WO2019220669A1 - 制振装置およびエレベーター装置 - Google Patents

制振装置およびエレベーター装置 Download PDF

Info

Publication number
WO2019220669A1
WO2019220669A1 PCT/JP2018/044400 JP2018044400W WO2019220669A1 WO 2019220669 A1 WO2019220669 A1 WO 2019220669A1 JP 2018044400 W JP2018044400 W JP 2018044400W WO 2019220669 A1 WO2019220669 A1 WO 2019220669A1
Authority
WO
WIPO (PCT)
Prior art keywords
displacement
damping device
vibration
rope
vibration damping
Prior art date
Application number
PCT/JP2018/044400
Other languages
English (en)
French (fr)
Inventor
英一 齊藤
敬秀 平井
渡辺 誠治
大輔 中澤
大樹 福井
知洋 浅村
裕介 近田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to KR1020207032183A priority Critical patent/KR102479368B1/ko
Priority to US17/051,786 priority patent/US12103823B2/en
Priority to CN201880093149.5A priority patent/CN112088260B/zh
Priority to JP2020518955A priority patent/JP6992886B2/ja
Priority to DE112018007620.2T priority patent/DE112018007620T5/de
Publication of WO2019220669A1 publication Critical patent/WO2019220669A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/06Arrangements of ropes or cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/3476Load weighing or car passenger counting devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/021Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions the abnormal operating conditions being independent of the system
    • B66B5/022Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions the abnormal operating conditions being independent of the system where the abnormal operating condition is caused by a natural event, e.g. earthquake
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/12Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions in case of rope or cable slack
    • B66B5/125Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions in case of rope or cable slack electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/06Arrangements of ropes or cables
    • B66B7/10Arrangements of ropes or cables for equalising rope or cable tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/12Checking, lubricating, or cleaning means for ropes, cables or guides
    • B66B7/1207Checking means
    • B66B7/1215Checking means specially adapted for ropes or cables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/005Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a wound spring and a damper, e.g. a friction damper
    • F16F13/007Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a wound spring and a damper, e.g. a friction damper the damper being a fluid damper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/002Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion characterised by the control method or circuitry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/03Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/03Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means
    • F16F15/035Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means by use of eddy or induced-current damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/022Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using dampers and springs in combination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2222/00Special physical effects, e.g. nature of damping effects
    • F16F2222/06Magnetic or electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2228/00Functional characteristics, e.g. variability, frequency-dependence
    • F16F2228/001Specific functional characteristics in numerical form or in the form of equations
    • F16F2228/005Material properties, e.g. moduli
    • F16F2228/007Material properties, e.g. moduli of solids, e.g. hardness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2228/00Functional characteristics, e.g. variability, frequency-dependence
    • F16F2228/06Stiffness
    • F16F2228/063Negative stiffness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/0023Purpose; Design features protective
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/0029Location, co-location
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/18Control arrangements

