WO2021241708A1 - 積層研磨パッド - Google Patents

積層研磨パッド Download PDF

Info

Publication number
WO2021241708A1
WO2021241708A1 PCT/JP2021/020276 JP2021020276W WO2021241708A1 WO 2021241708 A1 WO2021241708 A1 WO 2021241708A1 JP 2021020276 W JP2021020276 W JP 2021020276W WO 2021241708 A1 WO2021241708 A1 WO 2021241708A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecule
polymerizable
monomer
group
component
Prior art date
Application number
PCT/JP2021/020276
Other languages
English (en)
French (fr)
Inventor
康智 清水
剛美 川崎
潤二 百田
光喜 戸知
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to JP2022526649A priority Critical patent/JPWO2021241708A1/ja
Priority to KR1020227041005A priority patent/KR20230017190A/ko
Priority to CN202180037289.2A priority patent/CN115697630A/zh
Priority to US17/927,669 priority patent/US20230211454A1/en
Publication of WO2021241708A1 publication Critical patent/WO2021241708A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/22Lapping pads for working plane surfaces characterised by a multi-layered structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment

Definitions

  • the present invention relates to a laminated polishing pad.
  • the polishing member is a material used when the mating member (member to be polished) is flattened with an abrasive. Specifically, the polishing member is used when the surface of the member to be polished is flattened by supplying a polishing agent such as a slurry to the surface and sliding it against the surface. .. For example, a polishing pad is included.
  • urethane resins are used for such polishing members.
  • the polishing member is used as a polishing pad material (hereinafter, may be referred to as a polishing pad) in the CMP (Chemical Mechanical Polishing) method.
  • the CMP method is a polishing method that imparts excellent surface flatness, and is particularly adopted in a manufacturing process of a liquid crystal display (LCD), a glass substrate for a hard disk, a silicon wafer, and a semiconductor device.
  • LCD liquid crystal display
  • a glass substrate for a hard disk a glass substrate for a hard disk
  • silicon wafer a semiconductor device.
  • a method of supplying a slurry (abrasive) in which abrasive grains are dispersed in an alkaline solution or an acid solution during polishing is generally adopted. That is, the member to be polished is flattened by the mechanical action of the abrasive grains in the slurry and the chemical action of the alkaline solution or the acid solution.
  • the slurry is supplied to the surface of the member to be polished, and the surface of the member to be polished is flattened by contacting the surface with the pad material for polishing while sliding.
  • a polishing material made of a polyurethane (urea) resin obtained from a urethane-based curable composition is known (see Patent Document 1).
  • polishing pad As a required characteristic of the polishing pad, in addition to the local flattening ability, the ability to uniformly polish the entire wafer is required.
  • conventional polishing pads made of polyurethane (urea) resin have relatively high hardness and are not easily deformed, and are generally excellent in excellent polishing rate, local flattening ability, and repeated polishing accuracy.
  • the cushioning property is insufficient, it is difficult to apply a uniform pressure to the entire surface of the wafer, and the polishing accuracy tends to decrease.
  • Patent Document 2 discloses that by controlling the compressibility and thickness of the polishing layer and the base layer, the followability to the wafer surface is ensured, and the performance of both uniformity and flatness is obtained.
  • an object of the present invention is to provide a laminated polishing pad having a base layer and capable of exhibiting excellent polishing characteristics.
  • the present inventors have diligently studied to solve the above problems.
  • the present inventors considered that a more excellent CMP laminated polishing pad could be obtained by using a cured product into which polyrotaxane was introduced as an underlayer, and conducted various studies. As a result, they have found that the above-mentioned problems can be solved by containing a resin obtained by polymerizing a polymerizable composition having a specific composition in the CMP laminated polishing pad having at least a polishing layer and a base layer.
  • the present invention has been completed.
  • a CMP laminated polishing pad provided with at least a polishing layer and a base layer, wherein the base layer is (A) a polyrotaxane monomer having at least two polymerizable functional groups in the molecule, and (B) the above (A).
  • a CMP laminated polishing pad comprising a resin obtained by polymerizing a polymerizable composition containing a polymerizable monomer other than a polyrotaxan monomer having at least two polymerizable functional groups in the molecule.
  • the content of the polyrotaxane monomer having at least two polymerizable functional groups in the molecule (A) in the polymerizable composition is the content of the polyrotaxane monomer having at least two polymerizable functional groups in the molecule (A). It is 3 to 50 parts by mass with respect to 100 parts by mass in total of the content and (B) the content of the polymerizable monomer other than the polyrotaxane monomer having at least two polymerizable functional groups in the molecule (A).
  • the CMP laminated polishing pad according to the above [1].
  • the polyrotaxane monomer having at least two polymerizable functional groups in the molecule (A) is formed on at least a part of the cyclic molecule in the complex molecular structure composed of the axial molecule and the cyclic molecule enclosing the axial molecule.
  • a polymerizable monomer other than the polyrotaxane monomer having at least two polymerizable functional groups in the (B) and (A) molecules is an iso (thio) cyanate group having at least two iso (thio) cyanate groups as the polymerizable functional group.
  • Thio The CMP laminated polishing pad according to any one of the above [1] to [3], which is a cyanate compound.
  • [5] The CMP laminated polishing pad according to any one of [1] to [4] above, wherein the underlying layer has a compressibility of 1.0% or more and 40.0% or less.
  • the CMP laminated polishing pad of the present invention has an excellent polishing rate, flatness and uniformity with respect to the object to be polished.
  • polyrotaxane is provided with stress dispersion performance that can relax stress concentration sites and excellent elastic recovery performance against deformation by moving cyclic molecules in polyrotaxane on axial molecules.
  • polyrotaxane is not simply blended with the resin constituting the base layer of the CMP laminated polishing pad, but polyrotaxane is used as a monomer to make it one component of the resin constituting the base layer. It is considered that the above-mentioned stress dispersion performance and elastic recovery performance are imparted to the entire resin, and it becomes possible to provide an excellent CMP laminated polishing pad.
  • the CMP laminated polishing pad of the present invention is a CMP laminated polishing pad provided with at least a polishing layer and a base layer, and the base layer is (A) a polyrotaxane monomer having at least two polymerizable functional groups in a molecule (hereinafter referred to as “polyrotaxane monomer”).
  • polyrotaxane monomer a polyrotaxane monomer having at least two polymerizable functional groups in a molecule
  • (B) Polymerizable Monomer” or “(B) Component) is a CMP laminated polishing pad comprising a resin obtained by polymerizing a polymerizable composition.
  • Polyrotaxane is a known compound and has a complex molecular structure formed of a chain-shaped axial molecule and a cyclic molecule. That is, the structure is such that the cyclic molecule is included in the chain-shaped axial molecule, and the axial molecule penetrates the inside of the ring of the cyclic molecule. Therefore, since the cyclic molecule can freely slide on the axial molecule, bulky terminal groups are usually formed at both ends of the axial molecule, and the cyclic molecule is prevented from falling off from the axial molecule.
  • the polyrotaxane has a cyclic molecule that can slide on the axis molecule. Therefore, it is considered that a performance called sliding elasticity can be exhibited and excellent characteristics can be exhibited.
  • polyrotaxane as one component of the resin constituting the base layer of the CMP laminated polishing pad, it is possible to exhibit excellent polishing characteristics.
  • the (A) polyrotaxane monomer used in the present invention is not particularly limited as long as it is a polyrotaxane having a polymerizable functional group polymerizable with the component (B) described later, and a known method, for example, International Publication No. WO2015 / 06789 It can be synthesized by the method described in 1.
  • the composition of the above component (A) will be described in detail.
  • the axis molecule of the (A) polyrotaxane monomer used in the present invention is not particularly limited as long as it can penetrate the ring of the cyclic molecule, and a linear or branched polymer is generally used.
  • Polymers used for such shaft molecules include polyvinyl alcohol, polyvinylpyrrolidone, cellulose-based resins (carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, etc.), polyacrylamide, polyethylene oxide, polyethylene glycol, polypropylene glycol, polyvinyl acetal, polyvinyl.
  • Methyl ether polyamine, polyethyleneimine, casein, gelatin, starch, olefin resin (polyethylene, polypropylene, etc.), polyester, polyvinyl chloride, styrene resin (polystyrene, acrylonitrile-styrene copolymer resin, etc.), acrylic resin (poly) (Meta) acrylate acid, polymethylmethacrylate, polymethylacrylate, acrylonitrile-methyl acrylate copolymer resin, etc.), polycarbonate, polyurethane, vinyl chloride-vinyl acetate copolymer resin, polyvinyl butyral, polyisobutylene, polytetrahydrogen, polyaniline, acrylonitrile- Butadiene-styrene copolymer (ABS resin), polyamide (nylon, etc.), polyimide, polydiene (polyisoprene, polybutadiene, etc.), polysiloxane (polydi
  • suitable polymers used for the shaft molecule are polyethylene glycol, polyisoprene, polyisobutylene, polybutadiene, polypropylene glycol, polytetrahydrofuran, polydimethylsiloxane, polyethylene, polypropylene, polyvinyl alcohol or polyvinylmethyl ether.
  • Polyethylene glycol is most suitable.
  • the molecular weight of the polymer used for the above-mentioned axial molecule is not particularly limited, but if it is too large, the viscosity increases when mixed with other polymerizable monomers, which makes it difficult to handle and is compatible. Tends to get worse.
  • the weight average molecular weight Mw of the shaft molecule is preferably 400 to 100,000, more preferably 1,000 to 50,000, and particularly preferably in the range of 2,000 to 30,000.
  • the weight average molecular weight Mw is a value measured by the gel permeation chromatography (GPC) measuring method described in Examples described later.
  • the polymer used for the shaft molecule described above preferably has bulky groups at both ends so that the ring penetrating the ring of the cyclic molecule does not separate.
  • the bulky group formed at both ends of the polymer used for the shaft molecule is not particularly limited as long as it is a group that prevents the elimination of the cyclic molecule from the shaft molecule, but from the viewpoint of bulkiness, the adamantyl group, Examples thereof include a trityl group, a fluoresenyl group, a dinitrophenyl group, and a pyrenyl substrate, and an adamantyl group is particularly preferable in terms of ease of introduction and the like.
  • the cyclic molecule of the (A) polyrotaxane monomer used in the present invention may have a ring having a size capable of including the above-mentioned axial molecule, and such a ring may be a cyclodextrin ring or a crown.
  • a ring having a size capable of including the above-mentioned axial molecule may be a cyclodextrin ring or a crown.
  • examples include an ether ring, a benzocrown ring, a dibenzocrown ring, and a dicyclohexanocrown ring, and as described later, a cyclodextrin ring having a reactive functional group in the cyclic molecule is particularly preferable.
  • the cyclodextrin ring includes an ⁇ -form (ring inner diameter 0.45 to 0.6 nm), a ⁇ -form (ring inner diameter 0.6 to 0.8 nm), and a ⁇ -form (ring inner diameter 0.8 to 0.95 nm). .. It is also possible to use a mixture of these.
  • the ⁇ -cyclodextrin ring and the ⁇ -cyclodextrin ring are particularly preferable, and the ⁇ -cyclodextrin ring is the most preferable.
  • one or more cyclic molecules are included in one axis molecule.
  • the maximum number of cyclic molecules that can be included in one axis molecule is 1.0, the maximum number of cyclic molecules that can be included is preferably 0.8 or less. If the number of inclusions of the cyclic molecule is too large, the cyclic molecule will be densely present for one axis molecule. As a result, the mobility (slide width) tends to decrease. In addition, the molecular weight of the (A) polyrotaxane monomer itself increases. Therefore, when used in a polymerizable composition, the handleability of the polymerizable composition tends to decrease. Therefore, more preferably, one axis molecule is encapsulated by at least two or more cyclic molecules, and the number of inclusions of the cyclic molecule is preferably in the range of 0.5 or less at the maximum.
  • the maximum number of inclusions of the cyclic molecule for one axial molecule can be calculated from the length of the axial molecule and the thickness of the ring of the cyclic molecule.
  • the maximum number of inclusions is calculated as follows. That is, two repeating units [-CH2-CH2O-] of polyethylene glycol approximate the thickness of one ⁇ -cyclodextrin ring. Therefore, the number of repeating units is calculated from the molecular weight of the polyethylene glycol, and 1/2 of the number of repeating units is obtained as the maximum number of inclusions of the cyclic molecule.
  • the maximum number of inclusions is 1.0, and the number of inclusions of the cyclic molecule is adjusted within the above-mentioned range.
  • the above cyclic molecule can be used alone or in combination of two or more.
  • the number of polymerizable functional groups of the (A) polyrotaxane monomer used in the present invention may be two or more introduced in one molecule, and the polymerizable functional group is preferably possessed by a cyclic molecule. .. By doing so, it becomes possible to sufficiently exhibit the sliding effect of the cyclic molecule, which is a characteristic of polyrotaxane, and it is possible to exhibit excellent mechanical properties.
  • a side chain is introduced into the above-mentioned cyclic molecule in consideration of adjusting the compatibility with the (B) polymerizable monomer in order to exhibit better properties. Is preferable.
  • the side chain has a polymerizable functional group. By doing so, it is possible to exhibit more excellent properties because it binds to the (B) polymerizable monomer via the side chain.
  • the side chain is not particularly limited, but it is preferably formed by repeating an organic chain having a carbon number in the range of 3 to 20. Further, a molecule having a different type of side chain and a different number average molecular weight may be introduced into the cyclic molecule.
  • the number average molecular weight of such side chains is in the range of 45 to 10000, preferably 55 to 5000, more preferably 100 to 1500.
  • the number average molecular weight of this side chain can be adjusted by the amount of the substance used at the time of introduction of the side chain, and can be obtained by calculation. Further, when it is obtained from the obtained (A) polyrotaxane monomer, it can be obtained from the measurement of 1 H-NMR.
  • the side chain is too short (the molecular weight of the side chain is too small), the compatibility with other (B) polymerizable monomers tends to decrease. Further, if the side chain is too short, when a polymerizable functional group is introduced into the side chain, the mechanical properties of the obtained cured product tend to deteriorate, and the effect exerted in the cured product tends to decrease. It is in. On the other hand, if the side chain is too long, the viscosity will increase when mixed with (B) the polymerizable monomer, causing poor appearance of the cured product, reducing the hardness of the cured product, and reducing wear resistance. It tends to decrease.
  • the side chain is usually introduced by utilizing the reactive functional group of the cyclic molecule and modifying the reactive functional group.
  • the (A) polyrotaxane monomer in which the cyclic molecule has a hydroxyl group and the hydroxyl group is modified to introduce a side chain is preferable.
  • the ⁇ -cyclodextrin ring has 18 hydroxyl groups as reactive functional groups.
  • the side chain may be introduced by modifying this hydroxyl group. That is, a maximum of 18 side chains can be introduced into one ⁇ -cyclodextrin ring.
  • the degree of modification is an average value.
  • the reactive functional group (for example, hydroxyl group) of the cyclic molecule is lower in reactivity than the reactive functional group (for example, hydroxyl group) of the side chain. Therefore, even if the degree of modification is not 100%, more excellent effects can be exhibited as long as it is within the above range.
  • the hydroxyl group corresponds to a polymerizable functional group
  • a hydroxyl group in which the cyclic molecule is a cyclodextrin ring and the side chain is not introduced in the hydroxyl group of the cyclodextrin ring is also regarded as a polymerizable functional group.
  • the side chain is bonded to 9 of the 18 OH groups of the ⁇ -cyclodextrin ring, the degree of modification is 50%.
  • the side chain may be linear or branched as long as the molecular weight is within the above-mentioned range.
  • a known method for example, the method or compound disclosed in International Publication No. WO2015 / 159875 may be appropriately used. Specifically, ring-opening polymerization; radical polymerization; cationic polymerization; anionic polymerization; atom transfer radical polymerization, RAFT polymerization, living radical polymerization such as NMP polymerization and the like can be used.
  • a side chain having an appropriate size can be introduced by reacting an appropriately selected compound with the reactive functional group of the cyclic molecule.
  • ring-opening polymerization can introduce side chains derived from cyclic compounds such as cyclic ethers, cyclic siloxanes, cyclic lactones, cyclic lactams, cyclic acetals, cyclic amines, cyclic carbonates, cyclic imino ethers, cyclic thiocarbonates and the like. ..
  • cyclic compounds it is preferable to use cyclic ether, cyclic lactone, and cyclic lactam from the viewpoint of high reactivity and easy preparation of size (molecular weight).
  • a hydroxyl group is introduced at the end of the side chain, and the side chain introduced by ring-opening polymerization of cyclic lactam is said.
  • An amino group will be introduced at the end of the side chain.
  • Suitable cyclic ethers, cyclic lactones are disclosed in WO 2015/159875.
  • 4-membered ring lactams such as 4-benzoyloxy-2-azetidinone, 5-membered ring lactams such as ⁇ -butyrolactam, 2-azabicyclo (2,2,1) hepta-5-en-3-one, 5-methyl-2-pyrrolidone, etc.
  • 6-membered ring lactam such as 2-piperidone-3-carboxylate ethyl
  • 7-membered ring lactams such as ⁇ -caprolactam and DL- ⁇ -amino- ⁇ -caprolactam, ⁇ -Heptalactam
  • the above cyclic compound can be used alone or in combination of two or more.
  • the side chain introduction compound preferably used is a lactone compound or a lactam compound
  • lactone compounds are ⁇ -caprolactone, ⁇ -acetyl- ⁇ -butyrolactone, ⁇ -methyl- ⁇ -butyrolactone, ⁇ -.
  • Lactones such as valerolactone and ⁇ -butyrolactone, particularly suitable lactam compounds are ⁇ -caprolactam, ⁇ -butyrolactam, DL- ⁇ -amino- ⁇ -caprolactam, and most preferably ⁇ -caprolactone, ⁇ - Caprolactam.
  • the reactive functional group (for example, a hydroxyl group) of the cyclic molecule has poor reactivity, and it is particularly difficult to directly react a large molecule due to steric hindrance or the like.
  • a low molecular weight compound such as propylene oxide is once reacted with a reactive functional group of a cyclic molecule to carry out hydroxypropylation, and the reactivity is high.
  • a means of introducing a side chain can be adopted by ring-opening polymerization using the above-mentioned cyclic compound.
  • the hydroxypropylated portion can also be regarded as a side chain.
  • a group having active hydrogen by introducing a side chain derived from a cyclic compound such as the above-mentioned cyclic acetal, cyclic amine, cyclic carbonate, cyclic imino ether, or cyclic thiocarbonate by ring-opening polymerization.
  • a side chain having a group can be introduced. Specific examples of these cyclic compounds are those described in International Publication No. 2015/06798.
  • the method of introducing a side chain into a cyclic molecule using radical polymerization is as follows.
  • the cyclic molecule may not have an active site that serves as a radical initiator.
  • a compound for forming a radical initiator is reacted with a functional group (for example, a hydroxyl group) of the cyclic molecule to form an active site that becomes the radical initiator. Need to be formed.
  • an organic halogen compound is typical.
  • 2-bromoisobutyryl bromide, 2-bromobutylic acid, 2-bromopropionic acid, 2-chloropropionic acid, 2-bromoisobutyric acid, epichlorohydrin, epibromohydrin, 2-chloroethylisocyanate and the like can be mentioned. be able to. That is, these organic halogen compounds are bonded to the cyclic molecule by reaction with the functional group of the cyclic molecule, and a group containing a halogen atom (organic halogen compound residue) is introduced into the cyclic molecule. ..
  • radicals are generated at the organic halogen compound residues due to the movement of halogen atoms or the like, which serves as the starting point of radical polymerization, and the radical polymerization proceeds.
  • organic halogen compound residue for example, a compound having a functional group such as amine, isocyanate or imidazole is reacted with a hydroxyl group having a cyclic molecule to introduce a functional group other than the hydroxyl group. It is also possible to introduce the above-mentioned organic halogen compound by reacting it with such another functional group.
  • a compound having a functional group such as amine, isocyanate or imidazole
  • the radically polymerizable compound used for introducing a side chain by radical polymerization at least one functional group having an ethylenically unsaturated bond, for example, a (meth) acrylate group, a vinyl group, a styryl group or the like is used.
  • a compound having a compound (hereinafter, also referred to as an ethylenically unsaturated monomer) is preferably used.
  • an oligomer or a polymer having a terminal ethylenically unsaturated bond hereinafter, referred to as a macromonomer
  • a specific example of a suitable ethylenically unsaturated monomer can be used as described in International Publication No. WO2015 / 068798.
  • the reaction of reacting the functional group of the side chain with another compound to introduce a structure derived from the other compound may be referred to as "denaturation".
  • the compound used for denaturation can be used as long as it is a compound capable of reacting with the functional group of the side chain.
  • the compound it is possible to introduce various polymerizable functional groups into the side chain or to modify the compound into a non-polymerizable group.
  • the side chain introduced into the cyclic molecule may have various functional groups in addition to the polymerizable functional group.
  • a part of this side chain may be bonded to the functional group of the ring of the cyclic molecule possessed by another axis molecule. It may also form a crosslinked structure.
  • the polymerizable functional group of the (A) polyrotaxane monomer is preferably one contained in the cyclic molecule or one possessed by the side chain introduced into the cyclic molecule.
  • the end of the side chain is a polymerizable functional group, and two or more polymerizable functional groups introduced at the end of the side chain are introduced per molecule of the (A) polyrotaxane monomer. It suffices if it has been done.
  • the upper limit of the number of polymerizable functional groups is not particularly limited, but the upper limit of the number of polymerizable functional groups is the number of moles of the polymerizable functional groups introduced at the end of the side chain.
  • the value obtained by dividing the polyrotaxane monomer by the weight average molecular weight (Mw) is preferably 10 mmol / g or less.
  • the polymerizable functional group content is a value obtained by dividing the number of moles of the polymerizable functional group introduced at the end of the side chain by the weight average molecular weight (Mw) of the (A) polyrotaxane monomer, in other words.
  • (A) Refers to the number of moles of the polymerizable functional group introduced at the end of the side chain per 1 g of the polyrotaxane monomer.
  • the content of the polymerizable functional group is preferably 0.2 to 8 mmol / g, particularly preferably 0.5 to 5 mmol / g.
  • the weight average molecular weight is a value measured by gel permeation chromatography (GPC) described in Examples described later.
  • the content of the polymerizable functional group not introduced into the side chain and the total polymerizable functional group of the polymerizable functional group introduced into the side chain is preferably in the following range.
  • the content of the total polymerizable functional group is preferably 0.2 to 20 mmol / g. More preferably, the content of the total polymerizable functional group is 0.4 to 16 mmol / g, and particularly preferably 1 to 10 mmol / g.
  • the content of the total polymerizable functional group is the sum of the number of moles of the polymerizable functional group not introduced into the side chain and the number of moles of the polymerizable functional group introduced into the side chain.
  • the number of moles of the polymerizable functional group and the total polymerizable functional group described above is an average value.
  • the polymerizable functional group is not particularly limited as long as it is a group that can be polymerized with (B) the polymerizable monomer.
