyl methyl ether, with polyethylene glycol being most preferred.
  • the weight average molecular weight Mw of the axial molecule is 1000 to 100,000, particularly 1500 to 50000, particularly preferably 2000 to 30000.
  • this weight average molecular weight Mw is the value measured by the GPC measuring method described in the following Example.
  • the axial molecule penetrates through the ring of the cyclic molecule and has bulky groups at both ends so that the ring does not leave.
  • the bulky group formed at both ends of the axial molecule is not particularly limited as long as it is a group that prevents the elimination of the cyclic molecule from the axial molecule, but from the viewpoint of bulkiness, an adamantyl group , A trityl group, a fluoresceinyl group, a dinitrophenyl group, and a pyrenyl base, and particularly an adamantyl group in terms of ease of introduction.
  • the cyclic molecule may be any ring having a size that can include the above-described axial molecule.
  • examples of such a ring include a cyclodextrin ring, a crown ether ring, a benzocrown ring, and a dibenzocrown ring.
  • a cyclodextrin ring, and a cyclodextrin ring is particularly preferable.
  • Cyclodextrin rings include ⁇ -form (ring inner diameter 0.45-0.6 nm), ⁇ -form (ring inner diameter 0.6-0.8 nm), and ⁇ -form (ring inner diameter 0.8-0.95 nm). Mixtures of these can also be used.
  • an ⁇ -cyclodextrin ring and a ⁇ -cyclodextrin ring are particularly preferable, and an ⁇ -cyclodextrin ring is most preferable.
  • one or more cyclic molecules are included in one axial molecule.
  • at least one cyclic molecule is included per axial molecule, and when the maximum number of cyclic molecules that can be included is 1, the number of cyclic molecules included is at most 0. 6 or less. More preferably, it is in the range of 0.003 to 0.5.
  • the cyclic molecules are dense with respect to one axial molecule, so that the mobility is lowered and the mechanical properties are deteriorated. Besides the polyrotaxane monomer, the molecular weight is increased.
  • the handleability of the polymerizable composition tends to be lowered, and molding defects of the cured product tend to be manifested.
  • the maximum inclusion number of a cyclic molecule with respect to one axial molecule can be calculated from the length of the axial molecule and the thickness of the ring of the cyclic molecule.
  • the maximum inclusion number is calculated as follows. That is, two repeating units [—CH 2 —CH 2 O—] of polyethylene glycol approximate the thickness of one ⁇ -cyclodextrin ring. Therefore, the number of repeating units is calculated from the molecular weight of the polyethylene glycol, and 1/2 of the number of repeating units is obtained as the maximum inclusion number of the cyclic molecule. This maximum inclusion number is 1.0, and the inclusion number of the cyclic molecule is adjusted to the above-mentioned range.
  • a side chain may be introduced into at least a part of the ring of the cyclic molecule described above. This side chain is indicated by “5” in FIG.
  • the side chain is not particularly limited, but is preferably formed by repeating organic chains having 3 to 20 carbon atoms.
  • the number average molecular weight of such a side chain is, for example, 10,000 or less, preferably 5000 or less. More specifically, the number average molecular weight of such side chains should be in the range of 50 to 10,000, preferably 100 to 8000, more preferably 200 to 5000, most preferably 300 to 1500. is there.
  • the number average molecular weight of this side chain can be adjusted by the amount used at the time of introduction of the side chain and can be obtained by calculation, but can also be obtained from 1 H-NMR measurement.
  • the side chain when the side chain is too small, it is difficult to form a space around the polyrotaxane monomer, and for example, the reversible reaction of the photochromic cured product obtained from the photochromic curable composition tends to be inhibited. Further, when the cured body is used as a polishing pad agent, the flatness accuracy tends to decrease. Furthermore, if the side chain is too small, the compatibility with other polymerizable monomers also tends to decrease. On the other hand, if the side chain is too long, the hardness of the cured product tends to decrease and the wear resistance tends to decrease.
  • the side chain as described above is introduced by modifying the reactive functional group using the reactive functional group of the cyclic molecule (that is, the side chain reacts with the reactive functional group). Introduced).
  • a reactive functional group a hydroxyl group, an amino group, etc. are mentioned, for example, Among these, a hydroxyl group is preferable.
  • the ⁇ -cyclodextrin ring has 18 OH groups (hydroxyl groups) as reactive functional groups, and side chains are introduced through these OH groups (by reacting these OH groups). That is, a maximum of 18 side chains can be introduced into one ⁇ -cyclodextrin ring.
  • 6% to 60% of the total reactive functional groups of the all-cyclic molecule are modified with side chains in order to fully exert the above-mentioned side chain function (all Side chains are preferably introduced into 6% to 60% of all reactive functional groups of the cyclic molecule).
  • modification degree the ratio (%) of the functional group modified by the side chain among all the reactive functional groups which a ring has is also called modification degree.
  • the reactive functional group of the cyclic molecule is less reactive than the OH group of the side chain, so even if the degree of modification is low, compatibility problems and bleed-out problems are unlikely to occur. . Therefore, if the modification degree is within the above range, a more excellent effect is exhibited.
  • the modification degree is 50%.
  • the side chain (organic chain) as described above may be linear or branched as long as the size is in the above-described range.
  • the methods and compounds disclosed in International Publication No. 2015/159875 can be appropriately introduced. Ring-opening polymerization; radical polymerization; cationic polymerization; anionic polymerization; atom transfer radical polymerization; Living radical polymerization such as RAFT polymerization and NMP polymerization can be used.
  • a side chain of an appropriate size can be introduced by reacting an appropriately selected compound with the functional group of the ring.
  • side chains derived from cyclic compounds such as lactone compounds and cyclic ethers can be introduced by ring-opening polymerization.
  • a side chain introduced by ring-opening polymerization of a cyclic compound such as a lactone compound or a cyclic ether an OH group is introduced as a group having active hydrogen at the end of the side chain.
  • cyclic ether or a lactone compound from the viewpoint of easy availability, high reactivity, and easy adjustment of the size (molecular weight).
  • suitable cyclic compounds are as follows.
  • Cyclic ether Ethylene oxide, 1,2-propylene oxide, epichlorohydrin, epibromohydrin, 1,2-butylene oxide, 2,3-butylene oxide, isobutylene oxide, oxetane, 3-methyloxetane, 3,3-dimethyloxetane, Tetrahydrofuran, 2-methyltetrahydrofuran, 3-methyltetrahydrofuran and the like.
  • Lactone compounds 4-membered ring lactones such as ⁇ -propiolactone, ⁇ -methylpropiolactone, L-serine- ⁇ -lactone and the like.
  • 5-membered ring lactones such as ⁇ -butyrolactone, ⁇ -hexanolactone, ⁇ -heptanolactone, ⁇ -octanolactone, ⁇ -decanolactone, ⁇ -dodecanolactone, ⁇ -hexyl- ⁇ -butyrolactone, ⁇ -heptyl - ⁇ -butyrolactone, ⁇ -hydroxy- ⁇ -butyrolactone, ⁇ -methyl- ⁇ -decanolactone, ⁇ -methylene- ⁇ -butyrolactone, ⁇ , ⁇ -dimethyl- ⁇ -butyrolactone, D-erythronolactone, ⁇ -methyl- ⁇ -Butyrolactone, ⁇ -nonanolactone, DL-pantolactone, ⁇ -phenyl- ⁇ -butyrolactone, ⁇ -undecanolactone, ⁇ -valerolactone, 2,2-pentamethylene-1,3-dioxolan-4
  • 6-membered ring lactones such as ⁇ -valerolactone, ⁇ -hexanolactone, ⁇ -octanolactone, ⁇ -nonanolactone, ⁇ -decanolactone, ⁇ -undecanolactone, ⁇ -dodecanolactone, ⁇ -tridecanolactone, ⁇ -tetradecanolactone, DL-mevalonolactone, 4-hydroxy-1-cyclohexanecarboxylic acid ⁇ -lactone, monomethyl- ⁇ -valerolactone, monoethyl- ⁇ -valerolactone, monohexyl- ⁇ -valerolactone, 1,4-dioxane -2-one, 1,5-dioxepane-2-one, etc.
  • 7-membered lactones such as non-alkyl- ⁇ -caprolactone, dialkyl- ⁇ -caprolactone, monomethyl- ⁇ -caprolactone, monoethyl- ⁇ -caprolactone, monohexyl- ⁇ -caprolactone, dimethyl- ⁇ -caprolactone, di-n-propyl- ⁇ -caprolactone, di-n-hexyl- ⁇ -caprolactone, trimethyl- ⁇ -caprolactone, triethyl- ⁇ -caprolactone, tri-n- ⁇ -caprolactone, ⁇ -caprolactone, 5-nonyl-oxepan-2-one, 4, 4,6-trimethyl-oxepan-2-one, 4,6,6-trimethyl-oxepan-2-one, 5-hydroxymethyl-oxepan-2-one and the like.
  • 8-membered ring lactone such as ⁇ -enanthate lactone.
  • lactones such as lactone, lactide, dilactide, tetramethylglycoside, 1,5-dioxepan-2-one, t-butylcaprolactone, etc.
  • the above cyclic compounds can be used alone or in combination of two or more.
  • the side chain-introducing compound preferably used is a lactone compound, and lactones such as ⁇ -caprolactone, ⁇ -acetyl- ⁇ -butyrolactone, ⁇ -methyl- ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -butyrolactone, etc.
  • lactones such as ⁇ -caprolactone, ⁇ -acetyl- ⁇ -butyrolactone, ⁇ -methyl- ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -butyrolactone, etc.
  • the compound is particularly preferred, most preferred is ⁇ -caprolactone.
  • a reactive functional group for example, a hydroxyl group
  • a hydroxypropylation is performed by reacting a low molecular compound such as propylene oxide with a reactive functional group to obtain a functional group (hydroxyl group) rich in reactivity.
  • the hydroxypropylated moiety can also be regarded as a side chain.
  • side chains derived from cyclic compounds such as cyclic acetals, cyclic amines, cyclic carbonates, cyclic imino ethers, and cyclic thiocarbonates by ring-opening polymerization, introducing side chains having active hydrogen groups.
  • cyclic compounds such as cyclic acetals, cyclic amines, cyclic carbonates, cyclic imino ethers, and cyclic thiocarbonates.
  • a method for introducing a side chain into a cyclic molecule using radical polymerization is as follows.
  • the reactive functional group (OH group, etc.) possessed by the ring is reacted with a compound for forming a radical initiation point, thereby becoming the radical initiation point. It is necessary to form a site.
  • an organic halogen compound is representative, for example, 2-bromoisobutyryl bromide, 2-bromobutyric acid, 2-bromopropionic acid, 2-chloropropion. And acid, 2-bromoisobutyric acid, epichlorohydrin, epibromohydrin, 2-chloroethyl isocyanate, and the like. That is, such an organic halogen compound is bonded to the ring by a condensation reaction with the reactive functional group of the ring of the cyclic molecule, and a group containing a halogen atom (organic halogen compound residue) is introduced into the ring. To do. In this organic halogen compound residue, radicals are generated by the movement of halogen atoms or the like during radical polymerization, and this serves as a radical polymerization starting point and radical polymerization proceeds.
  • organic halogen compound residue radicals are generated by the movement of halogen atoms or the like during radical polymerization, and this serves as a radical poly
  • the group having an active site that serves as a radical polymerization initiation point (organic halogen compound residue) as described above is, for example, an amine, a carboxylic acid, an isocyanate, an imidazole, an acid anhydride, etc. It can also be introduced by reacting a compound having a functional group, introducing a functional group other than a hydroxyl group, and reacting the above-described organic halogen compound with the other functional group.
  • a radically polymerizable compound used for introducing a side chain by radical polymerization at least one functional group such as a (meth) acrylate group, a vinyl group, or a styryl group having an ethylenically unsaturated bond is used.
  • the compound having (hereinafter referred to as an ethylenically unsaturated monomer) is preferably used.
  • an oligomer or polymer having a terminal ethylenically unsaturated bond hereinafter referred to as a macromonomer
  • a macromonomer an oligomer or polymer having a terminal ethylenically unsaturated bond
  • the side chain after introducing the side chain of the terminal OH group by the above-described ring-opening polymerization, it has both a functional group capable of reacting with the OH group of the side chain and the radical polymerizable group. If a compound is used, it is possible to introduce a radical polymerizable group. Of course, even the terminal OH group becomes a polymerizable functional group.
  • Examples of the functional group capable of reacting with the OH group include an isocyanate group (—NCO group), a carboxyl group (—COOH), and an acid chloride group (eg, —COCl group).
  • a radical polymerizable group is introduced through a urethane bond.
  • a radical polymerizable group is introduced through an ester bond by reacting a compound having a carboxyl group and an acid chloride group.
  • the compound having a radical polymerizable group examples include 2-isocyanatoethyl methacrylate, 2-isocyanatoethyl acrylate, 1,1- (bisacryloyloxy) as the compound having an isocyanate group and a (meth) acrylate group. And methyl) ethyl isocyanate.
  • a compound having an acid chloride (—COCl group) and a (meth) acrylate group can be synthesized by reacting a compound having a carboxyl group and a (meth) acrylate group with a chlorinating agent such as thionyl chloride.
  • a chlorinating agent such as thionyl chloride.
  • Examples of the compound having a carboxyl group and a (meth) acrylate group include 2-methacryloyloxyethyl succinate and ⁇ -carboxyethyl acrylate.
  • the side chain of the terminal OH group is changed by the above-described ring-opening polymerization.
  • an alkyl group having 2 to 20 carbon atoms, an alkyleneoxy group having 2 to 30 carbon atoms, or 6 to 20 carbon atoms It is preferable to have an aryl group or the like. Specific examples of the above compounds are shown below.
  • an isocyanate compound having 2 to 20 carbon atoms (excluding the carbon atom of the isocyanate group) is preferable from the viewpoint of easy availability of raw materials and high reactivity with OH groups.
  • Ten isocyanate compounds are particularly suitable.
  • Specific examples of suitable isocyanate compounds include n-propyl isocyanate, n-butyl isocyanate, n-pentyl isocyanate, n-hexyl isocyanate, and phenyl isocyanate.
  • carboxylate chloride a carboxylate chloride having 2 to 20 carbon atoms (excluding the carbon atom of the carbonyl group) is preferable from the viewpoint of easy availability of raw materials and high reactivity with OH groups.
  • carboxylic acid chlorides are particularly suitable.
  • suitable acid chlorides include acetyl chloride, propionyl chloride, butyryl chloride, pivaloyl chloride, hexanoyl chloride, benzoyl chloride and the like.
  • a side chain When a side chain is introduced into a cyclic molecule using a radical polymerizable compound, if the radical polymerizable compound has another functional group, the side chain also has a group having the functional group. It will be. Even when only a radically polymerizable group is present in the side chain, after the side chain is formed by the radically polymerizable compound, a part of the side chain may be modified with a group having a functional group other than the radically polymerizable group. For example, a functional group other than a radical polymerizable group can be introduced into the side chain.
  • the side chain introduced into the ring of the cyclic compound may have various functional groups.
  • a cross-linked structure may be formed.
  • the polyrotaxane monomer of the present invention has a polymerizable functional group in the molecule.
  • the polymerizable functional group may be introduced into any part of the polyrotaxane monomer, but is preferably introduced into the side chain from the viewpoint of reactivity with the polymerizable monomer (B) described later.
  • Examples of the polymerizable functional group include a hydroxyl group, a thiol group, an amino group, an epoxy group, a (meth) acrylate group, and an iso (thio) cyanate group.
  • the polymerizable functional group is not particularly limited, but the most preferable in the present invention is at least one group selected from a hydroxyl group (OH group) and a (meth) acrylate group. That is, the polyrotaxane monomer has, as a polymerizable functional group, a case where only an OH group is included, a case where only a (meth) acrylate group is included, a case where both a OH group and a (meth) acrylate group are included, and the like.
  • OH group when the terminal of the side chain introduced when the reactive functional group of the cyclic molecule is reacted is a hydroxyl group, it may be used as a polymerizable functional group as it is.
  • a (meth) acrylate group it can be introduced at the end of the side chain according to the above method.
  • the number of polymerizable functional groups is not particularly limited. Especially, since the outstanding effect is exhibited when a polyrotaxane part is introduce
  • the polymerizable functional group is included in the above-described cyclic molecule or introduced using the above-described side chain.
  • the terminal of the side chain becomes a polymerizable functional group and two or more thereof exist.
  • the upper limit of the number of polymerizable functional groups is not particularly limited, but the number of moles of polymerizable functional groups introduced at the end of the side chain is 10 mmol / g with respect to the weight average molecular weight of the polyrotaxane monomer. It is a number.
  • the value measured by the gel permeation chromatography (GPC) explained in full detail below is used for a weight average molecular weight.
  • the polyrotaxane monomer (A) can freely move by sliding a cyclic molecule having a side chain within the range of the axial molecule.
  • the cured product obtained by curing the curable composition obtained by mixing with the polymerizable monomer (B) described in detail below has such a part having a specific mobility, It is thought that moisture does not exist uniformly but may exist locally. As a result, it is considered that the obtained cured product is likely to vary in its physical properties.
  • the amount of water contained in the (A) polyrotaxane monomer is smaller, but it is preferably 3000 ppm or less, and more preferably 1500 ppm or less.
  • the lower limit of the moisture content is not particularly limited, but is 100 ppm in consideration of the productivity of (A) polyrotaxane monomer.
  • the present invention is a composition containing a polyrotaxane monomer having a polymerizable group in the molecule and water, and the composition contains 5000 ppm or less of water.
  • the (A) polyrotaxane monomer preferably used is Polyethylene glycol bonded to both ends with adamantyl groups as axial molecules, a cyclic molecule having an ⁇ -cyclodextrin ring, and a side chain (terminal OH group) is introduced into the ring by polycaprolactone, Those having an OH group or (meth) acrylate group introduced as a polymerizable functional group at the terminal, and most preferably those having an OH group at the terminal are most preferably used. .
  • the number average molecular weight of the axial molecule is 2000-50000
  • Side chains are introduced by polycaprolactone in 6% to 60% of the hydroxyl groups of the ⁇ -cyclodextrin ring, and the number average molecular weight of the side chains is preferably 300 to 600.
  • the number of polymerizable functional groups at the end of the side chain is 2 to 5 mmol / g in the molecule.
  • the moisture content is preferably 100 to 1500 ppm.
  • (A) Production Method of Polyrotaxane Monomer In the present invention, the following method can be adopted as the production method of the (A) polyrotaxane monomer. Specifically, after the polyrotaxane monomer is produced by a known method, it is mixed with an aromatic solvent that can be azeotroped with water, azeotropically dehydrated, and dried to reduce the water content to 5000 ppm or less. preferable. In particular, when the polyrotaxane monomer contains a large amount of hydroxyl groups as the polymerizable functional group, it is preferable to employ the production method as described above because it easily contains water.
  • the aromatic solvent benzene, toluene, xylene and the like can be used, and it is preferable to use toluene in consideration of operability.
  • the polyrotaxane monomer containing water and the aromatic solvent are different from each other in the amount of the aromatic solvent used depending on the amount of the water. It is preferable to mix 50 to 1000 parts by mass of an aromatic solvent. And what is necessary is just to reduce water while distilling an aromatic solvent under a normal pressure or pressure reduction.
  • (B) polymerizable monomer other than (A) polyrotaxane monomer will be described (hereinafter, it may be simply referred to as “(B) polymerizable monomer” or “(B) component”).
  • the curable composition of the present invention preferably contains (A) a polyrotaxane monomer and (B) a polymerizable monomer other than the (A) polyrotaxane monomer.
  • the polymerizable monomer (B) only needs to have at least one polymerizable compound capable of reacting with the (A) polyrotaxane monomer, and can be used without any limitation.
  • various polymerizable functional groups can be introduced into the (A) polyrotaxane monomer. Accordingly, the polymerizable monomer (B) may be selected. Examples thereof include (B) polymerizable monomers described in International Publication No. 2015/068798.
  • (B ) an iso (thio) cyanate compound having an iso (thio) cyanate group (hereinafter simply referred to as “(B1) iso (thio) cyanate compound” or “(B1) component”). In some cases).
  • (B2) an epoxy group-containing monomer having an epoxy group (hereinafter simply referred to as “(B2) epoxy” "Group-containing monomer” or “(B2) component” may be selected).
  • the polymerizable functional group of the (A) polyrotaxane monomer is an iso (thio) cyanate group
  • (B3) a (thi) ol compound having at least one group selected from a hydroxyl group and a thiol group (Hereinafter, it may be simply referred to as “(B3) (thio) ol compound” or “(B3) component”)), and (B4) an amino group-containing monomer having an amino group (simply referred to as “(B4) amino group-containing monomer”). Or “(B4) component”).
  • the iso (thio) cyanate group refers to an isocyanate group (NCO group) or an isothiocyanate group (NCS group). Therefore, when there are a plurality of iso (thio) cyanate groups, the total number of isocyanate groups and isothiocyanate groups may be plural.
  • the (B) polymerizable monomer is preferably a monomer having a radical polymerizable group, and particularly has a (meth) acrylate group. It is preferable to select from (meth) acrylate compounds.
  • the water content of the polymerizable monomer (B) is preferably 3000 ppm or less.
  • the water content is preferably 3000 ppm (mass ppm) or less with respect to the total amount of the (B) polymerizable monomers.
  • the water content of the polymerizable monomer (B) is more preferably 2000 ppm or less, and further preferably 1000 ppm or less.
  • the lower limit of the moisture content of the polymerizable monomer is not particularly limited, it is 10 ppm.
  • the (B) polymerizable monomer is a known monomer, and may be reduced by employing a known method in order to reduce the water content.
  • the iso (thio) cyanate compound is a monomer having at least one isocyanate group or isothiocyanate group.
  • a monomer having two groups of an isocyanate group and an isothiocyanate group is also selected.
  • a compound having 2 to 6 iso (thio) cyanate groups in the molecule is preferable, a compound having 2 to 4 is more preferable, and a compound having 2 is more preferable.
  • the (B1) iso (thio) cyanate compound is prepared by the reaction of a bifunctional polyiso (thio) cyanate compound and a bifunctional poly (thio) ol compound described below (B12) urethane prepolymer ( Hereinafter, it may be simply “(B12) urethane prepolymer” or “(B12) component”).
  • B12) urethane prepolymer corresponding to the iso (thio) cyanate compound those generally used containing an unreacted iso (thio) cyanate group can be used in the present invention without any limitation.
  • the (B1) iso (thio) cyanate compound can be broadly classified into, for example, aliphatic isocyanate, alicyclic isocyanate, aromatic isocyanate, isothiocyanate compound, and (B12) urethane prepolymer. Moreover, the said (B1) iso (thio) cyanate compound can also use 1 type of compound, and can also use multiple types of compound. When using a plurality of types of compounds, the reference mass is the total amount of the plurality of types of compounds. Specific examples of these iso (thio) cyanate compounds include the following monomers.
  • Aliphatic isocyanate Component (B1) Ethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, octamethylene diisocyanate, nonamethylene diisocyanate, 2,2′-dimethylpentane diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate , Decamethylene diisocyanate, butene diisocyanate, 1,3-butadiene-1,4-diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, 1,6,11-trimethylundecamethylene diisocyanate, 1,3,6-trimethyl Hexamethylene diisocyanate, 1,8-diisocyanate-4-isocyanate methyloctane, 2,5,7-trimethyl-1 8-diisocyanate-5-isocyanate methyl octane, bis (isocyanate eth
  • (B1) Component Isophorone diisocyanate, (bicyclo [2.2.1] heptane-2,5-diyl) bismethylene diisocyanate, (bicyclo [2.2.1] heptane-2,6-diyl) Bismethylene diisocyanate, 2 ⁇ , 5 ⁇ -bis (isocyanate) norbornane, 2 ⁇ , 5 ⁇ -bis (isocyanate) norbornane, 2 ⁇ , 6 ⁇ -bis (isocyanate) norbornane, 2 ⁇ , 6 ⁇ -bis (isocyanate) norbornane, 2,6-di ( Isocyanatomethyl) furan, bis (isocyanatomethyl) cyclohexane, dicyclohexylmethane-4,4′-diisocyanate, 4,4-isopropylidenebis (cyclohexyl isocyanate), cyclohexane diisocyanate, methylcyclohexanediiso
  • Aromatic isocyanate (B1) component xylylene diisocyanate (o-, m-, p-), tetrachloro-m-xylylene diisocyanate, methylenediphenyl-4,4'-diisocyanate, 4-chloro-m-xylylene diisocyanate 4,5-dichloro-m-xylylene diisocyanate, 2,3,5,6-tetrabromo-p-xylylene diisocyanate, 4-methyl-m-xylylene diisocyanate, 4-ethyl-m-xylylene diisocyanate, bis (Isocyanatoethyl) benzene, bis (isocyanatopropyl) benzene, 1,3-bis ( ⁇ , ⁇ -dimethylisocyanatomethyl) benzene, 1,4-bis ( ⁇ , ⁇ -dimethylisocyanatomethyl) benzene, ⁇ , ⁇ ,
  • Monofunctional isocyanate monomers such as phenyl isocyanate, 3-i-propenyl cumyl isocyanate, 4-methoxyphenyl isocyanate, m-tolyl isocyanate, p-tolyl isocyanate, 1-naphthyl isocyanate and dimethylbenzyl isocyanate.
  • Isothiocyanate compound (B1) component Bifunctional iso (thio) cyanate group-containing monomers such as p-phenylene diisothiocyanate, xylylene-1,4-diisothiocyanate, and ethylidine diisothiocyanate (detailed below) B12) constitutes a urethane prepolymer (B13) corresponds to a bifunctional polyiso (thio) cyanate group-containing monomer).
  • the (B13) bifunctional polyiso (thio) cyanate group-containing monomer and (B32) described later The (B12) urethane prepolymer obtained by reacting with bifunctional poly (thi) ol can also be used as the (B1) iso (thio) cyanate compound.
  • the weight average molecular weight of the component (B12) is preferably 600 to 10,000.
  • Epoxy group-containing monomer (B2) Epoxy group-containing monomer; (B2) component
  • the epoxy group-containing monomer has an epoxy group in the molecule as a polymerizable group, and in particular, (A) a hydroxyl group, a polymerizable functional group of a polyrotaxane monomer, This is suitable when an NH 2 group or an NCO group is introduced.
  • Such epoxy compounds are roughly classified into aliphatic epoxy compounds, alicyclic epoxy monomers, and aromatic epoxy monomers, and suitable specific examples thereof are described in International Publication No. 2015/068798. Things can be used.
  • ol compound is a monomer having one or more groups selected from the group consisting of OH groups and SH groups in one molecule. Of course, a monomer having two groups of OH group and SH group is also selected.
  • the (thio) ol compounds can be broadly classified into aliphatic alcohol, alicyclic alcohol, aromatic alcohol, polyester polyol, polyether polyol, polycaprolactone polyol, polycarbonate polyol, polyacryl polyol, thiol, OH / SH type. It is classified as a polymerizable group-containing monomer. Specific examples include the following.
  • Aliphatic alcohol; component (B3) ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butylene glycol, 1,5-dihydroxypentane, 1,6-dihydroxyhexane, 1,7-dihydroxyheptane, 1,8-dihydroxyoctane 1,9-dihydroxynonane, 1,10-dihydroxydecane, 1,11-dihydroxyundecane, 1,12-dihydroxydodecane, neopentyl glycol, glyceryl monooleate, monoelaidin, polyethylene glycol, 3-methyl-1, Bifunctional polyol monomers such as 5-dihydroxypentane, dihydroxyneopentyl, 2-ethyl-1,2-dihydroxyhexane, 2-methyl-1,3-dihydroxypropane (Corresponding to bifunctional poly (thi) ol (B32) constituting repolymer (B12)), Glycerin, trimethylol
  • (B3) Component Hydrogenated bisphenol A, cyclobutanediol, cyclopentanediol, cyclohexanediol, cycloheptanediol, cyclooctanediol, cyclohexanedimethanol, hydroxypropylcyclohexanol, tricyclo [5,2,1,0 2,6 ] decane-dimethanol, bicyclo [4,3,0] -nonanediol, dicyclohexanediol, tricyclo [5,3,1,13,9] dodecanediol, bicyclo [4,3,0] nonane Methanol, tricyclo [5,3,1,1 3,9 ] dodecane-diethanol, hydroxypropyltricyclo [5,3,1,1 3,9 ] dodecanol, spiro [3,4] octanediol, butylcyclohexanedi
  • Polyester polyol; (B3) component The compound obtained by the condensation reaction of a polyol and a polybasic acid is mentioned.
  • the number average molecular weight is preferably 400 to 2000, more preferably 500 to 1500, and most preferably 600 to 1200.
  • Those having hydroxyl groups only at both ends of the molecule (two in the molecule) correspond to the (B12) bifunctional poly (thio) ol constituting the (B12) urethane prepolymer.
  • Polyether polyol; Component (B3) Examples include compounds obtained by ring-opening polymerization of alkylene oxide, or a compound obtained by reaction of a compound having two or more active hydrogen-containing groups in the molecule with alkylene oxide, and a modified product thereof.
  • the number average molecular weight is preferably 400 to 2000, more preferably 500 to 1500, and most preferably 600 to 1200.
  • Those having hydroxyl groups only at both ends of the molecule (two in the molecule) correspond to the (B12) bifunctional poly (thio) ol constituting the (B12) urethane prepolymer.
  • Polycaprolactone polyol; (B3) component A compound obtained by ring-opening polymerization of ⁇ -caprolactone is exemplified.
  • the number average molecular weight is preferably 400 to 2000, more preferably 500 to 1500, and most preferably 600 to 1200.
  • Those having hydroxyl groups only at both ends of the molecule (two in the molecule) correspond to the (B12) bifunctional poly (thio) ol constituting the (B12) urethane prepolymer.
  • Polycarbonate polyol; (B3) component A compound obtained by phosgenating one or more kinds of low-molecular polyols or a compound obtained by transesterification using ethylene carbonate, diethyl carbonate, diphenyl carbonate or the like can be mentioned.
  • the number average molecular weight is preferably 400 to 2000, more preferably 500 to 1500, and most preferably 600 to 1200.
  • Those having hydroxyl groups only at both ends of the molecule (two in the molecule) correspond to the (B12) bifunctional poly (thio) ol constituting the (B12) urethane prepolymer.
  • Polyacryl polyol; (B3) component A polyol compound obtained by polymerizing a (meth) acrylate ester or a vinyl monomer. Those having hydroxyl groups only at both ends of the molecule (two in the molecule) correspond to the (B12) bifunctional poly (thio) ol constituting the (B12) urethane prepolymer.
  • the amino group-containing monomer is a monomer having one or more primary or secondary amino groups in one molecule, and can be broadly classified. Are classified into aliphatic amines, alicyclic amines, and aromatic amines, and specific examples thereof include the following monomers.
  • Aliphatic amine Component (B4) Polyamines such as ethylenediamine, hexamethylenediamine, nonamethylenediamine, undecanemethylenediamine, dodecanemethylenediamine, metaxylenediamine, 1,3-propanediamine, putrescine, diethylenetriamine and the like.
  • Monofunctional amines such as monoethylamine, n-propylamine, diethylamine, di-n-propylamine, n-propylamine, di-n-butylamine, and n-butylamine.
  • Alicyclic amine (B4) component Polyamines such as isophorone diamine and cyclohexyl diamine.
  • Monofunctional amines such as cyclohexylamine and N-methylcyclohexylamine.
  • Curable composition containing (B1) component, (B2) component, (B3) component, and (B4) component
  • (B1) component, (B2) component, (B3) component, and (B4) component when the polymerizable functional group in the polyrotaxane monomer (A) is not a radical polymerizable group, but is polymerized and cured by polycondensation or polyaddition reaction to produce a cured product, The following blending ratio is preferable.
  • the total amount of the component (B1), the component (B2), the component (B3), and the component (B4) (hereinafter sometimes simply referred to as “total amount of the component (B)”), ( It is preferable to contain 3 to 50 parts by mass of component (A) and 50 to 97 parts by mass of the total amount of component (B) with respect to 100 parts by mass in total with component A).
  • the (A) polyrotaxane monomer at this ratio, it is possible for the obtained cured body to exhibit excellent polishing characteristics and mechanical characteristics in the case of a polishing pad.
  • a photochromic cured product containing a photochromic compound it is possible to exhibit excellent photochromic properties and mechanical properties.
  • the component (A) is in the range of 5 to 45 parts by mass and the total amount of the component (B) is in the range of 55 to 95 parts by mass.
  • the component (B1) is 0 to 95% by mass
  • the component (B2) is 0 to 100% by mass
  • the component (B3) is 0 to 80% by mass
  • ( B4) Component 0 to 30% by mass is preferable because it exhibits excellent mechanical properties.
  • the component (B1) is 25 to 85% by mass
  • the component (B2) is 0 to 5% by mass
  • the component (B3) is 15 to 70% by mass
  • the component (B4) is 0 to 20% by mass. Is particularly preferred.
  • the following blending ratio may be used.
  • the component (B1) when used for a polishing pad (for example, a CMP polishing pad), the component (B1) is 40 to 85% by mass, the component (B2) is 0 to 5% by mass, and the component (B3) is 0 to The content is preferably 35% by mass and the component (B4) 0 to 20% by mass.
  • a photochromic cured product for example, for optical articles such as spectacle lenses
  • the content is preferably 70% by mass, and 0 to 15% by mass of the component (B4).
  • the curable composition of the present invention may contain (B5) a radical polymerizable monomer.
  • the (B5) radical polymerizable monomer (hereinafter sometimes simply referred to as component (B5)) is not particularly limited as long as it has a radical polymerizable group. Radical polymerizable monomers can be broadly classified into (meth) acrylate compounds having a (meth) acrylate group, vinyl compounds having a vinyl group, and allyl compounds having an allyl group.
  • radical polymerizable monomer those described in International Publication No. WO2015 / 068798 can be used. Furthermore, among them, the following compounds can be particularly preferably used as examples of radical polymerizable compounds that can be used more suitably in the present invention.
  • (B51); (Meth) acrylate compound (B51) (Meth) acrylate compound (hereinafter sometimes simply referred to as “component (B51)”) is represented by, for example, the following formulas (1) to (4): Compounds.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 2 carbon atoms
  • R 3 represents a trivalent to hexavalent organic group having 1 to 10 carbon atoms.
  • A is an average number from 0 to 3
  • b is a number from 3 to 6.
  • the alkyl group having 1 or 2 carbon atoms represented by R 2 is preferably a methyl group.
  • Examples of the organic group represented by R 3 include a group derived from a polyol, a trivalent to hexavalent hydrocarbon group, and an organic group containing a trivalent to hexavalent urethane bond.
  • Examples include trimethylolpropane trimethacrylate and ditrimethylolpropane tetramethacrylate.
  • R 4 and R 5 are each a hydrogen atom or a methyl group, and c and d are each an integer of 0 or more.
  • c + d is an average value of 2 or more and less than 7
  • R 4 is a methyl group and R 5 is a hydrogen atom
  • c + d is an average value of 2
  • c + d is an average value of 2 or more and less than 3.
  • Examples include tripropylene glycol dimethacrylate and tetrapropylene glycol dimethacrylate.
  • R 6 and R 7 are each a hydrogen atom or a methyl group
  • R 8 and R 9 are each a hydrogen atom or a methyl group
  • R 10 is a hydrogen atom or a halogen atom
  • B Are —O—, —S—, — (SO 2 ) —, —CO—, —CH 2 —, —CH ⁇ CH—, —C (CH 3 ) 2 —, —C (CH 3 ) (C 6 H 5 ) ⁇
  • e and f are each an integer of 1 or more
  • e + f is an average value of 2 or more and 30 or less.
  • the polymerizable monomer represented by the above formula (3) is usually obtained in the form of a mixture of molecules having different molecular weights. Therefore, e and f are shown as average values.
  • g is an average value of 1 to 20 and A and A ′ may be the same or different from each other, each being a linear or branched alkylene group having 2 to 15 carbon atoms,
  • the plurality of A may be the same group or different groups
  • R 11 is a hydrogen atom or a methyl group
  • R 12 is (meth) acryloyl.
  • the compound represented by the above formula (4) can be produced by reacting polycarbonate diol and (meth) acrylate acid.
  • the most preferred form is a reaction of a polycarbonate diol having a number average molecular weight of 500, which is a mixture of pentamethylene glycol and hexamethylene glycol, and acrylic acid, and R 12 is a monomer having an acryloyloxy group. Is mentioned.
  • Silserquioxane monomer has various molecular structures such as cage, ladder, and random, and is radically polymerizable such as (meth) acrylate group. Mono having a group is preferred.
  • silserquioxane compounds include those represented by the following formula (5).
  • h is a degree of polymerization and is an integer of 3 to 100
  • a plurality of R 13 may be the same or different from each other, and are a radical polymerizable group, an organic group containing a radical polymerizable group, hydrogen It is an atom, an alkyl group, a cycloalkyl group, an alkoxy group or a phenyl group, and at least one R 13 is a radical polymerizable group or an organic group containing a radical polymerizable group.
  • the radical polymerizable group represented by R 13 or the organic group containing a radical polymerizable group includes (meth) acrylate group; (meth) acryloyloxypropyl group, (3- (meth) acryloyloxypropyl) dimethyl Examples thereof include organic groups having a (meth) acrylate group such as a siloxy group.
  • UX-2201, UX3204, include the UX4101,6101,7101,8101.
  • the vinyl compound include styrene, ⁇ -methylstyrene, ⁇ -methylstyrene dimer, and the like.
  • R 13 is an organic group having a vinyl group, such as a vinyl group; a vinylpropyl group, a vinyldimethylsiloxy group, or the like can be given.
  • allyl compound examples include methoxypolyethylene glycol allyl ether (especially average molecular weight 550), methoxypolyethylene glycol allyl ether (particularly average molecular weight 350), methoxypolyethylene glycol allyl ether (particularly average molecular weight 1500), and the like. It is done.
  • silsesquioxane monomer examples include compounds in which R 13 is an allyl group; an organic group having an allyl group such as an allylpropyl group or an allylpropyldimethylsiloxy group.
  • Radical polymerization / isocyanate group-containing monomer (B54) component 2-isocyanatoethyl methacrylate, 2-isocyanatoethyl acrylate and the like.
  • polymerizable monomers described above can be used without any limitation.
  • episulfide monomer, thietanyl monomer, and mono (thi) ol monomer can be used.
  • episulfide monomer, the thietanyl monomer, and the mono (thi) ol monomer those described in International Publication No. WO2015 / 068798 can be used.
  • the curable composition containing the component (B5) that is, when the polymerizable functional group in the (A) polyrotaxane monomer is a radical polymerizable group,
  • the following blending ratio is preferable.
  • the total amount of the component (A) is 2 to 50 parts by mass and the total amount of the component (B5) is 50 to 98 parts by mass with respect to 100 parts by mass in total of the component (B5) and the component (A). It is preferable to contain.
  • the (A) polyrotaxane monomer at this ratio, in the case of a photochromic cured product containing a photochromic compound, excellent photochromic properties and mechanical properties can be expressed.
  • the component (A) is in the range of 3 to 40 parts by mass and the total amount of the component (B) is in the range of 60 to 97 parts by mass.
  • the component (B5) when the total amount of the component (B5) is 100% by mass, the component (B51) is 77 to 99% by mass, the component (B52) is 0 to 15% by mass, the component (B53) is 0 to 5% by mass, and ( B54) Component 1 to 3% by mass is preferred for the moldability of the cured product.
  • the component (B511) is 5 to 50% by mass
  • the component (B512) is 0 to 60% by mass
  • the component (B513) From 0 to 70% by mass, (B514) component 0 to 20% by mass, (B515) component 0 to 20% by mass, and (B516) component 10 to 70% by mass are preferable because of excellent photochromic properties.
  • the curable composition of this invention contains an above-described (A) polyrotaxane monomer and (B) polymeric monomer.
  • (B) It is preferable to select suitably the kind of polymeric monomer according to the kind of polymeric functional group which a polyrotaxane monomer has.
  • the (B) polymerizable monomer preferably contains (B1) an iso (thio) cyanate compound.
  • polymerizable monomer is added to (B1) iso (thio) cyanate compound, (B2) epoxy group-containing monomer, (B3) (thi) ol compound, and (B4) More preferably, it contains at least one monomer selected from amino group-containing monomers.
  • the polymerizable monomer is at least selected from (B1) iso (thio) cyanate compound, (B3) (thi) ol compound, and (B4) amino group-containing monomer. More preferably, it contains one monomer.
  • the (B) polymerizable monomer when the (A) polyrotaxane monomer contains a radical polymerizable group such as a (meth) acrylate group, the (B) polymerizable monomer preferably contains (B5) a radical polymerizable monomer.
  • the polymerizable functional group of the (A) polyrotaxane monomer contains a (meth) acrylate group
  • the (B) polymerizable monomer is preferably a (meth) acrylate compound.
  • the (A) polyrotaxane monomer and (B) polymerizable monomer other than the polyrotaxane may be appropriately selected depending on the intended use.
  • the polymerizable functional group of the (A) polyrotaxane monomer is preferably selected from an OH group, an SH group, or a radical polymerizable group, and (B) polymerization