Definitions

  • the present invention relates to a vibration damping device that suppresses vibration of a long structure.
  • a vibration damping device for an elevator rope a conventional vibration damping device is installed in a machine room near the end of the elevator rope by installing a damper (which converts vibration energy into heat energy and dissipates the energy).
  • a damper which converts vibration energy into heat energy and dissipates the energy.
  • Another vibration damping device is installed near the end of the rope, and includes a mechanical element that applies a negative restoring force in the same direction as the displacement direction of the elevator rope.
  • a mechanical element that applies a negative restoring force in the same direction as the displacement direction of the elevator rope.
  • an inverted pendulum is provided in order to realize the negative restoring force.
  • Patent Document 2 the attraction force of a permanent magnet is utilized to realize a negative decentering force.
  • Japanese Unexamined Patent Publication No. 2007-1711 Japanese Unexamined Patent Publication No. 3-26682 Japanese Unexamined Patent Publication No. 2007-309411
  • the damper since the damper is provided at the portion where the amplitude of the long structure is small, the damping effect is low, and the damper may not be provided at the portion where the amplitude is large.
  • the negative stiffness due to the inverted pendulum and permanent magnet has the property that the stiffness value increases nonlinearly as the displacement of the long structure increases. Therefore, if the displacement of the long structure increases, the negative stiffness becomes excessively large. Become unstable. Then, the displacement of the vibration damping device is fixed at the maximum position in the movable range of the vibration damping mechanism, and there is a problem that the vibration damping effect due to the negative rigidity cannot be exhibited.
  • An object of the present invention is to obtain a vibration damping device equipped with a destabilization preventing means that efficiently suppresses amplification of vibration due to a resonance phenomenon of a long structure having a mechanical structure flexibility.
  • a vibration damping device is a vibration damping device that reduces vibrations of a long structure, and is arranged along any position in the longitudinal direction of the structure, and a displacement amplifier that amplifies the displacement of the structure And a limiting member that suppresses the displacement amplifier from amplifying the displacement of the structure larger than the first displacement that does not return to the equilibrium position of vibration.
  • An elevator apparatus includes the above vibration damping device.
  • the vibration damping device provided at an arbitrary position along the long structure.
  • FIG. 1 is a schematic view of a long structure according to Embodiment 1.
  • FIG. 3 is a schematic diagram illustrating a vibration state of a long structure according to Embodiment 1.
  • FIG. 3 is a schematic diagram illustrating a state in which vibration of a long structure according to Embodiment 1 is suppressed by a damper.
  • 4 is a diagram of a displacement amplifier provided in a long structure according to Embodiment 1.
  • FIG. It is a graph explaining the unstable phenomenon of a displacement amplifier. It is a graph explaining the concept which prevents that a damping device becomes unstable. It is a figure explaining the limiting member of the vibration damping device which concerns on Embodiment 1.
  • FIG. It is a figure of the damping device which has a damper concerning Embodiment 1.
  • FIG. 6 is a graph illustrating the configuration and effects of another limiting member according to Embodiment 1. It is a figure explaining the example which applied the damping device which concerns on Embodiment 1 to the structure which an edge part becomes a free end. It is a figure explaining the example which connects the both ends of a damping device to a structure, without fixing the damping device which concerns on Embodiment 1 to another object. It is a figure of the elevator apparatus which concerns on Embodiment 2. FIG. It is a figure showing when the elevator apparatus which concerns on Embodiment 2 is vibrated. It is a figure of the vibration damping device of the elevator apparatus which concerns on Embodiment 2. FIG.
  • FIG. It is a figure of the damping device with a limiting member of the elevator apparatus which concerns on Embodiment 2.
  • FIG. It is a figure of the damping device provided in the rope duct of the elevator apparatus which concerns on Embodiment 2.
  • FIG. It is a side view of the vibration damping device using the negative rigid part using the link mechanism of the elevator apparatus which concerns on Embodiment 2.
  • FIG. It is a top view of the damping device using the negative rigid part using the link mechanism of the elevator apparatus which concerns on Embodiment 2.
  • FIG. It is a graph showing the relationship between the ratio of the distance from the end to the vibration damping device installation position and the maximum damping ratio with respect to the length of the main rope of the elevator apparatus according to the second embodiment.
  • FIG. 6 is a perspective view of a vibration damping device according to Embodiment 2.
  • FIG. 6 It is a figure which shows the relationship between the position of the cage
  • FIG. 6 is a perspective view of a vibration damping device according to Embodiment 2.
  • FIG. 6 is a top view of a vibration damping device according to Embodiment 2.
  • FIG. 6 is a side view of a vibration damping device according to Embodiment 2.
  • FIG. 6 is a side view of a vibration damping device according to Embodiment 2.
  • FIG. It is a block diagram of the elevator apparatus which concerns on Embodiment 2.
  • FIG. 6 is a side view of a vibration damping device according to Embodiment 2.
  • FIG. It is a block diagram of the elevator apparatus which concerns on Embodiment 3.
  • FIG. It is a block diagram of the elevator apparatus which concerns on Embodiment 3.
  • FIG. FIG. 9 is a side view of a vibration damping device according to Embodiment 3.
  • FIG. 9 is a side view of a vibration damping device according to Embodiment 3.
  • FIG. 9 is a side view of a vibration damping device according to Embodiment 3.
  • FIG. 9 is a side view of a vibration damping device according to Embodiment 3.
  • FIG. 9 is a side view of a vibration damping device according to Embodiment 3.
  • FIG. 9 is a side view of a vibration damping device according to Embodiment 3.
  • FIG. 9 is a side view of a vibration damping device according to Embodiment 3.
  • FIG. 9 is a side view of a vibration damping device according to Embodiment 3.
  • FIG. 9 is a side view of a vibration damping device according to Embodiment 3.
  • FIG. 6 is a perspective view of a vibration damping device according to Embodiment 3.
  • FIG. 6 is a top view of a vibration damping device according to Embodiment 3.
  • FIG. 6 is a perspective view of a vibration damping device according to Embodiment 3.
  • FIG. 9 is a side view of a vibration damping device according to Embodiment 3.
  • 6 is a perspective view of a vibration damping device according to Embodiment 3.
  • FIG. 6 is a perspective view of a vibration damping device according to Embodiment 3.
  • FIG. 6 is a perspective view of a vibration damping device according to Embodiment 3.
  • FIG. 6 is a top view of a vibration damping device according to Embodiment 3.
  • FIG. 6 is a top view of a vibration damping device according to Embodiment 3.
  • FIG. 9 is a side view of a vibration damping device according to Embodiment 3. It is a block diagram of the elevator apparatus which concerns on Embodiment 3.
  • FIG. 9 is a side view of a vibration damping device according to Embodiment 3.
  • Embodiment 1 FIG. Embodiment 1 will be described with reference to the drawings. The invention is not limited to the specific examples described, and dimensions, materials, and shapes can be changed as appropriate.
  • FIG. 1 is a schematic diagram of a structure 1 to be controlled by the vibration damping device 100 according to the present embodiment.
  • the structure 1 handled here has a long shape having dimensions longer than at least one other direction in at least one direction.
  • the structure 1 may be, for example, a rod-like or plate-like structure or a rope-like thing.
  • the structure 1 may be a structural member that supports something and maintains its shape, or may be a flexible member whose shape changes greatly due to a disturbance.
  • the structure 1 should just be fixed with another object in any location of the direction with a long dimension.
  • Both ends of the structure 1 are fixed at the fixed surface 2a and the fixed surface 2b.
  • the x-axis, y-axis, and z-axis of the three-axis orthogonal coordinate system are shown, and the vertically upward direction is the positive direction of the z-axis.
  • the structure 1 has a longitudinal direction parallel to the z-axis and is arranged in the vertical direction.
  • the fixed surface 2a is positioned vertically above the structure 1, and the fixed surface 2b is vertically downward. To position.
  • FIG. 1 shows a state in which the structure 1 is not vibrated and does not generate a lateral vibration (hereinafter referred to as “lateral vibration”) that is a direction perpendicular to the longitudinal direction. .
  • FIG. 2 is a schematic diagram showing a state of the excited structure 1a.
  • a vibration force 3 that vibrates the fixed surface 2a is applied to the fixed surface 2a, and the vibration frequency by the vibration force 3 matches the natural frequency of the structure 1a, a resonance phenomenon occurs.
  • the amplitude of the structure 1a (and the fixed surface 2a) is amplified.
  • the vibration direction of the excitation force 3 and the structure 1a is shown to be the y-axis direction, but is not limited thereto, and the same applies to any direction on the xy plane. The same phenomenon occurs even when the fixed surface 2b is vibrated.
  • the amplitude of vibration when the resonance of the structure 1a occurs varies depending on each position in the longitudinal direction (z direction) of the structure 1a, and is determined by the rigidity and mass distribution of the structure 1a.
  • FIG. 3 is a schematic diagram in the case where vibration is suppressed by a damper against (resonant) vibration of the structure 1a.
  • the damper is a viscous element that converts vibration energy into heat energy by means of viscous resistance, friction, etc., dissipates the energy, and absorbs vibration, and exerts a force proportional to speed.
  • FIG. 3A shows that the damper 4 as the vibration damping means is installed via the fixed surface 2c at a position 5a away from the fixed surface 2b in the vertical direction (z direction) upward.
  • the damper 4 is placed at a position that is larger than the distance 5a in the vertical direction (z direction) upward from the fixed surface 2b and is a distance 5b that is half the longitudinal length of the structure 1. Install.
  • the installation position of the damper 4 in FIG. 3A is close to the fixed surface 2b, the installation is easier than the damper 4 in FIG. Therefore, a device is installed in which the damper 4 is installed in the vicinity of the fixed surface 2b, which is easy to install, and the damping effect of the damper 4 is enhanced.
  • the purpose is to increase the vibration damping effect of the damper 4, but it is also possible to have a device configuration that does not require the damper 4.
  • the negative stiffness value In order to prevent instability due to an increase in the negative stiffness value, it may be possible to set the negative stiffness value to a small value in advance. However, since the negative stiffness value is small, the amount of amplification of the displacement of the structure 1 is small, As a result, the damping effect is reduced or the improvement of the damping effect of the damper is reduced. Furthermore, even if the negative stiffness mechanism has a small negative stiffness value, there is an increase characteristic of the negative stiffness value due to non-linearity. , Essentially not solved.
  • FIG. 4 is a diagram illustrating an example of the displacement amplifier 7 provided in the structure in the vibration damping device 100 of the present embodiment.
  • the displacement amplifier 7 is a device that amplifies the vibration displacement of the structure 1.
  • the displacement amplifier 7 amplifies the displacement of the structure 1 by, for example, negative rigidity or negative inertia.
  • the displacement amplifier 7 amplifies the displacement of the structure 1 without requiring external energy input. That is, the displacement amplifier 7 is a passive device.
  • the displacement amplifier 7 is a negative rigid portion 71, for example.
  • the negative rigid portion 71 is connected via a fixed surface 2c to a position at a distance 5a from the fixed surface 2b where the damper 4 of FIG. 3A is installed.
  • the negative rigid portion 71 is disposed so as to have a natural length when the structure 1 is stationary.
  • the state in which the structure 1 is stationary means a state in which there is no displacement in the direction perpendicular to the longitudinal direction of the structure 1 and no vibration, and no external force other than gravity is applied to the structure 1.
  • the structure 1 is in an equilibrium position.
  • the negative rigidity portion 71 has characteristics opposite to general positive rigidity, which is a degree of difficulty of deformation with respect to force.
  • a spring having positive rigidity applies an elastic force in the direction opposite to the received displacement, whereas the negative rigidity portion 71 applies an elastic force in the same direction as the received displacement.
  • an inverted pendulum mechanism or a mechanism using a permanent magnet can be used as the negative rigid portion 71.
  • the inverted pendulum mechanism is a pendulum mechanism having a center of gravity at a position higher than the fulcrum.
  • the fulcrum is fixed to the fixed part, and the weight is connected vertically to the structure 1 in a stationary state.
  • the structure is displaced in the lateral direction, the weight is tilted, and further, a force that tends to fall due to gravity is generated. To do. This force to fall can be used as the negative rigidity force.
  • the negative stiffness due to the inverted pendulum is not linear, and as the displacement increases, the negative stiffness force becomes greater.
  • the mechanism using the permanent magnet uses a ferromagnetic material such as iron for the structure 1 itself or a member provided at a position facing the displacement amplifier 7 of the structure 1 and separates from the stationary structure 1.
  • Permanent magnets are provided at the positions. Since there is a distance between the stationary structure 1 and the permanent magnet, the magnetic force acting between them is small. However, when the structure 1 is displaced and approaches the permanent magnet, the magnetic force attracting each other increases. Negative rigidity force. However, since the magnetic force follows Coulomb's law and is inversely proportional to the square of the distance between the structure 1 and the permanent magnet, the negative stiffness is nonlinear unless a special mechanism is provided. Of course, when the structure 1 and the permanent magnet come into contact with each other and the distance between them becomes zero, the negative rigidity force does not increase even if the displacement of the structure 1 increases.
  • the negative rigid portion 71 increases the displacement of the structure 1a at the position of the distance 5a from the fixed surface 2b, which is the position of the provided structure 1a.
  • FIG. 4 illustrates this fact.
  • the negative rigid portion 71 contracts by exerting a force in the same direction as the displacement, and the structure is the structure 1b indicated by the solid line by this force. It can be transformed and shaped into a spatial waveform like
  • the vibration waveform of the structure 1a that is, the vibration mode is set so that the vibration antinode of the structure 1 approaches the damper 4.
  • FIG. 5 is a graph for explaining an unstable phenomenon due to negative rigidity in the vibration damping device 100 of the present embodiment.
  • the vertical axis represents the negative rigidity force [N]
  • the horizontal axis represents the displacement [m] of the negative rigidity portion 71.
  • a solid line a and a broken line b in the graph indicate characteristics indicating the relationship between displacement and negative rigidity force, and the inclination of the line corresponds to the negative rigidity value.
  • the displacement amplifier 7 exhibits a negative rigid force with a constant inclination as indicated by a solid line a, and is generated in a direction to return to the stationary structure 1 when the structure 1 is displaced as the structure 1a.
  • the force in the displacement direction should be exerted with an absolute value smaller than the restoring force.
  • a region c represented by gray is a region where the force generated by the displacement amplifier 7 due to negative stiffness is larger than the absolute value of the restoring force of the structure, and is an unstable region. When entering the unstable region c, the vibration mode shaping by the negative stiffness does not function effectively, and the damping effect by the damper cannot be obtained.
  • the displacement amplifier 7 It is necessary to set the displacement amplifier 7 to a negative stiffness value smaller than the slope of the solid line a so as to exert a force smaller than the force in the unstable region.
  • the negative rigidity force inevitably becomes a non-linear force whose inclination increases with displacement as shown by the dotted line b. That is, when the intersection point d of the solid line a that is the linear negative stiffness that is the stability limit and the dotted line b that is the nonlinear negative stiffness force of the actual negative stiffness portion 71 is the displacement x1 of the negative stiffness portion 71 at the intersection point d. If a larger displacement occurs, the vibration damping device 100 having the displacement amplifier 7 having such a negative stiffness characteristic becomes unstable in operation.
  • FIG. 6 illustrates the concept of preventing the vibration damping device 100 from becoming unstable due to the nonlinear stiffness characteristic of the negative stiffness portion 71 that is the displacement amplifier 7 against the vibration of the structure 1 of the present embodiment. It is a graph to do. Normally, since the vibration damping device 100 corresponds to a larger vibration amplitude (vibration amplitude) of the structure 1, it is desired that the displacement amplifier 7 expands a range of displacement that functions stably.
  • the vertical axis represents the negative rigidity force
  • the horizontal axis represents the displacement of the negative rigidity portion 71.
  • a solid line a in the graph is a line indicating a stability limit at which the force generated by the displacement amplifier 7 due to the negative rigidity is equal to the absolute value of the restoring force of the structure, and a broken line b and a dotted line e are the lines of the negative rigid part 71.
  • the negative rigidity characteristic curve which shows the relationship between a displacement and negative rigidity force is shown.
  • FIG. 7 is a diagram showing a vibration damping device 100 having a displacement amplifying unit and a limiting member for suppressing the amplified displacement according to the present embodiment.
  • the limiting member is a means for preventing the vibration damping device 100 from becoming unstable.
  • one end of a negative rigid portion 71 that is a displacement amplifying portion is fixed to the fixed surface 2 c and the other end is connected to a connecting portion 9 that is connected to the structure 1.
  • the connecting portion 9 is connected to the structure 1 so that force can be transmitted.
  • the connecting portion 9 may transmit force to the structure 1 in a non-contact manner.
  • the limiting member 8 is a rod-like member that is provided on the fixed surface 2c and protrudes toward the structure 1 by a predetermined length.
  • the structure body 1 increases in amplitude, and when the amplitude increases as compared with the state of the structure body 1b, the displacement amplifier 7 further displaces, and the connecting portion 9 is Further closer to the fixed surface 2c side.
  • FIG. 7B shows a state in which the connecting portion 9 has hit the limiting member 8.
  • the structure 1 is deformed (displaced) to the state of the structure 1c in the drawing.
  • the structure 1c shown in the figure collides with or comes into contact with the limiting member 8 provided on the fixed surface 2c and the connecting portion 9 provided at the other end of the negative rigid portion 71, and displacement amplification of the negative rigid portion 71 is limited. Will be.
  • the predetermined length of the limiting member 8 is such that the displacement of the negative rigidity portion 71 is the absolute value of the restoring force of the structure 1 and the force generated by the displacement amplifier 7 due to the negative rigidity in the graphs of FIGS.
  • the length is such that the limiting member 8 and the connecting portion 9 are in contact with each other in a state where the displacement x1 of the intersection d between the equal stability limit line a and the negative stiffness characteristic curve b of the negative stiffness portion 71 is not exceeded.
  • the negative rigidity portion 71 as the displacement amplifier 7 does not enter the unstable region c in FIGS. Operate. Further, since the negative rigidity portion 71 does not become unstable by providing the limiting member 8, it is not necessary to set a negative rigidity value near zero displacement of the negative rigidity portion 71 that is the displacement amplifier 7. Therefore, both the vibration damping effect and stability of the negative rigid portion 71 can be achieved.
  • the force generated by the displacement amplifier 7 depends on the equivalent rigidity in the displacement direction of the structure between the connection position of the structure 1 and the fixed surface and the connection position where the displacement amplifier 7 amplifies the displacement. It can also be said that the displacement amplifier 7 is suppressed so as not to exceed the force.
  • a displacement of 1 is an example of a first displacement.
  • the first displacement is a displacement in which the structure 1 does not return to the vibration equilibrium position by the displacement amplifier 7.
  • the limiting member 8 prevents the vibration of the structure 1 from becoming unstable.
  • FIG. 8 is a diagram showing a configuration of a damping device 100 provided with a negative rigid portion 71 as a displacement amplifier 7 and a damper as a vibration damping means for the vibration of the structure 1 of the present embodiment.
  • the damper 4 is connected to the connecting portion 9 provided so as to be connected to the structure 1 at a distance 5a smaller than half the length of the structure 1 from the fixed surface 2b, as in FIG.
  • One end is connected together with the rigid portion 71, and the other end is connected to the fixed surface 2c together with the negative rigid portion 71.
  • Both ends of the damper 4 are connected to the connecting portion 9 and the fixed surface 2c, and a vibration damping action is provided between them.
  • the damper 4 showed the example connected with the connection part 9 linked with the structure 1 with the displacement amplification part, but separately from the displacement amplifier 7 (negative rigid part 71), in parallel,
  • the damper 4 may be connected to the structure 1 at the position of the adjacent structure 1. This is because, if the displacement amplifying unit is in the vicinity of the position where the displacement amplifying unit is connected to the structure 1, the effect of increasing the displacement of the structure 1 is obtained, and the damping effect of the damper 4 is improved.
  • the displacement amplifying unit and the damper 4 are connected to the structure 1 separately, an effect that the structure of the vibration damping device 100 such as the coupling unit 9 is not complicated can be expected.
  • FIG. 9 is a diagram illustrating an example of another limiting member according to the present embodiment.
  • Fig.9 (a) is a conceptual diagram which shows the structure of the damping device 100 which has another limiting member.
  • FIG. 9B is a graph for explaining the effect of the configuration of FIG.
  • the configuration of the vibration damping device 100 including the fixed surface 2c, the negative rigid portion 71, the connecting portion 9, and the damper 4 is the same as that in FIG. 8, but the configuration of the limiting member 8 is different.
  • the limiting member 8 is the same as that shown in FIG. 8 in that it has a predetermined length, but is different in that it has a positive rigid portion 10 having positive rigidity. When the positive rigid portion 10 is displaced, it generates a repulsive force in the opposite direction to the displacement. By providing the positive rigid portion 10, the limiting member 8 is displaced in a direction in which the length is reduced when the connecting portion 9 collides with the limiting member 8, and gives a reaction force to the connecting portion 9 and eventually the structure 1. .
  • the configuration of FIG. 8 prevents the negative rigid portion 71 from being displaced more than the displacement before the safety boundary so that the negative rigid portion 71 does not enter the unstable region.
  • the negative rigid portion 71 is displaced larger than the displacement x1 of the safety boundary in the example of FIG. To become. Thereby, the displacement used as the safe region of the negative rigid part 71 which is a displacement amplification part can be expanded.
  • FIG. 9B is a graph for explaining the effect of the configuration of FIG.
  • the vertical axis represents the negative rigidity force
  • the horizontal axis represents the displacement of the negative rigidity portion 71.
  • the solid line a in the graph is a line indicating a stability limit at which the force generated by the displacement amplifier 7 due to the negative stiffness is equal to the absolute value of the restoring force of the structure
  • the broken line b is the displacement and negative of the negative rigid portion 71.
  • the negative rigidity characteristic curve which shows the relationship with a rigid force is shown.
  • An alternate long and short dash line g represents a force generated by the positive rigid portion 10 attached to the limiting member 8 and is a restoring force that is exerted so that the displacement returns to the zero position.
  • the force value by the positive rigidity portion 10 is a negative value.
  • FIG. 9B when the displacement of the connecting portion 9 (negative rigid portion 71) becomes 0.6 [m], it is set to come into contact with the limiting member 8.
  • the resultant force of the limiting member 8 and the negative rigid portion 71 is a force that acts on the structure 1b of the displacement amplifier 7, and is represented by a dotted line h in FIG. 9B.
  • the resultant force of the limiting member 8 and the negative rigid portion 71 has a characteristic of a curve b until the connecting portion 9 comes into contact with the limiting member 8, and has a characteristic of a curve h after the contact.
  • the resultant force of the limiting member 8 and the negative rigid portion 71 is less than or equal to the safety limit curve a. It becomes.
  • the negative stiffness value is not decreased, and the stable region of the vibration damping device 100 is changed from x1 to x3 which is the displacement of the intersection of the safety limit curve a and the resultant force curve h. Can be expanded.
  • FIG. 10 is a diagram in which the vibration damping device 100 of the present embodiment is applied to an object having no fixed surface on both sides of the end of the structure.
  • FIG. 10A shows an example in which the vibration damping device 100 is applied to the structure 1d in which one end of the structure 1d is connected to the fixed surface 2a and the other end is free.
  • the structure 1d to be applied has a smaller amplitude as it is closer to the fixed surface 2a, but it is easy to provide the vibration damping device 100 at a position close to the fixed surface 2a.
  • the fixed surface 2c is provided at a position close to the fixed surface 2a, and the vibration damping device 100 described above is provided between the fixed surface 2c and the structure 1d.
  • the vibration damping device 100 increases the displacement by the negative rigid portion 71 to change the vibration mode and excessively amplifies the displacement by the limiting member 8. This will prevent this and provide a stable damping effect.
  • the damper 4 may be provided together with the negative rigid portion 71 in the connecting portion 9 connected to the structure 1d. If comprised in this way, the damping effect of the damper 4 can be improved.
  • the limiting member 8 may be configured to include the positive rigid portion 10 to enlarge the displacement of the stable region. Also, in the figure, there is shown a configuration in which the fixed surface 2a is vertically upward and the structure 1d is suspended, but conversely, there is a fixed surface vertically downward and the structure 1d is configured to stand upright. Also good.
  • FIG. 10B shows an example in which the vibration damping device 100 is applied to the structure 1e where both ends are free.
  • the center of the structure 1e is fixed.
  • the vibration damping device 100 is disposed at a location close to the portion where the structure 1e is fixed.
  • the displacement of the central portion is small. For this reason, even if it provides the damper 4 in the center part, an effect is low.
  • the damper 4 is provided at the same position (the connecting portion 9 and the fixed surface 2c)
  • the displacement of the structure 1 at the installation location of the vibration damping device 100 including the damper 4 is increased by the displacement amplifier 7.
  • the damping effect of the damper 4 is maximized.
  • the vibration damping device 100 described above is provided between the fixed surface 2c and the structure 1d. Even if the displacement of the structure 1e is provided at a small position, the vibration damping device 100 increases the displacement by the negative rigid portion 71 to change the vibration mode and excessively amplifies the displacement by the limiting member 8. This will prevent this and provide a stable damping effect.
  • the damper 4 may be provided together with the negative rigid portion 71 in the connecting portion 9 connected to the structure 1d, and the restricting member 8 includes the positive rigid portion 10. Even so, the same effect as described above can be obtained.
  • FIG. 11 is a diagram illustrating an example in which the vibration damping device 100 according to the present embodiment is configured without being connected to a structure other than the structure. That is, the structure of FIG. 11 does not have the fixed surface 2c. Instead, the vibration damping device 100 is connected to the structure 1d at a second position away from the first position where the connecting portion 9 is connected to the structure 1d. A connecting portion 9a. And the negative rigidity part 71 which is a displacement amplification part is provided between the 1st connection part 9 connected with the structure 1d in a 1st position, and the 2nd connection part 9a connected with the structure 1d in a 2nd position. It is done.
  • the vibration damping device 100 Since the vibration damping device 100 is configured such that the positions (first position, second position) where the first connecting portion 9 and the second connecting portion 9a are connected are separated, the structure 1 vibrates. When deformed into a wave shape, the displacement of the first connecting portion 9 and the second connecting portion 9a in the direction perpendicular to the longitudinal direction of the structure 1d is different, and the difference in displacement is the displacement amplification.
  • the vibration mode of the structure 1d is increased by the negative rigid portion 71, which is a portion, and the damping effect by the damper 4 can be improved.
  • the limiting member 8 is provided in the first connecting portion 9 or the second connecting portion, and prevents the negative rigid portion 71 from being displaced beyond a predetermined displacement, or the positive rigid portion 10 causes the negative rigid portion to be displaced.
  • the negative stiffness force exhibited by 71 is exerted in the opposite direction to prevent excessive negative stiffness force.
  • connection position of the structure 1 and the displacement amplifier 7 may be arranged closer to the node than the vibration antinode of the structure 1.
  • the distance between the connection position and the vibration node of the structure 1 is shorter than the distance between the connection position and the vibration antinode of the structure 1.
  • the distance between the connection position and the vibration node of the structure 1 is longer than zero.
  • the vibration damping device 100 is expected to avoid resonance of the structure 1 even in a configuration without a damper.
  • the vibration damping device 100 is disposed along any position in the longitudinal direction of the structure, and the displacement amplifier 7 that amplifies the displacement of the structure, and the displacement amplifier 7 is the structure. And a restricting member 8 that suppresses amplifying the displacement larger than a preset displacement.
  • the preset displacement is the first displacement at which the structure 1 does not return to the vibration equilibrium position.
  • the displacement amplifier 7 may be disposed at a position closer to the node than the vibration antinode of the structure. At this time, the distance between the position of the displacement amplifier 7 and the vibration node of the structure 1 is shorter than the distance between the connection position and the vibration antinode of the structure 1. Further, the distance between the position of the displacement amplifier 7 and the vibration node of the structure 1 is longer than zero. Then, since the displacement amplifier 7 is disposed at a position closer to the node than the antinode of the vibration waveform of the natural vibration mode of the structure, the vibration waveform shape of the structure, and hence the vibration mode, can be changed.
  • the displacement amplifier 7 has a simple structure of a negative rigid member such as a permanent magnet or an inverted pendulum. For this reason, it is possible to control vibration without supplying power without requiring weight reduction, durability improvement, and control.
  • the limiting member is composed of an elastic body having positive rigidity
  • the elastic body when the displacement of the structure becomes a preset displacement, the elastic body is displaced in a direction in which the length contracts, A force in the opposite direction to the displacement is applied to the structure. Then, the force exerted by the elastic body is a force opposite to the negative rigid force exerted by the displacement amplifier 7, so that the excessive negative rigid force of the displacement amplifier 7 is suppressed and becomes unstable. prevent.
  • the limiting member is configured to suppress the displacement amplifier 7 so as not to exceed the force due to the equivalent rigidity in the displacement direction of the structure between the fixed position of the structure and the connection position where the amplifier amplifies the displacement. . For this reason, it is possible to prevent the displacement amplifier 7 from becoming unstable while exhibiting the damping effect.
  • the first displacement set in advance of the limiting member is that the force exerted by the displacement amplifier 7 is the displacement direction of the structure between the fixed position of the structure and the connection position where the displacement amplifier 7 amplifies the displacement. This is the displacement when exceeding the force due to the equivalent stiffness of. For this reason, it is possible to prevent the displacement amplifier 7 from becoming unstable while exhibiting the damping effect.
  • the displacement amplifier 7 is configured to apply a force component in the direction of vibration (displacement) of the vibration of the structure and the direction of displacement. For this reason, the displacement amplifier 7 can exhibit a damping effect.
  • the vibration damping device 100 includes a vibration attenuator that attenuates the vibration of the structure. For this reason, the displacement amplifier 7 and the limiting member can efficiently dissipate vibration energy and obtain a high damping effect.
  • examples of the structure in which both ends are fixed by fixing surfaces include an elevator rope, a timing belt, a suspension bridge main cable, and an electric discharge machine wire.
  • examples of the structure in which one side is fixed to the fixed surface and one side is free include a crane wire rope and an antenna.
  • examples of structures that are free on both sides include structures that do not have a fixed surface, such as tethered satellites.
  • the vibration suppression of the transverse vibration perpendicular to the longitudinal direction of the structure is described.
  • the displacement amplifier 7 is also applied to the vibration suppression of the longitudinal vibration parallel to the longitudinal direction of the structure.
  • the damping effect can be improved without being unstable.
  • Embodiment 2 FIG. In the present embodiment, an embodiment in which the object of vibration suppression of the vibration suppression apparatus 100 is an elevator rope and the concept of the vibration suppression control apparatus of the first embodiment is applied will be described.
  • FIG. 12 is a schematic diagram showing the configuration of the elevator apparatus according to the present embodiment.
  • the x-axis, y-axis, and z-axis of the 3-axis orthogonal coordinate system are shown.
  • the vertically downward direction is the positive direction of the x axis.
  • FIG. 12 schematically shows the elevator apparatus in a state where there is no shaking of the building and no vibration is generated.
  • the building itself is not described in detail, but is described centering on a portion related to the elevator apparatus.
  • the support part and control apparatus of each component are abbreviate
  • a machine room 29 is provided above the elevator apparatus 11, and a hoisting machine 12, a deflector 13, and a speed governor 19 are provided in the machine room 29.
  • the passenger car 14 is connected to one end of the main rope 16, and the other end of the main rope 16 is connected to the counterweight 15 via the hoist 12 and the deflector 13.
  • a counterweight 15 is connected to one end connected to the car 14 of the main rope 16 and the other end, thereby canceling the weight of the car 14 and reducing the driving force of the hoisting machine 12.
  • a compensating rope 17 having one end connected to the lower side of the car 14 and the other end connected to the counterweight 15 is provided via a counterbalance wheel 18. It is done.
  • the governor rope 20 coupled to the car 14 and the governor rope 20 so as to move as the car 14 moves up and down.
