WO2019220585A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2019220585A1
WO2019220585A1 PCT/JP2018/019042 JP2018019042W WO2019220585A1 WO 2019220585 A1 WO2019220585 A1 WO 2019220585A1 JP 2018019042 W JP2018019042 W JP 2018019042W WO 2019220585 A1 WO2019220585 A1 WO 2019220585A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
evaporator
condenser
decompressor
unit
Prior art date
Application number
PCT/JP2018/019042
Other languages
English (en)
French (fr)
Inventor
前田 剛志
石橋 晃
伊東 大輔
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/019042 priority Critical patent/WO2019220585A1/ja
Priority to JP2020518896A priority patent/JP6956866B2/ja
Priority to EP18919177.8A priority patent/EP3795927B1/en
Priority to US17/040,820 priority patent/US11506431B2/en
Priority to CN201880092858.1A priority patent/CN112105875B/zh
Priority to EP21179119.9A priority patent/EP3904786B1/en
Publication of WO2019220585A1 publication Critical patent/WO2019220585A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/16Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/30Refrigerant piping for use inside the separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/46Component arrangements in separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/37Resuming operation, e.g. after power outages; Emergency starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/17Size reduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components

Definitions

  • the present invention relates to a refrigeration cycle apparatus including a refrigerant circuit in which a compressor, a condenser, a decompressor, and an evaporator are connected by refrigerant piping.
  • Patent Document 1 an air conditioner having a heat exchanger, a blower, a compressor, a gas-liquid separator, and the like inside an outdoor unit has been proposed (for example, see Patent Document 1).
  • the interior of the outdoor unit is partitioned into two spaces by a partition wall.
  • a heat exchanger and a blower are arranged in one space.
  • a compressor, a gas-liquid separator, and the like are arranged.
  • the refrigeration cycle apparatus is required to switch to a refrigerant having a small GWP (global warming potential).
  • GWP global warming potential
  • refrigerant is often flammable, and countermeasures for refrigerant leakage are required, such as reducing the charging amount of the refrigerant.
  • the charging amount of the refrigerant is decreased, the desired operation efficiency cannot be satisfied. That is, there is a problem that it is difficult to achieve both reduction of the refrigerant charge amount and realization of a desired COP (coefficient of performance).
  • the present invention has been made in order to solve the above-described problems, and provides a refrigeration cycle apparatus capable of realizing a desired COP while reducing the amount of a refrigerant containing a flammable refrigerant.
  • the refrigeration cycle apparatus includes a refrigerant circuit having a refrigerant circuit in which a compressor, a condenser, a decompressor, and an evaporator are connected by refrigerant piping, and includes a flammable refrigerant as a refrigerant that circulates through the refrigerant circuit.
  • the evaporator and the pressure reducer are mounted in the same unit, and the linear distance connecting the refrigerant inlet of the evaporator and the refrigerant outlet of the pressure reducer in the unit is the refrigerant outlet of the evaporator.
  • the evaporator is arranged so as to be shorter than a linear distance connecting the refrigerant outlet of the decompressor.
  • the evaporator is arranged so that the linear distance connecting the refrigerant inlet of the evaporator and the refrigerant outlet of the decompressor is shorter than the linear distance connecting the refrigerant outlet of the evaporator and the refrigerant outlet of the decompressor. For this reason, the length of the refrigerant pipe between the refrigerant inlet of the evaporator and the refrigerant outlet of the decompressor can be shortened, and a desired COP can be realized while reducing the charging amount of the refrigerant containing the flammable refrigerant.
  • an air conditioning apparatus will be described as an example of a refrigeration cycle apparatus.
  • the present invention is not limited to this, and may be applied to other apparatuses having a heat exchanger such as a refrigeration apparatus or a hot water supply apparatus.
  • a refrigeration cycle apparatus can be applied.
  • FIG. 1 is a schematic configuration diagram illustrating an example of a refrigerant circuit configuration of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the refrigeration cycle apparatus includes a refrigerant circuit 10.
  • the refrigerant circuit 10 includes a compressor 1, a condenser 2, a decompressor 3, and an evaporator 4.
  • the compressor 1, the condenser 2, the decompressor 3, and the evaporator 4 are sequentially connected in an annular shape by refrigerant piping, and the refrigerant circulates.
  • the refrigeration cycle apparatus uses a refrigerant containing a flammable refrigerant as a refrigerant circulating in the refrigerant circuit 10.
  • the flammable refrigerant is, for example, a hydrocarbon (HC) -based flammable refrigerant (such as R290 or R1270), which is a natural refrigerant, or a mixed refrigerant containing these as a main component.
  • HC hydrocarbon
  • the compressor 1 compresses and discharges the refrigerant.
  • the compressor 1 can be composed of, for example, a rotary compressor, a scroll compressor, a screw compressor, or a reciprocating compressor.
  • the condenser 2 exchanges heat between the refrigerant and air, which is an example of a heat exchange fluid.
  • the condenser 2 can be composed of a fin-and-tube heat exchanger.
  • the decompressor 3 decompresses and expands the refrigerant flowing through the refrigerant circuit 10.
  • the decompressor 3 is configured by, for example, an electronic expansion valve or a temperature-sensitive expansion valve.
  • the evaporator 4 exchanges heat between the refrigerant and air, which is an example of a heat exchange fluid.
  • the evaporator 4 can be composed of a fin-and-tube heat exchanger.
  • the condenser 2 is provided with a condenser side blower 5.
  • the condenser-side blower 5 supplies air that is an example of a heat exchange fluid to the condenser 2.
  • the evaporator 4 is provided with an evaporator-side blower 6.
  • the evaporator-side blower 6 supplies air that is an example of a heat exchange fluid to the evaporator 4.
  • the condenser side blower 5 and the evaporator side blower 6 can be composed of, for example, a propeller fan having a plurality of blades.
  • FIG. 2 is a side view showing the evaporator of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the evaporator 4 includes a plurality of fins 41 and a plurality of heat transfer tubes 42.
  • the plurality of fins 41 are formed in a flat plate shape, and are arranged in parallel at intervals. Air flows between the plurality of fins 41.
  • the plurality of heat transfer tubes 42 are arranged in parallel to each other and attached to the plurality of fins 41.
  • the plurality of heat transfer tubes 42 have refrigerant flow paths therein.
  • the plurality of heat transfer tubes 42 are flat tubes having a flat cross section perpendicular to the axis of the refrigerant flow path.
  • the plurality of heat transfer tubes 42 are arranged so that the long axis of the flat shape of the cross section is along the air flow direction.
  • the first header 51 branches the refrigerant flowing from the inflow port 51a into each of the plurality of heat transfer tubes.
  • the 2nd header 52 merges the refrigerant which flowed in from each of a plurality of heat exchanger tubes 42, and flows out from outlet 53a.
  • the high-pressure liquid refrigerant sent out from the condenser 2 becomes low-pressure liquid refrigerant by the decompressor 3 and flows into the evaporator 4.
  • the evaporator 4 heat exchange is performed between the flowing liquid refrigerant and the air, and the liquid refrigerant evaporates into a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant sent out from the evaporator 4 flows into the compressor 1, is compressed to become a high-temperature high-pressure gas refrigerant, and is discharged from the compressor 1 again. Thereafter, this cycle is repeated.
  • FIG. 3 and 4 are conceptual diagrams illustrating the arrangement in the unit of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 and FIG. 4 show the arrangement of each component when the unit is viewed from above.
  • coolant is shown with the broken-line arrow.
  • illustration of a part of the configuration is omitted.
  • the compressor 1, the decompressor 3, and the evaporator 4 are mounted in the unit 100.
  • the unit 100 is, for example, an outdoor unit in an air conditioner.
  • an air passage through which air flows is formed in the unit 100, and air blown from the evaporator-side blower 6 passes through the evaporator 4.
  • the unit 100 also includes a first room 110 partitioned by a partition wall 101.
  • the compressor 1 and the second header 52 are disposed in the first room 110.
  • the unit 100 includes a second room 120 partitioned by a partition wall 102 in addition to the first room 110.
  • the decompressor 3 and the first header 51 are arranged in the second chamber 120.
  • the evaporator 4 is arranged in a space between the first room 110 and the second room 120 in the unit 100.
  • a linear distance L ⁇ b> 1 connecting the refrigerant inlet of the evaporator 4 and the refrigerant outlet 3 a of the decompressor 3 connects the refrigerant outlet of the evaporator 4 and the refrigerant outlet of the decompressor 3.
  • the evaporator 4 is arrange
  • the refrigerant inlet of the evaporator 4 is the end 42 a of the heat transfer tube 42 on the refrigerant inlet side.
  • the refrigerant outlet of the evaporator 4 is an end portion 42 b on the refrigerant outlet side of the heat transfer tube 42.
  • FIG. 5 is a side view showing the evaporator of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the straight line distance L ⁇ b> 1 is the end 42 a having the longest distance from the refrigerant outlet 3 a of the decompressor 3 among the ends 42 a on the refrigerant inlet side of the plurality of heat transfer tubes 42, and the decompressor 3. The distance which connected the refrigerant
  • the straight line distance L2 is a straight line between the end 42b having the longest distance from the refrigerant outlet 3a of the decompressor 3 and the refrigerant outlet 3a of the decompressor 3 among the ends 42b on the refrigerant outlet side of the plurality of heat transfer tubes 42. The distance connected by
  • linear distance L1 and the linear distance L2 are not limited to those shown in FIG.
  • a distance connecting the end portion 42a having the shortest distance from the refrigerant outlet 3a of the decompressor 3 and the refrigerant outlet 3a of the decompressor 3 in a straight line. May be the linear distance L1.
  • a distance connecting the end portion 42b having the shortest distance from the refrigerant outlet 3a of the decompressor 3 and the refrigerant outlet 3a of the decompressor 3 in a straight line May be the linear distance L2.
  • the linear distance L3 connecting the refrigerant outlet of the evaporator 4 and the refrigerant inlet 1a of the compressor 1 is shorter than the linear distance L4 connecting the refrigerant inlet of the evaporator 4 and the refrigerant inlet 1a of the compressor 1.
  • the evaporator 4 is arrange
  • the refrigerant inlet of the evaporator 4 is the end 42 a of the heat transfer tube 42 on the refrigerant inlet side.
  • the refrigerant outlet of the evaporator 4 is an end portion 42 b on the refrigerant outlet side of the heat transfer tube 42.
  • FIG. 6 is a side view showing the evaporator of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the linear distance L ⁇ b> 3 is the end 42 b having the longest distance from the refrigerant inlet 1 a of the compressor 1 among the ends 42 b on the refrigerant outlet side of the plurality of heat transfer tubes 42, and the compressor 1.
  • the linear distance L4 is a straight line between the end 42a having the longest distance from the refrigerant inlet 1a of the compressor 1 and the refrigerant inlet 1a of the compressor 1 among the ends 42a on the refrigerant inlet side of the plurality of heat transfer tubes 42.
  • linear distance L3 and the linear distance L4 are not limited to those shown in FIG.
  • a distance connecting the end portion 42b having the shortest distance from the refrigerant inlet 1a of the compressor 1 and the refrigerant inlet 1a of the compressor 1 with a straight line. May be the linear distance L3.
  • a distance connecting the end portion 42a having the shortest distance from the refrigerant inlet 1a of the compressor 1 and the refrigerant inlet 1a of the compressor 1 with a straight line. May be the linear distance L4.
  • a refrigerant containing a flammable refrigerant is used as the refrigerant circulating in the refrigerant circuit 10.
  • the evaporator 4 and the decompressor 3 are mounted on the same unit 100, and in the unit 100, the linear distance L1 connecting the refrigerant inlet of the evaporator 4 and the refrigerant outlet 3a of the decompressor 3 is reduced with the refrigerant outlet of the evaporator 4
  • the evaporator 4 is arranged so as to be shorter than a linear distance L2 connecting the refrigerant outlet 3a of the evaporator 3.
  • coolant outlet 3a of the decompressor 3 can be shortened. Therefore, compared with the case where the linear distance L1 is more than the linear distance L2, the amount of liquid refrigerant in the refrigerant pipe can be reduced. Therefore, the desired COP can be realized while reducing the filling amount of the refrigerant containing the flammable refrigerant. Moreover, the pressure loss of a liquid refrigerant can be suppressed by shortening the length of the refrigerant piping between the refrigerant inlet of the evaporator and the refrigerant outlet 3a of the decompressor 3.
  • the compressor 1 is mounted on the unit 100, and the linear distance L 3 connecting the refrigerant outlet of the evaporator 4 and the refrigerant inlet 1 a of the compressor 1 in the unit 100 is the evaporator 4.