  • the reactive monomer is preferably selected from (B1) an iso (thio) cyanate compound, (B5) a radical polymerizable monomer, and the like.
  • the polymerizable functional group of the (A) polyrotaxane monomer is an OH group or an SH group
  • the (B3) (thi) ol compound may be used in combination. preferable. By doing so, excellent mechanical properties and photochromic properties can be expressed.
  • the particularly high effect of the present invention is obtained when (B1) iso (thio) cyanate compound is used as the (B) polymerizable monomer.
  • the polymerizable functional group of the (A) polyrotaxane monomer is preferably selected from OH groups
  • the (B) polymerizable monomer is selected from (B1) iso (thio) cyanate compounds. It is preferred that In particular, when used for a polishing pad material, it is preferable that (B12) urethane prepolymer is included among (B1) iso (thio) cyanate compounds. By doing so, the mechanical properties of the polishing pad material can be improved, and particularly good wear resistance properties can be exhibited.
  • the water content of the polymerizable monomer (B) used is preferably 3000 ppm or less. By doing so, the effect of the present invention can be further extracted.
  • the lower limit of the water content of the polymerizable monomer is not particularly limited, it is preferably 50 ppm, and preferably 10 ppm.
  • (C) Polymerization curing accelerator For example, (A) The polymerizable functional group possessed by the polyrotaxane monomer is a polymerizable group such as OH group, amino group, epoxy group, and SH group, and (B) When the component is selected from (B1) iso (thio) cyanate compounds, (C1) a reaction catalyst for urethane or urea and (C2) a condensing agent are used as polymerization curing accelerators.
  • the polymerizable functional group possessed by the polyrotaxane monomer is a polymerizable functional group such as OH group, amino group and NCO group
  • component is (B2) an epoxy group-containing monomer or episulfide monomer.
  • C3 an epoxy curing agent or (C4) a cationic polymerization catalyst for ring-opening polymerization of an epoxy group is used as a polymerization curing accelerator.
  • (A) The case where the polymerizable functional group possessed by the polyrotaxane monomer is an NCO group or an NCS group, and the component (B) is from (B3) (thi) ol compound and (B4) amino group-containing monomer.
  • (C1) a reaction catalyst for urethane or urea or (C2) a condensing agent is used as a polymerization curing accelerator.
  • polymerization accelerators (C1) to (C5) that can be suitably used in the present invention include those described in International Publication No. WO2015 / 068798.
  • (C) polymerization curing accelerators can be used alone or in combination of two or more, but the amount used can be a so-called catalytic amount.
  • (A) polyrotaxane and (B ) A small amount in the range of 0.001 to 10 parts by mass, particularly 0.01 to 5 parts by mass, per 100 parts by mass of the polymerizable monomers.
  • (D) Photochromic compound You may mix
  • the cured product obtained by curing the curable composition of the present invention may contain (D) a photochromic compound in the cured product depending on the application.
  • a photochromic cured product obtained by curing a photochromic curable composition is known.
  • the photochromic cured product can be suitably used for photochromic glasses and the like.
  • the photochromic compound known photochromic compounds can be used.
  • indeno [2 from the viewpoint of photochromic properties such as color density, initial colorability, durability, and fading speed. It is more preferable to use a chromene compound having a 1-f] naphtho [1,2-b] pyran skeleton, and a chromene compound having a molecular weight of 540 or more is particularly preferred because it is particularly excellent in color density and fading speed.
  • (D) photochromic compounds can be used alone or in combination of two or more.
  • the amount of use may be appropriately determined according to the application. For example, 0.001 to 20 parts by mass, particularly 0.01 to 10 parts by mass per 100 parts by mass of the total of (A) polyrotaxane and (B) polymerizable monomer. The range of parts is preferred.
  • the curable composition of the present invention may use various known compounding agents as long as the effects of the present invention are not impaired.
  • An antifoaming agent, a solvent, a leveling agent, and other additives may be added. These additives may be used alone or in combination of two or more. These additives can be contained in the curable composition, and can be contained in the cured product by polymerizing the curable composition.
  • abrasive grains specifically, particles made of a material selected from cerium oxide, silicon oxide, alumina, silicon carbide, zirconia, iron oxide, manganese dioxide, titanium oxide and diamond, or two of these materials are used. Examples of the particles include seeds or more.
  • a known method can be adopted as the polymerization method.
  • the conditions described in International Publication No. 2015/068798, International Publication No. 2016/143910 and JP-A-2017-48305 can be employed.
  • the conditions described in International Publication Nos. 2014/136804 and 2015/068798 can be employed.
  • the cured product in the present invention has a structure in which a polyrotaxane or a photochromic compound blended as necessary is dispersed in a matrix resin.
  • the matrix resin can be (thio) urethane depending on the type of the (B) polymerizable monomer.
  • Various types such as resin and (meth) acrylic resin can be selected.
  • the cured product obtained by curing the curable composition is a (thio) urethane resin. It has a structure in which polyrotaxane is dispersed therein.
  • the water content of the (A) polyrotaxane monomer blended in the curable composition is 5000 ppm or less, a cured product having an excellent appearance is easily obtained, and productivity is improved.
  • (D) a photochromic compound is used, that is, when a polyrotaxane and a photochromic compound are dispersed in a (thio) urethane resin, the water content of the (A) polyrotaxane monomer blended in the curable composition is 5000 ppm. By being below, it becomes the external appearance excellent and the color density tends to become high.
  • the (A) polyrotaxane monomer contains a radical polymerizable group such as a (meth) acrylate group
  • the (B) polymerizable monomer preferably contains the (B5) radical polymerizable monomer.
  • a radical polymerizable monomer is used as the polymerizable monomer
  • the storage stability of the curable composition is improved by setting the water content of the (A) polyrotaxane monomer to 5000 ppm or less. Even when a photochromic compound is included in the composition and stored for a long period of time, the photochromic properties of the photochromic cured product are maintained well.
  • the curable composition contains (D) a photochromic compound, a photochromic cured product can be produced by polymerization and curing as it is.
  • the hardening body which hardened the curable composition of this invention may provide a pore in a hardening body according to the use.
  • a polishing pad is known.
  • a known and known foaming method or the like can be used without any limitation.
  • volatile foaming agents such as low-boiling hydrocarbons, a method of dispersing and hardening hollow particles such as micro hollow bodies (micro balloons), and the like after mixing thermally expandable fine particles
  • Examples thereof include a foaming method, or a mechanical froth foaming method in which an inert gas such as air or nitrogen is blown during mixing.
  • the density of the matrix resin such as urethane resin is preferably 0.4 to 0.9 g / cm 3 .
  • a foaming agent foaming method in which water or the like is added can also be applied.
  • a desired foaming rate can be obtained by setting the water content of the polyrotaxane monomer to 5000 ppm or less.
  • cured material contains hollow particles, such as the above-mentioned micro hollow body (microballoon). That is, it is preferable to polymerize and cure a curable composition containing hollow particles to produce a cured product containing hollow particles.
  • the matrix resin in the cured body is preferably a urethane resin, and as the curable composition for obtaining the cured body, it is preferable to use a curable composition capable of forming a urethane resin.
  • known particles can be used without any limitation.
  • the hollow particles are preferably composed of an outer shell portion and a hollow portion surrounded by the outer shell portion.
  • the outer shell is usually formed of a resin. Specific examples thereof include vinylidene chloride resin, (meth) acrylic resin, a copolymer of acrylic monomer and vinylidene chloride, and a copolymer of acrylonitrile and vinylidene chloride. A polymer, an epoxy resin, a phenol resin, a melamine resin, a urethane resin, etc. are mentioned.
  • the outer shell portion of the hollow particles is preferably made of a urethane resin, and specifically, a hollow composed of an outer shell portion made of a urethane resin and a hollow portion surrounded by the outer shell portion.
  • the urethane-based resin is a resin having a urethane bond and / or a urea bond. When these hollow particles are used, a uniform foam can be produced efficiently and easily, defects such as scratches are less likely to occur, and hysteresis loss is reduced.
  • the hollow particles may have a hydrophilic group.
  • a cured product made of the curable composition of the present invention for example, a cured product in which the matrix resin is a urethane resin, is used as a polishing pad
  • the hollow particles have a hydrophilic group, The compatibility can be improved, and the polishing characteristics can be improved.
  • the hydrophilic group includes at least one ion selected from the group consisting of a hydroxyl group, a thiol group, or an ionic group (carboxyl ion, sulfonate ion, phosphate ion, phosphonate ion, and quaternary ammonium cation). And the like).
  • the average particle diameter of the hollow particles is not particularly limited, but is preferably in the following range. Specifically, the thickness is preferably 1 ⁇ m to 500 ⁇ m, more preferably 5 ⁇ m to 200 ⁇ m. Further, the density of the hollow particles is not particularly limited, but is preferably in the following range. Specifically, it is preferably 0.01 g / cm 3 to 0.5 g / cm 3 , more preferably 0.02 g / cm 3 to 0.3 g / cm 3 .
  • the density is the density of the hollow particles when expanded. In the case of hollow particles that are unexpanded particles and expand by heat when mixed and cured with the curable composition, the density when expanded is preferably the above-described density.
  • the blending amount of the hollow particles may be appropriately determined according to the intended use. That is, since it is not an essential component, it may not be included.
  • the hollow particles preferably have the following blending amounts with respect to the total amount of the monomer components.
  • the total amount of each monomer component refers to the total amount of (A) component and (B) component.
  • the compounding quantity of a hollow particle shall be 0.001 mass part or more and 20 mass parts or less with respect to 100 mass parts of total amounts of each monomer component.
  • the further excellent effect is exhibited by mix
  • the cured body of the present invention can have any appropriate hardness. Hardness can be measured according to the Shore method, for example, according to JIS standard (hardness test) K6253.
  • the cured product of the present invention is used in a polishing pad or the like, it preferably has a Shore hardness of 20A to 90D. Further, it is preferably 30A to 70D, more preferably 40A to 50D (“A” indicates the hardness on the Shore “A” scale, and “D” indicates the hardness on the Shore “D” scale). .
  • the cured product of the present invention when used as a polishing pad, it preferably has a Shore A hardness of 20 or more, more preferably a Shore A hardness of 30 or more, still more preferably a Shore A hardness of 40 or more, and preferably Has a Shore D hardness of 90 or less, more preferably a Shore D hardness of 70 or less, and even more preferably a Shore D hardness of 50 or less.
  • Hardness should just have arbitrary hardness by changing a compounding composition and a compounding quantity as needed.
  • the cured product of the curable composition of the present invention when used for a polishing pad or the like, it is preferable that the cured product has a compressibility within a certain range in order to express the flatness of the object to be polished.
  • the compression rate can be measured, for example, by a method based on JISL 1096.
  • the compression rate when the cured product of the present invention is used in a polishing pad or the like is preferably 0.5% to 50%. It becomes possible to express the flatness of the outstanding to-be-polished object by being in the said range.
  • the hysteresis loss of the cured product is preferably 60% or less, more preferably 50% or less, and 40% or less. More preferably.
  • the hysteresis loss can be measured, for example, by a method based on JIS K 6251. Specifically, a test piece prepared in a dumbbell shape is stretched 100% and then returned to its original state, thereby reducing hysteresis loss (elongation when stretched and restored, stress area / stretch when stretched) Stress area ⁇ 100) can be measured.
  • Hysteresis loss is low, and when used as a polishing pad, it is assumed that the kinetic energy of the abrasive grains can be used uniformly for polishing the object to be polished, and thus exhibits excellent flatness and a high polishing rate. It becomes possible. Furthermore, it is considered that an excellent polishing rate can be exhibited even with a soft pad by reducing hysteresis loss.
  • a polishing layer formed of a plurality of layers may be provided.
  • the polishing layer includes a first layer having a polishing surface that comes into contact with an object to be polished when polishing, and a surface facing the polishing surface of the first layer.
  • a second layer in contact with the first layer may be used.
  • the physical properties of the first layer can be adjusted because the second layer has a hardness and an elastic modulus different from those of the first layer. For example, by changing the hardness of the first layer and the hardness of the second layer, it is possible to adjust the polishability of the object to be polished.
  • the cured body of the present invention may be a so-called fixed abrasive cured body by containing abrasive grains inside as a constituent element.
  • abrasive grains include particles made of a material selected from cerium oxide, silicon oxide, alumina, silicon carbide, zirconia, iron oxide, manganese dioxide, titanium oxide, and diamond, or two or more kinds of particles made of these materials. Is mentioned. Further, these abrasive grains having a modified surface can also be used.
  • the cured body of the present invention when used for a polishing pad or the like, compatibility with a slurry or water during polishing is improved and polishing characteristics are improved by using abrasive grains having a hydrophilic group modified on the surface.
  • the hydrophilic group includes at least one ion selected from the group consisting of a hydroxyl group, a thiol group, or an ionic group (carboxyl ion, sulfonate ion, phosphate ion, phosphonate ion, and quaternary ammonium cation). And the like).
  • the holding method of these abrasive grains is not particularly limited. For example, after the curable composition is dispersed in the curable composition, the curable composition can be held inside the urethane resin.
  • a groove structure can be formed on the surface thereof.
  • the groove structure is not particularly limited as long as it retains and renews the slurry when the member to be polished is polished.
  • X (striped) grooves XY lattice grooves, concentric circular grooves, through holes , Non-penetrating holes, polygonal columns, cylinders, spiral grooves, eccentric circular grooves, radial grooves, and combinations of these grooves.
  • the method for producing the groove structure is not particularly limited.
  • a method of machine cutting using a jig such as a tool of a predetermined size, pouring a resin into a mold having a predetermined surface shape, and curing Using a press plate having a predetermined surface shape, a method for producing a resin by pressing, a method for producing using photolithography, a method for producing using a printing technique, a carbon dioxide laser, etc. Examples include a manufacturing method using laser light.
  • the cured product of the present invention can also be used as a nonwoven fabric urethane resin polishing pad obtained by, for example, impregnating a curable composition capable of forming the urethane resin of the present invention into a nonwoven fabric and then curing.
  • the cured body using the urethane resin of the present invention as a matrix resin can be used for a buffer material, a vibration damping material, a sound absorbing material, and the like in addition to the above-described polishing pad.
  • the curable composition used in the present invention can be applied to the nonwoven fabric polishing pad, the cushioning material, the vibration damping material, and the sound absorbing material by applying or impregnating the nonwoven fabric and then curing. .
  • dimethylformamide (DMF) was used as a developing solution, and measurement was performed under conditions of a flow rate of 1 ml / min and a temperature of 40 ° C.
  • Polystyrene was used as a standard sample, and the weight average molecular weight was determined by comparative conversion.
  • a differential refractometer was used as the detector.
  • the water content was measured by the Karl Fischer method.
  • the apparatus used for the measurement and the measurement conditions are as follows.
  • Apparatus Automatic moisture measuring apparatus KF-31 (manufactured by Mitsubishi Chemical Analytech).
  • Method Karl Fischer volumetric titration method.
  • Titration reagent Aquamicron titrant SS-Z (manufactured by Mitsubishi Chemical Corporation).
  • Solvent Aquamicron dehydrated solvent KTX (manufactured by Mitsubishi Chemical Corporation).
  • the slurry reagent obtained above was allowed to stand at 4 ° C. for 12 hours. Thereafter, 50 ml of a DMF / methanol mixed solvent (volume ratio 1/1) was added, mixed and centrifuged, and the supernatant was discarded. Further, after washing with the above DMF / methanol mixed solution, washing with methanol and centrifugation were performed to obtain a precipitate.
  • the obtained precipitate was dried by vacuum drying, and then dissolved in 50 mL of DMSO (dimethyl sulfoxide). The obtained transparent solution was dropped into 700 mL of water to precipitate polyrotaxane. The precipitated polyrotaxane was collected by centrifugation and vacuum dried. Further, it was dissolved in DMSO, precipitated in water, collected and dried to obtain a purified polyrotaxane.
  • the inclusion number of ⁇ -CD at this time is 0.25.
  • X The integrated value of protons derived from hydroxyl groups of 4 to 6 ppm of cyclodextrin.
  • Y Integral value of proton derived from methylene chain of 3-4 ppm cyclodextrin and PEG.
  • X / (YX) Proton ratio of cyclodextrin to PEG First, X / (YX) is theoretically calculated in advance when the maximum inclusion number is 1, and from this value and the analysis value of the actual compound The inclusion number was calculated by comparing the calculated X / (Y ⁇ X).
  • the degree of modification of the cyclic molecule to the OH group by the hydroxypropyl group was 0.5, and the weight average molecular weight Mw was 50000 by GPC measurement.
  • a mixed solution was prepared by dissolving 5 g of the obtained hydroxypropylated polyrotaxane in 15 g of ⁇ -caprolactone at 80 ° C. The mixture was stirred at 110 ° C. for 1 hour while blowing dry nitrogen, 0.16 g of a 50 wt% xylene solution of tin (II) 2-ethylhexanoate was added, and the mixture was stirred at 130 ° C. for 6 hours. Thereafter, xylene was added to obtain a polycaprolactone-modified polyrotaxane xylene solution into which a side chain having a nonvolatile concentration of about 35% by mass was introduced.
  • Example 2 It was obtained in the same manner as in Example 1 except that the amount of toluene used in the (1-5) water content reduction step of Example 1 was changed to 10 g.
  • the physical properties of this polyrotaxane (A); RX-2 were as follows. Polyrotaxane weight average molecular weight Mw (GPC): 200000. Degree of side chain modification: 0.5 (expressed in%, 50%). Side chain molecular weight: about 350 on average. Water content: 3000ppm Number of inclusions of cyclic molecules: 0.25 (A) a polyrotaxane monomer having an adamantyl group at both ends of the axial molecule and a hydroxyl group at the end of the side chain. The results are summarized in Table 1.
  • Example 3 In the (1-5) water content reduction step of Example 1, it was obtained in the same manner as in Example 1 except that the amount of toluene used was changed to 5 g.
  • the physical properties of this polyrotaxane (A); RX-3 were as follows. Polyrotaxane weight average molecular weight Mw (GPC): 200000. Degree of side chain modification: 0.5 (expressed in%, 50%). Side chain molecular weight: about 350 on average. Water content: 5000ppm Number of inclusions of cyclic molecules: 0.25 (A) a polyrotaxane monomer having an adamantyl group at both ends of the axial molecule and a hydroxyl group at the end of the side chain. The results are summarized in Table 1.
  • Example 4 The linear polyethylene glycol of Example 1 was obtained in the same manner as in Example 1 except that the molecular weight was 35000 and ⁇ -caprolactone was 30 g.
  • the physical properties of this polyrotaxane (A); RX-4 were as follows. Polyrotaxane weight average molecular weight Mw (GPC): 700,000. Degree of side chain modification: 0.5 (expressed in%, 50%). Side chain molecular weight: about 500 on average. Water content: 800ppm Number of inclusions of cyclic molecules: 0.25 (A) a polyrotaxane monomer having an adamantyl group at both ends of the axial molecule and a hydroxyl group at the end of the side chain. The results are summarized in Table 1.
  • Example 5 Preparation of Acrylate Group-Introduced Side Chain Modified Polyrotaxane Monomer
  • the polycaprolactone modified polyrotaxane (RX-4) prepared in Example 4 was used. 10.0 g of polycaprolactone-modified polyrotaxane (RX-4) was dissolved in 50 ml of methyl ethyl ketone, 5 mg of dibutylhydroxytoluene (polymerization inhibitor) was added, and 1.94 g of 2-acryloyloxyethyl isocyanate was added dropwise. 10 mg of dibutyltin dilaurate was added as a catalyst and stirred at 70 ° C.
  • Example 1 is a polyrotaxane monomer (RX) that has not been subjected to the water content reduction step.
  • RX polyrotaxane monomer
  • the physical properties of this polyrotaxane monomer; RX were as follows. Polyrotaxane weight average molecular weight Mw (GPC): 200000. Degree of side chain modification: 0.5 (expressed in%, 50%). Side chain molecular weight: about 350 on average. Water content: 10000ppm Number of inclusions of cyclic molecules: 0.25 It is a polyrotaxane monomer having an adamantyl group at both ends of the axial molecule and a hydroxyl group at the end of the side chain. The results are summarized in Table 1.
  • Example 4 it is the polyrotaxane monomer which did not perform the water content reduction process. Other than that was manufactured by the same method as Example 4.
  • the physical properties of this polyrotaxane monomer (RX-6) were as follows. Polyrotaxane weight average molecular weight Mw (GPC): 700,000. Degree of side chain modification: 0.5 (expressed in%, 50%). Side chain molecular weight: about 500 on average. Water content: 12000ppm Number of inclusions of cyclic molecules: 0.25 It is a polyrotaxane monomer having an adamantyl group at both ends of the axial molecule and a hydroxyl group at the end of the side chain. The results are summarized in Table 1.
  • Example 5 In Example 5, instead of RX-4, the polycaprolactone-modified polyrotaxane (RX-6) prepared in Comparative Example 2 was used. Otherwise, a polyrotaxane monomer (RX-7) in which an acrylate group was introduced into the side chain as a radical polymerizable group was produced in the same manner as in Example 5.
  • the physical properties of this polyrotaxane monomer (RX-7) were as follows. Side chain molecular weight: about 600 on average. Polyrotaxane monomer weight average molecular weight Mw (GPC): 880000. Acrylate group modification rate (ratio of acrylate groups introduced into OH groups at the end of the side chain): 85 mol%.
  • (B1) Iso (thio) cyanate compound
  • IPDI Isophorone diisocyanate.
  • XDI m-xylene diisocyanate.
  • Pre-1 a terminal isocyanate urethane prepolymer having an iso (thio) cyanate equivalent weight of 905.
  • Production method of Pre-1 In a nitrogen atmosphere, a flask equipped with a nitrogen introduction tube, a thermometer, and a stirrer was charged with 50 g of 2,4-tolylene diisocyanate (number average molecular weight; 1000) and 90 g of diethylene glycol in a nitrogen atmosphere. , And reacted at 80 ° C. for 6 hours to obtain a terminal isocyanate urethane prepolymer having an iso (thio) cyanate equivalent weight of 905 (Pre-1 was obtained).
  • PL1 Duranol (polycarbonate diol, number average molecular weight 500) manufactured by Asahi Kasei Chemicals Corporation.
  • PL2 Duranol (polycarbonate diol, number average molecular weight 800) manufactured by Asahi Kasei Chemicals Corporation.
  • TMP trimethylolpropane.
  • Pemp pentaerythritol tetrakis (3-mercaptopropionate).
  • PELE23 polyoxyethylene lauryl ether (n ⁇ 23).
  • (B5) Radical polymerizable monomer (B511) Component TMPT: trimethylolpropane trimethacrylate.
  • Component 3PG tripropylene glycol dimethacrylate.
  • Component 9G polyethylene glycol dimethacrylate (the average chain length of the ethylene glycol chain is 9, and the average molecular weight is 536).
  • 14G Polyethylene glycol dimethacrylate (average chain length of ethylene glycol chain is 14, average molecular weight is 736).
  • EB4858 Bifunctional urethane methacrylate (acrylic equivalent is 227) manufactured by Daicel UCB.
  • Component ⁇ MS ⁇ -methylstyrene.
  • Perocta O 1,1,3,3-tetramethylbutyl peroxy-2-ethylhexanate (trade name: Perocta O, manufactured by NOF Corporation).
  • PI phenylbis (2,4,6-trimethylbenzoyl) -phosphine oxide (trade name: Irgacure 819, manufactured by BASF).
  • ⁇ Hollow particles> 920-40 Microcapsule 920-40 (manufactured by Nippon Philite Co., Ltd.) having a density of 0.03 g / cm 3 .
  • Hollow particles 2 urethane resin microcapsules with a density of 0.13 g / cm 3 .
  • the hollow particle 2 is a microcapsule whose outer shell portion is made of a urethane resin.
  • the obtained microballoon is a urethane balloon made of urethane resin having a particle size of 50 ⁇ m and a density of 0.15 g / cm 3 .
  • Example 6 Using the polyrotaxane monomer described above, a phorocomic curable composition was prepared according to the following formulation. Each component was mixed to obtain a uniform liquid (photochromic curable composition). Each compounding amount is shown in Table 1.
  • the water content of (B) polymerizable monomer was 1500 ppm or less.
  • the polymerization method is shown below. That is, after the uniform liquid is sufficiently degassed, it is poured into a mold mold comprising a mold made of a glass mold having a mold release treatment and a gasket made of ethylene-vinyl acetate copolymer. did. Next, the glass mold into which the monomer was poured into the oven was allowed to stand so that the convex surface would be down, and cured over 15 hours while gradually raising the temperature from 30 ° C to 95 ° C. After the polymerization was completed, the photochromic cured product was removed from the mold glass mold. This operation was performed to prepare 50 photochromic cured bodies. The blending ratio of each component is summarized in Table 2.
  • the appearance evaluation of the obtained photochromic cured product was 1, and the L scale Rockwell hardness (HL) was 95. Furthermore, the photochromic properties of the obtained photochromic cured product were a maximum absorption wavelength of 594 nm, a color density of 0.62, and a fading speed of 75 seconds.
  • the appearance evaluation (moldability), L scale Rockwell hardness, maximum absorption wavelength, color density, and color fading rate were evaluated as follows. The evaluation results are summarized in Table 3.
  • Maximum absorption wavelength ( ⁇ max) This is the maximum absorption wavelength after color development determined by a spectrophotometer (instant multichannel photodetector-MCPD1000) manufactured by Otsuka Electronics Co., Ltd. The maximum absorption wavelength is related to the color tone at the time of color development. Average values are shown in the table.
  • Color density ⁇ (120) ⁇ (0) ⁇ difference between absorbance ⁇ (120) ⁇ after light irradiation for 120 seconds and absorbance ⁇ (0) before light irradiation at the maximum absorption wavelength . It can be said that the higher this value, the better the photochromic properties. Further, when the color was developed outdoors, the color tone was visually evaluated. Average values are shown in the table.
  • Fading speed [t1 / 2 (sec.)]: When light irradiation is stopped after 120 seconds of light irradiation, the absorbance at the maximum absorption wavelength of the sample is ⁇ (120) ⁇ (0) ⁇ . Time required to drop to 1/2 of It can be said that the shorter this time is, the better the photochromic property is. Average values are shown in the table.
  • Example 7, Example 8, Comparative Example 4 A photochromic cured product was prepared and evaluated in the same manner as in Example 6 except that the photochromic curable composition having the composition shown in Table 2 was used. The blending ratio of each component is summarized in Table 2. The evaluation results are shown in Table 3. In Examples 7 and 8 and Comparative Example 4, the water content of the (B) polymerizable monomer was 1500 ppm or less.
  • the cured product obtained by polymerizing the photochromic curable composition prepared using the polyrotaxane monomer of the present invention has improved productivity while exhibiting excellent photochromic properties.
  • Example 9 Using the polyrotaxane monomer described above, a phorocomic curable composition was prepared according to the following formulation. Each component was mixed to obtain a uniform liquid (photochromic curable composition). Table 4 shows the blending amounts.
  • a thiourethane plastic lens having a center thickness of about 2 mm, a spherical power of ⁇ 6.00 D, and a refractive index of 1.60 was prepared.
  • This thiourethane plastic lens was previously alkali-etched at 50 ° C. for 5 minutes using a 10% aqueous sodium hydroxide solution, and then thoroughly washed with distilled water.
  • the photochromic curable composition was dropped onto the surface of the plastic lens rotated at 2000 rpm. Thereafter, the polymer was cured by heating at 120 ° C. for 3 hours to obtain a photochromic laminate comprising a plastic lens and a photochromic cured product laminated on the surface of the plastic lens.
  • the film thickness of the photochromic cured product (photochromic layer) was about 30 ⁇ m. According to this method, 50 photochromic laminates were produced.
  • the obtained photochromic laminate has an appearance evaluation of 1, Vickers hardness of 13 (average value), photochromic properties (these are average values), a maximum absorption wavelength of 595 nm, a color density of 0.85, and a fading speed. It was 50 seconds.
  • the appearance and Vickers hardness were evaluated by the following methods, and the photochromic characteristics were measured by the method shown in Example 6. The evaluation results are shown in Table 5.
  • Vickers hardness The Vickers hardness of the obtained photochromic cured product (photochromic layer) was measured using a micro Vickers hardness meter PMT-X7A (manufactured by Matsuzawa Co., Ltd.). A square pyramid diamond indenter was used as the indenter, and the evaluation was performed under the conditions of a load of 10 gf and an indenter holding time of 30 seconds. The measurement results were shown as an average value of a total of 3 times after performing a total of 4 measurements and excluding the first value with a large measurement error. Average values are shown in the table.
  • Example 5 A photochromic laminate was prepared and evaluated in the same manner as in Example 9 except that the photochromic curable composition having the composition shown in Table 4 was used. The blending ratio of each component is summarized in Table 4. The evaluation results are shown in Table 5. (B) The water content of the polymerizable monomer was 1500 ppm or less.
  • the cured product obtained by polymerizing the photochromic composition prepared using the polyrotaxane monomer of the present invention enables improvement in productivity while exhibiting excellent photochromic properties.
  • a photochromic curable composition was prepared according to the following formulation. According to the following formulation, each component was charged into a reactor and reacted at 120 ° C. for 5 hours in a nitrogen atmosphere. Prescription; (B1) Iso (thio) cyanate compound: 24 parts by mass of IPDI (B3) (thio) ol compound: 61 parts by mass of PL2 (others) Solvent: 300 parts by mass of DMF Component B4): 4 parts by mass of IPDA was added dropwise and reacted at 25 ° C. for 1 hour. Thereafter, 11 parts by mass of (A) polyrotaxane monomer (A): RX-1 was further added and reacted at 100 ° C. to obtain a polyurethane-urea resin (U1).
  • a photochromic laminated sheet was produced by the binder method using the obtained photochromic curable composition. That is, the photochromic curable composition described above was applied onto a sheet made of a fluororesin having a smooth surface, dried at 80 ° C. for 1 hour, and the resulting photochromic sheet made of a 30 ⁇ m-thick photochromic cured body was 400 ⁇ m thick
  • a photochromic laminated sheet was obtained by sandwiching between two polycarbonate sheets.
  • the obtained photochromic laminated sheet had a sheet moldability evaluation of 1, a maximum absorption wavelength of 590 nm, a color density of 0.96, and a fading speed of 49 seconds.
  • the sheet formability was evaluated by the method described below.
  • the photochromic characteristics were evaluated in the same manner as in Example 5. The results are shown in Table 7.
  • Sheet moldability evaluation The presence or absence of air bubbles in 50 photochromic laminated sheets (50 mm ⁇ 50 mm) was confirmed. 1: 0 out of 50 sheets. 2: 1-2 of 50 sheets. 3: 3 to 4 out of 50 sheets. 4: 5 to 10 out of 50 sheets.
  • the cured product obtained by polymerizing the photochromic curable composition prepared using the polyrotaxane monomer of the present invention can improve productivity while exhibiting excellent photochromic properties.
  • the obtained mixed liquid (photochromic curable composition) was subjected to a storage stability test at 30 ° C. for 6 months under light shielding.
  • a polymerization initiator was added to the mixed solution after storage according to the following formulation.
  • the blending ratio of each component is shown in Table 8.
  • (B) The water content of the polymerizable monomer was 1500 ppm or less.
  • the obtained mixed liquid (photochromic curable composition containing a polymerization initiator) was mixed with a glass plate and ethylene-vinyl acetate copolymer.
  • the mixture was poured into a mold made of a gasket made of a coalescence, and poured into a mold made of a mold made of a gasket made of a curved glass mold and an ethylene-vinyl acetate copolymer.
  • the glass mold in which the monomer was injected into the oven was allowed to stand so that the convex surface would be down, and it was cured by heating while gradually raising the temperature from 30 ° C. to 90 ° C. over 18 hours.
  • the photochromic cured body (lens) was removed from the glass mold of the mold.
  • a photochromic cured product is manufactured by blending a polymerization initiator immediately after preparing the same photochromic curable composition as described above, without storing it. And it was set as a comparative object.
  • the evaluation of the appearance of the photochromic cured product obtained from the photochromic curable composition subjected to the storage stability test was 1, and the L scale Rockwell hardness (HL) was 70. Furthermore, the photochromic properties of the obtained photochromic cured product were a maximum absorption wavelength of 588 nm, a color density of 0.95, and a fading speed of 50 seconds. These were the same values as those of the photochromic cured product obtained from the photochromic composition not subjected to the storage stability test.
  • the photochromic composition prepared using the polyrotaxane monomer of the present invention exhibits excellent storage stability while exhibiting excellent photochromic properties.
  • a leveling agent and a radical polymerizable monomer were added to the mixed solution after storage in the following formulation, and uniform stirring and defoaming were performed to obtain a photochromic curable composition.
  • Table 10 shows the blending ratio of each component.
  • the water content of the polymerizable monomer was 1500 ppm or less. Prescription;
  • a thiourethane plastic lens having a center thickness of about 2 mm, a spherical power of ⁇ 6.00 D, and a refractive index of 1.60 was prepared.
  • This thiourethane plastic lens was previously alkali-etched at 50 ° C. for 5 minutes using a 10% aqueous sodium hydroxide solution, and then thoroughly washed with distilled water.
  • the photochromic curable composition was dropped onto the surface of the plastic lens rotated at 2000 rpm.
  • the lens having the surface coated with the photochromic curable composition was irradiated with light for 90 seconds in a nitrogen gas atmosphere using a metal halide lamp with an output of 200 mW / cm 2 to cure the coating film.
  • the mixture was further heated at 110 ° C. for 1 hour to obtain a photochromic laminate (lens) having a photochromic layer.
  • the film thickness of the photochromic layer was about 30 ⁇ m.
  • Each lens (a lens obtained by performing a storage stability test and a lens obtained without performing a storage stability test) was evaluated for appearance, Vickers hardness, and photochromic characteristics in the same manner as in Example 9. The results are shown in Table 11.
  • the appearance of the photochromic laminate obtained from the photochromic coating composition subjected to the storage stability test is 1, the Vickers hardness is 5.5, the photochromic characteristics are a maximum absorption wavelength of 590 nm, a color density of 0.97, and a fading speed of 50 seconds. Met. These values were the same values as the photochromic laminate (lens) obtained from the photochromic curable composition that was not subjected to the storage stability test.
  • the photochromic curable composition prepared using the polyrotaxane monomer of the present invention exhibits excellent storage stability while exhibiting excellent photochromic properties.
  • Example 13 A polishing pad composition was prepared according to the following formulation using a polyrotaxane monomer.
  • the component (A) RX-1 (24 parts by mass) and the component (B4) MOCA (5 parts by mass) were mixed at 120 ° C. to obtain a homogeneous solution, which was sufficiently degassed and cooled to 100 ° C. (Solution 1).
  • Add 920-40 (0.8 parts by mass) of the other components to Pre-1 (71 parts by mass) of component (B12) heated to 70 ° C., and stir with a rotating and rotating stirrer to obtain a uniform solution (Solution 2) was obtained.
  • the solution 1 was added to the solution 2 prepared above and mixed uniformly to obtain a curable composition.
  • the curable composition was poured into a mold and cured at 100 ° C. for 15 hours.
  • the urethane resin was removed from the mold and sliced to obtain a polishing pad made of a urethane resin having a thickness of 2 mm or 1 mm. Each blending amount is shown in Table 12.
  • the water content of the polymerizable monomer was 1500 ppm or less.
  • Amine monomer 5 parts by mass of MOCA.
  • Polishing rate Polishing conditions are shown below. 30 wafers were used. Polishing pad: A pad having a size of 380 mm ⁇ and a thickness of 1 mm, in which spiral grooves are formed on the surface. Object to be polished: 2 inch sapphire wafer. Slurry: FUJIMI Compol 80 stock solution. Pressure: 411 g / cm 2 . Number of revolutions: 60 rpm. Time: 1 hour. Under the above conditions, the polishing rate when polishing was measured. The polishing rate is an average value of 50 wafers.
  • Scratch resistance The presence or absence of scratches on 50 wafers when polished under the conditions described in (10) above was confirmed. Evaluation was carried out according to the following criteria. 1: All 50 wafers have no scratches. 2: One in which one or two scratches can be confirmed in 50 wafers. 3: In the 50 wafers, 3 to 4 scratches can be confirmed. 4: In the 50 wafers, 5 to 10 scratches can be confirmed.
  • Wafer edge sagging Wafer edge sagging when polished under the conditions described in (10) above was evaluated with a laser microscope. 1: The edge sag is 0 to 400 ⁇ m or less. 2: The edge sag exceeds 400 ⁇ m and is 800 ⁇ m or less. 3: The edge sag exceeds 800 ⁇ m. The average value was evaluated.
  • Taber wear amount The Taber wear amount of the obtained polishing pad made of urethane resin was measured with a 5130 type apparatus manufactured by Taber. The Taber abrasion test was conducted with a load of 1 kg, a rotational speed of 60 rpm, a rotational speed of 1000 revolutions, and a wear wheel of H-18. The average value was evaluated.
  • Shore A and Shore D hardness were measured with a durometer manufactured by Kobunshi Keiki in accordance with JIS standard (hardness test) K6253. Those having a relatively low hardness were measured by Shore A hardness, and those having a relatively high hardness were measured by Shore D hardness. The average value was evaluated.
  • Density Density was measured with (DSG-1) manufactured by Toyo Seiki. The average value was evaluated.
  • Hysteresis loss Hysteresis when a resin punched into a dumbbell No. 8 shape with a thickness of 2 mm is stretched by 20 mm at 10 mm / min using an AG-SX autograph manufactured by Shimadzu Corporation and then returned until the stress becomes zero Loss was measured. The average value was evaluated. The above evaluation results are shown in Table 13.
  • Examples 14 to 16, Comparative Example 9 A polishing pad made of a urethane resin was prepared and evaluated in the same manner as in Example 13 except that the curable composition having the composition shown in Table 12 was used. The blending ratio of each component is summarized in Table 12. The results are shown in Table 13. In Examples 14 to 16 and Comparative Example 9, the water content of the polymerizable monomer (B) was 1500 ppm or less.
  • the polishing pad obtained by making the polishing pad composition (curable composition) produced using the polyrotaxane monomer of the present invention effective has an excellent appearance, and Excellent polishing pad characteristics.
  • polyrotaxane 2 axial molecule 3: cyclic molecule 4: bulky end group 5: side chain