  • the car 14 is provided with a control cable 22 for transmitting power and information signals.
  • the structure 1 to be controlled in the second embodiment is an elevator rope.
  • the elevator rope is a cord-like structure of the elevator apparatus 11.
  • the elevator rope is, for example, the main rope 16, the compensating rope 17, the governor rope 20, or the control cable 22.
  • the elevator rope includes a wire rope and a belt rope.
  • the elevator rope is made of, for example, a ferromagnetic material.
  • the elevator rope may have ferromagnetism, for example, by providing a ferromagnet on the surface.
  • FIG. 13 is a diagram showing the time when the building shake 23 occurs in the elevator apparatus shown in FIG. 12 due to a disturbance such as an earthquake or wind.
  • the hoisting machine 12 and the speed governor 19 fixed to the building are also shaken in the same manner, so that the main rope 16 that is the rope (elevator rope) of the elevator device, the compensating rope 17, The governor rope 20 and the control cable 22 are vibrated.
  • the excitation frequency of the building shake 23 and the natural frequency of each elevator rope coincide, a resonance phenomenon occurs and the shake is amplified.
  • the natural frequency of the main rope 16 a and the excitation frequency of the building shake coincide with each other, and a state where a resonance phenomenon occurs in the main rope 16 is shown.
  • FIG. 14 is a diagram illustrating an example of a vibration damping device 100 that suppresses vibration of the main rope 16 of the elevator apparatus according to the present embodiment.
  • the range of the main rope which the damping device 100 dampens is between the main rope end B1 close to the hoisting machine and the connecting portion B2 of the car and the main rope.
  • the distance between the rope end B1 and the heel and the main rope connecting portion B2 is referred to as the length of the main rope.
  • FIG. 14 shows an example in which the vibration damping device 100 of the elevator apparatus is installed on the machine room floor 28 and the displacement amplifier 7 is configured by a permanent magnet.
  • the machine room floor 28 has a rope duct 28a.
  • the rope duct 28 a is an opening that leads from the machine room 29 to the hoistway.
  • the main rope 16a is passed through the rope duct 28a.
  • the vibration damping device 100 of the elevator apparatus is installed on the machine room floor 28.
  • this is an example, and the installation position of the vibration damping device 100 is not limited to the above.
  • the vibration damping device 100 may be installed at any position within the range from the rope end B1 to the connecting portion B2 when the car 14 is stopped on the top floor.
  • the displacement amplifier 7 is a passive device.
  • the negative rigid portion 71 as the displacement amplifier 7 of the vibration damping device 100 of the second embodiment includes a pair of magnet units 54.
  • Each of the pair of magnet units 54 includes a permanent magnet 24 (24a, 24b) and a yoke 25.
  • the permanent magnets 24 (24a, 24b) are provided so as to face each other at symmetrical positions with the main rope 16 (dotted line in the figure) interposed therebetween.
  • the yoke 25 is disposed along a direction parallel to the main rope 16.
  • the permanent magnet 24 a directs the magnetic pole from the direction of the main rope 16 toward the upper end of the yoke 25.
  • the permanent magnet 24 b directs the magnetic pole opposite to the permanent magnet 24 a toward the lower end of the yoke 25 from the direction of the main rope 16.
  • the magnetic pole of the magnet unit 54 is, for example, the magnetic pole that is not directed to the yoke 25 of the permanent magnet 24.
  • the pair of magnet units face each other with the same polarity.
  • the negative rigid portion 71 which is the displacement amplifier 7 of the second embodiment is composed of permanent magnets 24a and 24b.
  • the limiting member is constructed by a limiting member 8a constructed of a nonmagnetic material.
  • the attractive force with respect to the main rope 16 due to the magnetic force of the permanent magnets 24 (24a, 24b) increases in inverse proportion to the distance between the permanent magnets 24 (24a, 24b) and the main rope 16a. Utilizing this property, when the main rope 16a is displaced from the stationary state, a force that is attracted in the displaced direction acts, and the displacement of the main rope 16a is further increased. In this way, the permanent magnet 24 generates a negative rigidity force and exhibits a function as a displacement amplifier.
  • the pair of magnet units 54 may be provided at different heights across the main rope 16.
  • the negative rigid portion 71 as the displacement amplifier 7 of the vibration damping device 100 of the second embodiment may include at least one magnet unit 54.
  • a plurality of magnet units 54 may be disposed along the longitudinal position of the main rope 16.
  • the attractive force by the permanent magnet 24 is inversely proportional to the distance between the permanent magnet 24 and the main rope 16a, it has a non-linear characteristic with respect to the displacement of the main rope 16a.
  • the negative rigidity portion 71 is set so that the nonlinearity is minimized. It is configured.
  • a yoke 25 disposed on the side surface of the permanent magnet, a coil 26 wound around the yoke 25, and an electric resistor 27 electrically connected to the coil 26 are provided.
  • the yoke 25, the coil 26, and the electric resistance 27 realize the characteristics of a damper that is a vibration damping unit.
  • the limiting member 8a is a non-magnetic material and is attached to the magnets 24a and 24b.
  • the thickness of the limiting member 8a is set such that the main rope 16 does not become unstable due to negative rigidity.
  • the limiting member 8a limits the distance between the main rope 16a and the magnet 24 so as not to be less than the thickness of the limiting member 8a.
  • the limiting member 8 makes the force exerted by the displacement amplifier 7 smaller than the force for returning the elevator rope to the equilibrium position (stationary position) by the tension of the elevator rope. By doing in this way, it can prevent that a vibration becomes an unstable area
  • the displacement amplifier 7 may be disposed at a position closer to the sheave (winding machine, deflector) around which the elevator rope is wound than the car 14 or the counterweight 15.
  • the displacement amplifier 7 may be disposed at a position closer to the sheave around which the car 14 or the counterweight 15 or the elevator rope is wound than the center position of the elevator rope.
  • the center position of the elevator rope is, for example, the midpoint between the fixed position B1 and the fixed position B2.
  • the distance between the position of the displacement amplifier and the car 14 or the counterweight 15 or the sheave is shorter than the distance between the center position of the elevator rope.
  • the distance between the position of the displacement amplifier and the car 14 or the counterweight 15 or the sheave is longer than zero. By doing in this way, it becomes easy to change the vibration mode of an elevator rope to another thing in the position away from the antinode of the vibration of the primary vibration mode.
  • the displacement amplifier 7 is composed of a negative rigid member that exerts a force corresponding to the lateral displacement of the elevator rope in a direction away from the equilibrium position of the elevator rope. By doing in this way, vibration of an elevator rope can be suppressed effectively.
  • FIG. 15 is a diagram of the vibration damping device 100 in which a roller-type limiting member is provided in the vibration damping device 100 of the present embodiment. Since the main rope 16a moves in the x-axis direction as the car 14 moves up and down, in the vibration damping device 100 including the limiting member 8a as shown in FIG. 14, friction force is generated when the main rope 16a and the limiting member 8a are in contact with each other. May occur, and the deterioration of the main rope 16a may be promoted.
  • FIG. 15 shows that the restriction member 8b with a roller at the tip is placed in the restriction device between the vibration control device 100 and the main rope 16a, so that the roller at the tip of the restriction member 8b first hits the main rope 16a.
  • the load on the main rope 16a is reduced.
  • the displacement of the main rope 16a can be limited by the limiting member 8b.
  • the limiting member 8b provided with a roller at the tip can be attached to the nonmagnetic fixing member 30 via the positive rigid portion 10.
  • the yoke 25, the coil 26, and the electric resistor 27 are provided to form a vibration damping portion (damper).
  • the vibration damping portion (damper).
  • the limiting device provided with the permanent magnet 24 as the negative rigid portion 71 and the limiting member 8b provided with a roller at the tip may be used.
  • tip and contains the positive rigid part 10 may be sufficient. Accordingly, it is possible to provide the vibration damping device 100 in which the negative rigidity force of the negative rigidity portion 71 is not excessively unstable.
  • the above-described vibration damping device 100 is provided in the machine room and is provided near the hoisting machine 12 that is installed vertically above. However, the vibration damping device 100 is close to the junction between the car 14 and the main rope 16 or the counterweight. 15 and the main rope 16 may be provided at a position close to the joint portion. By doing in this way, it becomes easy to change the vibration mode of an elevator rope to another thing in the position away from the antinode of the vibration of the primary vibration mode. That is, it is effective if it is provided at a position away from the vibration antinode of the primary vibration mode.
  • FIG. 16 is a diagram of the vibration damping device 100 of the present embodiment provided in the rope duct 28a.
  • the vibration damping device 100 includes a pair of permanent magnets 24 and a pair of limiting members 8d.
  • the permanent magnet 24 is an example of a magnet unit.
  • One of the pair of permanent magnets 24 is disposed inside one of the pair of limiting members 8d.
  • the other of the pair of permanent magnets 24 is disposed inside the other of the pair of limiting members 8d.
  • the pair of limiting members 8d are provided in the rope duct 28a.
  • the pair of limiting members 8d are arranged at positions symmetrical to each other with respect to the main rope 16a.
  • the pair of limiting members 8d are provided on opposite sides of the rope duct 28a.
  • the pair of limiting members 8d oppose each other with the main rope 16a interposed therebetween.
  • Each of the pair of permanent magnets 24 is provided in the rope duct 28a together with the pair of limiting members 8d.
  • Each of the pair of permanent magnets 24 is arranged with the magnetic poles facing the main rope 16a.
  • the magnetic poles of the pair of permanent magnets 24 are covered with the pair of limiting members 8d.
  • the vibration damping device 100 becomes compact.
  • the vibration damping device 100 can also be applied to an elevator device having a short distance from the rope duct 28a to the hoisting machine 12.
  • FIG. 17 and 18 are diagrams showing an example in which the vibration damping device 100 that suppresses vibration of the main rope 16 of the elevator according to the present embodiment is configured by a link mechanism.
  • the negative rigid portion 71 of the vibration damping device 100 has a line-symmetric structure with the main rope 16 in a stationary state as the axis of symmetry (for example, , See in cross section of xy plane in the figure).
  • One side of the damping device 100 that is symmetrical with respect to the negative rigid portion 71 has a toggle link mechanism 31, and is composed of a weight 31a, a link 31b, and a rotation fulcrum 31c.
  • One end of the toggle link mechanism 31 is fixed to the car 14, and the other end is fixed to the rope restraining member 32 or fixed at a rotation fulcrum.
  • the rope restraining member 32 is coupled to one or a plurality of main ropes 16a, and the rope restraining member 32 is supported by the linear motion guide 33 so as to be freely movable in the horizontal direction (y-axis direction).
  • the linear motion guide 33 may include a pair of rollers that are in contact with each other with the main rope 16 interposed therebetween.
  • FIG. 16A is a front view of the vibration damping device 100 as viewed from the side in the horizontal direction
  • FIG. 17 is a top view of the vibration damping device 100 as viewed from vertically upward.
  • FIG. 16 when the main rope 16a is displaced, it comes into contact with the rope restraining member 32 and the rope restraining member 32 is displaced. Then, the link 31b of the toggle link mechanism 31 on the displacement direction side connected to the rope restraining member 32 is folded, and the link 31b of the toggle link mechanism 31 on the other side has an extended shape.
  • the toggle link mechanism 31 is a mechanism that generates a large force (in this case, a negative rigidity force) when it expands due to the inertia of the weight 31a. The force transmitted by the toggle link mechanism 31 to the main rope 16a is greater when the link 31b extends than when the link 31b is folded.
  • the toggle link mechanism 31 is an example of an unstable link mechanism that generates a negative rigidity force by displacement of one or more links.
  • the displacement of the main rope 16a and the force in the same direction that is, the characteristic of the negative rigidity as the displacement amplifier 7 can be added.
  • the viscosity that is the vibration damping means is sufficient for the friction level of the linear motion guide 33.
  • a hydraulic damper or the like is not separately attached. In some cases, for example, the friction of the linear guide 33 is insufficient, a damper may be attached.
  • Equation (1) is known as an equation describing wave propagation, and is called a wave equation.
  • the wave propagation velocity c is expressed by equation (2).
  • Equation (2) indicates that the wave propagation speed c of the main rope 16a is the square root of the tension T of the main rope 16a divided by the linear density ⁇ .
  • the boundary condition of the main rope 16a is expressed by the following expressions (3) and (4).
  • Vext represents the displacement of a building shake.
  • Expression (3) indicates that the forced displacement V ext is given to the end B1 of the main rope 16a by the shaking of the building.
  • s represents a Laplace operator
  • sinh represents a hyperbolic function
  • the installation position x 0 of the vibration damping device 100 is sufficiently smaller than the length L of the main ropes 16, i.e., close to the hoisting machine side end portion B1.
  • the transfer functions up to the lateral vibration displacement V (x 0 , s) of the main rope 16 at the installation position and the lateral vibration displacement V (L / 2, s) at the center position of the main rope 16 are expressed by the following equation ( 6) and the formula (7).
  • ⁇ L and ⁇ x0 are the primary natural frequencies of the main rope 16 when the length of the main rope 16 is L or the distance L x0 from the end B1 to the vibration damping device 100 installation position. Yes, and are represented by formula (8) and formula (9), respectively.
  • K p and D p represents the stiffness value and viscosity value of the displacement amplifier 7 (negative rigid portion 71).
  • the bars of K p and D p represent the stiffness value and the viscosity value of the displacement amplifier 7 (negative stiffness portion 71) normalized by the constant G, and the constant G is Is given by the value of.
  • Equation (12) The condition for setting the damping ratio to 1 by the vibration damping device 100 is as follows. Solving the simultaneous equations in which the coefficients of Equation (12) and Equation (13) are compared, with K p bar, D p bar and ⁇ n as unknowns, Equations (14), (15), and (16) are obtained.
  • the maximum attenuation ratio (hereinafter referred to as the maximum attenuation ratio) that can be obtained by adjusting the viscosity value changes.
  • the maximum damping ratio ⁇ is expressed as a function of the normalized negative stiffness value K p bar and is given by the following equation (17).
  • the maximum damping ratio is the ratio between the installation position x0 and the length L of the main rope 16 (hereinafter simply referred to as the ratio). It can be seen that when the length L of the main rope 16 is increased and the ratio is decreased, the numerator of the equation (18) is decreased and the maximum attenuation ratio is also decreased. In other words, it can be seen that it is difficult to control the elevator rope in a high-rise building having a long main rope 16 with a vibration control device composed only of viscosity. Therefore, the effect of the vibration damping device 100 using the negative stiffness displacement amplifier 7 is enhanced.
  • FIG. 19 is a graph of the function of the equation (18) representing the maximum damping ratio, and shows the damping effect of the damping device configured only by viscosity without using the negative rigidity.
  • the horizontal axis represents the ratio x 0 / L between the installation position x 0 and the length L of the main rope 16, and the vertical axis represents the maximum attenuation ratio. It can be seen that the maximum damping ratio is proportional to the ratio. However, for example, when the ratio is 0.01, the maximum damping ratio ⁇ is 0.005, and the absolute value to be improved is slight. Therefore, the damping effect cannot be expected in the region where the ratio is small.
  • the elevator apparatus when not changing the installation position x 0 of the damping device, the rope length L with the vertical movement of the car 14, for varying the ratio also varies greatly. That is, if vibration damping is performed only by viscosity, there is a drawback that performance tends to vary depending on the rope length, that is, the position of the car 14.
  • Figure 20 is a distance x 0 from the end B1 to the vibration damping device 100 installation position, the ratio x 0 / L of the length L of the main ropes 16, in the case of 0.01, positive, including the displacement amplifier 7 Alternatively, the maximum damping ratio when negative rigidity is applied is illustrated.
  • Graph of Figure is calculated equation (17) based on the horizontal axis is normalized, negative, rigidity value K p bar vibration damping device, and the vertical axis is the maximum damping ratio zeta.
  • the ratio x 0 / L is 0.01, the maximum damping ratio ⁇ is 0.005 in FIG. 19 and the maximum damping ratio ⁇ is 0.005, and the damping effect is a little. This is the case.
  • the normalized stiffness value has a direction in which the positive value increases in the right direction, the direction in which the absolute value increases for the negative stiffness is in the left direction.
  • the maximum damping ratio is remarkably improved as compared with the vibration damping composed only of the vibration attenuator (damper) shown in FIG. Further, by using the negative rigidity portion 71 having the negative rigidity characteristic which is the displacement amplifier 7, the displacement of the main rope 16 is increased, and it becomes close to the vibration antinode characteristic.
  • the effect of the negative stiffness of the characteristics of the negative stiffness section 71 is largely dependent on the distance x 0 from the rope terminal B1 or B2 to the installation position of the vibration damping device 100, the sensitivity is low with respect to the length L of the main ropes 16. Both the robustness of the damper as the vibration damping means can be improved.
  • the value of the maximum damping ratio is negative. That is, it can be seen that the region indicated by G2 having a normalized negative stiffness value smaller than ⁇ 1 is an unstable region.
  • the value of the normalized negative stiffness value at the boundary G1 is a value of K p bar at which the damping ratio becomes infinite in the equation (17), and is represented by the following equation.
  • Equation (19) shows that the absolute value of the normalized negative stiffness value, which is the boundary G1, divides the length of the main rope 16 by the difference between the length of the main rope 16 and the distance from the end B1 to the vibration damping device installation position. It represents that it was the value. This is because when the vibration damping device 100 is provided near the hoisting machine of the elevator, the absolute value of the normalized negative stiffness value that is the boundary G1 determines the length of the main rope 16 from the vibration damping device 100. It is a value divided by the distance to the car 14.
  • the absolute value of the normalized negative stiffness value that is the boundary G 1 determines the length of the main rope 16 from the vibration damping device 100 to the hoisting machine. The value is divided by the distance up to.
  • the length of the main rope 16 is the length of the main rope 16 from the sheave contact end of the hoist to the car 14, the length of the main rope 16 when the elevator car 14 is raised and lowered. Will change. Therefore, the absolute value of the normalized negative stiffness value of the boundary G1 increases when the car 14 is on the uppermost floor and decreases when the car 14 is on the lowermost floor.
  • the length of the main rope 16 when the car 14 is on the lowest floor is divided by “the difference between the length of the main rope 16 and the distance from the end B1 to the vibration damping device installation position”. If the vibration damping device 100 having a composite stiffness value having an absolute value smaller than the absolute value of the normalized negative stiffness value, which is a value, is not surely unstable. Therefore, the absolute value of the combined rigidity of the vibration damping device 100 is “the length of the main rope 16 when the car 14 is on the lowest floor” and the vibration attenuation from the length of the main rope 16 and the end B1.
  • the negative rigidity portion 71 (displacement amplifier 7) and the limiting member are configured so that the combined rigidity value as the vibration damping device 100 is not as large as the value divided by the “difference from the distance to the device installation position”. It is possible to obtain a device having a high vibration damping effect while preventing instability.
  • a region G4 shown in FIG. 20 is a region where the rigidity value of the rigid member of the vibration damping device 100 is positive.
  • the maximum damping ratio is 0. Therefore, considering the characteristics of the maximum damping ratio of the damping device due to viscosity in FIG. A positively rigid implementation is not preferred. Therefore, when damping the main rope 16, it is desirable to implement a normalized negative stiffness value in the range of the following equation.
  • Expression (20) indicates that the value K p bar of the normalized negative rigidity value is larger than the value of the normalized negative rigidity value of the boundary G1 of Expression (19) and smaller than zero. Since the Kp bar is divided by the constant G of the above equation (11) when normalizing, the negative stiffness value to be mounted can be obtained by multiplying the equation (20) by the constant G.
  • This embodiment is designed to extract a damping effect due to viscosity to the maximum by using a limiting member so as to keep a negative rigidity value in the stable region shown in Expression (21).
  • the left side of the equation (21) corresponds to the inclination of the solid line a in FIG. 5 described in the first embodiment.
  • the slope of the solid line “a” in FIG. 5 represents the minimum negative rigidity (the maximum rigidity as the absolute value of the rigidity force) that is not unstable due to the negative rigidity portion 71.
  • the minimum negative rigidity to be stabilized is obtained by multiplying a value obtained by dividing the tension of the main rope by the installation position by a correction coefficient configured by the length of the main rope and the installation position.
  • Equation (21) represents the desired range of negative stiffness values K p of the negative stiffness portion 71 of the displacement amplifier 7.
  • Equation (19) shows the value of the normalized negative stiffness value that is the boundary G1, but when this is multiplied by the constant G of Equation (11) to obtain the negative stiffness value, the following equation is obtained. can get.
  • Expression (22) is a negative stiffness value K p asy at the boundary where the displacement amplifier 7 of the vibration damping device 100 becomes stable and unstable.
  • the superscript asy means the asymptote asymptote.
  • the negative stiffness portion 71 (displacement amplifier 7) and the limiting member are configured to be as large as possible rather than smaller than the negative stiffness value of the expression (22) expressed by the length L of the main rope 16, the instability will occur. It is possible to obtain a device having a high vibration damping effect while preventing the above.
  • the permanent magnet 24 is prevented so that the attractive force of the permanent magnet 24, which is the displacement amplifying unit, does not become smaller than the negative rigidity value K p asy expressed by the equation (22).
  • the tip roller of the restricting member 8b is brought into contact with the main rope 16 at a distance between 24 and the main rope 16a.
  • the toggle link mechanism 31 is in a state where the negative rigidity force exerted by the toggle link mechanism 31 does not become smaller than the negative rigidity value K p asy expressed by the equation (22).
  • a restricting member 8c is provided at the position of contact.
  • the tension T of the main rope 16 may be a combined stiffness value as the vibration damping device 100 by obtaining a negative stiffness value K p asy of the boundary as a tension when the car 14 is empty.
  • the tension of the main rope 16 is the smallest when the car 14 is empty.
  • the negative stiffness value K p asy of the boundary becomes the smallest when the car 14 is empty.
  • the elevator apparatus 11 includes the vibration damping device 100.
  • the damping device 100 reduces the vibration of the elevator rope. That is, the vibration damping device 100 of the present embodiment uses the elevator rope as a structure to be vibration-damped.
  • the vibration damping device 100 is an elevator rope that is a target for damping the main rope 16 of the elevator that is connected to the elevator car 14 and the counterweight 15 and wound around the sheave.
  • the vibration damping device 100 according to the present embodiment is arranged along any position in the longitudinal direction of the elevator rope, and the displacement amplifier 7 that amplifies the displacement of the elevator rope, and the displacement amplifier 7 preliminarily determines the displacement of the elevator rope.
  • a limiting member is provided that suppresses amplification larger than the set first displacement. With such a configuration, the vibration displacement at the position of the elevator rope provided with the displacement amplifier 7 can be increased without becoming unstable, and the vibration damping effect can be enhanced.
  • the vibration damping device 100 of the present embodiment includes a limiting member that makes the force exerted by the displacement amplifier 7 smaller than the force for returning the elevator rope to the equilibrium position by the tension of the elevator rope. For this reason, the vibration displacement at the position of the elevator rope provided with the displacement amplifier 7 can be increased without becoming unstable, and the damping effect can be enhanced.
  • the displacement amplifier 7 of the vibration damping device 100 of the present embodiment is configured by a negative rigid member that exerts a force according to the lateral displacement of the elevator rope in a direction away from the equilibrium position of the elevator rope. For this reason, the lateral vibration of the elevator rope can be effectively suppressed.
  • the displacement amplifier 7 of the vibration damping device 100 of the present embodiment is disposed at a position closer to the sheave than the car 14 or the weight. For this reason, even when the lateral displacement of the elevator rope is small, the displacement amplifier 7 can increase the displacement, change the vibration mode, and effectively suppress the vibration.
  • the distance between the position of the displacement amplifier 7 of the vibration damping device 100 of the present embodiment and the car 14 or the counterweight 15 or the sheave is shorter than the distance between the fixed positions on both sides of the elevator rope.
  • the distance between the position of the displacement amplifier 7 and the car 14 or the counterweight 15 or the sheave is longer than zero.
  • the first displacement in which the limiting member of the vibration damping device 100 of the present embodiment suppresses the displacement amplification of the displacement amplifier 7 is the tension applied to the elevator rope when the car 14 is on the uppermost floor of the elevator.
  • the displacement amplifier 7 and the limiting member of the vibration damping device 100 of the present embodiment amplify the displacement of the main rope 16 by exerting a force by the elastic coefficient K.
  • the elastic coefficient K satisfies the inequality represented by the equation (23).
  • the tension of the elevator rope is T
  • the distance from the connection point between the car 14 or the weight and the elevator rope to the position where the displacement amplifier 7 is arranged is x 0
  • the total length of the elevator rope is L.
  • the displacement amplifier 7 may include a pair of magnet units 54.
  • the pair of magnet units 54 face each other with the magnetic poles facing each other and sandwiching the elevator rope.
  • the restricting member 8a is a pair of non-magnetic members disposed between the magnetic poles of each of the pair of magnet units 54 and the elevator rope.
  • the limiting member 8a suppresses the elevator rope from approaching the magnetic poles of the pair of magnet units 54 closer to the thickness of the limiting member 8a. For this reason, by making the thickness of the limiting member 8a thicker than the thickness that the main rope 16 contacts when the main rope 16 is displaced by the first displacement, the damping of the elevator rope by the damping device 100 can be stably performed. Is called.
  • the displacement amplifier 7 amplifies the displacement of the elevator rope in a non-contact manner. Thereby, it is suppressed that an elevator rope etc. wears by amplification of displacement.
  • each of the pair of magnet units 54 faces each other with the same polarity. Thereby, each of a pair of magnet unit 54 repels mutually. For this reason, the gap between the pair of magnet units 54 is not closed by the magnetic force of the pair of magnet units 54. Thereby, it is not necessary to consider the attractive force between the pair of magnet units 54 for fixing the pair of magnet units 54.
  • Each of the pair of magnet units 54 includes a yoke 25, a permanent magnet 24a, and a permanent magnet 24b.
  • the yoke 25 is disposed along a direction parallel to the elevator rope.
  • the permanent magnet 24a directs the magnetic pole toward one end of the yoke 25 from the direction of the elevator rope.
  • the permanent magnet 24b directs a magnetic pole opposite to the permanent magnet 24a to the other end of the yoke 25 from the same direction as the permanent magnet 24a.
  • the yoke 25 guides the magnetic flux emitted from the magnetic pole on the opposite side of the elevator rope to the inside.
  • the magnet unit 54 can suppress the magnetic flux leaking from the opposite side of the elevator rope. For this reason, the influence on the peripheral apparatus by the vibration damping device 100 is suppressed.
  • the displacement amplifier 7 may have an unstable link mechanism that generates a negative rigidity force by the displacement of one or more links.
  • the limiting member 8c suppresses the displacement of at least one of the one or more links. Thereby, the displacement amplifier 7 can generate a negative rigidity force regardless of the magnetic force.
  • the link mechanism of the displacement amplifier 7 may be a pair of toggle link mechanisms 31 arranged with an elevator rope interposed therebetween. Thereby, the displacement amplifier 7 can generate a negative rigidity force by a simple mechanism.
  • the displacement amplifier 7 may include a roller that contacts the elevator rope. Thereby, deterioration due to friction between the elevator rope and the displacement amplifier 7 is suppressed.
  • the vibration damping device 100 may include a vibration attenuator that attenuates vibration of the elevator rope. Thereby, vibration energy is dissipated efficiently. For this reason, a high vibration damping effect can be obtained.
  • the vibration attenuator includes, for example, a coil 26 and an electric resistance 27.
  • the coil 26 passes a magnetic flux passing through at least one of the pair of magnet units 54.
  • the electrical resistance 27 is electrically connected to the coil 26.
  • the coil 26 may be wound around at least one of the yokes 25 of the pair of magnet units 54.
  • FIG. 21 shows an example of the configuration of the vibration damping device that suppresses the longitudinal vibration of the main rope 16.
  • the main rope 16 a is fixed to the car upper beam 34 via a shackle rod 36 and a shackle spring 35.
  • a ferromagnetic body 37 is attached to the shackle rod end, and a magnet 24 is provided on the car upper beam 34 so as to face the ferromagnetic body 37.
  • a negative stiffness characteristic can be imparted in the x direction (vertical direction).
  • a limiting member 38 is provided to prevent destabilization.
  • the longitudinal vibration has a smaller amplitude than the lateral vibration, and therefore the restriction member 38 may be removed if the displacement vibration unit operates only in a region where the nonlinearity of the displacement amplification unit is not strong.
  • a toggle link mechanism may be used as an element for realizing the negative rigidity portion 71 instead of the permanent magnet 24.
  • the limiting member of the vibration damping device 100 of the present embodiment has a roller that contacts the elevator rope. For this reason, there is an effect of reducing friction between the elevator rope and the limiting member and preventing deterioration of both.
  • FIG. 22 is a diagram of the vibration damping device 100 of the present embodiment applied to the elevator device 11 including a plurality of main ropes 16.
  • the structure 1 that is damped by the vibration damping device 100 is a plurality of main ropes 16.
  • Each end portion of the plurality of main ropes 16 is connected to the upper portion of the car 14.
  • the vibration damping device 100 is provided on the upper portion of the car 14.
  • the vibration damping device 100 includes a support base 50 and a restraining member 51.
  • the support base 50 is provided on the upper part of the car 14.
  • the support base 50 is provided around the plurality of main ropes 16.
  • the restraining member 51 is made of a ferromagnetic material.
  • the restraining member 51 is a member that keeps the horizontal distance between each of the plurality of main ropes 16 constant.
  • the restraining member 51 is a block-like member that is fixed to each of the plurality of main ropes 16, for example.
  • the vibration damping device 100 includes at least three magnet units 54.
  • the vibration damping device 100 includes four magnet units 54.
  • Each of the plurality of magnet units 54 is provided on the upper surface of the support base 50.
  • Each of the plurality of magnet units 54 includes a permanent magnet 24 (24a, 24b).
  • the magnetic poles of the plurality of magnet units 54 are directed toward the restraining member 51 from different directions so as to surround the restraining member 51.
  • the magnetic poles of the plurality of magnet units 54 may be arranged every 120 ° with respect to the central axis of the restraining member 51 along the longitudinal direction of the main rope 16.
  • the magnetic poles of the plurality of magnet units 54 may be arranged every 90 ° with respect to the central axis of the restraining member 51 along the longitudinal direction of the main rope 16.
  • Each of the plurality of magnet units 54 may be arranged at different heights along the longitudinal direction of the main rope 16.
  • the vibration damping device 100 when the structure 1 to be damped by the vibration damping device 100 is the plurality of main ropes 16, the vibration damping device 100 includes the restraining member 51.
  • the restraining member 51 keeps the horizontal distance between each of the plurality of main ropes 16 constant.
  • the design value of the negative stiffness value of the negative stiffness portion 71 is determined by the tension of the elevator rope as shown in the equation (11). For this reason, when the damping device 100 dampens the plurality of main ropes 16, if the tension varies among the plurality of main ropes 16, the damping performance of the damping device 100 decreases.
  • the design value of the negative stiffness value of the negative stiffness portion 71 is determined by the sum of the tension of each of the plurality of main ropes 16 by integrating each of the plurality of main ropes 16 by the restraint of the restraining member 51.
  • the tension of each of the plurality of main ropes 16 varies both positively and negatively.
  • the variation in the total tension of each of the plurality of main ropes 16 is one in which the influence of the variation in tension of each of the plurality of main ropes 16 is canceled.
  • tensile_strength of the several main rope 16 is reduced.
  • the robustness of the vibration damping performance of the vibration damping device 100 with respect to variations in the tension of the plurality of main ropes 16 is improved.
  • the restraining member 51 is fixed to each of the plurality of main ropes 16.
  • the restraint member 51 is comprised by simple structures, such as a block-shaped member.
  • FIG. 23A shows a state where the car 14 is stopped at the lowest floor.
  • FIG. 23B shows a state when the car 14 is stopped on the top floor.
  • the elevator apparatus 11 includes a plurality of main ropes 16
  • the main ropes 16 are attached to a plurality of different locations on the car 14. As shown in FIG. For this reason, the plurality of main ropes 16 are stretched and stretched at the fleet angle ⁇ from the end B1 to the car 14.
  • the fleet angle ⁇ changes depending on the distance between the car 14 and the hoisting machine 12.
  • the distance between the car 14 and the hoist 12 is the shortest when the car 14 is stopped on the top floor. At this time, the fleet angle ⁇ is the largest.
  • the distances between the plurality of main ropes 16 spreading from the end B1 at the fleet angle ⁇ and the negative rigid portion 71 change. Even when the main rope 16 is not vibrating, the horizontal position of the main rope 16 as viewed from the negative rigid portion 71 may change. At this time, if the amount of movement of the main rope 16 in the horizontal direction is large, the main rope 16 may come into contact with the permanent magnet 24 of the negative rigid portion 71.
  • FIG. 24 is a diagram illustrating the vibration damping device 100 when the car 14 is stopped on the lowest floor.