  • the evaporator is arranged so as to be shorter than a linear distance L4 connecting the refrigerant inlet and the refrigerant inlet 1a of the compressor 1. For this reason, compared with the case where the linear distance L3 is more than the linear distance L4, the length of the refrigerant
  • the amount of gas refrigerant in the refrigerant pipe can be reduced. Therefore, the desired COP can be realized while reducing the filling amount of the refrigerant containing the flammable refrigerant. Moreover, the pressure loss of gas refrigerant can be suppressed by shortening the length of the refrigerant piping between the refrigerant inlet of the evaporator and the refrigerant outlet 3a of the decompressor 3.
  • Embodiment 2 FIG. Hereinafter, the configuration of the refrigeration cycle apparatus in the second embodiment will be described focusing on the differences from the first embodiment.
  • symbol is attached
  • FIG. 7 is a conceptual diagram illustrating the arrangement in the unit of the refrigeration cycle apparatus according to Embodiment 2 of the present invention.
  • FIG. 7 shows the arrangement of each component when the unit is viewed from above.
  • the flow of the refrigerant is indicated by broken line arrows.
  • the evaporator 4 has a plurality of heat transfer tubes 42 arranged in two rows along the air flow direction. Further, the plurality of heat transfer tubes 42 arranged in two rows are bent and arranged in an L shape in a top view so as to follow the side surface of the unit 100.
  • the plurality of heat transfer tubes 42 arranged at positions far from the evaporator-side blower 6 are referred to as the first row of heat transfer tubes 42, and the plurality of heat transfer tubes 42 arranged at a position close to the evaporator-side blower 6 are This is referred to as the second row of heat transfer tubes 42.
  • the example shown in FIG. 7 shows the case where the heat transfer tubes 42 are arranged in two rows, the number of rows is not limited to this and may be three or more.
  • the 1st header 51 is provided in each row of a plurality of heat exchanger tubes 42, and is connected with decompressor 3 and refrigerant piping, respectively.
  • the 2nd header 52 is provided in each row
  • the refrigerant that has flowed out of the decompressor 3 flows into each of the two first headers 51. Further, the refrigerant flowing out from the two second headers 52 flows into the compressor 1. That is, the evaporator 4 is a parallel flow type evaporator in which the refrigerant flowing into the plurality of heat transfer tubes 42 arranged in two rows flows in parallel.
  • the compressor 1 and the two second headers 52 are arranged in the first room 110.
  • the decompressor 3 and the two first headers 51 are disposed in the second chamber 120.
  • the evaporator 4 is arranged in a space between the first room 110 and the second room 120 in the unit 100.
  • the first row of heat transfer tubes 42 and the second row of heat transfer tubes 42 are arranged such that the linear distance L1 is shorter than the linear distance L2.
  • the linear distance L1 and the linear distance L2 will be described with reference to FIG.
  • FIG. 8 is a conceptual diagram illustrating the arrangement in the unit of the refrigeration cycle apparatus according to Embodiment 2 of the present invention.
  • FIG. 8 shows the arrangement of each component when the unit is viewed from above. In FIG. 8, illustration of a part of the configuration is omitted.
  • the linear distance L1-1 connecting the refrigerant inlet side end 42a of the first row of heat transfer tubes 42 and the refrigerant outlet 3a of the decompressor 3 is the refrigerant outlet of the first row of heat transfer tubes 42.
  • the evaporator 4 is arranged so as to be shorter than a linear distance L2-1 connecting the end 42b on the side and the refrigerant outlet 3a of the decompressor 3.
  • the straight line distance L1-2 connecting the refrigerant inlet side end 42a of the second row of heat transfer tubes 42 and the refrigerant outlet 3a of the decompressor 3 is the refrigerant outlet side end 42b of the second row of heat transfer tubes 42.
  • the evaporator 4 are arranged so as to be shorter than a straight line distance L2-2 that connects the refrigerant outlet 3a of the decompressor 3.
  • the first row of heat transfer tubes 42 and the second row of heat transfer tubes 42 are arranged such that the linear distance L3 is shorter than the linear distance L4.
  • the linear distance L3 and the linear distance L4 will be described with reference to FIG.
  • FIG. 9 is a conceptual diagram illustrating the arrangement in the unit of the refrigeration cycle apparatus according to Embodiment 2 of the present invention.
  • FIG. 9 shows the arrangement of each component when the unit is viewed from above.
  • the linear distance L3-1 connecting the refrigerant outlet end 42b of the first row of heat transfer tubes 42 and the refrigerant inlet 1a of the compressor 1 is the refrigerant inlet side of the first row of heat transfer tubes 42.
  • the evaporator 4 is disposed so as to be shorter than a linear distance L4-1 connecting the end 42a of the compressor and the refrigerant inlet 1a of the compressor 1.
  • linear distance L3-2 connecting the refrigerant outlet end 42b of the second row of heat transfer tubes 42 and the refrigerant inlet 1a of the compressor 1 is equal to the refrigerant inlet side end 42a of the second row of heat transfer tubes 42.
  • the evaporator 4 is arranged so as to be shorter than a linear distance L4-2 connecting the refrigerant inlet 1a of the compressor 1.
  • the length of the refrigerant pipe between the refrigerant inlet of the evaporator 4 and the refrigerant outlet 3a of the decompressor 3 can be shortened as in the first embodiment. Further, the length of the refrigerant pipe between the refrigerant outlet of the evaporator 4 and the refrigerant inlet 1a of the compressor 1 can be shortened. Therefore, the desired COP can be realized while reducing the filling amount of the refrigerant containing the flammable refrigerant.
  • Embodiment 3 FIG.
  • the configuration of the refrigeration cycle apparatus in the third embodiment will be described focusing on the differences from the first and second embodiments.
  • symbol is attached
  • FIG. 10 is a conceptual diagram illustrating the arrangement in the unit of the refrigeration cycle apparatus according to Embodiment 3 of the present invention.
  • FIG. 10 shows the arrangement of each component when the unit is viewed from above.
  • the flow of the refrigerant is indicated by broken line arrows.
  • the evaporator 4 has a plurality of heat transfer tubes 42 arranged in two rows along the air flow direction. Further, the plurality of heat transfer tubes 42 arranged in two rows are bent and arranged in an L shape in a top view so as to follow the side surface of the unit 100.
  • the plurality of heat transfer tubes 42 arranged at positions far from the evaporator-side blower 6 are referred to as the first row of heat transfer tubes 42, and the plurality of heat transfer tubes 42 arranged at a position close to the evaporator-side blower 6 are This is referred to as the second row of heat transfer tubes 42.
  • connection pipe 53 is constituted by, for example, a U-shaped pipe bent into a U-shape.
  • the refrigerant that has flowed out of the first row of heat transfer tubes 42 flows into the second row of heat transfer tubes 42 via the connection pipe 53.
  • the refrigerant that has flowed into the second row of heat transfer tubes 42 passes through the refrigerant flow path of the second row of heat transfer tubes 42 and flows into the second header 52.
  • the refrigerant flowing out of the second header 52 flows into the compressor 1. That is, in the evaporator 4 according to the third embodiment, the refrigerant inlet side end 42 a of the heat transfer tube 42 in the first row is the refrigerant inlet of the evaporator 4. Further, an end portion 42 b on the refrigerant outlet side of the heat transfer tubes 42 in the second row is a refrigerant outlet of the evaporator 4.
  • the compressor 1, the decompressor 3, the first header 51, and the second header 52 are arranged in the first room 110. Further, the connection pipe 53 is disposed in the second room 120. The evaporator 4 is arranged in a space between the first room 110 and the second room 120 in the unit 100.
  • FIG. 11 is a conceptual diagram illustrating the arrangement in the unit of the refrigeration cycle apparatus according to Embodiment 3 of the present invention.
  • FIG. 11 shows the arrangement of each component when the unit is viewed from above.
  • illustration of a part of the configuration is omitted.
  • the evaporator 4 according to the third embodiment has a linear distance L1 connecting the end portion 42 a of the heat transfer tube 42 in the first row and the refrigerant outlet 3 a of the decompressor 3 in the unit 100. It arrange
  • the linear distance L2 which connects the edge part 42b of the heat exchanger tube 42 of the 2nd row, and the refrigerant
  • FIG. 12 is a conceptual diagram illustrating the arrangement in the unit of the refrigeration cycle apparatus according to Embodiment 3 of the present invention.
  • FIG. 12 shows the arrangement of each unit as seen from above. In FIG. 12, illustration of a part of the configuration is omitted.
  • the linear distance L ⁇ b> 3 connecting the end 42 b of the second row heat transfer tube 42 and the refrigerant inlet 1 a of the compressor 1 is the first row heat transfer tube.
  • the evaporator 4 is arranged to be shorter than a linear distance L4 connecting the end 42a of the 42 and the refrigerant inlet 1a of the compressor 1.
  • the length of the refrigerant pipe between the refrigerant inlet of the evaporator 4 and the refrigerant outlet 3a of the decompressor 3 can be shortened as in the first embodiment. Further, the length of the refrigerant pipe between the refrigerant outlet of the evaporator 4 and the refrigerant inlet 1a of the compressor 1 can be shortened. Therefore, the desired COP can be realized while reducing the filling amount of the refrigerant containing the flammable refrigerant.
  • Embodiment 4 FIG.
  • the configuration of the refrigeration cycle apparatus in the fourth embodiment will be described focusing on differences from the first to third embodiments.
  • the same parts as those in the first to third embodiments are denoted by the same reference numerals, and description thereof is omitted.
  • FIG. 13 is a side view showing a condenser of the refrigeration cycle apparatus according to Embodiment 4 of the present invention.
  • the condenser 2 includes a plurality of fins 21 and a plurality of heat transfer tubes 22.
  • the plurality of fins 21 are formed in a flat plate shape, and are arranged in parallel at intervals. Air flows between the plurality of fins 21.
  • the plurality of heat transfer tubes 22 are arranged in parallel to each other and attached to the plurality of fins 21.
  • the plurality of heat transfer tubes 22 have refrigerant flow paths therein.
  • the plurality of heat transfer tubes 22 are flat tubes having a flat cross section perpendicular to the axis of the refrigerant flow path.
  • the plurality of heat transfer tubes 22 are arranged such that the long axis of the flat shape of the cross section is along the air flow direction.
  • the third header 31 branches the refrigerant flowing in from the inflow port 31a to each of the plurality of heat transfer tubes 22.
  • the 4th header 32 merges the refrigerant which flowed in from each of a plurality of heat exchanger tubes 22, and flows out from outlet 32a.
  • FIG.14 and FIG.15 is a conceptual diagram explaining arrangement
  • 14 and 15 show the arrangement of each component when the unit is viewed from above.
  • coolant is shown with the broken-line arrow.
  • illustration of a part of the configuration is omitted.
  • the compressor 1, the decompressor 3, and the condenser 2 are mounted in the unit 200.
  • the unit 200 is an outdoor unit in an air conditioner, for example.
  • the unit 200 is formed with an air passage through which air flows, and the air blown from the condenser side blower 5 passes through the condenser 2.
  • the unit 200 includes a first room 210 partitioned by a partition wall 201.
  • the compressor 1 and the third header 31 are disposed in the first room 210.
  • the unit 200 includes a second room 220 partitioned by a partition wall 202 in addition to the first room 210.
  • the decompressor 3 and the fourth header 32 are disposed in the second chamber 220.
  • the condenser 2 is arranged in a space between the first room 210 and the second room 220 in the unit 200.
  • a linear distance L5 connecting the refrigerant outlet of the condenser 2 and the refrigerant inlet 3 b of the decompressor 3 connects the refrigerant inlet of the condenser 2 and the refrigerant inlet 3 b of the decompressor 3.
  • the condenser 2 is arranged so as to be shorter than the connecting linear distance L6.
  • the refrigerant inlet of the condenser 2 is the end 22 a of the heat transfer tube 22 on the refrigerant inlet side.
  • the refrigerant outlet of the condenser 2 is an end 22 b on the refrigerant outlet side of the heat transfer tube 22.
  • FIG. 16 is a side view showing a condenser of the refrigeration cycle apparatus according to Embodiment 4 of the present invention.
  • the linear distance L5 is the end 22b having the longest distance from the refrigerant inlet 3b of the decompressor 3 among the ends 22b on the refrigerant outlet side of the plurality of heat transfer tubes 22, and the decompressor 3 The distance connecting the refrigerant inlet 3b with a straight line.
  • the straight line distance L6 is a straight line between the end 22a having the longest distance from the refrigerant inlet 3b of the decompressor 3 and the refrigerant inlet 3b of the decompressor 3 among the ends 22a on the refrigerant inlet side of the plurality of heat transfer tubes 22. The distance connected by
  • the linear distance L5 and the linear distance L6 are not limited to those shown in FIG.