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Pyrane Compounds (AREA)
  • Polyethers (AREA)

Abstract

本発明は、環状分子と、該環状分子の環内を貫通し、該環が脱離しない様に、両末端に嵩高い基を有する軸分子と、からなる複合分子構造を有するポリロタキサンモノマーであって、分子内に重合性官能基を有し、かつ、水分量が5000ppm以下であることを特徴とする(A)ポリロタキサンモノマーである。本発明によれば、ポリロタキサンモノマーの優れた機械特性を維持しつつ、生産性が高く、高品質な材料を高い歩留まりで製造できる、ポリロタキサンモノマーを提供することができる。

Description

低水分量ポリロタキサンモノマー、および該モノマーを含む硬化性組成物
 本発明は、新規なポリロタキサンモノマー、該モノマーを含む新規な硬化性組成物、および該硬化性組成物より得られる新規な硬化体に関する。
 ポリロタキサンは、環状分子を有し、その環状分子を串刺し状に貫通する直鎖状分子(軸分子)と、この軸分子の両末端に配置され、前記環状分子と軸分子との分離(脱離)を防止する嵩高い基(封鎖基)とからなる特異的な複合分子構造を有している。このポリロタキサンにおいては、前記環状分子が軸分子上を相対的に移動できるため、種々の特性、特に優れた機械特性を有しており、種々の応用展開が期待されている。そして、これら特性を様々な材料に付与するために、該ポリロタキサン構造に、さらに重合性官能基を導入し、各種ポリマー材料に導入する試みが多数なされている。
 具体的な開発例として、例えば、特許文献1に示されるように、コンタクトレンズ等の光学材料や、特許文献2~4に記載されているように、熱硬化型ポリウレタンに展開することで、ローラー、ベルト、シーリング、電子材料や光学製品等が挙げられる。
 光学材料としては、以下の用途において、該ポリロタキサンモノマーが使用されている。具体的には、フォトクロミック眼鏡レンズの分野である。フォトクロミック眼鏡レンズとは、太陽光のような紫外線を含む光が照射される屋外ではレンズが速やかに着色してサングラスとして機能し、そのような光の照射がない屋内においては退色して透明な通常の眼鏡として機能するものであり、近年その需要は増大している。最近では、フォトクロミック眼鏡用途のフォトクロミック組成物に、ポリロタキサンモノマーを含んでなるフォトクロミック組成物が開示されている(特許文献5~8参照)。特許文献5~8では、フォトクロミック組成物にポリロタキサンモノマーを含有させることにより、ポリロタキサンモノマーの架橋による機械強度の向上と、ポリロタキサン(モノマー)周りの自由空間の存在による優れたフォトクロミック性(発色濃度及び退色速度)とを両立させている。特許文献5~8では、このような光学材料を成形する為の手法もいくつか開示されている。
 また、ポリロタキサンモノマーは、研磨用部材である、研磨用パッド材への適用が検討されている。具体的には、CMP(Chemical Mechanical Polishing)法におけるパッド材(以下、研磨用パッドとする場合もある)として使用されるものである。CMP法は、優れた表面平坦性を付与する研磨方法であり、特に、液晶ディスプレイ(LCD)、ハードディスク用ガラス基盤、シリコンウェハ、半導体デバイスの製造プロセスで採用されている。
 前記CMP法では、通常、研磨加工時に砥粒をアルカリ溶液、又は酸溶液に分散させたスラリー(研磨液)を供給して研磨する方式が一般的に採用されている。すなわち、被研磨物は、スラリー中の砥粒により機械的作用と、アルカリ溶液、又は酸溶液により化学的作用とにより平坦化される。通常、該スラリーを被研磨物の表面に供給し、研磨パッド材を滑らしつつ該表面に接触させることにより、該研磨物の表面を平坦化する。
 このような研磨パッドの材質としては、ウレタン硬化性組成物から得られる研磨材が知られている(特許文献9参照)。さらに、より耐摩耗性が向上できるものとして、ポリイソシアネート化合物としてp-フェニレンジイソシアネートを使用した研磨材が知られている(特許文献10参照)。このような研磨パット材にポリロタキサンモノマーを導入すれば、より高性能なパットが製造できることが予測できる。現に、特許文献2~4では、ポリロタキサンモノマーを用いたウレタン樹脂が、その優れた機械特性を発現できることから、研磨パッドへ使用できることが記載されている。
国際公開第2005/095493号 国際公開第2015/159875号 特開2017-48305号公報 特開2017-75301号公報 国際公開第2015/068798号 国際公開第2017/038957号 国際公開第2016/143910号 国際公開第2018/030257号 特開2007-77207号公報 特開2015-178558号公報
 以上の通り、ポリロタキサンモノマーは、それを使用した重合硬化物(ポリマー)に優れた機能を付与することができるため、多方面での検討がなされている。しかしながら、本発明者等の検討によれば、従来技術においては以下の点で改善の余地があることが分かった。
 例えば、特許文献2~4の実施例に記載されているようなウレタン樹脂にポリロタキサンモノマーを導入した場合には、以下の点で改善の余地があった。具体的には、該ウレタン樹脂が使用される研磨パッド材へ適用する場合には、一般的には発泡ウレタンが用いられるが、ポリロタキサンモノマーを用いて得られる研磨パッド樹脂の発泡径が不均一になり易く、大きな気泡の混入や厚さによる発泡ムラ等が起きることがあった。この発泡径が不均一になる問題は、発泡ウレタンを使用する他の用途であっても同様な問題が生じると考えられる。
 さらに、光学材料に従来のポリロタキサンモノマーを使用した場合には、以下の点で改善の余地があることが分かった。特許文献5~8では、成形性について、ほぼ問題ないレベルであると記載されているが、より高精度な評価を実施したところ、以下の点で改善の余地があることが分かった。例えば、ウレタン系レンズでは、得られるレンズによって気泡が混入されることがあり、成形性が不十分である場合があった。また、ポリロタキサンモノマーを含有する(メタ)アクリレート系の重合組成物からなるレンズにおいても、各レンズの物性にバラツキが生じる場合あった。
 以上のような現象は、ポリロタキサンモノマーの配合量が比較的多い硬化性組成物、又は長期間、保存した硬化性組成物において、得られる発泡ウレタン、又はレンズ等の硬化体の品質、および物性にバラツキが生じる傾向にあった。
 したがって、本発明の目的は、ポリロタキサンモノマーの優れた機械特性を維持しつつ、生産性が高く、高品質な材料を高い歩留まりで製造できる、ポリロタキサンモノマーを提供することにある。
 本発明者等は、上記課題を解決するために鋭意検討を重ねた。そして、ポリロタキサンモノマーを含む硬化性組成物の素性を調べた。通常であれば、ポリロタキサンモノマーは、硬化性組成物中に主成分となり得ない場合がある。前記用途、例えば、従来の発泡ウレタン、およびレンズ用途においては、その配合量は50質量%以下である。そのため、該硬化性組成物におけるポリロタキサンモノマーの不純物はあまり考慮されていなかった。そこに本発明者等は着目し、該ポリロタキサンモノマーに含まれる不純物について調査した。その結果、ポリロタキサンモノマーに含まれる水分量が、得られる硬化体の物性のバラツキに影響を与えることを見出した。そして、特定の水分量以下のポリロタキサンモノマーとすることにより、上記課題が解決できることを見出し、本発明を完成するに至った。
 すなわち、第一の本発明は、
 環状分子と、該環状分子の環内を貫通し、該環が脱離しない様に、両末端に嵩高い基を有する軸分子と、からなる複合分子構造を有するポリロタキサンモノマーであって、分子内に重合性官能基を有し、かつ、水分量が5000ppm以下であるポリロタキサンモノマーである。なお、本発明のポリロタキサンモノマーを(A)ポリロタキサンモノマーと記載する場合もある。
 言い換えれば、
 環状分子と、該環状分子の環内を貫通し、該環が脱離しない様に、両末端に嵩高い基を有する軸分子と、からなる複合分子構造を有し、かつ分子内に重合性基を有するポリロタキサンモノマー、および5000ppm以下の水を含む、ポリロタキサンモノマー組成物である。
 第二の本発明は、前記(A)ポリロタキサンモノマー、および
 前記(A)ポリロタキサンモノマー以外の(B)重合性モノマーを含む硬化性組成物である。
 第三の本発明は、さらに、第二の本発明、および
 (D)フォトクロミック化合物を含むフォトクロミック硬化性組成物である。
 第四の本発明は、第二の本発明を硬化して得られる研磨用パッドである。
 第五の本発明は、第三の本発明を硬化して得られるフォトクロミック硬化体である。
 本発明のポリロタキサンモノマーは、他の重合性モノマーと混合して得られる硬化性組成物として使用する場合に、特に優れた効果を発揮する。すなわち、該硬化性組成物から得られる硬化体、例えば、研磨用パッドとなる発泡ウレタンやレンズ(特に、フォトクロミック化合物を含むレンズ)の物性のバラツキを抑制できる。その結果、該硬化体からなる製品(発泡ウレタン、レンズ)の歩留まりを向上することができる。
 そして、該ポリロタキサンモノマーを含む硬化性組成物から得られるフォトクロミック硬化体は、優れたフォトクロミック特性を発現しつつ、生産性も向上したものとなる。また、該ポリロタキサンモノマーを含む硬化性組成物から得られる研磨用パッドは、優れた研磨特性、耐摩耗性を発現しつつ、生産性にも優れた、バラツキの少ないパッドとなる。さらには、該硬化性組成物の保存安定性をも向上できる。
本発明に用いるポリロタキサンの分子構造を示す概略図。
 本発明の(A)ポリロタキサンモノマーは、環状分子と、該環状分子の環内を貫通し、該環が脱離しない様に、両末端に嵩高い基を有する軸分子とからなる複合分子構造を有し、且つ、分子内に重合性官能基を有するポリロタキサンモノマーであって、不純物である水分量が5000ppm以下であることを特徴とするポリロタキサンモノマーである。言い換えれば、重合性基を有するポリロタキサンモノマー、および水を5000ppm以下含む、ポリロタキサンモノマー組成物である。
 本発明の(A)ポリロタキサンモノマー(以下、単に(A)成分とする場合もある。)を下記で説明する。
 (A)ポリロタキサンモノマー
 ポリロタキサンモノマーは公知の化合物であり、図1に示されているように、全体として"1"で示されているポリロタキサン分子は、鎖状の軸分子"2"と環状分子"3"とから形成されている複合分子構造を有している。即ち、鎖状の軸分子"2"を環状分子"3"が包接しており、環状分子"3"が有する環の内部を軸分子"2"が貫通している。従って、環状分子"3"は、軸分子“2”上を自由にスライドし得るのであるが、軸分子“2”の両端には、嵩高い末端基“4”が形成されており、環状分子“3”の軸分子“2”からの脱落が防止されている。
 前記ポリロタキサンモノマーは、該環状分子“3”が軸分子“2”上をスライド可能である。その為、フォトクロミック硬化体に使用すれば、フォトクロミック化合物周辺に自由空間を形成し易くなる。さらに、前記スライド可能な効果は、硬化体の耐摩耗性を向上させ、低いヒステリシスロスを発現する等、優れた機械特性を発現できるものと考えられる。その為、研磨用のパッド剤に使用すれば、優れた研磨特性、および、耐摩耗性を発現できる。理由は明らかではないが、このような特異な運動特性を有するポリロタキサンモノマーであるからこそ、水分量を特定の割合にしなければならないと考えられる。
 本発明で使用する(A)ポリロタキサンモノマーにおいて、軸分子としては、種々のものが知られており、例えば、軸分子の鎖状構造部分としては、環状分子が有する環を貫通し得る限りにおいて直鎖状或いは分岐鎖であってよく、一般にポリマーにより形成される。
 <軸分子;(A)ポリロタキサンモノマー>
 このような軸分子を形成するポリマーとしては、ポリビニルアルコール、ポリビニルピロリドン、セルロース系樹脂(カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなど)、ポリアクリルアミド、ポリエチレンオキサイド、ポリエチレングリコール、ポリプロピレングリコール、ポリビニルアセタール、ポリビニルメチルエーテル、ポリアミン、ポリエチレンイミン、カゼイン、ゼラチン、でんぷん、オレフィン系樹脂(ポリエチレン、ポリプロピレンなど)、ポリエステル、ポリ塩化ビニル、スチレン系樹脂(ポリスチレン、アクリロニトリル-スチレン共重合樹脂など)、アクリル系樹脂(ポリ(メタ)アクリレート酸、ポリメチルメタクリレート、ポリメチルアクリレート、アクリロニトリル-メチルアクリレート共重合樹脂など)、ポリカーボネート、ポリウレタン、塩化ビニル-酢酸ビニル共重合樹脂、ポリビニルブチラール、ポリイソブチレン、ポリテトラヒドロフラン、ポリアニリン、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリアミド(ナイロンなど)、ポリイミド、ポリジエン(ポリイソプレン、ポリブタジエンなど)、ポリシロキサン(ポリジメチルシロキサンなど)、ポリスルホン、ポリイミン、ポリ無水酢酸、ポリ尿素、ポリスルフィド、ポリフォスファゼン、ポリケトンポリフェニレン、ポリハロオレフィン等を挙げることができる。これらのポリマーは、適宜共重合されていてもよく、また変性されたものであってもよい。
 本発明で使用する(A)ポリロタキサンモノマーにおいて、軸分子を形成するポリマーとして好適なものは、ポリエチレングリコール、ポリイソプレン、ポリイソブチレン、ポリブタジエン、ポリプロピレングリコール、ポリテトラヒドロフラン、ポリジメチルシロキサン、ポリエチレン、ポリプロピレン、ポリビニルアルコールまたはポリビニルメチルエーテルであり、ポリエチレングリコールが最も好適である。
 上述した軸分子の分子量は、大きすぎると、他の成分、例えば、その他の重合性単量体等と混合した際に、粘度が増大し、扱いが困難となるばかりか、相溶性が悪くなる傾向がある。このような観点から、軸分子の重量平均分子量Mwは、1000~100000であり、特に1500~50000、特に好ましくは2000~30000の範囲にあることが好適である。なお、この重量平均分子量Mwは、下記の実施例で記載したGPC測定方法で測定した値である。
 <嵩高い基;(A)ポリロタキサンモノマー>
 上記軸分子は、環状分子の環内を貫通し、該環が離脱しない様に、両末端に嵩高い基を有する。軸分子の両末端(軸分子の両端)に形成される嵩高い基としては、軸分子からの環状分子の脱離を防ぐ基であれば、特に制限されないが、嵩高さの観点から、アダマンチル基、トリチル基、フルオレセイニル基、ジニトロフェニル基、及びピレニル基体を挙げることができ、特に導入のし易さなどの点で、アダマンチル基を挙げることができる。
 <環状分子;(A)ポリロタキサンモノマー>
 また、環状分子は、上記のような軸分子を包接し得る大きさの環を有するものであればよく、このような環としては、シクロデキストリン環、クラウンエーテル環、ベンゾクラウン環、ジベンゾクラウン環及びジシクロヘキサノクラウン環を挙げることができ、特にシクロデキストリン環が好ましい。
 シクロデキストリン環には、α体(環内径0.45~0.6nm)、β体(環内径0.6~0.8nm)、γ体(環内径0.8~0.95nm)がある。また、これらの混合物を使用することもできる。本発明では、特にα-シクロデキストリン環、及びβ-シクロデキストリン環が好ましく、α-シクロデキストリン環が最も好ましい。
 上記のような環を有する環状分子は、1つの軸分子に一つ以上の環状分子が包接している。一般に、軸分子1個当たりに、少なくとも1つ以上の環状分子で包接されており、包接し得る環状分子の最大包接数を1としたとき、環状分子の包接数は最大でも0.6以下である。より好ましくは、0.003~0.5の範囲にあることが好ましい。
 環状分子の包接数が多すぎると、一つの軸分子に対して環状分子が密に存在するため、その可動性が低下し、機械特性が低下するばかりか、分子量の増大により、ポリロタキサンモノマー以外の(B)重合性モノマーと混合した際に、重合性組成物のハンドリング性が低下し、硬化体の成形不良を発現させやすくなる傾向にある。
 尚、一つの軸分子に対する環状分子の最大包接数は、軸分子の長さ及び環状分子の環の厚みから算出することができる。例えば、軸分子の鎖状部分がポリエチレングリコールで形成され、環状分子がα-シクロデキストリン環である場合を例にとると、次のようにして最大包接数が算出される。即ち、ポリエチレングリコールの繰り返し単位[-CH-CHO-]の2つ分がα-シクロデキストリン環1つの厚みに近似する。従って、このポリエチレングリコールの分子量から繰り返し単位数を算出し、この繰り返し単位数の1/2が環状分子の最大包接数として求められる。この最大包接数を1.0とし、環状分子の包接数が前述した範囲に調整されることとなる。
 <環状分子が有する側鎖;(A)ポリロタキサンモノマー>
 また、本発明で使用する(A)ポリロタキサンモノマーにおいては、上述した環状分子が有する環は、少なくとも一部に側鎖が導入されていてもよい。この側鎖は、図1において”5”で示されている。
 上記の側鎖としては、特に制限されるものではないが、炭素数が3~20の範囲にある有機鎖の繰り返しにより形成されていることが好適である。このような側鎖の数平均分子量は、例えば10000以下であり、好ましくは5000以下である。より詳細には、このような側鎖の数平均分子量は、50~10000、好ましくは100~8000、より好ましくは200~5000の範囲にあるのがよく、最も好ましくは、300~1500の範囲にある。この側鎖の数平均分子量は、側鎖の導入時に使用する量により調整ができ、計算により求めることができるが、H-NMRの測定からも求めることができる。
 即ち、側鎖が小さ過ぎると、ポリロタキサンモノマー周りに空間を形成し難く、例えばフォトクロミック硬化性組成物から得られる硬化体のフォトクロミックの可逆反応を阻害する傾向にある。また、該硬化体を研磨用パッド剤に用いると、平坦精度が低下する傾向にある。さらに、側鎖が小さ過ぎると、その他の重合性モノマーとの相溶性も低下する傾向にある。その反対に、側鎖が長すぎると、硬化体の硬度の低下や、耐摩耗性が低下する傾向にある。
 さらに、上記のような側鎖は、環状分子が有する反応性官能基を利用し、この反応性官能基を修飾することによって導入される(すなわち、側鎖は、該反応性官能基と反応して導入される)。
 反応性官能基としては、例えば、水酸基、アミノ基などが挙げられ、中でも水酸基が好ましい。例えば、α-シクロデキストリン環は、反応性官能基として18個のOH基(水酸基)を有しており、このOH基を介して(このOH基を反応させて)側鎖が導入される。即ち、1つのα-シクロデキストリン環に対しては最大で18個の側鎖を導入できることとなる。本発明においては、前述した側鎖の機能を十分に発揮させるためには、全環状分子が有する全反応性官能基の6%~60%が、側鎖で修飾されていることが好ましい(全環状分子が有する全反応性官能基の6%~60%に側鎖が導入されていることが好ましい。)。なお、このような、環が有する全反応性官能基のうち、側鎖で修飾されている官能基の割合(%)を修飾度ともいう。
 なお、下記に詳述するが、環状分子の反応性官能基は、側鎖が有するOH基よりも反応性が低いため、修飾度は低くても相溶性の低下、ブリードアウトの問題は生じ難い。そのため、修飾度は、上記範囲であれば、より優れた効果を発揮する。因みに、上記α-シクロデキストリン環の18個のOH基の内の9個に側鎖が結合している場合、その修飾度(導入度)は50%となる。
 本発明において、上記のような側鎖(有機鎖)は、その大きさが前述した範囲内にある限り、直鎖状であってもよいし、分枝状であってもよい。側鎖の導入については、国際公開第2015/159875号に開示されている手法や化合物を適宜導入することが可能であり、開環重合;ラジカル重合;カチオン重合;アニオン重合;原子移動ラジカル重合、RAFT重合、NMP重合などのリビングラジカル重合などが利用できる。上記手法により、適宜選択された化合物を前記環が有する官能基に反応させることによって適宜の大きさの側鎖を導入することができる。
 例えば、開環重合により、ラクトン化合物や環状エーテル等の環状化合物に由来する側鎖を導入することができる。ラクトン化合物や環状エーテル等の環状化合物を開環重合して導入した側鎖は、該側鎖の末端に活性水素を持つ基としてOH基が導入されることとなる。
 該環状化合物の中でも、入手が容易であり、反応性が高く、さらには大きさ(分子量)の調整が容易であるという観点から、環状エーテルやラクトン化合物を用いることが好ましい。好適な環状化合物の具体例は、以下のとおりである。
 環状エーテル;
 エチレンオキシド、1,2-プロピレンオキシド、エピクロロヒドリン、エピブロモヒドリン、1,2-ブチレンオキシド、2,3-ブチレンオキシド、イソブチレンオキシド、オキセタン、3-メチルオキセタン、3,3-ジメチルオキセタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、3-メチルテトラヒドロフランなど。
 ラクトン化合物;
 4員環ラクトン、例えば、β-プロピオラクトン、β-メチルプロピオラクトン、L-セリン-β-ラクトンなど。
 5員環ラクトン、例えば、γ-ブチロラクトン、γ-ヘキサノラクトン、γ-ヘプタノラクトン、γ-オクタノラクトン、γ-デカノラクトン、γ-ドデカノラクトン、α-ヘキシル-γ-ブチロラクトン、α-ヘプチル-γ-ブチロラクトン、α-ヒドロキシ-γ-ブチロラクトン、γ-メチル-γ-デカノラクトン、α-メチレン-γ-ブチロラクトン、α,α-ジメチル-γ-ブチロラクトン、D-エリスロノラクトン、α-メチル-γ-ブチロラクトン、γ-ノナノラクトン、DL-パントラクトン、γ-フェニル-γ-ブチロラクトン、γ-ウンデカノラクトン、γ-バレロラクトン、2,2-ペンタメチレン-1,3-ジオキソラン-4-オン、α-ブロモ-γ-ブチロラクトン、γ-クロトノラクトン、α-メチレン-γ-ブチロラクトン、α-メタクリロイルオキシ-γ-ブチロラクトン、β-メタクリロイルオキシ-γ-ブチロラクトンなど。
 6員環ラクトン、例えば、δ-バレロラクトン、δ-ヘキサノラクトン、δ-オクタノラクトン、δ-ノナノラクトン、δ-デカノラクトン、δ-ウンデカノラクトン、δ-ドデカノラクトン、δ-トリデカノラクトン、δ-テトラデカノラクトン、DL-メバロノラクトン、4-ヒドロキシ-1-シクロヘキサンカルボン酸δ-ラクトン、モノメチル-δ-バレロラクトン、モノエチル-δ-バレロラクトン、モノヘキシル-δ-バレロラクトン、1,4-ジオキサン-2-オン、1,5-ジオキセパン-2-オンなど。
 7員環ラクトン、例えば、ノンアルキル-ε-カプロラクトン、ジアルキル-ε-カプロラクトン、モノメチル-ε-カプロラクトン、モノエチル-ε-カプロラクトン、モノヘキシル-ε-カプロラクトン、ジメチル-ε-カプロラクトン、ジ-n-プロピル-ε-カプロラクトン、ジ-n-ヘキシル-ε-カプロラクトン、トリメチル-ε-カプロラクトン、トリエチル-ε-カプロラクトン、トリ-n-ε-カプロラクトン、ε-カプロラクトン、5-ノニル-オキセパン-2-オン、4,4,6-トリメチル-オキセパン-2-オン、4,6,6-トリメチル-オキセパン-2-オン、5-ヒドロキシメチル-オキセパン-2-オンなど。
 8員環ラクトン、例えば、ζ-エナントラクトンなど。
 その他のラクトン、例えば、ラクトン、ラクチド、ジラクチド、テトラメチルグリコシド、1,5-ジオキセパン-2-オン、t-ブチルカプロラクトンなど。
 上記の環状化合物は、単独で使用することができ、また複数種を併用することもできる。
 本発明において、好適に使用される側鎖導入化合物はラクトン化合物であり、ε-カプロラクトン、α-アセチル-γ-ブチロラクトン、α-メチル-γ-ブチロラクトン、γ-バレロラクトン、γ-ブチロラクトン等のラクトン化合物が特に好適であり、もっとも好ましいものはε-カプロラクトンである。
 また、開環重合により環状化合物を反応させて側鎖を導入する場合、環に結合している反応性官能基(例えば水酸基)は反応性に乏しく、特に立体障害などにより大きな分子を直接反応させることが困難な場合がある。このような場合には、例えば、カプロラクトンなどを反応させるために、プロピレンオキシドなどの低分子化合物を反応性官能基と反応させてのヒドロキシプロピル化を行い、反応性に富んだ官能基(水酸基)を導入した後、前述した環状化合物を用いての開環重合により、側鎖を導入するという手段を採用することができる。この場合、ヒドロキシプロピル化した部分も側鎖と見なすことができる。
この他、開環重合により、環状アセタール、環状アミン、環状カーボネート、環状イミノエーテル、環状チオカーボネート等の環状化合物に由来する側鎖を導入することにより、活性水素基を有する側鎖を導入することができる。これらの中でも、好適な環状化合物の具体例は、国際公開第2015/068798号に記載されているものである。
 また、ラジカル重合を利用して環状分子に側鎖を導入する方法は、以下の通りである。ポリロタキサンモノマーの環状分子が有している環は、ラジカル開始点となる活性部位を有していない。このため、ラジカル重合性化合物を反応させるに先立って、環が有している反応性官能基(OH基等)にラジカル開始点を形成するための化合物を反応させて、ラジカル開始点となる活性部位を形成しておく必要がある。
 上記のようなラジカル開始点を形成するための化合物としては、有機ハロゲン化合物が代表的であり、例えば、2-ブロモイソブチリルブロミド、2-ブロモブチル酸、2-ブロモプロピオン酸、2-クロロプロピオン酸、2-ブロモイソ酪酸、エピクロロヒドリン、エピブロモヒドリン、2-クロロエチルイソシアネートなどを挙げることができる。即ち、かかる有機ハロゲン化合物は、環状分子の環が有している反応性官能基との縮合反応により、該環に結合し、該環にハロゲン原子を含む基(有機ハロゲン化合物残基)を導入する。この有機ハロゲン化合物残基には、ラジカル重合に際して、ハロゲン原子の移動等によりラジカルが生成し、これがラジカル重合開始点となって、ラジカル重合が進行することとなる。
 また、上記のようなラジカル重合開始点となる活性部位を有する基(有機ハロゲン化合物残基)は、例えば環が有している水酸基に、アミン、カルボン酸、イソシアネート、イミダゾール、酸無水物などの官能基を有する化合物を反応させ、水酸基以外の他の官能基を導入し、このような他の官能基に前述した有機ハロゲン化合物を反応させて導入することもできる。
 また、ラジカル重合により側鎖を導入するために用いるラジカル重合性化合物としては、エチレン性不飽和結合を有する基、例えば、(メタ)アクリレート基、ビニル基、スチリル基等の官能基を少なくとも1種有する化合物(以下、エチレン性不飽和モノマーと呼ぶ)が好適に使用される。また、エチレン性不飽和モノマーとしては、末端エチレン性不飽和結合を有するオリゴマーもしくはポリマー(以下、マクロモノマーと呼ぶ)も使用することができる。このようなエチレン性不飽和モノマーとしては、好適なエチレン性不飽和モノマーの具体例は、国際公開第2015/068798号に記載されているものが使用できる。
 <重合性官能基(側鎖が有する重合性官能基);(A)ポリロタキサンモノマー>
 さらに、上述した方法で側鎖を導入した後に、側鎖の官能基を他の官能基に変性させ使用しても良い。本発明においては、側鎖の官能基と他の化合物とを反応させて、該化合物に由来する構造を導入する反応を「変性」とする。変性に用いる化合物は、特に、側鎖の官能基と反応可能な化合物であれば使用できる。該化合物を選定することで、側鎖に様々な重合性官能基を導入したり、重合性基を有さない基に変性することも可能である。
 側鎖の変性を例示すれば、上述した開環重合により、末端OH基の側鎖を導入した後に、側鎖のOH基と反応しうる官能基と該ラジカル重合性基の両方の基を有する化合物を用いれば、ラジカル重合性基を導入することが可能である。なお、当然のことながら、該末端OH基であっても、重合性官能基となる。
 該OH基と反応しうる官能基としては、例えば、イソシアネート基(-NCO基)、カルボキシル基(-COOH)、および酸塩化物の基(例えば、-COCl基)等が挙げられる。イソシアネート基を有する化合物を反応させることで、ウレタン結合を介してラジカル重合性基が導入される。または、カルボキシル基、および酸塩化物の基等を有する化合物を反応させることで、エステル結合を介してラジカル重合性基が導入される。
 ラジカル重合性基を有する化合物を具体的に例示すると、イソシアネート基と(メタ)アクリレート基を有する化合物としては、2-イソシアナトエチルメタクリレート、2-イソシアナトエチルアクリレート、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート等が挙げられる。
 また、酸塩化物(-COCl基)と(メタ)アクリレート基を有する化合物は、カルボキシル基と(メタ)アクレート基を有する化合物を塩化チオニルなどの塩素化剤と反応させることで合成することができる。カルボキシル基と(メタ)アクリレート基を有する化合物としては、2-メタクリロイルオキシエチルサクシネートやβ-カルボキシエチルアクリレートなどが挙げられる。
 また、側鎖の官能基を活性水素基やラジカル重合性基のような重合性基を有さないものに変性する場合を例示すれば、上述した開環重合により、末端OH基の側鎖を導入した後に、側鎖のOH基と反応しうる官能基と上述したラジカル重合性基の代わりに、炭素数2~20のアルキル基、炭素数2~30のアルキレンオキシ基、炭素数6~20のアリール基等を有することが好ましい。上述の化合物の具体例を以下に示す。