  • the preferable polymerizable functional group is at least one active hydrogen group selected from the group consisting of a hydroxyl group, an amino group and a thiol group. Having these polymerizable functional groups makes it possible to introduce the (A) polyrotaxane monomer into the urethane (urea) resin described later.
  • the urethane (urea) resin refers to a resin containing at least one bond selected from the group consisting of urethane bond, thiourethane bond, urea bond, and thiourea bond. ..
  • the (A) polyrotaxane monomer most preferably used has polyethylene glycol bonded to both ends at an adamantyl group as a shaft molecule, a cyclic molecule having an ⁇ -cyclodextrin ring, and further, the polycaprolactone.
  • a side chain (OH group at the end) is introduced into the ring.
  • the side chain may be introduced by ring-opening polymerization of ⁇ -caprolactone after hydroxypropylating the hydroxyl group of the ⁇ -cyclodextrin ring.
  • the introduced side chain can have all the ends as hydroxyl groups, or can be denatured into non-reactive groups because the number of moles of hydroxyl groups is desired.
  • the polymerizable monomer other than (B) the (A) polyrotaxane monomer is not particularly limited as long as it is a compound having a group capable of reacting (polymerizing) with the polymerizable functional group of the (A) polyrotaxane monomer. And, as a matter of course, it is a compound other than (A) polyrotaxane monomer.
  • the (B) polymerizable monomer a known compound can be used without any limitation as long as it is a polymerizable monomer that can polymerize with the (A) polyrotaxane monomer. As described above, various polymerizable functional groups can be introduced into the (A) polyrotaxane monomer.
  • the polymerizable monomer may be selected accordingly. For example, the polymerizable monomer described in International Publication No. WO 2015/068798 can be mentioned.
  • the polymerizable functional group of the (A) polyrotaxane monomer is a hydroxyl group, a thiol group, an amino group (the amino group of the present invention is a primary amino group (-NH 2 ), and
  • the (B) polymerizable monomer is a (B1) molecule.
  • examples thereof include an iso (thio) cyanate compound having at least two iso (thio) cyanate groups (hereinafter, also simply referred to as “(B1) iso (thio) cyanate compound” or “(B1) component”).
  • the (B) polymerizable monomer is (B2) an epoxy group-containing monomer having an epoxy group (hereinafter, simply “. (B2) Epoxide group-containing monomer “or” (B2) component ”) can also be selected.
  • the (B) polymerizable monomer contains at least 2 groups selected from (B3) a hydroxyl group and a thiol group.
  • a (chi) all compound having one hereinafter, also simply referred to as “(B3) (chi) all compound” or “(B3) component”
  • an amino group-containing monomer having at least two (B4) amino groups hereinafter, It can be simply selected from "(B4) amino group-containing monomer” or "(B4) component”).
  • the polymerizable composition may contain other components as long as it contains (A) a polyrotaxane monomer and (B) a polymerizable monomer, as long as the effects of the present invention are not impaired.
  • the polymerizable composition may contain other polymerization monomers that do not polymerize with the (A) polyrotaxane monomer.
  • the polymerization reaction is a sequential addition (for example, polycondensation / polyaddition) reaction
  • the polymerization contains the component (A) and the (B) polymerizable monomer that can polymerize with the component (A).
  • the component (A), the component (B), and the other polymerization thereof are present. It can be copolymerized with a sex monomer. That is, in the case of the sequential addition reaction, the polymerizable composition contains not only the (A) component and the (B) polymerizable monomer that can polymerize with the (A) component, but also other copolymerizable polymerizable monomers. Can be done.
  • the polymerizable composition can also consist of a component (A) and a (B) polymerizable monomer that can polymerize with the component (A).
  • the cyanate compound can include the (B3) (chi) all compound and the (B4) amino group-containing monomer.
  • the polymerizable composition may also contain the component (B2).
  • the polymerizable composition may consist of a component (A) and a component (B1) that can be polymerized with the component (A).
  • each component (component (A) and each polymerizable monomer) that reacts with each other is stored separately before polymerization.
  • the polymerizable composition is composed of a monomer having a radically polymerizable group.
  • the (B) polymerizable monomer is a (meth) acrylate compound having a (meth) acrylate group as a (B5) radically polymerizable monomer (hereinafter, also referred to as a component (B)) described in detail below. It is preferable to select from an allyl compound, and particularly preferably to select from a (meth) acrylate compound.
  • the polymerizable functional group of the polyrotaxane monomer has both an active hydrogen-containing group such as a hydroxyl group and a radically polymerizable group
  • the polymerizable monomer is (meth). Only (meth) acrylate compounds and allyl compounds having an acrylate group may be used, and when the component (B1) is contained as the (B) polymerizable monomer, (B2) (B3), (B4), etc. (B5) component can also be contained.
  • the iso (thio) cyanate compound is a compound having at least two groups selected from the group consisting of an isocyanate group and an isothiocyanate group. Of course, compounds having two groups, an isocyanate group and an isothiocyanate group, are also selected. Among them, a compound having 2 to 6 iso (thio) cyanate groups in the molecule is preferable, a compound having 2 to 4 is more preferable, and a compound having 2 to 3 is further preferable.
  • the (B1) iso (thio) cyanate compound is a bifunctional iso (thio) cyanate compound having two groups selected from the group consisting of an isocyanate group and an isothiocyanate group in the (B13) molecule described below. It is produced by the reaction of (hereinafter, also referred to as (B13) component) and (B32) a bifunctional active hydrogen-containing compound having two active hydrogen-containing groups in the molecule (hereinafter, also referred to as (B32) component).
  • (B12) Urethane prepolymer hereinafter, also referred to as (B12) component may be used.
  • the (B12) urethane prepolymer corresponding to the component (B1) which is generally used and contains two or more unreacted isocyanate groups or isothiocyanate groups, can be used in the present invention without any limitation, and is preferable. It is preferably a (B12) urethane prepolymer containing two or more isocyanate groups.
  • the active hydrogen-containing group in the component (B32) is a group selected from a hydroxyl group, a thiol group, and an amino group. Further, as the specific (B32) component, those exemplified for the (B3) (chi) all compound described in detail below or the (B4) amino group-containing monomer are used.
  • the (B1) iso (thio) cyanate compound can be broadly classified into aliphatic isocyanates, alicyclic isocyanates, aromatic isocyanates, isothiocyanates, other isocyanates, and (B12) urethane prepolymers. .. Further, as the component (B1), one kind of compound may be used, or a plurality of kinds of compounds may be used. When a plurality of types of compounds are used, the reference mass is the total amount of the plurality of types of compounds. Specific examples of these (B1) components include the following.
  • Aliphatic isocyanate (B1) component Ethimethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, octamethylene diisocyanate, nonamethylene diisocyanate, 2,2'-dimethylpentane diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate , Decamethylene diisocyanate, Buten diisocyanate, 1,3-butadiene-1,4-diisisethylene, 2,4,4-trimethylhexamethylene diisocyanate, 1,6,11-trimethylundecamethylene diisocyanate, 1,3,6-trimethyl Hexamethylene diisocyanate, 1,8-diisocyanis-4-isocyanismethyloctane, 2,5,7-trimethyl-1,8-diisocyanis-5-isocyanismethyloctane, bis (isocyanisethyl) carbonate, bis
  • Aromatic isocyanate (B1) component xylylene diisocyanate (o-, m-, p-), tetrachloro-m-xylylene diisocyanate, methylenediphenyl-4,4'-diisocyanate, 4-chlor-m-xylylene diisocyanate , 4,5-Dichlor-m-xylylene diisocyanate, 2,3,5,6-tetrabrom-p-xylylene diisocyanate, 4-methyl-m-xylylene diisocyanate, 4-ethyl-m-xylylene diisocyanate, bis (Isocyanate ethyl) benzene, bis (isocyanate propyl) benzene, 1,3-bis ( ⁇ , ⁇ -dimethylisocyanatemethyl) benzene, 1,4-bis ( ⁇ , ⁇ -dimethylisocyanatemethyl) benzene, ⁇ , ⁇ , ⁇ '
  • (B1) component Bifunctional isothiocyanates such as p-phenylenedi isothiocyanate, xylylene-1,4-diisothiocyanate, and ethylidine diisothiocyanate (constituting (B12) urethane prepolymer described in detail below). (B13) corresponds to the component).
  • (B1) component As other isocyanates, a bullet structure, a uretdione structure, and an isocyanurate structure using diisocyanates such as hexamethylene diisocyanate and tolylene diisocyanate as main raw materials (for example, Japanese Patent Application Laid-Open No. 2004-534870).
  • a method for modifying a bullet structure, a uretdione structure, and an isocyanurate structure of an aliphatic polyisocyanate is made polyfunctional as an adduct with a trifunctional or higher polyol such as a polyfunctional isocyanate or a trimethylolpropane. Examples include (disclosed in the book (Keiji Iwata ed., Polyurethane Resin Handbook, Nikkan Kogyo Shimbun (1987)), etc.).
  • (B12) Urethane prepolymer (B1) component having both-terminal iso (thio) cyanate groups
  • the bifunctional component having the above (B13) component and two active hydrogen-containing groups in the (B32) molecule described later.
  • the (B12) urethane prepolymer produced by the reaction with the active hydrogen-containing compound can also be used as the (B1) component.
  • the (B12) urethane prepolymer is not particularly limited, but it is particularly preferable to use the following monomer as the component (B13). Specifically, 1,5-naphthalenedi isocyanate, xylene diisocyanate (o-, m-, p-), 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, phenylenedi isocyanate (o-, m-, p-), 2,2'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate, isophorone diisocyanate, 1,3-bis (isocyanatemethyl) cyclohexane, dicyclohexylmethane-4,4'- It is preferable to use diisocyanate, (bicyclo [2.2.1] heptane-2,5 (2,6) -diy
  • At least one kind of (B32) bifunctional active hydrogen-containing compound having a molecular weight (number average molecular weight) of 300 to 2000 is used.
  • (B12) It is preferable to produce a urethane prepolymer.
  • the active hydrogen-containing group refers to a hydroxyl group, a thiol group, and an amino group.
  • the active hydrogen-containing group in the (B32) bifunctional active hydrogen-containing compound is preferably a hydroxyl group.
  • the (B32) bifunctional active hydrogen-containing compound having a molecular weight (number average molecular weight) of 300 to 2000 can be used in combination of different types or different molecular weights. Further, in order to adjust the hardness and the like of the finally obtained resin, when the (B12) urethane prepolymer is formed, the (B32) component having a molecular weight (number average molecular weight) of 300 to 2000 and the molecular weight are used. It can also be used in combination with the (B32) component having a (number average molecular weight) of 90 to 300.
  • the (B32) component having a molecular weight of 300 to 2000 is 100 parts by mass.
  • the (B32) component having a molecular weight of 90 to 300 is 0 to 50 parts by mass.
  • the (B32) component having a molecular weight of 90 to 300 is 1 to 40 parts by mass.
  • the (B12) urethane prepolymer has the total number of moles (n5) of isocyanate groups and / or isothiocyanate groups in the (B13) bifunctional iso (thio) cyanate compound and the activity of the (B32) bifunctional active hydrogen-containing compound. It is preferable to produce the compound in a range where the total number of moles (n6) of the hydrogen-containing group (hydroxyl group, thiol group, or amino group) is 1 ⁇ (n5) / (n6) ⁇ 2.3.
  • the number of moles (n5) of the isocyanate group and / or isothiocyanate group is, of course, the total of the isocyanate groups and / or isothiocyanate groups of the component (B13).
  • the number of moles (n6) of the active hydrogen-containing groups of the two or more types of (B32) bifunctional active hydrogen-containing compounds is, of course, the total number of moles of active hydrogen of the active hydrogen-containing groups. Even when the active hydrogen-containing group is a primary amino group, the primary amino group is considered to be 1 mol.
  • the primary amino group in the primary amino group, it takes a considerable amount of energy for the second amino group (-NH) to react (even if it is a primary amino group, the second -NH reacts. hard). Therefore, in the present invention, even if a (B32) bifunctional active hydrogen-containing compound having a primary amino group is used, the primary amino group can be calculated as 1 mol.
  • the iso (thio) cyanate equivalent (isocyanate equivalent and / or total isothiocyanate equivalent) of the (B12) urethane prepolymer is based on JIS K7301 with the isocyanate group and / or isothiocyanate group of the (B12) urethane prepolymer. It can be obtained by quantifying it.
  • the isocyanate group and / or isothiocyanate group can be quantified by the following back titration method. First, the obtained (B12) urethane prepolymer is dissolved in a dry solvent.
  • di-n-butylamine which is clearly in excess of the amount of isocyanate group and / or isothiocyanate group of the (B12) urethane prepolymer and whose concentration is known, is added to the dry solvent.
  • B12 The total isocyanate group and / or isothiocyanate group of the urethane prepolymer is reacted with di-n-butylamine.
  • the unconsumed (not involved in the reaction) di-n-butylamine is then titrated with an acid to determine the amount of di-n-butylamine consumed.
  • the iso (thio) cyanate equivalent can be determined. Further, since the (B12) urethane prepolymer is a linear urethane prepolymer having an isocyanate group and / or an isothiocyanate group at both ends, the number average molecular weight of the (B12) urethane prepolymer is iso (thio). Twice the cyanate equivalent. The molecular weight of this (B12) urethane prepolymer tends to match the value measured by gel permeation chromatography (GPC). For example, when the (B12) urethane prepolymer and the (B13) bifunctional iso (thio) cyanate compound are used in combination, a mixture of both may be measured according to the above method.
  • GPC gel permeation chromatography
  • the (B12) urethane prepolymer is not particularly limited, but the iso (thio) cyanate equivalent is preferably 300 to 5000, more preferably 350 to 3000, and particularly preferably 350 to 2000.
  • the reason for this is not particularly clear, but it is thought to be as follows. That is, when the (B12) urethane prepolymer having a certain molecular weight reacts with the polymerizable functional group of the (A) polyrotaxane monomer, the slidable molecule becomes larger and the movement of the molecule itself becomes larger, resulting in deformation. It is thought that recovery (elastic recovery; low hysteric) will be easier.
  • the cross-linking points in the resin are easily dispersed and are randomly and uniformly present, so that stable performance is exhibited. Then, it is considered that the resin obtained by using the (B12) urethane prepolymer can be easily controlled at the time of production, and can be suitably used as a polishing pad.
  • Such an effect is that when the (B12) urethane prepolymer and the (B13) bifunctional iso (thio) cyanate compound are used in combination, the average iso (thio) cyanate equivalent of the polyiso (thio) cyanate compound is 300 to 5000. Even so, it is considered to be expressed. However, it is considered that the above effect becomes more remarkable when only the (B12) urethane prepolymer is used.
  • the method for producing (B12) urethane prepolymer used in the present invention comprises a (B32) bifunctional active hydrogen-containing compound having two active hydrogen-containing groups in a molecule such as a hydroxyl group, an amino group, or a thiol group and (B13).
  • a (B12) urethane prepolymer having an isocyanate group or an isothiocyanate group at the end of the molecule may be produced by reacting with a bifunctional iso (thio) cyanate compound.
  • a prepolymer having an isocyanate group or an isothiocyanate group at the terminal can be obtained.
  • the blending amounts of the preferable (B32) bifunctional active hydrogen-containing compound and the (B13) bifunctional iso (thio) cyanate compound for obtaining the (B12) urethane prepolymer are as follows. Specifically, the number of moles (n5) of the isocyanate group or isothiocyanate group in the component (B13) and the number of moles (n6) of the active hydrogen of the (B32) bifunctional active hydrogen-containing compound are 1 ⁇ (n5). It is preferable to manufacture in the range of / (n6) ⁇ 2.3.
  • reaction for producing the urethane prepolymer it can be produced by heating or adding a urethanization catalyst as needed.
  • the most preferable example of the component (B1) used in the present invention is isophorone diisocyanate, 1,3-bis (isocyanatemethyl) cyclohexane, (bicyclo) from the viewpoint of controlling the strength and reactivity of the resin to be formed.
  • (B12) urethane prepolymer is particularly preferable.
  • the epoxy group-containing monomer has an epoxy group in the molecule as a polymerizable group, and is particularly suitable when a hydroxyl group or an amino group is introduced as the polymerizable functional group of the (A) polyrotaxane monomer. ..
  • Such epoxy compounds are broadly classified into aliphatic epoxy compounds, alicyclic epoxy monomers and aromatic epoxy monomers, and suitable specific examples thereof are described in International Publication No. 2015/068798. Can be used.
  • the (B3) (chi) all compound can be used without limitation as long as it is a compound having at least two or more groups selected from the group consisting of a hydroxyl group and a thiol group in one molecule. Of course, compounds having two groups, a hydroxyl group and a thiol group, are also selected.
  • the component (B3) can be broadly classified into fatty alcohols, alicyclic alcohols, aromatic alcohols, polyester polyols, polyether polyols, polycaprolactone polyols, polycarbonate polyols, polyacrylic polyols, castor oil-based polyols, thiols, and OH. / Classified as SH-type polymerizable group-containing monomer. Specific examples include the following.
  • Glycerin trimethylolethane, trimethylolpropane, trimethylolpropane, trimethylolpropane, trimethylolpropane tripolyoxyethylene ether (for example, TMP-30, TMP-60, TMP-90, etc. of Nippon Embroidery Co., Ltd.), butanetriol, 1,2- Methylglucoside, pentaerythritol, dipentaerythritol, tripentaerythritol, sorbitol, erythritol, slateol, rivitol, arabinitol, xylitol, aritol, mannitol, dolsitol, iditol, glycol, inositol, hexanetriol, triglycerol, diglycerol, triethylene.
  • Polyfunctional polyol such as glycol.
  • Polyfunctional polyols such as tris (2-hydroxyethyl) isocyanate, cyclohexanetriol, sucrose, maltitol, and lactitol.
  • Polyfunctional polyols such as trihydroxynaphthalene, tetrahydroxynaphthalene, benzenetriol, biphenyltetraol, pyrogallol, (hydroxynaphthyl) pyrogallol, and trihydroxyphenanthrene.
  • Polyester polyol; component (B3) A compound obtained by a condensation reaction between a polyol and a compound having a plurality of carboxylic acids can be mentioned.
  • the number average molecular weight is preferably 400 to 2000, more preferably 500 to 1500, and most preferably 600 to 1200.
  • Those having hydroxyl groups (two in the molecule) only at both ends of the molecule correspond to the (B32) bifunctional active hydrogen-containing compound constituting the (B12) urethane prepolymer.
  • examples of the polyol include ethylene glycol, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 3-methyl-1,5-pentanediol, and 1,6-hexanediol.
  • examples thereof include 3,3'-dimethylol heptane, 1,4-cyclohexanedimethanol, neopentyl glycol, 3,3-bis (hydroxymethyl) heptane, diethylene glycol, dipropylene glycol, glycerin, and trimethylolpropane. It may be used alone or in combination of two or more.
  • Examples of the compound having a plurality of carboxylic acids include succinic acid, adipic acid, azelaic acid, sebacic acid, dodecandicarboxylic acid, cyclopentanedicarboxylic acid, cyclohexanedicarboxylic acid, orthophthalic acid, isophthalic acid, terephthalic acid, and naphthalenedicarboxylic acid. These may be used alone or in combination of two or more.
  • polyester polyols are available as reagents or industrially, and for example, commercially available ones are "Polylite (registered trademark)” series manufactured by DIC Corporation and "Nipporan (registered trademark) manufactured by Nippon Polyurethane Industry Co., Ltd.” ) ”Series,“ Maximol (registered trademark) ”series manufactured by Kawasaki Kasei Kogyo Co., Ltd.,“ Kuraray Polyester (registered trademark) ”series manufactured by Kuraray Co., Ltd., and the like.
  • Polyether polyol; (B3) component A compound obtained by ring-opening polymerization of an alkylene oxide or a reaction between a compound having two or more active hydrogen-containing groups in the molecule and an alkylene oxide and a modified product thereof can be mentioned.
  • the number average molecular weight is preferably 400 to 2000, more preferably 500 to 1500, and most preferably 600 to 1200.
  • Those having hydroxyl groups (two in the molecule) only at both ends of the molecule correspond to the (B32) bifunctional active hydrogen-containing compound constituting the (B12) urethane prepolymer.
  • examples of the polyether polyol include a polymer polyol, a urethane-modified polyether polyol, a polyether ester copolymer polyol, and the like, and examples of the compound having two or more active hydrogen groups in the molecule include water and ethylene.
  • Polypolymers such as glycols and glycerins having one or more hydroxyl groups in molecules such as glycol, propylene glycol, butanediol, glycerin, trimethylolpropane, hexanetriol, triethanolamine, diglycerin, pentaerythritol, trimethylolpropane and hexanetriol.
  • Examples thereof include compounds, which may be used alone or in admixture of two or more.
  • the alkylene oxide include cyclic ether compounds such as ethylene oxide, propylene oxide, and tetrahydrofuran, which may be used alone or in combination of two or more.
  • Such a polyether polyol can be obtained as a reagent or industrially, and for example, commercially available products are manufactured by Asahi Glass Co., Ltd. in the "Exenol (registered trademark)” series, “Emulster (registered trademark)", and the like. Examples include the "ADEKA polyether” series manufactured by ADEKA Corporation.
  • Polycaprolactone polyol; (B3) component Examples thereof include compounds obtained by ring-opening polymerization of ⁇ -caprolactone. Among them, the number average molecular weight is preferably 400 to 2000, more preferably 500 to 1500, and most preferably 600 to 1200. Those having hydroxyl groups (two in the molecule) only at both ends of the molecule correspond to the (B32) bifunctional active hydrogen-containing compound constituting the (B12) urethane prepolymer.
  • These polycaprolactone polyols are available as reagents or industrially, and examples of commercially available ones include the "Plaxel (registered trademark)" series manufactured by Daicel Chemical Industries, Ltd.
  • Polycarbonate polyol; (B3) component A compound obtained by phosgenizing one or more of low molecular weight polyols, or a compound obtained by transesterification with ethylene carbonate, diethyl carbonate, diphenyl carbonate or the like can be mentioned.
  • the number average molecular weight is preferably 400 to 2000, more preferably 500 to 1500, and most preferably 600 to 1200.
  • Those having hydroxyl groups (two in the molecule) only at both ends of the molecule correspond to the (B32) bifunctional active hydrogen-containing compound constituting the (B12) urethane prepolymer.
  • examples of the low molecular weight polyol include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, 1,2-butanediol, and 1,3-butane.
  • Polyacrylic polyol; (B3) component (meth) examples thereof include a polyol compound obtained by polymerizing a (meth) acrylate acid ester or a vinyl monomer. Those having hydroxyl groups (two in the molecule) only at both ends of the molecule correspond to the (B32) bifunctional active hydrogen-containing compound constituting the (B12) urethane prepolymer.
  • Castor oil-based polyol; (B3) component Examples of the castor oil-based polyol include a polyol compound using castor oil, which is a natural fat and oil, as a starting material.
  • castor oil polyols are available as reagents or industrially, and examples of commercially available castor oil polyols include the "URIC (registered trademark)" series manufactured by Itoh Oil Chemicals Co., Ltd.
  • Thiol; (B3) component As a suitable specific example of the thiol, those described in International Publication No. WO2015 / 068798 pamphlet can be used. Among them, the following are mentioned as examples of particularly suitable ones.
  • Trimethylol propanetris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), dipentaerythritol hexakiss (3-mercaptopropionate), 1,2-bis [(2-mercaptoethyl) ) Thio] -3-mercaptopropane, 2,2-bis (mercaptomethyl) -1,4-butanedithiol, 2,5-bis (mercaptomethyl) -1,4-dithiane, 4-mercaptomethyl-1,8 -Dimercapto-3,6-dithiane octane, 1,1,1,1-tetrakis (mercaptomethyl) methane, 1,1,3,3-tetrakis (mercaptomethylthio) propane, 1,1,2,2-tetrakis (mercapto) Thiols such as methylthio) ethane, 4,6-bis (mercaptomethylthio) -1,3-dit
  • the OH / SH type polymerizable group-containing monomer is a polymerizable monomer having both a hydroxyl group and a thiol group.
  • the (B4) amino group-containing monomer used in the present invention can be used without limitation as long as it is a monomer having two or more primary and / or secondary amino groups in one molecule.
  • the amino group-containing monomers can be broadly classified into aliphatic amines, alicyclic amines, and aromatic amines.
  • Aliphatic amines (B4) components Bifunctional amines such as ethylenediamine, hexamethylenediamine, nonamethylenediamine, undecanemethylenediamine, dodecamethylenediamine, metaxylenediamine, 1,3-propanediamine, putrescine (the above (B12) urethane pre It corresponds to (B32) a bifunctional active hydrogen-containing compound constituting a polymer).
  • Polyfunctional amines such as polyamines such as diethylenetriamine.
  • Alicyclic amine (B4) component Bifunctional amines such as isophoronediamine and cyclohexyldiamine (corresponding to the (B32) bifunctional active hydrogen-containing compound constituting the (B12) urethane prepolymer).