  • the distance between the end portion 22b having the shortest distance from the refrigerant inlet 3b of the decompressor 3 and the refrigerant inlet 3b of the decompressor 3 is connected by a straight line.
  • the distance between the end portion 22a having the shortest distance from the refrigerant inlet 3b of the decompressor 3 and the refrigerant inlet 3b of the decompressor 3 is connected by a straight line. May be the straight line distance L6.
  • the linear distance L7 connecting the refrigerant inlet of the condenser 2 and the refrigerant outlet 1b of the compressor 1 is shorter than the linear distance L8 connecting the refrigerant outlet of the condenser 2 and the refrigerant outlet 1b of the compressor 1.
  • the condenser 2 is arranged so as to be.
  • the refrigerant inlet of the condenser 2 is the end 22 a of the heat transfer tube 22 on the refrigerant inlet side.
  • the refrigerant outlet of the condenser 2 is an end 22 b on the refrigerant outlet side of the heat transfer tube 22.
  • FIG. 17 is a side view showing a condenser of the refrigeration cycle apparatus according to Embodiment 4 of the present invention.
  • the linear distance L ⁇ b> 7 is the end 22 a having the longest distance from the refrigerant outlet 1 b of the compressor 1 among the ends 22 a on the refrigerant inlet side of the plurality of heat transfer tubes 22, and the compressor 1.
  • the straight line distance L8 is a straight line between the end 22b having the longest distance from the refrigerant outlet 1b of the compressor 1 and the refrigerant outlet 1b of the compressor 1 among the ends 22b on the refrigerant outlet side of the plurality of heat transfer tubes 22.
  • the linear distance L7 and the linear distance L8 are not limited to those shown in FIG.
  • the distance between the end portion 22a having the shortest distance from the refrigerant outlet 1b of the compressor 1 and the refrigerant outlet 1b of the compressor 1 is connected by a straight line. May be the straight line distance L7.
  • the distance between the end portion 22b having the shortest distance from the refrigerant outlet 1b of the compressor 1 and the refrigerant outlet 1b of the compressor 1 is linearly connected. May be the straight line distance L8.
  • a refrigerant containing a flammable refrigerant is used as the refrigerant circulating in the refrigerant circuit 10.
  • the condenser 2 and the decompressor 3 are mounted in the same unit 200, and in the unit 200, the linear distance L5 connecting the refrigerant outlet of the condenser 2 and the refrigerant inlet 3b of the decompressor 3 is reduced with the refrigerant inlet of the condenser 2
  • the condenser 2 is arranged so as to be shorter than a linear distance L6 connecting the refrigerant inlet 3b of the condenser 3.
  • coolant inlet 3b of the pressure reduction device 3 can be shortened. Therefore, the amount of liquid refrigerant in the refrigerant pipe can be reduced as compared with the case where the linear distance L5 is equal to or greater than the linear distance L6. Therefore, the desired COP can be realized while reducing the filling amount of the refrigerant containing the flammable refrigerant. Moreover, the pressure loss of the liquid refrigerant can be suppressed by shortening the length of the refrigerant pipe between the refrigerant inlet of the evaporator and the refrigerant inlet 3b of the decompressor 3.
  • the compressor 1 is mounted on the unit 200, and the linear distance L 7 connecting the refrigerant inlet of the condenser 2 and the refrigerant outlet 1 b of the compressor 1 in the unit 200 is the condenser 2.
  • the evaporator is arranged so as to be shorter than a linear distance L8 connecting the refrigerant outlet and the refrigerant outlet 1b of the compressor 1. For this reason, compared with the case where the linear distance L7 is more than the linear distance L8, the length of the refrigerant
  • the amount of gas refrigerant in the refrigerant pipe can be reduced. Therefore, the desired COP can be realized while reducing the filling amount of the refrigerant containing the flammable refrigerant. Further, by reducing the length of the refrigerant pipe between the refrigerant inlet of the evaporator and the refrigerant inlet 3b of the decompressor 3, the pressure loss of the gas refrigerant can be suppressed.
  • Embodiment 5 FIG. Hereinafter, the configuration of the refrigeration cycle apparatus in the fifth embodiment will be described focusing on the differences from the first to fourth embodiments.
  • the same parts as those in the first to fourth embodiments are denoted by the same reference numerals, and description thereof is omitted.
  • FIG. 18 is a conceptual diagram illustrating the arrangement in the unit of the refrigeration cycle apparatus according to Embodiment 5 of the present invention.
  • FIG. 18 shows the arrangement of each component when the unit is viewed from above.
  • the flow of the refrigerant is indicated by broken line arrows.
  • the condenser 2 has a plurality of heat transfer tubes 22 arranged in two rows along the air flow direction.
  • the plurality of heat transfer tubes 22 arranged in two rows are arranged to be bent in an L shape in a top view so as to be along the side surface of the unit 200.
  • the plurality of heat transfer tubes 22 arranged at positions far from the condenser-side blower 5 are referred to as the first row of heat transfer tubes 22, and the plurality of heat transfer tubes 22 arranged at a position close to the condenser-side blower 5 are This is referred to as the second row of heat transfer tubes 22.
  • the example shown in FIG. 18 shows the case where the heat transfer tubes 22 are arranged in two rows, the number of rows is not limited to this and may be three or more.
  • the 3rd header 31 is provided in each row of a plurality of heat exchanger tubes 22, and is connected with compressor 1 and refrigerant piping, respectively.
  • the 4th header 32 is provided in each row of a plurality of heat exchanger tubes 22, and is connected with decompressor 3 and refrigerant piping, respectively.
  • the refrigerant that has flowed out of the compressor 1 flows into each of the two third headers 31.
  • the refrigerant flowing out from each of the two fourth headers 32 flows into the decompressor 3. That is, the condenser 2 is a parallel flow type evaporator in which the refrigerant flowing into the plurality of heat transfer tubes 22 arranged in two rows flows in parallel.
  • the compressor 1 and the two third headers 31 are arranged in the first room 210.
  • the decompressor 3 and the two fourth headers 32 are disposed in the second chamber 220.
  • the condenser 2 is arranged in a space between the first room 210 and the second room 220 in the unit 200.
  • the first row of heat transfer tubes 22 and the second row of heat transfer tubes 22 are arranged such that the linear distance L5 is shorter than the linear distance L6.
  • the linear distance L5 and the linear distance L6 will be described with reference to FIG.
  • FIG. 19 is a conceptual diagram illustrating the arrangement in the unit of the refrigeration cycle apparatus according to Embodiment 5 of the present invention.
  • FIG. 18 shows the arrangement of each component when the unit is viewed from above. In FIG. 19, illustration of a part of the configuration is omitted.
  • the straight line distance L5-1 connecting the refrigerant outlet side end 22b of the first row of heat transfer tubes 22 and the refrigerant inlet 3b of the decompressor 3 is the refrigerant inlet of the first row of heat transfer tubes 22.
  • the condenser 2 is arranged so as to be shorter than a linear distance L6-1 connecting the end 22a on the side and the refrigerant inlet 3b of the decompressor 3.
  • the straight line distance L5-2 connecting the refrigerant inlet side end 22b of the second row of heat transfer tubes 22 and the refrigerant inlet 3b of the decompressor 3 is the refrigerant outlet side end 22a of the second row of heat transfer tubes 22.
  • the condenser 2 is disposed so as to be shorter than a linear distance L6-2 connecting the refrigerant and the refrigerant inlet 3b of the decompressor 3.
  • the first row of heat transfer tubes 22 and the second row of heat transfer tubes 22 are arranged such that the linear distance L7 is shorter than the linear distance L8.
  • the linear distance L7 and the linear distance L8 will be described with reference to FIG.
  • FIG. 20 is a conceptual diagram illustrating the arrangement in the unit of the refrigeration cycle apparatus according to Embodiment 5 of the present invention.
  • FIG. 20 shows the arrangement of each component when the unit is viewed from above.
  • the linear distance L7-1 connecting the refrigerant inlet end 22a of the first row of heat transfer tubes 22 and the refrigerant outlet 1b of the compressor 1 is the refrigerant outlet side of the first row of heat transfer tubes 22.
  • the condenser 2 is arranged so as to be shorter than a linear distance L8-1 that connects the end 22b of the compressor and the refrigerant outlet 1b of the compressor 1.
  • a linear distance L7-2 connecting the refrigerant inlet end 22a of the second row of heat transfer tubes 22 and the refrigerant outlet 1b of the compressor 1 is the refrigerant outlet side end 22b of the second row of heat transfer tubes 22.
  • the condenser 2 is arranged so as to be shorter than a linear distance L8-2 connecting the refrigerant outlet 1b of the compressor 1.
  • the length of the refrigerant pipe between the refrigerant inlet of the condenser 2 and the refrigerant inlet 3b of the decompressor 3 can be shortened as in the fourth embodiment. Further, the length of the refrigerant pipe between the refrigerant inlet of the condenser 2 and the refrigerant outlet 1b of the compressor 1 can be shortened. Therefore, the desired COP can be realized while reducing the filling amount of the refrigerant containing the flammable refrigerant.
  • Embodiment 6 FIG.
  • the configuration of the refrigeration cycle apparatus in the third embodiment will be described focusing on the differences from the first to fifth embodiments.
  • the same parts as those in the first to fifth embodiments are denoted by the same reference numerals, and description thereof is omitted.
  • FIG. 21 is a conceptual diagram illustrating the arrangement in the unit of the refrigeration cycle apparatus according to Embodiment 6 of the present invention.
  • FIG. 21 shows the arrangement of each component when the unit is viewed from above.
  • the flow of the refrigerant is indicated by broken line arrows.
  • the condenser 2 has a plurality of heat transfer tubes 22 arranged in two rows along the air flow direction.
  • the plurality of heat transfer tubes 22 arranged in two rows are arranged to be bent in an L shape in a top view so as to be along the side surface of the unit 200.
  • the plurality of heat transfer tubes 22 arranged at positions far from the condenser-side blower 5 are referred to as the first row of heat transfer tubes 22, and the plurality of heat transfer tubes 22 arranged at a position close to the condenser-side blower 5 are This is referred to as the second row of heat transfer tubes 22.
  • connection pipe 33 is constituted by, for example, a U-shaped pipe bent into a U-shape.
  • the refrigerant that has flowed out of the compressor 1 flows into the third header 31.
  • the refrigerant flowing into the third header 31 passes through the refrigerant flow path of the heat transfer tube 22 in the second row.
  • the refrigerant flowing out from the second row of heat transfer tubes 22 flows into the first row of heat transfer tubes 22 via the connection pipe 33.
  • the refrigerant flowing into the first row of heat transfer tubes 22 passes through the refrigerant flow path of the first row of heat transfer tubes 22 and flows into the fourth header 32.
  • the refrigerant flowing out from the fourth header 32 flows into the decompressor 3. That is, in the condenser 2 according to the sixth embodiment, the refrigerant inlet side end 22 a of the heat transfer tube 22 in the second row is the refrigerant inlet of the condenser 2. Further, the end 22 b on the refrigerant outlet side of the heat transfer tube 22 in the first row is a refrigerant outlet of the condenser 2.
  • the compressor 1, the decompressor 3, the third header 31, and the fourth header 32 are disposed in the first room 210. Further, the connection pipe 33 is disposed in the second room 220.
  • the condenser 2 is arranged in a space between the first room 210 and the second room 220 in the unit 200.
  • FIG. 22 is a conceptual diagram illustrating the arrangement in the unit of the refrigeration cycle apparatus according to Embodiment 6 of the present invention. Note that FIG. 22 shows an arrangement of each component when the unit is viewed from the top. In FIG. 22, illustration of a part of the configuration is omitted.
  • the condenser 2 according to the sixth embodiment has a linear distance L5 connecting the end 22b of the heat transfer tube 22 in the first row and the refrigerant inlet 3b of the decompressor 3 in the unit 200. It arrange
  • FIG. 23 is a conceptual diagram illustrating the arrangement in the unit of the refrigeration cycle apparatus according to Embodiment 6 of the present invention.
  • FIG. 23 shows the arrangement of each component when the unit is viewed from above. In FIG. 23, illustration of a part of the configuration is omitted.
  • the condenser 2 in the condenser 2, the condenser 2 has a linear distance L ⁇ b> 7 connecting the end 22 a of the heat transfer tube 22 in the second row and the refrigerant outlet 1 b of the compressor 1 in the unit 200.
  • the condenser 2 is disposed so as to be shorter than a linear distance L8 that connects the end 22b of 22 and the refrigerant outlet 1b of the compressor 1.
  • the length of the refrigerant pipe between the refrigerant outlet of the condenser 2 and the refrigerant inlet 3b of the decompressor 3 can be shortened as in the fourth embodiment. Further, the length of the refrigerant pipe between the refrigerant inlet of the condenser 2 and the refrigerant outlet 1b of the compressor 1 can be shortened. Therefore, the desired COP can be realized while reducing the filling amount of the refrigerant containing the flammable refrigerant.