 イソシアネート基を有する化合物として、原料の入手のしやすさとOH基との反応性が高いという観点から、炭素数2~20(イソシアネート基の炭素原子は除く)のイソシアネート化合物が好ましく、炭素数3~10のイソシアネート化合物が特に好適である。具体的には、好適なイソシアネート化合物を例示すると、n-プロピルイソシアネート、n-ブチルイソシアネート、n-ペンチルイソシアネート、n-ヘキシルイソシアネート、フェニルイソシアネート等が挙げられる。
 カルボン酸塩化物として、原料の入手のしやすさとOH基との反応性が高いという観点から、炭素数2~20(カルボニル基の炭素原子を除く)のカルボン酸塩化物が好ましく、炭素数2~10のカルボン酸塩化物が特に好適である。具体的には、好適な酸塩化物を例示すると、アセチルクロリド、プロピオニルクロリド、ブチリルクロリド、ピバロイルクロリド、ヘキサノイルクロリド、ベンゾイルクロリド等が挙げられる。
 ラジカル重合性化合物を使用して環状分子に側鎖を導入した場合、該ラジカル重合性化合物が他の官能基を有している場合には、そのまま側鎖にもその官能基を持つ基を有することになる。ラジカル重合性基しか側鎖にない場合においても、該ラジカル重合性化合物により、側鎖を形成した後、該側鎖の一部をラジカル重合性基以外の官能基を持つ基で変性させてやれば、側鎖にラジカル重合性基以外の官能基を導入することも出来る。
 上述した説明から理解されるように、環状化合物の環に導入される側鎖は、様々な官能基を有していることもある。
 さらに、側鎖導入のために用いる化合物が有している官能基の種類によっては、この側鎖の一部が、他の軸分子が有している環状分子の環の官能基に結合し、架橋構造を形成することもある。
 <好適な重合性官能基、およびその数>
 本発明のポリロタキサンモノマーは、分子内に重合性官能基を有する。重合性官能基は、ポリロタキサンモノマーのいずれかの部分に導入されればよいが、後述する(B)重合性モノマーとの反応性などの観点から、側鎖に導入されることが好ましい。重合性官能基としては、例えば、水酸基、チオール基、アミノ基、エポキシ基、(メタ)アクリレート基、イソ(チオ)シアネート基などが挙げられる。
 重合性官能基としては、特に限定されないが、本発明において最も好ましいのは水酸基(OH基)、及び、(メタ)アクリレート基から選択される少なくとも一つの基である。すなわち、ポリロタキサンモノマーは、重合性官能基として、OH基のみを有する場合、(メタ)アクリレート基のみを有する場合、OH基及び(メタ)アクリレート基の両方を有する場合などが好ましい態様として挙げられる。OH基(水酸基)の場合には、環状分子の反応性官能基を反応させた際に導入される側鎖の末端が水酸基の場合には、そのまま重合性官能基とすればよい。(メタ)アクリレート基の場合には、前記方法に従い、側鎖の末端に導入することができる。
 前記(A)ポリロタキサンモノマーにおいて、重合性官能基の数は、特に制限されるものではない。中でも、マトリックスとなる樹脂中にポリロタキサン部分が導入されることによって優れた効果が発揮されるため、分子内に少なくとも2つの重合性官能基を含むことが好ましい。
 該重合性官能基は、場合によっては、上述した環状分子が有するもの、または、前述した側鎖を利用して導入されるものである。この中でも、反応性を考慮すると、側鎖の末端が重合性官能基となり、それが2つ以上存在することが好ましい。なお、重合性官能基の数の上限は、特に制限されるものではないが、側鎖の末端に導入された重合性官能基のモル数が、ポリロタキサンモノマーの重量平均分子量に対し、10mmol/gとなる数である。なお、重量平均分子量は、下記に詳述するゲルパーミエーションクロマトグラフィー(GPC)で測定した値を使用する。
 <水分量;(A)ポリロタキサンモノマー>
 本発明の(A)ポリロタキサンモノマーの水分量は、5000ppm以下でなければならない。(A)ポリロタキサンモノマーの水分量がこの範囲にあることで、優れた機械特性を維持しつつ、生産性が高く、高品質な材料を安定的に製造可能なポリロタキサンを提供できる。なお、この水分量は、下記の実施例で示した方法で測定した値であり、質量ppmである。
 この理由は、明らかではないが以下のように推定している。前記の通り、(A)ポリロタキサンモノマーは、側鎖を有する環状分子が軸分子の範囲でスライドして自由に運動できる。その結果、下記に詳述する(B)重合性モノマーと混合して得られる硬化性組成物を硬化して得られる硬化体は、このような特異な運動性を有する部分を有するがために、水分が均一に存在するのではなく、局所的に存在するようになるのではないかと考えられる。その結果、得られた硬化体は、その物性にバラツキが生じ易くなるのでないかと考えられる。
 以上のことから、(A)ポリロタキサンモノマーが含む水分量は少ない方が好ましいが、好ましくは3000ppm以下であり、さらに好ましくは1500ppm以下である。なお、水分量の下限値は、特に限定されるものではないが、(A)ポリロタキサンモノマーの生産性を考慮すると、100ppmである。
 すなわち、本発明は、分子内に重合性基を有するポリロタキサンモノマー、および水を含む組成物であり、該組成物が5000ppm以下の水を含むものである。
 <好適な(A)ポリロタキサンモノマー>
 本発明において、好適に使用される(A)ポリロタキサンモノマーは、
 両端にアダマンチル基で結合しているポリエチレングリコールを軸分子とし、
 α-シクロデキストリン環を有する環状分子とし、さらに、ポリカプロラクトンにより該環に側鎖(末端がOH基)が導入されており、
 その末端に、重合性官能基として、OH基、或いは(メタ)アクリレート基が導入されているものであり、最も好ましいのは、末端にOH基を有しているものが最も好適に使用される。
 そして、軸分子の数平均分子量が2000~50000であり、
 α-シクロデキストリン環の水酸基の6%以上60%以下に、ポリカプロラクトンにより側鎖が導入されており、その側鎖の数平均分子量が300~600であることが好ましい。また、側鎖の末端の重合性官能基の数が、分子内に2個以上5mmol/g以下となる数存在することが好ましい。そして、水分量が100~1500ppmとなることが好ましい。
 (A)ポリロタキサンモノマーの製造方法
 本発明において、前記(A)ポリロタキサンモノマーの製造方法は、以下の方法を採用することができる。具体的には、公知の方法でポリロタキサンモノマーを製造した後、水と共沸可能な芳香族系溶媒と混合し、共沸脱水して、乾燥することにより、水分量を5000ppm以下にすることが好ましい。特に、ポリロタキサンモノマーが重合性官能基として水酸基を多く含む場合は、水を含有しやすいため、上記のような製造方法を採用することが好ましい。
 該芳香族系溶媒としては、ベンゼン、トルエン、キシレン等を用いることができ、操作性を考慮するとトルエンを使用することが好ましい。水を含むポリロタキサンモノマーと芳香族系溶媒とは、該水の量に応じて使用する芳香族系溶媒の使用量は異なるが、通常であれば、水を含むポリロタキサンモノマー 100質量部に対して、芳香族系溶媒を50~1000質量部混合することが好ましい。そして、常圧、又は減圧下において、芳香族系溶媒を留去するとともに、水を低減すればよい。
 次に、(A)ポリロタキサンモノマー以外の(B)重合性モノマーについて説明する(以下、単に「(B)重合性モノマー」又は「(B)成分」とする場合もある。)。
 (A)ポリロタキサンモノマー以外の(B)重合性モノマー;
 本発明の硬化性組成物は、上記した(A)ポリロタキサンモノマー、及び該(A)ポリロタキサンモノマー以外の(B)重合性モノマーを含有することが好ましい。
 本発明において、(B)重合性モノマーは、(A)ポリロタキサンモノマーと反応しうる重合性化合物を少なくとも1種類有していればよく、何ら制限なく使用することが出来る。上述したように、(A)ポリロタキサンモノマーには様々な重合性官能基を導入できる。それに応じて(B)重合性モノマーを選択すればよい。例えば、国際公開第2015/068798号に記載されている(B)重合性モノマーがあげられる。
 本発明においては、例えば、(A)ポリロタキサンモノマーが有している重合性官能基がOH基、SH基、アミノ基、及び、エポキシ基等の重合性官能基を有している場合、(B)重合性モノマーとしては、例えば、(B1)イソ(チオ)シアネート基を有するイソ(チオ)シアネート化合物(以下、単に「(B1)イソ(チオ)シアネート化合物」又は「(B1)成分」とする場合もある)が挙げられる。
 また、(A)ポリロタキサンモノマーが有している重合性官能基がOH基、アミノ基、NCO基の場合には、(B2)エポキシ基を有するエポキシ基含有モノマー(以下、単に「(B2)エポキシ基含有モノマー」又は「(B2)成分」とする場合もある)も選択できる。
 一方、(A)ポリロタキサンモノマーが有している重合性官能基が、イソ(チオ)シアネート基である場合、(B3)水酸基、およびチオール基から選ばれる基を少なくとも1つ有する(チ)オール化合物(以下、単に「(B3)(チ)オール化合物」又は「(B3)成分」とする場合もある)、並びに(B4)アミノ基を有するアミノ基含有モノマー(単に「(B4)アミノ基含有モノマー」又は「(B4)成分」)から選択できる。なお、本発明において、イソ(チオ)シアネート基とは、イソシアネート基(NCO基)、又はイソチオシアネート基(NCS基)を指す。したがって、イソ(チオ)シアネート基が複数存在する場合には、イソシアネート基とイソチオシアネート基との合計数が複数となってもよい。
 また、(A)ポリロタキサンモノマーが有している重合性官能基がラジカル重合性基の場合、(B)重合性モノマーは、ラジカル重合性基を有するモノマーが好ましく、特に(メタ)アクリレート基を有する(メタ)アクリレート化合物から選択することが好ましい。
 本発明において、前記(B)重合性モノマーの水分量は、3000ppm以下であることが好ましい。複数種類の(B)重合性モノマーを使用する場合には、その(B)重合性モノマーの合計量に対して3000ppm(質量ppm)以下の水分量となることが好ましい。前記(B)重合性モノマーの水分量が2000ppm以下となることがより好ましく、1000ppm以下となることがさらに好ましい。(B)重合性モノマーの水分量の下限値は、特に制限されるものではないが、10ppmである。前記(B)重合性モノマーは、公知のモノマーであり、水分量を低減するためには、公知の方法を採用して低減すればよい。
 (B1)イソ(チオ)シアネート化合物
 (B1)イソ(チオ)シアネート化合物は、イソシアネート基、又はイソチオシアネート基を少なくとも1種類有するモノマーである。もちろん、イソシアネート基とイソチオシアネート基の二つの基を有しているモノマーも選択される。中でも、イソ(チオ)シアネート基を分子内に、2~6個有する化合物が好ましく、2~4個有する化合物がより好ましく、2個有する化合物がさらに好ましい。
 また、前記(B1)イソ(チオ)シアネート化合物は、下記に記載する2官能ポリイソ(チオ)シアネート化合物と2官能のポリ(チ)オール化合物との反応により調製される(B12)ウレタンプレポリマー(以下、単に「(B12)ウレタンプレポリマー」又は「(B12)成分」とする場合もある)であってもよい。イソ(チオ)シアネート化合物に該当する(B12)ウレタンプレポリマーは、未反応のイソ(チオ)シアネート基を含む一般に使用されているものが、何ら制限なく、本発明においても使用できる。
 前記(B1)イソ(チオ)シアネート化合物としては、例えば、大きく分類すれば、脂肪族イソシアネート、脂環族イソシアネート、芳香族イソシアネート、イソチオシアネート化合物、(B12)ウレタンプレポリマーに分類することができる。また、前記(B1)イソ(チオ)シアネート化合物は、1種類の化合物を使用することもできるし、複数種類の化合物を使用することもできる。複数種類の化合物を使用する場合には、基準となる質量は、複数種類の化合物の合計量である。これらイソ(チオ)シアネート化合物を具体的に例示すると以下のモノマーが挙げられる。
 脂肪族イソシアネート;(B1)成分
 エチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、オクタメチレンジイソシアネート、ノナメチレンジイソシアネート、2,2’-ジメチルペンタンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、デカメチレンジイソシアネート、ブテンジイソシアネート、1,3-ブタジエン-1,4-ジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、1,6,11-トリメチルウンデカメチレンジイソシアネート、1,3,6-トリメチルヘキサメチレンジイソシアネート、1,8-ジイソシアネート-4-イソシアネートメチルオクタン、2,5,7-トリメチル-1,8-ジイソシアネート-5-イソシアネートメチルオクタン、ビス(イソシアネートエチル)カーボネート、ビス(イソシアネートエチル)エーテル、1,4-ブチレングリコールジプロピルエーテル-ω,ω’-ジイソシアネート、リジンジイソシアネートメチルエステル、2,4,4,-トリメチルヘキサメチレンジイソシアネート等の2官能イソシアネートモノマー、(下記に詳述する(B12)ウレタンプレポリマーを構成する(B13)2官能ポリイソ(チオ)シアネート基含有モノマーに該当する)、
 エチルイソシアネート、n-プロピルイソシアネート、i-プロピルイソシアネート、ブチルイソシアネート、オクタデシルイソシアネート等の単官能イソシアネートモノマー。
 脂環族イソシアネート;(B1)成分
 イソホロンジイソシアネート、(ビシクロ[2.2.1]ヘプタン-2,5-ジイル)ビスメチレンジイソシアネート、(ビシクロ[2.2.1]ヘプタン-2,6-ジイル)ビスメチレンジイソシアネート、2β,5α-ビス(イソシアネート)ノルボルナン、2β,5β-ビス(イソシアネート)ノルボルナン、2β,6α-ビス(イソシアネート)ノルボルナン、2β,6β-ビス(イソシアネート)ノルボルナン、2,6-ジ(イソシアネートメチル)フラン、ビス(イソシアネートメチル)シクロヘキサン、ジシクロヘキシルメタン-4,4’-ジイソシアネート、4,4-イソプロピリデンビス(シクロヘキシルイソシアネート)、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、ジシクロヘキシルジメチルメタンジイソシアネート、2,2’-ジメチルジシクロヘキシルメタンジイソシアネート、ビス(4-イソシアネート-n-ブチリデン)ペンタエリスリトール、ダイマー酸ジイソシアネート、2,5-ビス(イソシアネートメチル)-ビシクロ〔2,2,1〕-ヘプタン、2,6-ビス(イソシアネートメチル)-ビシクロ〔2,2,1〕-ヘプタン、3,8-ビス(イソシアネートメチル)トリシクロデカン、3,9-ビス(イソシアネートメチル)トリシクロデカン、4,8-ビス(イソシアネートメチル)トリシクロデカン、4,9-ビス(イソシアネートメチル)トリシクロデカン、1,5-ジイソシアネートデカリン、2,7-ジイソシアネートデカリン、1,4-ジイソシアネートデカリン、2,6-ジイソシアネートデカリン、ビシクロ[4.3.0]ノナン-3,7-ジイソシアネート、ビシクロ[4.3.0]ノナン-4,8-ジイソシアネート、ビシクロ[2.2.1]ヘプタン-2,5-ジイソシアネートとビシクロ[2.2.1]ヘプタン-2,6-ジイソシアネート、ビシクロ[2,2,2]オクタン-2,5-ジイソシアネート、ビシクロ[2,2,2]オクタン-2,6-ジイソシアネート、トリシクロ[5.2.1.02.6]デカン-3,8-ジイソシアネート、トリシクロ[5.2.1.02.6]デカン-4,9-ジイソシアネート等の2官能イソシアネートモノマー(下記に詳述する(B12)ウレタンプレポリマーを構成する(B13)2官能ポリイソ(チオ)シアネート基含有モノマーに該当する)、
 2-イソシアネートメチル-3-(3-イソシアネートプロピル)-5-イソシアネートメチル-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-3-(3-イソシアネートプロピル)-6-イソシアネートメチル-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-2-(3-イソシアネートプロピル)-5-イソシアネートメチル-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-2-(3-イソシアネートプロピル)-6-イソシアネートメチル-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-3-(3-イソシアネートプロピル)-5-(2-イソシアネートエチル)-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-3-(3-イソシアネートプロピル)-6-(2-イソシアネートエチル)-ビシクロ〔2,1,1〕-ヘプタン、2-イソシアネートメチル-2-(3-イソシアネートプロピル)-5-(2-イソシアネートエチル)-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-2-(3-イソシアネートプロピル)-6-(2-イソシアネートエチル)-ビシクロ〔2,2,1〕-ヘプタン、1,3,5-トリス(イソシアネートメチル)シクロヘキサン等の多官能イソシアネートモノマー、
 シクロヘキシルイソシアネート等の単官能イソシアネートモノマー。
 芳香族イソシアネート;(B1)成分
 キシリレンジイソシアネート(o-、m-,p-)、テトラクロロ-m-キシリレンジイソシアネート、メチレンジフェニル-4,4’-ジイソシアネート、4-クロル-m-キシリレンジイソシアネート、4,5-ジクロル-m-キシリレンジイソシアネート、2,3,5,6-テトラブロム-p-キシリレンジイソシアネート、4-メチル-m-キシリレンジイソシアネート、4-エチル-m-キシリレンジイソシアネート、ビス(イソシアネートエチル)ベンゼン、ビス(イソシアネートプロピル)ベンゼン、1,3-ビス(α,α-ジメチルイソシアネートメチル)ベンゼン、1,4-ビス(α,α-ジメチルイソシアネートメチル)ベンゼン、α,α,α’,α’-テトラメチルキシリレンジイソシアネート、ビス(イソシアネートブチル)ベンゼン、ビス(イソシアネートメチル)ナフタリン、ビス(イソシアネートメチル)ジフェニルエーテル、ビス(イソシアネートエチル)フタレート、2,6-ジ(イソシアネートメチル)フラン、フェニレンジイソシアネート(o-,m-,p-)、トリレンジイソシアネート、エチルフェニレンジイソシアネート、イソプロピルフェニレンジイソシアネート、ジメチルフェニレンジイソシアネート、ジエチルフェニレンジイソシアネート、ジイソプロピルフェニレンジイソシアネート、トリメチルベンゼントリイソシアネート、ベンゼントリイソシアネート、1,3,5-トリイソシアネートメチルベンゼン、1,5-ナフタレンジイソシアネート、メチルナフタレンジイソシアネート、ビフェニルジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,2'-ジフェニルメタンジイソシアネート、2,4'-ジフェニルメタンジイソシアネート、3,3’-ジメチルジフェニルメタン-4,4’-ジイソシアネート、ビベンジル-4,4’-ジイソシアネート、ビス(イソシアネートフェニル)エチレン、3,3’-ジメトキシビフェニル-4,4’-ジイソシアネート、フェニルイソシアネートメチルイソシアネート、フェニルイソシアネートエチルイソシアネート、テトラヒドロナフチレンジイソシアネート、ヘキサヒドロベンゼンジイソシアネート、ヘキサヒドロジフェニルメタン-4,4’-ジイソシアネート、ジフェニルエーテルジイソシアネート、エチレングリコ-ルジフェニルエーテルジイソシアネート、1,3-プロピレングリコールジフェニルエーテルジイソシアネート、ベンゾフェノンジイソシアネート、ジエチレングリコ-ルジフェニルエーテルジイソシアネート、ジベンゾフランジイソシアネート、カルバゾールジイソシアネート、エチルカルバゾールジイソシアネート、ジクロロカルバゾールジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート等の2官能イソシアネートモノマー(下記に詳述する(B12)ウレタンプレポリマーを構成する(B13)2官能ポリイソ(チオ)シアネート基含有モノマーに該当する)、
 メシチリレントリイソシアネート、トリフェニルメタントリイソシアネート、ポリメリックMDI、ナフタリントリイソシアネート、ジフェニルメタン-2,4,4’-トリイソシアネート、3-メチルジフェニルメタン-4,4’,6-トリイソシアネート、4-メチル-ジフェニルメタン-2,3,4’,5,6-ペンタイソシアネート等の多官能イソシアネートモノマー。
 フェニルイソシアネート、3-i-プロペニルクミルイソシアネート、4-メトキシフェニルイソシアネート、m-トリルイソシアネート、p-トリルイソシアネート、1-ナフチルイソシアネート、ジメチルベンジルイソシアネート等の単官能イソシアネートモノマー。
 イソチオシアネート化合物;(B1)成分
 p-フェニレンジイソチオシアネート、キシリレン-1,4-ジイソチオシアネート、及びエチリジンジイソチオシアネート等の2官能イソ(チオ)シアネート基含有モノマー(下記に詳述する(B12)ウレタンプレポリマーを構成する(B13)2官能ポリイソ(チオ)シアネート基含有モノマーに該当する)。
 (B12)ウレタンプレポリマー;末端にイソ(チオ)シアネート基を有するウレタンプレポリマー;(B1)成分
 本発明においては、前記(B13)2官能ポリイソ(チオ)シアネート基含有モノマーと後述する(B32)2官能ポリ(チ)オールとを反応して得られる(B12)ウレタンプレポリマーを、(B1)イソ(チオ)シアネート化合物として使用することもできる。
 (B12)ウレタンプレポリマーとする場合には、特に制限されるものではないが、(B13)2官能ポリイソ(チオ)シアネート基含有モノマーとしては、特に、次に例示するモノマーを使用することが好ましい。具体的には、1,5-ナフタレンジイソシアネート、キシレンジイソシアネート(o-,m-,p-)、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、フェニレンジイソシアネート(o-,m-,p-)、2,2’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネートを使用することが好ましい。これらに(B32)2官能ポリ(チ)オールを反応させて、両末端にイソ(チオ)シアネート基を有する(B12)成分とすることが好ましい。特に制限されるものではないが、(B12)成分の重量平均分子量は600~10000とすることが好ましい。
 (B2)エポキシ基含有モノマー;(B2)成分
 エポキシ基含有モノマーは、重合性基として、分子内にエポキシ基を有するものであり、特に、(A)ポリロタキサンモノマーの重合性官能基として、水酸基、NH基、NCO基が導入されている場合に好適である。
 このようなエポキシ化合物は、大きく分けて、脂肪族エポキシ化合物、脂環族エポキシモノマー及び芳香族エポキシモノマーに分類され、その好適な具体例としては、国際公開第2015/068798号に記載されているものを用いることが出来る。
 (B3)(チ)オール化合物
 (チ)オール化合物は、OH基、及びSH基からなる群から選択される基を1分子中に1個以上有しているモノマーである。もちろん、OH基とSH基の二つの基を有しているモノマーも選択される。
 前記(チ)オール化合物を、大きく分類すれば、脂肪族アルコール、脂環族アルコール、芳香族アルコール、ポリエステルポリオール、ポリエーテルポリオール、ポリカプロラクトンポリオール、ポリカーボネートポリオール、ポリアクリルポリオール、チオール、OH/SH型重合性基含有モノマーに分類される。具体例としては、以下のものが挙げられる。
 脂肪族アルコール;(B3)成分
 エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ブチレングリコール、1,5-ジヒドロキシペンタン、1,6-ジヒドロキシヘキサン、1,7-ジヒドロキシヘプタン、1,8-ジヒドロキシオクタン、1,9-ジヒドロキシノナン、1,10-ジヒドロキシデカン、1,11-ジヒドロキシウンデカン、1,12-ジヒドロキシドデカン、ネオペンチルグリコール、モノオレイン酸グリセリル、モノエライジン、ポリエチレングリコール、3-メチル-1,5-ジヒドロキシペンタン、ジヒドロキシネオペンチル、2-エチル-1,2-ジヒドロキシヘキサン、2-メチル-1,3-ジヒドロキシプロパン等の2官能ポリオールモノマー(前記ウレタンプレポリマー(B12)を構成する2官能ポリ(チ)オール(B32)に該当する)、
 グリセリン、トリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、トリメチロールプロパントリポリオキシエチレンエーテル(例えば、日本乳化剤株式会社のTMP-30、TMP-60、TMP-90等)、ブタントリオール、1,2-メチルグルコサイド、ペンタエリトリトール、ジペンタエリトリトール、トリペンタエリトリトール、ソルビトール、エリスリトール、スレイトール、リビトール、アラビニトール、キシリトール、アリトール、マンニトール、ドルシトール、イディトール、グリコール、イノシトール、ヘキサントリオール、トリグリセロール、ジグリセロール、トリエチレングリコール等の多官能ポリオールモノマー。
 脂環族アルコール;(B3)成分
 水添ビスフェノールA、シクロブタンジオール、シクロペンタンジオール、シクロヘキサンジオール、シクロヘプタンジオール、シクロオクタンジオール、シクロヘキサンジメタノール、ヒドロキシプロピルシクロヘキサノール、トリシクロ〔5,2,1,02,6〕デカン-ジメタノール、ビシクロ〔4,3,0〕-ノナンジオール、ジシクロヘキサンジオール、トリシクロ〔5,3,1,13,9〕ドデカンジオール、ビシクロ〔4,3,0〕ノナンジメタノール、トリシクロ〔5,3,1,13,9〕ドデカン-ジエタノール、ヒドロキシプロピルトリシクロ〔5,3,1,13,9〕ドデカノール、スピロ〔3,4〕オクタンジオール、ブチルシクロヘキサンジオール、1,1’-ビシクロヘキシリデンジオール、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,2-シクロヘキサンジメタノール、及びo-ジヒドロキシキシリレン等の2官能ポリオールモノマー(前記(B12)ウレタンプレポリマーを構成する(B32)2官能ポリ(チ)オールに該当する)、
 トリス(2-ヒドロキシエチル)イソシアヌレート、シクロヘキサントリオール、スクロース、マルチトール、ラクチトール等の多官能ポリオールモノマー。
 芳香族アルコール;(B3)成分