  • the main rope 16a is in an equilibrium position. At this time, the main rope 16a passes through the center of the rope duct 28a. In this state, the fleet angle ⁇ is the smallest.
  • FIG. 25 is a diagram illustrating the vibration damping device 100 when the car 14 is stopped on the top floor.
  • the main rope 16a is in an equilibrium position.
  • the main rope 16a is stretched between the hoist 12 and the car 14 at a fleet angle ⁇ larger than the fleet angle when the car 14 is on the lowest floor.
  • the main rope 16a is closer to the permanent magnet 24 of the negative rigid portion 71 than when the car 14 is stopped at the lowest floor.
  • the permanent magnet 24 further pulls the main rope 16 with a stronger force than when the car 14 is stopped at the lowest floor.
  • the margin from the equilibrium position of the main rope 16a to the first displacement is reduced. Therefore, the range of displacement of the main rope 16 damped by the vibration damping device 100 may be reduced by the change in the fleet angle ⁇ accompanying the change in the position of the car 14.
  • FIG. 26 is a top view of the vibration damping device 100.
  • FIG. 27 is a side view of the vibration damping device 100.
  • the plurality of main ropes 16 are arranged in a line in the horizontal direction.
  • the plurality of main ropes 16 are arranged in the direction of the rotation axis of the hoisting machine 12, for example.
  • the vibration damping device 100 includes a restraining member 51 and a base 52.
  • the vibration damping device 100 is provided in the machine room 29, for example.
  • the restraining member 51 includes a pair of rollers 53.
  • the rotational axes of the pair of rollers 53 are directed in a direction parallel to the direction in which the plurality of main ropes 16 are arranged.
  • the pair of rollers 53 contacts each of the plurality of main ropes 16 from both sides in a direction perpendicular to the rotation axis.
  • Each of the pair of rollers 53 has a groove-shaped guide on the side surface so as to keep a horizontal distance between each of the plurality of main ropes 16 constant.
  • the base 52 is provided so as to cover the negative rigid portion 71 from above.
  • the upper surface of the base 52 is a horizontal plane.
  • the restraining member 51 is provided on the base 52.
  • the restraining member 51 is provided on the upper surface of the base 52 so as to be freely displaced in a direction perpendicular to the direction in which the plurality of main ropes 16 are arranged in a horizontal plane.
  • the restraining member 51 when the plurality of main ropes 16 are arranged in a line in the horizontal direction, the restraining member 51 includes a pair of rollers 53.
  • the pair of rollers 53 have a rotation axis parallel to the direction in which the plurality of main ropes 16 are arranged.
  • the pair of rollers 53 contacts each of the plurality of main ropes 16 from both sides in a direction perpendicular to the rotation axis.
  • the restraining member 51 squeezes each of the plurality of main ropes 16 with a pair of rollers 53 above the displacement amplifier 7. As a result, the amount of movement of the main rope 16 changes from the position indicated by the broken line to the position indicated by the solid line. For this reason, the contact between the vibration damping device 100 and the main rope 16 is avoided.
  • the damping device 100 can stably dampen the elevator rope.
  • the restraining member 51 is provided between the pair of magnet units 54.
  • the restraining member 51 is provided on the machine room floor 28.
  • the restraining member 51 is provided on the machine room floor 28 so as to be freely displaced in a direction perpendicular to the direction in which the plurality of main ropes 16 are arranged in a horizontal plane.
  • the restraining member 51 has magnetic bodies on both sides in the direction in which it can be displaced on the machine room floor 28.
  • the vertical installation space of the vibration damping device 100 can be suppressed. Further, at the equilibrium position, the distance between the restraining member 51 and the magnet unit 54 does not depend on the position of the car 14. For this reason, the damping performance of the damping device 100 is stabilized.
  • FIG. 29 is a diagram illustrating an example of a vibration control device 100 that controls the control cable 22.
  • One end of the control cable 22 is connected by a hoistway side terminal 48b on the inner wall of the hoistway.
  • the car-side terminal at the other end of the control cable 22 is connected to the car 14.
  • the portion of the control cable 22 that is connected to the car 14 is fixed to the car 14 by a fixing portion 48a.
  • the fixing part 48a is provided at the lower part of the car 14, for example.
  • the control cable 22 may be routed to the fixing portion 48 a at the lower part of the car 14.
  • FIG. 30 is a diagram illustrating an example of the configuration of the vibration damping device 100 that dampens the control cable 22.
  • the vibration damping device 100 is provided in a fixed portion 48 a at the lower part of the car 14.
  • the vibration damping device 100 includes, for example, a pair of magnet units 54 and a limiting member 8a.
  • the control cable 22 is formed of a magnetic material such as iron
  • the control cable 22 is damped by the magnetic force received from the magnet unit 54.
  • the control cable 22 is made of a nonmagnetic material such as copper
  • the control cable 22 may be covered with a ferromagnetic material, for example. Thereby, the control cable 22 is damped by the magnetic force received by the ferromagnetic material from the magnet unit 54.
  • the vibration damping device 100 may dampen the control cable 22 by an unstable link mechanism such as a toggle link mechanism.
  • the vibration damping device 100 may include a base on which the link mechanism is placed below the fixed portion 48a.
  • the force applied to the link mechanism may be, for example, the weight of a weight, the elastic force of a spring, or a magnetic force.
  • the vibration damping device 100 may be provided in the hoistway side terminal 48b.
  • the vibration damping device 100 may be provided in both the fixed portion 48a and the hoistway side terminal 48b.
  • the vibration damping device 100 uses the control cable 22 connected to the elevator car 14 as a vibration control target elevator rope.
  • the displacement amplifier 7 is disposed along any position in the longitudinal direction of the control cable 22.
  • the displacement amplifier 7 amplifies the displacement of the control cable 22.
  • the limiting member 8 suppresses the displacement amplifier 7 from amplifying the displacement of the control cable 22 larger than the first displacement. Thereby, the vibration of the control cable 22 is reduced.
  • Embodiment 3 FIG. In the present embodiment, a description will be given of a vibration damping device 100 that dampens an elevator rope that is wound around one or more sheaves of an elevator.
  • FIG. 31 is a configuration diagram of the elevator apparatus according to the third embodiment.
  • FIG. 31 schematically shows the elevator apparatus 11 in a state where there is no shaking of the building and no vibration is generated.
  • the elevator apparatus 11 is a 2: 1 roping elevator.
  • the elevator apparatus 11 includes a hoisting machine 12 and a deflector 13.
  • the car 14 on which the passenger is placed has a car suspension wheel 39a at the top.
  • the counterweight 15 includes a counterweight suspension wheel 39b at the top.
  • Both ends of the main rope 16 are fixed to the upper part of the hoistway by a rope stop 55.
  • the main rope 16 is wound between the leash 55 on the car 14 side and the leash 55 on the counterweight 15 side in the order of the car suspension wheel 39a, the hoisting machine 12, the deflector wheel 13, and the counterweight suspension wheel 39b. It can be applied.
  • FIG. 32 is a configuration diagram of the elevator apparatus according to the third embodiment.
  • FIG. 32 shows a state in which the building shake 23 has occurred in the elevator apparatus 11 due to a disturbance such as an earthquake or wind.
  • the hoisting machine 12 fixed to the building, the deflector 13 and the speed governor 19 not shown in FIG. 32 are also shaken in the same manner.
  • the main rope 16, which is an elevator rope, the compensating rope 17, the governor rope 20, and the control cable 22 are vibrated.
  • the vibration frequency of the building shake 23 coincides with the natural frequency of the elevator rope
  • the elevator rope shake increases due to the resonance phenomenon.
  • a state in which a resonance phenomenon occurs in the main rope 16b is shown by matching the natural frequency of the main rope 16b with the excitation frequency of the building shake.
  • 33 and 34 show the vibration damping device 100 provided on the housing 40 of the car suspension vehicle 39a.
  • 33 and 34 are side views of the vibration damping device according to the third embodiment.
  • the main rope 16 is wound around the car suspension wheel 39a between the first portion R1 and the second portion R2.
  • the first portion R1 of the main rope 16 is a portion that is pulled out from the car suspension wheel 39a that is a sheave.
  • the second portion R2 of the main rope 16 is a portion that is pulled out from the car suspension wheel 39a.
  • the second part R2 is drawn from the opposite side of the first part R1.
  • the first part R1 and the second part R2 are drawn out in parallel to each other.
  • the vibration damping device 100 includes a displacement amplifier 7 and a limiting member 8a.
  • the displacement amplifier 7 is a passive device.
  • the displacement amplifier 7 is disposed from the first portion R1 to the second portion R2 of the main rope 16.
  • the displacement amplifier includes a pair of outer magnet units 56 and an inner magnet unit 57.
  • the displacement amplifier 7 may be configured to include at least one of a pair of outer magnet units 56 and inner magnet units 57.
  • the outer magnet unit 56 and the inner magnet unit 57 may be arranged at different heights along the longitudinal direction of the main rope 16.
  • a plurality of outer magnet units 56 and inner magnet units 57 may be arranged along the longitudinal direction of the main rope 16.
  • Each of the pair of outer magnet units 56 is, for example, a single permanent magnet.
  • Each of the pair of outer magnet units 56 is disposed outside the first portion R1 and the second portion R2 in the direction of horizontally connecting the first portion R1 and the second portion of the main rope 16.
  • the pair of outer magnet units 56 are arranged with their magnetic poles facing each other.
  • the inner magnet unit 57 is, for example, a single permanent magnet.
  • the inner magnet unit 57 is disposed inside the first portion R1 and the second portion R2 of the main rope 16.
  • One magnetic pole of the inner magnet unit 57 is opposed to one magnetic pole of the pair of outer magnet units 56 with the first portion R1 of the main rope 16 in between.
  • the other magnetic pole of the inner magnet unit 57 faces the other magnetic pole of the pair of outer magnet units 56 with the second portion R2 of the main rope 16 in between.
  • the limiting member 8a is, for example, a set of nonmagnetic materials. A part of the nonmagnetic material of the limiting member 8 a is provided between each magnetic pole of the pair of outer magnet units 56 and the main rope 16. Some of the nonmagnetic materials of the plurality of limiting members 8 a are provided between the magnetic poles of the inner magnet unit 57 and the main rope 16. The thickness of the nonmagnetic material of the limiting member 8a is set so that, for example, the main rope 16 contacts when the main rope 16 is displaced by the first displacement.
  • the inner magnet unit 57 directs the south pole toward the first portion R1 of the main rope 16. As shown in FIG. The outer magnet unit 56 facing the south pole of the inner magnet unit 57 directs the south pole to the first portion R1 of the main rope 16. The inner magnet unit 57 directs the N pole toward the second portion R2 of the main rope 16. The outer magnet unit 56 facing the N pole of the inner magnet unit 57 directs the N pole to the second portion R2 of the main rope 16. That is, the inner magnet unit 57 faces the magnetic poles of the pair of outer magnet units 56 with the same polarity facing each other. As shown in FIG. 34B, the pair of outer magnet unit 56 and inner magnet unit 57 may be arranged with the S pole and the N pole interchanged.
  • the vibration displacement of the first portion R1 of the main rope 16 is amplified by the magnetic field between one of the pair of outer magnet units 56 and the inner magnet unit 57. Is done. Further, in the second portion R ⁇ b> 2 of the main rope 16, vibration displacement is amplified by a magnetic field between the other of the pair of outer magnet units 56 and the inner magnet unit 57. Moreover, the main rope 16 contacts the limiting member 8a when displaced by the first displacement. The limiting member 8a suppresses the displacement amplifier 7 from amplifying the displacement of the first portion R1 to be larger than the first displacement. The limiting member 8a prevents the displacement amplifier 7 from amplifying the displacement of the second portion R2 to be larger than the first displacement.
  • the elevator apparatus 11 includes the vibration damping device 100.
  • the vibration damping device 100 reduces the vibration of the elevator rope that is wound around the sheave of the elevator and folded.
  • the elevator rope is, for example, the main rope 16.
  • the vibration damping device 100 includes a displacement amplifier 7 and a limiting member 8a.
  • the displacement amplifier 7 is disposed over the first portion R1 and the second portion R2 of the main rope.
  • the first portion R1 of the main rope 16 is a portion drawn from the sheave.
  • the second portion R2 of the main rope 16 is a portion on the opposite side to the first portion R1 drawn from the sheave.
  • the first part R1 and the second part R2 are drawn out in parallel.
  • the displacement amplifier 7 amplifies the displacement of each of the first portion R1 and the second portion R2 of the main rope 16.
  • the displacement amplifier 7 amplifies the displacement of each of the first portion R1 and the second portion R2 of the main rope 16.
  • the limiting member 8a suppresses the displacement amplifier 7 from amplifying the displacement of the first portion R1 or the second portion R2 to be larger than the first displacement.
  • the first displacement is a displacement in which the main rope 16 does not return to the vibration equilibrium position. Thereby, the displacement of the vibration at the position of the main rope 16 provided with the displacement amplifier 7 can be increased without becoming unstable, and the damping effect can be enhanced.
  • the displacement amplifier 7 includes a pair of outer magnet units 56 and an inner magnet unit 57.
  • the pair of outer magnet units 56 are disposed outside the first portion R1 and the second portion R2 in the first direction connecting the first portion R1 and the second portion R2 of the main rope 16 horizontally.
  • the pair of outer magnet units 56 are arranged with their magnetic poles facing each other.
  • the inner magnet unit 57 is disposed inside the first portion R1 and the second portion R2.
  • the inner magnet unit 57 is arranged with the magnetic poles on both sides facing each of the pair of outer magnet units 56.
  • the restricting member 8 a is a set of non-magnetic members disposed between the magnetic poles of the pair of outer magnet units 56 and the main rope 16 and between the magnetic poles on both sides of the inner magnet unit 57 and the main rope 16. is there.
  • the restricting member 8a suppresses the main rope 16 from approaching the magnetic poles of the pair of outer magnet unit 56 and inner magnet unit 57 closer than the thickness of the restricting member 8a. For this reason, the damping of the main rope 16 by the damping device 100 is stabilized by making the thickness of the limiting member 8a thicker than the thickness that the main rope 16 contacts when the main rope 16 is displaced by the first displacement. Done.
  • the displacement amplifier 7 amplifies the displacement of the main rope 16 in a non-contact manner.
  • the vibration damping device 100 can be configured with a smaller number of parts than the vibration damping device that individually suppresses the vibrations of the first portion R1 and the second portion R2 of the main rope 16.
  • the inner magnet unit 57 faces the magnetic poles of the pair of outer magnet units 56 with the same polarity facing each other. Thereby, each of a pair of outer magnet unit 56 and the inner magnet unit 57 repel each other. For this reason, the gap between each of the pair of outer magnet units 56 and the inner magnet unit 57 is not closed by the magnetic force. Thereby, it is not necessary to firmly fix the pair of outer magnet unit 56 and inner magnet unit 57 in consideration of the attractive force due to the magnetic force.
  • FIG. 35 is a side view of the vibration damping device according to the third embodiment.
  • FIG. 35 shows another example of the vibration damping device 100.
  • l d1 is a gap dimension between the first portion R1 of the main rope 16 and the magnetic pole of the outer magnet unit 56 facing the first portion R1.
  • l d2 is a gap dimension between the first portion R1 of the main rope 16 and the magnetic pole of the inner magnet unit 57 facing the first portion R1.
  • l d3 is a gap dimension between the second portion R2 of the main rope 16 and the magnetic pole of the inner magnet unit 57 facing the second portion R2.
  • l d4 is a gap dimension between the second portion R2 of the main rope 16 and the magnetic pole of the outer magnet unit 56 facing the second portion R2.
  • the inner magnet unit 57 includes the permanent magnet 24 and a pair of magnetic bodies 47.
  • the pair of magnetic bodies 47 is disposed on each magnetic pole of the permanent magnet 24.
  • the magnetic pole of the inner magnet unit 57 is the surface of the pair of magnetic bodies 47 opposite to the permanent magnet 24.
  • the limiting member 8 a is provided on the magnetic pole of the inner magnet unit 57.
  • the magnetic body 47 is disposed between the magnetic pole of the permanent magnet 24 and the limiting member 8a.
  • the inner magnet unit 57 has an outer magnet whose gap width between the inner magnet unit 57 and the outer magnet unit 56 facing each other across the first portion R1 of the main rope 16 is opposite to each other with the second portion R2 of the main rope 16 interposed therebetween. It is arranged at a position equal to the gap width between the units 56. At this time, the width of the gap between the outer magnet unit 56 and the inner magnet unit 57 through which the first portion R1 of the main rope 16 passes is such that the outer magnet unit 56 and the inner magnet unit 57 through which the second portion R2 of the main rope 16 passes. Equal to the width of the gap between. Thereby, the lateral displacement of the main rope 16 is amplified symmetrically on both sides. For this reason, the lateral displacement of the main rope 16 is efficiently amplified.
  • the inner magnet unit 57 includes a permanent magnet 24 and a magnetic body 47.
  • the permanent magnet 24 directs the magnetic pole in a first direction that horizontally connects the first portion and the second portion of the elevator rope.
  • the magnetic body 47 is disposed on the magnetic pole of the permanent magnet 24. The magnetic body 47 adjusts the length of the inner magnet unit 57 in the first direction.
  • the inner magnet unit 57 is configured so that the lateral displacement of the main rope 16 is efficiently amplified according to the size of the car suspension wheel 39a or the length of the permanent magnet 24, for example. Can be set.
  • FIG. 36 is a side view of the vibration damping device according to Embodiment 3.
  • FIG. 36 shows another example of the vibration damping device 100.
  • the magnetomotive forces of the magnet units installed on both sides of the main rope 16 are equal.
  • the magnetomotive force of the magnet unit of the magnetic pole direction of the magnet units determined by the length l m. That is, the length in the magnetic pole direction of each of the pair of outer magnet units 56 is preferably equal to the length in the magnetic pole direction of the inner magnet unit 57.
  • the inner magnet unit 57 includes the permanent magnet 24 and a pair of magnetic bodies 47.
  • the pair of magnetic bodies 47 is disposed on each magnetic pole of the permanent magnet 24.
  • the magnetic pole of the inner magnet unit 57 is the surface of the pair of magnetic bodies 47 opposite to the permanent magnet 24.
  • the thickness of the pair of magnetic substances 47, the length of the magnetic pole direction of the inner magnet unit 57 is set to be l m.
  • the limiting member 8 a is provided on the magnetic pole of the inner magnet unit 57.
  • the magnetic body 47 is disposed between the magnetic pole of the permanent magnet 24 and the limiting member 8a.
  • Each of the pair of outer magnet units 56 includes a permanent magnet 24 and a pair of magnetic bodies 47.
  • the pair of magnetic bodies 47 is disposed on each magnetic pole of the permanent magnet 24.
  • each magnetic pole of the pair of outer magnet units 56 is a surface of the pair of magnetic bodies 47 opposite to the permanent magnet 24.
  • the thickness of the pair of magnetic substances 47, the length of each of the magnetic pole direction of the pair of outer magnet units 56 is set to be equal to the magnetic pole direction of the length l m of the inner magnet unit 57.
  • the limiting member 8 a is provided on each magnetic pole of the pair of outer magnet units 56.
  • the magnetic body 47 is disposed between the magnetic pole of the permanent magnet 24 and the limiting member 8a.
  • the length in the first direction connecting the first portion of the elevator rope and the second portion of each of the pair of outer magnet units 56 horizontally is equal to the length of the inner magnet unit 57 in the first direction.
  • FIG. 37 is a side view of the vibration damping device according to the third embodiment.
  • FIG. 37 shows another example of the vibration damping device 100.
  • each of the pair of outer magnet units 56 includes an outer yoke 58, a first outer permanent magnet 60a, and a second outer permanent magnet 60b.
  • the outer yoke 58 is disposed along a second direction parallel to the first portion R1 or the second portion R2 of the main rope 16.
  • the first outer permanent magnet 60 a directs the magnetic pole from the direction of the main rope 16 toward the upper end of the outer yoke 58.
  • the second outer permanent magnet 60b directs a magnetic pole opposite to the first outer permanent magnet 60a toward the lower end of the outer yoke 58 from the direction of the main rope 16.
  • the magnetic pole of the outer magnet unit 56 is, for example, the magnetic pole that is not directed to the outer yoke 58 of each of the first outer permanent magnet 60a and the second outer permanent magnet 60b.
  • the inner magnet unit 57 includes an inner yoke 59, a first inner permanent magnet 61a, and a second inner permanent magnet 61b.
  • the inner yoke 59 is disposed along a second direction parallel to the first portion R1 or the second portion R2 of the main rope 16.
  • the first inner permanent magnet 61 a faces the magnetic pole of the first outer permanent magnet 60 a of each of the pair of outer magnet units 56 at the upper end of the inner yoke 59 with the same polarity facing each other.
  • the second inner permanent magnet 61b is opposed to the magnetic pole of the second outer permanent magnet 60b of each of the pair of outer magnet units 56 at the lower end of the inner yoke 59 with the same polarity.
  • Each of the pair of outer magnet units 56 forms a magnetic field on the main rope 16 side.
  • the outer yoke 58 forms a magnetic circuit between the first outer permanent magnet 60a and the second outer permanent magnet 60b. For this reason, the leakage magnetic flux is suppressed outside the pair of outer magnet units 56.
  • each of the pair of outer magnet units 56 includes the outer yoke 58, the first outer permanent magnet 60a, and the second outer permanent magnet 60b.
  • the outer yoke 58 is disposed along a second direction parallel to the first portion or the second portion of the elevator rope.
  • the first outer permanent magnet 60a directs the magnetic pole toward one end of the outer yoke 58 from the direction of the elevator rope.
  • the second outer permanent magnet 60b directs a magnetic pole opposite to the first outer permanent magnet 60a to the other end of the outer yoke 58 from the same direction as the first outer permanent magnet 60a.
  • the inner magnet unit 57 includes an inner yoke 59, a first inner permanent magnet 61a, and a second inner permanent magnet 61b.
  • the inner yoke 59 is disposed along the second direction.
  • the first inner permanent magnet 61a is opposed to the magnetic pole of the first outer permanent magnet 60a of each of the pair of outer magnet units 56 with the same polarity at one end of the inner yoke 59.
  • the second inner permanent magnet 61b is opposed to the magnetic pole of the second outer permanent magnet 60b of each of the pair of outer magnet units 56 at the other end of the inner yoke 59 with the same polarity.
  • the inner magnet unit 57 may include a pair of permanent magnets 24 c at the upper end of the inner yoke 59.
  • the pair of permanent magnets 24 c is disposed with the upper end of the inner yoke 59 interposed therebetween.
  • the inner magnet unit 57 may include a pair of permanent magnets 24 d at the lower end of the inner yoke 59.
  • the pair of permanent magnets 24d is disposed with the lower end of the inner yoke 59 interposed therebetween.
  • FIG. 38 is a side view of the vibration damping device according to the third embodiment.
  • the displacement amplifier 7 may include a pair of magnet units 54 for each of the first portion R1 and the second portion R2 of the main rope 16.
  • FIG. 39 is a side view of the vibration damping device according to the third embodiment.
  • FIG. 39 shows another example of the vibration damping device 100.
  • the vibration damping device 100 includes a magnetic shield 46.
  • the magnetic shield 46 is made of a ferromagnetic material.
  • the surface of the magnetic shield 46 is covered with a ferromagnetic material.
  • the magnetic shield 46 has ferromagnetism.
  • the ferromagnetic material used for the magnetic shield 46 is a substance normally used as a magnetic shield material such as sheet metal or permalloy.
  • the vibration damping device 100 includes the magnetic shield 46.
  • the magnetic shield 46 has ferromagnetism. Thereby, it is possible to suppress the leakage magnetic flux from the magnet unit of the displacement amplifier 7 from affecting the operation of peripheral devices.
  • FIG. 40 is a side view of the vibration damping device according to the third embodiment.
  • FIG. 40 is a diagram illustrating another example of the vibration damping device 100.
  • each of the pair of outer magnet units 56 and the inner magnet unit 57 may include three or more permanent magnets 24.
  • the three or more permanent magnets 24 are arranged so that the opposite magnetic poles alternately face the main rope 16.
  • the outer yoke 58 has a groove on the surface facing the main rope 16.
  • the groove of the outer yoke 58 is processed according to the shape of the permanent magnet 24 of the outer magnet unit 56. Accordingly, the pair of permanent magnets 24 is prevented from sticking to each other by mistake due to the attractive force between the pair of adjacent permanent magnets 24 in the direction in which the main rope 16 extends. For this reason, it becomes easy to attach the permanent magnet 24.
  • the displacement amplifier 7 includes a pair of magnets including three or more permanent magnets 24 for each of the first portion R1 and the second portion R2 of the main rope 16.
  • a unit 54 may be provided.
  • FIG. 41 to 43 are diagrams showing other examples of the vibration damping device 100.
  • FIG. FIG. 41 is a side view of the vibration damping device according to Embodiment 3.
  • FIG. 42 is a perspective view of the vibration damping device according to the third embodiment.
  • FIG. 43 is a top view of the vibration damping device according to Embodiment 3.
  • the vibration damping device 100 includes a vibration attenuator.
  • the vibration attenuator includes a coil 26 and an electric resistance 27.
  • the coil 26 is wound around the outer yoke 58 and the inner yoke 59.
  • the electrical resistance 27 is electrically connected to the coil 26.
  • FIG. 44 is a perspective view of the vibration damping device according to the third embodiment.
  • FIG. 44 is a diagram illustrating another example of the vibration damping device 100.
  • the structures that are controlled by the vibration control device 100 are a plurality of main ropes 16.
  • the first portions R1 of the plurality of main ropes 16 are arranged in one horizontal direction within one vertical plane.
  • the vertical plane is the xz plane.
  • Each of the plurality of main ropes 16 is arranged in the z direction.
  • the second portions R2 of the plurality of main ropes 16 are arranged in a vertical plane parallel to the vertical plane including the first portions R1 of the plurality of main ropes 16.
  • the permanent magnet 24 of the displacement amplifier 7 directs the magnetic pole to the first portion R1 or the second portion R2 arranged in the horizontal direction of the plurality of main ropes 16.
  • the magnetic poles of the permanent magnet 24 are arranged in parallel to the vertical plane including the first part R1 or the second part R2.
  • the horizontal width of the permanent magnet 24 is wider than the horizontal width in which the first portion R1 or the second portion R2 is arranged.
  • FIG. 45 and 46 are diagrams showing another example of the vibration damping device 100.
  • FIG. FIG. 45 is a side view of the vibration damping device according to Embodiment 3.
  • FIG. 46 is a top view of the vibration damping device according to Embodiment 3.
  • the displacement amplifier 7 may amplify the displacement of the first portion R1 or the second portion R2 by an unstable link mechanism.
  • the displacement amplifier 7 includes a pair of toggle link mechanisms 31 and a rope restraining member 32 for each of the first portion R1 and the second portion R2 of the main rope 16a.
  • the rope restraining member 32 includes a pair of rollers 45.
  • a pair of roller 45 contacts from both sides of a horizontal direction so that each of the some main rope 16a may be pinched
  • the rotation axes of the pair of rollers 45 are directed in the direction in which the plurality of main ropes 16a are arranged.
  • FIG. 47 and 48 are diagrams showing another example of the vibration damping device 100.
  • FIG. FIG. 47 is a side view of the vibration damping device according to Embodiment 3.
  • FIG. 48 is a perspective view of the vibration damping device according to Embodiment 3.
  • the structure that is controlled by the vibration control device 100 is a single main rope 16.
  • the vibration damping device 100 includes a pair of roller units 41 for the first portion R1 and the second portion R2 of the main rope 16.
  • Each of the pair of roller units 41 includes a box 41a, a plurality of rollers 41c, and a pair of links 41e.
  • One box 41 a of the pair of roller units 41 is disposed between one of the pair of outer magnet units 56 and the inner magnet unit 57.
  • the other box 41 a of the pair of roller units 41 is disposed between the other of the pair of outer magnet units 56 and the inner magnet unit 57.
  • the box 41a is, for example, a cylindrical member having openings on the top and bottom.
  • the box 41a is made of a ferromagnetic material.
  • the box 41a may have ferromagnetism by attaching a ferromagnet to the surface.
  • Each of the plurality of rollers 41c is disposed inside the box 41a.
  • the plurality of rollers 41c are, for example, a pair of rollers disposed on each of an upper part and a lower part of the box 41a.
  • the pair of rollers 41 c arranged on the upper portion of the box 41 a contacts the main rope 16 from both sides of the main rope 16 in the horizontal direction.
  • a pair of rollers 41c arranged at the lower portion of the box 41a contacts the main rope 16 from both sides of the main rope 16 in the horizontal direction.
  • the plurality of rollers 41 c guide the main rope 16 by rotating with respect to the vertical movement of the main rope 16 accompanying the movement of the car 14.
  • Each of the pair of links 41e is a rod-shaped member.
  • the pair of links 41e includes a joint 41b at the upper end.
  • Each of the pair of links 41e rotatably supports the box 41a by an upper end joint 41b.
  • Each of the pair of links 41e includes a joint 41d at the lower end.
  • Each of the pair of links 41e is rotatably supported by the housing 40 by a joint 41d at the lower end.
  • the joint 41b and the joint 41d generate a frictional force against rotation.
  • Each of the pair of links 41e supports the box 41a so as to be displaceable in a first direction horizontally connecting the first portion R1 and the second portion R2.
  • the box 41a When the first portion R1 or the second portion R2 is displaced in the first direction by vibration, the box 41a is displaced in the first direction through the plurality of rollers 41c.
  • the displacement in the first direction of the box 41 a having ferromagnetism is amplified by the magnetic force from the outer magnet unit 56 and the inner magnet unit 57.
  • the box 41a amplifies the displacement of the main rope 16 through the plurality of rollers 41c.
  • the joint 41b and the joint 41d rotate. At this time, the energy of movement about the joint 41b and the joint 41d is dissipated as frictional heat. Thereby, the joint 41b and the joint 41d function as a vibration attenuator.
  • the vibration damping device 100 includes the pair of roller units 41.
  • Each of the pair of roller units 41 is provided for each of the first portion R1 and the second portion R2 of the main rope 16.
  • Each of the pair of roller units 41 includes a box 41a, a pair of rollers 41c, and a link 41e.
  • the box 41a has ferromagnetism.
  • the box 41 a is disposed between one of the pair of outer magnet units 56 and the inner magnet unit 57.
  • the pair of rollers 41c contacts the main rope 16 from both sides in the direction perpendicular to the main rope 16 inside the box 41a.
  • the link 41e supports the box 41a so that it can be displaced in the first direction.
  • the magnet unit of the displacement amplifier 7 can amplify displacement via the box 41a which has ferromagnetism.
  • the main rope 16 receives a force from the displacement amplifier 7 through a pair of rollers 41c. Thereby, wear of the main rope 16 is suppressed.
  • the link 41e supports the box 41a through a rotatable joint.
  • the link 41e attenuates the vibration of the main rope 16 by friction accompanying the rotation of the joint. Thereby, vibration energy is dissipated efficiently. For this reason, a high vibration damping effect can be obtained.
  • the pair of links 41e may be supported by the housing 40 via an impact absorbing material such as gel.
  • the pair of links 41e may support the housing 40 via an impact absorbing material such as gel.
  • FIG. 49 and 50 are diagrams showing another example of the vibration damping device 100.
  • FIG. FIG. 49 is a perspective view of the vibration damping device according to Embodiment 3.
  • FIG. FIG. 50 is a top view of the vibration damping device according to the third embodiment.
  • the structure that is controlled by the vibration control device 100 is a plurality of main ropes 16.
  • Rotational axes of the pair of rollers 41c are directed in a direction parallel to the direction in which the plurality of main ropes 16 are arranged.
  • the pair of rollers 41c contacts each of the plurality of main ropes 16 from both sides in the direction perpendicular to the rotation axis.
  • Each of the pair of rollers 41 c has a groove-shaped guide on the side surface so as to keep a horizontal distance between each of the plurality of main ropes 16 in contact with each other.
  • the roller 41c has a rotation axis parallel to the direction in which the plurality of main ropes 16 are arranged.
  • each of a pair of roller unit 41 functions as a restraining member which maintains the distance of the horizontal direction between each of the some main ropes 16 which contact. For this reason, the fall of the damping performance by the dispersion
  • FIG. 51 is a top view of the vibration damping device according to the third embodiment.
  • FIG. 51 is a diagram illustrating another example of the vibration damping device 100.
  • the vibration damping device 100 may include a pair of magnet units 54 that face each other in the direction in which the plurality of main ropes 16 are arranged. Thereby, the damping device 100 can suppress the vibration of the main rope 16 from two directions in the horizontal plane.
  • positioning of the magnet unit 54 in FIG. 51 is an example, and is not restricted to this example.
  • the vibration damping device 100 includes a plurality of magnet units 54.
  • the magnetic poles of the plurality of magnet units 54 may be configured to be directed toward the roller unit 41 from different directions so as to surround each of the pair of roller units 41.
  • Each of the plurality of magnet units 54 may be arranged at different heights along the longitudinal direction of the main rope 16.
  • FIG. 52 is a configuration diagram of the elevator apparatus according to the third embodiment.
  • FIG. 52 is a diagram illustrating another example of the vibration damping device 100.
  • the vibration damping device 100 is provided in the machine room 29.
  • the main rope 16 is wound around the sheave of the hoisting machine 12 and the deflecting wheel 13 that is the sheave.
  • the first portion R1 of the main rope 16 is a portion that is pulled out from the sheave of the hoisting machine 12, for example.
  • the second portion R2 of the main rope 16 is a portion that is pulled out from the sheave of the deflector wheel 13, for example.
  • the main rope 16 may be wound around a plurality of sheaves and folded.
  • FIG. 53 is a side view of the vibration damping device according to the third embodiment.
  • FIG. 53 is a diagram illustrating another example of the vibration damping device 100.
  • the vibration damping device 100 dampens the compensating rope 17.
  • the compensating rope 17 is wrapped around the balancing wheel 18a and folded back.
  • the vibration damping device 100 is provided on the housing 18b of the counterbalanced wheel 18a.
  • FIG. 54 is a configuration diagram of the elevator apparatus according to the third embodiment.
  • FIG. 54 is a diagram illustrating another example of the vibration damping device 100.
  • the vibration damping device 100 dampens the governor rope 20.
  • the vibration damping device 100 is provided in the machine room 29.
  • the governor rope 20 is wound around the sheave of the governor 19.
  • the vibration damping device 100 is provided below the speed governor 19.
  • the vibration damping device according to the present invention can be applied to an elevator device.
  • the elevator apparatus according to the present invention can be applied to a building having a plurality of floors.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Automation & Control Theory (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Vibration Prevention Devices (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

