WO2022163756A1 - 中空マイクロバルーン - Google Patents

中空マイクロバルーン Download PDF

Info

Publication number
WO2022163756A1
WO2022163756A1 PCT/JP2022/003093 JP2022003093W WO2022163756A1 WO 2022163756 A1 WO2022163756 A1 WO 2022163756A1 JP 2022003093 W JP2022003093 W JP 2022003093W WO 2022163756 A1 WO2022163756 A1 WO 2022163756A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
resin
acid
cyclic
microballoons
Prior art date
Application number
PCT/JP2022/003093
Other languages
English (en)
French (fr)
Inventor
康智 清水
一石 福田
剛美 川崎
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to EP22745975.7A priority Critical patent/EP4286439A1/en
Priority to KR1020237025596A priority patent/KR20230135082A/ko
Priority to JP2022578476A priority patent/JPWO2022163756A1/ja
Priority to CN202280011769.6A priority patent/CN116802774A/zh
Priority to US18/274,188 priority patent/US20240101751A1/en
Publication of WO2022163756A1 publication Critical patent/WO2022163756A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • C08G18/6484Polysaccharides and derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/487Polyethers containing cyclic groups
    • C08G18/4883Polyethers containing cyclic groups containing cyclic groups having at least one oxygen atom in the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/34Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties
    • B24D3/342Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties incorporated in the bonding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3237Polyamines aromatic
    • C08G18/3243Polyamines aromatic containing two or more aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to hollow microballoons.
  • Microballoons have conventionally been microballoons containing skin care ingredients, fragrance ingredients, dye ingredients, analgesic ingredients, deodorant ingredients, antioxidant ingredients, sterilization ingredients, heat storage ingredients, etc., or hollow microballoons in which the inside of the microballoon is hollow.
  • they are used in many fields such as agricultural chemicals, medicines, fragrances, liquid crystals, adhesives, electronic material parts, and building materials.
  • hollow microballoons have been studied for the purpose of providing pores in polyurethane (urea) CMP (Chemical Mechanical Polishing) polishing pads used for wafer polishing.
  • urea polyurethane
  • CMP Chemical Mechanical Polishing
  • microballoons used in CMP polishing pads microballoons made of vinylidene chloride resin or the like, in which inorganic particles are sprinkled on the surface of hollow microballoons to improve dispersibility in polyurethane (urea), have been known.
  • the inorganic particles may cause defects on the wafer.
  • Patent Document 2 the method described in Patent Document 2 is effective in the case of microballoons containing an amount of heat storage material, but when applied to hollow microballoons, satisfactory durability can be obtained. Turns out it can't be done.
  • polyrotaxane tends to have a high molecular weight, is poor in handling properties, and has room for improvement such as limitations in production when applied to hollow microballoons.
  • an object of the present invention is to provide hollow microballoons with good handleability that can impart not only polishing properties but also excellent durability.
  • a hollow microballoon made of a resin obtained by polymerizing a polymerizable composition containing a polymerizable monomer other than a side chain-containing cyclic molecule into which at least three or more functional group-introduced side chains are introduced the above We have found that the problem can be solved, and have completed the present invention.
  • the present invention comprises a side chain-containing cyclic portion having at least three or more side chains having polymerizable functional groups introduced at their ends, and at least three side chains having polymerizable functional groups introduced at their ends.
  • the present invention also provides a CMP polishing pad comprising the hollow microballoons.
  • the present invention relates to the following [1] to [7].
  • [1] (A) a side chain-containing cyclic molecule having at least three or more side chains having a polymerizable functional group introduced at its end, and (B) a polymerizable functional group introduced at its end (A) 1.
  • the content of (A) the side chain-containing cyclic molecule having at least three or more side chains having a polymerizable functional group introduced at the end contained in the polymerizable composition is The content of the side chain-containing cyclic molecule having at least 3 or more side chains introduced with a polymerizable functional group and (B) the above (A) having at least 3 side chains having a polymerizable functional group introduced at the end.
  • the viscosity at 60° C. of the (A) side chain-containing cyclic molecule in which at least three or more side chains having polymerizable functional groups at their ends are introduced is from 500 mPa ⁇ s to 50,000 mPa ⁇ s.
  • a CMP polishing pad comprising the hollow microballoons according to any one of [1] to [6] above.
  • the hollow microballoons of the present invention may be made of a resin obtained by polymerizing a polymerizable composition containing a side chain-containing cyclic portion having at least three side chains having polymerizable functional groups introduced at their ends. It is a feature. By doing so, it is said that the hollow microballoons can be easily handled during production and can be given excellent durability to the hollow microballoons.
  • a CMP polishing pad containing such hollow microballoons can exhibit excellent polishing characteristics. For example, it is possible to reduce defects caused on a high polishing rate and wafer.
  • the present inventors have found that by using a side chain-containing cyclic molecule having at least three or more side chains with polymerizable functional groups introduced at their ends as one component of the resin, the resin has high durability. It has been found that excellent mechanical properties such as and excellent elastic recovery performance against deformation can be imparted.
  • the hollow microballoons are formed.
  • the present inventors have found that the hollow microballoons are endowed with the above-described stress dispersion performance and elastic recovery performance by using them as one of the constituent components, and that the hollow microballoons having excellent durability can be obtained.
  • the function of forming pores on the polishing surface of the polishing pad for CMP is only due to the stress dispersion performance and elastic recovery performance of the hollow microballoons.
  • the CMP polishing pad has durability, and not only excellent polishing properties but also excellent wear resistance can be exhibited. Furthermore, this characteristic makes it possible to reduce wafer defects caused by polishing shavings of hollow microballoons discharged during polishing.
  • hollow microballoons of the present invention can be used in many fields other than CMP polishing pads, such as heat-sensitive recording materials, agricultural chemicals, pharmaceuticals, perfumes, liquid crystals, adhesives, electronic material parts, and building materials. be.
  • the hollow microballoons of the present invention comprise (A) a side chain-containing cyclic molecule having at least three side chains having polymerizable functional groups introduced at their ends (hereinafter referred to as "(A) cyclic polyfunctional monomer", Or also referred to as “(A) component”) and (B) a polymerizable monomer other than the (A) cyclic polyfunctional monomer (hereinafter also referred to as "(B) polymerizable monomer” or "(B) component”) ) is a hollow microballoon made of a resin obtained by polymerizing a polymerizable composition containing A hollow microballoon is a particle having a cavity inside, and is composed of a hollow portion and an outer shell portion. The resin obtained by polymerizing the polymerizable composition forms the outer shell of the hollow microballoons.
  • (A) the cyclic polyfunctional monomer will be described.
  • the cyclic molecule used for (A) the cyclic polyfunctional monomer will be described.
  • the cyclic molecule is not particularly limited as long as it is a cyclic molecule into which a side chain having a polymerizable functional group introduced at its end can be introduced.
  • such cyclic molecules include cyclodextrin, crown ether, benzocrown, dibenzocrown, dicyclohexanocrown, cyclobis(paraquat-1,4-phenylene), dimethoxypyraarene, calixresorcinarene, calixarene and phenanthroline.
  • cyclodextrin and calixresorcinarene are preferred, and cyclodextrin is most preferred.
  • the cyclodextrin has an ⁇ form (ring inner diameter 0.45 to 0.6 nm), a ⁇ form (ring inner diameter 0.6 to 0.8 nm), and a ⁇ form (ring inner diameter 0.8 to 0.95 nm). Mixtures of these may also be used in the present invention. Among them, ⁇ -cyclodextrin and ⁇ -cyclodextrin are particularly preferred in the present invention, and ⁇ -cyclodextrin is most preferred in terms of cost and physical properties.
  • the calixresorcinarene is a cyclic molecule obtained by a cyclic condensation reaction between resorcinol and various aldehydes.
  • the resorcinol is not limited to resorcinol, and resorcinol derivatives such as 2-nitroresorcinol may be used.
  • aldehyde known aldehydes can be used without any limitation. Examples include aliphatic aldehydes such as n-butanal, isobutanal and heptanal, and aromatic aldehydes such as benzaldehyde, vanillin and 4-nitrobenzaldehyde. More than one species may be mixed and used. Among them, heptanal, benzaldehyde and vanillin are preferably used.
  • the calixresorcinarene is preferably a tetramer, but is not limited to this.
  • the cyclic molecule used for (A) the cyclic polyfunctional monomer in the present invention has at least three side chains having polymerizable functional groups introduced at their terminals.
  • the polymerizable functional group introduced at the end of the side chain is not particularly limited as long as it is a group capable of polymerizing with the polymerizable monomer (B) described below, but is preferably a hydroxyl group or an amino group.
  • the side chain having a polymerizable functional group at its end can be introduced by modifying the reactive functional group, for example, by utilizing the reactive functional group possessed by the cyclic molecule (i.e., the side chain is introduced by reacting with the reactive functional group).
  • the reactive functional group examples include hydroxyl group and amino group, among which hydroxyl group is preferred.
  • ⁇ -cyclodextrin has 21 OH groups (hydroxyl groups) as reactive functional groups, and the OH groups are reacted to introduce side chains. Therefore, up to 21 side chains can be introduced into one ⁇ -cyclodextrin.
  • at least 3 or more side chains each having a polymerizable functional group introduced at its terminal must be introduced in order to sufficiently exhibit the function of the side chain described above.
  • it is a cyclic molecule in which 5 or more side chains having a polymerizable functional group introduced at the terminal are introduced, and more preferably 7 or more side chains having a polymerizable functional group introduced at the terminal are introduced.
  • it is a cyclic molecule in which 8 or more side chains having polymerizable functional groups introduced at the terminals thereof are introduced.
  • the upper limit is not particularly limited, but if the number of introductions is too large, the viscosity of the cyclic polyfunctional monomer may increase and the handleability may deteriorate. Therefore, it is particularly preferable to introduce 8 to 18 side chains.
  • the side chain is not particularly limited, it is preferably formed by repeating an organic chain having 3 to 20 carbon atoms.
  • the number average molecular weight of such side chains is preferably 300 or more, for example. More particularly, the number average molecular weight of such side chains ranges from 300-10,000, preferably from 350-5,000, most preferably from 400-5,000, most preferably from 400-1,500. Within this range, it becomes easier to adjust the hardness and physical properties of the obtained hollow microballoons and the CMP polishing pad containing the hollow microballoons.
  • the number average molecular weight of this side chain can be adjusted by adjusting the amount used when the side chain is introduced, and can be determined by calculation or by 1 H-NMR measurement.
  • the (A) cyclic polyfunctional monomer preferably has a certain viscosity range. By doing so, it is possible to have excellent handleability.
  • the viscosity at 60° C. is 500 mPa ⁇ s to 50,000 mPa ⁇ s, more preferably 500 mPa ⁇ s to 10,000 mPa ⁇ s, and most preferably 1000 mPa ⁇ s to 6. ,000 mPa ⁇ s. These can be determined, for example, with a rotational viscometer.
  • the weight average molecular weight Mw of (A) the cyclic polyfunctional monomer is 1,500 to 100,000, particularly 2,000 to 30,000, particularly preferably 2,500 to 10,000. and most preferably in the range of 3,000 to 8,000.
  • the degree of dispersion is preferably 1.2 or less.
  • the weight-average molecular weight Mw and the degree of dispersion are values measured by the GPC measurement method described in Examples described later.
  • the molecular weight of (A) the cyclic polyfunctional monomer is too large, the handleability and compatibility tend to deteriorate, so (A) the cyclic polyfunctional monomer forms a complex with other molecules. preferably not.
  • the side chain as described above may be linear or branched.
  • the methods and compounds disclosed in WO 2015/159875 for example, ring-opening polymerization; radical polymerization; cationic polymerization; anionic polymerization; Polymerization, RAFT polymerization, living radical polymerization such as NMP polymerization, and the like can be used.
  • a side chain having an appropriate size can be introduced by reacting an appropriately selected compound with the reactive functional group of the cyclic molecule.
  • ring-opening polymerization can introduce side chains derived from cyclic compounds such as cyclic ethers, cyclic siloxanes, cyclic lactones, cyclic lactams, cyclic acetals, cyclic amines, cyclic carbonates, cyclic iminoethers, and cyclic thiocarbonates.
  • cyclic compounds such as cyclic ethers, cyclic siloxanes, cyclic lactones, cyclic lactams, cyclic acetals, cyclic amines, cyclic carbonates, cyclic iminoethers, and cyclic thiocarbonates.
  • cyclic compounds it is preferable to use cyclic ethers, cyclic lactones, and cyclic lactams from the viewpoint of high reactivity and easy adjustment of the molecular weight.
  • a side chain introduced by ring-opening polymerization of a cyclic compound such as a cyclic lactone or a cyclic ether has a hydroxyl group introduced at the end of the side chain.
  • An amino group is introduced at the end of the side chain.
  • cyclic ethers cyclic lactones, cyclic lactams, and cyclic carbonates are exemplified below.
  • cyclic ethers ethylene oxide, 1,2-propylene oxide, epichlorohydrin, epibromohydrin, 1,2-butylene oxide, 2,3-butylene oxide, isobutylene oxide, oxetane, 3-methyloxetane, 3,3-dimethyloxetane, Tetrahydrofuran, 2-methyltetrahydrofuran, 3-methyltetrahydrofuran, etc.
  • Cyclic lactones 4-membered ring lactone; ⁇ -propiolactone, ⁇ -methylpropiolactone, L-serine- ⁇ -lactone, etc.
  • 6-membered ring lactams 6-membered ring lactams; 7-membered ring lactams such as ethyl 2-piperidone-3-carboxylate; 8-membered ring lactams such as ⁇ -caprolactam, DL- ⁇ -amino- ⁇ -caprolactam; Ethylene carbonate, propylene carbonate, 1,2-butylene glycerol carbonate 1,2-carbonate, 4-(methoxymethyl)-1,3-dioxolan-2-one, (chloromethyl) ethylene carbonate, vinylene carbonate, 4,5- Dimethyl-1,3-dioxol-2-one, 4-chloromethyl-5-methyl-1,3-dioxol-2-one, 4-vinyl-1,3-dioxolan-2-one, 4,5-diphenyl -1,3-dioxolan-2-one, 4,4-dimethyl-5-methylene-1,3-diox
  • the cyclic compounds preferably used are cyclic lactones or cyclic lactams, and particularly preferred cyclic lactones are ⁇ -caprolactone, ⁇ -acetyl- ⁇ -butyrolactone, ⁇ -methyl- ⁇ -butyrolactone, ⁇ -valerolactone.
  • lactones, cyclic lactones such as ⁇ -butyrolactone, particularly preferred cyclic lactams are ⁇ -caprolactam, ⁇ -butyrolactam and DL- ⁇ -amino- ⁇ -caprolactam, most preferably ⁇ -caprolactone and ⁇ -caprolactam is.
  • catalysts can be used without any restrictions for the ring-opening polymerization described above.
  • organic titanium compounds such as tetramethyl titanate, tetraethyl titanate, tetrapropyl titanate, and tetrabutyl titanate
  • organic tin compounds such as tin 2-ethylhexanoate, dibutyltin dilaurate, tin octoate, dibutyltin oxide, and dibutyltin acetate
  • stannous chloride such as tetramethyl titanate, tetraethyl titanate, tetrapropyl titanate, and tetrabutyl titanate
  • organic tin compounds such as tin 2-ethylhexanoate, dibutyltin dilaurate, tin octoate, dibutyltin oxide, and dibutyltin acetate
  • stannous chloride such as tetramethyl titan
  • the amount of the remaining catalyst is preferably 5000 ppm or less of the various metals used in the catalyst with respect to (A) the cyclic polyfunctional monomer. It is more preferably 1000 ppm or less, and most preferably 600 ppm or less.
  • the residual tin amount can be measured by ICP luminescence described in Examples described later.
  • a part of this side chain may bond to the ring functional group of another cyclic molecule to form a crosslinked structure.
  • the (A) cyclic polyfunctional monomer that is most preferably used preferably has a cyclic molecule of ⁇ -cyclodextrin and a side chain introduced by ring-opening polymerization of ⁇ -caprolactone.
  • the polymerizable functional group at the end of the introduced side chain can be another polymerizable functional group (for example, a hydroxyl group to an amino group), or the number of moles of hydroxyl groups and/or amino groups can be set as desired. can also be non-reactive groups.
  • the affinity of (A) the cyclic polyfunctional monomer to the aqueous phase and the oil phase changes depending on the cyclic molecules and side chains used as described above.
  • the cyclic polyfunctional monomer is hydrophilic when it is at least partially soluble in water and has a higher affinity in the aqueous phase than in the oil phase
  • a cyclic polyfunctional monomer is lipophilic if it is at least partially soluble in organic solvents and has a higher affinity in the oil phase than in the aqueous phase.
  • component (A) is hydrophilic and an organic solvent that is incompatible with water.
  • Component (A) is lipophilic if it has a solubility of 20 g/l or more in a solution (for example, toluene).
  • the polymerizable monomer is not particularly limited as long as it can be polymerized with the polymerizable functional group of component (A).
  • (B1) a polyfunctional isocyanate compound having at least two isocyanate groups (hereinafter , (B1) polyfunctional isocyanate compound or (B1) component), (B2) a polyol compound having at least two hydroxyl groups (hereinafter also referred to as (B2) polyol compound or (B2) component), (B3) a polyfunctional amine compound having at least two amino groups (hereinafter also referred to as (B3) polyfunctional amine compound or (B3) component), (B4) a compound having at least both a hydroxyl group and an amino group (hereinafter , (B4) component), (B5) melamine formaldehyde prepolymer compound (hereinafter also referred to as (B5) component), (B6) urea formaldehyde prepolymer compound (hereinafter also
  • the hollow microballoons of the present invention are hollow microballoons made of a resin obtained by polymerizing a polymerizable composition containing (A) a cyclic polyfunctional monomer and (B) a polymerizable monomer, and the components (A) and (B ) component, the type of resin for the hollow microballoons can be selected.
  • the resin for the hollow microballoons of the present invention is preferably at least selected from the group consisting of urethane (urea) resins, melamine resins, urea resins, amide resins, and copolymer resins of two or more of these.
  • One type of resin is preferred.
  • the urethane (urea) resin means a resin obtained by reacting an isocyanate group with a hydroxyl group and/or an amino group and having a urethane bond in the main chain, a resin having a urea bond in the main chain, or a resin having a urea bond in the main chain.
  • the melamine resin is a resin obtained by polycondensation of a polyfunctional amine whose main chain contains melamine and formaldehyde
  • the urea resin is a main chain is a resin obtained by polycondensation of urea (including polyfunctional amine) and formaldehyde
  • the amide resin is a resin having an amide bond in its main chain.
  • urethane (urea) resins and melamine resins are most preferred as resins constituting the hollow microballoons of the present invention, and urethane (urea) resins are most preferred.
  • the combination of (A) a cyclic polyfunctional monomer and (B) a polymerizable monomer is such that, for example, when the hollow microballoons are made of urethane (urea) resin, the polymerizable functional groups of (A) the cyclic polyfunctional monomer are hydroxyl groups and/or or an amino group, and (B) the polymerizable monomer essentially contains (B1) a polyfunctional isocyanate compound, and in addition, (B2) a polyol compound having at least two hydroxyl groups, (B3) at least two A polyfunctional amine-containing compound having an amino group, or (B4) a compound having at least both a hydroxyl group and an amino group may be included.
  • the polymerizable functional group of the cyclic polyfunctional monomer is selected to be an amino group
  • the polymerizable monomer is selected to be (B5) a melamine formaldehyde prepolymer compound.
  • the polymerizable functional group of the cyclic polyfunctional monomer is selected to be an amino group
  • the polymerizable monomer is selected to be (B6) a urea-formaldehyde prepolymer compound.
  • the polymerizable functional group of the cyclic polyfunctional monomer is an amino group
  • the polymerizable monomer is (B7) a polyfunctional carboxylic acid having at least two carboxyl groups. and may additionally contain (B3) a polyfunctional amine compound having at least two amino groups.
  • the (B1) polyfunctional isocyanate compound used in the present invention can be used without any limitation as long as it is a polyfunctional isocyanate compound having at least two isocyanate groups. Among them, compounds having 2 to 6 isocyanate groups in the molecule are preferable, and compounds having 2 to 3 isocyanate groups are more preferable.
  • component (B1) is a urethane prepolymer (B12) containing unreacted isocyanate groups (hereinafter referred to as ( B12) Urethane prepolymer or (also referred to as component (B12))) may be used.
  • urethane prepolymer (B12) any one containing an unreacted isocyanate group can be used without any limitation.
  • the component (B1) can be broadly classified into aliphatic isocyanates, alicyclic isocyanates, aromatic isocyanates, other isocyanates, and (B12) urethane prepolymers. Moreover, the said (B1) component can also use one type of compound, and can also use multiple types of compounds. When multiple types of compounds are used, the reference mass is the total amount of the multiple types of compounds. Specific examples of these isocyanate compounds include the following compounds.
  • mesitylene triisocyanate triphenylmethane triisocyanate
  • polymeric MDI naphthalene triisocyanate
  • diphenylmethane-2,4,4'-triisocyanate 3-methyldiphenylmethane-4,4',6-triisocyanate
  • 4-methyl-diphenylmethane- Polyfunctional isocyanate monomers such as 2,3,4',5,6-pentaisocyanate.
  • isocyanates include a burette structure, a uretdione structure, and an isocyanurate structure mainly made of diisocyanates such as hexamethylene diisocyanate and tolylene diisocyanate (for example, JP-A-2004-534870 describes a burette structure of an aliphatic polyisocyanate).
  • the (B12) urethane prepolymer comprises a bifunctional isocyanate compound selected from the (B1) component (the compound specified as an example of the (B1) component) and (B21)2 shown below.
  • a functional polyol compound or (B31) reacted with a difunctional amine compound is preferred.
  • Examples of the (B21) bifunctional polyol compound include the following.
  • (B21) bifunctional polyol) (fatty alcohol) ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butylene glycol, 1,5-dihydroxypentane, 1,6-dihydroxyhexane, 1,7-dihydroxyheptane, 1,8-dihydroxyoctane, 1,9-dihydroxynonane, 1,10-dihydroxydecane, 1,11-dihydroxyundecane, 1,12-dihydroxydodecane, neopentyl glycol, glyceryl monooleate, monoelaidin, polyethylene glycol, 3-methyl-1,5-dihydroxypentane, dihydroxyneopentyl , 2-ethyl-1,2-dihydroxyhexane, 2-methyl-1,3-dihydroxypropane, polyester polyol (compound having hydroxyl groups only at both ends obtained by condensation reaction of polyol and polybasic acid), polyether Polyol (a compound obtained
  • aromatic alcohol Dihydroxynaphthalene, dihydroxybenzene, bisphenol A, bisphenol F, xylylene glycol, tetrabromobisphenol A, bis(4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)ethane, 1,2-bis(4 -hydroxyphenyl)ethane, bis(4-hydroxyphenyl)phenylmethane, bis(4-hydroxyphenyl)diphenylmethane, bis(4-hydroxyphenyl)-1-naphthylmethane, 1,1-bis(4-hydroxyphenyl)- 1-phenylethane, 2-(4-hydroxyphenyl)-2-(3-hydroxyphenyl)propane, 2,2-bis(4-hydroxyphenyl)butane, 1,1-bis(4-hydroxyphenyl)butane, 2,2-bis(4-hydroxyphenyl)-3-methylbutane, 2,2-bis(4-hydroxyphenyl)pentane,
  • polyester diol A bifunctional polyol compound obtained by a condensation reaction between a polyol and a polybasic acid can be mentioned.
  • the number average molecular weight is preferably from 400 to 2,000, more preferably from 500 to 1,500, and most preferably from 600 to 1,200.
  • polyether diol examples include bifunctional polyol compounds obtained by ring-opening polymerization of alkylene oxide or reaction of a compound having two or more active hydrogen-containing groups in the molecule with alkylene oxide, and modified products thereof.
  • the number average molecular weight is preferably from 400 to 2,000, more preferably from 500 to 1,500, and most preferably from 600 to 1,200.
  • polycaprolactone polyol examples include bifunctional polyol compounds obtained by ring-opening polymerization of ⁇ -caprolactone. Among them, the number average molecular weight is preferably from 400 to 2,000, more preferably from 500 to 1,500, and most preferably from 600 to 1,200.
  • polycarbonate polyol Bifunctional polyol compounds obtained by phosgenation of one or more low-molecular-weight polyols or bifunctional polyol compounds obtained by transesterification using ethylene carbonate, diethyl carbonate, diphenyl carbonate or the like can be mentioned.
  • the number average molecular weight is preferably 400 to 2000, more preferably 500 to 1500, and most preferably 600 to 1200 (polyacrylic polyol) Bifunctional polyol compounds obtained by polymerizing (meth)acrylate acid esters and vinyl monomers can be mentioned.
  • (B31) bifunctional amine compound examples include the following.
  • Bifunctional amine compounds such as ethylenediamine, hexamethylenediamine, nonamethylenediamine, undecanemethylenediamine, dodecamethylenediamine, metaxylenediamine, 1,3-propanediamine, and putrescine.
  • Bifunctional amine compounds such as polyamines such as isophoronediamine and cyclohexyldiamine.
  • aromatic amine 4,4′-methylenebis(o-chloroaniline) (MOCA), 2,6-dichloro-p-phenylenediamine, 4,4′-methylenebis(2,3-dichloroaniline), 4,4′-methylenebis(2 -ethyl-6-methylaniline), 3,5-bis(methylthio)-2,4-toluenediamine, 3,5-bis(methylthio)-2,6-toluenediamine, 3,5-diethyltoluene-2, 4-diamine, 3,5-diethyltoluene-2,6-diamine, trimethylene glycol-di-p-aminobenzoate, polytetramethylene glycol-di-p-aminobenzoate, 4,4'-diamino-3,3 ',5,5'-tetraethyldiphenylmethane, 4,4'-diamino-3,3'-diisopropyl-5,5'
  • (B12) Method for producing urethane prepolymer (B12)
  • the urethane prepolymer is produced by reacting the aforementioned difunctional isocyanate compound with (B21) a difunctional polyol compound and/or (B31) a difunctional amine compound.
  • (B12) the urethane prepolymer must contain unreacted isocyanate groups.