Abstract

本発明の冷凍サイクル装置は、圧縮機、凝縮器、減圧器及び蒸発器を冷媒配管で接続した冷媒回路を備える冷凍サイクル装置において、前記冷媒回路を循環させる冷媒として可燃性を有する冷媒を含んだ冷媒を用い、前記蒸発器及び前記減圧器が同じユニットに搭載され、前記ユニット内において、前記蒸発器の冷媒入口と前記減圧器の冷媒出口とを結ぶ直線距離が、前記蒸発器の冷媒出口と前記減圧器の冷媒出口とを結ぶ直線距離よりも短くなるように前記蒸発器を配置している。

Description

冷凍サイクル装置
 本発明は、圧縮機、凝縮器、減圧器及び蒸発器を冷媒配管で接続した冷媒回路を備える冷凍サイクル装置に関する。
 従来の技術においては、室外機の内部に、熱交換器、送風機、圧縮機、及び気液分離装置などを有している空気調和装置が提案されている(例えば、特許文献1参照)。特許文献1に記載の空気調和装置は、室外機の内部が隔壁によって二つの空間に仕切られている。室外機の内部において、一方の空間には、熱交換器及び送風機が配置されている。また、他方の空間には、圧縮機及び気液分離装置などが配置されている。
特開2014-142138号公報
 冷凍サイクル装置には、GWP(地球温暖化係数)の小さい冷媒への転換が求められている。一方で、このような冷媒は可燃性を有していることが多く、冷媒の充填量を減少させるなど冷媒漏洩時の対策が要求される。しかしながら、冷媒の充填量を減少すると、所望する運転効率を満足できない。つまり、冷媒の充填量の減少と、所望するCOP(成績係数)の実現との両立が難しい、という問題点があった。
 本発明は、上記のような課題を解決するためになされたもので、可燃性を有する冷媒を含んだ冷媒の充填量を減少しつつ所望するCOPを実現できる冷凍サイクル装置を得るものである。
 本発明に係る冷凍サイクル装置は、圧縮機、凝縮器、減圧器及び蒸発器を冷媒配管で接続した冷媒回路を備える冷凍サイクル装置において、前記冷媒回路を循環させる冷媒として可燃性を有する冷媒を含んだ冷媒を用い、前記蒸発器及び前記減圧器が同じユニットに搭載され、前記ユニット内において、前記蒸発器の冷媒入口と前記減圧器の冷媒出口とを結ぶ直線距離が、前記蒸発器の冷媒出口と前記減圧器の冷媒出口とを結ぶ直線距離よりも短くなるように前記蒸発器を配置しているものである。
 本発明は、蒸発器の冷媒入口と減圧器の冷媒出口とを結ぶ直線距離を、蒸発器の冷媒出口と減圧器の冷媒出口とを結ぶ直線距離よりも短くなるように蒸発器を配置した。このため、蒸発器の冷媒入口と減圧器の冷媒出口との間の冷媒配管の長さを短くでき、可燃性を有する冷媒を含んだ冷媒の充填量を減少しつつ所望するCOPを実現できる。
本発明の実施の形態1に係る冷凍サイクル装置の冷媒回路構成の一例を示す概略構成図である。 本発明の実施の形態1に係る冷凍サイクル装置の蒸発器を示す側面図である。 本発明の実施の形態1に係る冷凍サイクル装置のユニット内の配置を説明する概念図である。 本発明の実施の形態1に係る冷凍サイクル装置のユニット内の配置を説明する概念図である。 本発明の実施の形態1に係る冷凍サイクル装置の蒸発器を示す側面図である。 本発明の実施の形態1に係る冷凍サイクル装置の蒸発器を示す側面図である。 本発明の実施の形態2に係る冷凍サイクル装置のユニット内の配置を説明する概念図である。 本発明の実施の形態2に係る冷凍サイクル装置のユニット内の配置を説明する概念図である。 本発明の実施の形態2に係る冷凍サイクル装置のユニット内の配置を説明する概念図である。 本発明の実施の形態3に係る冷凍サイクル装置のユニット内の配置を説明する概念図である。 本発明の実施の形態3に係る冷凍サイクル装置のユニット内の配置を説明する概念図である。 本発明の実施の形態3に係る冷凍サイクル装置のユニット内の配置を説明する概念図である。 本発明の実施の形態4に係る冷凍サイクル装置の凝縮器を示す側面図である。 本発明の実施の形態4に係る冷凍サイクル装置のユニット内の配置を説明する概念図である。 本発明の実施の形態4に係る冷凍サイクル装置のユニット内の配置を説明する概念図である。 本発明の実施の形態4に係る冷凍サイクル装置の凝縮器を示す側面図である。 本発明の実施の形態4に係る冷凍サイクル装置の凝縮器を示す側面図である。 本発明の実施の形態5に係る冷凍サイクル装置のユニット内の配置を説明する概念図である。 本発明の実施の形態5に係る冷凍サイクル装置のユニット内の配置を説明する概念図である。 本発明の実施の形態5に係る冷凍サイクル装置のユニット内の配置を説明する概念図である。 本発明の実施の形態6に係る冷凍サイクル装置のユニット内の配置を説明する概念図である。 本発明の実施の形態6に係る冷凍サイクル装置のユニット内の配置を説明する概念図である。 本発明の実施の形態6に係る冷凍サイクル装置のユニット内の配置を説明する概念図である。
 以下、図面を適宜参照しながら本発明の実施の形態について説明する。なお、以下の図面では各構成部材の大きさの関係が、実際のものとは異なる場合がある。また、以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、このことは明細書の全文において共通することとなる。さらに、明細書全文に表されている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。
 なお、以下の実施の形態では、冷凍サイクル装置の一例として空気調和装置を説明するが、本発明はこれに限定されず、例えば、冷凍装置又は給湯装置など熱交換器を有する他の装置にも冷凍サイクル装置を適用することができる。
実施の形態1.
 図1は、本発明の実施の形態1に係る冷凍サイクル装置の冷媒回路構成の一例を示す概略構成図である。
 図1に示すように、冷凍サイクル装置は、冷媒回路10を備える。冷媒回路10は、圧縮機1と、凝縮器2と、減圧器3と、蒸発器4とを備える。圧縮機1、凝縮器2、減圧器3、及び蒸発器4は、順次、冷媒配管により環状に接続され、冷媒が循環する。
 冷凍サイクル装置は、冷媒回路10を循環させる冷媒として可燃性を有する冷媒を含んだ冷媒を用いる。可燃性を有する冷媒は、例えば、自然冷媒である炭化水素(HC)系の燃焼性のある冷媒(R290若しくはR1270等)、またはこれらを主成分とする混合冷媒である。
 圧縮機1は、冷媒を圧縮して吐出するものである。圧縮機1は、例えば、ロータリ圧縮機、スクロール圧縮機、スクリュー圧縮機、又は往復圧縮機等で構成することができる。凝縮器2は、冷媒と、熱交換流体の一例である空気とを熱交換する。凝縮器2は、フィン・アンド・チューブ型熱交換器で構成することができる。減圧器3は、冷媒回路10を流れる冷媒を減圧して膨張させるものである。減圧器3は、例えば、電子式膨張弁若しくは感温式膨張弁等により構成される。蒸発器4は、冷媒と、熱交換流体の一例である空気とを熱交換する。蒸発器4は、フィン・アンド・チューブ型熱交換器で構成することができる。
 凝縮器2には、凝縮器側送風機5が付設されている。凝縮器側送風機5は、凝縮器2へ熱交換流体の一例である空気を供給するものである。蒸発器4には、蒸発器側送風機6が付設されている。蒸発器側送風機6は、蒸発器4へ熱交換流体の一例である空気を供給するものである。凝縮器側送風機5及び蒸発器側送風機6は、例えば複数の翼を有するプロペラファンで構成することができる。
 図2は、本発明の実施の形態1に係る冷凍サイクル装置の蒸発器を示す側面図である。
 図2に示すように、蒸発器4は、複数のフィン41と、複数の伝熱管42とを備える。複数のフィン41は、平板状に形成され、間隔を空けて並列に配置されている。複数のフィン41の間には空気が流通する。複数の伝熱管42は、互いに平行に配列され、複数のフィン41に取り付けられている。複数の伝熱管42は、内部に冷媒流路を有する。複数の伝熱管42は、冷媒流路の軸に直交する断面が扁平形状を有する扁平管である。複数の伝熱管42は、断面の扁平形状の長軸が、空気の流通方向に沿うように配置されている。
 複数の伝熱管42の一方の端部は、第1ヘッダ51と接続され、他方の端部は、第2ヘッダ52と接続される。第1ヘッダ51は、流入口51aから流入した冷媒を、複数の伝熱管42のそれぞれに分岐する。第2ヘッダ52は、複数の伝熱管42のそれぞれから流入した冷媒を合流し、流出口52aから流出する。
 次に、冷凍サイクル装置の動作について、冷媒の流れとともに説明する。
 圧縮機1を駆動させることによって、圧縮機1から高温高圧のガス状態の冷媒が吐出する。圧縮機1から吐出した高温高圧のガス冷媒は、凝縮器2に流れ込む。凝縮器2では、流れ込んだ高温高圧のガス冷媒と空気との間で熱交換が行われて、高温高圧のガス冷媒は、凝縮して高圧の液冷媒になる。
 凝縮器2から送り出された高圧の液冷媒は、減圧器3によって、低圧の液冷媒になり、蒸発器4に流れ込む。蒸発器4では、流れ込んだ液冷媒と空気との間で熱交換が行われて、液冷媒が蒸発して低圧のガス冷媒になる。蒸発器4から送り出された低圧のガス冷媒は、圧縮機1に流れ込み、圧縮されて高温高圧のガス冷媒となって、再び圧縮機1から吐出する。以下、このサイクルが繰り返される。
 図3及び図4は、本発明の実施の形態1に係る冷凍サイクル装置のユニット内の配置を説明する概念図である。なお、図3及び図4は、ユニットを上面から見た各構成の配置を示している。また、図3及び図4では、冷媒の流れを破線矢印で示している。なお、図4においては、一部の構成の図示を省略している。