  • Aromatic amines (B4) components 4,4'-methylenebis (o-chloroaniline) (MOCA), 2,6-dichloro-p-phenylenediamine, 4,4'-methylenebis (2,3-dichloroaniline), 4,4'-Methylenebis (2-ethyl-6-methylaniline), 3,5-bis (methylthio) -2,4-toluenediamine, 3,5-bis (methylthio) -2,6-toluenediamine, 3 , 5-diethyltoluene-2,4-diamine, 3,5-diethyltoluene-2,6-diamine, trimethylene glycol-di-p-aminobenzoate, polytetramethylene glycol-di-p-aminobenzoate, 4, 4'-diamino-3,3', 5,5'-tetraethyldiphenylmethane, 4,4'-diamino-3,3'-diisopropy
  • the component (A), (B1) when the polymerizable functional group in the (A) polyrotaxane monomer is polymerized by a sequential addition reaction (polycondensation / polyaddition reaction) with an active hydrogen-containing group to produce the resin, the component (A), (B1).
  • the polymerizable composition containing the component, the component (B2), the component (B3), and the component (B4) preferably has the following composition.
  • the component (B1) is indispensable.
  • the total amount of the (B1) component, the (B2) component, the (B3) component, and the (B4) component (hereinafter, may be simply referred to as "(B) component amount") and (A).
  • the component (A) is contained in the range of 3 to 50 parts by mass and the amount of the component (B) is contained in the range of 50 to 97 parts by mass with respect to 100 parts by mass in total with the components.
  • the obtained resin can exhibit excellent mechanical properties.
  • the component (A) is in the range of 5 to 45 parts by mass and the amount of the component (B) is in the range of 55 to 95 parts by mass.
  • (B1) component 0 to 100% by mass, (B2) component 0 to 100% by mass, (B3) component 0 to 80% by mass, and (B4) is 100% by mass. It is preferable that the component is 0 to 30% by mass because it exhibits excellent mechanical properties. In order to exert this effect more, (B1) component 20 to 95% by mass, (B2) component 0 to 20% by mass, (B3) component 0 to 70% by mass, and (B4) component 0 to 25% by mass. It is more preferably 40 to 95% by mass of the (B1) component, 0 to 5% by mass of the (B2) component, 0 to 35% by mass of the (B3) component, and 0 to 20% by mass of the (B4) component.
  • the polymerizable composition containing the component (A) and the following (B5) radically polymerizable monomer as described above has the following composition. It is preferable to be.
  • the component (A) is contained in the range of 3 to 50 parts by mass and the amount of the component (B5) is contained in the range of 50 to 97 parts by mass with respect to a total of 100 parts by mass of the component (A) and the component (B5).
  • the component (A) polyrotaxane monomer in this ratio, the obtained resin can exhibit excellent mechanical properties.
  • the component (A) is in the range of 5 to 45 parts by mass and the component (B5) is in the range of 55 to 95 parts by mass.
  • the (B5) radically polymerizable monomer is not particularly limited as long as it has a radically polymerizable group.
  • the polymerizable functional group contained in the (A) rotaxane monomer is a radically polymerizable group.
  • the polymerizable composition contains at least the component (A) and the component (B5).
  • the (B5) radically polymerizable monomer can be broadly classified into a (meth) acrylate compound having a (meth) acrylate group, a vinyl compound having a vinyl group, and an allyl compound having an allyl group.
  • the above-mentioned composition is not particularly limited as the above-mentioned (A) polyrotaxane monomer and (B) polymerizable monomer, and the above-mentioned composition can be used.
  • the polymerizable composition used for the base layer of the preferable laminated polishing pad is (1).
  • the polymerizable functional group of the cyclic molecule of the polyrotaxane monomer is preferably selected from a hydroxyl group, a thiol group, and an amino group
  • (B) the polymerizable monomer preferably contains (B1) an iso (thio) cyanate compound. .. By selecting from these, the excellent resin can be produced.
  • the (B1) iso (thio) cyanate compounds it is preferable that the (B12) urethane prepolymer is contained. By doing so, it becomes easy to adjust the excellent mechanical properties and the compressibility of the underlying layer.
  • the polymerizable functional group of the (A) rotaxane monomer contains at least a hydroxyl group
  • the (B1) iso (thio) cyanate compound contained in the (B) polymerizable monomer is a (B12) urethane prepolymer. It is preferable that it contains.
  • the (B) polymerizable monomer preferably contains (B1) iso (thio) cyanate compound, (B3) (thi) all compound and / or (B4) amino group-containing monomer.
  • the (B1) iso (thio) cyanate compound is more preferably a (B12) urethane prepolymer.
  • the (B3) (chi) all compound and / or the (B4) amino group-containing monomer contains at least one (B3) (chi) all compound.
  • the polymerizable functional group of the polyrotaxane monomer is a hydroxyl group, an amino group, an epoxy group, and a thiol group
  • the (B) component contains (B1) an iso (thio) cyanate compound.
  • (C1) a reaction catalyst for urethane or urea or (C2) a condensing agent is used as a polymerization curing accelerator.
  • the polymerizable functional group of the polyrotaxane monomer is a polymerizable functional group such as a hydroxyl group or an amino group and the component (B) contains (B2) an epoxy group-containing monomer, (C3).
  • An epoxy curing agent or a (C4) cationic polymerization catalyst for carrying out ring-opening polymerization of an epoxy group is used as a polymerization curing accelerator.
  • the polymerizable functional group of the (A) polyrotaxane monomer is a radically polymerizable group and the component (B) contains (B5) a radically polymerizable monomer, (C5) radical polymerization is started.
  • the agent is used as a polymerization curing accelerator.
  • polymerization accelerators (C1) to (C5) that can be suitably used in the present invention, as specific examples, those described in International Publication No. WO2015 / 06789 can be used.
  • Each of these various (C) polymerization curing accelerators may be used alone or in combination of two or more, but the amount used may be a so-called catalytic amount, for example, with the (A) polyrotaxane monomer (A).
  • various known compounding agents can be used as long as the effects of the present invention are not impaired.
  • Foaming agents, solvents, leveling agents and other additives may be added. These additives may be used alone or in combination of two or more. These additives can be contained in the resin by adding them to the polymerizable composition and polymerizing the polymerizable composition.
  • a known method can be adopted as the polymerization method.
  • the conditions described in International Publication No. WO2015 / 0678798, International Publication No. WO2016 / 143910, and JP-A-2017-48305 can be adopted.
  • the conditions described in WO2014 / 136804 and International Publication No. WO2015 / 06789 can be adopted.
  • the resin obtained by polymerizing the polymerizable composition can also be obtained by foaming the resin to obtain a foamed resin. It is sufficient to select whether to use a foamed resin or a non-foamed resin based on the desired compressibility, hardness, etc., but the base layer of the present invention may be a foamed resin from the viewpoint of controlling the compressibility and hardness. More preferably, foamed polyurethane (urea) resin is more preferable.
  • urea foamed polyurethane
  • As the method for foaming the resin a known and known foaming method or the like can be used without any limitation.
  • Examples of these methods include a volatile foaming agent such as a low boiling point hydrocarbon, a foaming agent foaming method in which water is added, a method in which hollow particles are dispersed and cured, and heat-expandable fine particles are mixed and then heated. Examples thereof include a method of foaming fine particles and a mechanical floss foaming method of blowing an inert gas such as air or nitrogen during mixing.
  • a volatile foaming agent such as a low boiling point hydrocarbon
  • a foaming agent foaming method in which water is added a method in which hollow particles are dispersed and cured, and heat-expandable fine particles are mixed and then heated.
  • Examples thereof include a method of foaming fine particles and a mechanical floss foaming method of blowing an inert gas such as air or nitrogen during mixing.
  • the density of the resin when foamed is preferably 0.4 to 0.9 g / cm 3.
  • a polymerizable composition containing an iso (thio) cyanate group is used as the polymerizable group functional group
  • water reacts with the iso (thio) cyanate group and then dioxide is distilled off. It becomes an amino group with carbon, and carbon dioxide becomes a foaming gas, while the amino group further reacts with an iso (thio) cyanate group to form a urea bond and / or a thiourea bond.
  • the CMP laminated polishing pad of the present invention is a CMP laminated polishing pad including at least a polishing layer and a base layer, wherein the base layer contains a resin obtained by polymerizing the polymerizable composition. ..
  • the base layer may be not only a layer made of a foamed resin or a non-foamed resin, but also a layer obtained by impregnating a non-woven fabric with the polymerizable composition and polymerizing the layer.
  • a non-woven fabric with a polymerizable composition capable of forming a polyurethane (urea) resin by polymerization and polymerize.
  • a non-woven fabric containing a polyurethane (urea) resin can be obtained, and this can be used as a base layer.
  • non-woven fabrics include non-woven fabrics such as polyester non-woven fabrics, nylon non-woven fabrics, and acrylic non-woven fabrics.
  • the non-woven fabric is a layer obtained by impregnating and polymerizing a polymerizable composition containing the component (A) and the component (B1).
  • the content of the resin obtained by polymerizing the polymerizable composition containing the component (A) and the component (B) in the base layer of the present invention is preferably 30% by mass or more based on the total amount of the base layer, which is more preferable. Is 50% by mass or more, more preferably 80% by mass or more.
  • the underlayer is not particularly limited, but it is preferable that the underlayer has a compression rate in a certain range in order to improve the uniformity of polishing.
  • the compression ratio can be measured by, for example, a method conforming to JIS L 1096.
  • the compressibility of the underlying layer is preferably 1.0% to 40%, more preferably 1.5% to 30%. Within the above range, it is possible to develop excellent flatness of the object to be polished.
  • the base layer can have any appropriate hardness. Hardness can be measured according to the Shore method, for example according to JIS standard (hardness test) K6253.
  • the underlayer preferably has a shore hardness of less than 50D. With this hardness, the cushioning effect as the base layer is likely to be exhibited. More preferably, it is 20A to 40D (“A” indicates hardness on the shore “A” scale, and “D” indicates hardness on the shore “D” scale).
  • the hardness may be arbitrary by changing the blending composition and the blending amount as necessary.
  • Hysteresis loss can be measured, for example, by a method conforming to JIS K6251. Specifically, the test piece prepared in the shape of a dumbbell is stretched 100% and then returned to its original state, so that the hysteresis loss (elongation when it is stretched and returned to its original state and the area of stress / elongation when it is stretched) The area of stress x 100) can be measured.
  • the hysteresis loss of the underlying layer is not particularly limited, but is preferably 40% or less, more preferably 30% or less, and further preferably 20% or less.
  • the presence of hysteresis loss in this range not only improves the uniformity of polishing, but also improves the polishing speed.
  • the thickness of the base layer is not particularly limited, but is preferably 0.1 to 2 mm, more preferably 0.2 to 1.8 mm.
  • the CMP laminated polishing pad of the present invention includes the above-mentioned base layer and polishing layer.
  • the polishing layer is provided on one surface of the base layer.
  • an intermediate layer may be provided between the base layer and the polishing layer.
  • the material constituting the polishing layer of the CMP laminated polishing pad of the present invention is not particularly limited, and examples thereof include a polishing layer such as urethane (urea) resin and non-woven fabric.
  • the polishing layer is made of urethane (urea) resin, and the polishing layer is further preferably a foam. More preferably, it is a polishing layer made of a thermosetting urethane (urea) resin.
  • the urethane (urea) resin used for the CMP laminated polishing pad may be produced by a known method without particular limitation, for example, a compound having an isocyanate group, an active hydrogen group having an active hydrogen polymerizable with an isocyanate group, for example.
  • a urethane (urea) resin composed of a compound having a hydroxyl group, a thiol group, and an amino group may be polymerized.
  • a polyrotaxane monomer having at least two polymerizable functional groups in the molecule (A) used in the present invention can also be used.
  • the method for polymerizing the urethane (urea) resin is not particularly limited, and a known method may be adopted.
  • a dry method such as a one-pot method or a prepolymer method, a wet method using a solvent, or the like can be used. Among them, the dry method is preferably adopted.
  • the foaming method when foaming the polishing layer there is no limitation on the foaming method when foaming the polishing layer, and for example, the same foaming method as the above-mentioned method may be selected for the base layer.
  • the most preferable foaming method for the polishing layer is, for example, a foaming method using hollow particles as shown below.
  • Hollow particles (microballoons) used in the present invention can be blended.
  • component (D) known components can be used without any limitation. Specific examples include hollow particles in which vinylidene chloride resin, (meth) acrylate resin, acrylic nitrile and vinylidene chloride copolymer, epoxy resin, phenol resin, melamine resin, urethane (urea) resin, etc. form an outer shell. Can be used. Among them, hollow particles composed of an outer shell portion made of urethane-based resin and a hollow portion surrounded by the outer shell portion are preferable.
  • the compressibility of the polishing layer of the CMP laminated polishing pad of the present invention is preferably 0.1% to 20% or less, more preferably 0.5% to 10% or less. Further, it is more preferable that the compressibility of the base layer is larger than the compressibility of the polishing layer in the CMP laminated polishing pad of the present invention. Within this range, the CMP laminated polishing pad of the present invention can exhibit excellent polishing characteristics.
  • the shore hardness of the polishing layer of the CMP laminated polishing pad of the present invention is preferably in the range of 50A to 90D, and the shore hardness of the base layer is smaller than the shore hardness of the polishing layer. More preferred. Within this range, the CMP laminated polishing pad of the present invention can exhibit excellent polishing characteristics.
  • the thickness of the polishing layer is not particularly limited, but is preferably 0.1 to 2 mm, more preferably 0.2 to 1.8 mm.
  • the polishing layer and the base layer may be bonded by using a known method.
  • an intermediate layer for adhering (fixing) the polishing layer and the base layer may be provided between the polishing layer and the base layer, or the polishing layer and the base layer may be directly bonded to each other.
  • Directly bonding the polishing layer and the base layer means taking a structure having a crosslinked structure between the polishing layer and the base layer, or taking a structure having an electrostatic bond, or mechanical interaction. Refers to the anchor effect.
  • the electrostatic bond may include van der Waals or hydrogen bond interactions between the underlying layer and the abrasive layer. These can be obtained, for example, by polymerizing the underlayer or the polishing layer and then continuously polymerizing the polishing layer or the underlayer on the layer.
  • the intermediate layer for adhering (fixing) the polishing layer and the base layer can be used without any limitation as long as it is known.
  • Such an intermediate layer is preferably 30 to 300 ⁇ m thick, more preferably 30 to 150 ⁇ m thick.
  • the intermediate layer can be selected from a pressure-sensitive adhesive, a hot-melt adhesive, or a combination thereof as an adhesive.
  • a pressure-sensitive type such as an acrylic type, a butadiene type, an isoprene type, an olefin type, a styrene type, or an isocyanate type or a hot melt type is used.
  • the intermediate layer may be provided with a polyethylene terephthalate film, a stretched polypropylene film, a non-woven fabric, or the like as a base material.
  • a base material having a thickness of 20 to 200 ⁇ m is used.
  • a back surface tape layer for fixing to the polishing surface plate may be provided on the back surface side of the base layer.
  • the back tape layer is usually provided with an adhesive layer on a plastic film or release paper, and when the pad is attached to the surface plate during polishing, the plastic film or release paper (called a separator) is peeled off to remove the pad from the surface plate. It plays the role of fixing the pad to the surface plate by pressing it against the surface plate.
  • the back surface tape layer the same one as the intermediate layer can be used.
  • the polishing layer of the CMP laminated polishing pad of the present invention is not particularly limited, but a groove structure can be formed on the surface thereof.
  • a groove structure can be formed on the surface thereof.
  • the groove structure has a shape that holds and renews the slurry when polishing the member to be polished.
  • a combination of grooves can be mentioned.
  • the method for producing the groove structure is not particularly limited.
  • a method of mechanically cutting using a jig such as a cutting tool of a predetermined size, a method of pouring a resin into a mold having a predetermined surface shape and curing it, and a press plate having a predetermined surface shape.
  • Examples thereof include a method of producing by pressing a resin, a method of producing by using photolithography, a method of producing by using a printing method, and a method of producing by laser light using a carbon dioxide gas laser or the like.
  • ⁇ Measuring method ⁇ (Molecular weight measurement; gel permeation chromatography (GPC measurement))
  • GPC measurement a liquid chromatograph device (manufactured by Japan Waters Corp.) was used as the device.
  • the column may be Showa Denko Corporation's Shodex GPC KF-802 (exclusion limit molecular weight: 5,000), KF802.5 (exclusion limit molecular weight: 20,000), KF-803 (exclusion limit).
  • Molecular weight: 70,000), KF-804 (exclusion limit molecular weight: 400,000), KF-805 (exclusion limit molecular weight: 2,000,000) were appropriately used.
  • dimethylformamide was used as a developing solution, and the measurement was carried out under the conditions of a flow rate of 1 ml / min and a temperature of 40 ° C.
  • Polystyrene was used as a standard sample, and the weight average molecular weight was determined by comparative conversion.
  • a differential refractometer was used as the detector.
  • (A) Polyrotaxane monomer RX-1 Production of a polyrotaxane monomer (RX-1) produced by the following method having a hydroxyl group in the side chain, having an average molecular weight of about 350 in the side chain, and a weight average molecular weight of 165,000. Method) As a polymer for shaft molecules, linear polyethylene glycol (PEG) having a molecular weight of 10,000 was prepared, and PEG: 10 g, TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy radical): 100 mg. , Sodium bromide: 1 g was dissolved in 100 mL of water.
  • PEG polyethylene glycol
  • TEMPO 2,2,6,6-tetramethyl-1-piperidinyloxy radical
  • aqueous sodium hypochlorite solution (effective chlorine concentration 5%): 5 mL was added to this solution, and the mixture was stirred at room temperature for 10 minutes. Then, 5 mL of ethanol was added to terminate the reaction. Then, after extraction using methylene chloride: 50 mL, methylene chloride was distilled off, dissolved in ethanol: 250 mL, and then reprecipitated at a temperature of -4 ° C for 12 hours to recover PEG-COOH. And dried.
  • PEG-COOH 3 g and ⁇ -cyclodextrin ( ⁇ -CD): 12 g prepared above were each dissolved in 50 mL of water at 70 ° C., and the obtained solutions were mixed and shaken well. The mixed solution was then reprecipitated at a temperature of 4 ° C. for 12 hours, and the precipitated inclusion complex was lyophilized and recovered. Then, 0.13 g of adamantaneamine was dissolved in 50 ml of dimethylformamide (DMF) at room temperature, the above inclusion complex was added, and the mixture was swiftly and well shaken.
  • DMF dimethylformamide
  • the slurry-like reagent obtained above was allowed to stand at 4 ° C. for 12 hours. Then, DMF / methanol mixed solvent (volume ratio 1/1): 50 ml was added, mixed, and centrifuged, and the supernatant was discarded. Further, after washing with the above DMF / methanol mixed solution, washing with methanol and centrifugation were performed to obtain a precipitate.
  • the obtained precipitate was dried by vacuum drying, then dissolved in dimethyl sulfoxide (DMSO): 50 mL, and the obtained transparent solution was added dropwise to 700 mL of water to precipitate polyrotaxane. The precipitated polyrotaxane was recovered by centrifugation and dried under vacuum. Further, it was dissolved in DMSO, precipitated in water, recovered, and dried to obtain purified polyrotaxane.
  • the number of inclusions of ⁇ -CD at this time was 0.25.
  • the number of inclusions was calculated by dissolving polyrotaxane in DMSO-d6, measuring with a 1H-NMR measuring device (JNM-LA500 manufactured by JEOL Ltd.), and using the following method.
  • X, Y and X / (YX) have the following meanings.
  • X Integrated value of cyclodextrin-derived protons of 4 to 6 ppm
  • Y Integrated value of cyclodextrin of 3 to 4 ppm and protons derived from methylene chain of PEG
  • X / (YX) Proton ratio of cyclodextrin to PEG
  • the polyrotaxane purified above 500 mg was dissolved in 1 mol / L NaOH aqueous solution: 50 mL, propylene oxide: 3.83 g (66 mmol) was added, and the mixture was stirred at room temperature for 12 hours under an argon atmosphere.
  • the above polyrotaxane solution was neutralized to a pH of 7 to 8 using a 1 mol / L HCl aqueous solution, dialyzed against a dialysis tube, and then freeze-dried to obtain hydroxypropylated polyrotaxane.
  • the obtained hydroxypropylated polyrotaxane was identified by 1H-NMR and GPC, and it was confirmed that it was a hydroxypropylated polyrotaxane having a desired structure.
  • the degree of modification of the cyclic molecule to the hydroxyl group by the hydroxypropyl group was 0.5, and the weight average molecular weight Mw was 50,000 as measured by GPC.
  • a mixed solution was prepared by dissolving 5 g of the obtained hydroxypropylated polyrotaxane in ⁇ -caprolactone: 15 g at 80 ° C. This mixed solution was stirred at 110 ° C. for 1 hour while blowing dry nitrogen, 0.16 g of a 50 wt% xylene solution of tin 2-ethylhexanoate (II) was added, and the mixture was stirred at 130 ° C. for 6 hours. Then, xylene was added to obtain an ⁇ -caprolactone-modified polyrotaxane xylene solution into which a side chain having a non-volatile concentration of about 35% by mass was introduced.
  • the ⁇ -caprolactone-modified polyrotaxane xylene solution prepared above was added dropwise to hexane, recovered, and dried to obtain ⁇ -caprolactone-modified polyrotaxane (RX-1).
  • the physical characteristics of this (A) polyrotaxane monomer; RX-1 were as follows.
  • Density The density was measured with (DSG-1) manufactured by Toyo Seiki.
  • Polishing rate Polishing conditions are shown below. Object to be polished: 4 inch sapphire wafer slurry: FUJIMI compol 80 undiluted solution pressure: 4 Psi Rotation speed: 45 rpm Time: 1 hour The polishing rate ( ⁇ m / hr) when polishing was performed under the above conditions was measured. The polishing rate is an average value of 100 wafers. (6) Scratch resistance: It was confirmed whether or not 100 wafers were scratched when polished under the conditions described in (5) above. The evaluation was carried out according to the following criteria.
  • the adjusted solution A was poured into it, and again in a nitrogen atmosphere, using a stirrer with a stirring blade as a beater, the mixture was vigorously stirred at 2000 rpm, bubbles were taken in by the mechanical floss method, and uniform polymerization having a foamed structure was performed.
  • a sex composition was obtained, the polymerizable composition was injected into a mold, and the mixture was polymerized at 100 ° C. for 15 hours. After completion of the polymerization, the polymerized resin was removed to obtain a foamed resin.
  • the obtained foamed resin was sliced to obtain a base layer having a thickness of 1.5 mm. Each compounding amount is shown in Table 1.
  • the density of the obtained base layer was 0.7 g / cm 3 , the compressibility was 7%, the shore hardness was 14D, and the hysteresis loss was 3%.
  • the obtained cured product was sliced to obtain a urethane resin having a thickness of 1 mm.
  • a spiral groove was formed on the surface of the urethane resin to form a polishing layer made of urethane resin having a size of 500 mm ⁇ and a thickness of 1 mm.
  • Each compounding amount is shown in Table 1.
  • the density of the obtained polishing layer was 0.8 g / cm 3 , the compressibility was 0.7%, the shore hardness was 55D, and the hysteresis loss was 60%.
  • Comparative Examples 1 and 2 A CMP laminated polishing pad was prepared and evaluated by the same method as in Example 1 except that the composition was polymerized in Table 1. Comparative Example 2 is a single-layer polishing pad having only a polishing layer. Table 1 summarizes the mixing ratios and results of each component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本発明のCMP積層研磨用パッドは、少なくとも研磨層および下地層を備えており、前記下地層が、(A)分子内に少なくとも2つの重合性官能基を有するポリロタキサンモノマーと、(B)前記(A)分子内に少なくとも2つの重合性官能基を有するポリロタキサンモノマー以外の重合性モノマーとを含む重合性組成物を重合させた樹脂を含むことを特徴とするCMP積層研磨パッドである。 本発明によれば、良好な耐摩耗性だけではなく、優れた研磨特性(高い研磨レート、低スクラッチ性、高平坦性)を有する研磨パッドを提供することができる。