  • the method for producing the (B12) urethane prepolymer containing an isocyanate group is not particularly limited to known methods.
  • (B31) a method in which the number of moles (n6) of groups having active hydrogen in the bifunctional amine compound satisfies 1 ⁇ (n5)/(n6) ⁇ 2.3.
  • the number of moles of isocyanate groups (n5) is the total number of moles of isocyanate groups of the bifunctional isocyanate compounds.
  • the number of moles (n6) of the groups having active hydrogen is the same as those of (B21) bifunctional polyol compounds. and/or (B31) the total number of moles of active hydrogen in the bifunctional amine compound. In the present invention, even if the active hydrogen is a primary amino group, the primary amino group is counted as 1 mol.
  • the (B12) urethane prepolymer preferably has an isocyanate equivalent weight (value obtained by dividing the molecular weight of the (B12) urethane prepolymer by the number of isocyanate groups in one molecule) of 300. to 5,000, more preferably 350 to 3,000, and particularly preferably 400 to 2,000.
  • the (B12) urethane prepolymer in the present invention is preferably a linear one produced from a bifunctional isocyanate compound and (B21) a bifunctional polyol compound and/or (B31) a bifunctional amine compound. , both ends are isocyanate groups, and the number of isocyanate groups in one molecule is two.
  • the isocyanate equivalent of the (B12) urethane prepolymer can be quantified by the following back titration method based on JIS K 7301 for the isocyanate groups possessed by the (B12) urethane prepolymer.
  • the obtained (B12) urethane prepolymer is dissolved in a dry solvent.
  • di-n-butylamine which is clearly in excess of the amount of isocyanate groups possessed by (B12) the urethane prepolymer and has a known concentration, is added to the dry solvent, and (B12) the urethane prepolymer All isocyanate groups of are reacted with di-n-butylamine.
  • the unconsumed (did not participate in the reaction) di-n-butylamine is then titrated with acid to determine the amount of di-n-butylamine consumed. Since the consumed di-n-butylamine and the isocyanate groups of the (B12) urethane prepolymer are the same, the isocyanate equivalent can be determined. Further, for example, in the case of a linear (B12) urethane prepolymer containing an isocyanate group, the number average molecular weight of the (B12) urethane prepolymer is twice the isocyanate equivalent. The molecular weight of this (B12) urethane prepolymer tends to match the value measured by gel permeation chromatography (GPC). When the urethane prepolymer (B12) and a bifunctional isocyanate compound are used in combination, the mixture of the two may be measured according to the above method.
  • GPC gel permeation chromatography
  • the isocyanate content of the (B12) urethane prepolymer ((I); mass molarity (mol/kg)) and the urethane bond content present in the (B12) urethane prepolymer ((U); mass mol concentration (mol/kg) is preferably 1 ⁇ (U)/(I) ⁇ 10. This range is the same when (B12) the urethane prepolymer and the bifunctional isocyanate compound are used in combination.
  • the isocyanate content ((I); mass molality (mol/kg)) is a value obtained by multiplying the reciprocal of the isocyanate equivalent by 1,000. Further, (B12) the content of urethane bonds present in the urethane prepolymer ((U) mass molality (mol/kg)) is theoretically obtained by the following method.
  • the content of isocyanate groups before the reaction present in the bifunctional isocyanate compound constituting the urethane prepolymer (B12) is the total isocyanate content ((aI); mass molality (mol/kg))
  • (B12) urethane prepolymer it is possible to add heating or a urethanization catalyst as necessary.
  • Any appropriate urethanization catalyst can be used, and a specific example is the urethanization catalyst described below.
  • the most preferable examples of the component (B1) used in the present invention include isophorone diisocyanate, 1,3-bis(isocyanatomethyl)cyclohexane, ( Alicyclic isocyanate of bicyclo[2.2.1]heptane-2,5(2,6)-diyl)bismethylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4' - Diphenylmethane diisocyanate, xylylene diisocyanate (o-, m-, p-) aromatic isocyanates, burette structure, uretdione structure, isocyanurate structure polyfunctional mainly made from diisocyanates such as hexamethylene diisocyanate and tolylene diisocyanate Polyfunctional isocyanates or (B12) urethane prepolymers can be mentioned as adducts of isocyanates and tri- or more functional polyols.
  • polyfunctional isocyanates having a buret structure, uretdione structure, and isocyanurate structure which are mainly composed of diisocyanates such as hexamethylene diisocyanate and tolylene diisocyanate, and polyfunctional isocyanates as adducts with trifunctional or higher polyols. or (B12) urethane prepolymers.
  • the (B2) polyol compound used in the present invention can be used without limitation as long as it is a compound having two or more hydroxyl groups in one molecule. These include the (B21) bifunctional polyol compound used for the (B12) urethane prepolymer production.
  • the (B2) component is preferably used in hollow microballoons made of urethane (urea) resin.
  • the component (B2) that is particularly preferably used in the hollow microballoons of the present invention is a water-soluble polyol compound.
  • a water-soluble polyol compound in the context of the present invention is a compound that is at least partially soluble in water and has a higher affinity for the hydrophilic phase than for the hydrophobic phase, generally at room temperature (25° C.).
  • the solubility in a hydrophilic solvent such as water can be selected to have a solubility of at least 1 g/l, preferably a water-soluble solvent having a solubility of 20 g/l or more in a hydrophilic solvent. and chemical compounds.
  • These water-soluble polyol compounds are polyfunctional alcohols having two or more hydroxyl groups in the molecule, and specifically include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, neopentyl glycol, trimethylene glycol, 1,2-butanediol, 1,3-butanediol, 2,3-butanediol, 1,4-butanediol, 1,5-pentanediol, hexylene glycol, Bifunctional polyols such as 1,6-hexanediol and 2-butene-1,4-diol, trifunctional polyols such as glycerin, trimethylolethane, trimethylolpropane, pentaerythritol, erythritol, diglycerol, diglycerin, ditrimethylol tetrafunctional poly
  • the (B3) polyfunctional amine compound used in the present invention can be used without limitation as long as it is a monomer having two or more amino groups in one molecule. These include the (B31) bifunctional amine compound used for the (B12) urethane prepolymer production.
  • Component (B3) is preferably used in hollow microballoons made of urethane (urea) resin or amide resin.
  • the component (B3) particularly preferably used in the hollow microballoons of the present invention is a water-soluble polyamine compound.
  • the preferred solubility of the water-soluble polyamine compound is the same as that of the water-soluble polyol compound.
  • These water-soluble polyamine compounds are polyfunctional amines having two or more amino groups in the molecule, specifically ethylenediamine, propylenediamine, 1,4.
  • -diaminobutane hexamethylenediamine, 1,8-diaminooctane, 1,10-diaminodecane
  • dipropylenetriamine bishexamethylenetriamine, tris(2-aminoethyl)amine, piperazine, 2-methylpiperazine, isophoronediamine , diethylenetriamine, triethylenetetramine, tetraethylenepentamine, hydrazine, polyethyleneimines, polyoxyalkyleneamines, polyethyleneimine and the like.
  • any compound having at least one hydroxyl group and one or more amino groups in the molecule can be used without limitation.
  • the (B4) component is preferably used in hollow microballoons made of urethane (urea) resin.
  • Component (B4) that is particularly preferably used is a compound having both a hydroxyl group and an amino group in the water-soluble molecule.
  • the preferred solubility of a water-soluble compound having both a hydroxyl group and an amino group in its molecule is the same as for the water-soluble polyol compound.
  • These water-soluble compounds having both a hydroxyl group and an amino group in the molecule are specifically hydroxylamine, monoethanolamine, 3-amino-1-propanol, 2-amino-2-hydroxymethylpropane-1,3 -diol, 2-hydroxyethylethylenediamine, 2-hydroxyethylpropylenediamine, N,N-di-2-hydroxyethylethylenediamine, N,N-di-2-hydroxypropylethylenediamine, N,N-di-2-hydroxypropyl propylenediamine, N-methylethanolamine, diethanolamine, N,N-di-2-hydroxyethylethylenediamine, N,N-di-2-hydroxypropylethylenediamine, N,N-di-2-hydroxypropylpropylenediamine, etc. be
  • the component (B3) is preferable in terms of the strength of the hollow microballoons formed and the reaction rate during polymerization.
  • the melamine-formaldehyde prepolymer compound is a melamine-formaldehyde initial condensate of melamine and formaldehyde, and can be produced by a conventional method.
  • Melamine-formaldehyde precondensates of melamine and formaldehyde include, for example, methylolmelamine.
  • commercially available products can be used as appropriate.
  • Beckamin APM Beckamin M-3, Beckamin M-3 (60), Beckamin MA-S, Beckamin J-101, Beckamin J-101LF (manufactured by DIC Corporation), Nikaresin S-176, Nikaresin S-260 ( Nippon Carbide Co., Ltd.), Milben Resin SM-800 (Showa Polymer Co., Ltd.), and the like.
  • the (B5) component is preferably used in hollow microballoons made of melamine resin.
  • the urea-formaldehyde prepolymer compound is a urea-formaldehyde initial condensate of urea and formaldehyde, and can be produced by a conventional method.
  • the urea-formaldehyde prepolymer compound commercially available ones can be used as appropriate. Examples thereof include 8HSP (manufactured by Showa High Polymer Co., Ltd.).
  • the (B6) component is preferably used in hollow microballoons made of urea resin.
  • polyfunctional carboxylic acid compound component having at least two carboxyl groups> (B7)
  • dicarboxylic acid compounds are suitable, and the dicarboxylic acid compounds include succinic acid, adipic acid, sebacic acid, dodecenylsuccinic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, and octadecanedicarboxylic acid.
  • alkenylene dicarboxylic acids such as acids, dodecenyl succinic acid, pentadecenyl succinic acid, octadecenyl succinic acid, maleic acid, fumaric acid, decyl succinic acid, dodecyl succinic acid, octadecyl succinic acid, phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid and the like.
  • dicarboxylic acid dihalides include aliphatic dicarboxylic acid dihalides, alicyclic dicarboxylic acid dihalides, and aromatic dicarboxylic acid dihalides.
  • Aliphatic dicarboxylic acid dihalides include, for example, oxalic acid dichloride, malonic acid dichloride, succinic acid dichloride, fumaric acid dichloride, glutaric acid dichloride, adipic acid dichloride, muconic acid dichloride, sebacic acid dichloride, nonanoic acid dichloride, and undecanoic acid dichloride. , dibromide oxalate, dibromide malonate, dibromide succinate, dibromide fumarate, and the like.
  • Alicyclic dicarboxylic acid dihalides include, for example, 1,2-cyclopropanedicarboxylic acid dichloride, 1,3-cyclobutanedicarboxylic acid dichloride, 1,3-cyclopentanedicarboxylic acid dichloride, 1,3-cyclohexanedicarboxylic acid dichloride, 1 ,4-cyclohexanedicarboxylic acid dichloride, 1,3-cyclopentanedicarboxylic acid dichloride, 1,2-cyclopropanedicarboxylic acid dibromide, 1,3-cyclobutanedicarboxylic acid dibromide and the like.
  • aromatic dicarboxylic acid dihalides include phthalic acid dichloride, isophthalic acid dichloride, terephthalic acid dichloride, 1,4-naphthalenedicarboxylic acid dichloride, 1,5-(9-oxofluorene)dicarboxylic acid dichloride, 1,4- Anthracenedicarboxylic acid dichloride, 1,4-anthraquinonedicarboxylic acid dichloride, 2,5-biphenyldicarboxylic acid dichloride, 1,5-biphenylenedicarboxylic acid dichloride, 4,4'-biphenyldicarbonyl chloride, 4,4'-methylene dibenzoic acid acid dichloride, 4,4'-isopropylidene dibenzoic acid dichloride, 4,4'-bibenzyldicarboxylic acid dichloride, 4,4'-stilbenedicarboxylic acid dichloride, 4,4'-trandicarboxylic acid dichloride, 4,4
  • a preferable example of the component (B7) in the present invention is a dicarboxylic acid dihalide from the viewpoint of polymerization speed.
  • the polymerizable composition in the present invention may contain a polyrotaxane, but from the viewpoint of improving the handleability during the production of hollow microballoons, it is preferable that the composition does not contain a large amount of the polyrotaxane.
  • the content of the polyrotaxane in the polymerizable composition is preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 0% by mass.
  • any known method of polymerizing a polymerizable composition containing the components (A) and (B) can be used without limitation.
  • a method of producing hollow microballoons by removing the internal liquid after microballoons are produced using a known technique that utilizes an emulsion of an aqueous phase and an oil phase, such as polymerization, coacervation, or in-situ polymerization. should be adopted.
  • the hollow microballoons of the present invention can be produced, for example, by the following method, but are not limited to the following method.
  • (A) cyclic polyfunctional monomer changes its hydrophilicity or lipophilicity depending on the type of cyclic molecule and side chain selected and the amount introduced, so the lipophilicity of (A) cyclic polyfunctional monomer used was confirmed. After that, it may be dissolved in an aqueous phase or an oil phase for use.
  • hollow microballoons are made of urethane (urea) resin or amide resin, they can be produced by interfacial polymerization.
  • an oil-in-water (O/W) emulsion hereinafter also referred to as an O/W emulsion
  • a water-in-oil (W/O) emulsion hereinafter also referred to as a W/O emulsion
  • a hollow microballoon can be produced by forming a polymerizable composition containing components (A) and (B), and polymerizing the polymerizable composition at the interface.
  • an O/W emulsion or a W/O emulsion can be selected, but interfacial polymerization using an O/W emulsion is preferable because hollow microballoons can be produced efficiently.
  • the interfacial polymerization method in O/W emulsion is exemplified below. Note that urethane (urea) resin is exemplified except for the case of "made of amide resin".
  • the first step (a) an oil phase containing at least the (B1) component (the (B7) component in the case of an amide resin) and an organic solvent (hereinafter referred to as (a ), step 2: preparing an aqueous phase (b) containing an emulsifier (hereinafter also referred to as component (b)), step 3: the component (a) and the component (b ) ingredients are mixed and stirred to prepare an O/W emulsion in which the aqueous phase is a continuous phase and the oil phase is a dispersed phase, step 4: in the O/W emulsion, (B2) to Component (B4) (When consisting of amide resin, components (B3) to (B4) (Component (B4) in "Consisting of amide resin” is limited to component (B4) having at least two amino groups.
  • the (A) cyclic polyfunctional monomer of the present invention when the (A) cyclic polyfunctional monomer of the present invention is lipophilic, the (A) cyclic polyfunctional monomer may be uniformly dissolved in the component (a) in the first step, and (A) the cyclic polyfunctional
  • the functional monomer is hydrophilic
  • the cyclic polyfunctional monomer is hydrophilic selected from components (B2) to (B4) (components (B3) to (B4) when made of an amide resin) in the fourth step. to the O/W emulsion together with the compound of By doing so, (A) the cyclic polyfunctional monomer can react with the component (B1) (component (B7) when it consists of an amide resin).
  • the first step is to prepare an oil phase containing at least (a) component (B1) (component (B7) in the case of an amide resin), which will be the dispersed phase in the O/W emulsion, and an organic solvent.
  • This step is a step of dissolving the component (B1) (component (B7) in the case of an amide resin) in an organic solvent to be described later to form an oil phase, which is dissolved by a known method to form a uniform solution. Rubbing is good.
  • the component (a) may be prepared by dissolving the component (A) in the above oil phase solution to obtain a homogeneous solution.
  • the preferred amount of component (B1) to be used is 0.1 to 50 parts by weight, preferably 0.5 to 20 parts by weight, based on 100 parts by weight of the organic solvent. It is preferably 1 to 10 parts by mass.
  • the total number of moles of active hydrogen group-containing compounds of component (A) and components (B2) to (B4) is (n2) with respect to the number of moles (n1) of isocyanate groups contained in component (B1). In the case of , it is preferable that the range is 0.5 ⁇ (n1)/(n2) ⁇ 2.
  • the preferred amount of component (B7) to be used is 0.1 to 50 parts by weight, preferably 0.5 to 20 parts by weight, more preferably 1 part by weight per 100 parts by weight of the organic solvent. ⁇ 10 parts by mass. Further, the total number of moles of active hydrogen group-containing compounds of component (A) and components (B3) to (B4) is (n4 ), the range is preferably 0.5 ⁇ (n3)/(n4) ⁇ 2.
  • a catalyst which will be described later, may be added to the component (a) for the purpose of promoting the interfacial polymerization reaction.
  • the second step is to prepare (b) an aqueous phase containing an emulsifier and water, which will be the continuous phase in the O/W emulsion.
  • This step is a step of dissolving an emulsifier, which will be described later, in water to form an aqueous phase.
  • the amount of emulsifier used in the present invention is 0.01 to 20 parts by mass, preferably 0.1 to 10 parts by mass, per 100 parts by mass of water. Within this range, aggregation of droplets of the dispersed phase in the O/W emulsion can be avoided, and hollow microballoons having a uniform average particle diameter can be easily obtained.
  • a catalyst which will be described later, may be added to the component (b) for the purpose of promoting the interfacial polymerization reaction.
  • Third step In the third step, the (a) component obtained in the first step and the (b) component obtained in the second step are mixed and stirred, and the (a) component is the dispersed phase and the (b) component is continuous.
  • This is a step of preparing an O/W emulsion as a phase.
  • the method of mixing and stirring components (a) and (b) to form an O/W emulsion takes into account the particle size of the hollow microballoons to be produced, and mixes and stirs by a suitable known method. It can be prepared by
  • O A /W emulsifying method is preferably employed, and among these, a high-speed shearing method is preferred.
  • the rotation speed is preferably 500 to 20,000 rpm, more preferably 1,000 to 10,000 rpm.
  • the dispersing time is preferably 0.1 to 60 minutes, preferably 0.5 to 30 minutes.
  • the dispersion temperature is preferably 10-40°C.
  • the weight ratio of component (a) to component (b) is preferably 1 to 100 parts by mass of component (a), more preferably 1 to 100 parts by mass when component (b) is 100 parts by mass. is 2 to 90 parts by mass, most preferably 5 to 50 parts by mass. Within this range, a good emulsion can be obtained.
  • Fourth step In the fourth step, at least one compound selected from components (B2) to (B4) (components (B3) to (B4) in the case of an amide resin) is added to the O/W emulsion, and ( A polymerizable composition containing component A) and component (B) is polymerized on the interface of the O/W emulsion to form a resin film and formed into microballoons, thereby dispersing microballoons in which the microballoons are dispersed. This is the step of obtaining the liquid.
  • the fourth step at least selected from components (B2) to (B4) (components (B3) to (B4) when consisting of an amide resin) It may be added to the O/W emulsion in the same manner as one type of compound.
  • components (B2) to (B4) (components (B3) to (B4) when made of an amide resin) and the component (A) are added to the O/W emulsion, they may be added as they are. It may be used by dissolving in water.
  • component (B2) to (B4) when dissolved in water in advance, when the total amount of components (B2) to (B4) (components (B3) to (B4) when made of amide resin) and component (A) is 100 parts by mass, water It is suitable to use in the range of 50 to 10,000 parts by mass.
  • the reaction temperature is not particularly limited as long as it does not break the O/W emulsion, and the reaction is preferably carried out in the range of 5 to 70°C.
  • the reaction time is not particularly limited as long as a W/O emulsion can be formed, and is usually selected from the range of 0.5 to 24 hours.
  • the fifth step is a step of separating the microballoons from the microballoon dispersion.
  • the separation method for separating the microballoons from the microballoon dispersion is not particularly limited, and may be selected from general separation techniques. Specifically, filtration, centrifugation, and the like are used.
  • the sixth step is a step of removing the internal oil phase from the microballoons obtained in the fifth step to form hollow microballoons.
  • the method for removing the oil phase from the microballoons is not particularly limited, and may be selected from general separation techniques. Specifically, a circulating air dryer, a spray dryer, a fluidized bed dryer, a vacuum dryer, etc. are used. .
  • the temperature for drying is preferably 40 to 250°C, more preferably 50 to 200°C.
  • hollow microballoons are made of melamine resin or urea resin
  • they can be produced by interfacial polymerization or in-situ polymerization after forming an O/W emulsion. Specific examples are shown below, but the production method of the present invention is not limited thereto.
  • the polymerization method in the O/W emulsion when the hollow microballoons are made of melamine resin or urea resin can be subdivided into the first step: (c) an oil phase containing an organic solvent (hereinafter also referred to as component (c)); Step 2: (d) Step of preparing an aqueous phase containing an emulsifier (hereinafter also referred to as component (d)) Step 3: Mixing the component (c) and the component (d) A step of stirring to prepare an O/W emulsion in which the aqueous phase is a continuous phase and the oil phase is a dispersed phase, step 4: the O/W emulsion contains component (B5) or (B6) Components were added to form a polymerizable composition containing component (A) and component (B), polymerization was allowed to proceed on the interface of the O/W emulsion to form a resin phase, and microballoons were dispersed.
  • component (c) an oil phase
  • Step 5 Separating microballoons from the microballoon dispersion;
  • Step 6 Removing the organic solvent solution from the inside of the microballoons to form hollow microballoons.
  • the (A) cyclic polyfunctional monomer of the present invention is lipophilic, it may be uniformly dissolved in the oil phase in the first step, and (A) when the cyclic polyfunctional monomer is hydrophilic, the fourth step may be added in the same manner as the component (B5) or component (B6). By doing so, (A) the cyclic polyfunctional monomer is incorporated into the resin constituting the hollow microballoons together with the component (B5) or component (B6).
  • the first step is to prepare (c) an oil phase containing an organic solvent, which will be the dispersed phase in the O/W emulsion.
  • the component (A) when the cyclic polyfunctional monomer (A) is lipophilic, the component (A) may be dissolved in the organic solvent to prepare a uniform oil phase.
  • the component (A) when the cyclic polyfunctional monomer (A) is hydrophilic, the component (A) is not dissolved in the organic solvent, so the organic solvent may simply be used as the oil phase.
  • the second step is (d) the aqueous phase containing the emulsifier and water, which will be the continuous phase in the O/W emulsion, and the step of adjusting the pH.
  • This step includes dissolving an emulsifier, which will be described later, in water to adjust the pH.
  • Preparation of pH and the like may be prepared using a known method.
  • the amount of emulsifier used in the present invention is 0.01 to 20 parts by mass, preferably 0.1 to 10 parts by mass, per 100 parts by mass of water. Within this range, aggregation of droplets of the dispersed phase in the O/W emulsion can be avoided, and hollow microballoons having a uniform average particle diameter can be easily obtained.
  • the pH is preferably adjusted to less than 7, more preferably from 3.5 to 6.5, and most preferably from 4.0 to 5.5. This pH range allows the polymerization of component (B5) or component (B6), which will be described later, to proceed.
  • Third step In the third step, the component (c) obtained in the first step and the component (d) obtained in the second step are mixed and stirred, and the component (c) is a dispersed phase and the component (d) is continuous. This is a step of preparing an O/W emulsion as a phase.
  • the method of mixing and stirring component (c) and component (d) to form an O/W emulsion takes into account the particle size of the hollow microballoons to be produced, and mixes and stirs by a known method as appropriate. It can be prepared by Furthermore, temperature and pH can be adjusted in the process of preparing the O/W emulsion.
  • O A /W emulsifying method is preferably employed, and among these, a high-speed shearing method is preferred.
  • the rotation speed is preferably 500 to 20,000 rpm, more preferably 1,000 to 10,000 rpm.
  • the dispersing time is preferably 0.1 to 60 minutes, preferably 0.5 to 30 minutes.
  • the dispersion temperature is preferably 20-90°C.
  • the weight ratio of component (c) to component (d) is preferably 1 to 100 parts by mass of component (c) when component (d) is 100 parts by mass, more preferably. is 2 to 90 parts by mass, most preferably 5 to 50 parts by mass. Within this range, a good emulsion can be obtained.
  • the (B5) component or (B6) component is added to the O/W emulsion to form a polymerizable composition containing the (A) component and the (B) component, and the O/W emulsion interface
  • the polymerization is allowed to proceed to form a resin film and form microballoons, thereby obtaining a microballoon dispersion in which the formed microballoons are dispersed.
  • the amount of component (B5) or component (B6) to be used is not particularly limited, but in order to form microballoons well, it should be 0.5 to 50 parts per 100 parts by mass of the organic solvent used in the first step. It is preferably parts by mass, more preferably 1 to 20 parts by mass.
  • cyclic polyfunctional monomer When the cyclic polyfunctional monomer is hydrophilic, it may be added to the O/W emulsion in the same manner as the component (B5) or component (B6) in the fourth step.
  • (B5) component, or (B6) component, and (A) component are added to the O/W emulsion, they may be added as they are or dissolved in water before use.
  • water When dissolved in water, it is preferable to use water in the range of 50 to 10,000 parts by mass when the total amount of component (B5) or component (B6) and component (A) is 100 parts by mass. be.
  • the pH of the aqueous phase which is the continuous phase, may be adjusted in the second step, or may be adjusted after adding the component (B5) or component (B6) in the fourth step.
  • the pH of the continuous aqueous phase is at least less than 7.
  • a preferable reaction temperature is preferably in the range of 40 to 90°C.
  • the reaction time is preferably in the range of 1 to 48 hours.
  • the fifth and sixth steps are the same steps as in the case where the hollow microballoons are made of urethane (urea) resin (or polyamide resin).
  • the content of (A) the cyclic polyfunctional monomer in the polymerizable composition used for producing the resin constituting the hollow microballoons of the present invention is 100 mass in total of (A) the cyclic polyfunctional monomer and (B) the polymerizable monomer. It is preferably 1 to 50 parts by mass per part.
  • (A) the cyclic polyfunctional monomer in this proportion it is possible to exhibit excellent durability and properties.