 ジヒドロキシナフタレン、ジヒドロキシベンゼン、ビスフェノールA、ビスフェノールF、キシリレングリコール、テトラブロムビスフェノールA、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,2-ビス(4-ヒドロキシフェニル)エタン、ビス(4-ヒドロキシフェニル)フェニルメタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、ビス(4-ヒドロキシフェニル)-1-ナフチルメタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2-(4-ヒドロキシフェニル)-2-(3-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、1,1-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)-3-メチルブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、3,3-ビス(4-ヒドロキシフェニル)ペンタン、2,2-ビス(4-ヒドロキシフェニル)ヘキサン、2,2-ビス(4-ヒドロキシフェニル)オクタン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、2,2-ビス(4-ヒドロキシフェニル)ヘプタン、4,4-ビス(4-ヒドロキシフェニル)ヘプタン、2,2-ビス(4-ヒドロキシフェニル)トリデカン、2,2-ビス(4-ヒドロキシフェニル)オクタン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-エチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-n-プロピル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-イソプロピル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-sec-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-tert-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-アリル-4'-ヒドロキシフェニル)プロパン、2,2-ビス(3-メトキシ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(2,3,5,6-テトラメチル-4-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)シアノメタン、1-シアノ-3,3-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロヘプタン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(3,5-ジメチル-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(3,5-ジクロロ-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)-4-メチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシフェニル)ノルボルナン、2,2-ビス(4-ヒドロキシフェニル)アダマンタン、4,4'- ジヒドロキシジフェニルエーテル、4,4'- ジヒドロキシ-3,3'-ジメチルジフェニルエーテル、エチレングリコールビス(4-ヒドロキシフェニル)エーテル、4,4'- ジヒドロキシジフェニルスルフィド、3,3'-ジメチル-4,4'-ジヒドロキシジフェニルスルフィド、3,3'-ジシクロヘキシル-4,4'-ジヒドロキシジフェニルスルフィド、3,3'-ジフェニル-4,4'-ジヒドロキシジフェニルスルフィド、4,4'-ジヒドロキシジフェニルスルホキシド、3,3'-ジメチル-4,4'-ジヒドロキシジフェニルスルホキシド、4,4'-ジヒドロキシジフェニルスルホン、4,4'-ジヒドロキシ-3,3'-ジメチルジフェニルスルホン、ビス(4-ヒドロキシフェニル)ケトン、ビス(4-ヒドロキシ-3-メチルフェニル)ケトン、7,7'-ジヒドロキシ-3,3',4,4'-テトラヒドロ-4,4,4',4'-テトラメチル-2,2'-スピロビ(2H-1-ベンゾピラン)、トランス-2,3-ビス(4-ヒドロキシフェニル)-2-ブテン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、3,3-ビス(4-ヒドロキシフェニル)-2-ブタノン、1,6-ビス(4-ヒドロキシフェニル)-1,6-ヘキサンジオン、4,4'-ジヒドロキシビフェニル、m-ジヒドロキシキシリレン、p-ジヒドロキシキシリレン、1,4-ビス(2-ヒドロキシエチル)ベンゼン、1,4-ビス(3-ヒドロキシプロピル)ベンゼン、1,4-ビス(4-ヒドロキシブチル)ベンゼン、1,4-ビス(5-ヒドロキシペンチル)ベンゼン、1,4-ビス(6-ヒドロキシヘキシル)ベンゼン、2,2-ビス〔4-(2”-ヒドロキシエチルオキシ)フェニル〕プロパン、及びハイドロキノン、レゾールシン等の2官能ポリオールモノマー(前記(B12)ウレタンプレポリマーを構成する(B32)2官能ポリ(チ)オールに該当する)、
 トリヒドロキシナフタレン、テトラヒドロキシナフタレン、ベンゼントリオール、ビフェニルテトラオール、ピロガロール、(ヒドロキシナフチル)ピロガロール、トリヒドロキシフェナントレン等の多官能ポリオールモノマー。
 ポリエステルポリオール;(B3)成分
 ポリオールと多塩基酸との縮合反応により得られる化合物が挙げられる。中でも、数平均分子量が400~2000であることが好ましく、500~1500より好ましく、600~1200が最も好ましい。分子の両末端にのみ(分子内に2つの)水酸基を有するものは、前記(B12)ウレタンプレポリマーを構成する(B32)2官能ポリ(チ)オールに該当する。
 ポリエーテルポリオール;(B3)成分
 アルキレンオキシドの開環重合、または、分子中に活性水素含有基を2個以上有する化合物とアルキレンオキサイドとの反応により得られる化合物およびその変性体が挙げられる。中でも、数平均分子量が400~2000であることが好ましく、500~1500より好ましく、600~1200が最も好ましい。分子の両末端にのみ(分子内に2つの)水酸基を有するものは、前記(B12)ウレタンプレポリマーを構成する(B32)2官能ポリ(チ)オールに該当する。
 ポリカプロラクトンポリオール;(B3)成分
 ε-カプロラクトンの開環重合により得られる化合物が挙げられる。中でも、数平均分子量が400~2000であることが好ましく、500~1500より好ましく、600~1200が最も好ましい。分子の両末端にのみ(分子内に2つの)水酸基を有するものは、前記(B12)ウレタンプレポリマーを構成する(B32)2官能ポリ(チ)オールに該当する。
 ポリカーボネートポリオール;(B3)成分
 低分子ポリオールの1種類以上をホスゲン化して得られる化合物あるいはエチレンカーボネート、ジエチルカーボネート、ジフェニルカーボネート等を用いてエステル交換して得られる化合物が挙げられる。中でも、数平均分子量が400~2000であることが好ましく、500~1500より好ましく、600~1200が最も好ましい。分子の両末端にのみ(分子内に2つの)水酸基を有するものは、前記(B12)ウレタンプレポリマーを構成する(B32)2官能ポリ(チ)オールに該当する。
 ポリアクリルポリオール;(B3)成分
 (メタ)アクリレート酸エステルやビニルモノマーを重合させて得られるポリオール化合物が挙げられる。分子の両末端にのみ(分子内に2つの)水酸基を有するものは、前記(B12)ウレタンプレポリマーを構成する(B32)2官能ポリ(チ)オールに該当する。
 チオール;(B3)成分
 チオールの好適な具体例としては、国際公開第WO2015/068798号パンフレットに記載されているものを用いることが出来る。その中でも、特に好適なものを例示すれば以下のものが挙げられる。
 テトラエチレングリコ-ルビス(3-メルカプトプロピオネート)、1,4-ブタンジオールビス(3-メルカプトプロピオネート)、1,6-ヘキサンジオールビス(3-メルカプトプロピオネート)、1,4-ビス(メルカプトプロピルチオメチル)ベンゼン(前記(B12)ウレタンプレポリマーを構成する(B32)2官能ポリ(チ)オールに該当する)。
 トリメチロ-ルプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリト-ルテトラキス(3-メルカプトプロピオネート)、ジペンタエリスリト-ルヘキサキス(3-メルカプトプロピオネート)、1,2-ビス[(2-メルカプトエチル)チオ]-3-メルカプトプロパン、2,2-ビス(メルカプトメチル)-1,4-ブタンジチオール、2,5-ビス(メルカプトメチル)-1,4-ジチアン、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、1,1,1,1-テトラキス(メルカプトメチル)メタン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、1,1,2,2-テトラキス(メルカプトメチルチオ)エタン、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、トリス-{(3-メルカプトプロピオニルオキシ)エチル}-イソシアヌレ-ト等のチオールモノマー。
 OH/SH型重合性基含有モノマー;(B3)成分
 2-メルカプトエタノール、1-ヒドロキシ-4-メルカプトシクロヘキサン、2-メルカプトハイドロキノン、4-メルカプトフェノール、1-ヒドロキシエチルチオ-3-メルカプトエチルチオベンゼン、4-ヒドロキシ-4’-メルカプトジフェニルスルホン、2-(2-メルカプトエチルチオ)エタノール、ジヒドロキシエチルスルフィドモノ(3-メルカプトプロピオネート)、ジメルカプトエタンモノ(サルチレート)(前記(B12)ウレタンプレポリマーを構成する(B32)2官能ポリ(チ)オールに該当する)。
 3-メルカプト-1,2-プロパンジオール、グルセリンジ(メルカプトアセテート)、2,4-ジメルカプトフェノール、1,3-ジメルカプト-2-プロパノール、2,3-ジメルカプト-1-プロパノール、1,2-ジメルカプト-1,3-ブタンジオール、ペンタエリスリトールトリス(3-メルカプトプロピオネート)、ペンタエリスリトールモノ(3-メルカプトプロピオネート)、ペンタエリスリトールビス(3-メルカプトプロピオネート)、ペンタエリスリトールトリス(チオグリコレート)、ペンタエリスリトールペンタキス(3-メルカプトプロピオネート)、ヒドロキシメチル-トリス(メルカプトエチルチオメチル)メタン、ヒドロキシエチルチオメチルートリス(メルカプトエチルチオ)メタン等のポリ(チ)オールモノマー。
 (B4)アミノ基含有モノマー;(B4)成分
 (B4)アミノ基含有モノマーは、一分子中に1級、または2級のアミノ基を1つ以上有しているモノマーであり、その中でも大きく分けて、脂肪族アミン、脂環族アミン、芳香族アミンに分類され、その具体例としては、以下のモノマーを挙げることができる。
 脂肪族アミン;(B4)成分
 エチレンジアミン、ヘキサメチレンジアミン、ノナメチレンジアミン、ウンデカンメチレンジアミン、ドデカメチレンジアミン、メタキシレンジアミン、1,3-プロパンジアミン、プトレシン、ジエチレントリアミン等のポリアミン。
 モノエチルアミン、n-プロピルアミン、ジエチルアミン、ジーn-プロピルアミン、n-プロピルアミン、ジーn-ブチルアミン、n-ブチルアミン等の単官能アミン。
 脂環族アミン;(B4)成分
 イソホロンジアミン、シクロヘキシルジアミン等のポリアミン。
 シクロヘキシルアミン、N―メチルシクロヘキシルアミン等の単官能アミン。
 芳香族アミン;(B4)成分
 4,4’-メチレンビス(o-クロロアニリン)(MOCA)、2,6-ジクロロ-p-フェニレンジアミン、4,4’-メチレンビス(2,3-ジクロロアニリン)、4,4’-メチレンビス(2-エチル-6-メチルアニリン)、3,5-ビス(メチルチオ)-2,4-トルエンジアミン、3,5-ビス(メチルチオ)-2,6-トルエンジアミン、3,5-ジエチルトルエン-2,4-ジアミン、3,5-ジエチルトルエン-2,6-ジアミン、トリメチレングリコール-ジ-p-アミノベンゾエート、ポリテトラメチレングリコール-ジ-p-アミノベンゾエート、4,4’-ジアミノ-3,3’,5,5’-テトラエチルジフェニルメタン、4,4’-ジアミノ-3,3’-ジイソプロピル-5,5’-ジメチルジフェニルメタン、4,4’-ジアミノ-3,3’,5,5’-テトライソプロピルジフェニルメタン、1,2-ビス(2-アミノフェニルチオ)エタン、4,4’-ジアミノ-3,3’-ジエチル-5,5’-ジメチルジフェニルメタン、N,N’-ジ-sec-ブチル-4,4’-ジアミノジフェニルメタン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、m-キシリレンジアミン、N,N’-ジ-sec-ブチル-p-フェニレンジアミン、m-フェニレンジアミン、p-キシリレンジアミン、p-フェニレンジアミン、3,3’-メチレンビス(メチル-6-アミノベンゾエート)、2,4-ジアミノ-4-クロロ安息香酸-2-メチルプロピル、2,4-ジアミノ-4-クロロ安息香酸-イソプロピル、2,4-ジアミノ-4-クロロフェニル酢酸-イソプロピル、テレフタル酸-ジ-(2-アミノフェニル)チオエチル、ジフェニルメタンジアミン、トリレンジアミン、ピペラジン、1,3,5-ベンゼントリアミン、メラミン等のポリアミン。
 ベンジルアミン、ジベンジルアミン等の単官能アミン。
 (B1)成分、(B2)成分、(B3)成分、および(B4)成分を含む硬化性組成物
 本発明において、(B1)成分、(B2)成分、(B3)成分、および(B4)成分を含む硬化性組成物の場合、すなわち、(A)ポリロタキサンモノマーにおける重合性官能基がラジカル重合性基ではなく、重縮合、又は重付加反応により重合硬化して硬化体を製造する場合には、以下の配合割合とすることが好ましい。
 具体的には、(B1)成分、(B2)成分、(B3)成分、および(B4)成分の合計量(以下、単に「(B)成分の合計量」とする場合もある)と、(A)成分との合計100質量部に対し、(A)成分を3~50質量部、(B)成分の合計量を50~97質量部の範囲で含有することが好ましい。この割合で(A)ポリロタキサンモノマーを含むことにより、得られる硬化体が、研磨用パッドの場合には優れた研磨特性や機械特性を発現させることが可能となる。また、フォトクロミック化合物を含むフォトクロミック硬化体の場合には、優れたフォトクロミック特性や機械特性を発現させることが可能となる。以上のような効果を発揮するためには、(A)成分を5~45質量部、(B)成分の合計量を55~95質量部の範囲とすることがより好ましい。
 さらには、(B)成分の合計量を100質量%としたとき、(B1)成分0~95質量%、(B2)成分0~100質量%、(B3)成分0~80質量%、および(B4)成分0~30質量%とすることが、優れた機械特性を発現するため好ましい。この効果をより発揮するためには、(B1)成分20~95質量%、(B2)成分0~20質量%、(B3)成分0~70質量%、および(B4)成分0~25質量%とすることがさらに好ましく、(B1)成分25~85質量%、(B2)成分0~5質量%、(B3)成分15~70質量%、および(B4)成分0~20質量%とすることが特に好ましい。
 本発明のポリロタキサンモノマーを使用する用途に応じて、以下のような配合割合とすることもできる。具体的には、研磨用パッド(例えば、CMP研磨用パッドなど)に使用する場合には、(B1)成分40~85質量%、(B2)成分0~5質量%、(B3)成分0~35質量%、および(B4)成分0~20質量%とすることが好ましい。また、フォトクロミック硬化体(例えば、眼鏡レンズのような光学物品用途)に使用する場合には、(B1)成分25~65質量%、(B2)成分0~5質量%、(B3)成分35~70質量%、および(B4)成分0~15質量%とすることが好ましい。
 (B5)ラジカル重合性モノマー
 本発明の硬化性組成物は、(B5)ラジカル重合性モノマーを含んでもよい。
 (B5)ラジカル重合性モノマー(以下、単に(B5)成分とする場合もある。)とは、ラジカル重合性基を有するものであれば、特に制限されるものではない。ラジカル重合性モノマーを、大きく分類すると(メタ)アクリレート基を有する(メタ)アクリレート化合物、ビニル基を有するビニル化合物、アリル基を有するアリル化合物に分類できる。
 前記(B5)ラジカル重合性モノマーの好適な具体例としては、国際公開第WO2015/068798号に記載されているものを用いることが出来る。さらに、その中でも、本発明でさらに好適に用いることが出来るラジカル重合性化合物を例示すれば、下記に示す化合物が特に好適に用いることが出来る。
 (B51);(メタ)アクリレート化合物
 (B51)(メタ)アクリレート化合物(以下、単に「(B51)成分」とする場合もある。)は、例えば、下記式(1)~(4)に示される化合物が挙げられる。
 (B511)式(1)で表されるモノマー;((B51)成分)
Figure JPOXMLDOC01-appb-C000001
 式中、Rは、水素原子またはメチル基であり、Rは、水素原子または炭素数1~2のアルキル基であり、Rは、炭素数1~10である3~6価の有機基であり、aは、平均値で0~3の数であり、bは3~6の数である。Rで示される炭素数1~2のアルキル基としてはメチル基が好ましい。Rで示される有機基としては、ポリオールから誘導される基、3~6価の炭化水素基、3~6価のウレタン結合を含む有機基が挙げられる。
 上記式(1)における好適な化合物を例示すると、
トリメチロールプロパントリメタクリレート、ジトリメチロールプロパンテトラメタクリレート等が挙げられる。
 (B512)成分;式(2)で表される化合物 (B51)成分
Figure JPOXMLDOC01-appb-C000002
 式中、R及びRは、それぞれ、水素原子、又はメチル基であり、cおよびdは、それぞれ、0以上の整数である。
 ただし、RとRが共にメチル基の場合には、c+dは平均値で2以上7未満であり、Rがメチル基及びRが水素原子の場合には、c+dは平均値で2以上5未満であり、RとRが共に水素原子の場合には、c+dは平均値で2以上3未満である。
 上記式(2)における最も好適な化合物を例示すると、
トリプロピレングリコールジメタクリレート、テトラプロピレングリコールジメタクリレート等が挙げられる。
 (B513)成分; 式(3)で表される化合物 (B51)成分
Figure JPOXMLDOC01-appb-C000003
 式中、RおよびRは、それぞれ、水素原子またはメチル基であり、RおよびRは、それぞれ、水素原子またはメチル基であり、R10は、水素原子またはハロゲン原子であり、Bは、-O-,-S-,-(SO)-,-CO-,-CH-,-CH=CH-,-C(CH-,-C(CH)(C)-の何れかであり、eおよびfはそれぞれ1以上の整数であり、e+fは平均値で2以上30以下である。
 なお、上記式(3)で示される重合性モノマーは、通常、分子量の異なる分子の混合物の形で得られる。そのため、eおよびfは平均値で示した。
 上記式(3)における好適なモノマーを例示すると、
 ビスフェノールAジメタクリレート、2,2-ビス(4-メタクリロイルオキシ(ポリエトキシ)フェニル]プロパン(e+f=2.6)、2,2-ビス[4-メタクリロキシ(ポリエトキシ)フェニル]プロパン(e+f=10)、2,2-ビス[4-メタクリロキシ(ポリエトキシ)フェニル]プロパン(e+f=17)、2,2-ビス[4-メタクリロキシ(ポリエトキシ)フェニル]プロパン(e+f=30)2,2-ビス(3,5-ジブロモ-4-メタクリロイルオキシエトキシフェニル)プロパン、2,2-ビス(4-メタクリロイルオキシジプロポキシフェニル)プロパン、ビスフェノールAジアクリレート、2,2-ビス[4-アクリロキシ(ポリエトキシ)フェニル]プロパン(e+f=10)、2,2-ビス[4-アクリロキシ(ポリエトキシ)フェニル]プロパン(e+f=20)等が挙げられる。
 (B514)成分; 式(4)で示される化合物 (B51)成分
Figure JPOXMLDOC01-appb-C000004
 式中、gは平均値で1~20の数であり、A及びA’は、互いに同一でも異なっていてもよく、それぞれ炭素数2~15の直鎖状または分岐状のアルキレン基であり、Aが複数存在する場合には、複数のAは同一の基であっても、異なる基であってもよく、R11は、水素原子、またはメチル基であり、R12は、(メタ)アクリロイルオキシ基またはヒドロキシル基である。
 上記式(4)で示される化合物は、ポリカーボネートジオールと(メタ)アクリレート酸とを反応させることにより製造することができる。
 上記式(4)で最も好ましい形態は、ペンタメチレングリコールとヘキサメチレングリコールの混合物である数平均分子量500のポリカーボネートジオールとアクリル酸を反応させたものであり、R12は、アクリロイルオキシ基であるモノマーが挙げられる。
 (B515)成分;シルセルキオキサンモノマー;(B51)成分
 シルセルキオキサンモノマーは、ケージ状、ハシゴ状、ランダムといった種々の分子構造を取るものであり、(メタ)アクリレート基等のラジカル重合性基を有しているモノが好ましい。
 このようなシルセルキオキサン化合物の例としては、下記式(5)で示されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000005
 式中、hは、重合度であり、3~100の整数であり、複数個あるR13は、互いに同一もしくは異なっていてもよく、ラジカル重合性基、ラジカル重合性基を含む有機基、水素原子、アルキル基、シクロアルキル基、アルコキシ基又はフェニル基であり、少なくとも1つのR13は、ラジカル重合性基、又はラジカル重合性基を含む有機基である。
 ここで、R13で示されるラジカル重合性基、又はラジカル重合性基を含む有機基としては、(メタ)アクリレート基;(メタ)アクリロイルオキシプロピル基、(3-(メタ)アクリロイルオキシプロピル)ジメチルシロキシ基等の(メタ)アクリレート基を有する有機基等が挙げられる。
 (B516)成分;その他の(メタ)アクリレート化合物 (B51)成分
 上記式(1)~(4)で表される化合物以外におけるモノマーを例示すると、
 メトキシポリエチレングリコールメタクリレート(特に平均分子量293)、メトキシポリエチレングリコールメタクリレート(特に平均分子量468)、メトキシポリエチレングリコールアクリレート(特に平均分子量218)、メトキシポリエチレングリコールアクリレート(特に平均分子量454)、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、ペンタエチレングリコールジメタクリレート、ペンタプロピレングリコールジメタクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ペンタエチレングリコールジアクリレート、トリプロピレングリコールジアクリレート、テトラプロピレングリコールジアクリレート、ペンタプロピレングリコールジアクリレート、ポリプロピレングリコールとポリエチレングリコールの混合物よりなるジメタアクリレート(ポリエチレンが2個、ポリプロピレンが2個の繰り返し単位を有する)、ポリエチレングリコールジメタクリレート(特に平均分子量330)、ポリエチレングリコールジメタクリレート(特に平均分子量536)、ポリテトラメチレングリコールジメタクリレート(特に平均分子量736)、トリプロピレングリコールジメタクリレート、テトラプロピレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート(特に平均分子量536)、ポリエチレングリコールジアクリレート(特に平均分子量258)、ポリエチレングリコールジアクリレート(特に平均分子量308)、ポリエチレングリコールジアクリレート(特に平均分子量508)、ポリエチレングリコールジアクリレート(特に平均分子量708)、ポリエチレングリコールメタクリレートアクリレート(特に平均分子量536)、(ポリエチレングリコール/ポリプロピレングリコール)ジアクリレート共重合体(特に平均分子量330)、エトキシ化シクロヘキサンジメタノールアクリレート(特に平均分子量434)、ポリエステルオリゴマーヘキサアクリレート、カプロラクトン変性ジペンタエリスリトールヘキサアクリレート、4官能ポリエステルオリゴマー(分子量2500~3500、ダイセルユーシービー社、EB80等)、4官能ポリエステルオリゴマー(分子量6000~8000、ダイセルユーシービー社、EB450等)、6官能ポリエステルオリゴマー(分子量45000~55000、ダイセルユーシービー社、EB1830等)、4官能ポリエステルオリゴマー(特に分子量10000の第一工業製薬社、GX8488B等)、エチレングリコールビスグリシジルメタクリレート、1,4-ブチレングリコールジメタクリレート、1,9-ノニレングリコールジメタクリレート、ネオペンチレングリコールジメタクリレート、ビス(2-メタクリロイルオキシエチルチオエチル)スルフィド、ビス(メタクリロイルオキシエチル)スルフィド、ビス(アクリロイルオキシエチル)スルフィド、1,2-ビス(メタクリロイルオキシエチルチオ)エタン、1,2-ビス(アクリロイルオキシエチル)エタン、ビス(2-メタクリロイルオキシエチルチオエチル)スルフィド、ビス(2-アクリロイルオキシエチルチオエチル)スルフィド、1,2-ビス(メタクリロイルオキシエチルチオエチルチオ)エタン、1,2-ビス(アクリロイルオキシエチルチオエチルチオ)エタン、1,2-ビス(メタクリロイルオキシイソプロピルチオイソプロピル)スルフィド、1,2-ビス(アクリロイルオキシイソプロピルチオイソプロピル)スルフィド、ステアリルメタクリレート、ラウリルメタクリレート、メチルアクリレート、エチルアクリレート、ブチルアクリレート、オクチルアクリレート、ラウリルアクリレート、
 (メタ)アクリレート酸のエステル、例えば、(メタ)アクリレート酸メチル、(メタ)アクリレート酸ベンジル、(メタ)アクリレート酸フェニル、2-ヒドロキシエチル(メタ)アクリレート、
 チオアクリル酸もしくはチオメタクリル酸のエステル、例えばメチルチオアクリレート、ベンジルチオアクリレート、ベンジルチオメタクリレート、
 多官能性ウレタン(メタ)アクリレート、例えば、新中村化学工業(株)製のU-4HA(分子量596、官能基数4)、U-6HA(分子量1019、官能基数6)、U-6LPA(分子量818、官能基数6)、U-15HA(分子量2300、官能基数15)、新中村化学工業(株)製のU-2PPA(分子量482)、UA-122P(分子量1100)、U-122P(分子量1100)、及びダイセルユーシービー社製のEB4858(分子量454)、新中村化学工業(株)製のU-108A、U-200PA、UA-511、U-412A、UA-4100、UA-4200、UA-4400、UA-2235PE、UA-160TM、UA-6100、UA-6200、U-108、UA-4000、UA-512および日本化薬(株)製UX-2201、UX3204、UX4101、6101、7101、8101が挙げられる。
 (B52)成分;ビニル化合物
 ビニル化合物としては、スチレン、α-メチルスチレンおよびα-メチルスチレンダイマー等が挙げられる。また、前記シルセスキオキサンモノマーにおいて、R13がビニル基;ビニルプロピル基、ビニルジメチルシロキシ基等のビニル基を有する有機基となる化合物が挙げられる。
 (B53)成分;アリル化合物
 アリル化合物としては、メトキシポリエチレングリコールアリルエーテル(特に平均分子量550)、メトキシポリエチレングリコールアリルエーテル(特に平均分子量350)、メトキシポリエチレングリコールアリルエーテル(特に平均分子量1500)等が挙げられる。前記シルセスキオキサンモノマーにおいて、R13がアリル基;アリルプロピル基、アリルプロピルジメチルシロキシ基等のアリル基を有する有機基となる化合物が挙げられる。
 (B54)その他のラジカル重合性モノマー
 本発明においては、分子中に異なるタイプの複数種の重合性基を有する複合型重合性化合物も使用することができる。具体的な化合物を例示すれば、以下のものが挙げられる。なお、ここでは、分子内に1つでもラジカル重合性基を有するものであれば、この分類に該当するものとした。
 ラジカル重合/エポキシ型重合基含有モノマー;(B54)成分
 グリシジルメタクリレート、グリシジルオキシメチルメタクリレート、2-グリシジルオキシエチルメタクリレート、3-グリシジルオキシプロピルメタクリレート、4-グリシジルオキシブチルメタクリレート、ポリエチレングリコールグリシジルメタクリレート、ポリプロピレングリコールグリシジルメタクリレート、ビスフェノールA-モノグリシジルエーテル-メタクリレート、ポリエチレングリコールグリシジルアクリレート、ポリエチレングリコールグリシジルアクリレート。
 ラジカル重合/OH型重合基含有モノマー;(B54)成分
 2-ヒドロキシメタクリレート、2-ヒドロキシアクリレート、アクリル酸2-ヒドロキシプロピル等。
 ラジカル重合/イソシアネート基含有モノマー;(B54)成分
 2-イソシアナトエチルメタクリレート、2-イソシアナトエチルアクリレート等が挙げられる。
 ラジカル重合/シリル基含有モノマー;(B54)成分
 γ-メタクリロイルオキシプロピルトリメトキシシラン、γ-メタクリロイルオキシプロピルメチルジメトキシシラン等が挙げられる。
 また、上述した重合性化モノマー以外にも、何ら制限なく、その他の重合性モノマーを使用できる。例えば、エピスルフィドモノマーやチエタニルモノマー、モノ(チ)オールモノマーを使用することもできる。エピスルフドモノマーやチエタニルモノマー、モノ(チ)オールモノマーの好適な具体例としては、国際公開第WO2015/068798号に記載されているものを用いることが出来る。
 (B5)成分を含む硬化性組成物
 本発明において、(B5)成分を含む硬化性組成物の場合、すなわち、(A)ポリロタキサンモノマーにおける重合性官能基がラジカル重合性基である場合には、以下の配合割合とすることが好ましい。
 具体的には、(B5)成分と、(A)成分との合計100質量部に対し、(A)成分を2~50質量部、(B5)成分の合計量を50~98質量部の範囲で含有することが好ましい。この割合で(A)ポリロタキサンモノマーを含むことにより、フォトクロミック化合物を含むフォトクロミック硬化体の場合には、優れたフォトクロミック特性や機械特性を発現可能となる。以上のような効果を発揮するためには、(A)成分を3~40質量部、(B)成分の合計量を60~97質量部の範囲とすることがより好ましい。
 さらには、(B5)成分の合計量を100質量%としたとき、(B51)成分77~99質量%、(B52)成分0~15質量%、(B53)成分0~5質量%、および(B54)成分1~3質量%とすることが、硬化体の成形性のため好ましい。この効果をより発揮するためには、(B51)成分85~99質量%、(B52)成分0~10質量%、(B53)成分0~3質量%、および(B54)成分1~2質量%とすることがさらに好ましい。
 さらには、上記範囲を満足する場合において、(B51)成分の合計量を100質量%とした時、(B511)成分5~50質量%、(B512)成分0~60質量%、(B513)成分0~70質量%、(B514)成分0~20質量%、(B515)成分0~20質量%、および(B516)成分10~70質量%とすることが、優れたフォトクロミック特性のため好ましい。この効果をより発揮するためには、(B511)成分7~40質量%、(B512)成分0~50質量%、(B513)成分0~60質量%、(B514)成分0~15質量%、(B515)成分0~10質量%、および(B516)成分15~60質量%とすることがさらに好ましい。