Description

積層研磨パッド
 本発明は、積層研磨パッドに関する。
 研磨用部材とは、相手方の部材(被研磨部材)を研磨剤により平坦化する際に使用される材料である。具体的に、該研磨用部材とは、被研磨部材の表面を平坦化するに際し、スラリー等の研磨剤を該表面に供給しながら、該表面に摺動させながら接触させて使用するものである。たとえば、研磨パッドが含まれる。
 一般的に研磨用部材としては、コスト低減、安定製造、及び生産性の向上から長期にわたって耐摩耗が良好な耐久性の高い材料が常に望まれる。そのため、このような研磨用部材には、ポリウレタン(ウレア)樹脂が数多く用いられている。
 前記研磨用部材は、具体的には、CMP(Chemical Mechanical Polishing)法における研磨パッド材(以下、研磨パッドとする場合もある)として使用される。CMP法は、優れた表面平坦性を付与する研磨方法であり、特に、液晶ディスプレイ(LCD)、ハードディスク用ガラス基盤、シリコンウェハ、半導体デバイスの製造プロセスで採用されている。
 前記CMP法では、通常、研磨加工時に砥粒をアルカリ溶液、または酸溶液に分散させたスラリー(研磨剤)を供給して研磨する方式が一般的に採用されている。すなわち、被研磨部材は、スラリー中の砥粒による機械的作用と、アルカリ溶液、または酸溶液による化学的作用とにより平坦化される。通常、該スラリーを被研磨部材の表面に供給し、研磨用パッド材を滑らしながら該表面に接触させることにより、該被研磨部材の表面を平坦化する。
 このような研磨パッドの材質としては、前記したとおり、ウレタン系硬化性組成物から得られるポリウレタン(ウレア)樹脂からなる研磨材が知られている(特許文献1参照)。
 研磨パッドの要求特性として、局所的な平坦化能力に加えて、ウェハ全体を均一に研磨する能力が必要となる。しかしながら、従来のポリウレタン(ウレア)樹脂からなる研磨パッドは、比較的硬度が高く変形し難いものであり、一般的に優れた研磨レートや局部的な平坦化能力、繰り返しの研磨精度に優れたものであるが、クッション性が不足しているためにウェハ全面に均一な圧力を与えることが難しく、研磨精度が低下する傾向があった。
 そのため、このような研磨精度の低下を防止するために、通常、ポリウレタン(ウレア)樹脂からなる研磨パッドの背面に柔らかい下地層が別途設けられ、研磨加工が行われる。特許文献2では、研磨層、及び、下地層の圧縮率や厚みを制御することでウェハ表面への追従性を確保し、均一性と平坦性の両方の性能を得ることが開示されている。
特開2007-77207号公報 特開2020-037182号公報 国際公開第2018/092826号
 しかしながら、近年は配線の微細化に伴い、前記したような積層研磨パッドのさらなる研磨特性の向上が求められおり、従来の技術においては改善の余地があった。
 したがって、本発明の目的は、下地層を有する積層研磨パッドであって、優れた研磨特性を発現できる積層研磨パッドを提供することにある。
 本発明者等は、上記課題を解決するために鋭意検討した。
 近年、軸分子と、それを包接する環状分子とを含み、該環状分子が該軸分子上をスライドできるポリロタキサンの性能を利用した研磨パッドが開示されている(特許文献3参照)。この方法によれば、良好な耐摩耗性だけではなく、優れた研磨特性(高い研磨レート、低スクラッチ性、高平坦性)を有する研磨パッドを得ることができる。
 本発明者等は、ポリロタキサンが導入された硬化体を下地層に利用することで、より一層優れたCMP積層研磨用パッドが得られるのではないかと考え、様々な検討を行った。その結果、少なくとも研磨層および下地層を備えたCMP積層研磨パッドであって、前記下地層を特定の組成の重合性組成物を重合させた樹脂を含むことにより、上記課題が解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の[1]~[9]に関する。
[1]少なくとも研磨層および下地層を備えたCMP積層研磨パッドであって、前記下地層が、(A)分子内に少なくとも2つの重合性官能基を有するポリロタキサンモノマーと、(B)前記(A)分子内に少なくとも2つの重合性官能基を有するポリロタキサンモノマー以外の重合性モノマーとを含む重合性組成物を重合させた樹脂を含むことを特徴とするCMP積層研磨パッド。
[2]前記重合性組成物中の(A)分子内に少なくとも2つの重合性官能基を有するポリロタキサンモノマーの含有量が、(A)分子内に少なくとも2つの重合性官能基を有するポリロタキサンモノマーの含有量と(B)前記(A)分子内に少なくとも2つの重合性官能基を有するポリロタキサンモノマー以外の重合性モノマーの含有量との合計100質量部に対し、3~50質量部であることを特徴とする上記[1]に記載のCMP積層研磨パッド。
[3]前記(A)分子内に少なくとも2つの重合性官能基を有するポリロタキサンモノマーが、軸分子と該軸分子を包接する環状分子とからなる複合分子構造における、該環状分子の少なくとも一部に、重合性官能基を有する側鎖が導入されたポリロタキサンモノマーであることを特徴とする上記[1]または[2]に記載のCMP積層研磨パッド。
[4]前記(B)前記(A)分子内に少なくとも2つの重合性官能基を有するポリロタキサンモノマー以外の重合性モノマーが、重合性官能基として少なくとも2つのイソ(チオ)シアネート基を有するイソ(チオ)シアネート化合物であることを特徴とする上記[1]~[3]のいずれか1項に記載のCMP積層研磨パッド。
[5]前記下地層の圧縮率が1.0% 以上40.0%以下であることを特徴とする上記[1]~[4]のいずれか1項に記載のCMP積層研磨パッド。
[6]前記下地層のショアー硬さが50D未満であることを特徴とする上記[1]~[5]のいずれか1項に記載のCMP積層研磨パッド。
[7]前記下地層の圧縮率が、前記研磨層の圧縮率より大きく、前記下地層のショアー硬さが前記研磨層のショアー硬さよりも小さいことを特徴とする上記[1]~[6]のいずれか1項に記載のCMP積層研磨パッド。
[8]前記下地層が、前記重合性組成物を重合させた発泡ポリウレタン(ウレア)樹脂を含むことを特徴とする上記[1]~[7]のいずれか1項に記載のCMP積層研磨パッド。
[9]前記下地層が、前記重合性組成物を重合させたポリウレタン(ウレア)樹脂を含む不織布からなる上記[1]~[7]のいずれか1項に記載のCMP積層研磨パッド。
 本発明のCMP積層研磨パッドは、被研磨物に対して優れた研磨レート、及び、平坦性や均一性を有する。
 その作用は明らかではないが、以下のように推察している。
 一般的に、ポリロタキサンは、ポリロタキサン中の環状分子が軸分子上を動くことで、応力集中部位を緩和できる応力分散性能や、変形に対する優れた弾性回復性能が付与されることが知られている。
 本発明においては、単にポリロタキサンを、CMP積層研磨パッドの下地層を構成する樹脂に配合するのではなく、ポリロタキサンをモノマーとして用いて、該下地層を構成する樹脂の一構成成分とすることにより、樹脂全体に前記した応力分散性能や弾性回復性能が付与され、優れたCMP積層研磨パッドを提供することが可能となるものと考えている。
 本発明のCMP積層研磨パッドは、少なくとも研磨層および下地層を備えたCMP積層研磨パッドであって、前記下地層が、(A)分子内に少なくとも2つの重合性官能基を有するポリロタキサンモノマー(以下、「(A)ポリロタキサンモノマー」、または「(A)成分」ともいう。)と、(B)前記(A)分子内に少なくとも2つの重合性官能基を有するポリロタキサンモノマー以外の重合性モノマー(以下、「(B)重合性モノマー」、または「(B)成分」ともいう。)とを含む重合性組成物を重合させた樹脂を含むことを特徴とするCMP積層研磨パッドである。
 以下、各構成成分について説明する。
 <(A)ポリロタキサンモノマー>
 ポリロタキサンは、公知の化合物であり、鎖状の軸分子と環状分子とから形成されている複合分子構造を有している。すなわち、鎖状の軸分子を環状分子が包接しており、環状分子が有する環の内部を軸分子が貫通している構造となっている。そのため、環状分子は、軸分子上を自由にスライドし得るので、通常、軸分子の両端には、嵩高い末端基が形成されており、環状分子の軸分子からの脱落が防止されている。
 なお、一般的に、上記構造において、環状分子が複数存在する場合を「ポリロタキサン」というが、本発明においては、環状分子が一つの場合も含めて「ポリロタキサン」という。
 前記ポリロタキサンは、前記したとおり環状分子が軸分子上をスライド可能である。そのため、スライディング弾性と呼ばれる性能を発現し、優れた特性を発現できるものと考えられる。本発明においては、CMP積層研磨パッドの下地層を構成する樹脂の一構成成分としてポリロタキサンを用いることにより、優れた研磨特性を発現することが可能となる。
 本発明で使用する(A)ポリロタキサンモノマーは、後述する(B)成分と重合可能な重合性官能基を有するポリロタキサンであれば特に限定されず、公知の方法、たとえば、国際公開第WO2015/068798号に記載の方法で合成することができる。上記(A)成分の構成について詳細に説明する。
 本発明で使用する(A)ポリロタキサンモノマーの軸分子としては、環状分子が有する環を貫通し得れば特に限定なく、一般的に、直鎖状あるいは分岐鎖状のポリマーが用いられる。
 このような軸分子に用いられるポリマーとしては、ポリビニルアルコール、ポリビニルピロリドン、セルロース系樹脂(カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなど)、ポリアクリルアミド、ポリエチレンオキサイド、ポリエチレングリコール、ポリプロピレングリコール、ポリビニルアセタール、ポリビニルメチルエーテル、ポリアミン、ポリエチレンイミン、カゼイン、ゼラチン、でんぷん、オレフィン系樹脂(ポリエチレン、ポリプロピレンなど)、ポリエステル、ポリ塩化ビニル、スチレン系樹脂(ポリスチレン、アクリロニトリル-スチレン共重合樹脂など)、アクリル系樹脂(ポリ(メタ)アクリレート酸、ポリメチルメタクリレート、ポリメチルアクリレート、アクリロニトリル-メチルアクリレート共重合樹脂など)、ポリカーボネート、ポリウレタン、塩化ビニル-酢酸ビニル共重合樹脂、ポリビニルブチラール、ポリイソブチレン、ポリテトラヒドロフラン、ポリアニリン、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリアミド(ナイロンなど)、ポリイミド、ポリジエン(ポリイソプレン、ポリブタジエンなど)、ポリシロキサン(ポリジメチルシロキサンなど)、ポリスルホン、ポリイミン、ポリ無水酢酸、ポリ尿素、ポリスルフィド、ポリフォスファゼン、ポリケトンポリフェニレン、ポリハロオレフィン等を挙げることができる。これらのポリマーは、適宜共重合されていてもよく、また変性されたものであってもよい。
 本発明において、軸分子に用いられるポリマーとして好適なものは、ポリエチレングリコール、ポリイソプレン、ポリイソブチレン、ポリブタジエン、ポリプロピレングリコール、ポリテトラヒドロフラン、ポリジメチルシロキサン、ポリエチレン、ポリプロピレン、ポリビニルアルコールまたはポリビニルメチルエーテルであり、ポリエチレングリコールが最も好適である。
 上記した軸分子に用いられるポリマーの分子量は、特に制限されないが、大きすぎると、その他の重合性単量体等と混合した際に、粘度が増大し、扱いが困難となるばかりか、相溶性が悪くなる傾向にある。このような観点から、軸分子の重量平均分子量Mwは、400~100000が好適であり、1000~50000がより好適であり、特に2000~30000の範囲にあることがさらに好適である。なお、この重量平均分子量Mwは、後述する実施例で記載したゲルパーミエーションクロマトグラフィー(GPC)測定方法で測定した値である。
 上記した軸分子に用いられるポリマーは、環状分子の環内を貫通した環が離脱しないように、両末端に嵩高い基を有することが好ましい。前記軸分子に用いられるポリマーの両末端に形成される嵩高い基としては、軸分子からの環状分子の脱離を防ぐ基であれば、特に制限されないが、嵩高さの観点から、アダマンチル基、トリチル基、フルオレセイニル基、ジニトロフェニル基、およびピレニル基体を挙げることができ、特に導入のし易さなどの点で、アダマンチル基が好適である。
 一方、本発明で使用する(A)ポリロタキサンモノマーの環状分子としては、前記した軸分子を包接し得る大きさの環を有するものであればよく、このような環としては、シクロデキストリン環、クラウンエーテル環、ベンゾクラウン環、ジベンゾクラウン環、およびジシクロヘキサノクラウン環を挙げることができ、後述するように、環状分子中に反応性官能基を有しているシクロデキストリン環が特に好ましい。
 前記シクロデキストリン環には、α体(環内径0.45~0.6nm)、β体(環内径0.6~0.8nm)、γ体(環内径0.8~0.95nm)がある。また、これらの混合物を使用することもできる。本発明では、特にα-シクロデキストリン環、およびβ-シクロデキストリン環が好ましく、α-シクロデキストリン環が最も好ましい。
 上記した環状分子は、1つの軸分子に一つ以上の環状分子が包接することとなる。そして、1つの軸分子に包接し得る環状分子の最大包接数を1.0としたとき、環状分子の包接数は最大でも0.8以下であることが好ましい。環状分子の包接数が多すぎると、一つの軸分子に対して環状分子が密に存在するようになる。その結果、可動性(スライド幅)が低下する傾向にある。加えて、前記(A)ポリロタキサンモノマー自体の分子量が増大する。そのため、重合性組成物に使用した場合、該重合性組成物のハンドリング性が低下する傾向にある。そのため、より好ましくは、1つの軸分子が少なくとも2つ以上の環状分子で包接されており、環状分子の包接数は最大でも0.5以下の範囲にあることが好ましい。
 なお、一つの軸分子に対する環状分子の最大包接数は、軸分子の長さおよび環状分子の環の厚みから算出することができる。たとえば、軸分子の鎖状部分がポリエチレングリコールで形成され、環状分子がα-シクロデキストリン環である場合を例にとると、次のようにして最大包接数が算出される。すなわち、ポリエチレングリコールの繰り返し単位[-CH2-CH2O-]の2つ分がα-シクロデキストリン環1つの厚みに近似する。したがって、このポリエチレングリコールの分子量から繰り返し単位数を算出し、この繰り返し単位数の1/2が環状分子の最大包接数として求められる。この最大包接数を1.0とし、環状分子の包接数が前述した範囲に調製されることとなる。
 上記の環状分子は、単独で使用することができ、また複数種を併用することもできる。
 本発明で使用する(A)ポリロタキサンモノマーの重合性官能基の数は、一分子中に2つ以上導入されていればよく、該重合性官能基は、環状分子が有しているのが好ましい。そうすることでポリロタキサンの特徴である環状分子のスライディング効果を十分に発現することが可能となり、優れた力学特性を発現できる。
 本発明で使用する(A)ポリロタキサンモノマーにおいて、より優れた特性を発現させるために、(B)重合性モノマーとの相溶性を調節することを勘案すると、前記した環状分子に側鎖が導入されていることが好ましい。
 さらに、(A)ポリロタキサンモノマーが側鎖を有する場合、該側鎖に重合性官能基を有するのが好ましい。そうすることで、該側鎖を介して(B)重合性モノマーと結合するため、より優れた特性を発現することが可能となる。
 上記の側鎖としては、特に制限されるものではないが、炭素数が3~20の範囲にある有機鎖の繰り返しにより形成されていることが好適である。また、側鎖の種類や数平均分子量が異なるものが環状分子に導入されていてもよい。このような側鎖の数平均分子量は45~10000、好ましくは55~5000、より好ましくは100~1500の範囲である。この側鎖の数平均分子量は、側鎖の導入時に使用する物質の量により調整ができ、計算により求めることができる。また、得られた(A)ポリロタキサンモノマーから求める場合には、H-NMRの測定から求めることができる。
 側鎖が短過ぎると(側鎖の分子量が小さ過ぎると)、その他の(B)重合性モノマーとの相溶性が低下する傾向にある。また、側鎖が短過ぎると、側鎖に重合性官能基を導入する場合には、得られる硬化体の機械的特性が低下する傾向にあり、硬化体中における発揮される効果が低下する傾向にある。その反対に、側鎖が長すぎると、(B)重合性モノマーと混合した際に粘度が増粘してしまい、硬化体の外観不良を引き起こしたり、硬化体の硬度が低下や耐摩耗性が低下する傾向にある。
 前記側鎖は、通常、環状分子が有する反応性官能基を利用し、この反応性官能基を修飾することによって導入される。中でも、本発明においては、環状分子が水酸基を有していて、該水酸基を修飾して側鎖が導入された(A)ポリロタキサンモノマーが好ましい。たとえば、α-シクロデキストリン環は、反応性官能基として18個の水酸基を有している。この水酸基を修飾して側鎖が導入すればよい。すなわち、1つのα-シクロデキストリン環に対しては最大で18個の側鎖を導入できることとなる。
 前記側鎖の機能を十分に発揮させるためには、環状分子が有する全反応性官能基数の4~70%(以下、この値を修飾度ともいう)が、側鎖で修飾されていることが好ましい。なお、この修飾度は、平均値である。
 また、下記に詳述するが、環状分子の反応性官能基(たとえば水酸基)は、側鎖が有する反応性官能基(たとえば、水酸基)よりも反応性が低い。そのため、修飾度が100%でなくても、上記範囲であれば、より優れた効果を発揮する。
 なお、本発明においては、水酸基が重合性官能基に該当する場合には、以下のように見なす。たとえば、環状分子がシクロデキストリン環であって、該シクロデキストリン環が有する水酸基において、側鎖が導入されていない水酸基も、重合性官能基と見なすものとする。ちなみに、上記α-シクロデキストリン環の18個のOH基の内の9個に側鎖が結合している場合、その修飾度は50%となる。
 本発明において、上記側鎖は、分子量が前述した範囲内であれば、直鎖状であってもよいし、分枝状であってもよい。側鎖の導入については、公知の方法、たとえば、国際公開第WO2015/159875号に開示されている手法や化合物を適宜使用すればよい。具体的には、開環重合;ラジカル重合;カチオン重合;アニオン重合;原子移動ラジカル重合、RAFT重合、NMP重合などのリビングラジカル重合などが利用できる。上記手法により、適宜選択された化合物を前記環状分子が有する反応性官能基に反応させることによって適宜の大きさの側鎖を導入することができる。
 たとえば、開環重合により、環状エーテル、環状シロキサン、環状ラクトン、環状ラクタム、環状アセタール、環状アミン、環状カーボネート、環状イミノエーテル、環状チオカーボネート等の環状化合物に由来する側鎖を導入することができる。
 該環状化合物の中でも、反応性が高く、さらには大きさ(分子量)の調製が容易であるという観点から、環状エーテル、環状ラクトン、環状ラクタムを用いることが好ましい。
 環状ラクトンや環状エーテル等の環状化合物を開環重合して導入した側鎖は、該側鎖の末端に水酸基が導入されることとなり、環状ラクタムを開環重合して導入した側鎖は、該側鎖の末端にアミノ基が導入されることとなる。好適な環状エーテル、環状ラクトンは国際公開第WO2015/159875号に開示されている。
 本発明において、好適な環状ラクタムとしては、
 4-ベンゾイルオキシ-2-アゼチジノン等の4員環ラクタム、
 γ-ブチロラクタム、2-アザビシクロ(2,2,1)ヘプタ-5-エン-3-オン、5-メチル-2-ピロリドン等の5員環ラクタム、
 2-ピペリドン-3-カルボン酸エチル等の6員環ラクタム、
 ε-カプロラクタム、DL-α-アミノ-ε-カプロラクタム等の7員環ラクタム、
 ω-ヘプタラクタムが挙げられる。
 上記の環状化合物は、単独で使用することができ、また複数種を併用することもできる。
 本発明において、好適に使用される側鎖導入化合物はラクトン化合物またはラクタム化合物であり、特に好適なラクトン化合物はε-カプロラクトン、α-アセチル-γ-ブチロラクトン、α-メチル-γ-ブチロラクトン、γ-バレロラクトン、γ-ブチロラクトン等のラクトン化合物であり、特に好適なラクタム化合物はε-カプロラクタム、γ-ブチロラクタム、DL-α-アミノ-ε-カプロラクタムであり、さらにもっとも好ましいのはε-カプロラクトン、ε-カプロラクタムである。
 また、開環重合により環状化合物を反応させて側鎖を導入する場合、環状分子の反応性官能基(たとえば水酸基)は反応性に乏しく、特に立体障害などにより大きな分子を直接反応させることが困難な場合がある。このような場合には、たとえば、前記したカプロラクトンなどを反応させるために、一旦、プロピレンオキシドなどの低分子化合物を環状分子の反応性官能基と反応させてヒドロキシプロピル化を行ない、反応性に富んだ官能基を導入する。その後、前記した環状化合物を用いた開環重合により、側鎖を導入するという手段を採用することができる。この場合、ヒドロキシプロピル化した部分も側鎖と見なすことができる。
 この他、開環重合により、前述した環状アセタール、環状アミン、環状カーボネート、環状イミノエーテル、環状チオカーボネート等の環状化合物に由来する側鎖を導入することにより、活性水素を有する基(活性水素含有基)を有する側鎖を導入することができる。これら環状化合物の具体例は、国際公開第2015/068798号に記載されているものである。
 また、ラジカル重合を利用して環状分子に側鎖を導入する方法は、以下の通りである。前記環状分子は、ラジカル開始点となる活性部位を有していない場合がある。この場合、ラジカル重合性化合物を反応させるに先立って、環状分子が有している官能基(たとえば、水酸基)にラジカル開始点を形成するための化合物を反応させて、ラジカル開始点となる活性部位を形成しておく必要がある。
 上記のようなラジカル開始点を形成するための化合物としては、有機ハロゲン化合物が代表的である。たとえば、2-ブロモイソブチリルブロミド、2-ブロモブチル酸、2-ブロモプロピオン酸、2-クロロプロピオン酸、2-ブロモイソ酪酸、エピクロロヒドリン、エピブロモヒドリン、2-クロロエチルイソシアネートなどを挙げることができる。すなわち、これら有機ハロゲン化合物は、環状分子が有している官能基との反応により、該環状分子に結合して、該環状分子にハロゲン原子を含む基(有機ハロゲン化合物残基)が導入される。この有機ハロゲン化合物残基には、ラジカル重合に際して、ハロゲン原子の移動等によりラジカルが生成し、これがラジカル重合開始点となって、ラジカル重合が進行することとなる。
 また、上記した有機ハロゲン化合物残基は、たとえば環状分子が有している水酸基に、アミン、イソシアネート、イミダゾールなどの官能基を有する化合物を反応させ、水酸基以外の他の官能基を導入し、このような他の官能基に前記した有機ハロゲン化合物を反応させて導入することもできる。
 また、ラジカル重合により側鎖を導入するために用いるラジカル重合性化合物としては、エチレン性不飽和結合を有する基、たとえば、(メタ)アクリレート基、ビニル基、スチリル基等の官能基を少なくとも1種有する化合物(以下、エチレン性不飽和モノマーともいう)が好適に使用される。また、エチレン性不飽和モノマーとしては、末端エチレン性不飽和結合を有するオリゴマーもしくはポリマー(以下、マクロモノマーと呼ぶ)も使用することができる。このようなエチレン性不飽和モノマーとしては、好適なエチレン性不飽和モノマーの具体例は、国際公開第WO2015/068798号に記載されているものが使用できる。
 なお、本発明においては、側鎖の官能基と他の化合物とを反応させて、該他の化合物に由来する構造を導入する反応を「変性」という場合もある。変性に用いる化合物は、特に、側鎖の官能基と反応可能な化合物であれば使用できる。該化合物を選定することで、側鎖に様々な重合性官能基を導入することや、重合性を有さない基に変性することも可能である。
 上記した説明から理解されるように、環状分子に導入される側鎖は、重合性官能基以外にも、様々な官能基を有していることもある。
 さらに、側鎖導入のために用いる化合物が有している官能基の種類によっては、この側鎖の一部が、他の軸分子が有している環状分子の環の官能基に結合し、架橋構造を形成する場合もある。
 上記したとおり、(A)ポリロタキサンモノマーの重合性官能基は、前記環状分子が有するもの、または前記環状分子に導入された前記側鎖が有するものであることが好ましい。この中でも、反応性を考慮すると、側鎖の末端が重合性官能基となることが好ましく、側鎖の末端に導入された重合性官能基が、(A)ポリロタキサンモノマー1分子当たり2つ以上導入されていればよい。なお、重合性官能基の数の上限は、特に制限されるものではないが、中でも、重合性官能基の数の上限は、側鎖の末端に導入された該重合性官能基のモル数を(A)ポリロタキサンモノマーの重量平均分子量(Mw)で割った値(以下、重合性官能基含有量ともいう)が、10mmol/g以下であることが好ましい。重合性官能基含有量は、上記したとおり、側鎖の末端に導入された重合性官能基のモル数を前記(A)ポリロタキサンモノマーの重量平均分子量(Mw)で割った値であり、言い換えると、前記(A)ポリロタキサンモノマー1g当たりの、側鎖の末端に導入された重合性官能基のモル数を指す。
 該重合性官能基含有量は、0.2~8mmol/gが好ましく、0.5~5mmol/gが特に好ましい。なお、重量平均分子量は、後記する実施例で記載したゲルパーミエーションクロマトグラフィー(GPC)で測定した値である。
 また、側鎖に導入されていない重合性官能基および前記側鎖に導入された重合性官能基の全重合性官能基の含有量は、以下の範囲であることが好ましい。具体的には、全重合性官能基の含有量が0.2~20mmol/gとなることが好ましい。より好ましくは、全重合性官能基の含有量は0.4~16mmol/gであり、特に好ましくは1~10mmol/gである。全重合性官能基の含有量は、側鎖に導入されていない重合性官能基のモル数と側鎖に導入された重合性官能基のモル数の合計を(A)ポリロタキサンモノマーの重量平均分子量(Mw)で割った値である。
 なお、以上の説明した重合性官能基および全重合性官能基のモル数は、平均値である。
 前記重合性官能基としては、(B)重合性モノマーと重合できる基であれば特に限定されない。中でも、本発明において、好ましい重合性官能基は、水酸基、アミノ基、チオール基からなる群より選ばれる少なくとも1種の活性水素基である。これらの重合性官能基を有することで、後述するウレタン(ウレア)樹脂中に(A)ポリロタキサンモノマーを導入することが可能となる。