  • the hollow microballoons are used in a polishing pad for CMP, not only excellent durability but also excellent polishing properties can be exhibited.
  • component (A) with respect to a total of 100 parts by mass of (A) a cyclic polyfunctional monomer and (B) a polymerizable monomer, more preferably 3 to 40 parts by mass of component (A) It is preferably 30 parts by mass.
  • the content of component (A) can be determined from the polymerized resin by solid-state NMR or other analysis, but is generally determined from the amount used. In the case of the O/W emulsion, it is considered that the total amount of the components (A) and (B) contained in the oil phase is contained in the resin constituting the hollow microballoons. On the other hand, if the amount of component (A) and component (B) added to the aqueous phase is within the preferred ranges described above, it is believed that the total amount used is contained in the resin constituting the hollow microballoons. .
  • the water phase after the completion of the reaction can be analyzed to analyze the remaining components not involved in the polymerization. It is possible to identify the (B) component and the (A) component that are doing. By considering these, it becomes possible to define the amount of monomers involved in the formation of hollow microballoons. That is, in other words, the content of component (A) in the resin constituting the hollow microballoons of the present invention is preferably 1 to 50 parts by mass with respect to a total of 100 mass of components (A) and (B). , more preferably 2 to 40 parts by mass, still more preferably 3 to 30 parts by mass.
  • microballoons can be produced efficiently in the emulsion.
  • emulsifiers used in component (b) or component (d) include dispersants, surfactants, or combinations thereof.
  • Dispersants include, for example, polyvinyl alcohol and modified products thereof (e.g., anion-modified polyvinyl alcohol), cellulosic compounds (e.g., methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl cellulose, hydroxypropyl cellulose and saponified products thereof).
  • polyvinyl alcohol and modified products thereof e.g., anion-modified polyvinyl alcohol
  • cellulosic compounds e.g., methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl cellulose, hydroxypropyl cellulose and saponified products thereof.
  • polyacrylic acid amide and its derivatives polyacrylic acid amide and its derivatives, ethylene-vinyl acetate copolymer, styrene-maleic anhydride copolymer, ethylene-maleic anhydride copolymer, isobutylene-maleic anhydride copolymer, polyvinylpyrrolidone, ethylene - acrylic acid copolymer, vinyl acetate-acrylic acid copolymer, sodium polyacrylate, potassium polyacrylate, ammonium polyacrylate, partially neutralized polyacrylic acid, sodium acrylate-acrylate copolymer , carboxymethylcellulose, casein, gelatin, dextrin, chitin, chitosan, starch derivatives, gum arabic and sodium alginate. It is preferable that these dispersants do not react with the polymerizable composition used in the present invention, or that they hardly react with the polymerizable composition used in the present invention. It is preferable to carry out a process to prevent
  • surfactants examples include anionic surfactants, cationic surfactants, amphoteric surfactants, and nonionic surfactants.
  • the surfactant may be a combination of two or more surfactants.
  • anionic surfactants include carboxylic acids or salts thereof, sulfate ester salts, carboxymethylated salts, sulfonates and phosphate ester salts.
  • Carboxylic acids or salts thereof include saturated or unsaturated fatty acids having 8 to 22 carbon atoms or salts thereof, specifically capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid. , oleic acid, linoleic acid, ricinoleic acid and a mixture of higher fatty acids obtained by saponifying coconut oil, palm kernel oil, rice bran oil, beef tallow and the like. Salts thereof include salts such as sodium, potassium, ammonium and alkanolamine.
  • sulfate salts include higher alcohol sulfate salts (sulfuric acid ester salts of aliphatic alcohols having 8 to 18 carbon atoms), higher alkyl ether sulfate salts (sulfuric acid salts of ethylene oxide adducts of aliphatic alcohols having 8 to 18 carbon atoms). ester salt), sulfated oil (unsaturated fat or unsaturated wax directly sulfated and neutralized), sulfated fatty acid ester (unsaturated fatty acid lower alcohol ester sulfated and neutralized), and Examples include sulfated olefins (sulfated and neutralized olefins having 12 to 18 carbon atoms). Salts include sodium, potassium, ammonium and alkanolamine salts.
  • the higher alcohol sulfate examples include octyl alcohol sulfate, decyl alcohol sulfate, lauryl alcohol sulfate, stearyl alcohol sulfate, and alcohols synthesized by the oxo method (oxocol 900, tridecanol: Kyowa Hakko (manufactured).
  • higher alkyl ether sulfates include lauryl alcohol ethylene oxide 2-mol adduct sulfate and octyl alcohol ethylene oxide 3-mol adduct sulfate.
  • sulfated oils include sodium, potassium, ammonium, and alkanolamine salts of sulfates such as castor oil, peanut oil, olive oil, rapeseed oil, beef tallow, and mutton tallow.
  • sulfated fatty acid esters include sodium, potassium, ammonium and alkanolamine salts of sulfates such as butyl oleate and butyl ricinoleate.
  • the carboxymethylated salt includes a carboxymethylated salt of an aliphatic alcohol having 8 to 16 carbon atoms and a carboxymethylated salt of an ethylene oxide adduct of an aliphatic alcohol having 8 to 16 carbon atoms.
  • salts of carboxymethylated fatty alcohols include octyl alcohol carboxymethylated sodium salt, decyl alcohol carboxymethylated sodium salt, lauryl alcohol carboxymethylated sodium salt, and tridecanol carboxymethylated sodium salt. be done.
  • salts of carboxymethylated ethylene oxide adducts of fatty alcohols include sodium carboxymethylated octyl alcohol ethylene oxide 3-mol adduct, lauryl alcohol ethylene oxide 4-mol adduct carboxymethylated sodium salt, and trideca. Nolethylene oxide 5 mol adduct carboxymethylated sodium salt and the like.
  • Sulfonates include alkylbenzenesulfonates, alkylnaphthalenesulfonates, sulfosuccinic acid diesters, ⁇ -olefinsulfonates, Igepon T-type, and other sulfonates of aromatic ring-containing compounds.
  • alkylbenzenesulfonates include sodium dodecylbenzenesulfonate.
  • alkylnaphthalenesulfonates include sodium dodecylnaphthalenesulfonate.
  • sulfosuccinic acid diester type examples include sulfosuccinic acid di-2-ethylhexyl ester sodium salt.
  • sulfonates of aromatic ring-containing compounds include mono- or disulfonates of alkylated diphenyl ethers and styrenated phenol sulfonates.
  • Phosphate ester salts include higher alcohol phosphate ester salts and higher alcohol ethylene oxide adduct phosphate ester salts.
  • higher alcohol phosphate examples include lauryl alcohol monoester phosphate disodium salt and lauryl alcohol phosphate diester sodium salt.
  • a specific example of the higher alcohol ethylene oxide adduct phosphate ester salt is oleyl alcohol ethylene oxide 5 mol adduct phosphate monoester disodium salt.
  • cationic surfactants include quaternary ammonium salt types and amine salt types.
  • the quaternary ammonium salt type is obtained by reacting a tertiary amine with a quaternizing agent (alkylating agent such as methyl chloride, methyl bromide, ethyl chloride, benzyl chloride, dimethyl sulfate, ethylene oxide, etc.),
  • a quaternizing agent alkylating agent such as methyl chloride, methyl bromide, ethyl chloride, benzyl chloride, dimethyl sulfate, ethylene oxide, etc.
  • alkylating agent such as methyl chloride, methyl bromide, ethyl chloride, benzyl chloride, dimethyl sulfate, ethylene oxide, etc.
  • lauryltrimethylammonium chloride didecyldimethylammonium chloride, dioctyldimethylammonium bromide, stearyltrimethylammonium bromide, lauryldimethylbenzylammonium chlor
  • primary to tertiary amines are mixed with inorganic acids (hydrochloric acid, nitric acid, sulfuric acid, hydroiodic acid, etc.) or organic acids (acetic acid, formic acid, oxalic acid, lactic acid, gluconic acid, adipic acid, alkylphosphoric acid, etc.).
  • inorganic acids hydroochloric acid, nitric acid, sulfuric acid, hydroiodic acid, etc.
  • organic acids acetic acid, formic acid, oxalic acid, lactic acid, gluconic acid, adipic acid, alkylphosphoric acid, etc.
  • primary amine salts include inorganic or organic acid salts of higher aliphatic amines (higher amines such as laurylamine, stearylamine, cetylamine, hardened beef tallow amine, and rosin amine), and higher amines of lower amines. Examples include fatty acid (stearic acid, oleic
  • Examples of the secondary amine salt type include inorganic acid salts or organic acid salts such as ethylene oxide adducts of aliphatic amines.
  • tertiary amine salt types include aliphatic amines (triethylamine, ethyldimethylamine, N,N,N',N'-tetramethylethylenediamine, etc.), ethylene oxide adducts of aliphatic amines, Alicyclic amines (N-methylpyrrolidine, N-methylpiperidine, N-methylhexamethyleneimine, N-methylmorpholine, 1,8-diazabicyclo(5,4,0)-7-undecene, etc.), nitrogen-containing heterocycles Inorganic or organic acid salts of aromatic amines (4-dimethylaminopyridine, N-methylimidazole, 4,4'-dipyridyl, etc.), triethanolamine monostearate, tertiary salts such as stearamidoethyldiethylmethylethanolamine Examples include inorganic acid salts or organic acid salts of amines.
  • amphoteric surfactants include carboxylate-type amphoteric surfactants, sulfate-type amphoteric surfactants, sulfonate-type amphoteric surfactants, and phosphate-type amphoteric surfactants.
  • Salt-type amphoteric surfactants further include amino acid-type amphoteric surfactants and betaine-type amphoteric surfactants.
  • Carboxylate-type amphoteric surfactants include amino acid-type amphoteric surfactants, betaine-type amphoteric surfactants, imidazoline-type amphoteric surfactants, etc.
  • amino acid-type amphoteric surfactants have Amphoteric surfactants having an amino group and a carboxyl group, specifically, for example, alkylaminopropionic acid type amphoteric surfactants (sodium stearylaminopropionate, sodium laurylaminopropionate, etc.), alkylaminoacetic acid type Examples include amphoteric surfactants (sodium laurylaminoacetate, etc.).
  • Betaine-type amphoteric surfactants are amphoteric surfactants having a quaternary ammonium salt-type cationic part and a carboxylic acid-type anionic part in the molecule. dimethylaminoacetic acid betaine, etc.), amidobetaine (coconut fatty acid amidopropyl betaine, etc.), alkyldihydroxyalkylbetaine (lauryldihydroxyethylbetaine, etc.), and the like. Furthermore, imidazoline type amphoteric surfactants include, for example, 2-undecyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine.
  • amphoteric surfactants include, for example, glycine-type amphoteric surfactants such as sodium lauroylglycine, sodium lauryldiaminoethylglycine, lauryldiaminoethylglycine hydrochloride, dioctyldiaminoethylglycine hydrochloride, and pentadecylsulfotaurine. and sulfobetaine-type amphoteric surfactants.
  • glycine-type amphoteric surfactants such as sodium lauroylglycine, sodium lauryldiaminoethylglycine, lauryldiaminoethylglycine hydrochloride, dioctyldiaminoethylglycine hydrochloride, and pentadecylsulfotaurine. and sulfobetaine-type amphoteric surfactants.
  • nonionic surfactants examples include alkylene oxide addition type nonionic surfactants and polyhydric alcohol type nonionic surfactants.
  • Alkylene oxide addition type nonionic surfactants are obtained by directly adding alkylene oxide to higher alcohols, higher fatty acids or alkylamines, or reacting higher fatty acids with polyalkylene glycols obtained by adding alkylene oxides to glycols.
  • an alkylene oxide is added to an esterified product obtained by reacting a polyhydric alcohol with a higher fatty acid, or an alkylene oxide is added to a higher fatty acid amide.
  • Alkylene oxides include, for example, ethylene oxide, propylene oxide and butylene oxide.
  • alkylene oxide addition type nonionic surfactants include oxyalkylene alkyl ethers (e.g., octyl alcohol ethylene oxide adduct, lauryl alcohol ethylene oxide adduct, stearyl alcohol ethylene oxide adduct, oleyl alcohol ethylene oxide adduct, Lauryl alcohol ethylene oxide propylene oxide block adducts, etc.), polyoxyalkylene higher fatty acid esters (e.g., stearic acid ethylene oxide adducts, lauric acid ethylene oxide adducts, etc.), polyoxyalkylene polyhydric alcohol higher fatty acid esters (e.g.
  • Polyhydric alcohol-type nonionic surfactants include polyhydric alcohol fatty acid esters, polyhydric alcohol fatty acid ester alkylene oxide adducts, polyhydric alcohol alkyl ethers, and polyhydric alcohol alkyl ether alkylene oxide adducts.
  • polyhydric alcohol fatty acid esters include pentaerythritol monolaurate, pentaerythritol monooleate, sorbitan monolaurate, sorbitan monostearate, sorbitan monolaurate, sorbitan dilaurate, sorbitan diolate, and sucrose monostearate. are mentioned.
  • polyhydric alcohol fatty acid ester alkylene oxide adducts include ethylene glycol monooleate ethylene oxide adduct, ethylene glycol monostearate ethylene oxide adduct, trimethylolpropane monostearate ethylene oxide propylene oxide random adduct, sorbitan mono Laurate ethylene oxide adducts, sorbitan monostearate ethylene oxide adducts, sorbitan distearate ethylene oxide adducts, sorbitan dilaurate ethylene oxide propylene oxide random adducts, and the like.
  • polyhydric alcohol alkyl ethers include pentaerythritol monobutyl ether, pentaerythritol monolauryl ether, sorbitan monomethyl ether, sorbitan monostearyl ether, methyl glycoside, and lauryl glycoside.
  • polyhydric alcohol alkyl ether alkylene oxide adducts include sorbitan monostearyl ether ethylene oxide adducts, methylglycoside ethylene oxide propylene oxide random adducts, lauryl glycoside ethylene oxide adducts, stearyl glycoside ethylene oxide propylene oxide random adducts. etc.
  • the emulsifier used in the present invention is preferably selected from dispersants and nonionic surfactants.
  • Specific examples of more preferred emulsifiers include the hollow microballoons of the present invention made from urethane (urea) resin. If so, polyvinyl alcohol or anion-modified polyvinyl alcohol is preferred, and if the hollow microballoons are made of amide resin, sodium acrylate-acrylate copolymer is preferred. By selecting these, a stable emulsion can be obtained.
  • the emulsifier is preferably a styrene-maleic anhydride copolymer, an ethylene-maleic anhydride copolymer, or an isobutylene-maleic anhydride copolymer. .
  • an alkaline compound such as sodium hydroxide
  • a high-density anionic polymer can be obtained, and the polymerization reaction of components (B5) and (B6) can proceed.
  • the organic solvent used for component (a) or component (c) is not particularly limited as long as it dissolves component (B1), component (B7), or lipophilic component (A).
  • examples thereof include hydrocarbon-based, halogenated-based, and ketone-based solvents.
  • those having a boiling point of 200°C or lower are preferred, and those with a boiling point of 150°C or lower are more preferred. Examples of these include the following.
  • hydrocarbon system C6-C11 aliphatic hydrocarbons such as n-hexane, n-heptane and n-octane; aromatic hydrocarbons such as benzene, toluene and xylene; and alicyclic carbonization such as cyclohexane, cyclopentane and methylcyclohexane. Hydrogen is mentioned.
  • organic solvents may be used alone or as a mixed solvent of two or more.
  • n-hexane, n-heptane, n-octane, benzene, toluene, xylene and the like are more preferable.
  • additives may be added to the aqueous phase for the purpose of further stabilizing the emulsion within a range that does not impair the effects of the present invention.
  • examples of such additives include water-soluble salts such as sodium carbonate, calcium carbonate, potassium carbonate, sodium phosphate, potassium phosphate, calcium phosphate, sodium chloride and potassium chloride. These additives can be used alone or in combination of two or more.
  • urethanization catalyst can be used without any limitation when synthesizing the urethane prepolymer that is the component (B12) or when the hollow microballoons are made of urethane (urea) resin. .
  • Specific examples include triethylenediamine, hexamethylenetetramine, N,N-dimethyloctylamine, N,N,N',N'-tetramethyl-1,6-diaminohexane, 4,4'-trimethylenebis ( 1-methylpiperidine), 1,8-diazabicyclo-(5,4,0)-7-undecene, dimethyltin dichloride, dimethyltin bis(isooctylthioglycolate), dibutyltin dichloride, dibutyltin dilaurate, dibutyltin maleate, Dibutyltin Maleate Polymer, Dibutyltin Diricinolate, Dibutyltin Bis (Dodecyl Mercaptide), Dibutyltin Bis (isooctylthioglycolate), Dioctyltin Dichloride, Dioctyltin Maleate, Dioctyltin Maleate Poly
  • amidation catalyst Any appropriate amidation catalyst can be used without any limitation when the hollow microballoons are made of an amide resin. Specific examples include boron and sodium dihydrogen phosphate.
  • the average particle size of the hollow microballoons of the present invention is not particularly limited, but is preferably 1 ⁇ m to 500 ⁇ m, more preferably 5 ⁇ m to 200 ⁇ m, most preferably 10 to 100 ⁇ m. Within this range, when blended in a polishing pad for CMP, excellent polishing properties can be exhibited.
  • the average particle size of the hollow microballoons may be measured by a known method, and specifically, an image analysis method can be used. Particle size can be easily measured using image analysis methods.
  • the average particle size is the average particle size of primary particles.
  • the average particle size can be measured by image analysis using, for example, a scanning electron microscope (SEM).
  • the bulk density of the hollow microballoons of the present invention is not particularly limited, but is preferably 0.01 to 0.5 g/cm 3 , more preferably 0.02 to 0.3 g/cm 3 . more preferred. Within this range, it is possible to form optimum pores on the polishing surface of the CMP polishing pad.
  • the ash content of the hollow microballoons of the present invention is not particularly limited, it is preferably 0.5 parts by mass or less per 100 parts by mass of the hollow microballoons in the method described in the examples below. , more preferably 0.3 parts by mass or less, more preferably 0.1 parts by mass or less, and most preferably not measured. Within this range, it is possible to reduce wafer defects when used as a CMP polishing pad.
  • the CMP polishing pad of the present invention comprises the hollow microballoons described above.
  • the CMP polishing pad is preferably a resin containing the hollow microballoons described above.
  • the resin containing the hollow microballoons can provide a polishing pad for CMP exhibiting excellent durability and excellent polishing properties.
  • a polishing pad for CMP having pores on the polishing surface can be provided.
  • the resin is not particularly limited, urethane resin is particularly preferable in the present invention.
  • the urethane resin containing the hollow microballoons to be used may be prepared by a known method without particular limitation. , a method of uniformly mixing and dispersing a compound having an active hydrogen group capable of polymerizing with an isocyanate group and the hollow microballoons of the present invention, followed by curing.
  • the compound having an isocyanate group is not particularly limited, but for example, the component (B1) described above can be used.
  • the urethane prepolymer (B12) is preferable from the viewpoint of improving the polishing properties of the polishing pad for CMP.
  • the compound having an active hydrogen group having an active hydrogen capable of polymerizing with an isocyanate group is not particularly limited. It is preferable to include one or more selected from. Among them, the compound having an active hydrogen group capable of polymerizing with an isocyanate group preferably contains at least the component (A) from the viewpoint of improving the polishing properties of the CMP polishing pad. It is more preferable to use the component (B3) in combination.
  • the curing method is also not particularly limited, and a known method may be adopted. Specifically, a dry method such as a one-pot method or a prepolymer method, a wet method using a solvent, or the like can be used. Among them, the dry method is preferably employed.
  • the blending amount of the hollow microballoons of the present invention in the urethane resin is the compound having an isocyanate group and the active hydrogen group having an active hydrogen capable of polymerizing with the isocyanate group.
  • the hollow microballoon of the present invention is preferably 0.1 to 20 parts by mass, more preferably 0.2 to 10 parts by mass, and 0.5 to 8 parts by mass per 100 parts by mass of the total compound having It is more preferable that By setting the content within this range, it is possible to exhibit excellent polishing properties.
  • the inclusion of (A) the cyclic polyfunctional monomer of the present invention as a compound having an active hydrogen group capable of polymerizing with the isocyanate group further improves polishing properties. is suitable.
  • the mode of the CMP polishing pad is not particularly limited, and for example, a groove structure may be formed on its surface.
  • the groove structure of the CMP polishing pad preferably has a shape that retains and renews the slurry. Holes, polygonal prisms, cylinders, spiral grooves, eccentric circular grooves, radial grooves, and combinations of these grooves.
  • the method for producing the groove structure of the polishing pad for CMP is not particularly limited.
  • a method of mechanical cutting using a jig such as, a method of manufacturing by pressing a resin with a press plate having a predetermined surface shape, a method of manufacturing using photolithography, a method of manufacturing using a printing method, carbonic acid
  • a manufacturing method using a laser beam such as a gas laser can be used.
  • dimethylformamide was used as a developing solution, and the measurement was performed under conditions of a flow rate of 1 ml/min and a temperature of 40°C.
  • the weight average molecular weight was determined by comparative conversion.
  • a differential refractometer was used as a detector.
  • A The amount of residual tin in the cyclic polyfunctional monomer is measured using an ICP emission spectrometer (i CAP 6500 DUO manufactured by Thermo Fisher Scientific Co., Ltd.) using a mixture of methyl isobutyl ketone and isopropyl alcohol as a solvent. did.
  • Weight average molecular weight Mw (GPC): 4800 Dispersion degree (GPC): 1.05 Modification degree of side chain: 0.43 (43% when displayed in %)
  • Number of side chains introduced into the cyclic molecule 9 Type of polymerizable functional group introduced at the end of the side chain: hydroxyl group
  • Molecular weight of side chain about 560 in terms of number average molecular weight Viscosity at 60°C: 3,800 mPa s Residual tin content: 300 ppm
  • Pre-1 A terminal isocyanate urethane prepolymer with an iso(thio)cyanate equivalent of 905 (method for producing Pre-1)
  • 2,4-tolylene diisocyanate 50 g
  • polyoxytetramethylene glycol number average molecular weight: 1,000
  • 90 g polyoxytetramethylene glycol
  • diethylene glycol 12 g
  • a reaction was carried out at 80° C. for 6 hours to obtain a terminal isocyanate urethane prepolymer (Pre-1) having an isocyanate equivalent of 905.
  • B3 component polyfunctional amino compound EDA; ethylenediamine (B5) component; melamine formaldehyde prepolymer compound Nikaresin S-260 (manufactured by Nippon Carbide Industry Co., Ltd.) (organic solvent) Tol; toluene (emulsifier) PVA: Fully saponified polyvinyl alcohol with an average degree of polymerization of about 500
  • Component (a) was prepared by dissolving 0.11 parts by mass of A-1 as component (A) and 1 part by mass of Pre-1 as component (B1) in 15 parts by mass of toluene. Next, 10 parts by mass of PVA was dissolved in 150 parts by mass of water to prepare component (b). Next, the prepared components (a) and (b) were mixed and stirred at 2,000 rpm for 10 minutes at 25°C using a high-speed shearing disperser to prepare an O/W emulsion. An aqueous solution prepared by dissolving 0.04 parts by mass of ethylenediamine in 30 parts by mass of water was added dropwise to the prepared O/W emulsion at 25°C.
  • microballoon dispersion liquid was filtered to take out the microballoons, vacuum-dried at a temperature of 60° C. for 24 hours, and then sieved by a classifier to obtain hollow microballoons 1 .
  • the microballoon dispersion was filtered, no ethylenediamine was detected in the filtrate.
  • Component (A) was 9.6 parts by mass with respect to a total of 100 parts by mass of components (A) and (B) in Hollow Microballoon 1 obtained.
  • the hollow microballoon 1 had an average particle diameter of about 30 ⁇ m and a bulk density of 0.1 g/cm 3 . Ash content was not measured.
  • Example 1 A hollow microballoon 2 was produced in the same manner as in Example 1 except that the component (A) was not used and the amount of ethylenediamine was changed to 0.05 parts by mass.
  • the ratio of component (A) to a total of 100 parts by mass of components (A) and (B) in the obtained hollow microballoons 2 was 0 parts by mass.
  • the hollow microballoons 2 had an average particle diameter of about 25 ⁇ m and a bulk density of 0.1 g/cm 3 . Ash content was not measured.
  • Example 2> Manufacturing method of polishing pad for CMP using hollow microballoons
  • A-1 12 parts by mass produced above and 4,4′-methylenebis(o-chloroaniline) (MOCA): 5.5 parts by mass were mixed at 120° C. to form a uniform solution, and then sufficiently desorbed.
  • a solution was prepared. Separately, 1:3.3 parts by mass of the hollow microballoons obtained in Example 1 was added to 82.5 parts by mass of Pre-1 produced above and heated to 70° C., and the mixture was stirred with a rotation-revolution stirrer. A homogeneous solution was obtained. Liquid A adjusted to 100° C.
  • the composition was injected into a mold and cured at 100° C. for 15 hours to obtain a urethane resin containing hollow microballoons.
  • the obtained urethane resin was sliced to obtain a polishing pad for CMP made of urethane resin and having a thickness of 1 mm as shown below.
  • the density of the CMP polishing pad made of the urethane resin obtained above is 0.80 g/cm 3 , the polishing rate is 5.1 ⁇ m/hr, and the surface roughness of the wafer to be polished after polishing is 0.14 nm.
  • the Taber abrasion amount in the Taber abrasion test conducted to evaluate the abrasion resistance of the CMP polishing pad was 14 mg. Each evaluation method is shown below.
  • Polishing rate Polishing conditions are shown below. Ten wafers were used. The polishing rate was measured when polishing was performed under the following conditions. The polishing rate is the average value of 10 wafers. Polishing pad for CMP: 500 mm diameter, 1 mm thick pad with concentric grooves formed on the surface Object to be polished: 2-inch sapphire wafer Slurry: FUJIMI Compol 80 undiluted solution Pressure: 4 psi Rotation speed: 45rpm Time: 1 hour
  • Abrasion resistance The amount of abrasion was measured with a 5130-type apparatus manufactured by Taber. The Taber abrasion test was carried out twice on the same sample at the same location with a load of 1 kg, a rotational speed of 60 rpm, a rotational speed of 1000 rpm, and an abrasion wheel of H-18, and the average value was evaluated.
  • Example 3 A CMP polishing pad made of a urethane resin was produced in the same manner as in Example 2 except that the composition shown in Table 1 was used, and was evaluated. The results are listed in Table 1.
  • the CMP polishing pad using the hollow microballoons containing the (A) cyclic polyfunctional monomer of the present invention has an excellent polishing rate and smoothes the wafer to be polished. Polishing characteristics such as polishing are improved. Moreover, the handleability was good when producing the hollow microballoons of the present invention.
  • the resin composition of the CMP polishing pad matrix also contains (A) the cyclic polyfunctional monomer component. Even if the component (A) is not used as the resin composition of the pad matrix, the use of the hollow microballoons of the present invention can improve the polishing properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