 図3に示すように、圧縮機1、減圧器3及び蒸発器4は、ユニット100内に搭載されている。ユニット100は、例えば、空気調和装置における室外機である。また、ユニット100には、空気が流通する風路が形成されており、蒸発器側送風機6から送風された空気が蒸発器4を通過する。また、ユニット100は、隔壁101によって区画された第1の部屋110を備える。圧縮機1及び第2ヘッダ52は、第1の部屋110に配置されている。また、ユニット100は、第1の部屋110に加え、隔壁102によって区画された第2の部屋120を備える。減圧器3及び第1ヘッダ51は、第2の部屋120に配置されている。蒸発器4は、ユニット100内において第1の部屋110と第2の部屋120との間の空間に配置されている。
 図4に示すように、ユニット100内において、蒸発器4の冷媒入口と減圧器3の冷媒出口3aとを結ぶ直線距離L1が、蒸発器4の冷媒出口と減圧器3の冷媒出口とを結ぶ直線距離L2よりも短くなるように蒸発器4が配置されている。蒸発器4の冷媒入口とは伝熱管42の冷媒入口側の端部42aである。また、蒸発器4の冷媒出口とは伝熱管42の冷媒出口側の端部42bである。直線距離L1及び直線距離L2の一例について図4を用いて説明する。
 図5は、本発明の実施の形態1に係る冷凍サイクル装置の蒸発器を示す側面図である。
 図5に示すように、直線距離L1とは、複数の伝熱管42の冷媒入口側の端部42aのうち、減圧器3の冷媒出口3aとの距離が最も長い端部42aと、減圧器3の冷媒出口3aとを直線で結んだ距離をいう。直線距離L2とは、複数の伝熱管42の冷媒出口側の端部42bのうち、減圧器3の冷媒出口3aとの距離が最も長い端部42bと、減圧器3の冷媒出口3aとを直線で結んだ距離をいう。
 なお、直線距離L1及び直線距離L2は、図5に示したものに限定されない。例えば、複数の伝熱管42の冷媒入口側の端部42aのうち、減圧器3の冷媒出口3aとの距離が最も短い端部42aと、減圧器3の冷媒出口3aとを直線で結んだ距離を直線距離L1としても良い。また、複数の伝熱管42の冷媒出口側の端部42bのうち、減圧器3の冷媒出口3aとの距離が最も短い端部42bと、減圧器3の冷媒出口3aとを直線で結んだ距離を直線距離L2としても良い。
 再び図4を参照する。ユニット100内において、蒸発器4の冷媒出口と圧縮機1の冷媒入口1aとを結ぶ直線距離L3が、蒸発器4の冷媒入口と圧縮機1の冷媒入口1aとを結ぶ直線距離L4よりも短くなるように蒸発器4を配置している。蒸発器4の冷媒入口とは伝熱管42の冷媒入口側の端部42aである。また、蒸発器4の冷媒出口とは伝熱管42の冷媒出口側の端部42bである。直線距離L3及び直線距離L4の一例について図6を用いて説明する。
 図6は、本発明の実施の形態1に係る冷凍サイクル装置の蒸発器を示す側面図である。
 図6に示すように、直線距離L3とは、複数の伝熱管42の冷媒出口側の端部42bのうち、圧縮機1の冷媒入口1aとの距離が最も長い端部42bと、圧縮機1の冷媒入口1aとを直線で結んだ距離をいう。直線距離L4とは、複数の伝熱管42の冷媒入口側の端部42aのうち、圧縮機1の冷媒入口1aとの距離が最も長い端部42aと、圧縮機1の冷媒入口1aとを直線で結んだ距離をいう。
 なお、直線距離L3及び直線距離L4は、図6に示したものに限定されない。例えば、複数の伝熱管42の冷媒出口側の端部42bのうち、圧縮機1の冷媒入口1aとの距離が最も短い端部42bと、圧縮機1の冷媒入口1aとを直線で結んだ距離を直線距離L3としても良い。また、複数の伝熱管42の冷媒入口側の端部42aのうち、圧縮機1の冷媒入口1aとの距離が最も短い端部42aと、圧縮機1の冷媒入口1aとを直線で結んだ距離を直線距離L4としても良い。
 以上のように本実施の形態1においては、冷媒回路10を循環させる冷媒として可燃性を有する冷媒を含んだ冷媒を用いる。蒸発器4及び減圧器3が同じユニット100に搭載され、ユニット100内において、蒸発器4の冷媒入口と減圧器3の冷媒出口3aとを結ぶ直線距離L1が、蒸発器4の冷媒出口と減圧器3の冷媒出口3aとを結ぶ直線距離L2よりも短くなるように蒸発器4を配置している。
 このため、直線距離L1が直線距離L2以上である場合と比較して、蒸発器4の冷媒入口と減圧器3の冷媒出口3aとの間の冷媒配管の長さを短くできる。よって、直線距離L1が直線距離L2以上である場合と比較して、冷媒配管内の液冷媒の量を少なくできる。したがって、可燃性を有する冷媒を含んだ冷媒の充填量を減少しつつ所望するCOPを実現できる。また、蒸発器の冷媒入口と減圧器3の冷媒出口3aとの間の冷媒配管の長さを短くすることで、液冷媒の圧力損失を抑制することができる。
 また、本実施の形態1においては、圧縮機1がユニット100に搭載され、ユニット100内において、蒸発器4の冷媒出口と圧縮機1の冷媒入口1aとを結ぶ直線距離L3が、蒸発器4の冷媒入口と圧縮機1の冷媒入口1aとを結ぶ直線距離L4よりも短くなるように蒸発器を配置している。
 このため、直線距離L3が直線距離L4以上である場合と比較して、蒸発器4の冷媒出口と圧縮機1の冷媒入口1aとの間の冷媒配管の長さを短くできる。よって、直線距離L3が直線距離L4以上である場合と比較して、冷媒配管内のガス冷媒の量を少なくできる。したがって、可燃性を有する冷媒を含んだ冷媒の充填量を減少しつつ所望するCOPを実現できる。また、蒸発器の冷媒入口と減圧器3の冷媒出口3aとの間の冷媒配管の長さを短くすることで、ガス冷媒の圧力損失を抑制することができる。
実施の形態2.
 以下、実施の形態2における冷凍サイクル装置の構成について、上記実施の形態1との相違点を中心に説明する。なお、上記実施の形態1と同一部分には同一の符号を付し、説明を省略する。
 図7は、本発明の実施の形態2に係る冷凍サイクル装置のユニット内の配置を説明する概念図である。なお、図7は、ユニットを上面から見た各構成の配置を示している。また、図7では、冷媒の流れを破線矢印で示している。
 図7に示すように、蒸発器4は、空気の流れ方向に沿って、複数の伝熱管42が2列に配列されている。また、2列に配列された複数の伝熱管42は、ユニット100の側面に沿うように、上面視においてL字型に曲げられて配置されている。
 以下、蒸発器側送風機6から遠い位置に配列された複数の伝熱管42を、1列目の伝熱管42と称し、蒸発器側送風機6に近い位置に配列された複数の伝熱管42を、2列目の伝熱管42と称する。なお、図7に示す例では、伝熱管42が2列に配列された場合を示すが、これに限定せず、3つ以上の任意の列数であっても良い。
 第1ヘッダ51は、複数の伝熱管42の各列に設けられ、それぞれ減圧器3と冷媒配管によって接続されている。第2ヘッダ52は、複数の伝熱管42の各列に設けられ、それぞれ圧縮機1と冷媒配管によって接続されている。減圧器3から流出した冷媒は、2つの第1ヘッダ51のそれぞれに流入する。また、2つの第2ヘッダ52からそれぞれから流出した冷媒は圧縮機1に流入する。即ち、蒸発器4は、2列に配列された複数の伝熱管42に流入した冷媒が並行に流れるパラレルフロー型の蒸発器である。
 圧縮機1及び2つの第2ヘッダ52は、第1の部屋110に配置されている。また、減圧器3及び2つの第1ヘッダ51は、第2の部屋120に配置されている。蒸発器4は、ユニット100内において第1の部屋110と第2の部屋120との間の空間に配置されている。
 本実施の形態2における蒸発器4は、1列目の伝熱管42及び2列目の伝熱管42が、それぞれ、直線距離L1が直線距離L2よりも短くなるように配置されている。直線距離L1及び直線距離L2について図8を用いて説明する。
 図8は、本発明の実施の形態2に係る冷凍サイクル装置のユニット内の配置を説明する概念図である。なお、図8は、ユニットを上面から見た各構成の配置を示している。なお、図8においては、一部の構成の図示を省略している。
 図8に示すように、1列目の伝熱管42における冷媒入口側の端部42aと減圧器3の冷媒出口3aとを結ぶ直線距離L1-1が、1列目の伝熱管42における冷媒出口側の端部42bと減圧器3の冷媒出口3aとを結ぶ直線距離L2-1よりも短くなるように蒸発器4が配置されている。また、2列目の伝熱管42における冷媒入口側の端部42aと減圧器3の冷媒出口3aとを結ぶ直線距離L1-2が、2列目の伝熱管42における冷媒出口側の端部42bと減圧器3の冷媒出口3aとを結ぶ直線距離L2-2よりも短くなるように蒸発器4が配置されている。
 また、本実施の形態2における蒸発器4は、1列目の伝熱管42及び2列目の伝熱管42が、それぞれ、直線距離L3が直線距離L4よりも短くなるように配置されている。直線距離L3及び直線距離L4について図9を用いて説明する。
 図9は、本発明の実施の形態2に係る冷凍サイクル装置のユニット内の配置を説明する概念図である。なお、図9は、ユニットを上面から見た各構成の配置を示している。
 図9に示すように、1列目の伝熱管42における冷媒出口の端部42bと圧縮機1の冷媒入口1aとを結ぶ直線距離L3-1が、1列目の伝熱管42における冷媒入口側の端部42aと圧縮機1の冷媒入口1aとを結ぶ直線距離L4-1よりも短くなるように蒸発器4が配置されている。また、2列目の伝熱管42における冷媒出口の端部42bと圧縮機1の冷媒入口1aとを結ぶ直線距離L3-2が、2列目の伝熱管42における冷媒入口側の端部42aと圧縮機1の冷媒入口1aとを結ぶ直線距離L4-2よりも短くなるように蒸発器4が配置されている。
 以上のような構成により、上記実施の形態1と同様に、蒸発器4の冷媒入口と減圧器3の冷媒出口3aとの間の冷媒配管の長さを短くできる。また、蒸発器4の冷媒出口と圧縮機1の冷媒入口1aとの間の冷媒配管の長さを短くできる。よって、可燃性を有する冷媒を含んだ冷媒の充填量を減少しつつ所望するCOPを実現できる。
実施の形態3.
 以下、実施の形態3における冷凍サイクル装置の構成について、上記実施の形態1及び2との相違点を中心に説明する。なお、上記実施の形態1及び2と同一部分には同一の符号を付し、説明を省略する。