 ここで、本明細書において、ウレタン(ウレア)樹脂とは、ウレタン結合、チオウレタン結合、ウレア結合、及びチオウレア結合からなる群から選択される少なくとも1つの結合が含まれている樹脂のことを指す。
 本発明において、最も好適に使用される(A)ポリロタキサンモノマーは、両端にアダマンチル基で結合しているポリエチレングリコールを軸分子とし、α-シクロデキストリン環を有する環状分子とし、さらに、ポリカプロラクトンにより該環に側鎖(末端がOH基)が導入されているものである。
 この場合、側鎖は、α-シクロデキストリン環の水酸基をヒドロキシプロピル化した後、ε-カプロラクトンの開環重合により導入してもよい。
 そして、導入された側鎖は、全ての末端を水酸基とすることもできるし、水酸基のモル数を所望のものとするため、非反応性の基に変性することもできる。
 <(B)前記(A)分子内に少なくとも2つの重合性官能基を有するポリロタキサンモノマー以外の重合性モノマー>
 本発明において、(B)前記(A)ポリロタキサンモノマー以外の重合性モノマーは、(A)ポリロタキサンモノマーが有する重合性官能基と反応(重合)し得る基を有する化合物であれば特に制限されない。そして、当然のことながら、(A)ポリロタキサンモノマー以外の化合物である。
 (B)重合性モノマーは、(A)ポリロタキサンモノマーと重合し得る重合性モノマーであれば、公知の化合物が何ら制限なく使用できる。上述したように、(A)ポリロタキサンモノマーには様々な重合性官能基を導入できる。それに応じて(B)重合性モノマーを選択すればよい。たとえば、国際公開第WO2015/068798号に記載されている重合性モノマーが挙げられる。
 本発明においては、たとえば、(A)ポリロタキサンモノマーが有している重合性官能基が水酸基、チオール基、アミノ基(本発明のアミノ基とは、第一級アミノ基(-NH)、及び第二級アミノ基(-NHR;Rは置換基、たとえば、アルキル基)の両方を指す。)から選ばれる重合性官能基を有する場合には、(B)重合性モノマーは、(B1)分子内に少なくとも2つのイソ(チオ)シアネート基を有するイソ(チオ)シアネート化合物(以下、単に「(B1)イソ(チオ)シアネート化合物」。または「(B1)成分」ともいう)が挙げられる。
 また、(A)ポリロタキサンモノマーが有している重合性官能基が水酸基、アミノ基の場合には、(B)重合性モノマーは、(B2)エポキシ基を有するエポキシ基含有モノマー(以下、単に「(B2)エポキシ基含有モノマー」または「(B2)成分」ともいう)も選択できる。
 一方、(A)ポリロタキサンモノマーが有している重合性官能基がイソシアネート基またはイソチオシアネート基である場合、(B)重合性モノマーは、(B3)水酸基、およびチオール基から選ばれる基を少なくとも2つ有する(チ)オール化合物(以下、単に「(B3)(チ)オール化合物」または「(B3)成分」ともいう)、並びに(B4)アミノ基を少なくとも2つ有するアミノ基含有モノマー(以下、単に「(B4)アミノ基含有モノマー」または「(B4)成分」ともいう)から選択できる。
 本発明において重合性組成物は、(A)ポリロタキサンモノマーおよび(B)重合性モノマーを含むものであれば、本発明の効果を損なわない範囲で、その他の成分を含んでいてもよい。たとえば、前記重合性組成物には、(A)ポリロタキサンモノマーと重合しない、その他の重合モノマーを含むことができる。具体的には、重合反応が逐次付加(たとえば、重縮合・重付加)反応の場合、(A)成分と、(A)成分と重合し得る(B)重合性モノマーとが含まれている重合性組成物に、(A)成分と重合せず、(B)重合性モノマーと重合するその他の重合性モノマーを存在させることにより、(A)成分、(B)成分、および、前記その他の重合性モノマーとで共重合させることができる。すなわち、前記逐次付加反応の場合、重合性組成物は、(A)成分および(A)成分と重合し得る(B)重合性モノマーだけではなく、共重合可能なその他の重合性モノマーを含むことができる。もちろん、重合性組成物は、(A)成分と、(A)成分と重合し得る(B)重合性モノマーからなることもできる。
 逐次付加反応の例をより詳細に説明する。具体的には、たとえば、(A)ポリロタキサンモノマーが有する重合性官能基が水酸基等の活性水素含有基である場合、前記重合性組成物に、(B)重合性モノマーとして(B1)イソ(チオ)シアネート化合物を含めば、前記(B3)(チ)オール化合物、及び前記(B4)アミノ基含有モノマーを含むことができる。逐次付加反応の場合には、(B1)成分が含まれていることにより、(A)成分、(B1)成分、(B3)成分及び/または(B4)成分が共重合した樹脂を得ることができる。なお、当然のことながら、この場合、重合性組成物には、(B2)成分を含むこともできる。なお、重合性組成物は、(A)成分と、(A)成分と重合し得る(B1)成分からなるものであってもよい。
 逐次付加反応の場合には、反応し合う各成分((A)成分、及び各重合性モノマー)は、重合する前は、分けて保存しておくことが好ましい。
 また、(A)ポリロタキサンモノマーが有している重合性官能基がラジカル重合性基の場合、前記重合性組成物は、ラジカル重合性基を有するモノマーからなる。ラジカル重合の場合には、連鎖重合であるため、逐次付加反応とは異なり、重合性組成物に含まれる重合性モノマーは、全てラジカル重合性基を有するモノマーからなる。具体的には、(B)重合性モノマーは、下記に詳述する(B5)ラジカル重合性モノマー(以下、(B)成分ともいう。)として(メタ)アクリレート基を有する(メタ)アクリレート化合物、アリル化合物から選択することが好ましく、特に好ましくは、(メタ)アクリレート化合物から選択することが好ましい。
 以上の通り、逐次付加反応の場合と連鎖重合の場合を説明したが、それら両方を行える場合には、以下のようにすることもできる。
 たとえば、(A)ポリロタキサンモノマーが有している重合性官能基が水酸基等の活性水素含有基とラジカル重合性基との両方を有している場合、(B)重合性モノマーは、(メタ)アクリレート基を有する(メタ)アクリレート化合物、アリル化合物等のみであってもよく、(B)重合性モノマーとして(B1)成分を含有する場合は、その他、(B2)(B3)、(B4)、(B5)成分を含むこともできる。
 以下、(B)重合性モノマーについて、個々に詳細を説明する。
 <(B1)イソ(チオ)シアネート化合物;(B1)成分>
 (B1)イソ(チオ)シアネート化合物は、イソシアネート基およびイソチオシアネート基からなる群から選択される基を少なくとも2つ有する化合物である。もちろん、イソシアネート基とイソチオシアネート基の二つの基を有している化合物も選択される。中でも、イソ(チオ)シアネート基を分子内に、2~6個有する化合物が好ましく、2~4個有する化合物がより好ましく、2~3個有する化合物がさらに好ましい。
 また、前記(B1)イソ(チオ)シアネート化合物は、下記に記載する(B13)分子内にイソシアネート基およびイソチオシアネート基からなる群から選択される基を2個有する2官能イソ(チオ)シアネート化合物(以下、(B13)成分ともいう)と、(B32)分子内に2つの活性水素含有基を有する2官能活性水素含有化合物(以下、(B32)成分ともいう)との反応により製造される、(B12)ウレタンプレポリマー(以下、(B12)成分ともいう)であってもよい。(B1)成分に該当する(B12)ウレタンプレポリマーは、未反応のイソシアネート基またはイソチオシアネート基を2つ以上含む一般に使用されているものが、何ら制限なく、本発明においても使用でき、好ましくはイソシアネート基を2つ以上含む(B12)ウレタンプレポリマーであることが好ましい。
 なお、前記(B32)成分における活性水素含有基とは、水酸基、チオール基、アミノ基から選ばれる基である。また、具体的な(B32)成分は、下記に詳述する(B3)(チ)オール化合物、または(B4)アミノ基含有モノマーに例示しているものが使用される。
 前記(B1)イソ(チオ)シアネート化合物としては、大きく分類すれば、脂肪族イソシアネート、脂環族イソシアネート、芳香族イソシアネート、イソチオシアネート、その他のイソシアネート、(B12)ウレタンプレポリマーに分類することができる。また、前記(B1)成分は、1種類の化合物を使用することもできるし、複数種類の化合物を使用することもできる。複数種類の化合物を使用する場合には、基準となる質量は、複数種類の化合物の合計量である。これら(B1)成分を具体的に例示すると以下のものが挙げられる。
 脂肪族イソシアネート;(B1)成分
 エチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、オクタメチレンジイソシアネート、ノナメチレンジイソシアネート、2,2’-ジメチルペンタンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、デカメチレンジイソシアネート、ブテンジイソシアネート、1,3-ブタジエン-1,4-ジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、1,6,11-トリメチルウンデカメチレンジイソシアネート、1,3,6-トリメチルヘキサメチレンジイソシアネート、1,8-ジイソシアネート-4-イソシアネートメチルオクタン、2,5,7-トリメチル-1,8-ジイソシアネート-5-イソシアネートメチルオクタン、ビス(イソシアネートエチル)カーボネート、ビス(イソシアネートエチル)エーテル、1,4-ブチレングリコールジプロピルエーテル-ω,ω’-ジイソシアネート、リジンジイソシアネートメチルエステル、2,4,4,-トリメチルヘキサメチレンジイソシアネート等の2官能イソシアネート(下記に詳述する(B12)ウレタンプレポリマーを構成する(B13)成分に該当する)。
 脂環族イソシアネート;(B1)成分
 イソホロンジイソシアネート、(ビシクロ[2.2.1]ヘプタン-2,5-ジイル)ビスメチレンジイソシアネート、(ビシクロ[2.2.1]ヘプタン-2,6-ジイル)ビスメチレンジイソシアネート、2β,5α-ビス(イソシアネート)ノルボルナン、2β,5β-ビス(イソシアネート)ノルボルナン、2β,6α-ビス(イソシアネート)ノルボルナン、2β,6β-ビス(イソシアネート)ノルボルナン、2,6-ジ(イソシアネートメチル)フラン、ビス(イソシアネートメチル)シクロヘキサン、ジシクロヘキシルメタン-4,4’-ジイソシアネート、4,4-イソプロピリデンビス(シクロヘキシルイソシアネート)、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、ジシクロヘキシルジメチルメタンジイソシアネート、2,2’-ジメチルジシクロヘキシルメタンジイソシアネート、ビス(4-イソシアネート-n-ブチリデン)ペンタエリスリトール、ダイマー酸ジイソシアネート、2,5-ビス(イソシアネートメチル)-ビシクロ〔2,2,1〕-ヘプタン、2,6-ビス(イソシアネートメチル)-ビシクロ〔2,2,1〕-ヘプタン、3,8-ビス(イソシアネートメチル)トリシクロデカン、3,9-ビス(イソシアネートメチル)トリシクロデカン、4,8-ビス(イソシアネートメチル)トリシクロデカン、4,9-ビス(イソシアネートメチル)トリシクロデカン、1,5-ジイソシアネートデカリン、2,7-ジイソシアネートデカリン、1,4-ジイソシアネートデカリン、2,6-ジイソシアネートデカリン、ビシクロ[4.3.0]ノナン-3,7-ジイソシアネート、ビシクロ[4.3.0]ノナン-4,8-ジイソシアネート、ビシクロ[2.2.1]ヘプタン-2,5-ジイソシアネートとビシクロ[2.2.1]ヘプタン-2,6-ジイソシアネート、ビシクロ[2,2,2]オクタン-2,5-ジイソシアネート、ビシクロ[2,2,2]オクタン-2,6-ジイソシアネート、トリシクロ[5.2.1.02.6]デカン-3,8-ジイソシアネート、トリシクロ[5.2.1.02.6]デカン-4,9-ジイソシアネート等の2官能イソシアネート(下記に詳述する(B12)ウレタンプレポリマーを構成する(B13)成分に該当する)。
 2-イソシアネートメチル-3-(3-イソシアネートプロピル)-5-イソシアネートメチル-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-3-(3-イソシアネートプロピル)-6-イソシアネートメチル-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-2-(3-イソシアネートプロピル)-5-イソシアネートメチル-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-2-(3-イソシアネートプロピル)-6-イソシアネートメチル-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-3-(3-イソシアネートプロピル)-5-(2-イソシアネートエチル)-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-3-(3-イソシアネートプロピル)-6-(2-イソシアネートエチル)-ビシクロ〔2,1,1〕-ヘプタン、2-イソシアネートメチル-2-(3-イソシアネートプロピル)-5-(2-イソシアネートエチル)-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-2-(3-イソシアネートプロピル)-6-(2-イソシアネートエチル)-ビシクロ〔2,2,1〕-ヘプタン、1,3,5-トリス(イソシアネートメチル)シクロヘキサン等の多官能イソシアネート。
 芳香族イソシアネート;(B1)成分
 キシリレンジイソシアネート(o-、m-,p-)、テトラクロロ-m-キシリレンジイソシアネート、メチレンジフェニル-4,4’-ジイソシアネート、4-クロル-m-キシリレンジイソシアネート、4,5-ジクロル-m-キシリレンジイソシアネート、2,3,5,6-テトラブロム-p-キシリレンジイソシアネート、4-メチル-m-キシリレンジイソシアネート、4-エチル-m-キシリレンジイソシアネート、ビス(イソシアネートエチル)ベンゼン、ビス(イソシアネートプロピル)ベンゼン、1,3-ビス(α,α-ジメチルイソシアネートメチル)ベンゼン、1,4-ビス(α,α-ジメチルイソシアネートメチル)ベンゼン、α,α,α’,α’-テトラメチルキシリレンジイソシアネート、ビス(イソシアネートブチル)ベンゼン、ビス(イソシアネートメチル)ナフタリン、ビス(イソシアネートメチル)ジフェニルエーテル、ビス(イソシアネートエチル)フタレート、2,6-ジ(イソシアネートメチル)フラン、フェニレンジイソシアネート(o-,m-,p-)、トリレンジイソシアネート、エチルフェニレンジイソシアネート、イソプロピルフェニレンジイソシアネート、ジメチルフェニレンジイソシアネート、ジエチルフェニレンジイソシアネート、ジイソプロピルフェニレンジイソシアネート、トリメチルベンゼントリイソシアネート、ベンゼントリイソシアネート、1,3,5-トリイソシアネートメチルベンゼン、1,5-ナフタレンジイソシアネート、メチルナフタレンジイソシアネート、ビフェニルジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,2'-ジフェニルメタンジイソシアネート、2,4'-ジフェニルメタンジイソシアネート、3,3’-ジメチルジフェニルメタン-4,4’-ジイソシアネート、ビベンジル-4,4’-ジイソシアネート、ビス(イソシアネートフェニル)エチレン、3,3’-ジメトキシビフェニル-4,4’-ジイソシアネート、フェニルイソシアネートメチルイソシアネート、フェニルイソシアネートエチルイソシアネート、テトラヒドロナフチレンジイソシアネート、ヘキサヒドロベンゼンジイソシアネート、ヘキサヒドロジフェニルメタン-4,4’-ジイソシアネート、ジフェニルエーテルジイソシアネート、エチレングリコ-ルジフェニルエーテルジイソシアネート、1,3-プロピレングリコールジフェニルエーテルジイソシアネート、ベンゾフェノンジイソシアネート、ジエチレングリコ-ルジフェニルエーテルジイソシアネート、ジベンゾフランジイソシアネート、カルバゾールジイソシアネート、エチルカルバゾールジイソシアネート、ジクロロカルバゾールジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート等の2官能イソシアネート(下記に詳述する(B12)ウレタンプレポリマーを構成する(B13)成分に該当する)。
 メシチリレントリイソシアネート、トリフェニルメタントリイソシアネート、ポリメリックMDI、ナフタリントリイソシアネート、ジフェニルメタン-2,4,4’-トリイソシアネート、3-メチルジフェニルメタン-4,4’,6-トリイソシアネート、4-メチル-ジフェニルメタン-2,3,4’,5,6-ペンタイソシアネート等の多官能イソシアネート化合物。
 イソチオシアネート;(B1)成分
 p-フェニレンジイソチオシアネート、キシリレン-1,4-ジイソチオシアネート、及びエチリジンジイソチオシアネート等の2官能イソチオシアネート(下記に詳述する(B12)ウレタンプレポリマーを構成する(B13)成分に該当する)。
 その他のイソシアネート:(B1)成分
 その他のイソシアネートとして、ヘキサメチレンジイソシアネートやトリレンジイソシアネートなどのジイソシアネート類を主原料としたビュレット構造、ウレトジオン構造、イソシアヌレート構造(たとえば、特開2004-534870号公報には、脂肪族ポリイソシアネートのビュレット構造、ウレトジオン構造、イソシアヌレート構造の変性の方法が開示されている)を有する多官能イソシアネートやトリメチロールプロパンなどの3官能以上のポリオールとのアダクト体として多官能としたもの等が挙げられる(成書(岩田敬治編 ポリウレタン樹脂ハンドブック 日刊工業新聞社(1987))等に開示されている)。
 (B12)ウレタンプレポリマー;両末端イソ(チオ)シアネート基を有する(B1)成分
 本発明においては、前記(B13)成分と後述する(B32)分子内に2つの活性水素含有基を有する2官能活性水素含有化合物との反応により製造される、(B12)ウレタンプレポリマーを、(B1)成分として使用することもできる。
 (B12)ウレタンプレポリマーは、特に制限されるものではないが、(B13)成分としては、特に、次に例示するモノマーを使用することが好ましい。具体的には、1,5-ナフタレンジイソシアネート、キシレンジイソシアネート(o-,m-,p-)、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、フェニレンジイソシアネート(o-,m-,p-)、2,2’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、イソホロンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、ジシクロヘキシルメタン-4,4’-ジイソシアネート、(ビシクロ[2.2.1]ヘプタン-2,5(2,6)-ジイル)ビスメチレンジイソシアネートを使用することが好ましい。これらに(B32)2官能活性水素含有化合物を反応させて、両末端にイソシアネート基および/またはイソチオシアネート基を有する(B12)成分とすることが好ましい。
 また、最終的に得られる前記樹脂が、特に優れた特性を発揮するためには、少なくとも1種類の分子量(数平均分子量)が300~2000の(B32)2官能活性水素含有化合物を使用して(B12)ウレタンプレポリマーを製造することが好ましい。活性水素含有基とは、水酸基、チオール基、アミノ基を指す。中でも、反応性を考慮すると、(B32)2官能活性水素含有化合物における活性水素含有基は、水酸基であることが好ましい。
 分子量(数平均分子量)が300~2000の(B32)2官能活性水素含有化合物は、種類の異なるもの、分子量の異なるものを組み合わせて使用することもできる。また、最終的に得られる前記樹脂の硬度等を調整するために、(B12)ウレタンプレポリマーを形成する際に、該分子量(数平均分子量)が300~2000の(B32)成分と、該分子量(数平均分子量)が90~300の(B32)成分とを組み合わせて使用することもできる。この場合、使用する(B32)成分、および(B13)2官能イソ(チオ)シアネート化合物成分の種類、およびそれらの使用量にもよるが、分子量300~2000の(B32)成分を100質量部とした時、分子量90~300の(B32)成分を0~50質量部とすることが好ましい。さらには、分子量90~300の(B32)成分を1~40質量部とすることが好ましい。
 また、(B12)ウレタンプレポリマーは、分子の両末端がイソシアネート基および/またはイソチオシアネート基とならなければならない。そのため、(B12)ウレタンプレポリマーは、(B13)2官能イソ(チオ)シアネート化合物におけるイソシアネート基および/またはイソチオシアネート基の合計モル数(n5)と、(B32)2官能活性水素含有化合物の活性水素含有基(水酸基、チオール基、またはアミノ基)の合計モル数(n6)とが、1<(n5)/(n6)≦2.3となる範囲で製造することが好ましい。2種類以上の、分子の末端が(B13)成分を用いる場合、該イソシアネート基および/またはイソチオシアネート基のモル数(n5)は、もちろん(B13)成分のイソシアネート基および/またはイソチオシアネート基の合計モル数とする。また、2種類以上の(B32)2官能活性水素含有化合物の活性水素含有基のモル数(n6)は、もちろん活性水素含有基の合計の活性水素のモル数とする。活性水素含有基が第一級アミノ基である場合であっても、第一級アミノ基を1モルと考える。つまり、第一級アミノ基において、2つ目のアミノ基(-NH)が反応するには、かなりのエネルギーを要する(第一級アミノ基であっても、2つ目の-NHは反応し難い)。そのため、本発明においては、第一級アミノ基を有する(B32)2官能活性水素含有化合物を使用したとしても、第一級アミノ基を1モルと計算できる。
 該(B12)ウレタンプレポリマーのイソ(チオ)シアネート当量(イソシアネート当量および/またはイソチオシアネート当量の総量)は、(B12)ウレタンプレポリマーが有するイソシアネート基および/またはイソチオシアネート基をJIS K 7301に準拠して定量することにより、求めることができる。該イソシアネート基および/またはイソチオシアネート基は、以下の逆滴定法によって定量できる。先ず、得られた(B12)ウレタンプレポリマーを乾燥溶媒に溶解させる。次に、(B12)ウレタンプレポリマーが有するイソシアネート基および/またはイソチオシアネート基の量よりも、明らかに過剰量であって、かつ濃度が既知のジ-n-ブチルアミンを、該乾燥溶媒に加え、(B12)ウレタンプレポリマーの全イソシアネート基および/またはイソチオシアネート基と、ジ-n-ブチルアミンとを反応させる。次いで、消費されなかった(反応に関与しなかった)ジ-n-ブチルアミンを酸で滴定して、消費されたジ-n-ブチルアミンの量を求める。この消費されたジ-n-ブチルアミンと、(B12)ウレタンプレポリマーが有するイソシアネート基および/またはイソチオシアネート基とは、同量であることからイソ(チオ)シアネート当量を求めることができる。また、(B12)ウレタンプレポリマーは、両末端がイソシアネート基および/またはイソチオシアネート基の直鎖状のウレタンプレポリマーであることから、(B12)ウレタンプレポリマーの数平均分子量は、イソ(チオ)シアネート当量の2倍となる。この(B12)ウレタンプレポリマーの分子量は、ゲルパーミネーションクロマトグラフィー(GPC)で測定した値と一致し易い。なお、たとえば、該(B12)ウレタンプレポリマーと(B13)2官能イソ(チオ)シアネート化合物とを併用して使用する場合には、両者の混合物を上記方法に沿って測定すればよい。
 前記(B12)ウレタンプレポリマーは、特に制限されるものではないが、イソ(チオ)シアネート当量が好ましくは300~5000、より好ましくは350~3000、特に好ましくは350~2000が好ましい。この理由は、特に明らかではないが、以下のように考えられる。すなわち、ある程度の分子量を有する(B12)ウレタンプレポリマーが(A)ポリロタキサンモノマーの重合性官能基と反応することにより、スライド可能な分子が大きくなって分子自体の動きが大きくなり、その結果、変形に対しても回復(弾性回復;低ヒステリック)し易くなると考えられる。さらには、(B12)ウレタンプレポリマーが使用されることにより、前記樹脂における架橋点が分散し易くなってランダムに且つ均一に存在するようになり、安定した性能が発揮されるものと考えられる。そして、(B12)ウレタンプレポリマーを使用して得られる前記樹脂は、製造時の制御がし易くなり、加えて研磨パッドとして好適に使用できるようになると考えられる。このような効果は、(B12)ウレタンプレポリマーと(B13)2官能イソ(チオ)シアネート化合物とを併用した場合において、ポリイソ(チオ)シアネート化合物の平均のイソ(チオ)シアネート当量が300~5000であっても、発現するものと考えられる。ただし、前記効果は、(B12)ウレタンプレポリマーのみである場合の方が顕著になると考えられる。
 本発明に用いる、(B12)ウレタンプレポリマーの製造方法は、水酸基、アミノ基、またはチオール基等の分子内に2つの活性水素含有基を有する(B32)2官能活性水素含有化合物と(B13)2官能イソ(チオ)シアネート化合物とを反応させて、分子の末端にイソシアネート基、またはイソチオシアネート基を有する(B12)ウレタンプレポリマーを製造すればよい。末端にイソシアネート基、またはイソチオシアネート基を有するプレポリマーを得ることが出来れば、何ら制限はない。
 上述しているが、(B12)ウレタンプレポリマーを得るための好ましい(B32)2官能活性水素含有化合物と、(B13)2官能イソ(チオ)シアネート化合物の配合量は、以下の通りである。具体的には、(B13)成分におけるイソシアネート基、またはイソチオシアネート基のモル数(n5)と(B32)2官能活性水素含有化合物の活性水素のモル数(n6)とが、1<(n5)/(n6)≦2.3となる範囲で製造することが好ましい。
 また、ウレタンプレポリマーの製造のために反応においては、必要に応じて加熱やウレタン化触媒を添加することで製造することが可能である。