本発明の中空マイクロバルーンは、末端に重合性官能基が導入された側鎖が少なくとも3個以上導入されている側鎖含有環状分子と、前記末端に重合性官能基が導入された側鎖が少なくとも3個以上導入されている側鎖含有環状分子以外の重合性モノマーとを含む重合性組成物を重合させた樹脂からなる。 本発明によれば、CMP用研磨パッドに用いることで、研磨特性のみならず、優れた耐久性を付与できる中空マイクロバルーンを提供することができる。

Description

中空マイクロバルーン
 本発明は、中空マイクロバルーンに関する。
 マイクロバルーンは、従来から、スキンケア成分、香料成分、染料成分、鎮痛成分、消臭成分、抗酸化成分、殺菌成分、蓄熱成分などを内包したマイクロバルーン、または、マイクロバルーン内部が中空である中空マイクロバルーンとして、農薬、医薬、香料、液晶、接着剤、電子材料部品、建築材料などの多くの分野において使用されている。
 特に近年、ウエハ研磨に用いられるポリウレタン(ウレア)製CMP(Chemical Mechanical Polishing)用研磨パッドに、細孔を設ける目的で、中空マイクロバルーンが検討されている。
 従来、CMP用研磨パッドに用いられる中空マイクロバルーンとして、ポリウレタン(ウレア)への分散性向上のため、中空マイクロバルーンの表面に無機粒子をまぶした塩化ビニリデン樹脂等のマイクロバルーンが知られていたが、該無機粒子がウエハへのディフェクトの要因となる可能性があった。
 そのため、本発明者等は、高弾性、且つ、ポリウレタン(ウレア)樹脂との相容性が良好なポリウレタン(ウレア)樹脂膜で形成された中空マイクロバルーンを、CMP用研磨パッド中に用いることにより、優れた研磨特性を有するCMP用研磨パッドを提案している(特許文献1参照)。
 しかし、近年の半導体配線の微細化により、さらに高性能なCMP用研磨パッドが求められており、中空マイクロバルーンの耐久性や樹脂物性にもさらなる改良が求められている。
 一方、CMP用研磨パッド用途以外の用途においても、マイクロバルーンとしての樹脂物性、たとえば耐久性の向上が求められており、特許文献2には、蓄熱材量を内包したポリウレタン(ウレア)マイクロバルーンにおいて、ポリウレタン(ウレア)にポリロタキサンを含有させることによって耐久性を向上させ、蓄熱材料の漏洩を防ぐ技術が開示されている。
国際公開第2019/198675号 国際公開第2013/176050号
 しかしながら、本発明者らが検討した結果、特許文献2に記載の方法では、蓄熱材量を内包したマイクロバルーンの場合、効果があるが、中空マイクロバルーンに適用した場合、満足する耐久性を得ることができないことが判明した。また、ポリロタキサンはその特異的な構造上、高分子量になりやすく、ハンドリング性が悪く、中空マイクロバルーンに適用する場合、製造に制限がある等の改善の余地があった。
 したがって、本発明の目的は、研磨特性のみならず、優れた耐久性を付与できるハンドリング性がよい中空マイクロバルーンの提供にある。
 本発明者等は、上記課題を解決するために鋭意検討した結果、末端に重合性官能基が導入された側鎖が少なくとも3個以上導入されている側鎖含有環状分子と、末端に重合性官能基が導入された側鎖が少なくとも3個以上導入されている側鎖含有環状分子以外の重合性モノマーとを含む重合性組成物を重合させた樹脂からなる中空マイクロバルーンを用いることにより、上記課題を解決することを見出し、本発明を完成するに至った。
 すなわち、本発明は、末端に重合性官能基が導入された側鎖が少なくとも3個以上導入されている側鎖含有環状分と、前記末端に重合性官能基が導入された側鎖が少なくとも3個以上導入されている側鎖含有環状分子以外の重合性モノマーとを含む重合性組成物を重合させた樹脂からなる中空マイクロバルーンである。
 また、本発明は、該中空マイクロバルーンを含んでなるCMP用研磨パッドも提供するものである。
 本発明は、以下の[1]~[7]に関する。
[1](A)末端に重合性官能基が導入された側鎖が少なくとも3個以上導入されている側鎖含有環状分子と、(B)前記(A)末端に重合性官能基が導入された側鎖が少なくとも3個以上導入されている側鎖含有環状分子以外の重合性モノマーとを含む重合性組成物を重合させた樹脂からなる中空マイクロバルーン。
[2]前記重合性組成物に含まれる(A)末端に重合性官能基が導入された側鎖が少なくとも3個以上導入されている側鎖含有環状分子の含有量が、(A)末端に重合性官能基が導入された側鎖が少なくとも3個以上導入されている側鎖含有環状分子の含有量と(B)前記(A)末端に重合性官能基が導入された側鎖が少なくとも3個以上導入されている側鎖含有環状分子以外の重合性モノマーの合計100質量部に対し、1~50質量部である上記[1]に記載の中空マイクロバルーン。
[3]前記樹脂が、ウレタン(ウレア)樹脂、メラミン樹脂、尿素樹脂、またはアミド樹脂である上記[1]または[2]に記載の中空マイクロバルーン。
[4]前記(A)末端に重合性官能基が導入された側鎖が少なくとも3個以上導入されている側鎖含有環状分子の重合性官能基が、水酸基またはアミノ基である上記[1]~[3]のいずれか1項に記載の中空マイクロバルーン。
[5]前記(A)末端に重合性官能基が導入された側鎖が少なくとも3個以上導入されている側鎖含有環状分子の環状分子がシクロデキストリンである上記[1]~[4]のいずれか1項に記載の中空マイクロバルーン。
[6]前記(A)末端に重合性官能基が導入された側鎖が少なくとも3個以上導入されている側鎖含有環状分子の60℃での粘度が500mPa・s~50,000mPa・sである上記[1]~[5]のいずれか1項に記載の中空マイクロバルーン。
[7]上記[1]~[6]のいずれか1項に記載の中空マイクロバルーンを含んでなるCMP用研磨パッド。
 本発明の中空マイクロバルーンは、末端に重合性官能基が導入された側鎖が少なくとも3個以上導入されている側鎖含有環状分を含有する重合性組成物を重合させた樹脂からなることが特徴である。そうすることで、中空マイクロバルーンの製造時のハンドリング性がよく、かつ中空マイクロバルーンに優れた耐久性を付与することが可能とある。
 また、このような中空マイクロバルーンを含んだCMP用研磨パッドにより、優れた研磨特性を発現することが可能である。たとえば高い研磨レートやウエハへの生じるディフェクトを低減することが可能となる。
 本発明者らは、末端に重合性官能基が導入された側鎖が少なくとも3個以上導入されている側鎖含有環状分子を樹脂の一構成成分として用いることで、樹脂に対して高耐久性等の優れた機械特性と変形に対する優れた弾性回復性能が付与できることを見出している。
 そこで、末端に重合性官能基が導入された側鎖が少なくとも3個以上導入されている側鎖含有環状分子を、中空マイクロバルーンを含む樹脂の一構成成分とするのではなく、中空マイクロバルーンを構成する一構成成分とすることにより、中空マイクロバルーンに前記した応力分散性能や弾性回復性能が付与され、優れた耐久性を有する中空マイクロバルーンとすることができることを見出した。また、このような中空マイクロバルーンをCMP用研磨パッドに応用することで、前記した中空マイクロバルーンが有する応力分散性能や弾性回復性能により、CMP用研磨パッドの研磨面に細孔を形成する役割のみならず、CMP用研磨パッドが耐久性を有し、優れた研磨特性のみならず、優れた耐摩耗性を発現させることが可能となる。さらには、この特性により、研磨の際に排出される中空マイクロバルーンの研磨かすによって生じるウエハへのディフェクトも低減させることが可能となる。
 さらに、本発明の中空マイクロバルーンは、CMP用研磨パッド用途以外にも、感熱記録材料、農薬、医薬、香料、液晶、接着剤、電子材料部品、建築材料などの多くの分野において利用が可能である。
 本発明の中空マイクロバルーンは、(A)末端に重合性官能基が導入された側鎖が少なくとも3個以上導入されている側鎖含有環状分子(以下、「(A)環状多官能モノマー」、または「(A)成分」ともいう。)と、(B)前記(A)環状多官能モノマー以外の重合性モノマー(以下、「(B)重合性モノマー」、または「(B)成分」ともいう。)とを含む重合性組成物を重合させた樹脂からなる中空マイクロバルーンである。
 なお中空マイクロバルーンとは、内部に空洞を有する粒子であり、中空部と外殻部とで構成されている。上記重合性組成物を重合させた樹脂は、中空マイクロバルーンの外殻部を形成するものである。
 まず、(A)環状多官能モノマーについて説明する。
<(A)環状多官能モノマー>
 まず、(A)環状多官能モノマーに用いられる環状分子について説明する。該環状分子としては、末端に重合性官能基が導入された側鎖が導入できる環状分子であれば特に制限されない。たとえば、このような環状分子としては、シクロデキストリン、クラウンエーテル、ベンゾクラウン、ジベンゾクラウン、ジシクロヘキサノクラウン、シクロビス(パラクアット-1,4-フェニレン)、ジメトキシピラーアレーン、カリックスレゾルシンアレーン、カリックスアレーン及びフェナントロリンを挙げることができ、中でもシクロデキストリン、カリックスレゾルシンアレーン、が好ましく、最も好ましいのはシクロデキストリンである。
 前記シクロデキストリンには、α体(環内径0.45~0.6nm)、β体(環内径0.6~0.8nm)、γ体(環内径0.8~0.95nm)がある。また、本発明において、これらの混合物を使用してもよい。中でも本発明においては、特にα-シクロデキストリン、及びβ-シクロデキストリンが好ましく、コスト面と物性から最も好ましいのはβ-シクロデキストリンである。
 該カリックスレゾルシンアレーンは、レゾルシノールと様々なアルデヒドを環状縮合反応させることで得られる環状分子である。前記レゾルシノールとしては、レゾルシノールだけに限定されず、たとえば2-ニトロレゾルシノール等のレゾルシノール誘導体をもちいてもよい。前記アルデヒドとしては、公知のアルデヒドが何ら制限なく使用でき、例えば、n-ブタナール、イソブタナール、ヘプタナール等の脂肪族アルデヒド、ベンズアルデヒド、バニリン、4-ニトロベンズアルデヒド等の芳香族アルデヒドが挙げられ、これらを2種以上混合して用いてもよい。中でもヘプタナール、ベンズアルデヒド、バニリンが好適に用いられる。また、本発明において、前記カリックスレゾルシンアレーンは、4量体であることが好ましいが、これに限定されるものではない。
 次に、環状分子が有する末端に重合性官能基が導入された側鎖について説明する。本発明における(A)環状多官能モノマーに用いられる環状分子は、末端に重合性官能基が導入された側鎖が少なくとも3個以上導入されている。
 側鎖の末端に導入された重合性官能基は、後述する(B)重合性モノマーと重合しうる基であれば特に限定されないが、好ましくは水酸基又はアミノ基である。
 前記末端に重合性官能基が導入された側鎖は、たとえば環状分子が有する反応性官能基を利用し、この反応性官能基を修飾することによって導入することができる(すなわち、側鎖は、該反応性官能基に反応させて導入される)。
 該反応性官能基としては、たとえば、水酸基、アミノ基などが挙げられ、中でも水酸基が好ましい。たとえば、β-シクロデキストリンは、反応性官能基として21個のOH基(水酸基)を有しており、このOH基に反応させて側鎖が導入される。そのため、1つのβ-シクロデキストリンに対しては最大で21個の側鎖を導入できることとなる。本発明においては、前述した側鎖の機能を十分に発揮させるためには、少なくとも、該末端に重合性官能基が導入された側鎖は3個以上導入されている必要がある。好ましくは、該末端に重合性官能基が導入された側鎖が5個以上導入されている環状分子であり、より好ましくは該末端に重合性官能基が導入された側鎖が7個以上導入されている環状分子であり、もっとも好ましくは該末端に重合性官能基が導入された側鎖が8個以上導入されている環状分子である。上限は特に限定されないが、導入数が多すぎると環状多官能モノマーの粘度が高くなりハンドリング性が低下する恐れがある。その為、8個~18個の範囲で側鎖が導入されていることが特に好ましい。
 上記の側鎖としては、特に制限されるものではないが、炭素数が3~20の範囲にある有機鎖の繰り返しにより形成されていることが好適である。このような側鎖の数平均分子量は、たとえば300以上であることが好ましい。より詳細には、このような側鎖の数平均分子量は、300~10000、好ましくは350~5000、最も好ましくは、400~5000の範囲であり、最も好ましいのは400~1500の範囲である。この範囲にあることで得られる中空マイクロバルーン及び該中空マイクロバルーンを含むCMP用研磨パッドの硬度や物性を調整し易くなる。この側鎖の数平均分子量は、側鎖の導入時に使用する量により調整ができ、計算により求めることができ、H-NMRの測定からも求めることができる。
 前記側鎖の数平均分子量の下限を上記のとおりにすることにより、優れた力学特性が発現し、(A)成分を本発明の中空マイクロバルーンを構成する一構成成分に用いる際、優れた耐摩耗性、機械特性を発現することが可能となり、CMP用研磨パッドに応用すれば、優れた研磨レートとウエハへの耐スクラッチ性能が向上する。さらに、(B)重合性モノマーとの相溶性も向上する傾向にある。一方、側鎖の数平均分子量の上限を上記のとおりにすることにより、耐摩耗性も低下しない傾向にある。
 また、前記(A)環状多官能モノマーは、ある粘度範囲を持つことが好ましい。そうすることで、優れたハンドリング性を有することが可能である。好ましい粘度範囲としては、60℃での粘度が500mPa・s~50,000mPa・sであり、さらに好ましいくは、500mPa・s~10,000mPa・sであり、最も好ましいのは1000mPa・s~6,000mPa・sである。これらは、たとえば回転粘度計で求めることができる。
 さらに、(A)環状多官能モノマーの分子量は、大きすぎると、他の成分、たとえば、(B)重合性モノマー等と混合した際に、扱いが困難となるばかりか、相溶性が悪くなる傾向がある。このような観点から(A)環状多官能モノマーの重量平均分子量Mwは、1,500~100,000であり、特に2,000~30,000、特に好ましくは2,500~10,000の範囲にあり、最も好ましいのは3,000~8,000の範囲にあることが好適である。また、安定した物性を発揮するためには、分散度(重量平均分子量/数平均分子量)は1.2以下であることが好ましい。なお、この重量平均分子量Mwと分散度は、後述する実施例で記載したGPC測定方法で測定した値である。また、上記したとおり、(A)環状多官能モノマーの分子量は大きすぎると、取り扱い性や相溶性が悪くなる傾向があるため、(A)環状多官能モノマーは、他の分子と複合体を形成していないことが好ましい。
 本発明において、上記のような側鎖は、直鎖状であってもよいし、分枝状であってもよい。側鎖の導入については、国際公開第2015/159875号に開示されている手法や化合物を適宜導入することが可能であり、たとえば、開環重合;ラジカル重合;カチオン重合;アニオン重合;原子移動ラジカル重合、RAFT重合、NMP重合などのリビングラジカル重合などが利用できる。上記手法により、適宜選択された化合物を前記環状分子が有する反応性官能基に反応させることによって適宜の大きさの側鎖を導入することができる。
 たとえば、開環重合では、環状エーテル、環状シロキサン、環状ラクトン、環状ラクタム、環状アセタール、環状アミン、環状カーボネート、環状イミノエーテル、環状チオカーボネート等の環状化合物に由来する側鎖を導入することができる。
 該環状化合物の中でも、反応性が高く、さらには分子量の調整が容易であるという観点から、環状エーテル、環状ラクトン、環状ラクタムを用いることが好ましい。
 環状ラクトンや環状エーテル等の環状化合物を開環重合して導入した側鎖は、該側鎖の末端に水酸基が導入されることとなり、環状ラクタムを開環重合して導入した側鎖は、該側鎖の末端にアミノ基が導入されることとなる。
 以下、好適に用いられる環状エーテル、環状ラクトン、環状ラクタム、および環状カーボネートを例示する。
 環状エーテル;
 エチレンオキシド、1,2-プロピレンオキシド、エピクロロヒドリン、エピブロモヒドリン、1,2-ブチレンオキシド、2,3-ブチレンオキシド、イソブチレンオキシド、オキセタン、3-メチルオキセタン、3,3-ジメチルオキセタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、3-メチルテトラヒドロフラン等
 環状ラクトン;
4員環ラクトン;β-プロピオラクトン、β-メチルプロピオラクトン、L-セリン-β-ラクトン等
5員環ラクトン;γ-ブチロラクトン、γ-ヘキサノラクトン、γ-ヘプタノラクトン、γ-オクタノラクトン、γ-デカノラクトン、γ-ドデカノラクトン、α-ヘキシル-γ-ブチロラクトン、α-ヘプチル-γ-ブチロラクトン、α-ヒドロキシ-γ-ブチロラクトン、γ-メチル-γ-デカノラクトン、α-メチレン-γ-ブチロラクトン、α,α-ジメチル-γ-ブチロラクトン、D-エリスロノラクトン、α-メチル-γ-ブチロラクトン、γ-ノナノラクトン、DL-パントラクトン、γ-フェニル-γ-ブチロラクトン、γ-ウンデカノラクトン、γ-バレロラクトン、2,2-ペンタメチレン-1,3-ジオキソラン-4-オン、α-ブロモ-γ-ブチロラクトン、γ-クロトノラクトン、α-メチレン-γ-ブチロラクトン、α-メタクリロイルオキシ-γ-ブチロラクトン、β-メタクリロイルオキシ-γ-ブチロラクトン等
6員環ラクトン;δ-バレロラクトン、δ-ヘキサノラクトン、δ-オクタノラクトン、δ-ノナノラクトン、δ-デカノラクトン、δ-ウンデカノラクトン、δ-ドデカノラクトン、δ-トリデカノラクトン、δ-テトラデカノラクトン、DL-メバロノラクトン、4-ヒドロキシ-1-シクロヘキサンカルボン酸δ-ラクトン、モノメチル-δ-バレロラクトン、モノエチル-δ-バレロラクトン、モノヘキシル-δ-バレロラクトン、1,4-ジオキサン-2-オン、1,5-ジオキセパン-2-オン等
7員環ラクトン;ε-カプロラクトン、モノメチル-ε-カプロラクトン、モノエチル-ε-カプロラクトン、モノヘキシル-ε-カプロラクトン、ジメチル-ε-カプロラクトン、ジ-n-プロピル-ε-カプロラクトン、ジ-n-ヘキシル-ε-カプロラクトン、トリメチル-ε-カプロラクトン、トリエチル-ε-カプロラクトン、トリ-n-ε-カプロラクトン、ε-カプロラクトン、5-ノニル-オキセパン-2-オン、4,4,6-トリメチル-オキセパン-2-オン、4,6,6-トリメチル-オキセパン-2-オン、5-ヒドロキシメチル-オキセパン-2-オン等
8員環ラクトン;ζ-エナントラクトン等
その他のラクトン;ラクトン、ラクチド、ジラクチド、テトラメチルグリコシド、1,5-ジオキセパン-2-オン、t-ブチルカプロラクトン等
 環状ラクタム;
4員環ラクタム;4-ベンゾイルオキシ-2-アゼチジノン等
5員環ラクタム;γ-ブチロラクタム、2-アザビシクロ(2,2,1)ヘプタ-5-エン-3-オン、5-メチル-2-ピロリドン等
6員環ラクタム;2-ピペリドン-3-カルボン酸エチル等
7員環ラクタム;ε-カプロラクタム、DL-α-アミノ-ε-カプロラクタム等
8員環ラクタム;ω-ヘプタラクタム等
 環状カーボネート;
 エチレンカーボネート、炭酸プロピレン、炭酸1,2-ブチレングリセロール1,2-カルボナート、4-(メトキシメチル)-1,3-ジオキソラン-2-オン、(クロロメチル)エチレンカーボネート、炭酸ビニレン、4,5-ジメチル-1,3-ジオキソール-2-オン、4-クロロメチル-5-メチル-1,3-ジオキソール-2-オン、4-ビニル-1,3-ジオキソラン-2-オン、4,5-ジフェニル-1,3-ジオキソラン-2-オン、4,4-ジメチル-5-メチレン-1,3-ジオキソラン-2-オン、1,3-ジオキサン-2-オン、5-メチル-5-プロピル-1,3-ジオキソラン-2-オン、5,5-ジエチル-1,3-ジオキソラン-2-オン
 上記環状化合物は、単独で使用することも、2種以上を併用して使用することもできる。
 本発明において、好適に使用される環状化合物は、環状ラクトンまたは環状ラクタムであり、特に好適な環状ラクトンはε-カプロラクトン、α-アセチル-γ-ブチロラクトン、α-メチル-γ-ブチロラクトン、γ-バレロラクトン、γ-ブチロラクトン等の環状ラクトンであり、特に好適な環状ラクタムはε-カプロラクタム、γ-ブチロラクタム、DL-α-アミノ-ε-カプロラクタムであり、さらにもっとも好ましいのはε-カプロラクトン、ε-カプロラクタムである。
 また、開環重合により環状化合物を反応させて側鎖を導入する場合、環状分子の反応性官能基(たとえば水酸基)が反応性に乏しく、特に立体障害などにより大きな分子を直接反応させることが困難な場合がある。このような場合には、たとえば、前記したカプロラクトンなどの環状化合物を反応させるために、一旦、プロピレンオキシドなどの低分子化合物を環状分子の反応性官能基と反応させてヒドロキシプロピル化等の反応を行ない、事前に反応性に富んだ官能基を導入する方法が好適である。その後、前記した環状化合物を用いた開環重合により、側鎖を導入するという手段を採用することができる。この場合、ヒドロキシプロピル化した部分も側鎖と見なすことができる。
 さらに上述した開環重合には公知の触媒が何ら制限なく利用できる。たとえば、テトラメチルチタネート、テトラエチルチタネート、テトラプロピルチタネート、テトラブチルチタネート等の有機チタン化合物、2-エチルヘキサ酸スズ、ジブチルスズジラウレート、オクチル酸スズ、ジブチルスズオキサイド、ジブチルスズアセテート等の有機スズ化合物、塩化第一スズ、臭化第一スズ、ヨウ化第一スズ等のハロゲン化第一スズ化合物、さらに種々の金属のアセチルアセトナート化合物、有機カルボン酸金属塩等が使用できる。なお、上述した触媒が側鎖導入後にある量が残存していると、(B)重合性モノマーと反応する際に触媒として作用してしまい、重合が早すぎて重合不良になるおそれがある。そのため、残存する触媒量は、触媒に利用した種々の金属が(A)環状多官能モノマーに対して5000ppm以下とすることが好ましい。より好ましくは1000ppm以下であることがより好ましく、最も好ましいのは600ppm以下である。残存触媒量のうち、残存スズ量に関しては、後述する実施例で記載したICP発光で測定することができる。
 さらに、側鎖導入のために用いる化合物が有している官能基の種類によっては、この側鎖の一部が、他の環状分子の環の官能基に結合し、架橋構造を形成する場合もある。
 本発明において、最も好適に使用される(A)環状多官能モノマーは、環状分子がβ-シクロデキストリンであり、側鎖がε-カプロラクトンの開環重合により導入されているものが好ましい。
 そして、導入された側鎖の末端の重合性官能基を、他の重合性官能基(たとえば、水酸基をアミノ基に)とすることもできるし、水酸基および/またはアミノ基のモル数を所望のものとするため、非反応性の基にすることもできる。
 本発明において(A)環状多官能モノマーは、上記したように使用する環状分子や側鎖により、(A)環状多官能モノマーの水相や油相への親和性が変化する。
 本発明において、(A)環状多官能モノマーが親水性とは、少なくとも部分的に水中で溶解性があり、油相よりも水相で高い親和性を有している場合であり、(A)環状多官能モノマーが親油性とは、少なくとも部分的に有機溶媒への溶解性があり、水相よりも油相で高い親和性を有している場合である。たとえば、(A)成分の室温(25℃)での水への溶解性が、少なくとも20g/l以上の溶解性を有する場合、(A)成分は親水性であり、水に相溶しない有機溶媒溶液(例えば、トルエン)への溶解性が20g/l以上の溶解性を有する場合、(A)成分は親油性である。その中でも、優れた効果を発揮する為には、(A)環状多官能モノマーが親油性であるものを用いることが好ましい。
<(B)重合性モノマー>
 (B)重合性モノマーとしては、(A)成分の重合性官能基と重合し得るものであれば、特に制限されないが、中でも(B1)少なくとも2個のイソシアネート基を有する多官能イソシアネート化合物(以下、(B1)多官能イソシアネート化合物、または(B1)成分ともいう。)、(B2)少なくとも2個の水酸基を有するポリオール化合物(以下、(B2)ポリオール化合物、または(B2)成分ともいう。)、(B3)少なくとも2個のアミノ基を有する多官能アミン化合物(以下、(B3)多官能アミン化合物、または(B3)成分ともいう。)、(B4)少なくとも水酸基とアミノ基を両方有する化合物(以下、(B4)成分ともいう。)、(B5)メラミンホルムアルデヒドプレポリマー化合物(以下、(B5)成分ともいう。)、(B6)尿素ホルムアルデヒドプレポリマー化合物(以下、(B6)成分ともいう。)、および(B7)少なくとも2個のカルボキシル基を有する多官能カルボン酸化合物(以下、(B7)多官能カルボン酸化合物、または(B7)成分ともいう。)からなる群から選択される少なくとも1種以上が好適である。
 本発明の中空マイクロバルーンは上記した(A)環状多官能モノマーと(B)重合性モノマーとを含む重合性組成物を重合させた樹脂からなる中空マイクロバルーンであり、(A)成分と(B)成分を選択することにより、中空マイクロバルーンの樹脂の種類を選択できる。その中でも、本発明の中空マイクロバルーンの樹脂として、好ましくはウレタン(ウレア)樹脂、メラミン樹脂、尿素樹脂、またはアミド樹脂、および、これらの2つ以上の共重合樹脂からなる群より選択される少なくとも1種の樹脂であることが好ましい。これらの樹脂からなる中空マイクロバルーンとすることにより、中空マイクロバルーン自体の優れた特性のみならず、該中空マイクロバルーンを含むCMP用研磨パッドにした際に優れた研磨特性を発現できる。
 本発明において、該ウレタン(ウレア)樹脂とは、イソシアネート基と水酸基および/またはアミノ基との反応により得られ、主鎖にウレタン結合を有する樹脂、主鎖にウレア結合を有する樹脂、または主鎖にウレタン結合とウレア結合の両方を有する樹脂であり、該メラミン樹脂とは、主鎖がメラミンを含む多官能アミンとホルムアルデヒドとの重縮合によって得られる樹脂であり、該尿素樹脂とは、主鎖が尿素(さらに多官能アミンも含む)とホルムアルデヒドとの重縮合によって得られる樹脂であり、該アミド樹脂とは、主鎖にアミド結合を有する樹脂である。
 その中でも本発明の中空マイクロバルーンを構成する樹脂で最も好ましいのはウレタン(ウレア)樹脂、メラミン樹脂であり、最も好ましいのはウレタン(ウレア)樹脂である。
 (A)環状多官能モノマーおよび(B)重合性モノマーの組み合わせは、たとえば、中空マイクロバルーンがウレタン(ウレア)樹脂からなる場合、(A)環状多官能モノマーの重合性官能基は、水酸基および/またはアミノ基であり、(B)重合性モノマーは、(B1)多官能イソシアネート化合物を必須として含み、それ以外に、(B2)少なくとも2個の水酸基を有するポリオール化合物、(B3)少なくとも2個のアミノ基を有する多官能アミン有化合物、または(B4)少なくとも水酸基とアミノ基を両方有する化合物を含んでもよい。
 中空マイクロバルーンがメラミン樹脂からなる場合、(A)環状多官能モノマーの重合性官能基は、アミノ基、(B)重合性モノマーは、(B5)メラミンホルムアルデヒドプレポリマー化合物が選択される。
 中空マイクロバルーンが尿素樹脂からなる場合、(A)環状多官能モノマーの重合性官能基は、アミノ基、(B)重合性モノマーは、(B6)尿素ホルムアルデヒドプレポリマー化合物が選択される。
 中空マイクロバルーンがアミド樹脂からなる場合、(A)環状多官能モノマーの重合性官能基は、アミノ基、(B)重合性モノマーは、(B7)少なくとも2個のカルボキシル基を有する多官能カルボン酸を必須として含み、それ以外に(B3)少なくとも2個のアミノ基を有する多官能アミン化合物を含んでもよい。
 以下に、(B)重合性モノマーの具体例を述べる。
<(B1)少なくとも2個のイソシアネート基を有する多官能イソシアネート化合物>
 本発明に用いられる(B1)多官能イソシアネート化合物は、少なくとも2個のイソシアネート基を有する多官能イソシアネート化合物であれば、何ら制限なく使用できる。中でも、イソシアネート基を分子内に、2~6個有する化合物が好ましく、2~3個有する化合物がより好ましい。
 また、前記(B1)成分は、後述する2官能イソシアネート化合物と2官能のポリオール化合物又は2官能アミン化合物との反応により調製される(B12)未反応イソシアネート基を含有するウレタンプレポリマー(以下、(B12)ウレタンプレポリマー、または(B12)成分ともいう)であってもよい。前記(B12)ウレタンプレポリマーとしては、未反応のイソシアネート基を含むものであれば、何ら制限なく使用できる。
 前記(B1)成分としては、大きく分類すれば、脂肪族イソシアネート、脂環族イソシアネート、芳香族イソシアネート、その他のイソシアネート、(B12)ウレタンプレポリマーに分類することができる。また、前記(B1)成分は、1種類の化合物を使用することもできるし、複数種類の化合物を使用することもできる。複数種類の化合物を使用する場合には、基準となる質量は、複数種類の化合物の合計量である。これらイソシアネート化合物を具体的に例示すると以下の化合物が挙げられる。
 (脂肪族イソシアネート)
 エチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、オクタメチレンジイソシアネート、ノナメチレンジイソシアネート、2,2’-ジメチルペンタンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、デカメチレンジイソシアネート、ブテンジイソシアネート、1,3-ブタジエン-1,4-ジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、1,6,11-トリメチルウンデカメチレンジイソシアネート、1,3,6-トリメチルヘキサメチレンジイソシアネート、1,8-ジイソシアネート4-イソシアネートメチルオクタン、2,5,7-トリメチル-1,8-ジイソシアネート5-イソシアネートメチルオクタン、ビス(イソシアネートエチル)カーボネート、ビス(イソシアネートエチル)エーテル、1,4-ブチレングリコールジプロピルエーテル-ω,ω’-ジイソシアネート、リジンジイソシアネートメチルエステル、2,4,4,-トリメチルヘキサメチレンジイソシアネート等の2官能イソシアネートモノマー(ウレタンプレポリマーを構成する2官能ポリイソシアネート化合物に該当する)。
 (脂環族イソシアネート)
 イソホロンジイソシアネート、(ビシクロ[2.2.1]ヘプタン-2,5-ジイル)ビスメチレンジイソシアネート、(ビシクロ[2.2.1]ヘプタン-2,6-ジイル)ビスメチレンジイソシアネート、2β,5α-ビス(イソシアネート)ノルボルナン、2β,5β-ビス(イソシアネート)ノルボルナン、2β,6α-ビス(イソシアネート)ノルボルナン、2β,6β-ビス(イソシアネート)ノルボルナン、2,6-ジ(イソシアネートメチル)フラン、1,3-ビス(イソシアネートメチル)シクロヘキサン、ジシクロヘキシルメタン-4,4’-ジイソシアネート、4,4-イソプロピリデンビス(シクロヘキシルイソシアネート)、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、ジシクロヘキシルジメチルメタンジイソシアネート、2,2’-ジメチルジシクロヘキシルメタンジイソシアネート、ビス(4-イソシアネートn-ブチリデン)ペンタエリスリトール、ダイマー酸ジイソシアネート、2,5-ビス(イソシアネートメチル)-ビシクロ〔2,2,1〕-ヘプタン、2,6-ビス(イソシアネートメチル)-ビシクロ〔2,2,1〕-ヘプタン、3,8-ビス(イソシアネートメチル)トリシクロデカン、3,9-ビス(イソシアネートメチル)トリシクロデカン、4,8-ビス(イソシアネートメチル)トリシクロデカン、4,9-ビス(イソシアネートメチル)トリシクロデカン、1,5-ジイソシアネートデカリン、2,7-ジイソシアネートデカリン、1,4-ジイソシアネートデカリン、2,6-ジイソシアネートデカリン、ビシクロ[4.3.0]ノナン-3,7-ジイソシアネート、ビシクロ[4.3.0]ノナン-4,8-ジイソシアネート、ビシクロ[2.2.1]ヘプタン-2,5-ジイソシアネートとビシクロ[2.2.1]ヘプタン-2,6-ジイソシアネート、ビシクロ[2,2,2]オクタン-2,5-ジイソシアネート、ビシクロ[2,2,2]オクタン-2,6-ジイソシアネート、トリシクロ[5.2.1.02.6]デカン-3,8-ジイソシアネート、トリシクロ[5.2.1.02.6]デカン-4,9-ジイソシアネート等の2官能イソシアネートモノマー(ウレタンプレポリマーを構成する2官能ポリイソシアネート化合物に該当する)、2-イソシアネートメチル-3-(3-イソシアネートプロピル)-5-イソシアネートメチル-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-3-(3-イソシアネートプロピル)-6-イソシアネートメチル-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-2-(3-イソシアネートプロピル)-5-イソシアネートメチル-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-2-(3-イソシアネートプロピル)-6-イソシアネートメチル-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-3-(3-イソシアネートプロピル)-5-(2-イソシアネートエチル)-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-3-(3-イソシアネートプロピル)-6-(2-イソシアネートエチル)-ビシクロ〔2,1,1〕-ヘプタン、2-イソシアネートメチル-2-(3-イソシアネートプロピル)-5-(2-イソシアネートエチル)-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-2-(3-イソシアネートプロピル)-6-(2-イソシアネートエチル)-ビシクロ〔2,2,1〕-ヘプタン、1,3,5-トリス(イソシアネートメチル)シクロヘキサン等の多官能イソシアネートモノマー。
 (芳香族イソシアネート)
 キシリレンジイソシアネート(o-、m-,p-)、テトラクロロ-m-キシリレンジイソシアネート、メチレンジフェニル-4,4’-ジイソシアネート、4-クロル-m-キシリレンジイソシアネート、4,5-ジクロル-m-キシリレンジイソシアネート、2,3,5,6-テトラブロム-p-キシリレンジイソシアネート、4-メチル-m-キシリレンジイソシアネート、4-エチル-m-キシリレンジイソシアネート、ビス(イソシアネートエチル)ベンゼン、ビス(イソシアネートプロピル)ベンゼン、1,3-ビス(α,α-ジメチルイソシアネートメチル)ベンゼン、1,4-ビス(α,α-ジメチルイソシアネートメチル)ベンゼン、α,α,α’,α’-テトラメチルキシリレンジイソシアネート、ビス(イソシアネートブチル)ベンゼン、ビス(イソシアネートメチル)ナフタリン、ビス(イソシアネートメチル)ジフェニルエーテル、ビス(イソシアネートエチル)フタレート、2,6-ジ(イソシアネートメチル)フラン、フェニレンジイソシアネート(o-,m-,p-)、エチルフェニレンジイソシアネート、イソプロピルフェニレンジイソシアネート、ジメチルフェニレンジイソシアネート、ジエチルフェニレンジイソシアネート、ジイソプロピルフェニレンジイソシアネート、トリメチルベンゼントリイソシアネート、ベンゼントリイソシアネート、1,3,5-トリイソシアネートメチルベンゼン、1,5-ナフタレンジイソシアネート、メチルナフタレンジイソシアネート、ビフェニルジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,2’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、3,3’-ジメチルジフェニルメタン-4,4’-ジイソシアネート、ビベンジル-4,4’-ジイソシアネート、ビス(イソシアネートフェニル)エチレン、3,3’-ジメトキシビフェニル-4,4’-ジイソシアネート、フェニルイソシアネートメチルイソシアネート、フェニルイソシアネートエチルイソシアネート、テトラヒドロナフチレンジイソシアネート、ヘキサヒドロベンゼンジイソシアネート、ヘキサヒドロジフェニルメタン-4,4’-ジイソシアネート、ジフェニルエーテルジイソシアネート、エチレングリコ-ルジフェニルエーテルジイソシアネート、1,3-プロピレングリコールジフェニルエーテルジイソシアネート、ベンゾフェノンジイソシアネート、ジエチレングリコ-ルジフェニルエーテルジイソシアネート、ジベンゾフランジイソシアネート、カルバゾールジイソシアネート、エチルカルバゾールジイソシアネート、ジクロロカルバゾールジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート等の2官能イソシアネートモノマー(ウレタンプレポリマーを構成する2官能ポリイソシアネート化合物に該当する)。
 メシチレントリイソシアネート、トリフェニルメタントリイソシアネート、ポリメリックMDI、ナフタリントリイソシアネート、ジフェニルメタン-2,4,4’-トリイソシアネート、3-メチルジフェニルメタン-4,4’,6-トリイソシアネート、4-メチル-ジフェニルメタン-2,3,4’,5,6-ペンタイソシアネート等の多官能イソシアネートモノマー。
 (その他のイソシアネート)
 その他のイソシアネートとして、ヘキサメチレンジイソシアネートやトリレンジイソシアネートなどのジイソシアネート類を主原料としたビュレット構造、ウレトジオン構造、イソシアヌレート構造(たとえば、特開2004-534870号公報には、脂肪族ポリイソシアネートのビュレット構造、ウレトジオン構造、イソシアヌレート構造の変性の方法が開示されている)を有する多官能イソシアネートやトリメチロールプロパンなどの3官能以上のポリオールとのアダクト体として多官能としたもの等が挙げられる(成書(岩田敬治編 ポリウレタン樹脂ハンドブック 日刊工業新聞社(1987))等に開示されている)。
 ((B12)ウレタンプレポリマー)
 本発明において、前記(B12)ウレタンプレポリマーは、前記した(B1)成分から選択された2官能イソシアネート化合物((B1)成分として例示した中で明記した化合物)と、以下に示す(B21)2官能ポリオール化合物、または、(B31)2官能アミン化合物とを反応させたものが好適である。
 前記(B21)2官能ポリオール化合物を例示すると以下のものが挙げられる。
 ((B21)2官能ポリオール)
 (脂肪族アルコール)
 エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ブチレングリコール、1,5-ジヒドロキシペンタン、1,6-ジヒドロキシヘキサン、1,7-ジヒドロキシヘプタン、1,8-ジヒドロキシオクタン、1,9-ジヒドロキシノナン、1,10-ジヒドロキシデカン、1,11-ジヒドロキシウンデカン、1,12-ジヒドロキシドデカン、ネオペンチルグリコール、モノオレイン酸グリセリル、モノエライジン、ポリエチレングリコール、3-メチル-1,5-ジヒドロキシペンタン、ジヒドロキシネオペンチル、2-エチル-1,2-ジヒドロキシヘキサン、2-メチル-1,3-ジヒドロキシプロパン、ポリエステルポリオール(ポリオールと多塩基酸との縮合反応により得られる両末端にのみ水酸基を有する化合物)、ポリエーテルポリオール(アルキレンオキシドの開環重合、または、分子中に活性水素含有基を2個以上有する化合物とアルキレンオキサイドとの反応により得られる化合物およびその変性体であり、分子の両末端にのみ水酸基を有するもの)、ポリカプロラクトンポリオール(ε-カプロラクトンの開環重合により得られる化合物であり、分子の両末端にのみ水酸基を有するもの)、ポリカーボネートポリオール(低分子ポリオールの1種類以上をホスゲン化して得られる化合物あるいはエチレンカーボネート、ジエチルカーボネート、ジフェニルカーボネート等を用いてエステル交換して得られる化合物であり、分子の両末端にのみ水酸基を有するもの)ポリアクリルポリオール((メタ)アクリレート酸エステルやビニルモノマーを重合させて得られるポリオール化合物であり、分子の両末端にのみ水酸基を有するもの)等の2官能ポリオール化合物。
 (脂環族アルコール)
 水添ビスフェノールA、シクロブタンジオール、シクロペンタンジオール、シクロヘキサンジオール、シクロヘプタンジオール、シクロオクタンジオール、シクロヘキサンジメタノール、ヒドロキシプロピルシクロヘキサノール、トリシクロ〔5,2,1,02,6〕デカン-ジメタノール、ビシクロ〔4,3,0〕-ノナンジオール、ジシクロヘキサンジオール、トリシクロ〔5,3,1,13,9〕ドデカンジオール、ビシクロ〔4,3,0〕ノナンジメタノール、トリシクロ〔5,3,1,13,9〕ドデカン-ジエタノール、ヒドロキシプロピルトリシクロ〔5,3,1,13,9〕ドデカノール、スピロ〔3,4〕オクタンジオール、ブチルシクロヘキサンジオール、1,1’-ビシクロヘキシリデンジオール、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,2-シクロヘキサンジメタノール、およびo-ジヒドロキシキシリレン等の2官能ポリオール化合物。
 (芳香族アルコール)
 ジヒドロキシナフタレン、ジヒドロキシベンゼン、ビスフェノールA、ビスフェノールF、キシリレングリコール、テトラブロムビスフェノールA、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,2-ビス(4-ヒドロキシフェニル)エタン、ビス(4-ヒドロキシフェニル)フェニルメタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、ビス(4-ヒドロキシフェニル)-1-ナフチルメタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2-(4-ヒドロキシフェニル)-2-(3-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、1,1-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)-3-メチルブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、3,3-ビス(4-ヒドロキシフェニル)ペンタン、2,2-ビス(4-ヒドロキシフェニル)ヘキサン、2,2-ビス(4-ヒドロキシフェニル)オクタン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、2,2-ビス(4-ヒドロキシフェニル)ヘプタン、4,4-ビス(4-ヒドロキシフェニル)ヘプタン、2,2-ビス(4-ヒドロキシフェニル)トリデカン、2,2-ビス(4-ヒドロキシフェニル)オクタン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-エチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-n-プロピル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-イソプロピル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-sec-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-tert-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-アリル-4’-ヒドロキシフェニル)プロパン、2,2-ビス(3-メトキシ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(2,3,5,6-テトラメチル-4-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)シアノメタン、1-シアノ-3,3-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロヘプタン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(3,5-ジメチル-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(3,5-ジクロロ-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)-4-メチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシフェニル)ノルボルナン、2,2-ビス(4-ヒドロキシフェニル)アダマンタン、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエーテル、エチレングリコールビス(4-ヒドロキシフェニル)エーテル、4,4’-ジヒドロキシジフェニルスルフィド、3,3’-ジメチル-4,4’-ジヒドロキシジフェニルスルフィド、3,3’-ジシクロヘキシル-4,4’-ジヒドロキシジフェニルスルフィド、3,3’-ジフェニル-4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシジフェニルスルホキシド、3,3’-ジメチル-4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン、ビス(4-ヒドロキシフェニル)ケトン、ビス(4-ヒドロキシ-3-メチルフェニル)ケトン、7,7’-ジヒドロキシ-3,3’,4,4’-テトラヒドロ-4,4,4’,4’-テトラメチル-2,2’-スピロビ(2H-1-ベンゾピラン)、トランス-2,3-ビス(4-ヒドロキシフェニル)-2-ブテン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、3,3-ビス(4-ヒドロキシフェニル)-2-ブタノン、1,6-ビス(4-ヒドロキシフェニル)-1,6-ヘキサンジオン、4,4’-ジヒドロキシビフェニル、m-ジヒドロキシキシリレン、p-ジヒドロキシキシリレン、1,4-ビス(2-ヒドロキシエチル)ベンゼン、1,4-ビス(3-ヒドロキシプロピル)ベンゼン、1,4-ビス(4-ヒドロキシブチル)ベンゼン、1,4-ビス(5-ヒドロキシペンチル)ベンゼン、1,4-ビス(6-ヒドロキシヘキシル)ベンゼン、2,2-ビス〔4-(2”-ヒドロキシエチルオキシ)フェニル〕プロパン、およびハイドロキノン、レゾールシン等の2官能ポリオール化合物。
 (ポリエステルジオール)
 ポリオールと多塩基酸との縮合反応により得られる2官能ポリオール化合物が挙げられる。中でも、数平均分子量が400~2000であることが好ましく、500~1500より好ましく、600~1200が最も好ましい。
 (ポリエーテルジオール)
 アルキレンオキシドの開環重合、または、分子中に活性水素含有基を2個以上有する化合物とアルキレンオキサイドとの反応により得られる2官能ポリオール化合物およびその変性体が挙げられる。中でも、数平均分子量が400~2000であることが好ましく、500~1500より好ましく、600~1200が最も好ましい。
 (ポリカプロラクトンポリオール)
 ε-カプロラクトンの開環重合により得られる2官能ポリオール化合物が挙げられる。中でも、数平均分子量が400~2000であることが好ましく、500~1500より好ましく、600~1200が最も好ましい。
 (ポリカーボネートポリオール)
 低分子ポリオールの1種類以上をホスゲン化して得られる2官能ポリオール化合物あるいはエチレンカーボネート、ジエチルカーボネート、ジフェニルカーボネート等を用いてエステル交換して得られる2官能ポリオール化合物が挙げられる。中でも、数平均分子量が400~2000であることが好ましく、500~1500より好ましく、600~1200が最も好ましい
 (ポリアクリルポリオール)
 (メタ)アクリレート酸エステルやビニルモノマーを重合させて得られる2官能ポリオール化合物が挙げられる。
 ((B31)2官能アミン化合物)
 前記(B31)2官能アミン化合物を例示すると以下のものが挙げられる。
 (脂肪族アミン)
 エチレンジアミン、ヘキサメチレンジアミン、ノナメチレンジアミン、ウンデカンメチレンジアミン、ドデカメチレンジアミン、メタキシレンジアミン、1,3-プロパンジアミン、プトレシン等の2官能アミン化合物。
 (脂環族アミン)
 イソホロンジアミン、シクロヘキシルジアミン等のポリアミン等の2官能アミン化合物。
 (芳香族アミン)
 4,4’-メチレンビス(o-クロロアニリン)(MOCA)、2,6-ジクロロ-p-フェニレンジアミン、4,4’-メチレンビス(2,3-ジクロロアニリン)、4,4’-メチレンビス(2-エチル-6-メチルアニリン)、3,5-ビス(メチルチオ)-2,4-トルエンジアミン、3,5-ビス(メチルチオ)-2,6-トルエンジアミン、3,5-ジエチルトルエン-2,4-ジアミン、3,5-ジエチルトルエン-2,6-ジアミン、トリメチレングリコール-ジ-p-アミノベンゾエート、ポリテトラメチレングリコール-ジ-p-アミノベンゾエート、4,4’-ジアミノ-3,3’,5,5’-テトラエチルジフェニルメタン、4,4’-ジアミノ-3,3’-ジイソプロピル-5,5’-ジメチルジフェニルメタン、4,4’-ジアミノ-3,3’,5,5’-テトライソプロピルジフェニルメタン、1,2-ビス(2-アミノフェニルチオ)エタン、4,4’-ジアミノ-3,3’-ジエチル-5,5’-ジメチルジフェニルメタン、N,N’-ジ-sec-ブチル-4,4’-ジアミノジフェニルメタン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、m-キシリレンジアミン、N,N’-ジ-sec-ブチル-p-フェニレンジアミン、m-フェニレンジアミン、p-キシリレンジアミン、p-フェニレンジアミン、3,3’-メチレンビス(メチル-6-アミノベンゾエート)、2,4-ジアミノ-4-クロロ安息香酸-2-メチルプロピル、2,4-ジアミノ-4-クロロ安息香酸-イソプロピル、2,4-ジアミノ-4-クロロフェニル酢酸-イソプロピル、テレフタル酸-ジ-(2-アミノフェニル)チオエチル、ジフェニルメタンジアミン、トリレンジアミン、ピペラジン等の2官能アミン化合物。
 ((B12)ウレタンプレポリマーの製造方法)
 (B12)ウレタンプレポリマーは、前記した2官能イソシアネート化合物と、(B21)2官能ポリオール化合物および/または(B31)2官能アミン化合物を反応させることによって製造される。ただし、本発明において(B12)ウレタンプレポリマーは、未反応のイソシアネート基を含有していなければならない。イソシアネート基を含有する(B12)ウレタンプレポリマーの製造方法は、公知の方法が特に制限されず、たとえば、2官能イソシアネート化合物におけるイソシアネート基のモル数(n5)と(B21)2官能ポリオール化合物および/または(B31)2官能アミン化合物の活性水素を持つ基のモル数(n6)とが、1<(n5)/(n6)≦2.3となる範囲で製造する方法が挙げられる。なお、2種類以上の2官能イソシアネート化合物を用いる場合、該イソシアネート基のモル数(n5)は、それら2官能イソシアネート化合物の合計のイソシアネート基のモル数とする。また、2種類以上の(B21)2官能ポリオール化合物および/または(B31)2官能アミン化合物を用いた場合、該活性水素を持つ基のモル数(n6)は、それら(B21)2官能ポリオール化合物および/または(B31)2官能アミン化合物の合計の活性水素のモル数とする。なお、本発明においては、活性水素が第一級アミノ基である場合であっても、第一級アミノ基を1モルと計算する。その理由は、第一級アミノ基において、2つ目のアミノ基(-NH)が反応するには、かなりのエネルギーを要する(第一級アミノ基であっても、2つ目の-NHは反応し難い)ため、本発明においては、第一級アミノ基を有する2官能活性水素含有化合物を使用したとしても、第一級アミノ基を1モルと計算する。
 また、特に制限されるものではないが、前記(B12)ウレタンプレポリマーは、イソシアネート当量((B12)ウレタンプレポリマーの分子量を1分子中のイソシアネート基の数で割った値)が、好ましくは300~5000、より好ましくは350~3,000、特に好ましくは400~2,000となるものである。また、本発明における(B12)ウレタンプレポリマーは、2官能イソシアネート化合物と(B21)2官能ポリオール化合物および/または(B31)2官能アミン化合物とから製造される直鎖状のものが好ましく、この場合、両末端がイソシアネート基となり、1分子中のイソシアネート基の数は2となる。
 なお、前記(B12)ウレタンプレポリマーのイソシアネート当量は、(B12)ウレタンプレポリマーが有するイソシアネート基をJIS K 7301に準拠した、以下の逆滴定法によって定量できる。まず、得られた(B12)ウレタンプレポリマーを乾燥溶媒に溶解させる。次に、(B12)ウレタンプレポリマーが有するイソシアネート基の量よりも、明らかに過剰量であって、かつ濃度が既知のジ-n-ブチルアミンを、該乾燥溶媒に加え、(B12)ウレタンプレポリマーの全イソシアネート基とジ-n-ブチルアミンとを反応させる。次いで、消費されなかった(反応に関与しなかった)ジ-n-ブチルアミンを酸で滴定して、消費されたジ-n-ブチルアミンの量を求める。この消費されたジ-n-ブチルアミンと、(B12)ウレタンプレポリマーが有するイソシアネート基とは、同量であることからイソシアネート当量を求めることができる。また、たとえば、イソシアネート基を含有する直鎖状の(B12)ウレタンプレポリマーであれば、(B12)ウレタンプレポリマーの数平均分子量は、イソシアネート当量の2倍となる。この(B12)ウレタンプレポリマーの分子量は、ゲルパーミネーションクロマトグラフィー(GPC)で測定した値と一致し易い。なお、該(B12)ウレタンプレポリマーと2官能イソシアネート化合物とを併用して使用する場合には、両者の混合物を上記方法に沿って測定すればよい。
 さらに、前記(B12)ウレタンプレポリマーのイソシアネート含有量((I);質量モル濃度(mol/kg))と、(B12)ウレタンプレポリマー中に存在するウレタン結合含有量((U);質量モル濃度(mol/kg))が、1≦(U)/(I)≦10になることが好ましい。この範囲は、(B12)ウレタンプレポリマーと2官能イソシアネート化合物を併用して使用する場合も同じである。
 なお、イソシアネート含有量((I);質量モル濃度(mol/kg))は、イソシアネート当量の逆数に1,000をかけた値である。また、(B12)ウレタンプレポリマー中に存在するウレタン結合含有量((U)質量モル濃度(mol/kg))は、下記の手法で理論値が求められる。すなわち、(B12)ウレタンプレポリマーを構成する2官能イソシアネート化合物中に存在する、反応前のイソシアネート基の含有量を全イソシアネート含有量((aI);質量モル濃度(mol/kg))とすると、ウレタン結合含有量((U);質量モル濃度(mol/kg))は、(B1)成分の全イソシアネート基の含有量((aI);質量モル濃度(mol/kg))からイソシアネート含有量((I);質量モル濃度(mol/kg))を引いた値((U)=(aI)-(I))が(B12)ウレタンプレポリマー中に存在するウレタン結合含有量(U)となる。
 また、(B12)ウレタンプレポリマーの製造において、必要に応じて加熱やウレタン化触媒を添加することも可能である。ウレタン化触媒は、任意の適切なものを使用でき、具体例は、後述しているウレタン化触媒を用いればよい。
 本発明で用いられる(B1)成分で最も好ましい例を挙げると、形成される中空マイクロバルーンの強度や、反応性の制御の観点から、イソホロンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、(ビシクロ[2.2.1]ヘプタン-2,5(2,6)-ジイル)ビスメチレンジイソシアネートの脂環族イソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4'-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート(o-、m-,p-)の芳香族イソシアネート、ヘキサメチレンジイソシアネートやトリレンジイソシアネートなどのジイソシアネート類を主原料としたビュレット構造、ウレトジオン構造、イソシアヌレート構造の多官能イソシアネート、3官能以上のポリオールとのアダクト体として多官能イソシアネート、または、(B12)ウレタンプレポリマーが挙げられる。
 その中でも特に好ましいのは、ヘキサメチレンジイソシアネートやトリレンジイソシアネートなどのジイソシアネート類を主原料としたビュレット構造、ウレトジオン構造、イソシアヌレート構造の多官能イソシアネート、3官能以上のポリオールとのアダクト体として多官能イソシアネート、または、(B12)ウレタンプレポリマーが挙げられる。
<(B2)少なくとも2個の水酸基を有するポリオール化合物>
 本発明に使用される(B2)ポリオール化合物は、水酸基を1分子中に2個以上有している化合物であれば制限なく使用できる。これらは前記(B12)ウレタンプレポリマー作製に用いられる(B21)2官能ポリオール化合物も含まれる。(B2)成分はウレタン(ウレア)樹脂からなる中空マイクロバルーンにおいて好適に使用される。(本発明の中空マイクロバルーンにおいて特に好適に使用される(B2)成分は、水溶性ポリオール化合物である。
 本発明において水溶性ポリオール化合物は、少なくとも部分的に水中で溶解性があり、疎水性相よりも親水性相で高い親和性を有している化合物であり、一般には、室温(25℃)で、水のような親水性溶剤中での溶解性が、少なくとも1g/lの溶解性を有するものを選択することができ、好ましくは、親水性溶剤中で20g/l以上の溶解性を有する水溶性化合物が挙げられる。