この発明の目的は、機械構造的に柔軟性を有する長尺の構造体の共振現象による振動の増幅を効率的に抑制する、不安定化防止手段を備えた制振装置を得ることである。長尺の構造体(1)の振動を低減する制振装置(100)は、変位増幅器(7)と、制限部材(8)と、を備える。変位増幅器(7)は、構造体(1)の長手方向のいずれかの位置に沿って配置される。変位増幅器(7)は、構造体(1)の変位を増幅する。制限部材(8)は、振動の平衡位置に戻らなくなる第1変位より大きく構造体(1)の変位を変位増幅器(7)が増幅することを抑制する。

Description

制振装置およびエレベーター装置
 この発明は、長尺の構造体の振動を抑制する制振装置に関するものである。
 従来の制振装置は、例えば、エレベーターロープの制振装置として、エレベーターロープ端部に近い機械室に、(振動エネルギーを熱エネルギーに変換してエネルギーを消散させる)ダンパーを設置することで、エレベーターロープの振動抑制を行うものが開示される(特許文献1)。
 また、別の制振装置は、ロープ端部近傍に設置され、エレベーターロープの変位方向と同じ方向に負の復心力を作用させる機械要素を備え、負の復心力を実現するために、倒立振子を用いることが開示される(特許文献2)。また、負の復心力を実現するのに、永久磁石の吸引力を活用することが開示される(特許文献3)。
日本特開2007-1711号公報 日本特開平3-26682号公報 日本特開2007-309411号公報
 従来の制振装置では、長尺の構造体の振幅の小さい個所にダンパーを設けたので、制振効果が低く、また、振幅が大きい個所にダンパーを設けることができないこともある。また、倒立振子、永久磁石による負剛性は、長尺の構造体の変位増加に伴い剛性値が非線形に増加する性質を有するから、長尺の構造体の変位が大きくなると負剛性が過度に大きくなり不安定となる。すると、制振装置の変位は、制振機構の可動範囲の最大の位置に固定され、負剛性による制振効果を発揮できなくなる問題があった。
 この発明は、機械構造的に柔軟性を有する長尺の構造体の共振現象による振動の増幅を効率的に抑制する、不安定化防止手段を備えた制振装置を得ることを目的とする。
 この発明に係る制振装置は、長尺の構造体の振動を低減する制振装置において、構造体の長手方向のいずれかの位置に沿って配置され、構造体の変位を増幅する変位増幅器と、振動の平衡位置に戻らなくなる第1変位より大きく構造体の変位を変位増幅器が増幅することを抑制する制限部材とを備える。
 この発明に係るエレベーター装置は、上記の制振装置を備える。
 本発明によれば、長尺の構造体に沿った任意の位置に設けた制振装置によって、不安定化を防止して振動抑制を行うことができる。
実施の形態1に係る長尺の構造体の概略図である。 実施の形態1に係る長尺の構造体の振動の様子を表す模式図である。 実施の形態1に係る長尺の構造体の振動をダンパーにより制振する様子を表す模式図である。 実施の形態1に係る長尺の構造体に設けられる変位増幅器の図である。 変位増幅器の不安定現象を説明するグラフである。 制振装置が動作不安定となることを防ぐ概念を説明するグラフである。 実施の形態1に係る制振装置の制限部材を説明する図である。 実施の形態1に係るダンパーを有する制振装置の図である。 実施の形態1に係る別の制限部材の構成および効果を説明するグラフである。 実施の形態1に係る制振装置を端部が自由端となる構造体に適用した例を説明する図である。 実施の形態1に係る制振装置を他の物体に固定せずに、制振装置の両端を構造体に連結する例を説明する図である。 実施の形態2に係るエレベーター装置の図である。 実施の形態2に係るエレベーター装置が加振されたときを表す図である。 実施の形態2に係るエレベーター装置の制振装置の図である。 実施の形態2に係るエレベーター装置の制限部材付きの制振装置の図である。 実施の形態2に係るエレベーター装置のロープダクトに設けられる制振装置の図である。 実施の形態2に係るエレベーター装置のリンク機構を利用した負剛性部を用いた制振装置の側面図である。 実施の形態2に係るエレベーター装置のリンク機構を利用した負剛性部を用いた制振装置の上面図である。 実施の形態2に係るエレベーター装置の主ロープの長さに対する端部から振動減衰装置設置位置までの距離の比と最大減衰比と関係を表すグラフである。 実施の形態2に係るエレベーター装置の制振装置に負または正の剛性を適用した際の正規化剛性値と最大減衰比との関係を表すグラフである。 実施の形態2に係るエレベーター装置の鉛直方向の制振を行う制振装置の構成の例を示す図である。 実施の形態2に係る制振装置の斜視図である。 実施の形態2に係るエレベーター装置のかごの位置とフリート角との関係を示す図である。 実施の形態2に係る制振装置の斜視図である。 実施の形態2に係る制振装置の斜視図である。 実施の形態2に係る制振装置の上面図である。 実施の形態2に係る制振装置の側面図である。 実施の形態2に係る制振装置の側面図である。 実施の形態2に係るエレベーター装置の構成図である。 実施の形態2に係る制振装置の側面図である。 実施の形態3に係るエレベーター装置の構成図である。 実施の形態3に係るエレベーター装置の構成図である。 実施の形態3に係る制振装置の側面図である。 実施の形態3に係る制振装置の側面図である。 実施の形態3に係る制振装置の側面図である。 実施の形態3に係る制振装置の側面図である。 実施の形態3に係る制振装置の側面図である。 実施の形態3に係る制振装置の側面図である。 実施の形態3に係る制振装置の側面図である。 実施の形態3に係る制振装置の側面図である。 実施の形態3に係る制振装置の側面図である。 実施の形態3に係る制振装置の斜視図である。 実施の形態3に係る制振装置の上面図である。 実施の形態3に係る制振装置の斜視図である。 実施の形態3に係る制振装置の側面図である。 実施の形態3に係る制振装置の上面図である。 実施の形態3に係る制振装置の側面図である。 実施の形態3に係る制振装置の斜視図である。 実施の形態3に係る制振装置の斜視図である。 実施の形態3に係る制振装置の上面図である。 実施の形態3に係る制振装置の上面図である。 実施の形態3に係るエレベーター装置の構成図である。 実施の形態3に係る制振装置の側面図である。 実施の形態3に係るエレベーター装置の構成図である。
実施の形態1.
 実施の形態1について、図を用いて説明する。なお、発明は、記載した具体例に限られるものではなく、適宜、寸法、材料、形状を変更することができる。
 図1は、本実施の形態において制振装置100が、制振する対象の構造体1の模式図である。ここで扱う構造体1は、少なくとも一方向に他の方向より長い寸法を持つ長尺の形状を持つものである。構造体1は、例えば、棒状もしくは板状の構造物、ロープ状の物であっても良い。また、構造体1は、何かを支持して形状を維持する構造部材でもあっても良く、外乱によって大きく形状が変化する柔軟な部材であっても良い。また、構造体1は、長い寸法を持つ方向のいずれか箇所で他の物体と固定されていれば良い。
 構造体1は、両端が、固定面2aおよび固定面2bにおいて固定される。図には、3軸直交座標系のx軸、y軸及びz軸が、示され、鉛直上方がz軸の正の方向である。構造体1は、長手方向が、z軸に平行になっており、鉛直方向に配置され、固定面2aは、構造体1に対して、鉛直上方に位置し、固定面2bは、鉛直下方に位置する。また、図1は、構造体1が、加振されておらず、長手方向に垂直な方向である横方向の振動(以下、「横振動」と呼ぶ。)が、発生していない状態を表す。
 図2は、加振された構造体1aの様子を表す模式図である。図1において、固定面2aを振動させる加振力3が、固定面2aに加えられ、かつ、加振力3による加振周波数と、構造体1aの固有振動数が一致すると、共振現象が発生し、構造体1a(および固定面2a)の振幅が増幅する。図において、加振力3および構造体1aの振動方向が、y軸方向であることを示すが、これに限られずxy平面上の任意の方向でも同様である。また、固定面2bが加振された場合でも同様の現象が生じる。
 ここで、構造体1aの共振が発生したときの振動の振幅は、構造体1aの長手方向(z方向)の各位置によって異なり、構造体1aの剛性および質量の分布によって、決まる。
 図3は、構造体1aの(共振)振動に対して、ダンパーによって制振する場合の模式図である。ここで、ダンパーは、粘性抵抗、摩擦などによって、振動エネルギーを熱エネルギーに変換して、エネルギーを消散させて、振動を吸収するものであり、速度に比例する力を発揮する粘性要素である。図3(a)は、固定面2bから、鉛直方向(z方向)上向きへ距離5a離れた位置に、固定面2cを介して、振動減衰手段であるダンパー4を設置することを示す。これに対して、図3(b)は、固定面2bから鉛直方向(z方向)上向きへ距離5aより大きく、構造体1の長手方向長さの半分の距離5b離れた位置に、ダンパー4を設置する。
 図3(a)、図3(b)で、ダンパー4が設置されている位置における、構造体1aの振動の振幅を比較すると、固定面2bにより近い図3(a)における振幅6aは、図3(b)における振幅6bより小さい。すると、図3(a)のダンパー4の変位は、図3(b)のダンパー4の方より小さいから、図3(a)のダンパー4の制振効果は、図3(b)のダンパー4の制振効果より低くなる。
 しかし、図3(a)のダンパー4の設置位置は、固定面2bに近いため、図3(b)のダンパー4よりも設置が容易である。そこで、設置が容易な固定面2b付近にダンパー4を設置して、ダンパー4の制振効果を高める装置を導入する。なお、ここでは、ダンパー4の制振効果を高める目的としたが、ダンパー4が無くても良い装置構成とすることも可能である。
 上記ダンパー4以外にも、従来の制振装置として、特許文献2または3に記載される倒立振子機構や永久磁石による負剛性の機構を用いた制振装置もある。しかし、これら負剛性の機構が発揮する剛性特性は、構造体の変位の変化に対して剛性値(弾性係数)が一定ではなく、変位に伴い剛性値が増加していく非線形性を有する。
 倒立振子機構や永久磁石による負剛性の機構では、構造体1の変位増加に伴い、負剛性値が、過度に大きくなって、不安定な挙動を起こす可能性がある。ここで、負剛性値が大きくなるとは、負剛性の剛性値の絶対値が大きくなることをいう。不安定な挙動は、実用上の問題がある。具体的には、負剛性の機構の剛性特性が非線形であることによって、不安定となると、従来の制振装置では、構造体1の制振装置が設置された位置での変位が、制振装置の可動域の最大の位置に固定される。これは、負剛性による力が、構造体1が平衡位置に戻ろうとする力より大きくなるためである。構造体1が制振装置の可動域の最大位置に固定化されると、変位増幅の効果が得られなくなり、負剛性による制振効果を全く発揮できなくなる。
 なお、負剛性値の増加による不安定化を防止するため、予め負剛性値を小さい値に設定することも考えられるが、負剛性値が小さいため、構造体1の変位の増幅量が小さく、結果的に制振効果が少なくなるか、またはダンパーの制振効果の向上が少なくなる。さらに、負剛性の機構は、小さい負剛性値であっても、非線形性による負剛性値の増加特性があるから、予め負剛性値を小さい値に設定しても、上記不安定となる現象は、本質的には解決しない。
 図4は、本実施の形態の制振装置100における構造体に設けた変位増幅器7の例を示す図である。変位増幅器7は、構造体1の振動の変位を増幅させる装置である。変位増幅器7は、例えば負の剛性または負の慣性などによって構造体1の変位を増幅させる。本実施の形態において、変位増幅器7は、外部からのエネルギー入力を必要とせずに構造体1の変位を増幅させる。すなわち、変位増幅器7は、パッシブな装置である。変位増幅器7は、例えば負剛性部71である。負剛性部71は、図3(a)のダンパー4が設置された位置である固定面2bからの距離5aの位置に、固定面2cを介して接続されている。負剛性部71は、構造体1が、静止している際に自然長となるように配置されている。
 ここで、構造体1が、静止している状態とは、構造体1の長手方向に垂直な方向の変位が無く、振動が無い状態をいい、構造体1に重力以外の外力が働いていない状態である。このとき、構造体1は、平衡位置にある。負剛性部71は、力に対する変形しづらさの度合いである、一般的な正の剛性と逆の特性を有する。正の剛性を有するバネなどは、受けた変位と逆方向に弾性力を作用させるのに対して、負剛性部71は、受けた変位と同じ方向に弾性力を作用させる。
 負剛性部71は、倒立振子機構、または永久磁石を用いた機構を用いることができる。倒立振子機構は、支点よりも高い位置に重心を持つ振子機構である。支点を固定部に固定して、錘を鉛直上方で、静止状態の構造体1に接続しておき、構造体が横方向に変位すると、錘が傾き、さらに重力により倒れようとする力が発生する。この倒れようとする力を上記負剛性力として使うことができる。ただ、倒立振子による負剛性は、線形にはならず、変位が増加すると、負剛性力がより大きくなる。
 また、永久磁石を用いた機構は、構造体1自体、または構造体1の変位増幅器7と対向する位置に設けた部材に、鉄などの強磁性体を用い、静止状態の構造体1と離れた位置に永久磁石を設ける。静止状態の構造体1と永久磁石とは、距離があるので、間に働く磁気力は小さいが、構造体1が、変位して、永久磁石と近づくと、互いに引き合う磁気力が大きくなり、上記負剛性力となる。ただ、磁気力は、クーロンの法則に従うので、構造体1と永久磁石との間の距離の2乗に反比例するから、特別な機構を設けなければ、上記負剛性は、非線形となる。また、当然ながら構造体1と永久磁石が接触し、間の距離が0となると、構造体1の変位が増加しても、負剛性力が増えない。
 負剛性部71は、設けられた構造体1aの位置である、固定面2bからの距離5aの位置における構造体1aの変位を増加させる。図4は、このことを図に表したものである。図4において、点線で示す構造体1aのように変位したとすると、負剛性部71が、変位と同じ方向に力を発揮して縮み、構造体は、この力によって、実線で示す構造体1bのような空間波形に変形し、整形することができる。
 このように、構造体1の振動の腹でない位置でも、変位増幅部を設けることで、構造体1aの振動の空間波形、すなわち振動モードを、構造体1の振動の腹がダンパー4に近づくよう変えることができる。したがって、図3(a)のように固定面2bからの距離5a(構造体1の長さの半分より小さい)の位置に設けられたダンパー4であっても、ダンパー4に負剛性部71を設けることで、ダンパー4の制振効果を向上させることができる。
 図5は、本実施の形態の制振装置100における負剛性による不安定な現象を説明するグラフである。図において、縦軸は、負剛性力〔N〕、横軸は、負剛性部71の変位〔m〕である。グラフ中の実線a、および破線bは、変位と負剛性力の関係を示す特性を示し、線の傾きが、負剛性値にあたる。
 変位増幅器7は、実線aのように傾きが一定の負剛性力を発揮して、構造体1が、構造体1aのように変位した際に、静止した状態の構造体1に戻る方向に発生する復元力より小さい絶対値を持つ、変位方向の力を発揮すべきである。図5において、グレーで表した領域cは、負剛性による変位増幅器7が発生する力が、構造体の復元力の絶対値より大きい領域であり、不安定な領域である。不安定領域cに侵入した際は、負剛性による振動モード整形が有効に機能せず、ダンパーによる制振効果も得ることができなくなる。
 上記不安定領域の力より小さい力を発揮するように、変位増幅器7は、実線aの傾きより小さい値の負剛性値に設定する必要がある。しかしながら、負剛性の特性を有する機械を倒立振子機構や永久磁石を用いると、負剛性力は、点線bに示すように、どうしても、原理上、変位に伴い傾きが増加する非線形な力となる。すなわち、安定限界である線形な負剛性である実線aと、実際の負剛性部71の非線形な負剛性力である点線bとの交点dとしたとき、交点dにおける負剛性部71の変位x1よりも大きな変位が発生すると、このような負剛性特性を有する変位増幅器7を有する制振装置100は、動作不安定となる。
 図6は、本実施の形態の構造体1の振動に対して、変位増幅器7である負剛性部71の非線形剛性特性によって、制振装置100が、動作不安定となることを防ぐ概念を説明するグラフである。通常、制振装置100は、構造体1のより大きな振動振幅(加振振幅)に対応するため、変位増幅器7が、安定に機能する変位の範囲を拡大することが望まれる。図6において、図5と同様に縦軸は、負剛性力、横軸は、負剛性部71の変位である。グラフ中の実線aは、負剛性による変位増幅器7が発生する力が、構造体の復元力の絶対値と等しくなる安定限界を示す線であり、破線bおよび点線eは、負剛性部71の変位と負剛性力との関係を示す負剛性特性曲線を示す。
 図6の点線eに示すように、実線aと比較して、負剛性部71の負剛性力が弱くなるように設計することで、安定限界の実線aと負剛性部71の特性曲線b、eのそれぞれの交点が、交点dから、交点fに移動する。すると、安定限界の実線aと負剛性部71の特性曲線との交点が、変位が大きな方向に移動することになり、制振装置100は、安定して作動する安定範囲をより大きな変位x2まで、拡大できる。
 しかしながら、変位が0付近の負剛性値(グラフ上の破線および点線の傾き)は、小さくなり、変位増幅器7による構造体1の変位増加が、十分に得られなくなる問題がある。この問題を解決するため、変位が0近傍の負剛性値を下げることなく、制動装置の不安定化を防止できる手段が必要となる。
 図7は、本実施の形態の変位増幅部およびこの増幅変位を抑制する制限部材を有する制振装置100を示す図である。制限部材は、上記制振装置100の不安定化を防止する手段である。図7(a)において、変位増幅部である負剛性部71は、一端が、固定面2cに固定され、他端が構造体1と連結する連結部9と接続している。ここで、連結部9は、構造体1に力を伝達しうるように接続される。連結部9は、非接触で構造体1に力を伝達してもよい。制限部材8は、固定面2cに設けられ、所定長さ分構造体1側に突き出た棒状部材である。構造体1は、加振力3の振幅が大きくなるのに伴い、振幅が大きくなり、構造体1bの状態よりも振幅が、増加すると、変位増幅器7によりさらに変位して、連結部9が、固定面2c側にさらに、近づく。
 そして、負剛性部71の他端に設けられた連結部9が、固定面2cに設けた制限部材8と、衝突、または接触するまで、構造体1が、変位する。図7(b)は、この連結部9が、制限部材8に当たった状態を表す。構造体1は、図中の構造体1cの状態まで変形(変位)する。図の構造体1cは、固定面2cに設けた制限部材8と、負剛性部71の他端に設けられた連結部9と衝突、または接触し、負剛性部71の変位増幅は、制限されることになる。
 ここで、制限部材8の所定長さは、負剛性部71の変位が、図5、6のグラフにおける、負剛性による変位増幅器7が発生する力が、構造体1の復元力の絶対値と等しくなる安定限界線aと、負剛性部71の負剛性特性曲線bとの交点dの変位x1を超えない状態で、制限部材8と、連結部9とが接触する長さにする。
 制限部材8の長さを上記のように設定することによって、変位増幅器7である負剛性部71は、図5、6の不安定領域cに入ることなく、制振装置100は、安定して動作する。また、制限部材8を設けることで、負剛性部71が、不安定とならないから、変位増幅器7である負剛性部71の変位0付近の負剛性値を低く設定する必要がない。したがって、負剛性部71の制振効果と安定性とを両立させることができる。
 また、制限部材8は、変位増幅器7により発生する力が、構造体1および固定面の連結位置と変位増幅器7が前記変位を増幅する連結位置との間の構造体の変位方向の等価剛性による力を超えないように、前記変位増幅器7を抑制するということもできる。変位増幅器7により発生する力が、構造体1および固定面の連結位置と変位増幅器7が前記変位を増幅する連結位置との間の構造体の変位方向の等価剛性による力を超えるときの構造体1の変位は、第1変位の例である。ここで、第1変位は、変位増幅器7によって構造体1が振動の平衡位置に戻らなくなる変位である。これによって、制限部材8は、構造体1の振動が不安定となることを防止する。
 図8は、本実施の形態の構造体1の振動に対して、変位増幅器7としての負剛性部71および振動減衰手段としてダンパーを設けた制振装置100の構成を示す図である。図8において、ダンパー4は、図7と同様に、固定面2bから構造体1の長さの半分より小さい距離5a離れた位置に構造体1と連結するように設けた連結部9に、負剛性部71とともに、一端が接続し、他端は、負剛性部71とともに、固定面2cに接続する。ダンパー4は、両端が、連結部9と、固定面2cに接続し、この間に振動減衰作用をもたらす。
 図3(a)において、ダンパー4は、構造体1の固定部に近い固定面2cに設けられると、構造体1の変位が小さいから、制振効果は小さいことを説明した。しかし、ダンパー4が、同様の位置(連結部9、固定面2c)に設けられても、図7に示した変位増幅器7によって、ダンパー4を含む制振装置100の設置箇所における構造体1の変位が増加するため、ダンパー4の制振効果が最大限に引き出される。
 なお、図8では、ダンパー4は、変位増幅部とともに、構造体1と連結する連結部9と接続される例を示したが、変位増幅器7(負剛性部71)とは別に、並列に、隣接する構造体1の位置で、ダンパー4を構造体1と接続しても良い。これは、変位増幅部が構造体1と接続する位置の近傍であれば、構造体1の変位が大きくなる効果が得られ、ダンパー4の制振効果が、向上するからである。また、別々に、変位増幅部とダンパー4とを構造体1と接続すると、連結部9などの制振装置100の構造が、複雑にならない効果も期待できる。
 図9は、本実施の形態の別の制限部材の例を説明する図である。図9(a)は、別の制限部材を有する制振装置100の構成を示す概念図である。図9(b)は、図9(a)の構成の効果を説明するグラフである。
 図9(a)において、固定面2c、負剛性部71、連結部9およびダンパー4による制振装置100の構成は、図8と同じであるが、制限部材8の構成が異なる。図9(a)において、制限部材8は、所定の長さを有する点は、図8と同じであるが、正の剛性を有する正剛性部10を有する点が異なる。正剛性部10は、変位が与えられると、変位と逆方向に、反発力を発生する。制限部材8は、正剛性部10を設けることによって、連結部9が、制限部材8と衝突したときに、長さが縮む方向に変位し、連結部9、ひいては構造体1に反力を与える。
 図8においては、制限部材8の長さは、変わらないため、連結部9が制限部材8に衝突すると、負剛性部71も構造体1も変位できない。他方、図9(a)の構成では、制限部材8は、連結部9が、制限部材に衝突後に、制限部材8が縮む方向に変位するので、負剛性部71も変位を続ける。ただし、制限部材8が縮むと、正剛性部10が、反力を発揮する。この正剛性部10の発揮する反力は、負剛性部71の発揮する負剛性力と、逆向きの力であるので、過大に大きくなった負剛性部71の負剛性力を弱める。
 図8の構成は、負剛性部71が不安定領域に入らないように、負剛性部71が、安全境界の手前の変位以上に変位しないようにした。これに対して、図9(a)の構成は、負剛性部71が、図8の例の安全境界の変位x1より大きく変位するが、相殺する力を発生させて、過大な負剛性力とならなくする。これにより、変位増幅部である負剛性部71の安全領域となる変位を拡大できる。
 図9(b)は、図9(a)の構成の効果を説明するグラフである。図において、図5と同様に縦軸は、負剛性力、横軸は、負剛性部71の変位である。グラフ中の実線aは、負剛性による変位増幅器7が発生する力が、構造体の復元力の絶対値と等しくなる安定限界を示す線であり、破線bは、負剛性部71の変位と負剛性力との関係を示す負剛性特性曲線を示す。また、一点鎖線gは、制限部材8に取り付けられた正剛性部10による力を表し、変位が0の位置に戻るよう発揮される復元力である。このグラフでは、負剛性力を縦軸の正方向としているので、正剛性部10による力の値は負の値となる。
 また、図9(b)において、連結部9(負剛性部71)の変位が、0.6[m]となると、制限部材8と接触するよう設定している。制限部材8と負剛性部71とによる合力が、変位増幅器7の構造体1bに対して作用させる力となり、図9(b)では点線hで、表される。制限部材8と負剛性部71とによる合力は、連結部9が制限部材8と接触するまでは、曲線bの特性を有し、接触後は、曲線hの特性を有する。
 また、安全限界の曲線aと制限部材8と負剛性部71とによる合力曲線hとの交点の変位x3より小さい装置変位では、制限部材8と負剛性部71とによる合力が安全限界曲線a以下となる。これにより、装置変位が、0近傍において、負剛性値を減少させることなく、制振装置100の安定領域は、x1から、安全限界の曲線aと合力曲線hとの交点の変位であるx3へ拡張できる。
 図10は、本実施の形態の制振装置100を構造体の端部の両側には固定面がない対象に適用した図である。図10(a)は、構造体1dの一端が、固定面2aに接続され、他端は自由である構造体1dに、制振装置100を適用した例である。図において、適用対象となる構造体1dは、固定面2aに近いほど、振幅が小さくなるが、固定面2aに近い位置に、制振装置100を設けやすい。ここでは、固定面2aに近い位置に、固定面2cを設け、固定面2cと構造体1dとの間に、上記で述べた制振装置100を設ける。上記制振装置100は、構造体1dの変位が、小さい位置に設けても、負剛性部71によって、変位を増加して、振動モードを変更するとともに、制限部材8により、過大に変位増幅することを防ぎ、安定して制振効果を発揮する。
 なお、図に示すように、構造体1dと連結する連結部9に、負剛性部71とともにダンパー4を設けても良い。このように構成すると、ダンパー4の制振効果を向上させることができる。また、制限部材8が、正剛性部10を含むように構成して、安定領域の変位を拡大しても良い。また、図では、鉛直上方に固定面2aがあり、構造体1dが、垂下する構成を示したが、逆に、鉛直下方に固定面があり、構造体1dが、起立するように構成しても良い。
 図10(b)は、両端が自由である構造体1eに制振装置100を適用した例である。この例において、構造体1eの中央は、固定されている。制振装置100は、構造体1eの固定されている部分に近い箇所に配置される。図10(b)の構造体1eは、中央部分の変位が小さい。このため、中央部分に、ダンパー4を設けても効果が低い。しかし、ダンパー4が、同様の位置(連結部9、固定面2c)に設けられても、変位増幅器7によって、ダンパー4を含む制振装置100の設置箇所における構造体1の変位が増加するため、ダンパー4の制振効果が最大限に引き出される。
 図において、上記で述べた制振装置100は、固定面2cと構造体1dとの間に設けられる。上記制振装置100は、構造体1eの変位が、小さい位置に設けても、負剛性部71によって、変位を増加して、振動モードを変更するとともに、制限部材8により、過大に変位増幅することを防ぎ、安定して制振効果を発揮する。
 また、図10(a)と同様に、構造体1dと連結する連結部9に、負剛性部71とともにダンパー4を設けても良いし、制限部材8が、正剛性部10を含むように構成しても、上記と同様の効果が得られる。
 図11は、本実施の形態の制振装置100を構造体以外に接続せずに構成した例を示す図である。すなわち、図11の構造は、固定面2cが無く、代わりに、制振装置100は、連結部9が構造体1dと連結する第一位置と離れた第二位置にて、構造体1dと連結する連結部9aを有する。そして、変位増幅部である負剛性部71は、構造体1dと第一位置で連結する第一連結部9と、構造体1dと第二位置で連結する第二連結部9aとの間に設けられる。
 上記制振装置100は、第一連結部9と、第二連結部9aが、連結する位置(第一位置、第二位置)が、離れるように構成するので、構造体1が、振動して、波型の形状に変形すると、第一連結部9と、第二連結部9aとの、構造体1dの長手方向に垂直な方向の変位が、異なることになり、変位の差が、変位増幅部である負剛性部71によって、増加されて、構造体1dの振動モードが変わり、ダンパー4による減衰効果を向上させることができる。
 また、図において、制限部材8は、第一連結部9または第二連結部に設けられ、負剛性部71が、所定の変位以上に変位することを防ぐ、または正剛性部10により負剛性部71が発揮する負剛性力と逆方向の力を発揮して、過大な負剛性力となることを防ぐ。
 上記制振装置100における、構造体1と、変位増幅器7(または連結部9)との連結位置は、構造体1の振動の腹よりも、節に近い位置に配置しても良い。このとき、当該連結位置と構造体1の振動の節との間の距離は、当該連結位置と構造体1の振動の腹との間の距離より短い。また、当該連結位置と構造体1の振動の節との間の距離は、0より長い。構造体が、(固有振動数で)振動する振動の腹よりも、振動の節に近い位置に、連結位置を設けることによって、より振動のモードを変化させやすくなり、制振効果が高くなる。振動の腹に設けて、さらに変位を大きくするよりも、変位が小さい振動の節の近くに変位増幅器7を設けることで、別の振動の腹が、発生し、異なる振動モードに変化するからである。このようにすると、一般に、変化後の振動モードは、低周波数となり、変化前の固有振動数から離れ、振幅が小さくなることが期待される。このように固有振動数を変化させることで、制振装置100は、ダンパーがない構成においても構造体1の共振を回避することが期待される。
 本実施の形態によれば、制振装置100は、構造体の長手方向のいずれかの位置に沿って配置されて、構造体の変位を増幅する変位増幅器7と、この変位増幅器7が構造体の変位を予め設定された変位より大きく増幅することを抑制する制限部材8とを備える。ここで、予め設定された当該変位は、構造体1が振動の平衡位置に戻らなくなる第1変位である。これにより、制振装置100は、変位増幅器7を設けた構造体の位置での振動の変位を不安定になることなく増加させ、制振効果を高めることができる。
 また、変位増幅器7は、前記構造体の振動の腹よりも節に近い位置に配置しても良い。このとき、変位増幅器7の位置と構造体1の振動の節との間の距離は、当該連結位置と構造体1の振動の腹との間の距離より短い。また、変位増幅器7の位置と構造体1の振動の節との間の距離は、0より長い。すると、変位増幅器7は、構造体の固有振動モードの振動波形の腹よりも節に近い位置に配置されることになるので、構造体の振動の波形形状、ひいては振動モードを変更できる。
 また、変位増幅器7は、永久磁石や倒立振子など負剛性部材の簡易な構造で構成される。このため、軽量化、耐久性向上、および制御を必要とせずに電力供給なしに制振することができる。
 また、制限部材は、正の剛性を有する弾性体で構成されるから、構造体の変位が、予め設定された変位となったときに、弾性体が、長さが縮む方向に変位して、構造体に変位と逆方向の力を加える。すると、弾性体が、発揮する力は、上記変位増幅器7が発揮する負剛性力とは、逆向きの力であるから、変位増幅器7の過大な負剛性力を抑制し、不安定となることを防ぐ。
 また、制限部材は、構造体の固定位置と増幅器が変位を増幅する連結位置との間の構造体の変位方向の等価剛性による力を超えないように変位増幅器7を抑制するように構成される。このため、変位増幅器7が、制振効果を発揮しながら、不安定となることを防止できる。
 また、制限部材の予め設定された第1変位は、変位増幅器7が発揮する力が、構造体の固定位置と変位増幅器7が前記変位を増幅する連結位置との間の構造体の前記変位方向の等価剛性による力を超えるときの変位である。このため、変位増幅器7が、制振効果を発揮しながら、不安定となることを防止できる。
 また、変位増幅器7は、構造体の振動の振動(変位)方向であって変位している向きの力の成分を作用させるように構成される。このため、変位増幅器7が、制振効果を発揮することができる。
 また、制振装置100は、構造体の振動を減衰させる振動減衰器を備える。このため、変位増幅器7および制限部材により、効率よく振動エネルギーを消散し、高い制振効果を得ることができる。
 また、図1のように、両端が固定面により固定されている構造体の例として、エレベーターロープ、タイミングベルト、吊り橋のメインケーブル、および放電加工機のワイヤー等が挙げられる。また、図10(a)のように、片側が固定面に固定され、一方は自由となっている構造体の例として、クレーンのワイヤーロープおよびアンテナ等が挙げられる。さらに、図10(b)のように、両側が自由となっている構造体の例として、テザー衛星等、固定面を持たない構造体が挙げられる。上記例に、本実施の形態の構成を適用して、不安定にすることなく制振効果を向上させることができる。
 また、実施の形態1では、構造体の長手方向に垂直な横振動の制振について述べたが、構造体の長手方向に平行な縦振動の制振についても、横振動と同様に変位増幅器7および制振効果の向きを変えて適用することで、不安定にすることなく制振効果を向上できる。
実施の形態2.
 本実施の形態では、制振装置100の制振対象をエレベーターロープとし、実施の形態1の制振制御装置の概念を適用する実施の形態について述べる。
 図12は、本実施の形態のエレベーター装置の構成を示す概略図である。図12において、3軸直交座標系のx軸、y軸およびz軸が示される。図12において、鉛直下方がx軸の正の方向である。なお、図12には建物揺れがなく振動が発生していない状態のエレベーター装置が、模式的に示されている。なお、ここでは、建物自体は、詳細には記載されず、エレベーター装置に関連する部分を中心に記載される。また、各部品の支持部や制御装置などは省略されている。
 図12において、エレベーター装置11の上部には、機械室29があり、機械室29の中には、巻上機12、そらせ車13、調速機19が、設けられている。乗客を乗せるかご14は、主ロープ16の一端に接続され、主ロープ16は、巻上機12およびそらせ車13を介して、釣り合い錘15に他端が、接続される。
 巻上機12が、回転すると、巻上機12の軸に設けられた滑車と主ロープ16との間の摩擦力によって、主ロープ16に接続するかご14を鉛直上下方向(図中のx軸方向)に昇降させる。主ロープ16のかご14と接続する一端と別の他端には、釣り合い錘15を接続することによって、かご14の自重を相殺して、巻上機12の駆動力を小さくする。
 また、かご14が昇降するのにともなって、巻上機12のかご14側と釣り合い錘15側の主ロープ16の長さが変化する。すると、主ロープ16にも、単位長さあたりに自重があるから、巻上機12のかご14側と釣り合い錘15側との質量が、不均衡(アンバランス)となる。このような質量の不均衡を補償するために、かご14の下側に一端が接続して、他端が釣り合い錘15に接続するコンペンセーティングロープ17が、釣合車18を介して、設けられる。
 さらに、かご14の鉛直上下方向(x軸方向)の昇降位置を把握するため、かご14の昇降と伴い移動するように、かご14と結合された調速機ロープ20と、調速機ロープ20が巻きまわされた調速機19と、調速機19とは逆側に張り車21とが、設けられる。調速機ロープ20は、かご14と剛に結合されており、かご14の昇降に伴い移動するから、調速機ロープ20の移動量は、調速機19に設けられたエンコーダによって、計測される。また、かご14に、電力や情報の信号を伝達するための制御ケーブル22が、設けられている。ここで、実施の形態2の制振する対象の構造体1は、エレベーターロープである。エレベーターロープは、エレベーター装置11の索状の構造体である。エレベーターロープは、例えば、主ロープ16、コンペンセーティングロープ17、調速機ロープ20、または制御ケーブル22である。エレベーターロープは、ワイヤーロープおよびベルトロープを含む。エレベーターロープは、例えば強磁性体で形成される。あるいは、エレベーターロープは、例えば表面に強磁性体を備えることによって強磁性を有してもよい。
 図13は、図12に示すエレベーター装置において、例えば、地震、風などの外乱によって、建物揺れ23が発生した時を表した図である。建物揺れ23が発生すると、建物に固定されている巻上機12および調速機19も、同様に揺れることで、エレベーター装置のロープ(エレベーターロープ)である主ロープ16、コンペンセーティングロープ17、調速機ロープ20および制御ケーブル22が、加振される。このとき、建物揺れ23の加振周波数と、各エレベーターロープの固有振動数とが、一致すると共振現象が発生し、揺れが増幅する。図13では、例として、主ロープ16aの固有振動数と、建物揺れの加振周波数とが、一致して、主ロープ16に共振現象が発生している状態を示している。
 図14は、本実施の形態のエレベーター装置の主ロープ16の振動を抑える制振装置100の例を表す図である。また、制振装置100が制振する主ロープの範囲は、巻上機に近い主ロープ端部B1と、かごおよび主ロープの連結部B2との間である。また、これ以降特に断りがない場合は、ロープ端部B1とかかごと主ロープの連結部B2の距離を、主ロープの長さと呼ぶ。図14では、エレベーター装置の制振装置100が、機械室床28に設置され、変位増幅器7が永久磁石により構成される例を示している。機械室床28は、ロープダクト28aを有する。ロープダクト28aは、機械室29から昇降路に通じる開口である。主ロープ16aは、ロープダクト28aに通される。
 なお、図14では、エレベーター装置の制振装置100が、機械室床28に設置される例を示したが、これは一例であり制振装置100の設置位置は上記に限られない。制振装置100の設置位置は、かご14が最上階に停止している状態におけるロープ端部B1から連結部B2の範囲のいずれかの位置に設置すればよい。