 本発明で用いられる(B1)成分で最も好ましい例を挙げると、形成される前記樹脂の強度や、反応性の制御の観点から、イソホロンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、(ビシクロ[2.2.1]ヘプタン-2,5(2,6)-ジイル)ビスメチレンジイソシアネートの脂環族イソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4'-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート(o-、m-,p-)の芳香族イソシアネート、ヘキサメチレンジイソシアネートやトリレンジイソシアネートなどのジイソシアネート類を主原料としたビュレット構造、ウレトジオン構造、イソシアヌレート構造の多官能イソシアネート、3官能以上のポリオールとのアダクト体として多官能イソシアネート、または、(B12)ウレタンプレポリマーが挙げられる。
 その中でも特に好ましいのは、(B12)ウレタンプレポリマーが挙げられる。
 <(B2)エポキシ基含有モノマー;(B2)成分>
 エポキシ基含有モノマーは、重合性基として、分子内にエポキシ基を有するものであり、特に、(A)ポリロタキサンモノマーの重合性官能基として、水酸基、アミノ基が導入されている場合に好適である。
 このようなエポキシ化合物は、大きく分けて、脂肪族エポキシ化合物、脂環族エポキシモノマー及び芳香族エポキシモノマーに分類され、その好適な具体例としては、国際公開第2015/068798号に記載されているものを用いることができる。
 <(B3)(チ)オール化合物;(B3)成分>
 (B3)(チ)オール化合物は、水酸基、及びチオール基からなる群から選択される基を少なくとも1分子中に2個以上有している化合物であれば制限なく使用できる。もちろん、水酸基とチオール基の二つの基を有している化合物も選択される。
 前記(B3)成分を、大きく分類すれば、脂肪族アルコール、脂環族アルコール、芳香族アルコール、ポリエステルポリオール、ポリエーテルポリオール、ポリカプロラクトンポリオール、ポリカーボネートポリオール、ポリアクリルポリオール、ひまし油系ポリオール、チオール、OH/SH型重合性基含有モノマーに分類される。具体例としては、以下のものが挙げられる。
 脂肪族アルコール;(B3)成分
 エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ブチレングリコール、1,5-ジヒドロキシペンタン、1,6-ジヒドロキシヘキサン、1,7-ジヒドロキシヘプタン、1,8-ジヒドロキシオクタン、1,9-ジヒドロキシノナン、1,10-ジヒドロキシデカン、1,11-ジヒドロキシウンデカン、1,12-ジヒドロキシドデカン、ネオペンチルグリコール、モノオレイン酸グリセリル、モノエライジン、ポリエチレングリコール、3-メチル-1,5-ジヒドロキシペンタン、ジヒドロキシネオペンチル、2-エチル-1,2-ジヒドロキシヘキサン、2-メチル-1,3-ジヒドロキシプロパン等の2官能ポリオール(前記ウレタンプレポリマー(B12)を構成する(B32)2官能活性水素含有化合物に該当する)。
 グリセリン、トリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、トリメチロールプロパントリポリオキシエチレンエーテル(たとえば、日本乳化剤株式会社のTMP-30、TMP-60、TMP-90等)、ブタントリオール、1,2-メチルグルコサイド、ペンタエリトリトール、ジペンタエリトリトール、トリペンタエリトリトール、ソルビトール、エリスリトール、スレイトール、リビトール、アラビニトール、キシリトール、アリトール、マンニトール、ドルシトール、イディトール、グリコール、イノシトール、ヘキサントリオール、トリグリセロール、ジグリセロール、トリエチレングリコール等の多官能ポリオール。
 脂環族アルコール;(B3)成分
 水添ビスフェノールA、シクロブタンジオール、シクロペンタンジオール、シクロヘキサンジオール、シクロヘプタンジオール、シクロオクタンジオール、シクロヘキサンジメタノール、ヒドロキシプロピルシクロヘキサノール、トリシクロ〔5,2,1,02,6〕デカン-ジメタノール、ビシクロ〔4,3,0〕-ノナンジオール、ジシクロヘキサンジオール、トリシクロ〔5,3,1,13,9〕ドデカンジオール、ビシクロ〔4,3,0〕ノナンジメタノール、トリシクロ〔5,3,1,13,9〕ドデカン-ジエタノール、ヒドロキシプロピルトリシクロ〔5,3,1,13,9〕ドデカノール、スピロ〔3,4〕オクタンジオール、ブチルシクロヘキサンジオール、1,1’-ビシクロヘキシリデンジオール、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,2-シクロヘキサンジメタノール、及びo-ジヒドロキシキシリレン等の2官能ポリオール(前記(B12)ウレタンプレポリマーを構成する(B32)2官能活性水素含有化合物に該当する)。
 トリス(2-ヒドロキシエチル)イソシアヌレート、シクロヘキサントリオール、スクロース、マルチトール、ラクチトール等の多官能ポリオール。
 芳香族アルコール;(B3)成分
 ジヒドロキシナフタレン、ジヒドロキシベンゼン、ビスフェノールA、ビスフェノールF、キシリレングリコール、テトラブロムビスフェノールA、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,2-ビス(4-ヒドロキシフェニル)エタン、ビス(4-ヒドロキシフェニル)フェニルメタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、ビス(4-ヒドロキシフェニル)-1-ナフチルメタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2-(4-ヒドロキシフェニル)-2-(3-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、1,1-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)-3-メチルブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、3,3-ビス(4-ヒドロキシフェニル)ペンタン、2,2-ビス(4-ヒドロキシフェニル)ヘキサン、2,2-ビス(4-ヒドロキシフェニル)オクタン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、2,2-ビス(4-ヒドロキシフェニル)ヘプタン、4,4-ビス(4-ヒドロキシフェニル)ヘプタン、2,2-ビス(4-ヒドロキシフェニル)トリデカン、2,2-ビス(4-ヒドロキシフェニル)オクタン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-エチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-n-プロピル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-イソプロピル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-sec-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-tert-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-アリル-4'-ヒドロキシフェニル)プロパン、2,2-ビス(3-メトキシ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(2,3,5,6-テトラメチル-4-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)シアノメタン、1-シアノ-3,3-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロヘプタン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(3,5-ジメチル-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(3,5-ジクロロ-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)-4-メチルシクロヘキサン、1,1-ビス (4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシフェニル)ノルボルナン、2,2-ビス(4-ヒドロキシフェニル)アダマンタン、4,4'- ジヒドロキシジフェニルエーテル、4,4'- ジヒドロキシ-3,3'-ジメチルジフェニルエーテル、エチレングリコールビス(4-ヒドロキシフェニル)エーテル、4,4'- ジヒドロキシジフェニルスルフィド、3,3'-ジメチル-4,4'-ジヒドロキシジフェニルスルフィド、3,3'-ジシクロヘキシル-4,4'-ジヒドロキシジフェニルスルフィド、3,3'-ジフェニル-4,4'-ジヒドロキシジフェニルスルフィド、4,4'-ジヒドロキシジフェニルスルホキシド、3,3'-ジメチル-4,4'-ジヒドロキシジフェニルスルホキシド、4,4'-ジヒドロキシジフェニルスルホン、4,4'-ジヒドロキシ-3,3'-ジメチルジフェニルスルホン、ビス(4-ヒドロキシフェニル)ケトン、ビス(4-ヒドロキシ-3-メチルフェニル)ケトン、7,7'-ジヒドロキシ-3,3',4,4'-テトラヒドロ-4,4,4',4'-テトラメチル-2,2'-スピロビ(2H-1-ベンゾピラン)、トランス-2,3-ビス(4-ヒドロキシフェニル)-2-ブテン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、3,3-ビス(4-ヒドロキシフェニル)-2-ブタノン、1,6-ビス(4-ヒドロキシフェニル)-1,6-ヘキサンジオン、4,4'-ジヒドロキシビフェニル、m-ジヒドロキシキシリレン、p-ジヒドロキシキシリレン、1,4-ビス(2-ヒドロキシエチル)ベンゼン、1,4-ビス(3-ヒドロキシプロピル)ベンゼン、1,4-ビス(4-ヒドロキシブチル)ベンゼン、1,4-ビス(5-ヒドロキシペンチル)ベンゼン、1,4-ビス(6-ヒドロキシヘキシル)ベンゼン、2,2-ビス〔4-(2”-ヒドロキシエチルオキシ)フェニル〕プロパン、及びハイドロキノン、レゾールシン等の2官能ポリオール(前記(B12)ウレタンプレポリマーを構成する(B32)2官能活性水素含有化合物に該当する)。
 トリヒドロキシナフタレン、テトラヒドロキシナフタレン、ベンゼントリオール、ビフェニルテトラオール、ピロガロール、(ヒドロキシナフチル)ピロガロール、トリヒドロキシフェナントレン等の多官能ポリオール。
 ポリエステルポリオール;(B3)成分
 ポリオールと複数のカルボン酸を有する化合物との縮合反応により得られる化合物が挙げられる。中でも、数平均分子量が400~2000であることが好ましく、500~1500より好ましく、600~1200が最も好ましい。分子の両末端にのみ(分子内に2つの)水酸基を有するものは、前記(B12)ウレタンプレポリマーを構成する(B32)2官能活性水素含有化合物に該当する。
 ここで、前記ポリオールとしては、エチレングリコール、1,2-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、3,3’-ジメチロールヘプタン、1,4-シクロヘキサンジメタノール、ネオペンチルグリコール、3,3-ビス(ヒドロキシメチル)ヘプタン、ジエチレングリコール、ジプロピレングリコール、グリセリン、トリメチロールプロパンなどが挙げられ、これらは単独で使用しても、2種類以上を混合して使用しても構わない。また、前記複数のカルボン酸を有する化合物としては、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、シクロペンタンジカルボン酸、シクロヘキサンジカルボン酸、オルトフタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸などが挙げられ、これらは単独で使用しても、2種類以上を混合して使用しても構わない。
 これらポリエステルポリオールは、試薬としてまたは工業的に入手可能であり、市販されているものを例示すれば、DIC株式会社製「ポリライト(登録商標)」シリーズ、日本ポリウレタン工業株式会社製「ニッポラン(登録商標)」シリーズ、川崎化成工業株式会社製「マキシモール(登録商標)」シリーズ、株式会社クラレ製「クラレポリオール(登録商標)」シリーズなどを挙げることができる。
 ポリエーテルポリオール;(B3)成分
 アルキレンオキシドの開環重合、または、分子中に活性水素含有基を2個以上有する化合物とアルキレンオキサイドとの反応により得られる化合物およびその変性体が挙げられる。中でも、数平均分子量が400~2000であることが好ましく、500~1500より好ましく、600~1200が最も好ましい。分子の両末端にのみ(分子内に2つの)水酸基を有するものは、前記(B12)ウレタンプレポリマーを構成する(B32)2官能活性水素含有化合物に該当する。
 ここで、前記ポリエーテルポリオールとしては、ポリマーポリオール、ウレタン変性ポリエーテルポリオール、ポリエーテルエステルコポリマーポリオール等を挙げることができ、上記分子中に活性水素基を2個以上有する化合物としては、水、エチレングリコール、プロピレングリコール、ブタンジオール、グリセリン、トリメチロールプロパン、ヘキサントリオール、トリエタノールアミン、ジグリセリン、ペンタエリスリトール、トリメチロールプロパン、ヘキサントリオールなどの分子中に水酸基を1個以上有するグリコール、グリセリン等のポリオール化合物が挙げられ、これらは単独で使用しても、2種類以上を混合して使用してもよい。
 また、前記アルキレンオキサイドとしては、エチレンオキサイド、プロピレンオキサイド、テトラヒドロフラン等の環状エーテル化合物が挙げられ、これらは単独で使用しても2種類以上を混合して使用しても構わない。
 このようなポリエーテルポリオールは、試薬としてまたは工業的に入手可能であり、市販されているものを例示すれば、旭硝子株式会社製「エクセノール(登録商標)」シリーズ、「エマルスター(登録商標)」、株式会社ADEKA製「アデカポリエーテル」シリーズなどを挙げることができる。
 ポリカプロラクトンポリオール;(B3)成分
 ε-カプロラクトンの開環重合により得られる化合物が挙げられる。中でも、数平均分子量が400~2000であることが好ましく、500~1500より好ましく、600~1200が最も好ましい。分子の両末端にのみ(分子内に2つの)水酸基を有するものは、前記(B12)ウレタンプレポリマーを構成する(B32)2官能活性水素含有化合物に該当する。
 これらポリカプロラクトンポリオールは、試薬としてまたは工業的に入手可能であり、市販されているものを例示すれば、ダイセル化学工業株式会社製「プラクセル(登録商標)」シリーズなどを挙げることができる。
 ポリカーボネートポリオール;(B3)成分
 低分子ポリオールの1種類以上をホスゲン化して得られる化合物あるいはエチレンカーボネート、ジエチルカーボネート、ジフェニルカーボネート等を用いてエステル交換して得られる化合物が挙げられる。中でも、数平均分子量が400~2000であることが好ましく、500~1500より好ましく、600~1200が最も好ましい。分子の両末端にのみ(分子内に2つの)水酸基を有するものは、前記(B12)ウレタンプレポリマーを構成する(B32)2官能活性水素含有化合物に該当する。
 ここで、前記低分子ポリオールとしては、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、3-メチル-1,5-ペンタンジオール、2-エチル-4-ブチル-1,3-プロパンジオール、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、シクロヘキサン-1,4-ジオール、シクロヘキサン-1,4-ジメタノール、ダイマー酸ジオール、ビスフェノールA のエチレンオキサイドやプロピレンオキサイド付加物、ビス(β-ヒドロキシエチル)ベンゼン、キシリレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等の低分子ポリオール類が挙げられる。
 ポリアクリルポリオール;(B3)成分
 (メタ)アクリレート酸エステルやビニルモノマーを重合させて得られるポリオール化合物が挙げられる。分子の両末端にのみ(分子内に2つの)水酸基を有するものは、前記(B12)ウレタンプレポリマーを構成する(B32)2官能活性水素含有化合物に該当する。
 ヒマシ油系ポリオール;(B3)成分
 ヒマシ油系ポリオールとしては、天然油脂であるひまし油を出発原料としているポリオール化合物が挙げられる。なお、分子の両末端にのみ(分子内に2つの)水酸基を有するものは、前記(B12)ウレタンプレポリマーを構成する(B32)成分に該当する。
 これらヒマシ油ポリオールは、試薬としてまたは工業的に入手可能であり、市販されているものを例示すれば、伊藤製油株式会社製「URIC(登録商標)」シリーズなどを挙げることができる。
 チオール;(B3)成分
 チオールの好適な具体例としては、国際公開第WO2015/068798号パンフレットに記載されているものを用いることが出来る。その中でも、特に好適なものを例示すれば以下のものが挙げられる。
 テトラエチレングリコールビス(3-メルカプトプロピオネート)、1,4-ブタンジオールビス(3-メルカプトプロピオネート)、1,6-ヘキサンジオールビス(3-メルカプトプロピオネート)、1,4-ビス(メルカプトプロピルチオメチル)ベンゼン(前記(B12)ウレタンプレポリマーを構成する(B32)2官能活性水素含有化合物に該当する)。
 トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、1,2-ビス[(2-メルカプトエチル)チオ]-3-メルカプトプロパン、2,2-ビス(メルカプトメチル)-1,4-ブタンジチオール、2,5-ビス(メルカプトメチル)-1,4-ジチアン、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、1,1,1,1-テトラキス(メルカプトメチル)メタン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、1,1,2,2-テトラキス(メルカプトメチルチオ)エタン、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、トリス-{(3-メルカプトプロピオニルオキシ)エチル}-イソシアヌレ-ト等のチオール。
 OH/SH型重合性基含有モノマー;(B3)成分
 OH/SH型重合性基含有モノマーは、水酸基及びチオール基の両方を有する重合性モノマーである。
 2-メルカプトエタノール、1-ヒドロキシ-4-メルカプトシクロヘキサン、2-メルカプトハイドロキノン、4-メルカプトフェノール、1-ヒドロキシエチルチオ-3-メルカプトエチルチオベンゼン、4-ヒドロキシ-4’-メルカプトジフェニルスルホン、2-(2-メルカプトエチルチオ)エタノール、ジヒドロキシエチルスルフィドモノ(3-メルカプトプロピオネート)、ジメルカプトエタンモノ(サルチレート)(前記(B12)ウレタンプレポリマーを構成する(B32)2官能活性水素含有化合物に該当する)。
 3-メルカプト-1,2-プロパンジオール、グルセリンジ(メルカプトアセテート)、2,4-ジメルカプトフェノール、1,3-ジメルカプト-2-プロパノール、2,3-ジメルカプト-1-プロパノール、1,2-ジメルカプト-1,3-ブタンジオール、ペンタエリスリトールトリス(3-メルカプトプロピオネート)、ペンタエリスリトールモノ(3-メルカプトプロピオネート)、ペンタエリスリトールビス(3-メルカプトプロピオネート)、ペンタエリスリトールトリス(チオグリコレート)、ペンタエリスリトールペンタキス(3-メルカプトプロピオネート)、ヒドロキシメチル-トリス(メルカプトエチルチオメチル)メタン、ヒドロキシエチルチオメチルートリス(メルカプトエチルチオ)メタン等の多官能OH/SH型重合性基含有モノマー。
 <(B4)アミノ基含有モノマー;(B4)成分>
 本発明に使用される(B4)アミノ基含有モノマーは、一分子中に1級および/または2級のアミノ基を2個以上有しているモノマーであれば制限なく使用できる。前記アミノ基含有モノマーを大きく分類すれば、脂肪族アミン、脂環族アミン、芳香族アミンに分類される。
 (B4)アミノ基含有モノマーの具体例としては、以下のものが挙げられる。
 脂肪族アミン;(B4)成分
 エチレンジアミン、ヘキサメチレンジアミン、ノナメチレンジアミン、ウンデカンメチレンジアミン、ドデカメチレンジアミン、メタキシレンジアミン、1,3-プロパンジアミン、プトレシン等の2官能アミン(前記(B12)ウレタンプレポリマーを構成する(B32)2官能活性水素含有化合物に該当する)。
ジエチレントリアミン等のポリアミン等の多官能アミン。
 脂環族アミン;(B4)成分
 イソホロンジアミン、シクロヘキシルジアミン等の2官能アミン(前記(B12)ウレタンプレポリマーを構成する(B32)2官能活性水素含有化合物に該当する)。
 芳香族アミン;(B4)成分
 4,4’-メチレンビス(o-クロロアニリン)(MOCA)、2,6-ジクロロ-p-フェニレンジアミン、4,4’-メチレンビス(2,3-ジクロロアニリン)、4,4’-メチレンビス(2-エチル-6-メチルアニリン)、3,5-ビス(メチルチオ)-2,4-トルエンジアミン、3,5-ビス(メチルチオ)-2,6-トルエンジアミン、3,5-ジエチルトルエン-2,4-ジアミン、3,5-ジエチルトルエン-2,6-ジアミン、トリメチレングリコール-ジ-p-アミノベンゾエート、ポリテトラメチレングリコール-ジ-p-アミノベンゾエート、4,4’-ジアミノ-3,3’,5,5’-テトラエチルジフェニルメタン、4,4’-ジアミノ-3,3’-ジイソプロピル-5,5’-ジメチルジフェニルメタン、4,4’-ジアミノ-3,3’,5,5’-テトライソプロピルジフェニルメタン、1,2-ビス(2-アミノフェニルチオ)エタン、4,4’-ジアミノ-3,3’-ジエチル-5,5’-ジメチルジフェニルメタン、N,N’-ジ-sec-ブチル-4,4’-ジアミノジフェニルメタン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、m-キシリレンジアミン、N,N’-ジ-sec-ブチル-p-フェニレンジアミン、m-フェニレンジアミン、p-キシリレンジアミン、p-フェニレンジアミン、3,3’-メチレンビス(メチル-6-アミノベンゾエート)、2,4-ジアミノ-4-クロロ安息香酸-2-メチルプロピル、2,4-ジアミノ-4-クロロ安息香酸-イソプロピル、2,4-ジアミノ-4-クロロフェニル酢酸-イソプロピル、テレフタル酸-ジ-(2-アミノフェニル)チオエチル、ジフェニルメタンジアミン、トリレンジアミン、ピペラジン等の2官能アミン(前記(B12)ウレタンプレポリマーを構成する(B32)2官能活性水素含有化合物に該当する)。
1,3,5-ベンゼントリアミン、メラミン等の多官能アミン。
 本発明において、(A)ポリロタキサンモノマーにおける重合性官能基が活性水素含有基による逐次付加反応(重縮合・重付加反応)により重合して前記樹脂を製造する場合、(A)成分、(B1)成分、(B2)成分、(B3)成分、および(B4)成分を含む重合性組成物は、以下の配合となることが好ましい。なお、(A)成分の重合性官能基が活性水素含有基である場合には、(B1)成分が必須となる。
 具体的には、(B1)成分、(B2)成分、(B3)成分、および(B4)成分の合計量(以下、単に「(B)成分量」とする場合もある)と、(A)成分との合計100質量部に対し、(A)成分を3~50質量部、(B)成分量を50~97質量部の範囲で含有することが好ましい。この割合で(A)ポリロタキサンモノマーを含むことにより、得られる前記樹脂が、優れた機械特性を発現させることが可能となる。以上のような効果を発揮するためには、(A)成分を5~45質量部、(B)成分量を55~95質量部の範囲とすることがより好ましい。
 さらには、(B)成分量を100質量%としたとき、(B1)成分0~100質量%、(B2)成分0~100質量%、(B3)成分0~80質量%、および(B4)成分0~30質量%とすることが、優れた機械特性を発現するため好ましい。この効果をより発揮するためには、(B1)成分20~95質量%、(B2)成分0~20質量%、(B3)成分0~70質量%、および(B4)成分0~25質量%とすることがさらに好ましく、(B1)成分40~95質量%、(B2)成分0~5質量%、(B3)成分0~35質量%、および(B4)成分0~20質量%とすることが最も好ましい
 そして、(A)ポリロタキサンモノマー、(B2)成分、(B3)成分、および(B4)成分に含まれるイソ(チオ)シアネート基と反応しうる全重合性官能基のモル数と、(B1)成分の全イソ(チオ)シアネート基のモル数との比が1:0.8~1.2を満足することが好ましい。
 一方、(A)ポリロタキサンモノマーにおける重合性官能基がラジカル重合による連鎖重合の場合、前記したとおり(A)成分と、下記(B5)ラジカル重合性モノマーを含む重合性組成物は、以下の配合となることが好ましい。
 具体的には、(A)成分と(B5)成分との合計100質量部に対し、(A)成分を3~50質量部、(B5)成分量を50~97質量部の範囲で含有することが好ましい。この割合で(A)ポリロタキサンモノマーを含むことにより、得られる前記樹脂が、優れた機械特性を発現させることが可能となる。以上のような効果を発揮するためには、(A)成分を5~45質量部、(B5)成分を55~95質量部の範囲とすることがより好ましい。
 <(B5)ラジカル重合性モノマー>
 本発明において、(B5)ラジカル重合性モノマーは、ラジカル重合性基を有するものであれば、特に制限されるものではない。この場合、前記(A)ロタキサンモノマーに含まれる重合性官能基は、ラジカル重合性基である。そして、重合性組成物は、少なくとも(A)成分と(B5)成分を含む。
 前記(B5)ラジカル重合性モノマーを、大きく分類すると(メタ)アクリレート基を有する(メタ)アクリレート化合物、ビニル基を有するビニル化合物、アリル基を有するアリル化合物に分類できる。
 前記(B5)ラジカル重合性モノマーの好適な具体例としては、国際公開第WO2015/068798号に記載されているものを用いることが出来る。