 これら水溶性ポリオール化合物は、分子内に水酸基を2個以上有する多官能アルコールであり、具体的には、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、ネオペンチルグリコール、トリメチレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、2,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ヘキシレングリコール、1,6-ヘキサンジオール、2-ブテン-1,4-ジオール等の2官能ポリオール、グリセリン、トリメチロールエタン、トリメチロールプロパン等の3官能ポリオール、ペンタエリトリトール、エリスリトール、ジグリセロール、ジグリセリン、ジトリメチロールプロパン等の4官能ポリオール、アラビトール等の5官能ポリオールズルシトール、ソルビトール、マンニトール、ジペンタエリスリトール、またはトリグリセロール等の6官能ポリオールボレミトール等の7官能ポリオールイソマルト、マルチトール、イソマルチトール、またはラクチトール等の9官能ポリオールセルロース系化合物(たとえば、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルセルロースおよびそれらのケン化物など)、デンプン、デキストリン、環状デキストリン、キチン、キトサン、ポリビニルアルコール、ポリグリセリン等の水溶性高分子が挙げられる。
 <(B3)少なくとも2個のアミノ基を有する多官能アミン化合物>
 本発明に使用される(B3)多官能アミン化合物は、アミノ基を1分子中に2個以上有しているモノマーであれば制限なく使用できる。これらは前記(B12)ウレタンプレポリマー作製に用いられる(B31)2官能アミン化合物も含まれる。(B3)成分はウレタン(ウレア)樹脂、またはアミド樹脂からなる中空マイクロバルーンにおいて好適に使用される。本発明の中空マイクロバルーンにおいて特に好適に使用される(B3)成分は、水溶性ポリアミン化合物である。
 水溶性ポリアミン化合物の好ましい溶解性については、前記水溶性ポリオール化合物と同様である。これら水溶性ポリアミン化合物は、分子内にアミノ基を2個以上有する多官能アミンであり、具体的には、エチレンジアミン、プロピレンジアミン、1,4.-ジアミノブタン、ヘキサメチレンジアミン、1.8-ジアミノオクタン、1.10-ジアミノデカン、ジプロピレントリアミン、ビスへキサメチレントリアミン、トリス(2-アミノエチル)アミン、ピペラジン、2-メチルピペラジン、イソホロンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ヒドラジン、ポリエチレンイミン類、ポリオキシアルキレンアミン類、ポリエチレンイミン等が挙げられる。
<(B4)少なくとも水酸基とアミノ基を両方有する化合物>
 本発明で用いられる少なくとも水酸基とアミノ基を両方有する化合物としては、分子内に少なくとも水酸基とアミノ基がそれぞれ1個以上有するものであれば制限なく使用できる。(B4)成分はウレタン(ウレア)樹脂からなる中空マイクロバルーンにおいて好適に使用される。特に好適に使用される(B4)成分は、水溶性の分子内に水酸基とアミノ基を両方有する化合物である。
 水溶性の分子内に水酸基とアミノ基を両方有する化合物の好ましい溶解性については、前記水溶性ポリオール化合物と同様である。これら水溶性の分子内に水酸基とアミノ基を両方有する化合物は、具体的には、ヒドロキシルアミン、モノエタノールアミン、3-アミノ-1-プロパノール、2-アミノ-2-ヒドロキシメチルプロパン-1,3-ジオール、2-ヒドロキシエチルエチレンジアミン、2-ヒドロキシエチルプロピレンジアミン、N,N-ジ-2-ヒドロキシエチルエチレンジアミン、N,N-ジ-2-ヒドロキシプロピルエチレンジアミン、N,N-ジ-2-ヒドロキシプロピルプロピレンジアミン、N-メチルエタノールアミン、ジエタノールアミン、N,N-ジ-2-ヒドロキシエチルエチレンジアミン、N,N-ジ-2-ヒドロキシプロピルエチレンジアミン、N,N-ジ-2-ヒドロキシプロピルプロピレンジアミンなどを挙げることができる。
 本発明において、(B2)~(B4)成分のなかで、形成される中空マイクロバルーンの強度や重合時の反応速度から、(B3)成分が好適である。
<(B5)メラミンホルムアルデヒドプレポリマー化合物>
 (B5)メラミンホルムアルデヒドプレポリマー化合物は、メラミンとホルムアルデヒドのメラミン-ホルムアルデヒド初期縮合物であり、常法に従って製造することができる。メラミンとホルムアルデヒドのメラミン-ホルムアルデヒド初期縮合物としては、例えばメチロールメラミンなどが挙げられる。また、メラミンホルムアルデヒドプレポリマー化合物としては、市販されているものも適宜使用できる。たとえば、ベッカミンAPM、ベッカミンM-3、ベッカミンM-3(60)、ベッカミンMA-S 、ベッカミンJ-101、ベッカミンJ-1 01LF(DIC株式会社製)、ニカレジンS-176、ニカレジンS-260(日本カーバイト株式会社製)、ミルベンレジンSM-800(昭和高分子株式会社製)等が挙げられる。
 (B5)成分は、メラミン樹脂からなる中空マイクロバルーンにおいて好適に使用される。
<(B6)尿素ホルムアルデヒドプレポリマー化合物>
 (B6)尿素ホルムアルデヒドプレポリマー化合物は尿素とホルムアルデヒドの尿素-ホルムアルデヒド初期縮合物であり、常法に従って製造することができる。また、尿素ホルムアルデヒドプレポリマー化合物としては、市販されているものも適宜使用できる。たとえば、8HSP(昭和高分子株式会社製)等が挙げられる。
 (B6)成分は、尿素樹脂からなる中空マイクロバルーンにおいて好適に使用される。
<(B7)少なくとも2個のカルボキシル基を有する多官能カルボン酸化合物成分>
 (B7)多官能カルボン酸化合物としては、ジカルボン酸化合物が好適であり、該ジカルボン酸化合物としては、コハク酸、アジピン酸、セバシン酸、ドデセニルコハク酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、オクタデカンジカルボン酸、ドデセニルコハク酸、ペンタデセニルコハク酸、オクタデセニルコハク酸 、マレイン酸、フマール酸などのアルケニレンジカルボン酸、デシルコハク酸、ドデシルコハク酸、オクタデシルコハク酸、フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸などが挙げられる。
 また、ジカルボン酸ジハロゲン化物も含まれる。それらの具体例は、脂肪族ジカルボン酸ジハロゲン化物、脂環族ジカルボン酸ジハロゲン化物、および芳香族ジカルボン酸ジハロゲン化物が挙げられる。
 脂肪族ジカルボン酸ジハロゲン化物としては、たとえば、シュウ酸ジクロライド、マロン酸ジクロライド、コハク酸ジクロライド、フマル酸ジクロライド、グルタル酸ジクロライド、アジピン酸ジクロライド、ムコン酸ジクロライド、セバシン酸ジクロライド、ノナン酸ジクロライド、ウンデカン酸ジクロライド、シュウ酸ジブロマイド、マロン酸ジブロマイド、コハク酸ジブロマイド、フマル酸ジブロマイド等が挙げられる。
 脂環族ジカルボン酸ジハロゲン化物としては、たとえば1,2-シクロプロパンジカルボン酸ジクロライド、1,3-シクロブタンジカルボン酸ジクロライド、1,3-シクロペンタンジカルボン酸ジクロライド、1,3-シクロヘキサンジカルボン酸ジクロライド、1,4-シクロヘキサンジカルボン酸ジクロライド、1,3-シクロペンタンジカルボン酸ジクロライド、1,2-シクロプロパンジカルボン酸ジブロマイド、1,3-シクロブタンジカルボン酸ジブロマイド等が挙げられる。
 芳香族ジカルボン酸ジハロゲン化物としては、たとえば、フタル酸ジクロライド、イソフタル酸ジクロライド、テレフタル酸ジクロライド、1,4-ナフタレンジカルボン酸ジクロライド、1,5-(9-オキソフルオレン)ジカルボン酸ジクロライド、1,4-アントラセンジカルボン酸ジクロライド、1,4-アントラキノンジカルボン酸ジクロライド、2,5-ビフェニルジカルボン酸ジクロライド、1,5-ビフェニレンジカルボン酸ジクロライド、4,4’-ビフェニルジカルボニルクロライド、4,4’-メチレン二安息香酸ジクロライド、4,4’-イソプロピリデン二安息香酸ジクロライド、4,4’-ビベンジルジカルボン酸ジクロライド、4,4’-スチルベンジカルボン酸ジクロライド、4,4’-トランジカルボン酸ジクロライド、4,4’-カルボニル二安息香酸ジクロライド、4,4’-オキシ二安息香酸ジクロライド、4,4’-スルホニル二安息香酸ジクロライド、4,4’-ジチオ二安息香酸ジクロライド、p-フェニレン二酢酸ジクロライド、3,3’-p-フェニレンジプロピオン酸ジクロライド 、フタル酸ジブロマイド、イソフタル酸ジブロマイド、テレフタル酸ジブロマイド等が挙げられる。
 本発明において(B7)成分で好ましい例を挙げると、重合速度の観点から、ジカルボン酸ジハロゲン化物が挙げられる。
 本発明における重合性組成物は、ポリロタキサンを含んでもよいが、中空マイクロバルーンの製造時のハンドリング性を良好にする観点から、ポリロタキサンを多く含まないことが好ましい。重合性組成物におけるポリロタキサンの含有量は、好ましくは10質量%以下であり、より好ましくは5質量%以下であり、さらに好ましくは0質量%である。
<中空マイクロバルーンの製造方法>
 本発明の中空マイクロバルーンの製造方法は、(A)成分と(B)成分とを含む重合性組成物を重合させた樹脂とする、公知の方法が制限なく使用することができ、たとえば、界面重合、コアセルベーション法、In-situ重合等の水相と油相によるエマルションを利用した既知の手法を用いてマイクロバルーンを作製した後、内部の液体を取り除くことで中空マイクロバルーンを製造する方法を採用すればよい。
 本発明の中空マイクロバルーンは、具体的には、たとえば、以下の方法で製造できるが、以下の方法に限定されない。なお、(A)環状多官能モノマーは、選択する環状分子や側鎖の種類、導入量により、親水性か親油性が変化するため、使用する(A)環状多官能モノマーの親油性を確認した後、水相、または油相に溶解させて使用すればよい。
<中空マイクロバルーンがウレタン(ウレア)樹脂、またはアミド樹脂からなる場合>
 中空マイクロバルーンがウレタン(ウレア)樹脂、またはアミド樹脂からなる場合、界面重合により作製できる。界面重合の場合、水中油(O/W)エマルション(以下、O/Wエマルションともいう。)または、油中水(W/O)エマルション(以下、W/Oエマルションともいう。)を作製して、(A)成分と(B)成分とを含む重合性組成物とし、該重合性組成物を界面で重合することで中空マイクロバルーンを作製することができる。本発明においては、O/Wエマルション、または、W/Oエマルションのどちらも選択可能であるが、O/Wエマルションによる界面重合が効率よく中空マイクロバルーンを作製可能であるから好ましい。下記に、O/Wエマルションでの界面重合法を例示する。なお、「アミド樹脂からなる場合」以外は、ウレタン(ウレア)樹脂の例示である。
 O/Wエマルションでの重合方法を細分化すると、第1工程:(a)少なくとも(B1)成分(アミド樹脂からなる場合は(B7)成分)と有機溶媒とを含む油相(以下、(a)成分ともいう)を調製する工程、第2工程:(b)乳化剤を含む水相(以下、(b)成分ともいう)を調製する工程、第3工程:前記(a)成分と前記(b)成分とを混合・撹拌して、前記水相が連続相、前記油相が分散相としてなるO/Wエマルションを調製する工程、第4工程:前記O/Wエマルション中に、(B2)~(B4)成分(アミド樹脂からなる場合は(B3)~(B4)成分(「アミド樹脂からなる場合」の(B4)成分は、少なくともアミノ基を2つ以上有する(B4)成分に限る。以下、同様である。))から選ばれる親水性の化合物を加えて、(A)成分と(B)成分とを含む重合性組成物とし、前記O/Wエマルションの界面上で重合を進行させ、樹脂膜を形成させてマイクロバルーンとし、マイクロバルーンが分散したマイクロバルーン分散液を得る工程、第5工程:前記マイクロバルーン分散液からマイクロバルーンを分離する工程、第6工程:前記マイクロバルーンの内部から、有機溶媒溶液を取り除き、中空マイクロバルーンとする工程に分別される。ここで、本発明の(A)環状多官能モノマーが親油性の場合、(A)環状多官能モノマーは、第1工程の(a)成分に均一に溶解させればよく、(A)環状多官能モノマーが親水性の場合、(A)環状多官能モノマーは、第4工程で(B2)~(B4)成分(アミド樹脂からなる場合は(B3)~(B4)成分)から選ばれる親水性の化合物と一緒にO/Wエマルションに加えればよい。こうすることで、(A)環状多官能モノマーは前記(B1)成分(アミド樹脂からなる場合は(B7)成分)と反応することが可能となる。
第1工程:
 第1工程は、O/Wエマルションにおいて分散相となる(a)少なくとも(B1)成分(アミド樹脂からなる場合は(B7)成分)と有機溶媒とを含む油相を調製する工程である。
 この工程は、後述する有機溶媒中に、(B1)成分(アミド樹脂からなる場合は(B7)成分)を溶解させて油相とする工程であり、公知の方法で溶解させて均一な溶液とすれはよい。また、(A)環状多官能モノマーが親油性の場合、(A)成分を上記油相の溶液に溶解させて均一な溶液とした(a)成分を調製すればよい。
 中空マイクロバルーンがウレタン(ウレア)樹脂からなる場合、好ましい(B1)成分の使用量は、有機溶媒100質量部に対して0.1~50質量部、好ましくは0.5~20質量部、さらに好ましくは1~10質量部である。さらに、(B1)成分が含有しているイソシアネート基のモル数(n1)に対し、(A)成分と(B2)~(B4)成分の合計の活性水素基含有化合物のモル数が(n2)の場合、0.5≦(n1)/(n2)≦2の範囲であることが好ましい。
 中空マイクロバルーンがアミド樹脂からなる場合、好ましい(B7)成分の使用量は、有機溶媒100質量部に対して0.1~50質量部、好ましくは0.5~20質量部、さらに好ましくは1~10質量部である。さらに、(B7)成分が含有しているカルボン酸基のモル数(n3)に対し、(A)成分と(B3)~(B4)成分の合計の活性水素基含有化合物のモル数が(n4)の場合、0.5≦(n3)/(n4)≦2の範囲であることが好ましい。
 また、(a)成分には、界面重合の反応を促進させる目的のため、後述する触媒を添加してもよい。
第2工程:
 第2工程は、O/Wエマルションにおいて連続相となる、(b)乳化剤と水とを含む水相を調製する工程である。
 この工程は、水中に、後述する乳化剤を溶解させて水相とする工程であり、公知の方法で溶解させて均一な溶液とすれはよい。
 本発明において乳化剤の使用量は、水100質量部に対して0.01~20質量部、好ましくは0.1~10質量部である。この範囲であれば、O/Wエマルション中の分散相の液滴の凝集が回避され、平均粒径が揃った中空マイクロバルーンが得られ易い。
 また、(b)成分には、界面重合の反応を促進させる目的のため、後述する触媒を添加してもよい。
第3工程:
 第3工程は、第1工程で得られた(a)成分と第2工程で得られた(b)成分とを混合・撹拌して、(a)成分が分散相、(b)成分が連続相としてなるO/Wエマルションを調製する工程である。
 本発明において、(a)成分と(b)成分とを混合、攪拌してO/Wエマルションとする方法は、製造したい中空マイクロバルーンの粒径を勘案して、適宜公知の方法により混合・撹拌させることにより調製することができる。
 その中でも、(a)成分と(b)成分とを混合させた後、撹拌として高速せん断式、摩擦式、高圧ジェット式、超音波式等の公知の分散機を用いて分散する方法によって、O/Wエマルション化する方法が好適に採用され、これらのなかでも高速せん断式が好ましい。高速せん断式分散機を使用した場合、回転数は、好ましくは500~20,000rpm、さらに好ましくは1,000~10,000rpmである。分散時間は、好ましくは0.1~60分であり、好ましくは、0.5~30分である。分散温度は、好ましくは10~40℃である。
 また、本発明において(a)成分と(b)成分の重量比は、(b)成分を100質量部とした際に、(a)成分が1~100質量部であることが好ましく、さらに好ましくは、2~90質量部であり、もっとも好ましくは、5~50質量部であることが好ましい。この範囲であれば、良好なエマルションが得られる。
第4工程:
 第4工程は、前記O/Wエマルション中に(B2)~(B4)成分(アミド樹脂からなる場合は(B3)~(B4)成分)から選択される少なくとも1種類の化合物を加えて、(A)成分と(B)成分とを含む重合性組成物とし、O/Wエマルションの界面上で重合させて樹脂膜を形成させ、マイクロバルーンとすることにより、該マイクロバルーンが分散したマイクロバルーン分散液を得る工程である。また、(A)環状多官能モノマーが親水性の場合は、第4工程において、(B2)~(B4)成分(アミド樹脂からなる場合は(B3)~(B4)成分)から選択される少なくとも1種類の化合物と同様にO/Wエマルション中に加えればよい。
 また、(B2)~(B4)成分(アミド樹脂からなる場合は(B3)~(B4)成分)、および(A)成分をO/Wエマルション中に加える場合は、そのまま加えてもよく、予め水に溶解させて使用してもよい。
 予め水に溶解させる場合、(B2)~(B4)成分(アミド樹脂からなる場合は(B3)~(B4)成分)、および(A)成分の合計量を100質量部とした際、水が50~10,000質量部の範囲で用いるのが好適である。
 反応温度は、O/Wエマルションが壊れない温度であれば特に制限なく、好ましくは、5~70℃の範囲で反応を実施するのが好ましい。反応時間もW/Oエマルションが形成できれば特に制限なく、通常は0.5~24時間の範囲から選択される。
第5工程
 第5工程は、前記のマイクロバルーン分散液からマイクロバルーンを分離する工程である。マイクロバルーン分散液からマイクロバルーンを分離する分離方法は、特に制限なく一般的な分離手法から選択すればよく、具体的には、濾別や遠心分離等が用いられる。
第6工程
 第6工程は、第5工程で得られた前記のマイクロバルーンから、内部の油相を取り除き、中空マイクロバルーンにする工程である。マイクロバルーンから油相を取り除く方法は、特に制限なく一般的な分離手法から選択すればよく、具体的には、循風乾燥機、スプレードライヤー、流動層式乾燥機、真空乾燥機等が用いられる。乾燥する場合の温度としては、好ましくは40~250℃、さらに好ましくは50~200℃である。
<中空マイクロバルーンがメラミン樹脂、または尿素樹脂からなる場合>
 中空マイクロバルーンがメラミン樹脂または尿素樹脂からなる場合も、O/Wエマルションを形成後、界面重合やIn-situ重合により作製できる。下記に具体例を示すが、本発明の製造方法はこれに限定されない。
 中空マイクロバルーンがメラミン樹脂、または尿素樹脂からなる場合のO/Wエマルションでの重合方法を細分化すると、第1工程:(c)有機溶媒を含む油相(以下、(c)成分ともいう)を調製する工程、第2工程:(d)乳化剤を含む水相(以下、(d)成分ともいう)を調製する工程、第3工程:前記(c)成分と前記(d)成分とを混合・撹拌して、前記水相が連続相、前記油相が分散相としてなるO/Wエマルションを調製する工程、第4工程:前記O/Wエマルション中に、(B5)成分、または(B6)成分を加加えて、(A)成分と(B)成分とを含む重合性組成物とし、前記O/Wエマルションの界面上で重合を進行させて、樹脂相を形成させ、マイクロバルーンが分散したマイクロバルーン分散液を得る工程、第5工程:前記マイクロバルーン分散液からマイクロバルーンを分離する工程、第6工程:前記マイクロバルーンの内部から、有機溶媒溶液を取り除き、中空マイクロバルーンとする工程に分別される。ここで、本発明の(A)環状多官能モノマーが親油性の場合、第1工程の油相に均一に溶解させればよく、(A)環状多官能モノマーが親水性の場合、第4工程で(B5)成分、または(B6)成分と同様に添加すれば良い。こうすることで、(A)環状多官能モノマーは、前記(B5)成分、または(B6)成分と共に、中空マイクロバルーンを構成する樹脂中に取り込まれる。
第1工程:
 第1工程は、O/Wエマルションにおいて分散相となる、(c)有機溶媒を含む油相を調製する工程である。
 この工程では、(A)環状多官能モノマーが親油性の場合、前記有機溶媒中に(A)成分を溶解させて均一な油相を調製すればよい。
 一方、(A)環状多官能モノマーが親水性の場合、前記有機溶媒中に(A)成分を溶解させることはないので、単に有機溶媒を油相とすればよい。
第2工程:
 第2工程は、O/Wエマルションにおいて連続相となる、(d)乳化剤と水とを含む水相であり、且つpHを調製する工程である。
 この工程は、水中に、後述する乳化剤を溶解させ、pHを調製する工程が含まれる。pHの調製等は公知の方法を用いて調合すればよい。
 本発明において乳化剤の使用量は、水100質量部に対して0.01~20質量部、好ましくは0.1~10質量部である。この範囲であれば、O/Wエマルション中の分散相の液滴の凝集が回避され、平均粒径が揃った中空マイクロバルーンが得られ易い。
 また、好ましいpHとしては、pHを7未満、さらに好ましくは、pHは3.5~6.5、最も好ましいのはpHが4.0~5.5に調製されることが好ましい。このpH域とすることにより、後述する(B5)成分、または(B6)成分の重合を進行させることが可能となる。
第3工程:
 第3工程は、第1工程で得られた(c)成分と第2工程で得られた(d)成分とを混合・撹拌して、(c)成分が分散相、(d)成分が連続相としてなるO/Wエマルションを調製する工程である。
 本発明において、(c)成分と(d)成分とを混合、攪拌してO/Wエマルションとする方法は、製造したい中空マイクロバルーンの粒径を勘案して、適宜公知の方法により混合・撹拌させることにより調製することができる。さらに、O/Wエマルションを調製する工程において、温度やpHを調製することもできる。
 その中でも、(c)成分と(d)成分とを混合させた後、撹拌として高速せん断式、摩擦式、高圧ジェット式、超音波式等の公知の分散機を用いて分散する方法によって、O/Wエマルション化する方法が好適に採用され、これらのなかでも高速せん断式が好ましい。高速せん断式分散機を使用した場合、回転数は、好ましくは500~20,000rpm、さらに好ましくは1,000~10,000rpmである。分散時間は、好ましくは0.1~60分であり、好ましくは、0.5~30分である。分散温度は、好ましくは20~90℃が好ましい。
 また、本発明において(c)成分と(d)成分の重量比は、(d)成分を100質量部とした際に、(c)成分が1~100質量部であることが好ましく、さらに好ましくは、2~90質量部であり、もっとも好ましくは、5~50質量部であることが好ましい。この範囲であれば、良好なエマルションが得られる。
第4工程:
 第4工程は、前記O/Wエマルション中に(B5)成分、または(B6)成分を加えて、(A)成分と(B)成分とを含む重合性組成物とし、O/Wエマルションの界面上で重合を進行させて、樹脂膜を形成させ、マイクロバルーンとすることにより、形成したマイクロバルーンが分散したマイクロバルーン分散液を得る工程である。
 用いる(B5)成分、または(B6)成分の使用量は、特に制限されないが、良好にマイクロバルーンを形成させるためには、第1工程で用いた有機溶媒100質量部あたり、0.5~50質量部であることが好ましく、1~20質量部であることがより好ましい。
 (A)環状多官能モノマーが親水性の場合は、第4工程において、(B5)成分、または(B6)成分と同様にO/Wエマルション中に加えればよい。
 また、(B5)成分、または(B6)成分、および(A)成分をO/Wエマルション中に加える場合は、そのまま加えてもよく、水に溶解させて使用してもよい。
 水に溶解させる場合、(B5)成分、または(B6)成分、および(A)成分の合計量を100質量部とした際、水が50~10,000質量部の範囲で用いるのが好適である。
 連続相である水相のpHは第2工程で調製してもよく、第4工程の、(B5)成分、または(B6)成分を加えた後に、調製してもよい。連続相である水相のpHは、少なくとも7未満であることが好ましい。好ましい反応温度は、40~90℃の範囲で反応を実施するのが好ましい。反応時間は1~48時間の範囲で実施されるのが好ましい。
第5工程、第6工程
 第5工程、第6工程は前記中空マイクロバルーンがウレタン(ウレア)樹脂(またはポリアミド樹脂)からなる場合と同様の工程である。
 <好適な配合割合>
 本発明の中空マイクロバルーンを構成する樹脂の製造に用いる重合性組成物中の(A)環状多官能モノマーの含有量は、(A)環状多官能モノマーと(B)重合性モノマーの合計100質量部に対し、1~50質量部であることが好ましい。この割合で(A)環状多官能モノマーを含有することで、優れた耐久性や、特性を発現することが可能となる。また、該中空マイクロバルーンをCMP用研磨パッドに利用した場合、優れた耐久性のみならず、優れた研磨特性を発現することが可能となる。
 中でも、さらに好ましくは、(A)環状多官能モノマーと(B)重合性モノマーの合計100質量部に対し、(A)成分が2~40質量部、さらに好ましくは、(A)成分が3~30質量部であることが好ましい。
 (A)成分の含有量は、重合した樹脂を固体NMR等の分析からも求めることはできるが、一般的には、使用量から求められる。O/Wエマルションの場合、油相に含有した(A)成分、および、(B)成分は使用量の全量が中空マイクロバルーンを構成する樹脂中に含有すると考えられる。一方、水相に添加した(A)成分、および、(B)成分も、前記した好ましい範囲内での使用量あれば、使用量の全量が中空マイクロバルーンを構成する樹脂中に含有すると考えられる。また、好ましい範囲外、つまり、第4工程での(B)成分や(A)成分を好ましい範囲外で添加した際は、反応終了後の水相を分析することで重合に関与しなかった残存している(B)成分や(A)成分を同定することが出来る。これらを考慮することで、中空マイクロバルーン形成に関与したモノマー量を規定することが可能となる。
 すなわち、換言すると、本発明における中空マイクロバルーンを構成する樹脂における、(A)成分の含有量は、(A)成分と(B)成分の合計100質量に対して、好ましくは1~50質量部であり、より好ましくは2~40質量部であり、さらに好ましくは3~30質量部である。
 上記に記載した範囲とすることにより、エマルション中で効率よくマイクロバルーンを作製可能である。
 以下に本発明で用いられる各成分について説明する。
 <乳化剤>
 本発明において、(b)成分または(d)成分に用いられる乳化剤には、分散剤、界面活性剤、またはこれらの組み合わせが含まれる。
 分散剤としては、たとえば、ポリビニルアルコールおよびその変性物(たとえば、アニオン変性ポリビニルアルコール)、セルロース系化合物(たとえば、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルセルロースおよびそれらのケン化物など)、ポリアクリル酸アミドおよびその誘導体、エチレン-酢酸ビニル共重合体、スチレン-無水マレイン酸共重合体、エチレン-無水マレイン酸共重合体、イソブチレン-無水マレイン酸共重合体、ポリビニルピロリドン、エチレン-アクリル酸共重合体、酢酸ビニル-アクリル酸共重合体、ポリアクリル酸ナトリウム、ポリアクリル酸カリウム、ポリアクリル酸アンモニウム、ポリアクリル酸の部分中和物、アクリル酸ナトリウムーアクリル酸エステル共重合体、カルボキシメチルセルロース、カゼイン、ゼラチン、デキストリン、キチン、キトサン、澱粉誘導体、アラビアゴムおよびアルギン酸ナトリウムなどが挙げられる。
これらの分散剤は、本発明で用いる重合性組成物と反応しない、または極めて反応し難いことが好ましく、たとえばゼラチンなどの分子鎖中に反応性のアミノ基を有するものは、予め反応性を失わせる処理をしておくことが好ましい。
 界面活性剤としては、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、非イオン界面活性剤などが挙げられる。界面活性剤は2種以上の界面活性剤を併用したものであってもよい。
 アニオン界面活性剤としては、カルボン酸またはその塩、硫酸エステル塩、カルボキシメチル化物の塩、スルホン酸塩およびリン酸エステル塩が挙げられる。
 カルボン酸またはその塩としては、炭素数8~22の飽和または不飽和脂肪酸またはその塩が挙げられ、具体的にはカプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラキジン酸、ベヘン酸、オレイン酸、リノール酸、リシノール酸およびヤシ油、パーム核油、米ぬか油、牛脂などをケン化して得られる高級脂肪酸の混合物があげられる。塩としてはそれらのナトリウム、カリウム、アンモニウム、アルカノールアミンなどの塩があげられる。
 硫酸エステル塩としては、高級アルコール硫酸エステル塩(炭素数8~18の脂肪族アルコールの硫酸エステル塩)、高級アルキルエーテル硫酸エステル塩(炭素数8~18の脂肪族アルコールのエチレンオキサイド付加物の硫酸エステル塩)、硫酸化油(不飽和油脂または不飽和のロウをそのまま硫酸化して中和したもの)、硫酸化脂肪酸エステル(不飽和脂肪酸の低級アルコールエステルを硫酸化して中和したもの)および、硫酸化オレフィン(炭素数12~18のオレフィンを硫酸化して中和したもの)が挙げられる。塩としては、ナトリウム塩,カリウム塩,アンモニウム塩,アルカノールアミン塩が挙げられる。