 図10は、本発明の実施の形態3に係る冷凍サイクル装置のユニット内の配置を説明する概念図である。なお、図10は、ユニットを上面から見た各構成の配置を示している。また、図10では、冷媒の流れを破線矢印で示している。
 図10に示すように、蒸発器4は、空気の流れ方向に沿って、複数の伝熱管42が2列に配列されている。また、2列に配列された複数の伝熱管42は、ユニット100の側面に沿うように、上面視においてL字型に曲げられて配置されている。
 以下、蒸発器側送風機6から遠い位置に配列された複数の伝熱管42を、1列目の伝熱管42と称し、蒸発器側送風機6に近い位置に配列された複数の伝熱管42を、2列目の伝熱管42と称する。
 1列目の伝熱管42の一方の端部は、第1ヘッダ51と接続されている。2列目の伝熱管42の一方の端部は、第2ヘッダ52と接続されている。また、1列目の伝熱管42の他方の端部と2列目の伝熱管42の他方の端部とは、それぞれ、接続配管53によって相互に接続されている。接続配管53は、例えばU字状に曲げられたU字管によって構成される。減圧器3から流出した冷媒は、第1ヘッダ51に流入する。第1ヘッダ51に流入した冷媒は、1列目の伝熱管42の冷媒流路を通過する。1列目の伝熱管42から流出した冷媒は、接続配管53を経由して2列目の伝熱管42へ流入する。2列目の伝熱管42へ流入した冷媒は、2列目の伝熱管42の冷媒流路を通過し、第2ヘッダ52へ流入する。第2ヘッダ52から流出した冷媒は圧縮機1へ流入する。即ち、本実施の形態3における蒸発器4は、1列目の伝熱管42の冷媒入口側の端部42aが蒸発器4の冷媒入口である。また、2列目の伝熱管42の冷媒出口側の端部42bが蒸発器4の冷媒出口である。
 圧縮機1、減圧器3、第1ヘッダ51、及び第2ヘッダ52は、第1の部屋110に配置されている。また、接続配管53は、第2の部屋120に配置されている。蒸発器4は、ユニット100内において第1の部屋110と第2の部屋120との間の空間に配置されている。
 図11は、本発明の実施の形態3に係る冷凍サイクル装置のユニット内の配置を説明する概念図である。なお、図11は、ユニットを上面から見た各構成の配置を示している。なお、図11においては、一部の構成の図示を省略している。
 図11に示すように、本実施の形態3における蒸発器4は、ユニット100内において、1列目の伝熱管42の端部42aと減圧器3の冷媒出口3aとを結ぶ直線距離L1が、2列目の伝熱管42の端部42bと減圧器3の冷媒出口とを結ぶ直線距離L2よりも短くなるように配置されている。
 図12は、本発明の実施の形態3に係る冷凍サイクル装置のユニット内の配置を説明する概念図である。なお、図12は、ユニットを上面から見た各構成の配置を示している。なお、図12においては、一部の構成の図示を省略している。
 図12に示すように、蒸発器4は、ユニット100内において、2列目の伝熱管42の端部42bと圧縮機1の冷媒入口1aとを結ぶ直線距離L3が、1列目の伝熱管42の端部42aと圧縮機1の冷媒入口1aとを結ぶ直線距離L4よりも短くなるように蒸発器4を配置している。
 以上のような構成により、上記実施の形態1と同様に、蒸発器4の冷媒入口と減圧器3の冷媒出口3aとの間の冷媒配管の長さを短くできる。また、蒸発器4の冷媒出口と圧縮機1の冷媒入口1aとの間の冷媒配管の長さを短くできる。よって、可燃性を有する冷媒を含んだ冷媒の充填量を減少しつつ所望するCOPを実現できる。
実施の形態4.
 以下、実施の形態4における冷凍サイクル装置の構成について、上記実施の形態1~3との相違点を中心に説明する。なお、上記実施の形態1~3と同一部分には同一の符号を付し、説明を省略する。
 図13は、本発明の実施の形態4に係る冷凍サイクル装置の凝縮器を示す側面図である。
 図13に示すように、凝縮器2は、複数のフィン21と、複数の伝熱管22とを備える。複数のフィン21は、平板状に形成され、間隔を空けて並列に配置されている。複数のフィン21の間には空気が流通する。複数の伝熱管22は、互いに平行に配列され、複数のフィン21に取り付けられている。複数の伝熱管22は、内部に冷媒流路を有する。複数の伝熱管22は、冷媒流路の軸に直交する断面が扁平形状を有する扁平管である。複数の伝熱管22は、断面の扁平形状の長軸が、空気の流通方向に沿うように配置されている。
 複数の伝熱管22の一方の端部は、第3ヘッダ31と接続され、他方の端部は、第4ヘッダ32と接続される。第3ヘッダ31は、流入口31aから流入した冷媒を、複数の伝熱管22のそれぞれに分岐する。第4ヘッダ32は、複数の伝熱管22のそれぞれから流入した冷媒を合流し、流出口32aから流出する。
 図14及び図15は、本発明の実施の形態4に係る冷凍サイクル装置のユニット内の配置を説明する概念図である。なお、図14及び図15は、ユニットを上面から見た各構成の配置を示している。また、図14及び図15では、冷媒の流れを破線矢印で示している。なお、図15においては、一部の構成の図示を省略している。
 図14に示すように、圧縮機1、減圧器3及び凝縮器2は、ユニット200内に搭載されている。ユニット200は、例えば、空気調和装置における室外機である。また、ユニット200には、空気が流通する風路が形成されており、凝縮器側送風機5から送風された空気が凝縮器2を通過する。また、ユニット200は、隔壁201によって区画された第1の部屋210を備える。圧縮機1及び第3ヘッダ31は、第1の部屋210に配置されている。また、ユニット200は、第1の部屋210に加え、隔壁202によって区画された第2の部屋220を備える。減圧器3及び第4ヘッダ32は、第2の部屋220に配置されている。凝縮器2は、ユニット200内において第1の部屋210と第2の部屋220との間の空間に配置されている。
 図15に示すように、ユニット200内において、凝縮器2の冷媒出口と減圧器3の冷媒入口3bとを結ぶ直線距離L5が、凝縮器2の冷媒入口と減圧器3の冷媒入口3bとを結ぶ直線距離L6よりも短くなるように凝縮器2が配置されている。凝縮器2の冷媒入口とは伝熱管22の冷媒入口側の端部22aである。また、凝縮器2の冷媒出口とは伝熱管22の冷媒出口側の端部22bである。直線距離L5及び直線距離L6の一例について図16を用いて説明する。
 図16は、本発明の実施の形態4に係る冷凍サイクル装置の凝縮器を示す側面図である。
 図16に示すように、直線距離L5とは、複数の伝熱管22の冷媒出口側の端部22bのうち、減圧器3の冷媒入口3bとの距離が最も長い端部22bと、減圧器3の冷媒入口3bとを直線で結んだ距離をいう。直線距離L6とは、複数の伝熱管22の冷媒入口側の端部22aのうち、減圧器3の冷媒入口3bとの距離が最も長い端部22aと、減圧器3の冷媒入口3bとを直線で結んだ距離をいう。
 なお、直線距離L5及び直線距離L6は、図16に示したものに限定されない。例えば、複数の伝熱管22の冷媒出口側の端部22bのうち、減圧器3の冷媒入口3bとの距離が最も短い端部22bと、減圧器3の冷媒入口3bとを直線で結んだ距離を直線距離L5としても良い。また、複数の伝熱管22の冷媒入口側の端部22aのうち、減圧器3の冷媒入口3bとの距離が最も短い端部22aと、減圧器3の冷媒入口3bとを直線で結んだ距離を直線距離L6としても良い。
 再び図15を参照する。ユニット200内において、凝縮器2の冷媒入口と圧縮機1の冷媒出口1bとを結ぶ直線距離L7が、凝縮器2の冷媒出口と圧縮機1の冷媒出口1bとを結ぶ直線距離L8よりも短くなるように凝縮器2を配置している。凝縮器2の冷媒入口とは伝熱管22の冷媒入口側の端部22aである。また、凝縮器2の冷媒出口とは伝熱管22の冷媒出口側の端部22bである。直線距離L7及び直線距離L8の一例について図17を用いて説明する。
 図17は、本発明の実施の形態4に係る冷凍サイクル装置の凝縮器を示す側面図である。
 図17に示すように、直線距離L7とは、複数の伝熱管22の冷媒入口側の端部22aのうち、圧縮機1の冷媒出口1bとの距離が最も長い端部22aと、圧縮機1の冷媒出口1bとを直線で結んだ距離をいう。直線距離L8とは、複数の伝熱管22の冷媒出口側の端部22bのうち、圧縮機1の冷媒出口1bとの距離が最も長い端部22bと、圧縮機1の冷媒出口1bとを直線で結んだ距離をいう。
 なお、直線距離L7及び直線距離L8は、図17に示したものに限定されない。例えば、複数の伝熱管22の冷媒入口側の端部22aのうち、圧縮機1の冷媒出口1bとの距離が最も短い端部22aと、圧縮機1の冷媒出口1bとを直線で結んだ距離を直線距離L7としても良い。また、複数の伝熱管22の冷媒出口側の端部22bのうち、圧縮機1の冷媒出口1bとの距離が最も短い端部22bと、圧縮機1の冷媒出口1bとを直線で結んだ距離を直線距離L8としても良い。
 以上のように本実施の形態4においては、冷媒回路10を循環させる冷媒として可燃性を有する冷媒を含んだ冷媒を用いる。凝縮器2及び減圧器3が同じユニット200に搭載され、ユニット200内において、凝縮器2の冷媒出口と減圧器3の冷媒入口3bとを結ぶ直線距離L5が、凝縮器2の冷媒入口と減圧器3の冷媒入口3bとを結ぶ直線距離L6よりも短くなるように凝縮器2を配置している。
 このため、直線距離L5が直線距離L6以上である場合と比較して、凝縮器2の冷媒出口と減圧器3の冷媒入口3bとの間の冷媒配管の長さを短くできる。よって、直線距離L5が直線距離L6以上である場合と比較して、冷媒配管内の液冷媒の量を少なくできる。したがって、可燃性を有する冷媒を含んだ冷媒の充填量を減少しつつ所望するCOPを実現できる。また、蒸発器の冷媒入口と減圧器3の冷媒入口3bとの間の冷媒配管の長さを短くすることで、液冷媒の圧力損失を抑制することができる。