 <好適な重合性組成物について>
 上記(A)ポリロタキサンモノマー、および(B)重合性モノマーは、特に限定されず上記の組成が使用可能であるが、その中でも、好ましい積層研磨パッドの下地層に用いられる重合性組成物は、(A)ポリロタキサンモノマーの環状分子の重合性官能基は水酸基、チオール基、アミノ基から選択されるのが好ましく、(B)重合性モノマーは(B1)イソ(チオ)シアネート化合物を含むものであることが好ましい。これらから選択することで、優れた前記樹脂を作製することができる。特に、(B1)イソ(チオ)シアネート化合物の中でも、(B12)ウレタンプレポリマーを含んでいることが好ましい。こうすることで、優れた機械特性と下地層の圧縮率等を調整し易くなる。中でも、特に、上記(A)ロタキサンモノマーが有する重合性官能基が、少なくとも水酸基を含み、(B)重合性モノマーに含まれる(B1)イソ(チオ)シアネート化合物が、(B12)ウレタンプレポリマーを含むものであることが好ましい。
 中でも、(B)重合性モノマーは、(B1)イソ(チオ)シアネート化合物、及び(B3)(チ)オール化合物および/または(B4)アミノ基含有モノマーを含むことが好ましい。この場合、上記(B1)イソ(チオ)シアネート化合物は、(B12)ウレタンプレポリマーであることがさらに好ましい。また、上記(B3)(チ)オール化合物および/または(B4)アミノ基含有モノマーは、少なくとも(B3)(チ)オール化合物を1種類以上含んでいることが特に好ましい。
 (重合性組成物に配合されるその他の配合成分)
 本発明で用いられる重合性組成物においては、前記した(A)ポリロタキサンモノマーや、(B)重合性モノマーに導入された重合性官能基の種類に応じて、その重合を速やかに促進させるために各種の(C)重合硬化促進剤を使用することもできる。
 たとえば、(A)ポリロタキサンモノマーが有している重合性官能基が水酸基、アミノ基、エポキシ基、及び、チオール基の場合であり、(B)成分が(B1)イソ(チオ)シアネート化合物を含む場合には、(C1)ウレタン或いはウレア用反応触媒や(C2)縮合剤が重合硬化促進剤として使用される。
 (A)ポリロタキサンモノマーが有している重合性官能基が水酸基、アミノ基等の重合性官能基であり、(B)成分が、(B2)エポキシ基含有モノマーを含む場合には、(C3)エポキシ硬化剤や、エポキシ基を開環重合させるための(C4)カチオン重合触媒が重合硬化促進剤として使用される。
 また、(A)ポリロタキサンモノマーが有している重合性官能基がラジカル重合性基の場合であり、(B)成分が(B5)ラジカル重合性モノマーを含む場合には、(C5)ラジカル重合開始剤が重合硬化促進剤として使用される。
 本発明で好適に使用できる上記(C1)~(C5)の重合促進剤としては、具体例としては、国際公開第WO2015/068798号に記載されているものを用いることができる。
 これら各種の(C)重合硬化促進剤は、それぞれ、1種単独でも、2種以上を併用することもできるが、その使用量は、所謂触媒量でよく、たとえば、(A)ポリロタキサンモノマーと(B)重合性モノマーの合計100質量部当たり、0.001~10質量部、特に0.01~5質量部の範囲の少量でよい。
 本発明で用いられる重合性組成物は、その他にも、本発明の効果を損なわない範囲で、公知の各種配合剤を用いることができる。たとえば、砥粒、酸化防止剤、紫外線吸収剤、赤外線吸収剤、着色防止剤、蛍光染料、染料、フォトクロミック化合物、顔料、香料、界面活性剤、難燃剤、可塑剤、充填剤、帯電防止剤、整泡剤、溶剤、レベリング剤、その他の添加剤を加えてもよい。これらの添加剤は単独で用いても2種以上を併用してもよい。これら添加剤は、重合性組成物に含有させ、該重合性組成物を重合することにより、前記樹脂に含有させることができる。
 重合方法は、公知の方法を採用できる。重縮合、または重付加反応の場合には、国際公開第WO2015/068798号、国際公開第WO2016/143910、特開2017-48305に記載の条件を採用できる。ラジカル重合の場合には、WO2014/136804号、国際公開第WO2015/068798号の記載の条件を採用できる。
 本発明において、前記重合性組成物を重合させた樹脂は、前記樹脂を発泡させ、発泡樹脂とすることもできる。所望する圧縮率、硬さなどから発泡樹脂、及び、無発泡樹脂とするかを選択すればよいが、本発明の下地層は圧縮率や硬さの制御の観点から、発泡樹脂であることがより好ましく、中でも発泡ポリウレタン(ウレア)樹脂がより好ましい。前記樹脂を発泡させる方法は、公知で知られている発泡方法等を何ら制限なく用いることが可能である。それらの方法を例示すれば、低沸点炭化水素等の揮発性の発泡剤や、水などを添加する発泡剤発泡法、中空粒子を分散硬化させる方法、熱膨張性の微粒子を混合したのち加熱し微粒子を発泡させる方法、または混合中に空気や窒素等の不活性ガスを吹き込むメカニカルフロス発泡法が例示できる。
 発泡させた場合の前記樹脂の密度は、0.4~0.9g/cmであることが好ましい。また、重合性基官能基としてイソ(チオ)シアネート基を含有する重合性組成物を用いる場合、水を添加する発泡剤発泡法では、水とイソ(チオ)シアネート基とが反応した後、二酸化炭素とアミノ基となり、二酸化炭素が発泡ガスとして、一方アミノ基はさらにイソ(チオ)シアネート基と反応しウレア結合および/またはチオウレア結合を形成する。
 本発明のCMP積層研磨パッドは、少なくとも研磨層および下地層を備えたであって、前記下地層が、前記重合性組成物を重合させた樹脂を含むことを特徴とするCMP積層研磨パッドである。
 本発明において、前記下地層は、発泡樹脂、無発泡樹脂からなる層だけでなく、不織布に、前記重合性組成物を含浸し重合することで得られる層としてもよい。例えば、重合することによりポリウレタン(ウレア)樹脂を形成することができる重合性組成物を、不織布に含浸し重合することが好ましい。これによりポリウレタン(ウレア)樹脂を含む不織布が得られ、これを下地層として用いることができる。
 そのような不織布としては、ポリエステル不織布、ナイロン不織布、アクリル不織布等の不織布が挙げられる。特に、前記不織布に(A)成分と(B1)成分とを含む重合性組成物を含侵し重合させた層であることが好ましい。
 本発明の下地層における、(A)成分及び(B)成分を含む重合性組成物を重合させた樹脂の含有量は、下地層全量を基準として、好ましくは30質量%以上であり、より好ましくは50質量%以上であり、さらに好ましくは80質量%以上である。
 本発明において、前記下地層は、特に限定はされないが、ある範囲に圧縮率があることが研磨の均一性を向上させる上で好ましい。圧縮率は、たとえば、JIS L 1096に準拠した方法により測定することが可能である。該下地層の圧縮率は、1.0%~40%であることが好ましく、1.5%~30%であることがより好ましい。上記範囲内であることで、優れた被研磨物の平坦性を発現させることが可能となる。
 また、前記下地層は、任意の適当な硬さを有することができる。硬さは、ショアー(Shore)法に従って測定することができ、たとえば、JIS規格(硬さ試験)K6253に従って測定することができる。該下地層は、50D未満のショアー硬さを有することが好ましい。この硬度であれば、下地層としてのクッション効果を発現し易い。さらに好ましくは20A~40Dであることがさらに好ましい(「A」はショアー「A」スケールを、「D」はショアー「D」スケールでの硬さを示している)。硬さは、必要に応じて配合組成、及び配合量を変えることにより、任意の硬さを有すればよい。
 また、前記下地層は、低ヒステリシスロス性または優れた弾性回復性を有することにより、CMP積層研磨パッドとして使用した場合、被研磨物の平坦性、及び高い研磨レートを発現させることができる。ヒステリシスロスは、たとえば、JIS K 6251に準拠した方法で測定できる。具体的には、ダンベル状に準備した試験片を、100%伸長した後、元に戻すことで、ヒステリシスロス(伸長し、元に戻した際の伸びと応力の面積/伸長した際の伸びと応力の面積×100)を測定できる。
 前記下地層のヒステリシスロスは、特に制限されるものではないが、40%以下となることが好ましく、30%以下となることがより好ましく、20%以下となることがさらに好ましい。この範囲にヒステリシスロスがあることで、研磨の均一性が向上するだけでなく、研磨速度も向上する。
 前記下地層の厚みは、特に限定されるものではないが、0.1~2mmであることが好ましく、0.2~1.8mmであることがより好ましい。
 本発明のCMP積層研磨パッドは、上記した下地層と研磨層とを備える。研磨層は、下地層の一方の面に設けられる。なお後述するように、下地層と研磨層との間に中間層を設けてもよい。
 本発明のCMP積層研磨パッドの研磨層を構成する材料としては特に限定さないが、たとえばウレタン(ウレア)樹脂や不織布等の研磨層を挙げることができる。本発明では特にウレタン(ウレア)樹脂からなる研磨層であることが好ましく、研磨層はさらに発泡体であることが好ましい。さらに好ましくは、熱硬化性ウレタン(ウレア)樹脂から成る研磨層であることが好ましい。
 前記CMP積層研磨パッドに用いるウレタン(ウレア)樹脂は、特に制限なく公知の方法により作製すればよく、たとえば、イソシアネート基を有する化合物、イソシアネート基と重合可能な活性水素を持つ活性水素基、たとえば、水酸基、チオール基、および、アミノ基を有する化合物からなるウレタン(ウレア)樹脂を重合すればよい。また、本発明に用いる(A)分子内に少なくとも2つの重合性官能基を有するポリロタキサンモノマーを用いることもできる。
 前記ウレタン(ウレア)樹脂を重合する方法も特に制限なく、公知の方法を採用すればよく、前記下地層と同様に、国際公開第WO2015/068798号、国際公開第WO2016/143910、特開2017-48305に記載の条件を採用できる。具体的には、ワンポット法、プレポリマー法等の乾式法、および、溶剤を用いた湿式法等を用いることができる。その中でも、乾式法が好適に採用される。
 また、研磨層を発泡させる場合の発泡方法も何ら制限なく、たとえば下地層で前記した方法と同様の発泡方法を選択すればよい。その中でも研磨層で最も好ましい発泡方法は、例えば、以下に示すような中空粒子を用いた発泡方法である。
 本発明で用いられる中空粒子(マイクロバルーン)(以下、(D)成分ともいう。)を配合することもできる。前記(D)成分は、公知のものが何ら制限なく使用できる。具体例を示せば、塩化ビニリデン樹脂、(メタ)アクリレート系樹脂、アクリルニトリルと塩化ビニリデン共重合体、エポキシ樹脂、フェノール樹脂、メラミン樹脂、ウレタン(ウレア)樹脂等が外殻を形成する中空粒子を使用できる。その中でもウレタン系樹脂からなる外殻部と、該外殻部に囲まれた中空部とから構成される中空粒子であることが好ましい。
 本発明のCMP積層研磨パッドの研磨層の圧縮率は、0.1%~20%以下が好ましく、0.5%~10%以下がさらに好ましい。さらに、前記下地層の圧縮率が、前記研磨層の圧縮率より大きいことが本発明のCMP積層研磨パッドではより好ましい。この範囲にあることで本発明のCMP積層研磨パッドは、優れた研磨特性を発現できる。
 また、本発明のCMP積層研磨パッドの研磨層のショアー硬さは、50A~90Dの範囲にあることが好ましく、さらに、前記下地層のショアー硬さが前記研磨層のショアー硬さよりも小さいことがより好ましい。この範囲にあることで本発明のCMP積層研磨パッドは、優れた研磨特性を発現できる。
 前記研磨層の厚みは、特に限定されるものではないが、0.1~2mmであることが好ましく、0.2~1.8mmであることがより好ましい。
 本発明のCMP積層研磨パッドにおいて、研磨層と下地層との接着は、公知の方法を用いて接着させればよい。たとえば、研磨層と下地層の間に、研磨層と下地層を接着(固定)させる中間層を設けてもよいし、直接研磨層と下地層を結合させてもよい。直接研磨層と下地層を結合させるとは、研磨層と下地層との間で架橋構造を有する構造をとること、または、静電的な結合を有する構造をとること、または機械的相互作用のアンカー効果を指す。前記静電的な結合は、下地層と研磨層との間のファンデルワールスや水素結合性の相互作用を含み得る。これらは、たとえば、下地層、または研磨層を重合した後に、その層の上で、連続して研磨層、または下地層を重合することで得ることが可能となる。
 前記研磨層と下地層を接着(固定)させる中間層は公知に知られているものであれば何ら制限なく用いることができる。そのような中間層は30~300μmの厚さであることが好ましく、30~150μmの厚さであることがさらに好ましい。中間層は、接着剤として、感圧接着剤やホットメルト接着剤、またはそれらの組み合わせから選択することができる。好ましくは、具体的には、アクリル系、ブタジエン系、イソプレン系、オレフィン系、スチレン系、イソシアネート系などの感圧タイプやホットメルトタイプが使用される。また、中間層は、基材としてポリエチレンテレフタレートフイルム、延伸ポリプロピレンフイルム、不織布などを備えてもよい。通常、基材は20~200μmの厚さのものが使用される。
 さらに、下地層の裏面側に研磨定盤に固定させるための裏面テープ層を設けてもよい。裏面テープ層は、通常、プラスチックフイルムまたは剥離紙上に接着層を設けてあり、研磨時、パッドを定盤に貼り付ける際に、プラスチックフイルムまたは剥離紙(セパレーターと言う)を剥がしてパッドを定盤に押し付け、定盤にパッドを固定する役割を担う。裏面テープ層は、前記中間層と同様のものが用いることが出来る。
 本発明のCMP積層研磨パッドの研磨層には、特に制限されるものではないが、その表面に溝構造を形成することもできる。特にウレタン(ウレア)樹脂からなる研磨層を用いる場合には、該溝構造は、被研磨部材を研磨する際に、スラリーを保持・更新する形状とすることが好ましい。具体的には、たとえば、X(ストライプ)溝、XY格子溝、同心円状溝、貫通孔、貫通していない穴、多角柱、円柱、螺旋状溝、偏心円状溝、放射状溝、およびこれらの溝を組み合わせたものが挙げられる。
 上記溝構造の作製方法は特に限定されるものではない。たとえば、所定サイズのバイトのような治具を用い機械切削する方法、所定の表面形状を有した金型に樹脂を流しこみ、硬化させることにより作製する方法、所定の表面形状を有したプレス板で樹脂をプレスし作製する方法、フォトリソグラフィを用いて作製する方法、印刷手法を用いて作製する方法、炭酸ガスレーザーなどを用いたレーザー光による作製方法などが挙げられる。
 次に、実施例および比較例を用いて本発明を詳細に説明するが、本発明は本実施例に限定されるものではない。以下の実施例および比較例において、上記の各成分および評価方法等は、以下のとおりである。
〔測定方法〕
(分子量測定;ゲルパーミエーションクロマトグラフィー(GPC測定))
 GPC測定は、装置として液体クロマトグラフ装置(日本ウォーターズ社製)を用いた。カラムは分析するサンプルの分子量に応じて、昭和電工株式会社製Shodex GPC KF-802(排除限界分子量:5,000)、KF802.5(排除限界分子量:20,000)、KF-803(排除限界分子量:70,000)、KF-804(排除限界分子量:400,000)、KF-805(排除限界分子量:2,000,000)を適宜使用した。また、展開液としてジメチルホルムアミドを用い、流速1ml/min、温度40℃の条件にて測定した。標準試料にポリスチレンを用い、比較換算により重量平均分子量を求めた。なお、検出器には示差屈折率計を用いた。
〔各成分〕
(A)ポリロタキサンモノマー
RX-1:側鎖に水酸基を有し、側鎖の分子量が平均で約350、重量平均分子量が165,000の以下の方法で製造されたポリロタキサンモノマー
(RX-1の製造方法)
 軸分子用ポリマーとして、分子量10,000の直鎖状ポリエチレングリコール(PEG)を用意し、PEG:10g、TEMPO(2,2,6,6-テトラメチル-1-ピペリジニルオキシラジカル):100mg、臭化ナトリウム:1gを水100mLに溶解させた。この溶液に、次亜塩素酸ナトリウム水溶液(有効塩素濃度5%):5mLを添加し、室温で10分間撹拌した。その後、エタノール:5mL添加して反応を終了させた。そして、塩化メチレン:50mLを用いて抽出を行った後、塩化メチレンを留去し、エタノール:250mLに溶解させてから、-4℃の温度で12時間かけて再沈させ、PEG-COOHを回収し、乾燥した。
 上記で調製されたPEG-COOH:3gおよびα-シクロデキストリン(α-CD):12gを、それぞれ、70℃の水50mLに溶解させ、得られた各溶液を混合し、よく振り混ぜた。次いで、この混合溶液を、4℃の温度で12時間再沈させ、析出した包接錯体を凍結乾燥して回収した。その後、室温でジメチルホルムアミド(DMF):50mlに、アダマンタンアミン0.13gを溶解した後、上記の包接錯体を添加して速やかによく振り混ぜた。続いてベンゾトリアゾール-1-イル-オキシ-トリス(ジメチルアミノ)ホスホニウムヘキサフルオロホスフェート試薬:0.38gをDMF:5mLに溶解した溶液をさらに添加して、よく振り混ぜた。さらにジイソプロピルエチルアミン:0.14mlをDMF:5mLに溶解させた溶液を添加してよく振り混ぜてスラリー状の試薬を得た。
 上記で得られたスラリー状の試薬を4℃で12時間静置した。その後、DMF/メタノール混合溶媒(体積比1/1):50mlを添加、混合、遠心分離を行なって上澄みを捨てた。さらに、上記DMF/メタノール混合溶液による洗浄を行った後、メタノールを用いて洗浄、遠心分離を行い、沈殿物を得た。得られた沈殿物を真空乾燥で乾燥させた後、ジメチルスルオキシド(DMSO):50mLに溶解させ、得られた透明な溶液を700mLの水中に滴下してポリロタキサンを析出させた。析出したポリロタキサンを遠心分離で回収し、真空乾燥させた。さらにDMSOに溶解、水中で析出、回収、乾燥を行い、精製ポリロタキサンを得た。このときのα-CDの包接数は0.25であった。
 ここで、包接数は、DMSO-d6にポリロタキサンを溶解し、1H-NMR測定装置(日本電子製JNM-LA500)により測定し、以下の方法により算出した。
ここで、X,YおよびX/(Y-X)は、以下の意味を示す。
 X:4~6ppmのシクロデキストリンの水酸基由来プロトンの積分値
 Y:3~4ppmのシクロデキストリンおよびPEGのメチレン鎖由来プロトンの積分値
 X/(Y-X):PEGに対するシクロデキストリンのプロトン比
 まず、理論的に最大包接数1の時のX/(Y-X)を予め算出し、この値と実際の化合物の分析値から算出されたX/(Y-X)を比較することにより包接数を算出した。
 上記で精製されたポリロタキサン:500mgを1mol/LのNaOH水溶液:50mLに溶解し、プロピレンオキシド:3.83g(66mmol)を添加し、アルゴン雰囲気下、室温で12時間撹拌した。次いで、1mol/LのHCl水溶液を用い、上記のポリロタキサン溶液を、pHが7~8となるように中和し、透析チューブにて透析した後、凍結乾燥し、ヒドロキシプロピル化ポリロタキサンを得た。得られたヒドロキシプロピル化ポリロタキサンは、1H-NMRおよびGPCで同定し、所望の構造を有するヒドロキシプロピル化ポリロタキサンであることを確認した。
 なお、ヒドロキシプロピル基による環状分子の水酸基への修飾度は0.5であり、GPC測定により重量平均分子量Mw:50,000であった。
 得られたヒドロキシプロピル化ポリロタキサン:5gを、ε-カプロラクトン:15gに80℃で溶解させた混合液を調製した。この混合液を、乾燥窒素をブローさせながら110℃で1時間攪拌した後、2-エチルヘキサン酸錫(II)の50wt%キシレン溶液:0.16gを加え、130℃で6時間攪拌した。その後、キシレンを添加し、不揮発濃度が約35質量%の側鎖を導入したε-カプロラクトン修飾ポリロタキサンキシレン溶液を得た。
 上記で調製されたε-カプロラクトン修飾ポリロタキサンキシレン溶液をヘキサン中に滴下し、回収し、乾燥させることによりε-カプロラクトン修飾ポリロタキサン(RX-1)を取得した。
この(A)ポリロタキサンモノマー;RX-1の物性は以下の通りであった。
 ポリロタキサン重量平均分子量Mw(GPC):165,000
 側鎖の修飾度:0.5(%で表示すると50%となる)
 側鎖の分子量:平均で約350
(B)前記(A)分子内に少なくとも2つの重合性官能基を有するポリロタキサンモノマー以外の重合性モノマー
(B1)成分;少なくとも2個のイソシアネート基を有する多官能イソシアネート化合物
(B12)成分;ウレタンプレポリマー
Pre-1:イソ(チオ)シアネート当量が905の以下の方法で製造された末端イソシアネートウレタンプレポリマー
(Pre-1の製造方法)
 窒素導入管、温度計、攪拌機を備えたフラスコに窒素雰囲気下中、2,4-トリレンジイソシアネート:50g、ポリオキシテトラメチレングリコール(数平均分子量;1,000):90gとジエチレングリコール:12gを、80℃で6時間反応させ、イソシアネート当量が905の末端イソシアネートウレタンプレポリマー(Pre-1)を得た。
Pre-2:イソ(チオ)シアネート当量が750の以下の方法で製造された末端イソシアネートウレタンプレポリマー
(Pre-2の製造方法)
 窒素導入管、温度計、攪拌機を備えたフラスコに窒素雰囲気下中、2,4-トリレンジイソシアネート:69g、ポリオキシテトラメチレングリコール(数平均分子量;1,000):210gで6時間反応させ、イソシアネート当量が750の末端イソシアネートウレタンプレポリマー(Pre-2)を得た。
(B3)成分
TMP;トリメチロールプロパン
PEG600;数平均分子量が600のポリエチレングリコール
(B4)成分
MOCA;4,4’-メチレンビス(o-クロロアニリン)
(D)中空粒子
中空粒子1:中空の粒径40μm、密度0.03g/cmのマイクロカプセル920-40(日本フィライト社製)。
(その他)成分
L5617:モメンティブ社製シリコーン整泡剤
〔評価項目〕
 (1)密度:東洋精機製の(DSG-1)にて密度を測定した。
 (2)JIS L 1096に準拠した方法に従って圧縮率を測定した。
 圧力0.1kPaでの厚さを初期厚さt0mmとし、次に、34.5kPaで60秒間かけた後の厚さt1mmを測定した。その後、下記式から圧縮率を算出した。
圧縮率(%)=100×(t0-t1)/t0
 (3)JIS規格(硬さ試験)K6253に従って、高分子計器製のデュロメーターによりショアー硬さを測定した。
 (4)ヒステリシスロス:厚み2mmのダンベル8号形状に打ち抜いた樹脂を島津社製AG-SXのオートグラフにて10mm/minで20mm伸長させ、その後、応力がゼロになるまで戻した際のヒステリシスロスを測定した。
 (5)研磨レート:研磨条件を下記に示す。
被研磨物:4インチサファイアウェハ
スラリー:FUJIMI コンポール 80原液
圧力:4 Psi
回転数:45rpm
時間:1時間
上記条件にて、研磨を実施した際の研磨レート(μm/hr)を測定した。研磨レートは100枚ウェハの平均値である。
 (6)耐スクラッチ性:上記(5)で記載した条件で研磨した際の100枚のウェハのスクラッチの有無を確認した。評価は以下の基準で実施した。
1:レーザー顕微鏡で測定し、100枚のウェハ全てに欠陥がないもの
2:レーザー顕微鏡で測定し、100枚のウェハ中、1~2枚に欠陥が確認できるもの
3:レーザー顕微鏡で測定し、100枚のウェハ中、3~5枚に欠陥が確認できるもの
4:レーザー顕微鏡で測定し、100枚のウェハ中、6~9枚に欠陥が確認できるもの
5:レーザー顕微鏡で測定し、100枚のウェハ中、10枚以上に欠陥が確認できるもの
<実施例1>
(下地層の製造方法)
 (A)成分のRX-1(24.9質量部)と(B3)成分のTMP(1.7質量部)とを120℃で混合して均一溶液にした後、十分に脱気し、A液を調製した。
 別途、70℃に加温した(B)成分のPre-1(73.4質量部)に、その他の成分のL5617(1.5質量部)を加え、窒素雰囲気下中、攪拌羽をビーターにした攪拌機を用い、2000rpmで激しく攪拌し、メカニカルフロス法にて気泡を取り込んでB液を調製した。そこに、前記調整したA液を流し込み、再度、窒素雰囲気下中、攪拌羽をビーターにした攪拌機を用い、2000rpmで激しく攪拌し、メカニカルフロス法にて気泡を取り込み、発泡構造を有する均一な重合性組成物を得て、前記重合性組成物を金型へ注入し、100℃で15時間重合させた。重合終了後、重合させた樹脂を取り外し、発泡樹脂を得た。得られた発泡樹脂をスライスして厚さ1.5mmの下地層を得た。各配合量を表1に示した。得られた下地層の密度は0.7g/cm、圧縮率は7%、ショアー硬さは14D、ヒステリシスロスは3%であった。
(研磨層-1の製造方法)
 70℃に加温した上記で製造した(B)成分のPre-1(87.7質量部)に(D)成分の中空粒子1(0.8質量部)を加え、自転公転攪拌機で攪拌して均一な溶液を調整し、そこに120℃で加温した4,4’-メチレンビス(o-クロロアニリン)(MOCA)(12.3質量部)を加え、均一混合し、重合性組成物とした。前記重合性組成物を金型へ注入し、100℃で15時間硬化させた。硬化終了後、鋳型からウレタン(ウレア)樹脂を取り外し、硬化体を得た。
 得られた硬化体をスライスして、厚さ1mmのウレタン樹脂を得た。そのウレタン樹脂の表面にスパイラル状の溝を形成し、大きさ500mmφ、厚さ1mmのウレタン樹脂からなる研磨層とした。各配合量を表1に示した。得られた研磨層の密度は0.8g/cm、圧縮率は0.7%、ショアー硬さは55D、ヒステリシスロスは60%であった。
(CMP積層研磨パッドの製造方法)
 上記で得られた下地層と研磨層をホットメルト接着剤として、ハイボンYR713-1W(日立化成ポリマー(株)製、厚み80μm)を使用して接着させ、CMP積層研磨パッドとした。さらに、該CMP積層研磨パッドの裏面には感圧接着剤で両面テープを取り付けた。得られたCMP積層研磨パッドの研磨レートは2.2μm/hr、耐スクラッチ性は1であった。
<実施例2、3、比較例1、2>
 表1に示す組成で重合した以外は実施例1と同様の方法でCMP積層研磨パッドを作製し、評価を行った。なお、比較例2は研磨層のみの単層研磨パッドとなる。各成分の配合割合と結果を表1にまとめた。
Figure JPOXMLDOC01-appb-T000001
 以上の実施例、比較例から明らかな通り、(A)成分のポリロタキサンを用いて製造される下地層をCMP積層研磨パッドに応用することで、優れた研磨特性を発現することが明らかである。