 高級アルコール硫酸エステル塩の具体例としては、オクチルアルコール硫酸エステル塩、デシルアルコール硫酸エステル塩、ラウリルアルコール硫酸エステル塩、ステアリルアルコール硫酸エステル塩、オキソ法で合成されたアルコール(オキソコール900、トリデカノール:協和発酵製)の硫酸エステル塩が挙げられる。
 高級アルキルエーテル硫酸エステル塩の具体例としては、ラウリルアルコールエチレンオキサイド2モル付加物硫酸エステル塩、オクチルアルコールエチレンオキサイド3モル付加物硫酸エステル塩が挙げられる。
 硫酸化油の具体例としては、ヒマシ油、落花生油、オリーブ油、ナタネ油、牛脂、羊脂などの硫酸化物のナトリウム、カリウム、アンモニウム、アルカノールアミン塩が挙げられる。
 硫酸化脂肪酸エステルの具体例としては、オレイン酸ブチル,リシノレイン酸ブチルなどの硫酸化物のナトリウム、カリウム、アンモニウム、アルカノールアミン塩が挙げられる。
 カルボキシメチル化物の塩としては、炭素数8~16の脂肪族アルコールのカルボキシメチル化物の塩および炭素数8~16の脂肪族アルコールのエチレンオキサイド付加物のカルボキシメチル化物の塩が挙げられる。
 脂肪族アルコールのカルボキシメチル化物の塩の具体例としては、オクチルアルコールカルボキシメチル化ナトリウム塩、デシルアルコールカルボキシメチル化ナトリウム塩、ラウリルアルコールカルボキシメチル化ナトリウム塩、トリデカノールカルボキシメチル化ナトリウム塩などが挙げられる。
 脂肪族アルコールのエチレンオキサイド付加物のカルボキシメチル化物の塩の具体例としては、オクチルアルコールエチレンオキサイド3モル付加物カルボキシメチル化ナトリウム塩、ラウリルアルコールエチレンオキサイド4モル付加物カルボキシメチル化ナトリウム塩、トリデカノールエチレンオキサイド5モル付加物カルボキシメチル化ナトリウム塩などが挙げられる。
 スルホン酸塩としては、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、スルホコハク酸ジエステル型、α-オレフィンスルホン酸塩、イゲポンT型、その他芳香環含有化合物のスルホン酸塩が挙げられる。
 アルキルベンゼンスルホン酸塩の具体例としては、ドデシルベンゼンスルホン酸ナトリウム塩などが挙げられる。
 アルキルナフタレンスルホン酸塩の具体例としては、ドデシルナフタレンスルホン酸ナトリウム塩などが挙げられる。
 スルホコハク酸ジエステル型の具体例としては、スルホコハク酸ジ-2-エチルヘキシルエステルナトリウム塩などが挙げられる。
 芳香環含有化合物のスルホン酸塩としては、アルキル化ジフェニルエーテルのモノまたはジスルホン酸塩、スチレン化フェノールスルホン酸塩などが挙げられる。
 リン酸エステル塩としては、高級アルコールリン酸エステル塩、および高級アルコールエチレンオキサイド付加物リン酸エステル塩が挙げられる。
 高級アルコールリン酸エステル塩の具体例としては、ラウリルアルコールリン酸モノエステルジナトリウム塩、ラウリルアルコールリン酸ジエステルナトリウム塩などが挙げられる。
 高級アルコールエチレンオキサイド付加物リン酸エステル塩の具体例としては、オレイルアルコールエチレンオキサイド5モル付加物リン酸モノエステルジナトリウム塩が挙げられる。
 カチオン界面活性剤としては、第4級アンモニウム塩型、アミン塩型などが挙げられる。
 第4級アンモニウム塩型としては、3級アミン類と4級化剤(メチルクロライド、メチルブロマイド、エチルクロライド、ベンジルクロライド、ジメチル硫酸などのアルキル化剤、エチレンオキサイドなど)との反応で得られ、たとえば、ラウリルトリメチルアンモニウムクロライド、ジデシルジメチルアンモニウムクロライド、ジオクチルジメチルアンモニウムブロマイド、ステアリルトリメチルアンモニウムブロマイド、ラウリルジメチルベンジルアンモニウムクロライド(塩化ベンザルコニウム)、セチルピリジニウムクロライド、ポリオキシエチレントリメチルアンモニウムクロライド、ステアラミドエチルジエチルメチルアンモニウムメトサルフェートなどが挙げられる。
 アミン塩型としては、1~3級アミン類を無機酸(塩酸、硝酸、硫酸、ヨウ化水素酸など)または有機酸(酢酸、ギ酸、蓚酸、乳酸、グルコン酸、アジピン酸、アルキル燐酸など)で中和することにより得られる。たとえば、第1級アミン塩型のものとしては、脂肪族高級アミン(ラウリルアミン、ステアリルアミン、セチルアミン、硬化牛脂アミン、ロジンアミンなどの高級アミン)の無機酸塩または有機酸塩、低級アミン類の高級脂肪酸(ステアリン酸、オレイン酸など)塩などが挙げられる。
 第2級アミン塩型のものとしては、たとえば、脂肪族アミンのエチレンオキサイド付加物などの無機酸塩または有機酸塩が挙げられる。
 また、第3級アミン塩型のものとしては、たとえば、脂肪族アミン(トリエチルアミン、エチルジメチルアミン、N,N,N’,N’-テトラメチルエチレンジアミンなど)、脂肪族アミンのエチレンオキサイド付加物、脂環式アミン(N-メチルピロリジン、N-メチルピペリジン、N-メチルヘキサメチレンイミン、N-メチルモルホリン、1,8-ジアザビシクロ(5,4,0)-7-ウンデセンなど)、含窒素ヘテロ環芳香族アミン(4-ジメチルアミノピリジン、N-メチルイミダゾール、4,4’-ジピリジルなど)の無機酸塩または有機酸塩、トリエタノールアミンモノステアレート、ステアラミドエチルジエチルメチルエタノールアミンなどの3級アミン類の無機酸塩または有機酸塩などが挙げられる。
 両性界面活性剤としては、カルボン酸塩型両性界面活性剤、硫酸エステル塩型両性界面活性剤、スルホン酸塩型両性界面活性剤、リン酸エステル塩型両性界面活性剤などが挙げられ、カルボン酸塩型両性界面活性剤は、さらにアミノ酸型両性界面活性剤とベタイン型両性界面活性剤が挙げられる。
 カルボン酸塩型両性界面活性剤は、アミノ酸型両性界面活性剤、ベタイン型両性界面活
性剤、イミダゾリン型両性界面活性剤などが挙げられ、これらのうち、アミノ酸型両性界面活性剤は、分子内にアミノ基とカルボキシル基を持っている両性界面活性剤で、具体的には、たとえば、アルキルアミノプロピオン酸型両性界面活性剤(ステアリルアミノプロピオン酸ナトリウム、ラウリルアミノプロピオン酸ナトリウムなど)、アルキルアミノ酢酸型両性界面活性剤(ラウリルアミノ酢酸ナトリウムなど)などが挙げられる。
 ベタイン型両性界面活性剤は、分子内に第4級アンモニウム塩型のカチオン部分とカルボン酸型のアニオン部分を持っている両性界面活性剤で、たとえば、アルキルジメチルベタイン(ステアリルジメチルアミノ酢酸ベタイン、ラウリルジメチルアミノ酢酸ベタインなど)、アミドベタイン(ヤシ油脂肪酸アミドプロピルベタインなど)、アルキルジヒドロキシアルキルベタイン(ラウリルジヒドロキシエチルベタインなど)などが挙げられる。
 さらに、イミダゾリン型両性界面活性剤としては、たとえば、2-ウンデシル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタインなどが挙げられる。
 その他の両性界面活性剤としては、たとえば、ナトリウムラウロイルグリシン、ナトリウムラウリルジアミノエチルグリシン、ラウリルジアミノエチルグリシン塩酸塩、ジオクチルジアミノエチルグリシン塩酸塩などのグリシン型両性界面活性剤、ペンタデシルスルフォタウリンなどのスルフォベタイン型両性界面活性剤などが挙げられる。
 非イオン界面活性剤としては、アルキレンオキシド付加型非イオン界面活性剤および多価アルコール型非イオン界面活性剤などが挙げられる。
 アルキレンオキシド付加型非イオン界面活性剤は、高級アルコール、高級脂肪酸またはアルキルアミン等に直接アルキレンオキシドを付加させるか、グリコール類にアルキレンオキシドを付加させて得られるポリアルキレングリコール類に高級脂肪酸などを反応させるか、あるいは多価アルコールに高級脂肪酸を反応して得られたエステル化物にアルキレンオキシドを付加させるか、高級脂肪酸アミドにアルキレンオキシドを付加させることにより得られる。
 アルキレンオキシドとしては、たとえばエチレンオキサイド、プロピレンオキサイドおよびブチレンオキサイドが挙げられる。
 アルキレンオキシド付加型非イオン界面活性剤の具体例としては、オキシアルキレンアルキルエーテル(たとえば、オクチルアルコールエチレンオキサイド付加物、ラウリルアルコールエチレンオキサイド付加物、ステアリルアルコールエチレンオキサイド付加物、オレイルアルコールエチレンオキサイド付加物、ラウリルアルコ-ルエチレンオキサイドプロピレンオキサイドブロック付加物など)、ポリオキシアルキレン高級脂肪酸エステル(たとえば、ステアリル酸エチレンオキサイド付加物、ラウリル酸エチレンオキサイド付加物など)、ポリオキシアルキレン多価アルコール高級脂肪酸エステル(たとえば、ポリエチレングリコールのラウリン酸ジエステル、ポリエチレングリコールのオレイン酸ジエステル、ポリエチレングリコールのステアリン酸ジエステルなど)、ポリオキシアルキレンアルキルフェニルエーテル(たとえば、ノニルフェノールエチレンオキサイド付加物、ノニルフェノールエチレンオキサイドプロピレンオキサイドブロック付加物、オクチルフェノールエチレンオキサイド付加物、ビスフェノールAエチレンオキサイド付加物、ジノニルフェノールエチレンオキサイド付加物、スチレン化フェノールエチレンオキサイド付加物など)、ポリオキシアルキレンアルキルアミノエーテル(たとえば、ラウリルアミンエチレンオキサイド付加物,ステアリルアミンエチレンオキサイド付加物など)、ポリオキシアルキレンアルキルアルカノールアミド(たとえば、ヒドロキシエチルラウリン酸アミドのエチレンオキサイド付加物、ヒドロキシプロピルオレイン酸アミドのエチレンオキサイド付加物、ジヒドロキシエチルラウリン酸アミドのエチレンオキサイド付加物など)が挙げられる。
 多価アルコール型非イオン界面活性剤としては、多価アルコール脂肪酸エステル、多価アルコール脂肪酸エステルアルキレンオキサイド付加物、多価アルコールアルキルエーテル、多価アルコールアルキルエーテルアルキレンオキサイド付加物が挙げられる。
 多価アルコール脂肪酸エステルの具体例としては、ペンタエリスリトールモノラウレート、ペンタエリスリトールモノオレート、ソルビタンモノラウレート、ソルビタンモノステアレート、ソルビタンモノラウレート、ソルビタンジラウレート、ソルビタンジオレート、ショ糖モノステアレートなどが挙げられる。
 多価アルコール脂肪酸エステルアルキレンオキサイド付加物の具体例としては、エチレングリコールモノオレートエチレンオキサイド付加物、エチレングリコールモノステアレートエチレンオキサイド付加物、トリメチロールプロパンモノステアレートエチレンオキサイドプロピレンオキサイドランダム付加物、ソルビタンモノラウレートエチレンオキサイド付加物、ソルビタンモノステアレートエチレンオキサイド付加物、ソルビタンジステアレートエチレンオキサイド付加物、ソルビタンジラウレートエチレンオキサイドプロピレンオキサイドランダム付加物などが挙げられる。
 多価アルコールアルキルエーテルの具体例としては、ペンタエリスリトールモノブチルエーテル、ペンタエリスリトールモノラウリルエーテル、ソルビタンモノメチルエーテル、ソルビタンモノステアリルエーテル、メチルグリコシド、ラウリルグリコシドなどが挙げられる。
 多価アルコールアルキルエーテルアルキレンオキサイド付加物の具体例としては、ソルビタンモノステアリルエーテルエチレンオキサイド付加物、メチルグリコシドエチレンオキサイドプロピレンオキサイドランダム付加物、ラウリルグリコシドエチレンオキサイド付加物、ステアリルグリコシドエチレンオキサイドプロピレンオキサイドランダム付加物などが挙げられる。
 これらの中でも、本発明で用いられる乳化剤は、分散剤や非イオン界面活性剤から選ばれることが好ましく、さらに好ましい乳化剤の具体例を挙げると、本発明の中空マイクロバルーンがウレタン(ウレア)樹脂からなる場合、ポリビニルアルコール、またはアニオン変性ポリビニルアルコールが好ましく、該中空マイクロバルーンがアミド樹脂からなる場合、アクリル酸ナトリウム-アクリル酸エステル共重合体が好ましい。これらを選択することで、安定なエマルションとすることができる。
 また、該中空マイクロバルーンがメラミン樹脂、尿素樹脂からなる場合、乳化剤としては、スチレン-無水マレイン酸共重合体、エチレン-無水マレイン酸共重合、イソブチレン-無水マレイン酸共重合体であることが好ましい。これらを水酸化ナトリム等のアルカリ性化合物で中和することで、高密度のアニオン性ポリマーとなり、(B5)成分や(B6)成分の重合反応が進行させることができる。
 <有機溶媒>
 本発明において、(a)成分または(c)成分に用いられる有機溶媒は、(B1)成分、(B7)成分、または親油性の(A)成分が溶解するものであれば特に制限されず、たとえば、炭化水素系、ハロゲン化系、ケトン系溶剤等が挙げられる。
 中でも、マイクロバルーンの内部から該有機溶媒を除去し、中空マイクロバルーンとするためには、沸点が200℃以下のものが好ましく、より好ましくは沸点が150℃以下のものである。これらを例示すると、以下のものが挙げられる。
 (炭化水素系)
 n-ヘキサン、n-ヘプタン、n-オクタン等の炭素数が6~11の脂肪族炭化水素、ベンゼン、トルエン、キシレン等の芳香族炭化水素、シクロヘキサン、シクロペンタン、メチルシクロヘキサン等の脂環式炭化水素が挙げられる。
 (ハロゲン化系) 
 クロロホルム、ジクロロメタン、テトラクロロエタン、モノまたはジクロルベンゼン等が挙げられる。
 (ケトン系) 
 メチルイソブチルケトン等が挙げられる。
 これらの有機溶媒は単独で用いてもよく、また、二種以上の混合溶媒としてもよい。
 本発明で用いられる有機溶媒は、中でも、n-ヘキサン、n-ヘプタン、n-オクタン、ベンゼン、トルエン、キシレン等がさらに好ましい。
 <添加剤>
 本発明において、エマルションをより安定化させる目的で、本発明の効果を損なわない範囲で、水相に添加剤を加えてもよい。このような添加剤としては、炭酸ナトリウム、炭酸カルシウム、炭酸カリウム、リン酸ナトリウム、リン酸カリウム、リン酸カルシウム、塩化ナトリウム、塩化カリウム等の水溶性の塩が挙げられる。これらの添加剤は、単独で、あるいは、2種以上を組み合わせて用いることもできる。
 <触媒>
 (ウレタン化触媒)
 本発明において、(B12)成分であるウレタンプレポリマーを合成する場合や、中空マイクロバルーンがウレタン(ウレア)樹脂からなる場合に用いられるウレタン化触媒は、任意の適切なものが何ら制限なく使用できる。具体的に例示すると、トリエチレンジアミン、ヘキサメチレンテトラミン、N,N-ジメチルオクチルアミン、N,N,N′,N′-テトラメチル-1,6-ジアミノヘキサン、4,4′-トリメチレンビス(1-メチルピペリジン)、1,8-ジアザビシクロ-(5,4,0)-7-ウンデセン、ジメチルスズジクロライド、ジメチルスズビス(イソオクチルチオグリコレート)、ジブチルスズジクロライド、ジブチルチンジラウレート、ジブチルスズマレエート、ジブチルスズマレエートポリマー、ジブチルスズジリシノレート、ジブチルスズビス(ドデシルメルカプチド)、ジブチルスズビス(イソオクチルチオグリコレート)、ジオクチルスズジクロライド、ジオクチルスズマレエート、ジオクチルスズマレエートポリマー、ジオクチルスズビス(ブチルマレエート)、ジオクチルスズジラウレート、ジオクチルスズジリシノレート、ジオクチルスズジオレエート、ジオクチルスズジ(6-ヒドロキシ)カプロエート、ジオクチルスズビス(イソオクチルチオグリコレート)、ジドデシルスズジリシノレート、各種金属塩、たとえば、オレイン酸銅、アセチルアセトン酸銅、アセチルアセトン酸鉄、ナフテン酸鉄、乳酸鉄、クエン酸鉄、グルコン酸鉄、オクタン酸カリウム、チタン酸2-エチルヘキシル等が挙げられる。
 (アミド化触媒)
 中空マイクロバルーンがアミド樹脂からなる場合に用いられるアミド化触媒は、任意の適切なものが何ら制限なく使用できる。具体的に例示すると、ホウ素やリン酸二水素ナトリウム等が挙げられる。
 <中空マイクロバルーンの粒子径>
 本発明の中空マイクロバルーンの平均粒子径は、特に制限されるものではないが、1μm~500μmであることが好ましく、5μm~200μmであることがより好ましく、10~100μmであることが最も好ましい。この範囲にあることで、CMP用研磨パッドに配合した場合、優れた研磨特性を発現することができる。
 中空マイクロバルーンの平均粒子径の測定は、公知の方法を採用すればよく、具体的には、画像解析法を用いることができる。画像解析法を用いることで容易に粒子サイズを測定できる。なお、平均粒径は一次粒子の平均粒径である。画像解析法による平均粒子径の測定は、例えば走査型電子顕微鏡(SEM)などを用いて行うことができる。
 <中空マイクロバルーンの嵩密度>
 本発明の中空マイクロバルーンの嵩密度は、特に制限されるものではないが、0.01~0.5g/cmであることが好ましく、0.02~0.3g/cmであることがより好ましい。この範囲にあることでCMP用研磨パッドの研磨面に最適な細孔を形成することが可能となる。
 <中空マイクロバルーンの灰分>
 本発明の中空マイクロバルーンの灰分は、特に制限されるものではないが、後述する実施例に記載した方法において、該中空マイクロバルーンを100質量部あたり、0.5質量部以下であることが好ましく、0.3質量部以下であることがさらに好ましく、0.1質量部以下であることがより好ましく、測定されないことが最も好ましい。この範囲にあることで、CMP用研磨パッドに用いた際に、ウエハのディフェクトを低減することが可能となる。
 <CMP用研磨パッドへの応用>
 本発明のCMP用研磨パットは、上記した中空マイクロバルーンを含んでなるものである。具体的には、CMP用研磨パットは、上記した中空マイクロバルーンを含有する樹脂であることが好ましい。該中空マイクロバルーンを含有した樹脂により、優れた耐久性、および、優れた研磨特性を発現したCMP用研磨パッドとすることができる。
 このようなCMP用研磨パッドを作製する方法としては、公知の方法が制限なく採用することができ、本発明の中空マイクロバルーンを含有した樹脂を、切断、表面研磨をすることで、該樹脂の研磨表面に細孔を有するCMP用研磨パッドとすることができる。
 前記樹脂としては、特に制限されないが、本発明においては、中でもウレタン樹脂が好適である。
 本発明の中空マイクロバルーンを含有するウレタン樹脂からなるCMP用研磨パッドの場合、用いる中空マイクロバルーンを含有するウレタン樹脂は、特に制限なく公知の方法により作製すればよく、たとえば、イソシアネート基を有する化合物、イソシアネート基と重合可能な活性水素を持つ活性水素基を有する化合物、および本発明の中空マイクロバルーンを均一混合・分散させた後に、硬化させる方法が挙げられる。
 ここで、イソシアネート基を有する化合物としては、特に限定されないが、例えば上記した(B1)成分を使用することができる。(B1)成分の中でも、CMP用研磨パッドの研磨特性向上の観点から、(B12)ウレタンプレポリマーが好ましい。
 イソシアネート基と重合可能な活性水素を持つ活性水素基を有する化合物としては、特に限定されないが、例えば上記した(A)成分、(B2)成分、(B3)成分、及び(B4)成分からなる群から選択される1種以上を含むことが好ましい。中でも、イソシアネート基と重合可能な活性水素を持つ活性水素基を有する化合物としては、CMP用研磨パッドの研磨特性を向上させる観点から、(A)成分を少なくとも含むことが好ましく、(A)成分と(B3)成分とを併用することがより好ましい。
 硬化方法も特に制限なく公知の方法を採用すればよく、具体的には、ワンポット法、プレポリマー法等の乾式法、および、溶剤を用いた湿式法等を用いることができる。その中でも、乾式法が好適に採用される。
 前記したウレタン樹脂からなるCMP用研磨パッドの場合、本発明の中空マイクロバルーンのウレタン樹脂への配合量は、イソシアネート基を有する化合物、および、イソシアネート基と重合可能な活性水素を持つ活性水素基を有する化合物の合計100質量部あたり、本発明の中空マイクロバルーンを0.1~20質量部とすることが好ましく、0.2~10質量部とすることがより好ましく、0.5~8質量部とすることがさらに好ましい。この範囲にすることにより、優れた研磨特性を発現することが可能である。
 また、本発明においては、前記イソシアネート基と重合可能な活性水素を持つ活性水素基を有する化合物として、本発明の(A)環状多官能モノマーを含んでいることが、さらに研磨特性を向上させる点で好適である。
 本発明において、CMP用研磨パッドの様態は、特に制限されるものではなく、たとえば、その表面に溝構造を形成してもよい。該CMP用研磨パッドの溝構造としては、スラリーを保持・更新する形状とすることが好ましく、具体的には、X(ストライプ)溝、XY格子溝、同心円状溝、貫通孔、貫通していない穴、多角柱、円柱、螺旋状溝、偏心円状溝、放射状溝、およびこれらの溝を組み合わせたものが挙げられる。
 また、上記CMP用研磨パッドの溝構造の作製方法は、特に限定されるものではない。たとえば、所定の溝構造を有した金型に前記した化合物等を流しこみ、硬化させることにより作製する方法、あるいは、得られた樹脂を用いて溝構造を作成する方法、たとえば、所定サイズのバイトのような治具を用い機械切削する方法、所定の表面形状を有したプレス板で樹脂をプレスして作製する方法、フォトリソグラフィを用いて作製する方法、印刷手法を用いて作製する方法、炭酸ガスレーザー等レーザー光による作製方法などが挙げられる。
 次に、実施例および比較例を用いて本発明を詳細に説明するが、本発明は本実施例に限定されるものではない。以下の実施例および比較例において、上記の各成分および評価方法等は、以下のとおりである。
(分子量測定;ゲルパーミエーションクロマトグラフィー(GPC測定))
 GPC測定は、装置として液体クロマトグラフ装置(日本ウォーターズ社製)を用いた。カラムは分析するサンプルの分子量に応じて、昭和電工株式会社製Shodex GPC KF-802(排除限界分子量:5,000)、KF802.5(排除限界分子量:20,000)、KF-803(排除限界分子量:70,000)、KF-804(排除限界分子量:400,000)、KF-805(排除限界分子量:2,000,000)を適宜使用した。また、展開液としてジメチルホルムアミドを用い、流速1ml/min、温度40℃の条件にて測定した。標準試料にポリスチレンを用い、比較換算により重量平均分子量を求めた。なお、検出器には示差屈折率計を用いた。
(灰分)
 中空マイクロバルーンを600℃の温度で燃焼した燃焼残さの質量と、燃焼前の中空マイクロバルーンの質量との割合である。
(残存スズ量)
 (A)環状多官能モノマーの残存スズ量は、ICP発光分光分析装置(サーモフィッシャーサイエンティフィック株式会社製i CAP 6500 DUO)を用い、溶媒にメチルイソブチルケトンとイソプロピルアルコールの混合液を使用し測定した。
<各成分>
(A)環状多官能モノマー
(A-1の製造)
 ヒドロキシプロピル化β-シクロデキストリン(株式会社シクロケム製):10gとε-カプロラクトン:32.0gを乾燥窒素をフローしながら130℃で攪拌し均一溶液にした後、20kPaの減圧下で5時間かけて脱水を実施し、2-エチルヘキサン酸錫(II):0.04gを加え、16時間反応させ目的物であるA-1を取得した。A-1の物性は以下の通りであった。
重量平均分子量Mw(GPC):4800
分散度(GPC):1.05
側鎖の修飾度:0.43(%で表示すると43%となる)
環状分子に導入された側鎖の数:9個
側鎖の末端に導入された重合性官能基の種類:水酸基
側鎖の分子量:数平均分子量で約560
60℃における粘度:3,800mPa・s
残存スズ量:300ppm
(B)前記(A)環状多官能モノマー以外の重合性モノマー
(B1)成分;少なくとも2個のイソシアネート基を有する多官能イソシアネート化合物
(B12)成分;ウレタンプレポリマー
Pre-1:イソ(チオ)シアネート当量が905の末端イソシアネートウレタンプレポリマー
(Pre-1の製造方法)
 窒素導入管、温度計、攪拌機を備えたフラスコに窒素雰囲気下中、2,4-トリレンジイソシアネート:50g、ポリオキシテトラメチレングリコール(数平均分子量;1,000):90gとジエチレングリコール:12gを、80℃で6時間反応させ、イソシアネート当量が905の末端イソシアネートウレタンプレポリマー(Pre-1)を得た。
(B3)成分;多官能アミノ化合物
 EDA;エチレンジアミン
(B5)成分;メラミンホルムアルデヒドプレポリマー化合物
 ニカレジンS-260(日本カーバイト工業株式会社製)
(有機溶媒)
 Tol;トルエン
(乳化剤)
 PVA:完全けん化型で平均重合度約500のポリビニルアルコール
<実施例1>
 トルエン:15質量部に、(A)成分のA-1:0.11質量部と(B1)成分のPre-1:1質量部を溶解して(a)成分を調製した。次に、水:150質量部にPVA:10質量部を溶解して(b)成分を調製した。次に、調製した(a)成分と(b)成分を混合し、高速せん断式分散機を用いて2,000rpm×10分、25℃の条件で攪拌し、O/Wエマルションを調製した。調製したO/Wエマルションに、25℃で、水:30質量部にエチレンジアミン:0.04質量部を溶解した水溶液を滴下した。滴下後、25℃で60分ゆっくりと攪拌した後、60℃で4時間攪拌し、ウレタン(ウレア)樹脂からなるマイクロバルーン分散液を得た。得られたマイクロバルーン分散液を濾過によりマイクロバルーンを取り出し、温度60℃で真空乾燥24時間し、その後、分級機により篩い分け、中空マイクロバルーン1を得た。なお、マイクロバルーン分散液を濾過した際、濾液にはエチレンジアミンは検出されなかった。
 取得した中空マイクロバルーン1中の(A)成分と(B)成分の合計100質量部に対する(A)成分は9.6質量部であった。
また、中空マイクロバルーン1の平均粒子径は約30μmであり、嵩密度は0.1g/cmであった。灰分は測定されなかった。
<比較例1>
 実施例1において、(A)成分を用いず、エチレンジアミンを0.05質量部に変更した以外は、同様の手法で中空マイクロバルーン2を作成した。
 取得した中空マイクロバルーン2中の(A)成分と(B)成分の合計100質量部に対する(A)成分の割合は0質量部であった。
また、中空マイクロバルーン2の平均粒子径は約25μmであり、嵩密度は0.1g/cmであった。灰分は測定されなかった。
<実施例2>
(中空マイクロバルーンを用いたCMP用研磨パッドの製造方法)
 上記で製造したA-1:12質量部と4,4’-メチレンビス(o-クロロアニリン)(MOCA):5.5質量部とを120℃で混合して均一溶液にした後、十分に脱気し、A液を調製した。別途、70℃に加温した上記で製造したPre-1:82.5質量部に、実施例1で得られた中空マイクロバルーン1:3.3質量部を加え、自転公転攪拌機で攪拌して均一な溶液とした。そこに、100℃に調製したA液を加え、自転公転攪拌機で攪拌して均一な組成物とした。前記組成物を金型へ注入し、100℃で15時間硬化させ、中空マイクロバルーンを含有するウレタン樹脂を得た。
 得られたウレタン樹脂をスライスして、以下に示す厚さ1mmのウレタン樹脂からなるCMP用研磨パッドを得た。
 上記で得られたウレタン樹脂からなるCMP用研磨パッドの密度は0.80g/cm、研磨レートは5.1μm/hr、被研磨物であるウエハの研磨後の表面粗さは0.14nm、CMP用研磨パッドの耐摩耗性評価のために実施したテーバー摩耗試験におけるテーバー摩耗量は14mgであった。各評価方法を以下に示す。
(1)研磨レート:研磨条件を下記に示す。ウエハは10枚を使用した。
 下記条件にて、研磨を実施した際の研磨レートを測定した。研磨レートは10枚ウエハの平均値である。
 CMP用研磨パッド:表面に同心円状の溝を形成した、大きさ500mmφ、厚さ1mmのパッド
 被研磨物:2インチサファイアウエハ
 スラリー:FUJIMI コンポール 80原液
 圧力:4psi
 回転数:45rpm
 時間:1時間
(2)表面粗さ(Ra):上記(1)で記載した条件で研磨した際の10枚のウエハの表面をナノサーチ顕微鏡SFT-4500(株式会社島津製作所製)により表面粗さ(Ra)を測定した。表面粗さは10枚の平均値である。
(3)耐摩耗性:テーバー社製の5130型の装置で摩耗量を測定した。荷重は1Kg、回転速度は60rpm、回転数は1000回転、摩耗輪はH-18でテーバー摩耗試験を同一サンプルで同じ箇所で2回実施し、その平均値で評価した。
<実施例3、比較例2~3>
 表1に示した組成を用いた以外は、実施例2と同様な方法でウレタン樹脂からなるCMP用研磨パッドを作製し、評価を行なった。結果を表1に記載する。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から分かるように、本発明の(A)環状多官能モノマーを含有してなる中空マイクロバルーンを用いたCMP用研磨パッドは、優れた研磨レートや被研磨物のウエハをより平滑に研磨する等の研磨特性が向上している。また、本発明の中空マイクロバルーンを製造する際のハンドリング性は良好であった。
 また、前記したとおり、CMP用研磨パッド母体の樹脂組成にも(A)環状多官能モノマー成分を含有しているほうが好ましいが、実施例3と比較例3の比較から分かるように、CMP用研磨パッド母体の樹脂組成として(A)成分を用いていない場合でも、本発明の中空マイクロバルーンを用いることで、研磨特性を向上させることが可能となる。