 本実施の形態において、変位増幅器7は、パッシブな装置である。この例において、実施の形態2の制振装置100の変位増幅器7としての負剛性部71は、一対の磁石ユニット54を備える。一対の磁石ユニット54の各々は、永久磁石24(24a、24b)と、ヨーク25と、を備える。永久磁石24(24a、24b)は、主ロープ16(図中の点線)を挟んで対称な位置に、対向するように設けられる。ヨーク25は、主ロープ16に平行な方向に沿って配置される。永久磁石24aは、主ロープ16の方向からヨーク25の上端に磁極を向ける。永久磁石24bは、主ロープ16の方向からヨーク25の下端に永久磁石24aと反対の磁極を向ける。磁石ユニット54の磁極は、例えば永久磁石24のヨーク25に向けられていない方の磁極である。一対の磁石ユニットは、互いに同極を向けて対向する。実施の形態2の変位増幅器7である負剛性部71は、永久磁石24aと24bとで構成される。制限部材は、非磁性体で構築された制限部材8aにより構築されている。永久磁石24(24a、24b)の磁力による主ロープ16に対する吸引力は、永久磁石24(24a、24b)と主ロープ16aとの間の距離に、反比例して吸引力が大きくなる。この性質を利用して、主ロープ16aが、静止状態から変位した際、変位した方向に吸引される力が働き、主ロープ16aの変位が、さらに大きくなる。このようにして、永久磁石24が、負剛性力を発生して、変位増幅器としての機能を発揮する。
 一対の磁石ユニット54は主ロープ16を挟んで異なる高さの位置に設けてもよい。
 実施の形態2の制振装置100の変位増幅器7としての負剛性部71は、少なくとも一つの磁石ユニット54を備えてもよい。また、磁石ユニット54は、主ロープ16の長手方向の位置に沿って複数配置してもよい。
 永久磁石24による吸引力は、永久磁石24と主ロープ16aとの間の距離に反比例することから、主ロープ16aの変位に対して非線形な特性を有する。装置配置の幾何学的な対称性を利用して、非線形要素を級数展開した際の偶数次の項をキャンセルすることが可能であり、負剛性部71は、非線形性が最小限となるように構成されている。
 また、図14では、永久磁石の側面に配置されたヨーク25と、このヨーク25に巻きつけて構成したコイル26と、このコイル26に電気的に接続する電気抵抗27とを設けている。ヨーク25、コイル26および電気抵抗27は、振動減衰部であるダンパーの特性を実現する。
 これは、主ロープ16aの変位が変化することに伴って、永久磁石による磁束が変化し、ヨーク25内を通過する磁束も変化する。ヨーク25内を通る磁束が変化して、コイル26を通過する磁束が変化すると、電磁誘導現象によりコイル26に電圧が発生する。コイル26の両端間に電圧が発生することによって、電気抵抗27に電流が流れ、電気抵抗が、ジュール熱を発散する。これは、主ロープ16aの変位の変化である振動エネルギーが、結果的に電気抵抗27にてジュール熱として消散されることになる。コイル26を通過する磁束の変化量は、主ロープ16aの変位の速度に依存するため、結果的にコイル26と電気抵抗27とにより、機械式のダンパーを取り付けたことと同様の効果を得ることができる。なお、制限部材8aは、非磁性体であり、磁石24aおよび24bに取り付けられる。制限部材8aの厚みは、主ロープ16が負剛性により不安定とならないような範囲にする厚みが設定されている。この制限部材8aが、主ロープ16aと磁石24間の距離を、制限部材8aの厚み未満にならないよう制限する。
 制限部材8は、変位増幅器7の発揮する力が、エレベーターロープの張力によってエレベーターロープが平衡位置(静止状態の位置)に戻るための力より小さくなるようにする。このようにすることによって、振動が不安定領域になることを防止することができる。
 変位増幅器7は、かご14または釣り合い錘15よりも、エレベーターロープが巻き付けられるシーブ(巻上機、そらせ車)に近い位置に配置しても良い。変位増幅器7は、エレベーターロープの中央位置よりも、かご14もしくは釣り合い錘15またはエレベーターロープが巻き付けられるシーブに近い位置に配置してもよい。エレベーターロープの中央位置は、たとえば固定位置B1および固定位置B2の間の中点である。このとき、変位増幅器の位置とかご14もしくは釣り合い錘15または当該シーブとの間の距離は、エレベーターロープの中央位置との間の距離より短い。また、変位増幅器の位置とかご14もしくは釣り合い錘15または当該シーブとの間の距離は、0より長い。このようにすることによって、一次の振動モードの振動の腹から離れた位置にて、エレベーターロープの振動モードを別のものに変化させやすくなる。
 また、変位増幅器7は、エレベーターロープの横変位に応じた力をエレベーターロープの平衡位置から遠ざかる方向に発揮する負剛性部材で構成する。このようにすることによって、エレベーターロープの振動を効果的に抑制することができる。
 図15は、本実施の形態の上記制振装置100に、ローラー型制限部材を設けた制振装置100の図である。主ロープ16aは、かご14の昇降に伴って、x軸方向を移動するため、図14のような制限部材8aを備えた制振装置100では、主ロープ16aと制限部材8aの接触時に摩擦力が発生し、主ロープ16aの劣化を促進してしまう可能性がある。
 図15は、制振装置100と主ロープ16aとの間に、先端にローラーがついた制限部材8bを制限装置に設置することで、主ロープ16aにまず制限部材8bの先端のローラーがあたり、鉛直上下方向(x軸方向)には、主ロープ16aに対する負荷を減らす。一方、鉛直方向と直交する横方向(y軸の方向)方向には、制限部材8bによって、主ロープ16aの変位を制限することができる。
 また、ローラーを先端に設けた制限部材8bを、正剛性部10を介して非磁性体の固定部材30に取り付けることもできる。このようにすることで、実施の形態1の図9と同様に、負剛性部71である永久磁石の負剛性力(吸引力)が過大となった場合に、この負剛性力と逆向きの力を正剛性部10が発揮して、負剛性部71である永久磁石の安定範囲を拡張することができる。さらに、制限部材8bは、非磁性体の固定部材30に取り付けることで、永久磁石24、ヨーク25、コイル26、および電気抵抗27で構成されるダンパーの機能に影響を与えることが少なくできる。
 上記は、ヨーク25、コイル26、および電気抵抗27を設けて振動減衰部(ダンパー)としたが、これを設けなくても、固有振動数が低周波となり、建物揺れ23との共振を回避することによる制振効果を発揮できる。すなわち、負剛性部71としての永久磁石24と、先端にローラーを設けた制限部材8bとを設けた制限装置でも良い。また、永久磁石24と、先端にローラーを設けて正剛性部10を含む制限部材8bとを設けた制限装置でも良い。これらによって、負剛性部71の負剛性力が過大となって不安定となることがない制振装置100を提供できる。
 上述の制振装置100は、機械室に設けられ、鉛直上方に設置された巻上機12の近くに設けられたが、かご14と主ロープ16との接合部に近い位置、または、釣り合い錘15と主ロープ16との接合部に近い位置に設けられても良い。このようにすることによって、一次の振動モードの振動の腹から離れた位置にて、エレベーターロープの振動モードを別のものに変化させやすくなる。すなわち、一次の振動モードの振動の腹から離れた位置に設けると効果的である。
 図16は、ロープダクト28aに設けられる本実施の形態の制振装置100の図である。制振装置100は、一対の永久磁石24と、一対の制限部材8dと、を備える。永久磁石24は、磁石ユニットの例である。一対の永久磁石24の一方は、一対の制限部材8dの一方の内側に配置される。一対の永久磁石24の他方は、一対の制限部材8dの他方の内側に配置される。
 一対の制限部材8dは、ロープダクト28aに設けられる。一対の制限部材8dは、主ロープ16aに関して互いに対称な位置に配置される。例えばロープダクト28aが矩形の開口である場合に、一対の制限部材8dは、ロープダクト28aの対辺に設けられる。一対の制限部材8dは、主ロープ16aを挟んで互いに対向する。
 一対の永久磁石24の各々は、一対の制限部材8dとともにロープダクト28aに設けられる。一対の永久磁石24の各々は、主ロープ16aに磁極を向けて配置される。一対の永久磁石24の各々の磁極は、一対の制限部材8dの各々に覆われる。
 このようにすることによって、制振装置100は、コンパクトになる。このため、制振装置100は、ロープダクト28aから巻上機12までの距離が短いエレベーター装置についても適用できる。
 図17および図18は、本実施の形態のエレベーターの主ロープ16の振動を抑える制振装置100をリンク機構により構成した例を表す図である。図17に示されるように、図14に示す制振装置100と同様に、制振装置100の負剛性部71が、静止状態の主ロープ16を対称軸として、線対称の構造を有する(例えば、図中のxy平面の断面で見て)。
 制振装置100の負剛性部71の線対称をなす片側は、トグルリンク機構31を有し、重り31aとリンク31b、回転支点31cにより構成されている。トグルリンク機構31は、一端が、かご14に固定されており、他端はロープ拘束部材32に固定または回転支点で固定されている。ロープ拘束部材32は、一または複数の主ロープ16aと結合されており、直動ガイド33によって、ロープ拘束部材32が、水平方向(y軸方向)に、自由に移動可能に支持されている。直動ガイド33は、主ロープ16を挟んで接触する一対のローラーを備えてもよい。
 また、ロープ拘束部材32の水平方向の変位は、固定面に設けられた制限部材8cによって制限される。制限部材8cによって、負剛性部71であるトグルリンク機構31が発揮する負剛性力が、過大になることによって、不安定になることを防いでいる。図16(a)は、制振装置100を水平方向横から見た正面図であるのに対して、図17は、鉛直上方から下向きに制振装置100を見た上面図である。
 次に、図17および図18の構成の作用について説明する。図16において、主ロープ16aが、変位すると、ロープ拘束部材32に接触して、ロープ拘束部材32が変位する。すると、ロープ拘束部材32に接続する、変位方向側のトグルリンク機構31のリンク31bが折り畳まれ、他方側のトグルリンク機構31のリンク31bは、伸張した形状となる。トグルリンク機構31は、錘31aの慣性によって、伸張する時に、大きな力(この場合は、負剛性力)を発生する機構である。トグルリンク機構31が主ロープ16aに伝達する力は、リンク31bが折り畳まれるときよりもリンク31bが伸張するときの方が大きい。このため、変位方向側のトグルリンク機構31が主ロープ16aに加える力より、他方側のトグルリンク機構31が主ロープ16aに加える力の方が大きい。これにより、トグルリンク機構31は負剛性力を発生させる。トグルリンク機構31は、1つ以上のリンクの変位によって負剛性力を発生させる不安定なリンク機構の例である。
 トグルリンク機構31の特性によって、結果的に、主ロープ16aの変位と、同じ方向の力、すなわち、変位増幅器7である負剛性の特性を付加できる。一方、振動減衰手段である粘性は、直動ガイド33が有している摩擦程度の大きさで十分であるため、この例では、別途油圧ダンパー等を取りつけていない。なお、直動ガイド33の摩擦では不十分など、場合によっては、ダンパーを取り付けても良い。
 次に、実施の形態2に係るエレベーターロープの制振装置100の制振原理及び負剛性値とダンパーの粘性値の決定法について数式を用いて説明する。ここでは、エレベーターロープのうち主ロープ16に対する設計法について述べる。なお、他のエレベーターロープに対しても、同様に理論を適用可能である。
 まず、図13を参照して、主ロープ16のうち、巻上機12から垂れ下がり、かご14に接続するまでの主ロープ16aを取り上げて説明する。主ロープ16aの振動を考えると、構造体の両端は、主ロープ16の巻上機12シーブとの接触端部B2と、かご14との接続点である端部B1となる。この端部B1と端部B2との間の距離をLとする。主ロープ16の端部B1を原点として、鉛直下向きをx軸の正とする。時刻tにおける、原点から距離x離れた位置での主ロープ16aの横振動変位を関数v(x,t)と表す。このとき、主ロープ16aの時空間特性は、式(1)に示される運動方程式で支配される。
Figure JPOXMLDOC01-appb-M000002
 ただし、ρは、主ロープ16aの線密度であり、Fcmpは、制振装置100が主ロープ16aに加える力であり、δ(・)は、デルタ関数を表し、xは、制振装置100の設置位置を表す。また、Tは、主ロープ16aの張力を表し、ここでは一定とする。式(1)の左辺は、線密度に質点の加速度(振動変位関数v(x,t)の時間による2階偏微分)を乗じた微小質点の慣性力を表し、この左辺が、微小質点の両端に作用する張力Tの水平方向分力の差分(振動変位関数v(x,t)の位置xによる2階偏微分)と釣り合うことを示している。さらに、位置xにおいては、制振装置100による力Fcmpが加わっている。式(1)は、波動の伝播を記述する方程式として知られており、波動方程式と呼ばれている。なお、波動の伝播速度cは、式(2)で表される。
Figure JPOXMLDOC01-appb-M000003
 式(2)は、主ロープ16aの波動の伝播速度cは、主ロープ16aの張力Tを線密度ρで除したものの平方根であることを表す。主ロープ16aの境界条件は、次の式(3)及び式(4)で表される。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 ただし、Vextは、建物揺れの変位を表す。式(3)は、主ロープ16aの端部B1が、建物揺れにより強制変位Vextが与えられることを示している。一方、(4)式は、端部B1からの距離がLである端部B2の変位が、0、すなわち固定されていることを表している。また、初期条件は、t=0において、主ロープ16は、静止している条件とする。
 上述の境界条件及び初期条件を用いることで、式(1)に示す波動方程式の伝達関数の厳密解を求めることが可能であり、次の式(5)で表される。
Figure JPOXMLDOC01-appb-M000006
 ただし、sは、ラプラス演算子を、sinhは、双曲線関数を表す。
 ここで、制振力Fcmpを出力する機械要素にて、実現可能な制振装置100を設計するため、式(5)における双曲線関数に対して、無限乗積展開による近似を施す。また、近似を行う際、制振装置100の設置位置xは、主ロープ16の長さLに比べて十分小さい、すなわち、巻上機側端部B1に近いとする。以上の仮定に基づき、設置位置の主ロープ16の横振動変位V(x,s)及び主ロープ16の中央位置の横振動変位V(L/2,s)までの伝達関数は、式(6)および式(7)で表される。
Figure JPOXMLDOC01-appb-M000007
 ただし、簡単化のため、α=(L-x/Lとおいた。
Figure JPOXMLDOC01-appb-M000008
 ここで、ωとωx0は、主ロープ16の長さがL、または端部B1から制振装置100設置位置までの距離Lx0となった際における、主ロープ16の一次固有振動数であり、それぞれ式(8)及び式(9)で表される。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 ここで、制振装置100の出力する力(負剛性部71の負剛性力)Fcmpは、次の式(10)に示す剛性と粘性要素との合力であるとする。
Figure JPOXMLDOC01-appb-M000011
 ただし、K及びDは、変位増幅器7(負剛性部71)の剛性値及び粘性値を表す。また、K及びDのバー(上記に線を有する表記)は、定数Gによって、正規化された変位増幅器7(負剛性部71)の剛性値及び粘性値を表し、定数Gは、以下の値で与えられる。
Figure JPOXMLDOC01-appb-M000012
 制振装置100による力である式(10)を伝達関数の式(6)に代入し、特性多項式を計算すると、次の式(12)を得る。
Figure JPOXMLDOC01-appb-M000013
 ただし、式(12)において簡易化のため、以下の定数を定義している。
ここで、制振装置100により主ロープ16の減衰比が1、かつ角周波数がωになったと仮定すると、特性多項式は、次の式(13)で表される。
Figure JPOXMLDOC01-appb-M000014
 制振装置100により減衰比を1にする条件は、Kバー、Dバーおよびωを未知数として、式(12)と式(13)とを係数比較した連立式を解くと、次の式(14)、式(15)および式(16)が求まる。
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
 式(14)及び式(15)にて算出される、正規化された剛性値および粘性値に、定数Gを乗じることで、実剛性値および粘性値が算出される。また、式(14)を見ると、ωが、ωx0と近い値である条件から、値が負となっており、主ロープ16の制振においては負剛性の実装が必要不可欠であることがわかる。
 また、制振装置100に負剛性を適用することで、粘性値の調整により獲得できる最大減衰比(以下、最大減衰比と呼ぶ)が変化する。最大減衰比ζは、正規化負剛性値Kバーの関数として表され、次の式(17)で与えられる。
Figure JPOXMLDOC01-appb-M000018
 特に、正規化負剛性値Kバーが0の時は、制振装置100を粘性要素のみで構築した際と等価であり、その際、最大減衰比ζは、次の式(18)で表される。
Figure JPOXMLDOC01-appb-M000019
 正規化負剛性値が0のときの最大減衰比である式(18)から、最大減衰比は、設置位置x0と、主ロープ16の長さLとの比(以下、単に比と呼ぶ。)によって、決定されることがわかる。また、主ロープ16の長さLが大きくなり、比が小さくなると、式(18)の分子が小さくなり、最大減衰比も小さくなることがわかる。すなわち主ロープ16の長さが長い高層建築物におけるエレベーターロープに対しては、粘性のみで構成された制振装置では、制振が困難であることがわかる。したがって、負剛性の変位増幅器7による制振装置100の効果が高くなる。
 次に、上述の式から、負剛性と粘性の制振の効果について検討する。図19は、最大減衰比を表す式(18)の関数をグラフにしたものであり、上記負剛性を用いずに、粘性のみにより構成された制振装置の制振効果を示すものである。図において、横軸は、設置位置xと、主ロープ16の長さLとの比x/L、縦軸は、最大減衰比である。最大減衰比は、比に対して比例することがわかる。しかし、例えば、比が0.01の場合、最大減衰比ζは、0.005となり、向上する絶対値は、わずかである。したがって、比が小さい領域では、制振効果は期待できない。
 また、エレベーター装置は、制振装置の設置位置xを変えられないとすると、かご14の昇降に伴いロープ長Lが、変化するため、比も大きく変動してしまう。すなわち、粘性だけによる振動減衰を行うのでは、ロープ長、すなわち、かご14の位置に依存して性能にばらつきが生じやすい欠点がある。
 図20は、端部B1から制振装置100設置位置までの距離xと、主ロープ16の長さLとの比x/Lが、0.01の場合において、変位増幅器7を含む正または負の剛性を適用した際の最大減衰比を図示したものである。図のグラフは、式(17)をもとに算出され、横軸は、制振装置の正規化負剛性値Kバー、縦軸は、最大減衰比ζである。比x/Lが、0.01の場合は、上記図19において、粘性による振動減衰器(ダンパー)だけで構成した場合、最大減衰比ζが、0.005であり、減衰効果が、わずかであった場合である。また、図において、横軸は、正規化剛性値が、正の値が増加する方向を右側方向にしているため、負の剛性については、絶対値が大きくなる方向が、左側方向となる。
 図20において、正規化負剛性値Kバーが、0から境界G1へ向かって、剛性値の絶対値が増加するのに従って、双曲線的に最大減衰比ζが増加する。一方、正規化負剛性値Kバーが、-1より左側、絶対値が1を超えると、最大減衰比が、負の大きな値となる。さらに、正規化負剛性値Kバーの絶対値が増加するに従い、最大減衰比の負の絶対値は、減少するものの最大減衰比ζは、マイナスから0に近づく。このグラフから、正規化剛性値が、-1より少し大きい値に、境界(G1)があるといえる。ここで正規化剛性値を0から、マイナス方向に変化させたときに、急激に最大減衰比がプラス側に増加し、そののち最大減衰比がマイナスに反転する。最大減衰比がプラスからマイナスに転換する正規化剛性値の境界を境界G1とする。すると、正規化負剛性値Kバーが、境界G1の値に近づくほど、最大減衰比が向上することがわかる。
 ここで、図19に示す振動減衰器(ダンパー)だけで構成した制振と比較すると、最大減衰比は極めて大きく向上することがわかる。また、変位増幅器7である負剛性の特性を持つ負剛性部71を用いることで、主ロープ16の変位が増加し、振動の腹の特性に近くなる。
 負剛性部71の負剛性の特性の効果は、ロープ端末B1またはB2から制振装置100の設置位置までの距離xに大きく依存し、主ロープ16の長さLに対する感度は低い。振動減衰手段であるダンパーのロバスト性もともに向上させることができる。
 ここで、境界G1の正規化負剛性値より絶対値が大きくなると、最大減衰比の値は負となっている。すなわち、正規化負剛性値が-1より小さいG2に示す領域は、不安定な領域であることがわかる。境界G1における正規化負剛性値の値は、(17)式において、減衰比が無限大となるKバーの値であり、次式で表される。
Figure JPOXMLDOC01-appb-M000020
 式(19)は、境界G1である正規化負剛性値の絶対値が、主ロープ16の長さを、主ロープ16の長さと端部B1から振動減衰装置設置位置までの距離の差で除した値であることを表している。これは、エレベーターの巻上機の近くに制振装置100を設けた場合には、境界G1である正規化負剛性値の絶対値が、主ロープ16の長さを、制振装置100から、かご14までの距離で除した値となる。あるいは、エレベーターのかご14の近くに制振装置100を設けた場合には、境界G1である正規化負剛性値の絶対値が、主ロープ16の長さを、制振装置100から巻上機までの距離で除した値となる。
 ただし、上記主ロープ16の長さとは、巻上機のシーブ接触端部から、かご14までの主ロープ16の長さであるから、エレベーターのかご14を昇降すると、上記主ロープ16の長さは、変化する。したがって、境界G1の正規化負剛性値の絶対値は、かご14が最上階にあるときに、大きくなり、かご14が最下階にあるときに小さくなる。
 よって、「かご14が、最下階にあるときの主ロープ16の長さ」を「この主ロープ16の長さと、端部B1から振動減衰装置設置位置までの距離との差」で除した値にした正規化負剛性値の絶対値よりも、小さな絶対値の合成剛性値を持つ制振装置100を構成すると、確実に不安定状態にならない。したがって、制振装置100としての合成剛性の絶対値が、「かご14が、最下階にあるときの主ロープ16の長さ」を「この主ロープ16の長さと、端部B1から振動減衰装置設置位置までの距離との差」で除した値よりも、大きくならず、制振装置100としての合成剛性値ができるだけ小さくなるよう負剛性部71(変位増幅器7)および制限部材を構成すると、不安定化を防ぎつつ、制振効果が高い装置を得ることができる。
 また、図20に示す領域G4は、制振装置100の剛性部材の剛性値が正となる領域である。領域G4の領域では、最大減衰比が0であるので、図18の粘性による減衰装置の最大減衰比の特性を考慮すると、得られる最大減衰比は粘性のみの場合と比較して小さくなるため、正剛性の実装は好ましくない。したがって、主ロープ16の制振を行う際、次式の範囲における正規化負剛性値を実装することが望ましい。
Figure JPOXMLDOC01-appb-M000021
 式(20)は、正規化負剛性値の値Kバーが、式(19)の境界G1の正規化負剛性値の値より大きく、0より小さいことを示している。Kバーは、正規化する際に上記式(11)の定数Gにより除しているから、式(20)に定数Gを乗じて、実装すべき負剛性値を求めることができる。
Figure JPOXMLDOC01-appb-M000022
 本実施の形態は、制限部材を用いることで、式(21)に示す安定領域に負剛性値を留め、粘性による減衰効果を最大限に抽出するよう設計するものである。また、式(21)の左辺が実施の形態1にて説明した図5中の実線aの傾きに相当する。図5中の実線aの傾きは、負剛性部71によって不安定がおこらない最小の負剛性(剛性力の絶対値としては最大の剛性)を表している。具体的には、安定する最小の負剛性は、主ロープの張力を設置位置で除した値に、主ロープの長さ、設置位置により構成される補正係数を掛けたものである。
 式(21)は、変位増幅器7の負剛性部71の負剛性値Kの望ましい範囲を表す。また、同様に、式(19)は、境界G1である正規化負剛性値の値を示しているが、これに式(11)の定数Gを乗じて、負剛性値にすると、次式が得られる。
Figure JPOXMLDOC01-appb-M000023
 式(22)は、制振装置100の変位増幅器7が、安定と不安定となる境界の負剛性値K asyである。なお、上付き文字のasyは、漸近線asymptoteの意味である。上記式(19)のところで述べたと同様に、制振装置100としての合成剛性値が、張力T、端部Bから振動減衰装置設置位置までの距離xおよびかご14が最下階にあるときの主ロープ16の長さLで現される式(22)の負剛性値よりも、小さくならず、できるだけ大きくなるよう負剛性部71(変位増幅器7)および制限部材を構成すると、不安定化を防ぎつつ、制振効果が高い装置を得ることができる。
 さらに、上記図15の制限部材8bについていえば、変位増幅部である永久磁石24の吸引する力が、式(22)で表される負剛性値K asyよりも小さくならないように、永久磁石24と主ロープ16aとの距離で、制限部材8bの先端ローラーが主ロープ16に接触するようにする。このようにすることによって、変位増幅部である永久磁石24の吸引力(負剛性力)が、制振装置100が不安定となる領域に入ることなく、安定して変位を増幅できる。
 また、上記図17の制限部材8cについては、トグルリンク機構31が、発揮する負剛性力が、式(22)で表される負剛性値K asyよりも小さくならない状態で、制限部材8cと接触する位置に制限部材8cを設ける。このようにすることによって、変位増幅部であるトグルリンク機構31の負剛性力が、制振装置100が不安定となる領域に入ることなく、安定して変位を増幅できる。
 なお、主ロープ16の張力Tは、かご14が空の状態の張力として境界の負剛性値K asyを求め、制振装置100としての合成剛性値としても良い。主ロープ16の張力は、かご14が空の状態において最も小さくなる。このため、境界の負剛性値K asyは、かご14が空の状態においてもっとも小さくなる。このように制振装置100としての合成剛性値を設定することによって、不安定となることがなく安全である。
 また、巻上機とかご14との間の主ロープ16だけでなく、巻上機と釣り合い錘15、ガバナーロープ、制御ケーブルの他のエレベーターロープについても、同様である。
 本実施の形態によれば、エレベーター装置11は、制振装置100を備える。制振装置100は、エレベーターロープの振動を低減する。すなわち、本実施の形態の制振装置100は、エレベーターロープを、制振する対象の構造体とする。特に、制振装置100は、エレベーターのかご14及び釣り合い錘15に接続されてシーブに巻かれたエレベーターの主ロープ16を制振する対象のエレベーターロープとする。本実施の形態の制振装置100は、エレベーターロープの長手方向のいずれかの位置に沿って配置されてエレベーターロープの変位を増幅する変位増幅器7と、変位増幅器7が、エレベーターロープの変位を予め設定された第1変位より大きく増幅するのを抑制する制限部材を有する。このように構成することによって、変位増幅器7を設けたエレベーターロープの位置での振動の変位を不安定になることなく増加させ、制振効果を高めることができる。
 また、本実施の形態の制振装置100は、変位増幅器7の発揮する力が前記エレベーターロープの張力によって前記エレベーターロープが平衡位置に戻るための力より小さくなるようにする制限部材を備える。このため、変位増幅器7を設けたエレベーターロープの位置での振動の変位を不安定になることなく増加させ、制振効果を高めることができる。
 また、本実施の形態の制振装置100の変位増幅器7は、エレベーターロープの平衡位置から遠ざかる向きに、エレベーターロープの横変位に応じた力を発揮する負剛性部材で構成される。このため、効果的にエレベーターロープの横振動を効果的に制振することができる。
 また、本実施の形態の制振装置100の変位増幅器7は、かご14または錘よりもシーブに近い位置に配置される。このため、エレベーターロープの横変位が小さい位置でも、変位増幅器7が変位を大きくして、振動モードを変えて、効果的に制振することができる。
 また、本実施の形態の制振装置100の変位増幅器7の位置とかご14もしくは釣り合い錘15または当該シーブとの間の距離は、エレベーターロープの両側の固定位置の間の距離より短い。また、変位増幅器7の位置とかご14もしくは釣り合い錘15または当該シーブとの間の距離は、0より長い。これにより、エレベーターロープの変位が小さい位置でも、変位増幅器7が変位を大きくすることにより振動モードを変えて、制振装置100は、効果的に制振することができる。
 また、本実施の形態の制振装置100の制限部材が変位増幅器7の変位増幅を抑制する第1変位は、かご14が空の状態でエレベーターの最上階にあるときのエレベーターロープにかかる張力をエレベーターロープの固定位置から変位増幅器7との連結位置までの距離で除した値の弾性係数による力を発揮する変位とする。これにより、制振装置100は、必ずエレベーターロープの変位を不安定になることなく増加させ、制振効果を高めることができる。
 また、本実施の形態の制振装置100の変位増幅器7および制限部材は、弾性係数Kによる力を発揮することで主ロープ16の変位を増幅する。弾性係数Kは、式(23)で表される不等式を満たす。ただし、エレベーターロープの張力をT、かご14または錘とエレベーターロープとの接続点から変位増幅器7が配置される位置までの距離をx、エレベーターロープの全長をL、とする。これにより、制振装置100は、必ずエレベーターロープの変位を不安定になることなく増加させ、制振効果を高めることができる。
Figure JPOXMLDOC01-appb-M000024
 また、変位増幅器7は、一対の磁石ユニット54を備えてもよい。一対の磁石ユニット54は、互いに磁極を向けてエレベーターロープを挟んで対向する。制限部材8aは、一対の磁石ユニット54の各々の磁極とエレベーターロープとの間に配置される一対の非磁性体である。制限部材8aは、一対の磁石ユニット54の各々の磁極に制限部材8aの厚さより近くエレベーターロープが接近することを抑制する。このため、制限部材8aの厚さを主ロープ16が第1変位で変位したときに主ロープ16が接触する厚さより厚くすることによって、制振装置100によるエレベーターロープの制振が安定して行われる。また、変位増幅器7は、エレベーターロープの変位を非接触で増幅する。これにより、変位の増幅によってエレベーターロープなどが磨耗することが抑制される。
 また、一対の磁石ユニット54の各々は、互いに同極を向けて対向する。これにより、一対の磁石ユニット54の各々は、互いに反発する。このため、一対の磁石ユニット54の間の間隙は、一対の磁石ユニット54の磁力によって閉じない。これにより、一対の磁石ユニット54の固定について、一対の磁石ユニット54の間の引力を考慮する必要がない。
 また、一対の磁石ユニット54の各々は、ヨーク25と、永久磁石24aと、永久磁石24bと、を備える。ヨーク25は、エレベーターロープに平行な方向に沿って配置される。永久磁石24aは、エレベーターロープの方向からヨーク25の一端に磁極を向ける。永久磁石24bは、永久磁石24aと同じ方向からヨーク25の他端に永久磁石24aと反対の磁極を向ける。これにより、ヨーク25は、エレベーターロープの反対側の磁極から出る磁束を内部に導く。これにより、磁石ユニット54は、エレベーターロープの反対側から漏れる磁束を抑えることができる。このため、制振装置100による周辺の機器への影響が抑えられる。
 また、変位増幅器7は、1つ以上のリンクの変位によって負剛性力を発生させる不安定なリンク機構を有してもよい。制限部材8cは、1つ以上のリンクの少なくともいずれかの変位を抑制する。これにより、変位増幅器7は、磁力によらずに負剛性力を発生させられる。
 また、変位増幅器7のリンク機構は、エレベーターロープを挟んで配置される一対のトグルリンク機構31であってもよい。これにより、変位増幅器7は、簡易な機構によって負剛性力を発生させられる。
 また、変位増幅器7は、エレベーターロープに接触するローラーを備えてもよい。これにより、エレベーターロープと変位増幅器7との間の摩擦による劣化が抑えられる。
 また、制振装置100は、エレベーターロープの振動を減衰させる振動減衰器を備えてもよい。これにより、効率よく振動エネルギーが消散される。このため、高い制振効果が得られる。
 また、振動減衰器は、例えばコイル26と、電気抵抗27と、を備える。コイル26は、一対の磁石ユニット54の少なくともいずれかを通る磁束を通す。電気抵抗27は、コイル26に電気的に接続される。コイル26は、一対の磁石ユニット54の少なくともいずれかのヨーク25に巻きつけられてもよい。これにより、変位増幅器7による変位の増幅と、振動減衰器による振動エネルギーの消散と、が同時に行われる。このため、制振装置100は、簡易な構造でより効果的にエレベーターロープを制振できる。
 また、本実施の形態の制振装置100は、主ロープ16の縦振動に対しても、適用可能である。図21は、主ロープ16の縦振動を抑制する制振装置の構成の一例を示したものである。主ロープ16aは、シャックルロッド36とシャックルばね35を介して、かご上梁34に固定されている。シャックルロッド端部に強磁性体37を取り付け、強磁性体37に対向するように、かご上梁34に磁石24を設ける。このような構成によって、x方向(鉛直方向)に負剛性特性を付与することができる。また、不安定化を防止するために、制限部材38を設ける。なお、縦振動は横振動と比較して振幅が小さいため、変位増幅部の非線形性が強くない領域でのみ動作する場合は、制限部材38を取り除いてもよい。また、負剛性部71を実現する要素として、永久磁石24の変わりに、トグルリンク機構を用いてもよい。
 また、本実施の形態の制振装置100の制限部材は、エレベーターロープと接触するローラーを有する。このため、エレベーターロープと制限部材との間の摩擦を軽減し、双方の劣化を防止する効果がある。
 図22は、複数の主ロープ16を備えるエレベーター装置11に適用される本実施の形態の制振装置100の図である。このとき、制振装置100が制振する構造体1は、複数の主ロープ16である。複数の主ロープ16の各々の端部は、かご14の上部に接続される。制振装置100は、かご14の上部に設けられる。制振装置100は、支持台50と、拘束部材51と、を備える。
 支持台50は、かご14の上部に設けられる。支持台50は、複数の主ロープ16の周囲に設けられる。
 拘束部材51は、強磁性体で形成される。拘束部材51は、複数の主ロープ16の各々の間の水平方向の距離を一定に保つ部材である。拘束部材51は、例えば複数の主ロープ16の各々に固定されるブロック状の部材である。
 制振装置100は、少なくとも3つの磁石ユニット54を備える。この例において、制振装置100は、4つの磁石ユニット54を備える。複数の磁石ユニット54の各々は、支持台50の上面に設けられる。複数の磁石ユニット54の各々は、永久磁石24(24a、24b)を備える。複数の磁石ユニット54の磁極は、拘束部材51を囲うように互いに異なる方向から拘束部材51に向けられる。例えば、3つの磁石ユニットを備える場合において、複数の磁石ユニット54の磁極は、主ロープ16の長手方向に沿った拘束部材51の中心軸に対して120°ごとに配置してもよい。また、4つの磁石ユニットを備える場合、複数の磁石ユニット54の磁極は、主ロープ16の長手方向に沿った拘束部材51の中心軸に対して90°ごとに配置してもよい。複数の磁石ユニット54の各々の配置は主ロープ16の長手方向に沿って異なる高さの位置に配置してもよい。
 このように、制振装置100が制振する構造体1が複数の主ロープ16である場合において、制振装置100は、拘束部材51を備える。拘束部材51は、複数の主ロープ16の各々の間の水平方向の距離を一定に保つ。負剛性部71の負剛性値の設計値は、式(11)に示されるようにエレベーターロープの張力によって定まる。このため、制振装置100が複数の主ロープ16を制振する場合に、複数の主ロープ16の各々の間で張力にばらつきが生じると、制振装置100の制振性能が低下する。そこで、複数の主ロープ16の各々が拘束部材51の拘束によって一体化されることで、負剛性部71の負剛性値の設計値は、複数の主ロープ16の各々の張力の合計によって定まる。複数の主ロープ16の各々の張力は、正または負の両方にばらつく。このため、複数の主ロープ16の各々の張力の合計のばらつきは、複数の主ロープ16の各々の張力のばらつきの影響がキャンセルされたものとなる。これにより、複数の主ロープ16の各々の張力のばらつきによる制振性能の低下が軽減される。また、複数の主ロープ16の張力のばらつきに対する制振装置100の制振性能のロバスト性が向上する。
 また、拘束部材51は、複数の主ロープ16の各々に固定される。これにより、ブロック状の部材などの簡易な構造で拘束部材51が構成される。
 図23を用いて、かご14の位置による影響を説明する。図23(a)は、かご14が最下階に停止しているときの状態を表す。図23(b)は、かご14が最上階に停止しているときの状態を表す。