Claims (9)

  1.  少なくとも研磨層および下地層を備えたCMP積層研磨パッドであって、前記下地層が、(A)分子内に少なくとも2つの重合性官能基を有するポリロタキサンモノマーと、(B)前記(A)分子内に少なくとも2つの重合性官能基を有するポリロタキサンモノマー以外の重合性モノマーとを含む重合性組成物を重合させた樹脂を含むことを特徴とするCMP積層研磨パッド。
  2.  前記重合性組成物中の(A)分子内に少なくとも2つの重合性官能基を有するポリロタキサンモノマーの含有量が、(A)分子内に少なくとも2つの重合性官能基を有するポリロタキサンモノマーの含有量と(B)前記(A)分子内に少なくとも2つの重合性官能基を有するポリロタキサンモノマー以外の重合性モノマーの含有量との合計100質量部に対し、3~50質量部であることを特徴とする請求項1に記載のCMP積層研磨パッド。
  3.  前記(A)分子内に少なくとも2つの重合性官能基を有するポリロタキサンモノマーが、軸分子と該軸分子を包接する環状分子とからなる複合分子構造における、該環状分子の少なくとも一部に、重合性官能基を有する側鎖が導入されたポリロタキサンモノマーであることを特徴とする請求項1または請求項2に記載のCMP積層研磨パッド。
  4.  前記(B)前記(A)分子内に少なくとも2つの重合性官能基を有するポリロタキサンモノマー以外の重合性モノマーが、重合性官能基として少なくとも2つのイソ(チオ)シアネート基を有するイソ(チオ)シアネート化合物であることを特徴とする請求項1~3のいずれか1項に記載のCMP積層研磨パッド。
  5.  前記下地層の圧縮率が1.0%以上40.0%以下であることを特徴とする請求項1~4のいずれか1項に記載のCMP積層研磨パッド。
  6.  前記下地層のショアー硬さが50D未満であることを特徴とする請求項1~5のいずれか1項に記載のCMP積層研磨パッド。
  7.  前記下地層の圧縮率が、前記研磨層の圧縮率より大きく、前記下地層のショアー硬さが前記研磨層のショアー硬さよりも小さいことを特徴とする請求項1~6のいずれか1項に記載のCMP積層研磨パッド。
  8.  前記下地層が、前記重合性組成物を重合させた発泡ポリウレタン(ウレア)樹脂を含むことを特徴とする請求項1~7のいずれか1項に記載のCMP積層研磨パッド。
  9.  前記下地層が、前記重合性組成物を重合させたポリウレタン(ウレア)樹脂を含む不織布からなる請求項1~7のいずれか1項に記載のCMP積層研磨パッド。
PCT/JP2021/020276 2020-05-28 2021-05-27 積層研磨パッド WO2021241708A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022526649A JPWO2021241708A1 (ja) 2020-05-28 2021-05-27
KR1020227041005A KR20230017190A (ko) 2020-05-28 2021-05-27 적층 연마 패드
CN202180037289.2A CN115697630A (zh) 2020-05-28 2021-05-27 层叠抛光垫
US17/927,669 US20230211454A1 (en) 2020-05-28 2021-05-27 Laminated polishing pad

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020093007 2020-05-28
JP2020-093007 2020-05-28

Publications (1)

Publication Number Publication Date
WO2021241708A1 true WO2021241708A1 (ja) 2021-12-02

Family

ID=78744645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020276 WO2021241708A1 (ja) 2020-05-28 2021-05-27 積層研磨パッド

Country Status (6)

Country Link
US (1) US20230211454A1 (ja)
JP (1) JPWO2021241708A1 (ja)
KR (1) KR20230017190A (ja)
CN (1) CN115697630A (ja)
TW (1) TW202204464A (ja)
WO (1) WO2021241708A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117024701B (zh) * 2023-08-14 2024-04-09 旭川化学(苏州)有限公司 一种聚氨酯发泡抛光材料及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018092826A1 (ja) * 2016-11-17 2018-05-24 株式会社トクヤマ ポリロタキサンを用いたウレタン樹脂、および研磨用パッド
JP2020076010A (ja) * 2018-11-08 2020-05-21 株式会社トクヤマ ロタキサンモノマー、および該モノマーを含む硬化性組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007077207A (ja) 2005-09-12 2007-03-29 Toyo Tire & Rubber Co Ltd 微細気泡ポリウレタン発泡体の製造方法及び、微細気泡ポリウレタン発泡体からなる研磨パッド
TW201628785A (zh) 2014-10-01 2016-08-16 Nitto Denko Corp 硏磨墊

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018092826A1 (ja) * 2016-11-17 2018-05-24 株式会社トクヤマ ポリロタキサンを用いたウレタン樹脂、および研磨用パッド
JP2020076010A (ja) * 2018-11-08 2020-05-21 株式会社トクヤマ ロタキサンモノマー、および該モノマーを含む硬化性組成物

Also Published As

Publication number Publication date
KR20230017190A (ko) 2023-02-03
TW202204464A (zh) 2022-02-01
JPWO2021241708A1 (ja) 2021-12-02
CN115697630A (zh) 2023-02-03
US20230211454A1 (en) 2023-07-06

Similar Documents

Publication Publication Date Title
JP7130556B2 (ja) ポリロタキサンを用いたウレタン樹脂、および研磨用パッド
WO2019198675A1 (ja) ポリロタキサンを用いたウレタン樹脂、および研磨用パッド
JP7175163B2 (ja) フォトクロミック硬化性組成物、及びフォトクロミック硬化体
JP7352540B2 (ja) 低水分量ポリロタキサンモノマー、および該モノマーを含む硬化性組成物
WO2020032056A1 (ja) ポリ擬ロタキサンモノマーを含む硬化性組成物
WO2020096010A1 (ja) イオン性基含有ロタキンサンモノマーを含む硬化性組成物、および該硬化性組成物からなる研磨用パッド
WO2021241708A1 (ja) 積層研磨パッド
WO2022030531A1 (ja) 硬化性組成物及びその硬化体
WO2022138769A1 (ja) 活性水素基含有側鎖を有する環状分子、および該環状分子を含む硬化性組成物
WO2022163781A1 (ja) メラミン系樹脂からなる新規な微小中空粒子
WO2022163765A1 (ja) 環状モノマーを含有する新規な硬化性組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813671

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022526649

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21813671

Country of ref document: EP

Kind code of ref document: A1