 

Claims (7)

  1.  (A)末端に重合性官能基が導入された側鎖が少なくとも3個以上導入されている側鎖含有環状分子と、(B)前記(A)末端に重合性官能基が導入された側鎖が少なくとも3個以上導入されている側鎖含有環状分子以外の重合性モノマーとを含む重合性組成物を重合させた樹脂からなる中空マイクロバルーン。
  2.  前記重合性組成物に含まれる(A)末端に重合性官能基が導入された側鎖が少なくとも3個以上導入されている側鎖含有環状分子の含有量が、(A)末端に重合性官能基が導入された側鎖が少なくとも3個以上導入されている側鎖含有環状分子の含有量と(B)前記(A)末端に重合性官能基が導入された側鎖が少なくとも3個以上導入されている側鎖含有環状分子以外の重合性モノマーの合計100質量部に対し、1~50質量部である請求項1に記載の中空マイクロバルーン。
  3.  前記樹脂が、ウレタン(ウレア)樹脂、メラミン樹脂、尿素樹脂、またはアミド樹脂である請求項1または請求項2に記載の中空マイクロバルーン。
  4.  前記(A)末端に重合性官能基が導入された側鎖が少なくとも3個以上導入されている側鎖含有環状分子の重合性官能基が、水酸基またはアミノ基である請求項1~3のいずれか1項に記載の中空マイクロバルーン。
  5.  前記(A)末端に重合性官能基が導入された側鎖が少なくとも3個以上導入されている側鎖含有環状分子の環状分子がシクロデキストリンである請求項1~4のいずれか1項に記載の中空マイクロバルーン。
  6.  前記(A)末端に重合性官能基が導入された側鎖が少なくとも3個以上導入されている側鎖含有環状分子の60℃での粘度が500mPa・s~50,000mPa・sである請求項1~5のいずれか1項に記載の中空マイクロバルーン。
  7.  請求項1~6のいずれか1項に記載の中空マイクロバルーンを含んでなるCMP用研磨パッド。

     
PCT/JP2022/003093 2021-01-29 2022-01-27 中空マイクロバルーン WO2022163756A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP22745975.7A EP4286439A1 (en) 2021-01-29 2022-01-27 Hollow microballoon
KR1020237025596A KR20230135082A (ko) 2021-01-29 2022-01-27 중공 마이크로벌룬
JP2022578476A JPWO2022163756A1 (ja) 2021-01-29 2022-01-27
CN202280011769.6A CN116802774A (zh) 2021-01-29 2022-01-27 中空微球
US18/274,188 US20240101751A1 (en) 2021-01-29 2022-01-27 Hollow microballoon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021012696 2021-01-29
JP2021-012696 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022163756A1 true WO2022163756A1 (ja) 2022-08-04

Family

ID=82654734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003093 WO2022163756A1 (ja) 2021-01-29 2022-01-27 中空マイクロバルーン

Country Status (7)

Country Link
US (1) US20240101751A1 (ja)
EP (1) EP4286439A1 (ja)
JP (1) JPWO2022163756A1 (ja)
KR (1) KR20230135082A (ja)
CN (1) CN116802774A (ja)
TW (1) TW202244115A (ja)
WO (1) WO2022163756A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004534870A (ja) 2001-05-14 2004-11-18 バイエル アクチェンゲゼルシャフト ウレトジオン、イソシアヌレートおよびイミノオキサジアジンジオン構造を有する脂肪族ポリイソシアネートの製造方法
WO2013176050A1 (ja) 2012-05-23 2013-11-28 シャープ株式会社 潜熱蓄熱部材及びそれを備えた建材、及びマイクロカプセル及びマイクロカプセルを用いた蓄熱材
WO2015159875A1 (ja) 2014-04-15 2015-10-22 宇部興産株式会社 注型熱硬化型ポリウレタンエラストマー
WO2019198675A1 (ja) 2018-04-10 2019-10-17 株式会社トクヤマ ポリロタキサンを用いたウレタン樹脂、および研磨用パッド
WO2019221249A1 (ja) * 2018-05-17 2019-11-21 株式会社トクヤマ 低水分量ポリロタキサンモノマー、および該モノマーを含む硬化性組成物
WO2020032056A1 (ja) * 2018-08-08 2020-02-13 株式会社トクヤマ ポリ擬ロタキサンモノマーを含む硬化性組成物
JP2020076010A (ja) * 2018-11-08 2020-05-21 株式会社トクヤマ ロタキサンモノマー、および該モノマーを含む硬化性組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004534870A (ja) 2001-05-14 2004-11-18 バイエル アクチェンゲゼルシャフト ウレトジオン、イソシアヌレートおよびイミノオキサジアジンジオン構造を有する脂肪族ポリイソシアネートの製造方法
WO2013176050A1 (ja) 2012-05-23 2013-11-28 シャープ株式会社 潜熱蓄熱部材及びそれを備えた建材、及びマイクロカプセル及びマイクロカプセルを用いた蓄熱材
WO2015159875A1 (ja) 2014-04-15 2015-10-22 宇部興産株式会社 注型熱硬化型ポリウレタンエラストマー
WO2019198675A1 (ja) 2018-04-10 2019-10-17 株式会社トクヤマ ポリロタキサンを用いたウレタン樹脂、および研磨用パッド
WO2019221249A1 (ja) * 2018-05-17 2019-11-21 株式会社トクヤマ 低水分量ポリロタキサンモノマー、および該モノマーを含む硬化性組成物
WO2020032056A1 (ja) * 2018-08-08 2020-02-13 株式会社トクヤマ ポリ擬ロタキサンモノマーを含む硬化性組成物
JP2020076010A (ja) * 2018-11-08 2020-05-21 株式会社トクヤマ ロタキサンモノマー、および該モノマーを含む硬化性組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Polyurethane Resin Handbook", 1987, NIKKAN KOGYO SHIMBUN CO

Also Published As

Publication number Publication date
JPWO2022163756A1 (ja) 2022-08-04
KR20230135082A (ko) 2023-09-22
US20240101751A1 (en) 2024-03-28
CN116802774A (zh) 2023-09-22
EP4286439A1 (en) 2023-12-06
TW202244115A (zh) 2022-11-16

Similar Documents

Publication Publication Date Title
JP7130556B2 (ja) ポリロタキサンを用いたウレタン樹脂、および研磨用パッド
JP7545326B2 (ja) ポリロタキンサンを用いたウレタン樹脂、および研磨用パッド
US20230151179A1 (en) Hollow microballoons for cmp polishing pad
CN114728255A (zh) 含离子性基团的微球及其制造方法
WO2022163756A1 (ja) 中空マイクロバルーン
EP4205904A1 (en) Polymerizable functional group-containing microballoon
JP2022013963A (ja) イオン性基含有ロタキンサンモノマーを含む硬化性組成物、および該硬化性組成物からなる研磨用パッド
WO2022138769A1 (ja) 活性水素基含有側鎖を有する環状分子、および該環状分子を含む硬化性組成物
US20220387956A1 (en) Microballoon production method
US20230203234A1 (en) Hollow microballoons
EP4286434A1 (en) Novel fine hollow particles comprising melamine-based resin
WO2023167294A1 (ja) 超臨界液体を用いた微小中空粒子の製造方法
CN116745333A (zh) 由三聚氰胺系树脂形成的新型的微小中空颗粒
WO2022163766A1 (ja) 環状多官能モノマーを含む硬化性組成物
WO2022163765A1 (ja) 環状モノマーを含有する新規な硬化性組成物
WO2021241709A1 (ja) 多官能活性水素基含有スルホン酸4級アンモニウム塩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745975

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022578476

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18274188

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237025596

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280011769.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022745975

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022745975

Country of ref document: EP

Effective date: 20230829