 また、本実施の形態4においては、圧縮機1がユニット200に搭載され、ユニット200内において、凝縮器2の冷媒入口と圧縮機1の冷媒出口1bとを結ぶ直線距離L7が、凝縮器2の冷媒出口と圧縮機1の冷媒出口1bとを結ぶ直線距離L8よりも短くなるように蒸発器を配置している。
 このため、直線距離L7が直線距離L8以上である場合と比較して、凝縮器2の冷媒入口と圧縮機1の冷媒出口1bとの間の冷媒配管の長さを短くできる。よって、直線距離L7が直線距離L8以上である場合と比較して、冷媒配管内のガス冷媒の量を少なくできる。したがって、可燃性を有する冷媒を含んだ冷媒の充填量を減少しつつ所望するCOPを実現できる。また、蒸発器の冷媒入口と減圧器3の冷媒入口3bとの間の冷媒配管の長さを短くすることで、ガス冷媒の圧力損失を抑制することができる。
実施の形態5.
 以下、実施の形態5における冷凍サイクル装置の構成について、上記実施の形態1~4との相違点を中心に説明する。なお、上記実施の形態1~4と同一部分には同一の符号を付し、説明を省略する。
 図18は、本発明の実施の形態5に係る冷凍サイクル装置のユニット内の配置を説明する概念図である。なお、図18は、ユニットを上面から見た各構成の配置を示している。また、図18では、冷媒の流れを破線矢印で示している。
 図17に示すように、凝縮器2は、空気の流れ方向に沿って、複数の伝熱管22が2列に配列されている。また、2列に配列された複数の伝熱管22は、ユニット200の側面に沿うように、上面視においてL字型に曲げられて配置されている。
 以下、凝縮器側送風機5から遠い位置に配列された複数の伝熱管22を、1列目の伝熱管22と称し、凝縮器側送風機5に近い位置に配列された複数の伝熱管22を、2列目の伝熱管22と称する。なお、図18に示す例では、伝熱管22が2列に配列された場合を示すが、これに限定せず、3つ以上の任意の列数であっても良い。
 第3ヘッダ31は、複数の伝熱管22の各列に設けられ、それぞれ圧縮機1と冷媒配管によって接続されている。第4ヘッダ32は、複数の伝熱管22の各列に設けられ、それぞれ減圧器3と冷媒配管によって接続されている。圧縮機1から流出した冷媒は、2つの第3ヘッダ31のそれぞれに流入する。また、2つの第4ヘッダ32からそれぞれから流出した冷媒は減圧器3に流入する。即ち、凝縮器2は、2列に配列された複数の伝熱管22に流入した冷媒が並行に流れるパラレルフロー型の蒸発器である。
 圧縮機1及び2つの第3ヘッダ31は、第1の部屋210に配置されている。また、減圧器3及び2つの第4ヘッダ32は、第2の部屋220に配置されている。凝縮器2は、ユニット200内において第1の部屋210と第2の部屋220との間の空間に配置されている。
 本実施の形態5における凝縮器2は、1列目の伝熱管22及び2列目の伝熱管22が、それぞれ、直線距離L5が直線距離L6よりも短くなるように配置されている。直線距離L5及び直線距離L6について図19を用いて説明する。
 図19は、本発明の実施の形態5に係る冷凍サイクル装置のユニット内の配置を説明する概念図である。なお、図18は、ユニットを上面から見た各構成の配置を示している。なお、図19においては、一部の構成の図示を省略している。
 図19に示すように、1列目の伝熱管22における冷媒出口側の端部22bと減圧器3の冷媒入口3bとを結ぶ直線距離L5-1が、1列目の伝熱管22における冷媒入口側の端部22aと減圧器3の冷媒入口3bとを結ぶ直線距離L6-1よりも短くなるように凝縮器2が配置されている。また、2列目の伝熱管22における冷媒入口側の端部22bと減圧器3の冷媒入口3bとを結ぶ直線距離L5-2が、2列目の伝熱管22における冷媒出口側の端部22aと減圧器3の冷媒入口3bとを結ぶ直線距離L6-2よりも短くなるように凝縮器2が配置されている。
 また、本実施の形態5における凝縮器2は、1列目の伝熱管22及び2列目の伝熱管22が、それぞれ、直線距離L7が直線距離L8よりも短くなるように配置されている。直線距離L7及び直線距離L8について図20を用いて説明する。
 図20は、本発明の実施の形態5に係る冷凍サイクル装置のユニット内の配置を説明する概念図である。なお、図20は、ユニットを上面から見た各構成の配置を示している。
 図20に示すように、1列目の伝熱管22における冷媒入口の端部22aと圧縮機1の冷媒出口1bとを結ぶ直線距離L7-1が、1列目の伝熱管22における冷媒出口側の端部22bと圧縮機1の冷媒出口1bとを結ぶ直線距離L8-1よりも短くなるように凝縮器2が配置されている。また、2列目の伝熱管22における冷媒入口の端部22aと圧縮機1の冷媒出口1bとを結ぶ直線距離L7-2が、2列目の伝熱管22における冷媒出口側の端部22bと圧縮機1の冷媒出口1bとを結ぶ直線距離L8-2よりも短くなるように凝縮器2が配置されている。
 以上のような構成により、上記実施の形態4と同様に、凝縮器2の冷媒入口と減圧器3の冷媒入口3bとの間の冷媒配管の長さを短くできる。また、凝縮器2の冷媒入口と圧縮機1の冷媒出口1bとの間の冷媒配管の長さを短くできる。よって、可燃性を有する冷媒を含んだ冷媒の充填量を減少しつつ所望するCOPを実現できる。
実施の形態6.
 以下、実施の形態3における冷凍サイクル装置の構成について、上記実施の形態1~5との相違点を中心に説明する。なお、上記実施の形態1~5と同一部分には同一の符号を付し、説明を省略する。
 図21は、本発明の実施の形態6に係る冷凍サイクル装置のユニット内の配置を説明する概念図である。なお、図21は、ユニットを上面から見た各構成の配置を示している。また、図21では、冷媒の流れを破線矢印で示している。
 図21に示すように、凝縮器2は、空気の流れ方向に沿って、複数の伝熱管22が2列に配列されている。また、2列に配列された複数の伝熱管22は、ユニット200の側面に沿うように、上面視においてL字型に曲げられて配置されている。
 以下、凝縮器側送風機5から遠い位置に配列された複数の伝熱管22を、1列目の伝熱管22と称し、凝縮器側送風機5に近い位置に配列された複数の伝熱管22を、2列目の伝熱管22と称する。
 1列目の伝熱管22の一方の端部は、第4ヘッダ32と接続されている。2列目の伝熱管22の一方の端部は、第3ヘッダ31と接続されている。また、1列目の伝熱管22の他方の端部と2列目の伝熱管22の他方の端部とは、それぞれ、接続配管33によって相互に接続されている。接続配管33は、例えばU字状に曲げられたU字管によって構成される。圧縮機1から流出した冷媒は、第3ヘッダ31に流入する。第3ヘッダ31に流入した冷媒は、2列目の伝熱管22の冷媒流路を通過する。2列目の伝熱管22から流出した冷媒は、接続配管33を経由して1列目の伝熱管22へ流入する。1列目の伝熱管22へ流入した冷媒は、1列目の伝熱管22の冷媒流路を通過し、第4ヘッダ32へ流入する。第4ヘッダ32から流出した冷媒は減圧器3へ流入する。即ち、本実施の形態6における凝縮器2は、2列目の伝熱管22の冷媒入口側の端部22aが凝縮器2の冷媒入口である。また、1列目の伝熱管22の冷媒出口側の端部22bが凝縮器2の冷媒出口である。
 圧縮機1、減圧器3、第3ヘッダ31、及び第4ヘッダ32は、第1の部屋210に配置されている。また、接続配管33は、第2の部屋220に配置されている。凝縮器2は、ユニット200内において第1の部屋210と第2の部屋220との間の空間に配置されている。
 図22は、本発明の実施の形態6に係る冷凍サイクル装置のユニット内の配置を説明する概念図である。なお、図22は、ユニットを上面から見た各構成の配置を示している。なお、図22においては、一部の構成の図示を省略している。
 図22に示すように、本実施の形態6における凝縮器2は、ユニット200内において、1列目の伝熱管22の端部22bと減圧器3の冷媒入口3bとを結ぶ直線距離L5が、2列目の伝熱管22の端部22aと減圧器3の冷媒入口3bとを結ぶ直線距離L6よりも短くなるように配置されている。
 図23は、本発明の実施の形態6に係る冷凍サイクル装置のユニット内の配置を説明する概念図である。なお、図23は、ユニットを上面から見た各構成の配置を示している。なお、図23においては、一部の構成の図示を省略している。
 図23に示すように、凝縮器2は、ユニット200内において、2列目の伝熱管22の端部22aと圧縮機1の冷媒出口1bとを結ぶ直線距離L7が、1列目の伝熱管22の端部22bと圧縮機1の冷媒出口1bとを結ぶ直線距離L8よりも短くなるように凝縮器2を配置している。
 以上のような構成により、上記実施の形態4と同様に、凝縮器2の冷媒出口と減圧器3の冷媒入口3bとの間の冷媒配管の長さを短くできる。また、凝縮器2の冷媒入口と圧縮機1の冷媒出口1bとの間の冷媒配管の長さを短くできる。よって、可燃性を有する冷媒を含んだ冷媒の充填量を減少しつつ所望するCOPを実現できる。
 1 圧縮機、1a 冷媒入口、1b 冷媒出口、2 凝縮器、3 減圧器、3a 冷媒出口、3b 冷媒入口、4 蒸発器、5 凝縮器側送風機、6 蒸発器側送風機、10 冷媒回路、21 フィン、22 伝熱管、22a 端部、22b 端部、31 第3ヘッダ、31a 流入口、32 第4ヘッダ、32a 流出口、33 接続配管、41 フィン、42 伝熱管、42a 端部、42b 端部、51 第1ヘッダ、51a 流入口、52 第2ヘッダ、52a 流出口、53 接続配管、100 ユニット、101 隔壁、102 隔壁、110 第1の部屋、120 第2の部屋、200 ユニット、201 隔壁、202 隔壁、210 第1の部屋、220 第2の部屋。