 好適な硬化性組成物について
 本発明の硬化性組成物は、上記した(A)ポリロタキサンモノマーと、(B)重合性モノマーを含むことが好ましい。(B)重合性モノマーの種類は、ポリロタキサンモノマーが有する重合性官能基の種類に応じて適宜選択することが好ましい。
 例えば、ポリロタキサンモノマーが水酸基を含む場合は、(B)重合性モノマーは、(B1)イソ(チオ)シアネート化合物を含むことが好ましい。
 ポリロタキサンモノマーが水酸基を含む場合は、(B)重合性モノマーは、(B1)イソ(チオ)シアネート化合物に加え、(B2)エポキシ基含有モノマー、(B3)(チ)オール化合物、及び(B4)アミノ基含有モノマーから選ばれる少なくとも一つのモノマーを含むことがより好ましい。
 ポリロタキサンモノマーが水酸基を含む場合は、(B)重合性モノマーは、(B1)イソ(チオ)シアネート化合物に加え、(B3)(チ)オール化合物、及び(B4)アミノ基含有モノマーから選ばれる少なくとも一つのモノマーを含むことがさらに好ましい。
 これに対して、(A)ポリロタキサンモノマーが(メタ)アクリレート基などのラジカル重合性基を含む場合、(B)重合性モノマーは、(B5)ラジカル重合性モノマーを含有することが好ましい。例えば、(A)ポリロタキサンモノマーの重合性官能基が、(メタ)アクリレート基を含む場合、(B)重合性モノマーは、(メタ)アクリレート化合物であることが好ましい。
 上記(A)ポリロタキサンモノマー、およびポリロタキサン以外の(B)重合性モノマーは、用いる用途に応じて適宜選択すればよい。例えば、フォトクロミック硬化性組成物を調合する場合には、(A)ポリロタキサンモノマーの重合性官能基は、OH基、SH基、または、ラジカル重合性基から選択されるのが好ましく、(B)重合性モノマーは、(B1)イソ(チオ)シアネート化合物、(B5)ラジカル重合性モノマー等から選択されるのが好ましい。また、(A)ポリロタキサンモノマーの重合性官能基がOH基、SH基の場合には、(B1)イソ(チア)シアネート化合物の他にも、(B3)(チ)オール化合物を併用することが好ましい。こうすることで、優れた機械物性やフォトクロミック特性を発現できる。上記の中でも本発明で特に高い効果が得られるのは、(B)重合性モノマーに(B1)イソ(チオ)シアネート化合物を用いた時である。
 研磨用パッド材に用いられる場合には、(A)ポリロタキサンモノマーの重合性官能基はOH基から選択されるのが好ましく、(B)重合性モノマーは(B1)イソ(チオ)シアネート化合物から選択されるのが好ましい。特に、研磨用パッド材に用いる際には、(B1)イソ(チオ)シアネート化合物の中でも、(B12)ウレタンプレポリマーを含んでなることが好ましい。こうすることで、研磨用パッド材の機械特性を向上でき、特に良好な耐摩耗性特性を発現できる。
 また、これら使用する(B)重合性モノマーの水分量は、3000ppm以下であることが好ましい。そうすることで、より一層本発明の効果を引き出すことができる。(B)重合性モノマーの水分量の下限値は、特に制限されるものではないが、50ppmであることが好ましく、10ppmであることが好ましい。
 (硬化性組成物に配合されるその他の配合成分)
 本発明の硬化性組成物においては、上述した(A)ポリロタキサンモノマーや、(B)重合性モノマーに導入された重合性官能基の種類に応じて、その重合硬化を速やかに促進させるために各種の(C)重合硬化促進剤を使用することもできる。
 (C)重合硬化促進剤
 例えば、(A)ポリロタキサンモノマーが有している重合性官能基がOH基、アミノ基、エポキシ基、及び、SH基等の重合性基の場合であり、(B)成分が、(B1)イソ(チオ)シアネート化合物から選択される場合には、(C1)ウレタン或いはウレア用反応触媒や(C2)縮合剤が重合硬化促進剤として使用される。
 (A)ポリロタキサンモノマーが有している重合性官能基がOH基、アミノ基、及び、NCO基等の重合性官能基であり、(B)成分が、(B2)エポキシ基含有モノマー、エピスルフィドモノマー、及び、チエタニルモノマーから選択される場合には、(C3)エポキシ硬化剤やエポキシ基を開環重合させるための(C4)カチオン重合触媒が重合硬化促進剤として使用される。
 (A)ポリロタキサンモノマーが有している重合性官能基がNCO基又はNCS基の場合であり、(B)成分が、(B3)(チ)オール化合物、及び、(B4)アミノ基含有モノマーから選択される場合には、(C1)ウレタン或いはウレア用反応触媒や(C2)縮合剤が重合硬化促進剤として使用される。
 (A)ポリロタキサンモノマーが有している重合性官能基がラジカル重合性基の場合であり、(B)成分が(B5)ラジカル重合性モノマーから選択される場合には、(C5)ラジカル重合開始剤が重合硬化促進剤として使用される。
 本発明で好適に使用できる上記(C1)~(C5)の重合促進剤としては、具体例としては、国際公開第WO2015/068798号に記載されているものを用いることが出来る。
 これら各種の(C)重合硬化促進剤は、それぞれ、1種単独でも、2種以上を併用することもできるが、その使用量は、所謂触媒量でよく、例えば、(A)ポリロタキサンと(B)重合性モノマーの合計100質量部当り、0.001~10質量部、特に0.01~5質量部の範囲の少量でよい。
 (D)フォトクロミック化合物
 上記した硬化性組成物に、さらに(D)フォトクロミック化合物を配合してもよい。すなわち、上記した硬化性組成物、および(D)フォトクロミック化合物を含むフォトクロミック硬化性組成物としてもよい。
 言い換えると、本発明の硬化性組成物を硬化させた硬化体は、その用途に応じて、硬化体中に(D)フォトクロミック化合物を含有させてもよい。このような用途としては、フォトクロミック硬化性組成物を硬化して得られるフォトクロミック硬化体が知られている。該フォトクロミック硬化体は、フォトクロミック眼鏡などに好適に使用することができる。上述したフォトクロミック化合物には、公知のフォトクロミック化合物を使用できるが、フォトクロミック組成物として使用する場合には、発色濃度、初期着色性、耐久性、退色速度などのフォトクロミック性の観点から、インデノ〔2,1-f〕ナフト〔1,2-b〕ピラン骨格を有するクロメン化合物を用いることがより好ましく、特に分子量が540以上のクロメン化合物が、発色濃度及び退色速度に特に優れるため好適に使用される。
 これら各種の(D)フォトクロミック化合物は、それぞれ、1種単独でも、2種以上を併用することもできる。その使用量は、用途に応じて適宜決定すればよく、例えば、(A)ポリロタキサンと(B)重合性モノマーの合計100質量部当り、0.001~20質量部、特に0.01~10質量部の範囲であることが好ましい。
 本発明の硬化性組成物は、その他にも、本発明の効果を損なわない範囲で、公知の各種配合剤を用いることが出来る。例えば、砥粒、酸化防止剤、紫外線吸収剤、赤外線吸収剤、着色防止剤、蛍光染料、染料、顔料、香料、界面活性剤、難燃剤、可塑剤、充填剤、帯電防止剤、整泡剤、消泡剤、溶剤、レベリング剤、その他の添加剤を加えてもよい。これらの添加剤は単独で用いても2種以上を併用してもよい。これら添加剤は、硬化性組成物に含有させ、該硬化性組成物を重合することにより、硬化体に含有させることができる。上述した砥粒については、具体的には、酸化セリウム、酸化珪素、アルミナ、炭化珪素、ジルコニア、酸化鉄、二酸化マンガン、酸化チタン及びダイヤモンドから選択される材料からなる粒子、又はこれら材料からなる二種以上の粒子等が挙げられる。
 重合方法は、公知の方法を採用できる。重縮合、又は重付加反応の場合には、国際公開第2015/068798号、国際公開第2016/143910、特開2017-48305に記載の条件を採用できる。ラジカル重合の場合には、国際公開第2014/136804号、国際公開第2015/068798号の記載の条件を採用できる。
 <硬化体>
 本発明における硬化体は、マトリックス樹脂に、ポリロタキサン、あるいは必要に応じて配合されるフォトクロミック化合物などが分散した構造であり、該マトリックス樹脂は、(B)重合性モノマーの種類によって、(チオ)ウレタン樹脂、(メタ)アクリル樹脂など種々の種類が選択できる。
 例えば、(A)ポリロタキサンモノマーが水酸基を含み、(B)重合性モノマーが、(B1)イソ(チオ)シアネート化合物を含む場合は、硬化性組成物を硬化した硬化体は、(チオ)ウレタン樹脂中にポリロタキサンが分散した構造となる。このような場合において、硬化性組成物に配合される(A)ポリロタキサンモノマーの水分量が5000ppm以下であると、優れた外観の硬化体が得られやすく、生産性が向上する。また、(D)フォトクロミック化合物を用いる場合、すなわち、(チオ)ウレタン樹脂中にポリロタキサン及びフォトクロミック化合物が分散している場合は、硬化性組成物に配合される(A)ポリロタキサンモノマーの水分量が5000ppm以下であることで、優れた外観となり、かつ発色濃度が高くなりやすい。この理由は定かではないが、(A)ポリロタキサンモノマーの水分量が低いことで、フォトクロミック化合物がポリロタキサン周辺に存在し易くなり、その結果、発色し易くなるものと推定される。
 また、硬化性組成物を硬化して得られる研磨用パッドの場合、該組成物に含有される(A)ポリロタキサンモノマーの水分量が5000ppm以下であると、優れた外観となり、かつ優れた研磨パット特性を示す。
 これに対して、(A)ポリロタキサンモノマーが(メタ)アクリレート基などのラジカル重合性基を含む場合、(B)重合性モノマーは、(B5)ラジカル重合性モノマーを含有することが好ましい。(B)重合性モノマーとして、ラジカル重合性モノマーを用いた場合に、(A)ポリロタキサンモノマーの水分量を5000ppm以下としておくことで、硬化性組成物の保存安定性が向上し、例えば、硬化性組成物中にフォトクロミック化合物を含ませて、長期間保存した場合においても、フォトクロミック硬化体のフォトクロミック特性は良好に維持される。
 硬化性組成物が(D)フォトクロミック化合物を含む場合には、そのまま重合硬化することによって、フォトクロミック硬化体を製造できる。
 また、本発明の硬化性組成物を硬化させた硬化体は、その用途に応じて、硬化体中に細孔を設けてもよい。このような用途としては、研磨用パッドが知られている。研磨用パッド等に細孔を設ける手法としては、公知で知られている発泡方法等を何ら制限なく用いることが可能である。それらの方法を例示すれば、低沸点炭化水素等の揮発性の発泡剤や、微小中空体(マイクロバルーン)などの中空粒子を分散硬化させる方法、熱膨張性の微粒子を混合したのち加熱し微粒子を発泡させる方法、または混合中に空気や窒素等の不活性ガスを吹き込むメカニカルフロス発泡法が例示できる。発泡させた場合、ウレタン樹脂などのマトリックス樹脂の密度は、0.4~0.9g/cmであることが好ましい。本発明の硬化性体に、ウレタン結合を形成させうることが可能な硬化性組成物を用いる場合には、水などを添加する発泡剤発泡法も適用できる。本発明で、ウレタン結合を形成させうることが可能な硬化性組成物を用いた際も、ポリロタキサンモノマーの水分量を5000ppm以下とすることで、所望の発泡率を得ることが可能となる。
 <中空粒子を含む硬化体>
 本発明の硬化性組成物の硬化体を研磨用パッド等に用いる際は、硬化体は上記記載の微小中空体(マイクロバルーン)などの中空粒子を含むことが好ましい。すなわち、中空粒子を含む硬化性組成物を重合硬化して、中空粒子を含む硬化体を製造することが好ましい。ここで該硬化体におけるマトリックス樹脂は、ウレタン樹脂であることが好ましく、硬化体を得るための硬化性組成物としては、ウレタン樹脂を形成しうる硬化性組成物を用いることが好ましい。
 中空粒子は、公知のものを何ら制限なく使用することが出来る。中空粒子は、外殻部と、該外殻部に囲まれた中空部とから構成されることが好ましい。外殻部は、通常は樹脂から形成され、その具体例を示せば、塩化ビニリデン樹脂、(メタ)アクリル系樹脂、アクリル系モノマーと塩化ビニリデンとの共重合体、アクリルニトリルと塩化ビニリデンとの共重合体、エポキシ樹脂、フェノール樹脂、メラミン樹脂、ウレタン系樹脂等が挙げられる。中でも、中空粒子の外殻部は、ウレタン系樹脂からなることが好ましく、具体的には、ウレタン系樹脂からなる外殻部と、該外殻部に囲まれた中空部とから構成される中空粒子であることが好ましい。該ウレタン系樹脂とは、ウレタン結合、および/又はウレア結合を有する樹脂である。この中空粒子を使用した場合には、効率よく、容易に、均一な発泡体を製造でき、スクラッチ等の欠陥が出にくくなり、さらにヒステリシスロスも低減される。
 さらに、該中空粒子は、親水性基を有していてもよい。例えば、本発明の硬化性組成物からなる硬化体、例えばマトリックス樹脂がウレタン樹脂である硬化体を研磨用パッドとして用いる場合、該中空粒子が親水性基を有していれば、研磨スラリーとの相溶性を向上させることが可能となり、研磨特性を向上させることが可能となる。該親水性基としては、水酸基、チオール基、または、イオン性基(カルボキシルイオン、スルホン酸イオン、リン酸イオン、ホスホン酸イオン、及び第4級アンモニウムカチオンからなる群より選ばれる少なくとも1種のイオンを形成し得る基)等が挙げられる。
 該中空粒子の平均粒子径は、特に制限されるものではないが、以下の範囲であることが好ましい。具体的には、1μm~500μmであることが好ましく、5μm~200μmであることがより好ましい。
 また、中空粒子の密度も、特に制限されるものではないが、以下の範囲であることが好ましい。具体的には、0.01g/cm~0.5g/cmであることが好ましく、0.02g/cm~0.3g/cmであることがより好ましい。なお、前記密度は、膨張した際の中空粒子の密度である。未膨張タイプの粒子であり、硬化性組成物と混合し、硬化させる際の熱によって膨張する中空粒子であれば、膨張した際の密度が、上記の密度であることが好ましい。
 該中空粒子の配合量は、目的とする用途に応じて適宜決定すればよい。すなわち、必須成分ではないため、含まれないともよい。中空粒子を含む場合、各モノマー成分の合計量に対して、中空粒子は以下の配合量となることが好ましい。なお、各モノマー成分の合計量とは、(A)成分、および(B)成分の合計量を指す。中空粒子の配合量は、各モノマー成分の合計量100質量部に対して、0.001質量部以上20質量部以下とすることが好ましい。さらには、中空粒子を配合することにより、より一層、優れた効果を発揮するため、以下の配合量とすることが特に好ましい。具体的には、各モノマー成分の合計量100質量部に対して、0.02質量部以上20質量部以下とすることが好ましく、0.03質量部以上10質量部以下とすることが好ましい。
 <研磨用パッド等に利用する際の特性・配合剤>
 本発明を研磨用パッド等に用いる際は、本発明の硬化体は、任意の適当な硬さを有することができる。硬さは、ショアー(Shore)法に従って測定することができ、例えば、JIS規格(硬さ試験)K6253に従って測定することができる。本発明の硬化体を研磨用パッド等で用いる際は、20A~90Dのショアー硬さを有することが好ましい。さらに、30A~70Dであることが好ましく、40A~50Dであることがさらに好ましい(「A」はショアー「A」スケールを、「D」はショアー「D」スケールでの硬さを示している)。すなわち、本発明の硬化体を研磨用パッドとして用いる際は、好ましくはショアーA硬度で20以上、より好ましくはショアーA硬度で30以上、さらに好ましくはショアーA硬度で40以上であり、そして、好ましくはショアーD硬度で90以下、より好ましくはショアーD硬度で70以下、さらに好ましくはショアーD硬度で50以下である。硬さは、必要に応じて配合組成、及び配合量を変えることにより、任意の硬さを有すればよい。
 また、本発明の硬化性組成物の硬化体を研磨用パッド等に用いる際は、ある範囲に硬化体の圧縮率があることが被研磨物の平坦性を発現させる上で好ましい。圧縮率は、例えば、JISL 1096に準拠した方法により測定することが可能である。本発明の硬化体を研磨用パッド等で用いる際の圧縮率は、0.5%~50%であることが好ましい。上記範囲内であることで、優れた被研磨物の平坦性を発現させることが可能となる。
 本発明の硬化性組成物の硬化体を研磨用パッド等に用いる際は、硬化体のヒステリシスロスは、60%以下となることが好ましく、50%以下となることがより好ましく、40%以下となることがさらに好ましい。ヒステリシスロスは、例えば、JIS K 6251に準拠した方法で測定できる。具体的には、ダンベル状に準備した試験片を、100%伸長した後、元に戻すことで、ヒステリシスロス(伸長し、元に戻した際の伸びと応力の面積/伸長した際の伸びと応力の面積×100)を測定できる。ヒステリシスロスが低くなることにより、研磨用パッドとして使用し場合に、砥粒の運動エネルギーを均一に被研磨物の研磨に利用できると推察されるため、優れた平坦性、高い研磨レートを発現することが可能となる。さらに、ヒステリシスロスが低くなることで、柔らかいパッドにおいても、優れた研磨レートを発現できるものと考えられる。
 また、本発明を研磨用パッド等に用いる際は、複数の層から形成される研磨層を備えていてもよい。例えば、本発明の硬化体が2層からなる場合、前記研磨層は、研磨を行う際に被研磨物と接触する研磨面を有する第1層と、前記第1層の研磨面に相対する面で前記第1層と接する第2層を用いてもよい。この場合、第2層が第1層と違う硬度や弾性率を持つことで、第1層の物性を調整することも可能となる。例えば、第1層の硬度と第2層の硬度を変えることにより、被研磨物の研磨性を調整させることが可能となる。
 また、本発明の硬化体は、上記にも記載したが、構成要素として、内部に砥粒を含有させて、いわゆる固定砥粒硬化体としてもよい。砥粒としては、例えば、酸化セリウム、酸化珪素、アルミナ、炭化珪素、ジルコニア、酸化鉄、二酸化マンガン、酸化チタン及びダイヤモンドから選択される材料からなる粒子、又はこれら材料からなる二種以上の粒子等が挙げられる。さらに、これらの砥粒は、表面を修飾したものも使用できる。例えば、本発明の硬化体を研磨パッド等に用いる際は、表面に親水性基を修飾した砥粒を用いることで、研磨中スラリーや水との相溶性が向上し、研磨特性を向上させることが可能となる。該親水性基としては、水酸基、チオール基、または、イオン性基(カルボキシルイオン、スルホン酸イオン、リン酸イオン、ホスホン酸イオン、及び第4級アンモニウムカチオンからなる群より選ばれる少なくとも1種のイオンを形成し得る基)等が挙げられる。また、これら砥粒の保有方法は、特に限定されないが、例えば上記硬化性組成物に分散させた後に、該硬化性組成物を硬化させることで、ウレタン樹脂内部に保有することができる。
 本発明を研磨用パッド等に用いる際は、特に制限されるものではないが、その表面に溝構造を形成することもできる。該溝構造は、被研磨部材を研磨する際に、スラリーを保持・更新する形状であれば特に限定されるものではなく、例えば、X(ストライプ)溝、XY格子溝、同心円状溝、貫通孔、貫通していない穴、多角柱、円柱、螺旋状溝、偏心円状溝、放射状溝、およびこれらの溝を組み合わせたものが挙げられる。
 上記溝構造の作製方法は特に限定されるものではないが、例えば、所定サイズのバイトのような治具を用い機械切削する方法、所定の表面形状を有した金型に樹脂を流しこみ、硬化させることにより作製する方法、所定の表面形状を有したプレス板で樹脂をプレスし作製する方法、フォトリソグラフィを用いて作製する方法、印刷手法を用いて作製する方法、炭酸ガスレーザーなどを用いたレーザー光による作製方法などが挙げられる。
 本発明の硬化体は、例えば不織布に本発明のウレタン樹脂を形成しうる硬化性組成物を含浸させ、その後硬化して得られる不織布ウレタン樹脂研磨パッドとして用いることもできる。また、本発明のウレタン樹脂をマトリックス樹脂とする硬化体は、上述した研磨パッドの他にも、緩衝材、制振材料、吸音材料等に用いることも可能である。さらに、本発明で使用する硬化性組成物を、不織布に塗布あるいは含浸後、硬化させることで、前述した不織布研磨パッドや、緩衝材、制振材料、吸音材料用途に適用することも可能である。
 次に、実施例及び比較例を用いて本発明を詳細に説明するが、本発明は本実施例に限定されるものではない。先ず、本発明で使用した測定装置、および各成分の製造方法等について説明する。
 (分子量測定;ゲルパーミエーションクロマトグラフィー(GPC測定))
 GPCの測定は、装置として液体クロマトグラフ装置(日本ウォーターズ社製)を用いた。カラムは分析するサンプルの分子量に応じて、昭和電工株式会社製Shodex GPC KF-802(排除限界分子量:5000)、KF802.5(排除限界分子量:20000)、KF-803(排除限界分子量:70000)、KF-804(排除限界分子量:400000)、KF-805(排除限界分子量:2000000)を適宜使用した。また、展開液としてジメチルホルムアミド(DMF)を用い、流速1ml/min、温度40℃の条件にて測定した。標準試料にポリスチレンを用い、比較換算により重量平均分子量を求めた。なお、検出器には示差屈折率計を用いた。
 (水分量の測定)
 水分量は、カールフィッシャー法により測定した。該測定に使用した装置、測定の条件は、以下のとおりである。
装置:自動水分測定装置KF-31(三菱ケミカルアナリテック社製)。
方式:カールフィッシャー容量滴定方式。
滴定試薬:アクアミクロン滴定剤SS-Z (三菱ケミカル社製)。
溶媒:アクアミクロン脱水溶剤KTX(三菱ケミカル社製)。
 ポリロタキサンモノマーの製造方法
 <実施例1>
 (1-1)PEG-COOHの調製;
 軸分子形成用のポリマーとして、分子量10000の直鎖状ポリエチレングリコール(PEG)を用意した。
下記処方;
 PEG 10g、
 TEMPO (2,2,6,6-テトラメチル-1-ピペリジニルオキシラジカル)100mg
 臭化ナトリウム 1g
を準備し、各成分を水100mLに溶解させた。この溶液に、市販の次亜塩素酸ナトリウム水溶液(有効塩素濃度5%)5mLを添加し、室温で10分間撹拌した。その後、エタノールを最大5mLまでの範囲で添加して反応を終了させた。そして、50mLの塩化メチレンを用いた抽出を行った後、塩化メチレンを留去し、250mLのエタノールに溶解させてから、-4℃の温度で12時間かけて再沈させ、PEG-COOHを回収し、乾燥した。
 (1-2)ポリロタキサンの調製;
 上記で調製されたPEG-COOH 3gおよびα-シクロデキストリン(α-CD)12gを、それぞれ、70℃の温水50mLに溶解させ、得られた各溶液を混合し、よく振り混ぜた。次いで、この混合溶液を、4℃の温度で12時間再沈させ、析出した包接錯体を凍結乾燥して回収した。その後、室温でジメチルホルムアミド(DMF)50mlに、アダマンタンアミン0.13gを溶解した後、上記の包接錯体を添加して速やかによく振り混ぜた。続いてBOP試薬(ベンゾトリアゾール-1-イル-オキシ-トリス(ジメチルアミノ)ホスホニウムヘキサフルオロホスフェート)0.38gをDMFに溶解した溶液をさらに添加して、よく振り混ぜた。さらにジイソプロピルエチルアミン0.14mlをDMFに溶解させた溶液を添加してよく振り混ぜてスラリー状の試薬を得た。
 上記で得られたスラリー状の試薬を4℃で12時間静置した。その後、DMF/メタノール混合溶媒(体積比1/1)50mlを添加、混合、遠心分離を行なって上澄みを捨てた。さらに、上記DMF/メタノール混合溶液による洗浄を行った後、メタノールを用いて洗浄、遠心分離を行い、沈殿物を得た。得られた沈殿物を真空乾燥で乾燥させた後、50mLのDMSO(ジメチルスルオキシド)に溶解させ、得られた透明な溶液を700mLの水中に滴下してポリロタキサンを析出させた。析出したポリロタキサンを遠心分離で回収し、真空乾燥させた。さらにDMSOに溶解、水中で析出、回収、乾燥を行い、精製ポリロタキサンを得た。このときのα-CDの包接数は0.25である。
 ここで、包接数は、DMSO-dにポリロタキサンを溶解し、H-NMR測定装置(日本電子製JNM-LA500)により測定し、以下の方法により算出した。
ここで、X,Y及びX/(Y-X)は、以下の意味を示す。
X:4~6ppmのシクロデキストリンの水酸基由来プロトンの積分値。
Y:3~4ppmのシクロデキストリン及びPEGのメチレン鎖由来プロトンの積分値。
 X/(Y-X):PEGに対するシクロデキストリンのプロトン比
 先ず、理論的に最大包接数1の時のX/(Y-X)を予め算出し、この値と実際の化合物の分析値から算出されたX/(Y-X)を比較することにより包接数を算出した。
 (1-3)ポリロタキサンへの側鎖の導入;
 上記で精製されたポリロタキサン500mgを1mol/LのNaOH水溶液50mLに溶解し、プロピレンオキシド3.83g(66mmol)を添加し、アルゴン雰囲気下、室温で12時間撹拌した。次いで、1mol/LのHCl水溶液を用い、上記のポリロタキサン溶液を、pHが7~8となるように中和し、透析チューブにて透析した後、凍結乾燥し、ヒドロキシプロピル化ポリロタキサンを得た。得られたヒドロキシプロピル化ポリロタキサンは、H-NMRおよびGPCで同定し、所望の構造を有するヒドロキシプロピル化ポリロタキサンであることを確認した。
 なお、ヒドロキシプロピル基による環状分子のOH基への修飾度は0.5であり、GPC測定により重量平均分子量Mw:50000であった。
 得られたヒドロキシプロピル化ポリロタキサン5gを、ε-カプロラクトン15gに80℃で溶解させた混合液を調製した。この混合液を、乾燥窒素をブローさせながら110℃で1時間攪拌した後、2-エチルヘキサン酸錫(II)の50wt%キシレン溶液0.16gを加え、130℃で6時間攪拌した。その後、キシレンを添加し、不揮発濃度が約35質量%の側鎖を導入したポリカプロラクトン修飾ポリロタキサンキシレン溶液を得た。
 (1-4)OH基導入側鎖修飾ポリロタキサン(RX)の調製;
 上記で調製されたポリカプロラクトン修飾ポリロタキサンキシレン溶液をヘキサン中に滴下し、回収し、乾燥させることによりポリカプロラクトン修飾ポリロタキサン(RX)を取得した。なお、(RX)は、下記の比較例1に相当するポリロタキサンモノマーである。
 (1-5)水分量低減工程(RX-1);
 その後、取得したポリロタキサンモノマー(RX)10gを、トルエン30gに溶解させ、共沸脱水を行った後、さらに、回収したサンプルを真空乾燥させることで、水分量の調整を行った。そして、側鎖の末端としてOH基を有する側鎖修飾ポリロタキサン(RX-1)を得た。
この(A)ポリロタキサンモノマー;RX-1の物性は以下の通りであった。
ポリロタキサン重量平均分子量Mw(GPC):200000。
側鎖の修飾度:0.5(%で表示すると50%となる)。
側鎖の分子量:平均で約350。
水分量:500ppm
環状分子の包接数:0.25
軸分子の両末端にアダマンチル基を有し、側鎖の末端に水酸基を有する(A)ポリロタキサンモノマーである。結果を表1にまとめた。
 <実施例2>
 実施例1の(1-5)水分量低減工程において、使用したトルエンの量を10gに変更した以外は実施例1と同様の方法で取得した。このポリロタキサン(A);RX-2の物性は以下の通りであった。
ポリロタキサン重量平均分子量Mw(GPC):200000。
側鎖の修飾度:0.5(%で表示すると50%となる)。
側鎖の分子量:平均で約350。
水分量:3000ppm
環状分子の包接数:0.25
軸分子の両末端にアダマンチル基を有し、側鎖の末端に水酸基を有する(A)ポリロタキサンモノマーである。結果を表1にまとめた。
 <実施例3>
 実施例1の(1-5)水分量低減工程において、使用したトルエンの量を5gにした以外は実施例1と同様の方法で取得した。このポリロタキサン(A);RX-3の物性は以下の通りであった。
ポリロタキサン重量平均分子量Mw(GPC):200000。
側鎖の修飾度:0.5(%で表示すると50%となる)。
側鎖の分子量:平均で約350。
水分量:5000ppm
環状分子の包接数:0.25
軸分子の両末端にアダマンチル基を有し、側鎖の末端に水酸基を有する(A)ポリロタキサンモノマーである。結果を表1にまとめた。
 <実施例4>
 実施例1の直鎖のポリエチレングリコールの分子量を35000、ε-カプロラクトンを30gとした以外は、実施例1と同様の方法で取得した。このポリロタキサン(A);RX-4の物性は以下の通りであった。
ポリロタキサン重量平均分子量Mw(GPC):700000。
側鎖の修飾度:0.5(%で表示すると50%となる)。
側鎖の分子量:平均で約500。
水分量:800ppm
環状分子の包接数:0.25
軸分子の両末端にアダマンチル基を有し、側鎖の末端に水酸基を有する(A)ポリロタキサンモノマーである。結果を表1にまとめた。
 <実施例5>
 アクリレート基導入側鎖修飾ポリロタキサンモノマーの調製
 上記実施例4で調製されたポリカプロラクトン修飾ポリロタキサン(RX-4)を用いた。ポリカプロラクトン修飾ポリロタキサン(RX-4)10.0gをメチルエチルケトン50mlに溶解し、ジブチルヒドロキシトルエン(重合禁止剤)5mgを添加した後、2-アクリロイルオキシエチルイソシアネート1.94gを滴下した。触媒としてジラウリン酸ジブチルスズを10mg添加し、70℃で4時間攪拌し、ポリカプロラクトン末端にアクリレート基を導入したポリロタキサンのメチルエチルケトン溶液を得た。この溶液をヘキサン中に滴下し、析出した固体を回収した。回収したサンプルを平たく広げ、50℃で減圧乾燥を24時間実施し乾燥することで、ラジカル重合性基としてアクリレート基が側鎖に導入されたポリロタキサンモノマー(RX-5)を得た。