 図23(a)に示されるように、例えばエレベーター装置11が複数の主ロープ16を備える場合に、主ロープ16はかご14の上の相異なる複数の箇所に取り付けられる。このため、複数の主ロープ16は、端部B1からかご14までフリート角θで広がって張られる。
 図23(b)に示されるように、フリート角θは、かご14と巻上機12との距離によって変化する。かご14と巻上機12との距離は、かご14が最上階に停止しているときに最も短くなる。このとき、フリート角θは最も大きくなる。フリート角θが変化すると、端部B1からフリート角θで広がる複数の主ロープ16と負剛性部71との距離が変化する。主ロープ16が振動していない場合においても、負剛性部71から見た主ロープ16の水平方向の位置が変化することがある。このとき、主ロープ16の水平方向の移動量が大きければ、主ロープ16は、負剛性部71の永久磁石24に接触する可能性がある。
 図24は、かご14が最下階に停止しているときの制振装置100を示す図である。図24において、主ロープ16aは、平衡位置にある。このとき、主ロープ16aは、ロープダクト28aの中央を通る。この状態において、フリート角θは、最も小さい。
 図25は、かご14が最上階に停止しているときの制振装置100を示す図である。図25において、主ロープ16aは、平衡位置にある。主ロープ16aは、かご14が最下階にあるときのフリート角より大きいフリート角θで巻上機12およびかご14の間に張られる。このとき、主ロープ16aは、かご14が最下階に停止しているときより負剛性部71の永久磁石24に近づく。また、永久磁石24は、かご14が最下階に停止しているときより強い力によって主ロープ16をさらに引き寄せる。これによって、主ロープ16aの平衡位置から第1変位までの余裕が小さくなる。したがって、かご14の位置の変化に伴うフリート角θの変化によって、制振装置100によって制振される主ロープ16の変位の範囲が小さくなることがある。
 続いて、図26および図27を用いて、フリート角θによる影響を抑制する制振装置100の例を説明する。図26は、制振装置100の上面図である。図27は、制振装置100の側面図である。複数の主ロープ16は、水平方向において一列に並ぶ。複数の主ロープ16は、例えば巻上機12の回転軸の方向に並ぶ。
 図26に示されるように、制振装置100は、拘束部材51と、土台52と、を備える。制振装置100は、例えば機械室29に設けられる。
 拘束部材51は、一対のローラー53を備える。一対のローラー53の各々の回転軸は、複数の主ロープ16が並ぶ方向に平行な方向に向けられる。一対のローラー53は、回転軸に垂直な方向の両側から複数の主ロープ16の各々に接触する。一対のローラー53の各々は、複数の主ロープ16の各々の間の水平方向の距離を一定に保つように、側面に溝状のガイドを有する。
 図27に示されるように、土台52は、負剛性部71を上方から覆うように設けられる。土台52の上面は、水平面である。
 拘束部材51は、土台52の上に設けられる。拘束部材51は、土台52の上面において、水平面内において複数の主ロープ16が並ぶ方向の垂直な方向に自由に変位しうるように設けられる。
 このように、複数の主ロープ16が水平方向に一列に並ぶ場合において、拘束部材51は、一対のローラー53を備える。一対のローラー53は、複数の主ロープ16が並ぶ方向に平行な回転軸を有する。一対のローラー53は、回転軸に垂直な方向の両側から複数の主ロープ16の各々に接触する。拘束部材51は、変位増幅器7の上方において一対のローラー53によって複数の主ロープ16の各々を絞る。これにより、主ロープ16の位置は、移動量は破線によって示される位置から実線によって示される位置に変化する。このため、制振装置100と主ロープ16との接触が避けられる。また、かご14の位置による制振装置100と主ロープ16との距離への影響が小さくなるので、かご14の位置による制振装置100の制振効果の変動が小さくなる。これにより、制振装置100は、安定してエレベーターロープを制振できる。
 続いて、図28を用いて、制振装置100の他の例を説明する。この例において、拘束部材51は、一対の磁石ユニット54の間に設けられる。拘束部材51は、機械室床28の上に設けられる。拘束部材51は、機械室床28の上において、水平面内において複数の主ロープ16が並ぶ方向の垂直な方向に自由に変位しうるように設けられる。拘束部材51は、機械室床28の上において変位しうる方向の両側に磁性体を有する。
 これにより、制振装置100の鉛直方向の設置スペースを抑制できる。また、平衡位置において、拘束部材51と磁石ユニット54との距離がかご14の位置によらない。このため、制振装置100の制振性能が安定する。
 図29は、制御ケーブル22を制振する制振装置100の例を示す図である。制御ケーブル22の一端は、昇降路の内壁の昇降路側端末48bによって接続される。制御ケーブル22の他端のかご側端末は、かご14に接続される。制御ケーブル22のかご14に接続される側の部分は、固定部48aによってかご14に固定される。固定部48aは、たとえばかご14の下部に設けられる。制御ケーブル22は、かご側端末がかご14の上部に接続される場合に、かご14の下部の固定部48aまで引き回わされてもよい。
 図30は、制御ケーブル22を制振する制振装置100の構成の例を示す図である。図30(a)において、制振装置100は、かご14の下部の固定部48aに設けられる。制振装置100は、例えば一対の磁石ユニット54と、制限部材8aと、を備える。制御ケーブル22が鉄などの磁性材料で形成される場合に、制御ケーブル22は、磁石ユニット54から受ける磁力によって制振される。一方、制御ケーブル22が例えば銅などの非磁性材料からなる場合に、制御ケーブル22は例えば強磁性体によって被覆されてもよい。これにより、制御ケーブル22は、磁石ユニット54から当該強磁性体が受ける磁力によって制振される。
 制振装置100は、制御ケーブル22を、例えばトグルリンク機構などの不安定なリンク機構によって制振してもよい。制振装置100は、リンク機構を載せる台を固定部48aの下方に備えてもよい。リンク機構に加える力は、例えば錘の重量、バネの弾性力または磁力のいずれであってもよい。
 図30(b)に示されるように、制振装置100は、昇降路側端末48bに設けられてもよい。制振装置100は、固定部48aおよび昇降路側端末48bの両方に設けられてもよい。
 このように、制振装置100は、エレベーターのかご14に接続される制御ケーブル22を制振対象のエレベーターロープとする。変位増幅器7は、制御ケーブル22の長手方向のいずれかの位置に沿って配置される。変位増幅器7は、制御ケーブル22の変位を増幅する。制限部材8は、変位増幅器7が第1変位より大きく制御ケーブル22の変位を増幅することを抑制する。これにより、制御ケーブル22の振動が低減される。
実施の形態3.
 本実施の形態では、エレベーターの1つ以上のシーブに巻きかけて折り返されるエレベーターロープを制振する制振装置100について説明する。
 図31は、実施の形態3に係るエレベーター装置の構成図である。なお、図31には建物揺れがなく振動が発生していない状態のエレベーター装置11が、模式的に示されている。この例において、エレベーター装置11は、2:1ローピング方式のエレベーターである。
 エレベーター装置11は、巻上機12と、そらせ車13と、を備える。乗客を乗せるかご14は、かご吊り車39aを上部に備える。釣り合い錘15は、釣り合い錘吊り車39bを上部に備える。主ロープ16の両端は、綱止め55によって昇降路の上部に固定される。主ロープ16は、かご14の側の綱止め55から釣り合い錘15の側の綱止め55の間において、かご吊り車39a、巻上機12、そらせ車13、および釣り合い錘吊り車39bの順に巻きかけられる。
 図32は、実施の形態3に係るエレベーター装置の構成図である。図32は、エレベーター装置11において、例えば地震または風などの外乱によって、建物揺れ23が発生した状態を表す。建物揺れ23が発生する場合に、建物に固定されている巻上機12、そらせ車13および図32に図示されない調速機19なども、同様に揺れる。これにより、エレベーターロープである主ロープ16、コンペンセーティングロープ17、調速機ロープ20および制御ケーブル22が加振される。この場合において、建物揺れ23の加振周波数と、エレベーターロープの固有振動数とが一致するときに共振現象によってエレベーターロープの揺れが大きくなる。図32に示す例において、主ロープ16bの固有振動数と、建物揺れの加振周波数とが一致することで、主ロープ16bに共振現象が発生している状態が示される。
 図33および図34において、かご吊り車39aの筐体40の上に設けられる制振装置100が示される。図33および図34は、実施の形態3に係る制振装置の側面図である。
 図33に示されるように、主ロープ16は、第1部分R1と第2部分R2との間においてかご吊り車39aに巻きかけられる。主ロープ16の第1部分R1は、シーブであるかご吊り車39aから引き出される部分である。主ロープ16の第2部分R2は、かご吊り車39aから引き出される部分である。第2部分R2は、第1部分R1の反対側から引き出される。第1部分R1と第2部分R2とは、互いに平行に引き出される。
 制振装置100は、変位増幅器7と、制限部材8aと、を備える。
 本実施の形態において、変位増幅器7は、パッシブな装置である。変位増幅器7は、主ロープ16の第1部分R1から第2部分R2にわたって配置される。変位増幅器は、一対の外側磁石ユニット56と、内側磁石ユニット57と、を備える。
 変位増幅器7は、一対の外側磁石ユニット56と、内側磁石ユニット57の少なくともいずれか一方を備える構成としてもよい。外側磁石ユニット56と、内側磁石ユニット57は、主ロープ16の長手方向に沿って異なる高さの位置に配置してもよい。また、外側磁石ユニット56と、内側磁石ユニット57は、主ロープ16の長手方向の位置に沿って複数配置してもよい。
 一対の外側磁石ユニット56の各々は、例えば単一の永久磁石である。一対の外側磁石ユニット56の各々は、主ロープ16の第1部分R1および第2部分を水平に結ぶ方向において、第1部分R1および第2部分R2の外側に配置される。一対の外側磁石ユニット56は、互いに磁極を向けて配置される。
 内側磁石ユニット57は、例えば単一の永久磁石である。内側磁石ユニット57は、主ロープ16の第1部分R1および第2部分R2の内側に配置される。内側磁石ユニット57の一方の磁極は、主ロープ16の第1部分R1を挟んで一対の外側磁石ユニット56の一方の磁極に対向する。内側磁石ユニット57の他方の磁極は、主ロープ16の第2部分R2を挟んで一対の外側磁石ユニット56の他方の磁極に対向する。
 制限部材8aは、例えば一組の非磁性体である。制限部材8aの非磁性体の一部は、一対の外側磁石ユニット56の各々の磁極と主ロープ16との間に設けられる。複数の制限部材8aの非磁性体の一部は、内側磁石ユニット57の磁極と主ロープ16との間に設けられる。制限部材8aの非磁性体の厚さは、例えば主ロープ16が第1変位で変位したときに主ロープ16が接触するように設定される。
 図34(a)に示されるように、内側磁石ユニット57は、主ロープ16の第1部分R1にS極を向ける。内側磁石ユニット57のS極に対向する外側磁石ユニット56は、主ロープ16の第1部分R1にS極を向ける。内側磁石ユニット57は、主ロープ16の第2部分R2にN極を向ける。内側磁石ユニット57のN極に対向する外側磁石ユニット56は、主ロープ16の第2部分R2にN極を向ける。すなわち、内側磁石ユニット57は、一対の外側磁石ユニット56の各々の磁極に同極を向けて対向する。なお、図34(b)に示されるように、一対の外側磁石ユニット56および内側磁石ユニット57は、S極とN極とを入れ替えて配置されてもよい。
 建物揺れ23によって主ロープ16が加振されるときに、主ロープ16の第1部分R1は、一対の外側磁石ユニット56の一方と内側磁石ユニット57との間の磁界によって、振動の変位が増幅される。また、主ロープ16の第2部分R2は、一対の外側磁石ユニット56の他方と内側磁石ユニット57との間の磁界によって、振動の変位が増幅される。また、主ロープ16は、第1変位で変位したときに制限部材8aに接触する。制限部材8aは、変位増幅器7が第1部分R1の変位を第1変位より大きく増幅することを抑制する。制限部材8aは、変位増幅器7が第2部分R2の変位を第1変位より大きく増幅することを抑制する。
 以上に説明したように、エレベーター装置11は、制振装置100を備える。制振装置100は、エレベーターのシーブに巻きかけて折り返されるエレベーターロープの振動を低減する。エレベーターロープは、例えば主ロープ16である。制振装置100は、変位増幅器7と、制限部材8aと、を備える。変位増幅器7は、主ロープの第1部分R1および第2部分R2にわたって配置される。主ロープ16の第1部分R1は、シーブから引き出される部分である。主ロープ16の第2部分R2は、シーブから引き出される第1部分R1と反対側の部分である。第1部分R1と第2部分R2とは、平行に引き出される。変位増幅器7は、主ロープ16の第1部分R1および第2部分R2の各々の変位を増幅する。変位増幅器7は、主ロープ16の第1部分R1および第2部分R2の各々の変位を増幅する。制限部材8aは、変位増幅器7が第1部分R1または第2部分R2の変位を第1変位より大きく増幅することを抑制する。第1変位は、主ロープ16が振動の平衡位置に戻らなくなる変位である。これにより、変位増幅器7を設けた主ロープ16の位置での振動の変位を不安定になることなく増加させ、制振効果を高めることができる。
 また、変位増幅器7は、一対の外側磁石ユニット56と、内側磁石ユニット57と、を備える。一対の外側磁石ユニット56は、主ロープ16の第1部分R1および第2部分R2を水平に結ぶ第1方向において第1部分R1および第2部分R2の外側に配置される。一対の外側磁石ユニット56は、互いに磁極を向けて配置される。内側磁石ユニット57は、第1部分R1および第2部分R2の内側に配置される。内側磁石ユニット57は、一対の外側磁石ユニット56の各々に両側の磁極を向けて配置される。制限部材8aは、一対の外側磁石ユニット56の各々の磁極と主ロープ16との間、および内側磁石ユニット57の両側の磁極と主ロープ16との間に配置される一組の非磁性体である。制限部材8aは、一対の外側磁石ユニット56および内側磁石ユニット57の各々の磁極に制限部材8aの厚さより近く主ロープ16が接近することを抑制する。このため、制限部材8aの厚さを主ロープ16が第1変位で変位したときに主ロープ16が接触する厚さより厚くすることによって、制振装置100による主ロープ16の制振が安定して行われる。また、変位増幅器7は、主ロープ16の変位を非接触で増幅する。これにより、変位の増幅によって主ロープ16などが磨耗することを抑制できる。また、内側磁石ユニット57は、主ロープ16の第1部分R1および第2部分R2の両方の変位を増幅する。これにより、主ロープ16の第1部分R1および第2部分R2の振動を個々に抑制する制振装置を設けるより、少ない部品点数で制振装置100を構成できる。
 また、内側磁石ユニット57は、一対の外側磁石ユニット56の各々の磁極に同極を向けて対向する。これにより、一対の外側磁石ユニット56の各々と内側磁石ユニット57とは、互いに反発する。このため、一対の外側磁石ユニット56の各々と内側磁石ユニット57との間の間隙は、磁力によって閉じない。これにより、一対の外側磁石ユニット56および内側磁石ユニット57について、磁力による引力を考慮した強固な固定をする必要がない。
 図35は、実施の形態3に係る制振装置の側面図である。図35には、制振装置100の他の例が示される。主ロープ16の横方向の変位を効率よく増幅するために、主ロープ16は、一対の外側磁石ユニット56の各々と内側磁石ユニット57との間の間隙の中央に配置されることが好ましい。すなわち、ギャップ寸法は、ld1=ld2およびld3=ld4の条件を満たすことが好ましい。ここで、ld1は、主ロープ16の第1部分R1と第1部分R1に面する外側磁石ユニット56の磁極との間のギャップ寸法である。ld2は、主ロープ16の第1部分R1と第1部分R1に面する内側磁石ユニット57の磁極との間のギャップ寸法である。ld3は、主ロープ16の第2部分R2と第2部分R2に面する内側磁石ユニット57の磁極との間のギャップ寸法である。ld4は、主ロープ16の第2部分R2と第2部分R2に面する外側磁石ユニット56の磁極との間のギャップ寸法である。ここで、ギャップ寸法がld1=ld2=ld3=ld4の条件を満たすように、一対の外側磁石ユニット56および内側磁石ユニット57を配置してもよい。
 例えば内側磁石ユニット57は、永久磁石24と一対の磁性体47と、を備える。一対の磁性体47は、永久磁石24の各々の磁極に配置される。このとき、内側磁石ユニット57の磁極は、一対の磁性体47の永久磁石24と反対側の面である。一対の磁性体47の厚さは、例えばかご吊り車39aの径の大きさと永久磁石24の長さなどの寸法に応じて、ld1=ld2およびld3=ld4の条件を満たすように設定される。制限部材8aは、内側磁石ユニット57の磁極に設けられる。磁性体47は、永久磁石24の磁極と制限部材8aとの間に配置される。
 このように、内側磁石ユニット57は、主ロープ16の第1部分R1を挟んで対向する外側磁石ユニット56との間のギャップ幅が、主ロープ16の第2部分R2を挟んで対向する外側磁石ユニット56との間のギャップ幅に等しくなる位置に配置される。このとき、主ロープ16の第1部分R1が通る外側磁石ユニット56および内側磁石ユニット57の間のギャップの幅は、主ロープ16の第2部分R2が通る外側磁石ユニット56および内側磁石ユニット57の間のギャップの幅に等しい。これにより、主ロープ16の横方向の変位が両側に対称に増幅される。このため、主ロープ16の横方向の変位が効率よく増幅される。
 また、内側磁石ユニット57は、永久磁石24と、磁性体47と、を備える。永久磁石24は、エレベーターロープの第1部分および第2部分を水平に結ぶ第1方向に磁極を向ける。磁性体47は、永久磁石24の磁極に配置される。磁性体47は、内側磁石ユニット57の第1方向の長さを調整する。これにより、例えばかご吊り車39aの径の大きさまたは永久磁石24の長さなどの寸法に応じて、主ロープ16の横方向の変位が効率よく増幅されるように内側磁石ユニット57の構成を設定できる。
 図36は、実施の形態3に係る制振装置の側面図である。図36には、制振装置100の他の例が示される。主ロープ16の横方向の変位に対する変位増幅力を効果的に作用させるために、主ロープ16の両側に設置された磁石ユニットの起磁力は等しいことが好ましい。ここで、磁石ユニットの起磁力は、磁石ユニットの磁極方向の長さlによって決まる。すなわち、一対の外側磁石ユニット56の各々の磁極方向の長さと、内側磁石ユニット57との磁極方向の長さとが等しいことが好ましい。
 内側磁石ユニット57は、永久磁石24と一対の磁性体47と、を備える。一対の磁性体47は、永久磁石24の各々の磁極に配置される。このとき、内側磁石ユニット57の磁極は、一対の磁性体47の永久磁石24と反対側の面である。一対の磁性体47の厚さは、内側磁石ユニット57の磁極方向の長さがlとなるように設定される。制限部材8aは、内側磁石ユニット57の磁極に設けられる。磁性体47は、永久磁石24の磁極と制限部材8aとの間に配置される。
 一対の外側磁石ユニット56の各々は、永久磁石24と一対の磁性体47と、を備える。一対の磁性体47は、永久磁石24の各々の磁極に配置される。このとき、一対の外側磁石ユニット56の各々の磁極は、一対の磁性体47の永久磁石24と反対側の面である。一対の磁性体47の厚さは、一対の外側磁石ユニット56の各々の磁極方向の長さが、内側磁石ユニット57の磁極方向の長さlに等しくなるように設定される。制限部材8aは、一対の外側磁石ユニット56の各々の磁極に設けられる。磁性体47は、永久磁石24の磁極と制限部材8aとの間に配置される。
 このように、一対の外側磁石ユニット56の各々のエレベーターロープの第1部分および前記第2部分を水平に結ぶ第1方向の長さは、内側磁石ユニット57の第1方向の長さに等しい。これにより、エレベーターロープの両側に設置された磁石ユニットの起磁力が等しくなる。このため、エレベーターロープの横方向の変位に対する変位増幅力が効果的に作用する。
 図37は、実施の形態3に係る制振装置の側面図である。図37には、制振装置100の他の例が示される。図37(a)に示されるように、一対の外側磁石ユニット56の各々は、外側ヨーク58と、第1外側永久磁石60aと、第2外側永久磁石60bと、を備える。外側ヨーク58は、主ロープ16の第1部分R1または第2部分R2に平行な第2方向に沿って配置される。第1外側永久磁石60aは、主ロープ16の方向から外側ヨーク58の上端に磁極を向ける。第2外側永久磁石60bは、主ロープ16の方向から外側ヨーク58の下端に第1外側永久磁石60aと反対の磁極を向ける。外側磁石ユニット56の磁極は、例えば第1外側永久磁石60aおよび第2外側永久磁石60bの各々の外側ヨーク58に向けられていない方の磁極である。
 内側磁石ユニット57は、内側ヨーク59と、第1内側永久磁石61aと、第2内側永久磁石61bと、を備える。内側ヨーク59は、主ロープ16の第1部分R1または第2部分R2に平行な第2方向に沿って配置される。第1内側永久磁石61aは、内側ヨーク59の上端において、一対の外側磁石ユニット56の各々の第1外側永久磁石60aの磁極に同極を向けて対向する。第2内側永久磁石61bは、内側ヨーク59の下端において、一対の外側磁石ユニット56の各々の第2外側永久磁石60bの磁極に同極を向けて対向する。
 一対の外側磁石ユニット56の各々は、主ロープ16の側に磁界を形成する。外側ヨーク58は、第1外側永久磁石60aと第2外側永久磁石60bとの間に磁気回路を形成する。このため、一対の外側磁石ユニット56の外側において、漏れ磁束が抑制される。
 このように、一対の外側磁石ユニット56の各々は、外側ヨーク58と、第1外側永久磁石60aと、第2外側永久磁石60bと、を備える。外側ヨーク58は、エレベーターロープの第1部分または第2部分に平行な第2方向に沿って配置される。第1外側永久磁石60aは、エレベーターロープの方向から外側ヨーク58の一端に磁極を向ける。第2外側永久磁石60bは、第1外側永久磁石60aと同じ方向から外側ヨーク58の他端に第1外側永久磁石60aと反対の磁極を向ける。内側磁石ユニット57は、内側ヨーク59と、第1内側永久磁石61aと、第2内側永久磁石61bと、を備える。内側ヨーク59は、第2方向に沿って配置される。第1内側永久磁石61aは、内側ヨーク59の一端において、一対の外側磁石ユニット56の各々の第1外側永久磁石60aの磁極に同極を向けて対向する。第2内側永久磁石61bは、内側ヨーク59の他端において、一対の外側磁石ユニット56の各々の第2外側永久磁石60bの磁極に同極を向けて対向する。これにより、変位増幅器7の磁石ユニットからの漏れ磁束が周辺の機器の動作に影響を与えることを抑えられる。また、磁束の漏れが減少することで、エレベーターロープに向けられる磁束の量が増える。これにより、エレベーターロープの変位増幅がより効果的に行われる。したがって、制振性能が向上する。
 なお、図37(b)に示されるように、内側磁石ユニット57は、内側ヨーク59の上端に、一対の永久磁石24cを備えてもよい。一対の永久磁石24cは、内側ヨーク59の上端を挟んで配置される。内側磁石ユニット57は、内側ヨーク59の下端に、一対の永久磁石24dを備えてもよい。一対の永久磁石24dは、内側ヨーク59の下端を挟んで配置される。
 図38は、実施の形態3に係る制振装置の側面図である。図38に示されるように、変位増幅器7は、主ロープ16の第1部分R1および第2部分R2の各々に対して一対の磁石ユニット54を備えてもよい。
 図39は、実施の形態3に係る制振装置の側面図である。図39には、制振装置100の他の例が示される。制振装置100は、磁気シールド46を備える。磁気シールド46は、強磁性体で形成される。あるいは、磁気シールド46の表面は、強磁性体で覆われる。これにより、磁気シールド46は、強磁性を有する。ここで、磁気シールド46に用いられる強磁性体は、例えば板金またはパーマロイなどの磁気シールド材として通常用いられる物質である。
 このように、制振装置100は、磁気シールド46を備える。磁気シールド46は、強磁性を有する。これにより、変位増幅器7の磁石ユニットからの漏れ磁束が周辺の機器の動作に影響を与えることを抑えられる。
 図40は、実施の形態3に係る制振装置の側面図である。図40は、制振装置100の他の例を示す図である。図40(a)に示されるように、一対の外側磁石ユニット56の各々および内側磁石ユニット57は、3つ以上の永久磁石24を備えてもよい。3つ以上の永久磁石24は、例えば主ロープ16に沿った方向において、交互に反対の磁極が主ロープ16に向くように並ぶ。
 また、外側ヨーク58は、主ロープ16に向く側の面に溝を有する。外側ヨーク58の溝は、外側磁石ユニット56の永久磁石24の形状に合わせて加工される。これにより、主ロープ16が延びる方向において隣り合う一対の永久磁石24の間の引力によって当該一対の永久磁石24が誤って互いにくっつくことが抑制される。このため、永久磁石24が取り付けやすくなる。
 また、図40(b)に示されるように、変位増幅器7は、主ロープ16の第1部分R1および第2部分R2の各々に対して、3つ以上の永久磁石24を備えた一対の磁石ユニット54を備えてもよい。
 図41から図43は、制振装置100の他の例を示す図である。図41は、実施の形態3に係る制振装置の側面図である。図42は、実施の形態3に係る制振装置の斜視図である。図43は、実施の形態3に係る制振装置の上面図である。
 制振装置100は、振動減衰器を備える。振動減衰器は、コイル26と、電気抵抗27と、を備える。コイル26は、外側ヨーク58および内側ヨーク59に巻きつけられる。電気抵抗27は、コイル26に電気的に接続される。
 このとき、主ロープ16の変位が変化することに伴って、外側ヨーク58および内側ヨーク59を通過する磁束が変化する。これにより、電磁誘導現象によってコイル26に電圧が発生する。これにより、電気抵抗27に電流が流れる。このように主ロープ16の振動のエネルギーは、電気抵抗27におけるジュール熱として消散される。したがって、振動減衰器は、主ロープ16の振動を減衰させる。
 図44は、実施の形態3に係る制振装置の斜視図である。図44は、制振装置100の他の例を示す図である。制振装置100が制振する構造体は、複数の主ロープ16である。複数の主ロープ16の各々の第1部分R1は、1つの鉛直面内において水平方向の一方向に並ぶ。この例において、鉛直面はxz平面である。複数の主ロープ16の各々は、z方向に並ぶ。複数の主ロープ16の各々の第2部分R2は、複数の主ロープ16の各々の第1部分R1を含む鉛直面と平行な鉛直面内に並ぶ。
 変位増幅器7の永久磁石24は、複数の主ロープ16の水平方向に並ぶ第1部分R1または第2部分R2に磁極を向ける。永久磁石24の磁極は、第1部分R1または第2部分R2を含む鉛直面に平行に配置される。永久磁石24の水平方向の幅は、第1部分R1または第2部分R2が並ぶ水平方向の幅より広い。これにより、複数の主ロープ16の振動の変位を増幅することができる。
 図45および図46は、制振装置100の他の例を示す図である。図45は、実施の形態3に係る制振装置の側面図である。図46は、実施の形態3に係る制振装置の上面図である。図45に示されるように、変位増幅器7は、不安定なリンク機構によって第1部分R1または第2部分R2の変位を増幅してもよい。変位増幅器7は、主ロープ16aの第1部分R1および第2部分R2の各々について、一対のトグルリンク機構31と、ロープ拘束部材32と、を備える。
 図46に示されるように、ロープ拘束部材32は、一対のローラー45を備える。一対のローラー45は、複数の主ロープ16aの各々を挟むように水平方向の両側から接触する。一対のローラー45の回転軸は、複数の主ロープ16aが並ぶ方向に向けられる。
 図47および図48は、制振装置100の他の例を示す図である。図47は、実施の形態3に係る制振装置の側面図である。図48は、実施の形態3に係る制振装置の斜視図である。この例において、制振装置100が制振する構造体は、一本の主ロープ16である。
 制振装置100は、主ロープ16の第1部分R1および第2部分R2について、一対のローラーユニット41を備える。一対のローラーユニット41の各々は、ボックス41aと、複数のローラー41cと、一対のリンク41eと、を備える。
 一対のローラーユニット41の一方のボックス41aは、一対の外側磁石ユニット56の一方と内側磁石ユニット57との間に配置される。一対のローラーユニット41の他方のボックス41aは、一対の外側磁石ユニット56の他方と内側磁石ユニット57との間に配置される。ボックス41aは、例えば上下に開口を有する筒状の部材である。ボックス41aは、強磁性体で形成される。あるいは、ボックス41aは、表面に強磁性体が取付けられることによって強磁性を有してもよい。
 複数のローラー41cの各々は、ボックス41aの内側に配置される。複数のローラー41cは、例えば、ボックス41aの上部および下部の各々に配置される一対のローラーである。ボックス41aの上部に配置される一対のローラー41cは、主ロープ16の水平方向の両側から主ロープ16に接触する。ボックス41aの下部に配置される一対のローラー41cは、主ロープ16の水平方向の両側から主ロープ16に接触する。複数のローラー41cは、かご14の移動にともなう主ロープ16の上下方向の移動に対し、回転することで主ロープ16を案内する。
 一対のリンク41eの各々は、棒状の部材である。一対のリンク41eは、上端にジョイント41bを備える。一対のリンク41eの各々は、上端のジョイント41bによってボックス41aを回転可能に支持する。一対のリンク41eの各々は、下端にジョイント41dを備える。一対のリンク41eの各々は、下端のジョイント41dによって筐体40に回転可能に支持される。ジョイント41bおよびジョイント41dは、回転に抗して摩擦力を発生させる。一対のリンク41eの各々は、第1部分R1および前記第2部分R2を水平に結ぶ第1方向に変位可能にボックス41aを支持する。
 第1部分R1または第2部分R2が振動によって第1方向に変位すると、複数のローラー41cを通じてボックス41aが第1方向に変位する。強磁性を有するボックス41aの第1方向の変位は、外側磁石ユニット56および内側磁石ユニット57からの磁力によって増幅される。ボックス41aは、複数のローラー41cを通じて主ロープ16の変位を増幅させる。
 ボックス41aが変位するときに、ジョイント41bおよびジョイント41dは回転する。このとき、ジョイント41bおよびジョイント41dを支点とする運動のエネルギーは、摩擦熱として消散される。これにより、ジョイント41bおよびジョイント41dは、振動減衰器として機能する。
 以上のように、制振装置100は、一対のローラーユニット41を備える。一対のローラーユニット41の各々は、主ロープ16の第1部分R1および第2部分R2の各々について設けられる。一対のローラーユニット41の各々は、ボックス41aと、一対のローラー41cと、リンク41eと、を備える。ボックス41aは、強磁性を有する。ボックス41aは、一対の外側磁石ユニット56のいずれかと内側磁石ユニット57との間に配置される。一対のローラー41cは、ボックス41aの内側において主ロープ16に垂直な方向の両側から主ロープ16に接触する。リンク41eは、ボックス41aを第1方向に変位可能に支持する。これにより、強磁性を有していない主ロープ16についても、変位増幅器7の磁石ユニットは、強磁性を有するボックス41aを介して変位の増幅をすることができる。また、主ロープ16は、一対のローラー41cを介して変位増幅器7から力を受ける。これにより、主ロープ16の磨耗が抑制される。
 また、リンク41eは、回転可能なジョイントを介してボックス41aを支持する。リンク41eは、ジョイントの回転にともなう摩擦によって主ロープ16の振動を減衰させる。これにより、効率よく振動エネルギーが消散される。このため、高い制振効果が得られる。
 なお、一対のリンク41eは、例えばゲルなどの衝撃吸収材を介して筐体40に支持されてもよい。一対のリンク41eは、例えばゲルなどの衝撃吸収材を介して筐体40を支持してもよい。
 図49および図50は、制振装置100の他の例を示す図である。図49は、実施の形態3に係る制振装置の斜視図である。図50は、実施の形態3に係る制振装置の上面図である。この例において、制振装置100が制振する構造体は、複数の主ロープ16である。
 一対のローラー41cの各々の回転軸は、複数の主ロープ16が並ぶ方向に平行な方向に向けられる。一対のローラー41cは、回転軸に垂直な方向の両側から複数の主ロープ16の各々に接触する。一対のローラー41cの各々は、接触する複数の主ロープ16の各々の間の水平方向の距離を一定に保つように、側面に溝状のガイドを有する。
 このように、エレベーターロープが水平方向に一列に並ぶ複数の主ロープ16である場合において、ローラー41cは、複数の主ロープ16が並ぶ方向に平行な回転軸を有する。これにより、一対のローラーユニット41の各々は、接触する複数の主ロープ16の各々の間の水平方向の距離を一定に保つ拘束部材として機能する。このため、複数の主ロープ16の各々の張力のばらつきによる制振性能の低下が抑えられる。
 図51は、実施の形態3に係る制振装置の上面図である。図51は、制振装置100の他の例を示す図である。制振装置100は、複数の主ロープ16が並ぶ方向において対向する一対の磁石ユニット54を備えてもよい。これにより、制振装置100は、水平面内の二方向から主ロープ16の振動を抑制できる。なお、図51における磁石ユニット54の配置は一例であり、この例に限られない。例えば、制振装置100は、複数の磁石ユニット54を備える。複数の磁石ユニット54の磁極は、一対のローラーユニット41の各々を囲うように、互いに異なる方向からローラーユニット41に向けられる構成としてもよい。複数の磁石ユニット54の各々の配置は主ロープ16の長手方向に沿って異なる高さの位置に配置してもよい。
 図52は、実施の形態3に係るエレベーター装置の構成図である。図52は、制振装置100の他の例を示す図である。図52(a)に示されるように、制振装置100は、機械室29に設けられる。図52(b)に示されるように、主ロープ16は、巻上機12のシーブと、シーブであるそらせ車13と、に巻きかけられる。主ロープ16の第1部分R1は、例えば巻上機12のシーブから引き出される部分である。主ロープ16の第2部分R2は、例えばそらせ車13のシーブから引き出される部分である。このように、主ロープ16は、複数のシーブに巻きかけられて折り返されてもよい。
 図53は、実施の形態3に係る制振装置の側面図である。図53は、制振装置100の他の例を示す図である。制振装置100は、コンペンセーティングロープ17を制振する。コンペンセーティングロープ17は、釣合車18aに巻きかけて折り返される。制振装置100は、釣合車18aの筐体18bの上に設けられる。
 図54は、実施の形態3に係るエレベーター装置の構成図である。図54は、制振装置100の他の例を示す図である。制振装置100は、調速機ロープ20を制振する。図54(a)に示されるように、制振装置100は、機械室29に設けられる。図54(b)に示されるように、調速機ロープ20は、調速機19のシーブに巻きかけられる。制振装置100は、調速機19の下方に設けられる。
 本発明に係る制振装置は、エレベーター装置に適用できる。本発明に係るエレベーター装置は、複数の階を有する建物に適用できる。
 1,1a,1b,1c,1d,1e 構造体、 2,2a,2b,2c 固定面、 3 加振力、 4 ダンパー、 5a,5b 距離、 6a,6b,6c 振幅、 7 変位増幅器、 71 負剛性部、 8,8a,8b,8c,8d 制限部材、 9 連結部、 10 正剛性部(弾性体)、 11 エレベーター装置、 12 巻上機、 13 そらせ車、 14 かご、 15 釣り合い錘、 16,16a,16b 主ロープ、 17 コンペンセーティングロープ、 18,18a 釣合車、 18b 筐体、 19 調速機、 20 調速機ロープ、 21 張り車、 22 制御ケーブル、 23 建物揺れ、 24,24a,24b 永久磁石、 25 ヨーク、 26 コイル、 27 電気抵抗、 28 機械室床、 28a ロープダクト、 29 機械室、 30 固定部材、 31 トグルリンク機構、 31a 錘、 31b リンク、 31c 回転支点、 32 ロープ拘束部材、 33 直動ガイド、 34 かご上梁、 35 シャックルばね、 36 シャックルロッド、 37 強磁性体、 38 制限部材、 39a かご吊り車、 39b 釣り合い錘吊り車、 40 筐体、 41 ローラーユニット、 41a ボックス、 41c ローラー、 41e リンク、 41b,41d ジョイント、 45 ローラー、 46 磁気シールド、 47 磁性体、 48a 固定部、 48b 昇降路側端末、 50 支持台、 51 拘束部材、 52 土台、 53 ローラー、 54 磁石ユニット、 55 綱止め、 56 外側磁石ユニット、 57 内側磁石ユニット、 58 外側ヨーク、 59 内側ヨーク、 60a 第1外側永久磁石、 60b 第2外側永久磁石、 61a 第1内側永久磁石、 61b 第2内側永久磁石