Claims (11)

  1.  圧縮機、凝縮器、減圧器及び蒸発器を冷媒配管で接続した冷媒回路を備える冷凍サイクル装置において、
     前記冷媒回路を循環させる冷媒として可燃性を有する冷媒を含んだ冷媒を用い、
     前記蒸発器及び前記減圧器が同じユニットに搭載され、
     前記ユニット内において、前記蒸発器の冷媒入口と前記減圧器の冷媒出口とを結ぶ直線距離が、前記蒸発器の冷媒出口と前記減圧器の冷媒出口とを結ぶ直線距離よりも短くなるように前記蒸発器を配置している
     冷凍サイクル装置。
  2.  前記圧縮機が前記ユニットに搭載され、
     前記ユニット内において、前記蒸発器の冷媒出口と前記圧縮機の冷媒入口とを結ぶ直線距離が、前記蒸発器の冷媒入口と前記圧縮機の冷媒入口とを結ぶ直線距離よりも短くなるように前記蒸発器を配置している
     請求項1に記載の冷凍サイクル装置。
  3.  前記ユニットは、
     前記圧縮機が配置された第1第1の部屋と、
     前記減圧器が配置された第2の部屋と、を備え、
     前記蒸発器は、前記ユニット内において前記第1第1の部屋と前記第2の部屋との間に配置された
     請求項1又は2に記載の冷凍サイクル装置。
  4.  圧縮機、凝縮器、減圧器及び蒸発器を冷媒配管で接続した冷媒回路を備える冷凍サイクル装置において、
     前記冷媒回路を循環させる冷媒として可燃性を有する冷媒を含んだ冷媒を用い、
     前記凝縮器及び前記減圧器が同じユニットに搭載され、
     前記ユニット内において、前記凝縮器の冷媒出口と前記減圧器の冷媒入口とを結ぶ直線距離が、前記凝縮器の冷媒入口と前記減圧器の冷媒入口とを結ぶ直線距離よりも短くなるように前記凝縮器を配置している
     冷凍サイクル装置。
  5.  前記圧縮機が前記ユニットに搭載され、
     前記ユニット内において、前記凝縮器の冷媒入口と前記圧縮機の冷媒入口とを結ぶ直線距離が、前記凝縮器の冷媒出口と前記圧縮機の冷媒入口とを結ぶ直線距離よりも短くなるように前記凝縮器を配置している
     請求項4に記載の冷凍サイクル装置。
  6.  前記ユニットは、
     前記圧縮機が配置された第1第1の部屋と、
     前記減圧器が配置された第2の部屋と、を備え、
     前記凝縮器は、前記ユニット内において前記第1第1の部屋と前記第2の部屋との間に配置された
     請求項4又は5に記載の冷凍サイクル装置。
  7.  前記蒸発器は、
     冷媒が導通する扁平管と、
     前記扁平管に取り付けられるフィンと、を備えた扁平管熱交換器である
     請求項1~6のいずれか一項に記載の冷凍サイクル装置。
  8.  前記蒸発器の冷媒入口とは前記扁平管の冷媒入口側の端部であり、
     前記蒸発器の冷媒出口とは前記扁平管の冷媒出口側の端部である
     請求項7に記載の冷凍サイクル装置。
  9.  前記凝縮器は、
     冷媒が導通する扁平管と、
     前記扁平管に取り付けられるフィンと、を備えた扁平管熱交換器である
     請求項1~8のいずれか一項に記載の冷凍サイクル装置。
  10.  前記凝縮器の冷媒入口とは前記扁平管の冷媒入口側の端部であり、
     前記凝縮器の冷媒出口とは前記扁平管の冷媒出口側の端部である
     請求項9に記載の冷凍サイクル装置。
  11.  前記可燃性を有する冷媒は、自然冷媒である炭化水素系の冷媒である
     請求項1~10のいずれか一項に記載の冷凍サイクル装置。
PCT/JP2018/019042 2018-05-17 2018-05-17 冷凍サイクル装置 WO2019220585A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2018/019042 WO2019220585A1 (ja) 2018-05-17 2018-05-17 冷凍サイクル装置
JP2020518896A JP6956866B2 (ja) 2018-05-17 2018-05-17 冷凍サイクル装置
EP18919177.8A EP3795927B1 (en) 2018-05-17 2018-05-17 Refrigeration cycle device
US17/040,820 US11506431B2 (en) 2018-05-17 2018-05-17 Refrigeration cycle apparatus
CN201880092858.1A CN112105875B (zh) 2018-05-17 2018-05-17 制冷循环装置
EP21179119.9A EP3904786B1 (en) 2018-05-17 2018-05-17 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/019042 WO2019220585A1 (ja) 2018-05-17 2018-05-17 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2019220585A1 true WO2019220585A1 (ja) 2019-11-21

Family

ID=68540013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019042 WO2019220585A1 (ja) 2018-05-17 2018-05-17 冷凍サイクル装置

Country Status (5)

Country Link
US (1) US11506431B2 (ja)
EP (2) EP3904786B1 (ja)
JP (1) JP6956866B2 (ja)
CN (1) CN112105875B (ja)
WO (1) WO2019220585A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319420U (ja) * 1986-07-24 1988-02-08
JP2001289534A (ja) * 2000-04-07 2001-10-19 Toyota Autom Loom Works Ltd 空調用ユニット
JP2010121844A (ja) * 2008-11-19 2010-06-03 Panasonic Corp 冷凍サイクル装置
JP2013164233A (ja) * 2012-02-13 2013-08-22 Daikin Industries Ltd 冷凍装置の室外ユニット
JP2014142138A (ja) 2013-01-24 2014-08-07 Toshiba Corp 空気調和装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5839295A (en) * 1997-02-13 1998-11-24 Frontier Refrigeration And Air Conditioning Ltd. Refrigeration/heat pump module
JPH11230626A (ja) 1998-02-12 1999-08-27 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
JP2001227822A (ja) 2000-02-17 2001-08-24 Mitsubishi Electric Corp 冷凍空調装置
JP3661548B2 (ja) 2000-02-25 2005-06-15 三菱電機株式会社 可燃性冷媒を用いた冷蔵庫
KR20050024880A (ko) * 2003-09-05 2005-03-11 엘지전자 주식회사 저진동 에어컨 배관 구조
US20060042274A1 (en) * 2004-08-27 2006-03-02 Manole Dan M Refrigeration system and a method for reducing the charge of refrigerant there in
CN102135297A (zh) * 2011-03-02 2011-07-27 广东美的电器股份有限公司 一种空调器室外机
JP5360186B2 (ja) * 2011-11-30 2013-12-04 ダイキン工業株式会社 空気調和装置の室外機
JP5661202B2 (ja) * 2012-01-11 2015-01-28 三菱電機株式会社 プレートフィンチューブ式熱交換器及びそれを備えた冷凍空調システム
JP5673612B2 (ja) * 2012-06-27 2015-02-18 三菱電機株式会社 冷凍サイクル装置
CN202993405U (zh) * 2012-12-31 2013-06-12 泰铂(上海)实业有限公司 液压制冷、燃油制热工程车辆空调室外机
CN104930602A (zh) * 2015-06-16 2015-09-23 海信(广东)空调有限公司 一种空调室外机以及空调
JP6599176B2 (ja) * 2015-08-28 2019-10-30 三菱重工サーマルシステムズ株式会社 ターボ冷凍装置
WO2017073087A1 (ja) * 2015-10-28 2017-05-04 八洋エンジニアリング株式会社 蒸発式凝縮器およびこの蒸発式凝縮器を備えた冷凍システム
JP2017133813A (ja) * 2016-01-29 2017-08-03 ダイキン工業株式会社 冷凍装置
TR201612430A2 (tr) * 2016-09-02 2018-03-21 Arcelik As Portati̇f i̇kli̇mlendi̇rme ci̇hazi
US9932817B1 (en) * 2017-02-10 2018-04-03 Vierko Enterprises, LLC Tool and method for actively cooling downhole electronics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319420U (ja) * 1986-07-24 1988-02-08
JP2001289534A (ja) * 2000-04-07 2001-10-19 Toyota Autom Loom Works Ltd 空調用ユニット
JP2010121844A (ja) * 2008-11-19 2010-06-03 Panasonic Corp 冷凍サイクル装置
JP2013164233A (ja) * 2012-02-13 2013-08-22 Daikin Industries Ltd 冷凍装置の室外ユニット
JP2014142138A (ja) 2013-01-24 2014-08-07 Toshiba Corp 空気調和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3795927A4

Also Published As

Publication number Publication date
US11506431B2 (en) 2022-11-22
CN112105875A (zh) 2020-12-18
CN112105875B (zh) 2022-03-01
JPWO2019220585A1 (ja) 2021-02-25
EP3795927A1 (en) 2021-03-24
EP3904786B1 (en) 2023-07-05
EP3795927B1 (en) 2023-03-08
US20210003325A1 (en) 2021-01-07
JP6956866B2 (ja) 2021-11-02
EP3795927A4 (en) 2021-07-28
EP3904786A1 (en) 2021-11-03

Similar Documents

Publication Publication Date Title
JP3982545B2 (ja) 空気調和装置
US8205470B2 (en) Indoor unit for air conditioner
US20130306285A1 (en) Heat exchanger and air conditioner
CN104185765A (zh) 制冷装置
WO2018138770A1 (ja) 熱源側ユニット、及び、冷凍サイクル装置
CN105229382A (zh) 用于空冷式冷却器的模块化盘管
CN110595111B (zh) 换热器和多制冷系统空调机组
EP2578966B1 (en) Refrigeration device and cooling and heating device
JP2018112379A (ja) 空気調和機
JP5171983B2 (ja) 熱交換器及び冷凍サイクル装置
JP2007255785A (ja) フィン付き熱交換器及び空気調和機
US20230128871A1 (en) Heat exchanger, outdoor unit, and refrigeration cycle device
WO2019220585A1 (ja) 冷凍サイクル装置
CN216592327U (zh) 蛇形管微通道换热器、空调器
WO2021234961A1 (ja) 熱交換器、空気調和装置の室外機及び空気調和装置
CN114198946A (zh) 蛇形管微通道换热器、空调器
WO2021131038A1 (ja) 熱交換器および冷凍サイクル装置
WO2023233572A1 (ja) 熱交換器及び冷凍サイクル装置
CN113614481A (zh) 热交换器以及空调机
US20230204297A1 (en) Heat exchanger assembly and method for hvac system
JPWO2018142567A1 (ja) 空気調和装置
KR20060098910A (ko) 공기 조화기의 열교환기
WO2019021461A1 (ja) 熱交換器、空気調和機及び熱交換器の製造方法
JP6974720B2 (ja) 熱交換器及び冷凍装置
JP2011058771A (ja) 熱交換器及びこの熱交換器を備えた冷蔵庫、空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919177

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020518896

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018919177

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018919177

Country of ref document: EP

Effective date: 20201217