 この(A)ポリロタキサンモノマー;RX-5の物性は以下のとおりであった。
側鎖の分子量:平均で約600。
ポリロタキサンモノマー重量平均分子量Mw(GPC):880000。
アクリレート基 変性率(側鎖の末端のOH基にアクリレート基が導入された割合):85モル%。
残存する側鎖の末端のOH基の割合:15モル%。
水分量:400ppm
環状分子の包接数:0.25     
軸分子の両末端にアダマンチル基を有し、側鎖の末端にアクリレート基と水酸基を有する(A)ポリロタキサンモノマーである。
 また、H-NMR測定装置(日本電子製JNM-LA500)により、該(A)ポリロタキサンモノマー(RX-5)のプロトン核磁気共鳴スペクトルを測定したところ、下記の特徴的なピークが観測された。δ2.3ppm付近にポリカプロラクトン構造のカルボニル炭素に隣接するメチレン基由来のピーク、δ3.5ppm付近にウレタン基の窒素原子に隣接するメチレン基由来のピーク、ポリカプロラクトン構造の酸素原子に隣接するメチレン基由来のピーク、δ4.0ppm付近にポリカプロラクトン構造の酸素原子に隣接するメチレン基由来のピーク、δ4.2ppm付近にアクリロイル基に結合するメチレン基由来のピーク、δ5.8~6.5ppm付近にアクリロイル基由来の3つのピーク。結果を表1にまとめた。
 <比較例1>
 実施例1において、(1-5)水分量低減工程を行わなかったポリロタキサンモノマー(RX)である。このポリロタキサンモノマー;RXの物性は以下の通りであった。
ポリロタキサン重量平均分子量Mw(GPC):200000。
側鎖の修飾度:0.5(%で表示すると50%となる)。
側鎖の分子量:平均で約350。
水分量:10000ppm
環状分子の包接数:0.25
軸分子の両末端にアダマンチル基を有し、側鎖の末端に水酸基を有するポリロタキサンモノマーである。結果を表1にまとめた。
 <比較例2>
 実施例4において、水分量低減工程を行わなかったポリロタキサンモノマーである。それ以外は、実施例4と同様の方法で製造した。このポリロタキサンモノマー(RX-6)の物性は以下の通りであった。
ポリロタキサン重量平均分子量Mw(GPC):700000。
側鎖の修飾度:0.5(%で表示すると50%となる)。
側鎖の分子量:平均で約500。
水分量:12000ppm
環状分子の包接数:0.25
軸分子の両末端にアダマンチル基を有し、側鎖の末端に水酸基を有するポリロタキサンモノマーである。結果を表1にまとめた。
 <比較例3>
 実施例5において、RX-4の代わりに、上記比較例2で調製されたポリカプロラクトン修飾ポリロタキサン(RX-6)を用いた。それ以外は、実施例5と同様の方法で、ラジカル重合性基としてアクリレート基が側鎖に導入されたポリロタキサンモノマー(RX-7)を製造した。
このポリロタキサンモノマー(RX-7)の物性は以下の通りであった。
側鎖の分子量:平均で約600。
ポリロタキサンモノマー重量平均分子量Mw(GPC):880000。
アクリレート基 変性率(側鎖の末端のOH基にアクリレート基が導入された割合):85モル%。
残存する側鎖の末端のOH基の割合:15モル%。
水分量:9900ppm
環状分子の包接数:0.25     
軸分子の両末端にアダマンチル基を有し、側鎖の末端にアクリレート基と水酸基を有するポリロタキサンモノマーである。結果を表1にまとめた。
Figure JPOXMLDOC01-appb-T000006
 (B)重合性モノマー;
 (B1)イソ(チオ)シアネート化合物
IPDI: イソホロンジイソシアネート。
XDI: m-キシレンジイソシアネート。
 (B12)ウレタンプレポリマー
Pre-1:イソ(チオ)シアネート当量が905の末端イソシアネートウレタンプレポリマー。
Pre-1の製造方法
 窒素導入管、温度計、攪拌機を備えたフラスコに窒素雰囲気下中、2,4-トリレンジイソシアネート50gとポリオキシテトラメチレングリコール(数平均分子量;1000)90gとジエチレングリコール12gを、80℃で6時間反応させ、イソ(チオ)シアネート当量が905の末端イソシアネートウレタンプレポリマーを得た(Pre-1を得た)。
 (B3)(チ)オール化合物
PL1: 旭化成ケミカルズ株式会社製デュラノール(ポリカーボネートジオール、数平均分子量500)。
PL2:旭化成ケミカルズ株式会社製デュラノール(ポリカーボネートジオール、数平均分子量800)。
TMP:トリメチロールプロパン。
PEMP:ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)。
PELE23:ポリオキシエチレンラウリルエーテル(n≒23)。
 (B4)アミノ基含有モノマー
MOCA:4,4’-メチレンビス(o-クロロアニリン)。
IPDA:イソホロンジアミン。
 (B5)ラジカル重合性モノマー
(B511)成分
TMPT:トリメチロールプロパントリメタクリレート。
(B512)成分
3PG:トリプロピレングリコールジメタクリレート。
(B516)成分
9G:ポリエチレングリコールジメタクリレート(エチレングリコール鎖の平均鎖長が9、平均分子量が536)。
14G:ポリエチレングリコールジメタクリレート(エチレングリコール鎖の平均鎖長が14、平均分子量が736)。
EB4858:ダイセルユーシービー社製2官能ウレタンメタクリレート(アクリル当量が227)。
(B52)成分
αMS: α-メチルスチレン。
MSD:α-メチルスチレンダイマー。
(B54)成分
GMA:グリシジルメタアクリレート。
MOPMS:γ-メタクリロイルオキシプロピルトリメトキシシラン。 
 (C)重合硬化促進剤
(C1)ウレタン或いはウレア用反応触媒
DBTD:ジブチルチンジラウレート。
(C5)ラジカル重合開始剤
<熱重合開始剤>
パーブチルND:t-ブチルパーオキシネオデカネート(商品名:パーブチルND、日本油脂(株)製)。
パーオクタO:1,1,3,3-テトラメチルブチル パーオキシ-2-エチルヘキサネート(商品名:パーオクタO、日本油脂(株)製)。
<光重合開始剤>
PI:フェニルビス(2,4,6-トリメチルベンゾイル)-ホスフィンオキシド(商品名:Irgacure819、BASF社製)。
 (D)フォトクロミック化合物
Figure JPOXMLDOC01-appb-C000007
(その他)
<離型剤>
DBP:ジ-n-ブチル錫。
<溶媒>
DMF:ジメチルスルホキシド。
IPA:イソプロピルアルコール。
<安定剤>
HALS:ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート(分子量508)。
<レベリング剤>
L1:東レ・ダウコーニング株式会社製 商品名;L7001。
<中空粒子>
920-40:密度0.03g/cmのマイクロカプセル920-40(日本フィライト社製)。外殻部がアクリル系モノマーと塩化ビニリデンとの共重合体からなる中空粒子。
中空粒子2:密度0.13g/cmのウレタン樹脂製マイクロカプセル。中空粒子2は外殻部がウレタン系樹脂からなるマイクロカプセルである。
<中空粒子2の製造方法/ウレタン樹脂製のマイクロバルーンの製造方法>
固形分約25% 、分子量が約15万のポリアクリル酸溶液(富士フイルム和光製薬社製)200g、および重合度22,000~70,000のポリアクリル酸ナトリウム(富士フイルム和光製薬社製)50gを、純水1900gに加えて加熱溶解し、ポリアクリル酸/ポリアクリル酸ナトリウム水溶液を調製した。このポリアクリル酸/ ポリアクリル酸ナトリウム水溶液1000gに、トルエン120g添加した後、ホモミキサーで3000rpmで10分間乳化した。その後、再度3000rpmで攪拌しながら、水分散性イソシアネートのタケネートWD-730(三井化学社製)を10.5g添加し、さらに10分間混合した。その後、得られた分散液を80 ℃ で4時間重合した。得られた微粒子を濾別し、真空乾燥してマイクロバルーン(中空粒子2)を得た。得られたマイクロバルーンは、粒径50μm、密度0.15g/cmのウレタン樹脂製のマイクロバルーン。
 実施例6
 上述したポリロタキサンモノマーを用い、フォロクトミック硬化性組成物を下記処方により調合した。各成分は、混合して均一液(フォトクロミック硬化性組成物)とした。各配合量を表1に示す。
処方;
(A)ポリロタキサンモノマー:RX-1 10質量部
(B1)イソ(チオ)シアネート化合物:XDI 40質量部
(B3)(チ)オール化合物:PEMP 50質量部
(C1)ウレタン或いはウレア用反応触媒:DBTD 0.1質量部
(D)フォトクロミック化合物:PC1 0.04質量部
(その他)内部離型剤:DBP: 0.1質量部
 上記のフォトクロミック硬化性組成物を用い、練り込み法にてフォトクロミック硬化体を得た。なお、(B)重合性モノマー(XDIとPEMPとの合計量)の水分量は、1500ppm以下であった。重合方法を以下に示す。即ち、前記均一液を十分に脱泡した後、離型処理を施したカーブがついたガラスモ-ルドとエチレン-酢酸ビニル共重合体からなるガスケットで構成された鋳型よりなるモ-ルド型に注入した。ついで、凸面が下になるようにオーブンにモノマーを注入したガラスモールドを静置させ、30℃から95℃まで徐々に昇温しながら、15時間かけて硬化させた。重合終了後、フォトクロミック硬化体を鋳型のガラス型から取り外した。この操作を行い、フォトクロミック硬化体を50枚準備した。各成分の配合割合を表2にまとめた。
 得られたフォトクロミック硬化体の外観評価は1、Lスケールロックウェル硬度(HL)は95であった。さらに得られたフォトクロミック硬化体のフォトクロミック特性は、最大吸収波長594nm、発色濃度0.62、退色速度75秒であった。尚、外観の評価(成形性)、Lスケールロックウェル硬度、最大吸収波長、発色濃度、退色速度の評価に関しては以下のようにして行った。評価結果を表3にまとめた。
 〔評価項目〕
 (1)外観の評価:成型したフォトクロミック硬化体50枚中(80mmΦ)、エッジ部位に気泡が見られる不良の枚数で評価した。
1:50枚中0枚。
2:50枚中1~2枚。
3:50枚中3~4枚。
4:50枚中5枚~10枚。
 (2)Lスケールロックウェル硬度(HL):上記硬化体を25℃の室内で1日保持した後、明石ロックウェル硬度計(形式:AR-10)を用いて、フォトクロミック硬化体のLスケ-ルロックウェル硬度を測定した。表には平均値を示した。
 (3)最大吸収波長(λmax):(株)大塚電子工業製の分光光度計(瞬間マルチチャンネルフォトディテクタ-MCPD1000)により求めた発色後の最大吸収波長である。該最大吸収波長は発色時の色調に関係する。表には平均値を示した。
 (4)発色濃度{ε(120)-ε(0)}:前記最大吸収波長における、120秒間光照射した後の吸光度{ε(120)}と光照射前の吸光度ε(0)との差。この値が高いほどフォトクロミック性が優れているといえる。また屋外で発色させたとき発色色調を目視により評価した。表には平均値を示した。
 (5)退色速度〔t1/2(sec.)〕:120秒間光照射後、光の照射を止めたときに、試料の前記最大吸収波長における吸光度が{ε(120)-ε(0)}の1/2まで低下するのに要する時間。この時間が短いほどフォトクロミック性が優れているといえる。表には平均値を示した。
 <実施例7、実施例8、比較例4>
 表2に示した組成のフォトクロミック硬化性組成物を用いた以外、実施例6と同様な方法でフォトクロミック硬化体を作製し、評価を行なった。各成分の配合割合を表2にまとめた。評価結果を表3にした。なお、実施例7、8、比較例4において、(B)重合性モノマーの水分量は、1500ppm以下であった。
 実施例6~8と比較例4から明らかな通り、本発明のポリロタキサンモノマーを用い作製したフォトクロミック硬化性組成物を重合して得られる硬化体は、優れたフォトクロミック特性を示しつつ、生産性が向上することが分かった。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 実施例9
 上述したポリロタキサンモノマーを用い、フォロクトミック硬化性組成物を下記処方により調合した。各成分は、混合して均一液(フォトクロミック硬化性組成物)とした。各配合量を表4に示す。
処方;
(A)ポリロタキサン:RX-4 5質量部
(B1)イソ(チオ)シアネート化合物:IPDI 49質量部
(B3)(チ)オール化合物:PL1 21質量部、TMP 17質量部、PELE23 8質量部
(C1)ウレタン或いはウレア用反応触媒:DBTD 0.1質量部
(D)フォトクロミック化合物:PC1 4質量部
 上記のフォトクロミック硬化性組成物を用い、コーティング方法によりフォトクロミック積層体を得た。(B)重合性モノマーの水分量は、1500ppm以下であった。
 光学基材として、中心厚が約2mm、球面度数-6.00Dで屈折率が1.60のチオウレタン系プラスチックレンズを用意した。なお、このチオウレタン系プラスチックレンズは、事前に10%水酸化ナトリウム水溶液を用いて、50℃で5分間のアルカリエッチングを行い、その後十分に蒸留水で洗浄を実施した。
 スピンコーター(1H-DX2、MIKASA製)を用いて、2000rpmで回転させている上記プラスチックレンズの表面に、フォトクロミック硬化性組成物を滴下した。その後、120℃で3時間加熱することにより重合硬化させ、プラスチックレンズと、該プラスチックレンズの表面に積層されたフォトクロミック硬化体とを備えるフォトクロミック積層体を得た。フォトクロミック硬化体(フォトクロミック層)の膜厚は、約30μmであった。この方法に従いフォトクロミック積層体を50枚作製した。
 得られたフォトクロミック積層体は、外観の評価が1、ビッカース硬度は13(平均値)であり、フォトクロミック特性(これらは平均値である)は、最大吸収波長595nm、発色濃度0.85、退色速度50秒であった。尚、外観の評価、ビッカース硬度の評価は、以下に示す方法により実施し、フォトクロミック特性は実施例6に示す方法で実施した。評価結果を表5に示した。
 〔評価項目〕
 (6)外観の評価:成型したフォトクロミック硬化体(80mmΦ)50枚中、気泡が見られる不良の枚数で評価した。
1:50枚中0枚。
2:50枚中1~2枚。
3:50枚中3~4枚。
4:50枚中5枚~10枚。
 (7)ビッカース硬度:得られたフォトクロミック硬化体(フォトクロミック層)のビッカース硬度は、マイクロビッカース硬度計PMT-X7A(株式会社マツザワ製)を用いて測定した。圧子には、四角錐型ダイヤモンド圧子を用い、荷重10gf、圧子の保持時間30秒の条件にて評価を実施した。測定結果は、計4回の測定を実施した後、測定誤差の大きい1回目の値を除いた計3回の平均値で示した。表には平均値を示した。
 <比較例5>
 表4に示した組成のフォトクロミック硬化性組成物を用いた以外、実施例9と同様な方法でフォトクロミック積層体を作製し、評価を行なった。各成分の配合割合を表4にまとめた。評価結果を表5に示した。(B)重合性モノマーの水分量は1500ppm以下であった。
 実施例9と比較例5から明らかな通り、本発明のポリロタキサンモノマーを用い作製したフォトクロミック組成物を重合して得られる硬化体は、優れたフォトクロミック特性を示しつつ、生産性の向上を可能にする。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 <実施例10>
 上述したポリロタキサンモノマーを用い、フォトクロミック硬化性組成物を下記処方により調合した。下記処方により、各成分を反応器に仕込み、窒素雰囲気下、120℃で5時間反応させた。
処方;
(B1)イソ(チオ)シアネート化合物:IPDI 24質量部
(B3)(チ)オール化合物:PL2 61質量部
(その他)溶媒:DMF 300質量部
その後、25℃まで冷却し、鎖延長剤である
(B4)成分:IPDA 4質量部
を滴下し、25℃で1時間反応させた。その後、さらに
(A) ポリロタキサンモノマー(A):RX-1 11質量部
を添加し、100℃で反応させ、ポリウレタン-ウレア樹脂(U1)を得た。
 得られたポリウレタン-ウレア樹脂(U1)に下記処方を添加した。
処方;
(D)フォトクロミック化合物:PC1 0.3質量部
(その他)溶媒:イソプロピルアルコール400質量部
(その他)安定剤:HALS 0.5質量部
 添加後、80℃で攪拌しながら、超音波により溶解し、フォトクロミック硬化性組成物を得た。このフォトクロミック硬化性組成物の組成を表6に示した。(B)重合性モノマーの水分量は、1500ppm以下であった。
 得られたフォトクロミック硬化性組成物を用いてバインダー法によりフォトクロミック積層シートを製造した。即ち、表面が平滑なフッ素樹脂製のシート上に、上記のフォトクロミック硬化性組成物を塗布し、80℃で1時間乾燥させ、得られた厚み30μmのフォトクロミック硬化体からなるフォトクロミックシートを厚み400μmのポリカーボネートシート2枚の間に挟み、フォトクロミック積層シートを得た。得られたフォトクロミック積層シートは、シート成形性評価は1で、最大吸収波長590nm、発色濃度0.96、退色速度49秒であった。シート成形性の評価方法は下記に記載の手法で評価した。フォトクロミック特性は実施例5と同様の評価を実施した。結果を表7に示した。
 〔評価項目〕
 (8)シート成型性評価:取得したフォトクロミック積層シート(50mm×50mm)50枚中の気泡の有無を確認した。
1:50枚中0枚。
2:50枚中1~2枚。
3:50枚中3~4枚。
4:50枚中5枚~10枚。
 <比較例6>
 表6に示した組成のフォトクロミック硬化性組成物を用いた以外、実施例10と同様な方法でフォトクロミック積層シートを作製し、評価を行なった。各成分の配合割合を表6にまとめた。結果を表7に示した。(B)重合性モノマーの水分量は1500ppm以下であった。
 実施例10と比較例6から明らかな通り、本発明のポリロタキサンモノマーを用い作製したフォトクロミック硬化性組成物を重合して得られる硬化体は、優れたフォトクロミック特性を示しつつ、生産性の向上を可能にする。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 <実施例11>
 下記処方により、各成分を十分に混合し、フォトクロミック硬化性組成物を調製した。
処方;
(A)ポリロタキサンモノマー:RX-5 15質量部
(B511)ラジカル重合性モノマー:TMPT 13質量部
(B512)ラジカル重合性モノマー:3PG 45質量部
(B516)ラジカル重合性モノマー:EB4858 24質量部
(B52)ラジカル重合性モノマー:αMS 0.5重量部
                :MSD 1.5重量部
(B54)ラジカル重合性モノマー:GMA 1重量部
(D)フォトクロミック化合物:PC1 0.04質量部
(その他)安定剤:HALS 0.1質量部
 上記の処方(フォトクロミック硬化性組成物の組成)は、表8に示した。
 得られた混合液(フォトクロミック硬化性組成物)は遮光下で、6カ月間30℃で保存安定試験を実施した。保存後の混合液に、下記処方で重合開始剤を添加した。各成分の配合割合を表8に示した。(B)重合性モノマーの水分量は1500ppm以下であった。
処方;
(C5)ラジカル重合開始剤:パーブチルND 1.5質量部
             :パーオクタ O 0.1質量部
 得られた混合液(重合開始剤入りのフォトクロミック硬化性組成物)をガラス板とエチレン-酢酸ビニル共重合体からなるガスケットで構成された鋳型の中に注入し、カーブがついたガラスモ-ルドとエチレン-酢酸ビニル共重合体からなるガスケットで構成された鋳型よりなるモ-ルド型に注入した。ついで、凸面が下になるようにオーブンにモノマーを注入したガラスモールドを静置させ、30℃~90℃まで18時間かけ徐々に昇温しながら加熱硬化した。重合終了後、フォトクロミック硬化体(レンズ)を鋳型のガラス型から取り外した。
 また、前記方法で得られたフォトクロミック硬化体とは別に、別途、上記と同一のフォトクロミック硬化性組成物を調合後、保存せずに直ぐに重合開始剤を配合してフォトクロミック硬化体(レンズ)を製造し、比較対象物とした。
 それぞれのレンズ(保存安定試験を実施して得られたレンズ、および保存安定試験を実施せずに得られたレンズ)を、実施例6と同様に、外観、Lスケールロックウェル硬度、フォトクロミック特性の評価をし、その結果を表9に示した。
 保存安定試験を実施したフォトクロミック硬化性組成物から得られたフォトクロミック硬化体の外観の評価は1、Lスケ-ルロックウェル硬度(HL)は70であった。さらに得られたフォトクロミック硬化体のフォトクロミック特性は、最大吸収波長588nm、発色濃度0.95、退色速度50秒であった。これらは保存安定試験を実施していないフォトクロミック組成物から得られたフォトクロミック硬化体の値と同じ値であった。
 <比較例7>
 表8に示した組成のフォトクロミック硬化性組成物を用いた以外、実施例11と同様な方法でフォトクロミック硬化体を作製し、評価を行なった。各成分の配合割合を表8にまとめた。結果を表9に示した。(B)重合性モノマーの水分量は1500ppm以下であった。
 実施例11と比較例7から明らかな通り、本発明のポリロタキサンモノマーを用い作製したフォトクロミック組成物は、優れたフォトクロミック特性を示しつつ、優れた保存安定性を示す。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 <実施例12> 下記処方により、各成分を十分に混合し、フォトクロミック硬化性組成物を調製した。
処方;
(A)ポリロタキサンモノマー:RX-5 10質量部
(B511)ラジカル重合性モノマー:TMPT 40重量部
(B516)ラジカル重合性モノマー:14G 40質量部
                 :9G 7質量部
(B54)ラジカル重合性モノマー:GMA 1質量部
(C5)ラジカル重合開始剤: PI 0.3質量部
(D)フォトクロミック化合物:PC1 3質量部
(その他)安定剤:HALS 3質量部
 得られた混合液(フォトクロミック組成物)は遮光下で、6カ月間30℃で保存安定試験を実施した。保存後の混合液に、下記処方でレベリング剤とラジカル重合性モノマーを添加し、均一攪拌と脱泡を実施し、フォトクロミック硬化性組成物を得た。各成分の配合割合を表10に示した。(B)重合性モノマーの水分量は1500ppm以下であった。
処方;
(その他)レベリング剤:L7001 0.1質量部
(B54)ラジカル重合性モノマー:MOPMS 2質量部
 上記フォトクロミック硬化性組成物を用いて、以下の方法によりフォトクロミック積層体を得た。
 光学基材として、中心厚が約2mm、球面度数-6.00Dで屈折率が1.60のチオウレタン系プラスチックレンズを用意した。なお、このチオウレタン系プラスチックレンズは、事前に10%水酸化ナトリウム水溶液を用いて、50℃で5分間のアルカリエッチングを行い、その後十分に蒸留水で洗浄を実施した。
 スピンコーター(1H-DX2、MIKASA製)を用いて、2000rpmで回転させている上記プラスチックレンズの表面に、フォトクロミック硬化性組成物を滴下した。このようにフォトクロミック硬化性組成物が表面に塗布されているレンズを、窒素ガス雰囲気中で出力200mW/cmのメタルハライドランプを用いて、90秒間光を照射し、塗膜を硬化させた。その後さらに110℃で1時間加熱して、フォトクロミック層を有するフォトクロミック積層体(レンズ)を得た。フォトクロミック層の膜厚は、約30μmであった。
 得られたフォトクロミック積層体とは別に、別途、上記と同一のフォトクロミック組成物を調合後、保存せずに直ぐにレべリング剤を配合してフォトクロミック積層体(レンズ)を製造し、比較対象物とした。
 それぞれのレンズ(保存安定試験を実施して得られたレンズ、および保存安定試験を実施せずに得られたレンズ)を実施例9と同様に、外観、ビッカース硬度、フォトクロミック特性を評価し、その結果を表11に示した。 
 保存安定試験を実施したフォトクロミックコーティング組成物から得られたフォトクロミック積層体の外観は1、ビッカース硬度は5.5であり、フォトクロミック特性は、最大吸収波長590nm、発色濃度0.97、退色速度50秒であった。これらの値は、保存安定試験を実施していないフォトクロミック硬化性組成物から得られたフォトクロミック積層体(レンズ)と同一の値であった。
 <比較例8>
 表10に示した組成のフォトクロミック硬化性組成物を用いた以外、実施例12と同様な方法でフォトクロミック硬化体を作製し、評価を行なった。各成分の配合割合を表10にまとめた。結果を表11に示した。(B)重合性モノマーの水分量は1500ppm以下であった。
 実施例12と比較例8から明らかな通り、本発明のポリロタキサンモノマーを用い作製したフォトクロミック硬化性組成物は、優れたフォトクロミック特性を示しつつ、優れた保存安定性を示す。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 実施例13
 ポリロタキサンモノマーを用い、研磨パッド用組成物を下記処方により調合した。
 (A)成分のRX-1(24質量部)と(B4)成分のMOCA(5質量部)とを120℃で混合して均一溶液にした後、十分に脱気し、100℃まで冷却した(溶液1)。別途、70℃に加温した(B12)成分のPre-1(71質量部)に,その他の成分の920-40(0.8質量部)を加え、自転公転攪拌機で攪拌して均一な溶液を得た(溶液2)。前記で調合した溶液2に、溶液1を加え、均一混合し硬化性組成物を得て、前記硬化性組成物を金型へ注入し、100℃で15時間硬化させた。重合終了後、鋳型からウレタン樹脂を取り外し、スライスを行い、厚さ2mm、または厚さ1mmのウレタン樹脂からなる研磨用パッドを得た。
各配合量を表12に示した。(B)重合性モノマーの水分量は、1500ppm以下であった。
(A)ポリロタキサンモノマー:RX-1 24質量部。
(B12)ウレタンプレポリマー:Pre-1 71質量部。
(B4)アミンモノマー:MOCA 5質量部。
(その他)中空粒子:920-40 0.8質量部
 上記で得られたウレタン樹脂からなる研磨用パッドの発泡外観評価は1、研磨レートは3.0μm/hr、耐スクラッチ性は1、縁ダレは1、テーバー摩耗量は20mg、硬度はD硬度で21、密度は0.8g/cm、ヒステリシスロスは25%であった。各評価方法を以下に示す。
 〔評価項目〕
 (9)発泡外観評価(発泡タイプのもの)
 作製した研磨用パッド(10mm×10mm)50枚の表面外観(片面)の評価で300μmを超える気泡が見られる枚数
1:50枚中0枚
2:50枚中1~2枚
3:50枚中3~4枚
4:50枚中5枚~10枚。
 (10)研磨レート:研磨条件を下記に示す。ウエハは30枚を使用した。
研磨パッド:表面にスパイラル状の溝を形成した、大きさ380mmφ、厚さ1mmのパッド。
被研磨物:2インチサファイアウエハ。
スラリー:FUJIMI コンポール 80原液。
圧力:411g/cm
回転数:60rpm。
時間:1時間。
上記条件にて、研磨を実施した際の研磨レートを測定した。研磨レートは50枚ウエハの平均値である。
 (11)耐スクラッチ性:上記(10)で記載した条件で研磨した際の50枚のウエハのスクラッチの有無を確認した。評価は以下の基準で実施した。
1:50枚のウエハ全てにスクラッチがないもの。
2:50枚のウエハ中、1~2枚スクラッチが確認できるもの。
3:50枚のウエハ中、3~4枚スクラッチが確認できるもの。
4:50枚のウエハ中、5~10枚スクラッチが確認できるもの。
 (12)ウェハ縁ダレ:上記(10)で記載した条件で研磨した際のウェハの縁ダレをレーザー顕微鏡で評価した。
1:縁ダレが0~400μm以下のもの。
2:縁ダレが400μmを超え800μm以下のもの。
3:縁ダレが800μm以上を超えるもの。
平均値で評価した。
 (13)テーバー摩耗量:得られたウレタン樹脂からなる研磨用パッドのテーバー摩耗量を、テーバー社製の5130型の装置で測定。荷重は1Kg、回転速度は60rpm、回転数は1000回転、摩耗輪はH-18でテーバー摩耗試験を実施した。平均値で評価した。
 (14)JIS規格(硬さ試験)K6253に従って、高分子計器製のデュロメーターによりショアーA、及び、ショアーD硬度を測定した。硬度が比較的低いものはショアーA硬度、比較的高いものはショアーD硬度で測定した。平均値で評価した。
 (15)密度:東洋精機製の(DSG-1)にて密度を測定した。平均値で評価した。
 (16)ヒステリシスロス:厚み2mmのダンベル8号形状に打ち抜いた樹脂を島津社製AG-SXのオートグラフにて10mm/minで20mm伸長させ、その後、応力がゼロになるまで戻した際のヒステリシスロスを測定した。平均値で評価した。
以上の評価結果を表13に示した。
 実施例14~16、比較例9
 表12に示した組成の硬化性組成物を用いた以外は、実施例13と同様な方法でウレタン樹脂からなる研磨用パッドを作製し、評価を行なった。各成分の配合割合を表12にまとめた。結果を表13に示した。実施例14~16、比較例9において、(B)重合性モノマーの水分量は1500ppm以下であった。
 実施例13~16と比較例9から明らかな通り、本発明のポリロタキサンモノマーを用い作製した研磨パッド組成物(硬化性組成物)を効果させて得られた研磨用パッドは、優れた外観、及び、優れた研磨パッド特性を示す。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
1:ポリロタキサン
2:軸分子
3:環状分子
4:嵩高い末端基
5:側鎖
 