Claims (32)

  1.  長尺の構造体の振動を低減する制振装置において、
     前記構造体の長手方向のいずれかの位置に沿って配置され、前記構造体の変位を増幅する変位増幅器と、
     前記構造体が前記振動の平衡位置に戻らなくなる第1変位より大きく前記構造体の変位を前記変位増幅器が増幅することを抑制する制限部材と、
     を備える制振装置。
  2.  前記変位増幅器は、前記構造体の前記振動の節との間の距離が前記構造体の前記振動の腹との間の距離より短く0より長い位置に配置される
     請求項1に記載の制振装置。
  3.  前記変位増幅器は、前記構造体の変位が大きくなるのに応じて大きな弾性力を印加する負剛性を発揮する機械的構造を有する
     請求項1または請求項2に記載の制振装置。
  4.  前記制限部材は、正剛性を有する弾性体で構成される
     請求項1から請求項3のいずれか一項に記載の制振装置。
  5.  前記制限部材は、前記構造体の固定位置と前記変位増幅器が変位を増幅する連結位置との間の前記構造体の前記変位の方向の等価剛性による力を超えないように前記変位増幅器の増幅を抑制する
     請求項1から請求項4のいずれか一項に記載の制振装置。
  6.  前記制限部材は、前記第1変位を、前記変位増幅器が発揮する力が前記構造体の固定位置と前記変位増幅器が前記構造体の変位を増幅する連結位置との間の前記構造体の変位の方向の等価剛性による力を超えるときの変位として、前記変位増幅器による前記構造体の変位の増幅を抑制する
     請求項1から請求項4のいずれか一項に記載の制振装置。
  7.  前記変位増幅器は、前記構造体の前記振動の変位の方向であって変位している向きの力の成分を作用させる
     請求項1から請求項6のいずれか一項に記載の制振装置。
  8.  前記構造体の前記振動を減衰させる振動減衰器
     を備える請求項1から請求項7のいずれか一項に記載の制振装置。
  9.  前記構造体がエレベーターロープである場合において、
     前記変位増幅器は、前記エレベーターロープの長手方向のいずれかの位置に沿って配置され、前記エレベーターロープの変位を増幅し、
     前記制限部材は、前記エレベーターロープの変位を前記第1変位より大きく前記変位増幅器が増幅することを抑制する
    請求項1に記載の制振装置。
  10.  前記変位増幅器は、前記エレベーターロープの前記振動の節との間の距離が前記エレベーターロープの前記振動の腹との間の距離より短く0より長い位置に配置される
     請求項9に記載の制振装置。
  11.  前記エレベーターロープがエレベーターのかご及び釣り合い錘に接続されてシーブに巻かれた主ロープである場合において、
     前記変位増幅器は、前記主ロープの長手方向のいずれかの位置に沿って配置され、前記主ロープの変位を増幅し、
     前記制限部材は、前記主ロープの変位を前記第1変位より大きく前記変位増幅器が増幅することを抑制する
    請求項9または請求項10に記載の制振装置。
  12.  前記変位増幅器は、前記かごもしくは前記釣り合い錘または前記シーブとの間の距離が前記主ロープの両側の固定位置の間の中点との間の距離より短く0より長い位置に配置される
     請求項11に記載の制振装置。
  13.  前記制限部材は、前記主ロープの張力によって前記主ロープが平衡位置に戻るための力より前記変位増幅器の発揮する力が小さくなるように前記主ロープの変位を前記変位増幅器が増幅することを抑制する
     請求項11または請求項12に記載の制振装置。
  14.  前記変位増幅器および前記制限部材は、前記主ロープの張力をT、前記かごまたは前記釣り合い錘と前記主ロープとの接続点から前記変位増幅器が配置される位置までの距離をx、および前記主ロープの全長をL、としたときの次の不等式
    Figure JPOXMLDOC01-appb-I000001
    を満たす弾性係数Kによる力を発揮することで前記主ロープの変位を増幅する
     請求項11から請求項13のいずれか一項に記載の制振装置。
  15.  前記制限部材は、前記第1変位を、前記かごが空の状態でエレベーターの最上階にあるときの前記主ロープにかかる張力を前記主ロープの固定位置から前記主ロープと前記変位増幅器との連結位置までの距離で除した値の弾性係数による力を発揮する変位として、前記変位増幅器による前記主ロープの変位の増幅を抑制する
     請求項11から請求項14のいずれか一項に記載の制振装置。
  16.  前記エレベーターロープがエレベーターのかご及び釣り合い錘に接続されてシーブに巻かれた複数の主ロープである場合において、
     前記複数の主ロープの各々の間の水平方向の距離を一定に保つ拘束部材
     を備える請求項9または請求項10に記載の制振装置。
  17.  前記拘束部材は、前記複数の主ロープの各々に固定される
     請求項16に記載の制振装置。
  18.  前記複数の主ロープが水平方向に一列に並ぶ場合において、
     前記拘束部材は、前記複数の主ロープが並ぶ方向に平行な回転軸を有し前記回転軸に垂直な方向の両側から前記複数の主ロープの各々に接触する一対のローラーを備える
     請求項16に記載の制振装置。
  19.  前記エレベーターロープがエレベーターのかごに接続される制御ケーブルである場合において、
     前記変位増幅器は、前記制御ケーブルの長手方向のいずれかの位置に沿って配置され、前記制御ケーブルの変位を増幅し、
     前記制限部材は、前記制御ケーブルの変位を前記第1変位より大きく前記変位増幅器が増幅することを抑制する
    請求項9または請求項10に記載の制振装置。
  20.  前記変位増幅器は、前記エレベーターロープの平衡位置から遠ざかる方向に、前記エレベーターロープの横変位に応じた力を発揮する負剛性部材で構成される
     請求項9から請求項19のいずれか一項に記載の制振装置。
  21.  前記変位増幅器は、少なくとも1つの磁石ユニットを備え、
     前記制限部材は、前記磁石ユニットの磁極と前記エレベーターロープとの間に配置される非磁性体である
     請求項9から請求項20のいずれか一項に記載の制振装置。
  22.  前記変位増幅器は、互いに磁極を向けて前記エレベーターロープを挟んで対向する一対の磁石ユニットを備え、
     前記制限部材は、前記一対の磁石ユニットの各々の磁極と前記エレベーターロープとの間に配置される一対の非磁性体である
     請求項9から請求項20のいずれか一項に記載の制振装置。
  23.  前記一対の磁石ユニットは、互いに同極を向けて対向する
     請求項22に記載の制振装置。
  24.  前記一対の磁石ユニットの各々は、前記エレベーターロープに平行な方向に沿って配置されるヨークと、前記エレベーターロープの方向から前記ヨークの一端に磁極を向ける第1永久磁石と、前記第1永久磁石と同じ方向から前記ヨークの他端に反対の磁極を向ける第2永久磁石と、を備える
     請求項22または請求項23に記載の制振装置。
  25.  前記制限部材は、前記エレベーターロープに接触するローラーを備える
     請求項9から請求項24のいずれか一項に記載の制振装置。
  26.  前記変位増幅器は、1つ以上のリンクの変位によって負剛性力を発生させる不安定なリンク機構を有し、
     前記制限部材は、前記1つ以上のリンクの少なくともいずれかの変位を抑制する
     請求項9から請求項20のいずれか一項に記載の制振装置。
  27.  前記リンク機構は、前記エレベーターロープを挟んで配置される一対のトグルリンク機構である
     請求項26に記載の制振装置。
  28.  前記変位増幅器は、前記エレベーターロープに接触するローラーを備える
     請求項9から請求項20、請求項26、または請求項27のいずれか一項に記載の制振装置。
  29.  前記エレベーターロープの前記振動を減衰させる振動減衰器
     を備える請求項9から請求項28のいずれか一項に記載の制振装置。
  30.  前記エレベーターロープの前記振動を減衰させる振動減衰器
     を備え、
     前記振動減衰器は、前記一対の磁石ユニットの少なくともいずれかを通る磁束が通されるコイルと、前記コイルに電気的に接続される電気抵抗と、を備える
     請求項22から請求項24のいずれか一項に記載の制振装置。
  31.  前記エレベーターロープの前記振動を減衰させる振動減衰器
     を備え、
     前記振動減衰器は、前記一対の磁石ユニットの少なくともいずれかの前記ヨークに巻きつけられるコイルと、前記コイルに電気的に接続される電気抵抗と、を備える
     請求項24に記載の制振装置。
  32.  請求項9から請求項31のいずれか一項に記載の制振装置
     を備えるエレベーター装置。
PCT/JP2018/044400 2018-05-15 2018-12-03 制振装置およびエレベーター装置 WO2019220669A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207032183A KR102479368B1 (ko) 2018-05-15 2018-12-03 제진 장치 및 엘리베이터 장치
US17/051,786 US12103823B2 (en) 2018-05-15 2018-12-03 Vibration damping device and elevator apparatus
CN201880093149.5A CN112088260B (zh) 2018-05-15 2018-12-03 减振装置和电梯装置
JP2020518955A JP6992886B2 (ja) 2018-05-15 2018-12-03 制振装置およびエレベーター装置
DE112018007620.2T DE112018007620T5 (de) 2018-05-15 2018-12-03 Vibrationsdämpfungsvorrichtung und Aufzugsvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018093797 2018-05-15
JP2018-093797 2018-05-15

Publications (1)

Publication Number Publication Date
WO2019220669A1 true WO2019220669A1 (ja) 2019-11-21

Family

ID=68539871

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/JP2018/044400 WO2019220669A1 (ja) 2018-05-15 2018-12-03 制振装置およびエレベーター装置
PCT/JP2018/044402 WO2019220671A1 (ja) 2018-05-15 2018-12-03 揺れ量推定システムおよびエレベーター装置
PCT/JP2018/044403 WO2019220672A1 (ja) 2018-05-15 2018-12-03 制振システムおよびエレベーター装置
PCT/JP2018/044401 WO2019220670A1 (ja) 2018-05-15 2018-12-03 制振装置およびエレベーター装置

Family Applications After (3)

Application Number Title Priority Date Filing Date
PCT/JP2018/044402 WO2019220671A1 (ja) 2018-05-15 2018-12-03 揺れ量推定システムおよびエレベーター装置
PCT/JP2018/044403 WO2019220672A1 (ja) 2018-05-15 2018-12-03 制振システムおよびエレベーター装置
PCT/JP2018/044401 WO2019220670A1 (ja) 2018-05-15 2018-12-03 制振装置およびエレベーター装置

Country Status (6)

Country Link
US (4) US12098059B2 (ja)
JP (4) JP7036206B2 (ja)
KR (4) KR102493096B1 (ja)
CN (4) CN112088260B (ja)
DE (4) DE112018007620T5 (ja)
WO (4) WO2019220669A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7036206B2 (ja) 2018-05-15 2022-03-15 三菱電機株式会社 揺れ量推定システムおよびエレベーター装置
US11292693B2 (en) 2019-02-07 2022-04-05 Otis Elevator Company Elevator system control based on building sway
CN114667263B (zh) 2019-11-06 2024-07-30 三菱电机株式会社 电梯的索条体的减振装置
DE102020132869A1 (de) 2020-12-09 2022-06-09 Schäfer Elektrotechnik U. Sondermaschinen Gmbh Anordnung, umfassend ein Zugmittel und eine Führung
CN113086808B (zh) * 2021-04-30 2022-05-03 天津市滨海新区检验检测中心 电梯安全监测机构与系统
CN113898693B (zh) * 2021-10-22 2024-04-19 合肥工业大学 减振执行器
CN117077377B (zh) * 2023-07-21 2024-07-30 中南大学 一种负刚度超结构梁的全带隙调控方法及负刚度超结构梁

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10504088A (ja) * 1994-04-18 1998-04-14 ミネソタ マイニング アンド マニュファクチャリング カンパニー 同調質量体ダンパー
JP2007309411A (ja) * 2006-05-18 2007-11-29 Kyoto Univ ワイヤーの動吸振装置
WO2010013597A1 (ja) * 2008-07-30 2010-02-04 三菱電機株式会社 エレベータ装置
JP2014190507A (ja) * 2013-03-28 2014-10-06 Railway Technical Research Institute 負剛性ダンパー

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51102850A (ja) * 1975-03-05 1976-09-10 Hitachi Ltd
JPH0326682A (ja) * 1989-06-26 1991-02-05 Hitachi Elevator Eng & Service Co Ltd 懸垂条体の制振装置
JPH0351279A (ja) 1989-07-17 1991-03-05 Hitachi Elevator Eng & Service Co Ltd 懸垂条体の制振装置
US5558191A (en) 1994-04-18 1996-09-24 Minnesota Mining And Manufacturing Company Tuned mass damper
US5492312A (en) 1995-04-17 1996-02-20 Lord Corporation Multi-degree of freedom magnetorheological devices and system for using same
JP4252330B2 (ja) 2003-02-21 2009-04-08 東芝エレベータ株式会社 エレベータロープの制振装置
JP4776281B2 (ja) 2005-06-23 2011-09-21 東芝エレベータ株式会社 エレベータのロープ制振装置及びロープ制振装置の取付構造
JP2007119185A (ja) 2005-10-28 2007-05-17 Toshiba Elevator Co Ltd エレベータのガバナロープ制振装置
CN101346557B (zh) * 2005-12-21 2013-10-23 翁令司工业股份有限公司 负刚性装置以及具备该负刚性装置的免震结构物
JP5083203B2 (ja) * 2006-03-01 2012-11-28 三菱電機株式会社 エレベータの管制運転装置
JP4399438B2 (ja) * 2006-06-16 2010-01-13 株式会社日立製作所 エレベーター装置
FI20060627L (fi) 2006-06-28 2007-12-29 Kone Corp Järjestely vastapainottomassa hississä
CN100417583C (zh) * 2006-08-11 2008-09-10 西子奥的斯电梯有限公司 无机房电梯
JP5018045B2 (ja) 2006-11-29 2012-09-05 三菱電機株式会社 エレベータのロープ横揺れ検出装置
FI119147B (fi) * 2007-05-25 2008-08-15 Kone Corp Järjestely vetopyörähissin köysivoimien tasaamiseksi
JP5388054B2 (ja) * 2008-01-16 2014-01-15 東芝エレベータ株式会社 エレベータ制振装置を備えるエレベータ
JP2010018373A (ja) * 2008-07-09 2010-01-28 Hitachi Ltd エレベーターのロープ制振装置
JP2010070298A (ja) * 2008-09-17 2010-04-02 Mitsubishi Electric Corp エレベーターの管制運転装置
CN101746652B (zh) * 2008-12-01 2012-09-19 三菱电机株式会社 电梯控制装置
CN101746653B (zh) * 2008-12-15 2012-09-05 三菱电机株式会社 电梯绳索横向摇动检测装置
CN102869595B (zh) * 2010-05-14 2015-06-17 奥的斯电梯公司 具有绳索摇摆减轻的电梯系统
GB2496352B (en) * 2010-07-30 2015-07-22 Otis Elevator Co Elevator system with rope sway detection
JP5269038B2 (ja) * 2010-11-10 2013-08-21 株式会社日立製作所 エレベーター装置
JP2012136348A (ja) 2010-12-28 2012-07-19 Toshiba Elevator Co Ltd エレベータの巻上機に掛けられるメインロープの外れ止め装置
JP2013095570A (ja) * 2011-11-02 2013-05-20 Hitachi Ltd 制振装置を備えたエレベーター
FI123182B (fi) 2012-02-16 2012-12-14 Kone Corp Menetelmä hissin ohjaamiseksi ja hissi
US9828211B2 (en) * 2012-06-20 2017-11-28 Otis Elevator Company Actively damping vertical oscillations of an elevator car
JP5791645B2 (ja) * 2013-02-14 2015-10-07 三菱電機株式会社 エレベータ装置及びそのロープ揺れ抑制方法
JP5709324B2 (ja) * 2013-02-20 2015-04-30 東芝エレベータ株式会社 エレベータ装置
JP6157227B2 (ja) 2013-06-05 2017-07-05 株式会社日立製作所 エレベータ装置
FI125200B (fi) * 2013-07-04 2015-06-30 Kone Oyj Järjestely kuormituksen muutoksen aiheuttaman hissikorin siirtymän pienentämiseksi
DE102013110791A1 (de) * 2013-09-30 2015-04-02 Thyssenkrupp Elevator Ag Aufzuganlage
CN105705450B (zh) * 2013-11-06 2017-09-29 三菱电机株式会社 电梯诊断装置
US9994423B2 (en) * 2013-11-22 2018-06-12 Otis Elevator Company Resurfacing of belt for elevator system
JP6201871B2 (ja) * 2014-04-09 2017-09-27 フジテック株式会社 エレベータ用動吸振器
JP2015229562A (ja) * 2014-06-05 2015-12-21 三菱電機株式会社 エレベータの制御装置、及びエレベータの制御方法
US9875217B2 (en) 2015-03-16 2018-01-23 Mitsubishi Electric Research Laboratories, Inc. Semi-active feedback control of sway of cables in elevator system
US9862570B2 (en) 2016-03-10 2018-01-09 Mitsubishi Electric Research Laboratories, Inc. Controlling sway of elevator cable connected to elevator car
US20180068773A1 (en) 2016-09-07 2018-03-08 The Hong Kong Polytechnic University Apparatus for Negative Stiffness
CN206036114U (zh) * 2016-09-21 2017-03-22 中国工程物理研究院总体工程研究所 一种适用于大振幅和宽频带的主被动一体化减隔振装置
CN107061605B (zh) * 2017-03-31 2019-10-22 南京航空航天大学 压电叠层作动器驱动的惯性力发生器
CN107489732B (zh) * 2017-09-21 2019-06-18 江苏声立方环保科技有限公司 变压器专用减震器
US20220112052A1 (en) * 2017-10-06 2022-04-14 Mitsubishi Electric Corporation Vibration damping device for elevator rope and elevator apparatus
JP7036206B2 (ja) 2018-05-15 2022-03-15 三菱電機株式会社 揺れ量推定システムおよびエレベーター装置
CN114667263B (zh) 2019-11-06 2024-07-30 三菱电机株式会社 电梯的索条体的减振装置
WO2021090400A1 (ja) 2019-11-06 2021-05-14 三菱電機株式会社 エレベーターの索状体の制振装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10504088A (ja) * 1994-04-18 1998-04-14 ミネソタ マイニング アンド マニュファクチャリング カンパニー 同調質量体ダンパー
JP2007309411A (ja) * 2006-05-18 2007-11-29 Kyoto Univ ワイヤーの動吸振装置
WO2010013597A1 (ja) * 2008-07-30 2010-02-04 三菱電機株式会社 エレベータ装置
JP2014190507A (ja) * 2013-03-28 2014-10-06 Railway Technical Research Institute 負剛性ダンパー

Also Published As

Publication number Publication date
KR20200139806A (ko) 2020-12-14
WO2019220671A1 (ja) 2019-11-21
KR20200138397A (ko) 2020-12-09
DE112018007620T5 (de) 2021-01-28
CN112105575A (zh) 2020-12-18
US12103823B2 (en) 2024-10-01
CN112088260A (zh) 2020-12-15
KR20200140881A (ko) 2020-12-16
KR102480226B1 (ko) 2022-12-23
DE112018007607T5 (de) 2021-01-28
US20210094793A1 (en) 2021-04-01
US20210130127A1 (en) 2021-05-06
JPWO2019220671A1 (ja) 2021-04-01
KR102479368B1 (ko) 2022-12-21
JP7036206B2 (ja) 2022-03-15
JP6992886B2 (ja) 2022-01-13
JP7060092B2 (ja) 2022-04-26
JPWO2019220672A1 (ja) 2021-05-13
CN112105577B (zh) 2022-04-15
US12098059B2 (en) 2024-09-24
CN112088261B (zh) 2022-04-15
CN112105577A (zh) 2020-12-18
CN112088260B (zh) 2022-04-15
US20210094799A1 (en) 2021-04-01
WO2019220670A1 (ja) 2019-11-21
DE112018007617T5 (de) 2021-01-28
US20210231190A1 (en) 2021-07-29
JPWO2019220670A1 (ja) 2021-04-22
KR20200138396A (ko) 2020-12-09
JP7004069B2 (ja) 2022-01-21
CN112088261A (zh) 2020-12-15
WO2019220672A1 (ja) 2019-11-21
US12049385B2 (en) 2024-07-30
CN112105575B (zh) 2022-04-15
JPWO2019220669A1 (ja) 2021-04-30
KR102493096B1 (ko) 2023-01-31
DE112018007614T5 (de) 2021-02-04
KR102479369B1 (ko) 2022-12-21

Similar Documents

Publication Publication Date Title
WO2019220669A1 (ja) 制振装置およびエレベーター装置
US9896306B2 (en) Apparatus and method for dampening oscillations of an elevator car
JP7306471B2 (ja) エレベーターの索条体の制振装置
JPWO2021090401A5 (ja) エレベーターの索条体の制振装置
JPH08270725A (ja) 反発型磁気ダンパ、反発型磁気アクチュエータ及び反発型磁気防振台
US20070137954A1 (en) Inertial actuator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918660

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020518955

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207032183

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18918660

Country of ref document: EP

Kind code of ref document: A1