Claims (15)

  1.  環状分子と、
     該環状分子の環内を貫通し、該環が脱離しない様に、両末端に嵩高い基を有する軸分子と、
     からなる複合分子構造を有するポリロタキサンモノマーであって、
     分子内に重合性官能基を有し、かつ、
     水分量が5000ppm以下であることを特徴とする(A)ポリロタキサンモノマー。
  2.  前記環状分子の少なくとも一部に、側鎖が導入されている請求項1に記載の(A)ポリロタキサンモノマー。
  3.  前記(A)ポリロタキサンモノマーの側鎖の数平均分子量が5000以下である請求項2に記載の(A)ポリロタキサンモノマー。
  4.  前記環状分子が、反応性官能基を有し、
     前記側鎖が、該反応性官能基と反応して導入されており、且つ、前記全環状分子の全反応性官能基の6%以上60%以下に該側鎖が導入されてなる請求項2又は3に記載の(A)ポリロタキサンモノマー。
  5.  前記重合性官能基が、前記側鎖に導入されてなる請求項2~4の何れかに記載の(A)ポリロタキサンモノマー。
  6.  前記重合性官能基が、水酸基、及び(メタ)アクリレート基から選択される少なくとも一つの基である請求項1~5の何れかに記載の(A)ポリロタキサンモノマー。
  7.  請求項1~6の何れかに記載の(A)ポリロタキサンモノマー、および
     前記(A)ポリロタキサンモノマー以外の(B)重合性モノマーを含む硬化性組成物。
  8.  前記(B)重合性モノマーの水分量が3000ppm以下である請求項7に記載の硬化性組成物。
  9.  前記(A)ポリロタキサンモノマーの重合性官能基が、水酸基を含み、
     前記(B)重合性モノマーが、(B1)イソ(チオ)シアネート基を有するイソ(チオ)シアネート化合物を含む請求項7又は8に記載の硬化性組成物。
  10.  前記(B)重合性モノマーが、
     (B2)エポキシ基を有するエポキシ基含有モノマー、
     (B3)水酸基、およびチオール基から選ばれる基を少なくとも1つ有する(チ)オール化合物、並びに
     (B4)アミノ基を有するアミノ基含有モノマー
    から選ばれる少なくとも1つのモノマーをさらに含む請求項9に記載の硬化性組成物。
  11.  前記(A)ポリロタキサンモノマーの重合性官能基が、(メタ)アクリレート基を含み、
     前記(B)重合性モノマーが、(メタ)アクリレート基を有する(メタ)アクリレート化合物である請求項7又は8に記載の硬化性組成物。
  12.  さらに中空粒子を含有する、請求項7~10の何れかに記載の硬化性組成物。
  13.  請求項7~11の何れかに記載の硬化性組成物、および
     (D)フォトクロミック化合物を含むフォトクロミック硬化性組成物。
  14.  請求項7~10、又は12の何れかに記載の硬化性組成物を硬化して得られる研磨用パッド。
  15.  請求項13に記載のフォトクロミック硬化性組成物を硬化して得られるフォトクロミック硬化体。
     
     
PCT/JP2019/019585 2018-05-17 2019-05-16 低水分量ポリロタキサンモノマー、および該モノマーを含む硬化性組成物 WO2019221249A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201980031995.9A CN112105676B (zh) 2018-05-17 2019-05-16 低含水量聚轮烷单体和含有该单体的固化性组合物
US17/055,270 US20210122874A1 (en) 2018-05-17 2019-05-16 Low moisture content polyrotaxane monomer and curable composition comprising said monomer
KR1020207032666A KR20210010455A (ko) 2018-05-17 2019-05-16 저수분량 폴리로탁산 모노머, 및 해당 모노머를 포함하는 경화성 조성물
SG11202011161QA SG11202011161QA (en) 2018-05-17 2019-05-16 Low moisture content polyrotaxane monomer and curable composition comprising said monomer
JP2020519928A JP7352540B2 (ja) 2018-05-17 2019-05-16 低水分量ポリロタキサンモノマー、および該モノマーを含む硬化性組成物
EP19804383.8A EP3795608B1 (en) 2018-05-17 2019-05-16 Low moisture content polyrotaxane monomer and curable composition comprising said monomer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-095771 2018-05-17
JP2018095771 2018-05-17

Publications (1)

Publication Number Publication Date
WO2019221249A1 true WO2019221249A1 (ja) 2019-11-21

Family

ID=68540148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019585 WO2019221249A1 (ja) 2018-05-17 2019-05-16 低水分量ポリロタキサンモノマー、および該モノマーを含む硬化性組成物

Country Status (8)

Country Link
US (1) US20210122874A1 (ja)
EP (1) EP3795608B1 (ja)
JP (1) JP7352540B2 (ja)
KR (1) KR20210010455A (ja)
CN (1) CN112105676B (ja)
SG (1) SG11202011161QA (ja)
TW (1) TWI797334B (ja)
WO (1) WO2019221249A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021201089A1 (ja) * 2020-03-31 2021-10-07 株式会社トクヤマ 中空マイクロバルーン
WO2022030531A1 (ja) * 2020-08-05 2022-02-10 株式会社トクヤマ 硬化性組成物及びその硬化体
WO2022163756A1 (ja) * 2021-01-29 2022-08-04 株式会社トクヤマ 中空マイクロバルーン
WO2022163766A1 (ja) * 2021-01-29 2022-08-04 株式会社トクヤマ 環状多官能モノマーを含む硬化性組成物
WO2022191161A1 (ja) * 2021-03-08 2022-09-15 株式会社トクヤマ フォトクロミック硬化性組成物

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198335A (ja) * 2000-12-25 2002-07-12 Toyobo Co Ltd 研磨パッド
WO2005095493A1 (ja) 2004-03-31 2005-10-13 The University Of Tokyo ポリロタキサンを有するポリマー材料、並びにその製造方法
JP2006511651A (ja) * 2002-12-20 2006-04-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ポリアセタール系組成物の表面接着特性を改善するための濃縮物
JP2006525378A (ja) * 2003-03-20 2006-11-09 トランジションズ オプティカル, インコーポレイテッド インデノ縮合フォトクロミックナフトピラン、ナフトールおよびフォトクロミック物品
WO2006126511A1 (ja) * 2005-05-24 2006-11-30 Mitsui Chemicals, Inc. ガスバリア性組成物、コーティング膜およびそれらの製造方法、ならびに積層体
JP2007077207A (ja) 2005-09-12 2007-03-29 Toyo Tire & Rubber Co Ltd 微細気泡ポリウレタン発泡体の製造方法及び、微細気泡ポリウレタン発泡体からなる研磨パッド
WO2009128270A1 (ja) * 2008-04-18 2009-10-22 三井化学株式会社 ガスバリア性組成物、コーティング膜およびそれらの製造方法、ならびに積層体
JP2010202762A (ja) * 2009-03-03 2010-09-16 Mitsui Chemicals Polyurethanes Inc ポリオール組成物およびその用途
WO2014136804A1 (ja) 2013-03-04 2014-09-12 株式会社トクヤマ フォトクロミック硬化性組成物、その硬化体及びその硬化体を含む積層体
WO2015068798A1 (ja) 2013-11-11 2015-05-14 株式会社トクヤマ フォトクロミック組成物
JP2015178558A (ja) 2014-03-19 2015-10-08 Dic株式会社 ウレタン組成物及び研磨材
WO2015159875A1 (ja) 2014-04-15 2015-10-22 宇部興産株式会社 注型熱硬化型ポリウレタンエラストマー
WO2016143910A1 (ja) 2015-03-10 2016-09-15 株式会社トクヤマ フォトクロミック硬化体の製造方法
JP2017048305A (ja) 2015-09-01 2017-03-09 宇部興産株式会社 熱硬化型ポリウレタン
WO2017038957A1 (ja) 2015-09-03 2017-03-09 株式会社トクヤマ フォトクロミックコーティング組成物
JP2017075301A (ja) 2015-10-14 2017-04-20 宇部興産株式会社 注型熱硬化型ポリウレタンエラストマー
WO2018030257A1 (ja) 2016-08-10 2018-02-15 株式会社トクヤマ フォトクロミック硬化性組成物およびその用途、並びにポリロタキサンモノマー

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100232003A1 (en) * 2009-03-13 2010-09-16 Transitions Optical, Inc. Vision enhancing optical articles
US9238696B2 (en) * 2011-03-14 2016-01-19 Sumitomo Seika Chemicals Co., Ltd. Production method for powdered hydrophilic modified polyrotaxane
US9409999B2 (en) * 2011-03-14 2016-08-09 Sumitomo Seika Chemicals Co., Ltd. Production method for hydrophilic modified polyrotaxane
EP2832766A4 (en) * 2012-03-30 2015-12-02 Ube Industries PROCESS FOR PREPARING POLYROTAXAN WITH BLOCKING GROUPS
JP6392696B2 (ja) * 2015-04-02 2018-09-19 株式会社トクヤマ フォトクロミック組成物の製造方法
CN106866982A (zh) * 2015-12-14 2017-06-20 宇部兴产株式会社 修饰聚轮烷、其组合物以及修饰聚轮烷的制造方法
JP2018058988A (ja) * 2016-10-05 2018-04-12 宇部興産株式会社 注型熱硬化型ポリウレタンエラストマー

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198335A (ja) * 2000-12-25 2002-07-12 Toyobo Co Ltd 研磨パッド
JP2006511651A (ja) * 2002-12-20 2006-04-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ポリアセタール系組成物の表面接着特性を改善するための濃縮物
JP2006525378A (ja) * 2003-03-20 2006-11-09 トランジションズ オプティカル, インコーポレイテッド インデノ縮合フォトクロミックナフトピラン、ナフトールおよびフォトクロミック物品
WO2005095493A1 (ja) 2004-03-31 2005-10-13 The University Of Tokyo ポリロタキサンを有するポリマー材料、並びにその製造方法
WO2006126511A1 (ja) * 2005-05-24 2006-11-30 Mitsui Chemicals, Inc. ガスバリア性組成物、コーティング膜およびそれらの製造方法、ならびに積層体
JP2007077207A (ja) 2005-09-12 2007-03-29 Toyo Tire & Rubber Co Ltd 微細気泡ポリウレタン発泡体の製造方法及び、微細気泡ポリウレタン発泡体からなる研磨パッド
WO2009128270A1 (ja) * 2008-04-18 2009-10-22 三井化学株式会社 ガスバリア性組成物、コーティング膜およびそれらの製造方法、ならびに積層体
JP2010202762A (ja) * 2009-03-03 2010-09-16 Mitsui Chemicals Polyurethanes Inc ポリオール組成物およびその用途
WO2014136804A1 (ja) 2013-03-04 2014-09-12 株式会社トクヤマ フォトクロミック硬化性組成物、その硬化体及びその硬化体を含む積層体
WO2015068798A1 (ja) 2013-11-11 2015-05-14 株式会社トクヤマ フォトクロミック組成物
JP2015178558A (ja) 2014-03-19 2015-10-08 Dic株式会社 ウレタン組成物及び研磨材
WO2015159875A1 (ja) 2014-04-15 2015-10-22 宇部興産株式会社 注型熱硬化型ポリウレタンエラストマー
WO2016143910A1 (ja) 2015-03-10 2016-09-15 株式会社トクヤマ フォトクロミック硬化体の製造方法
JP2017048305A (ja) 2015-09-01 2017-03-09 宇部興産株式会社 熱硬化型ポリウレタン
WO2017038957A1 (ja) 2015-09-03 2017-03-09 株式会社トクヤマ フォトクロミックコーティング組成物
JP2017075301A (ja) 2015-10-14 2017-04-20 宇部興産株式会社 注型熱硬化型ポリウレタンエラストマー
WO2018030257A1 (ja) 2016-08-10 2018-02-15 株式会社トクヤマ フォトクロミック硬化性組成物およびその用途、並びにポリロタキサンモノマー

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021201089A1 (ja) * 2020-03-31 2021-10-07 株式会社トクヤマ 中空マイクロバルーン
WO2022030531A1 (ja) * 2020-08-05 2022-02-10 株式会社トクヤマ 硬化性組成物及びその硬化体
CN116096774A (zh) * 2020-08-05 2023-05-09 株式会社德山 固化性组合物及其固化物
WO2022163756A1 (ja) * 2021-01-29 2022-08-04 株式会社トクヤマ 中空マイクロバルーン
WO2022163766A1 (ja) * 2021-01-29 2022-08-04 株式会社トクヤマ 環状多官能モノマーを含む硬化性組成物
WO2022191161A1 (ja) * 2021-03-08 2022-09-15 株式会社トクヤマ フォトクロミック硬化性組成物

Also Published As

Publication number Publication date
CN112105676A (zh) 2020-12-18
SG11202011161QA (en) 2020-12-30
CN112105676B (zh) 2023-08-29
KR20210010455A (ko) 2021-01-27
US20210122874A1 (en) 2021-04-29
JPWO2019221249A1 (ja) 2021-07-01
TW202006012A (zh) 2020-02-01
EP3795608B1 (en) 2022-12-28
JP7352540B2 (ja) 2023-09-28
EP3795608A1 (en) 2021-03-24
EP3795608A4 (en) 2022-03-09
TWI797334B (zh) 2023-04-01

Similar Documents

Publication Publication Date Title
JP7130556B2 (ja) ポリロタキサンを用いたウレタン樹脂、および研磨用パッド
JP7352540B2 (ja) 低水分量ポリロタキサンモノマー、および該モノマーを含む硬化性組成物
JP7175163B2 (ja) フォトクロミック硬化性組成物、及びフォトクロミック硬化体
WO2020032056A1 (ja) ポリ擬ロタキサンモノマーを含む硬化性組成物
CN111954691B (zh) 使用聚轮烷的氨基甲酸酯树脂以及抛光垫
WO2020096010A1 (ja) イオン性基含有ロタキンサンモノマーを含む硬化性組成物、および該硬化性組成物からなる研磨用パッド
WO2022030531A1 (ja) 硬化性組成物及びその硬化体
WO2022138769A1 (ja) 活性水素基含有側鎖を有する環状分子、および該環状分子を含む硬化性組成物
WO2021241708A1 (ja) 積層研磨パッド
CN116806229A (zh) 含有环状单体的新型的固化性组合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19804383

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020519928

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019804383

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019804383

Country of ref document: EP

Effective date: 20201217