JP2011058771A - 熱交換器及びこの熱交換器を備えた冷蔵庫、空気調和機 - Google Patents

熱交換器及びこの熱交換器を備えた冷蔵庫、空気調和機 Download PDF

Info

Publication number
JP2011058771A
JP2011058771A JP2009211740A JP2009211740A JP2011058771A JP 2011058771 A JP2011058771 A JP 2011058771A JP 2009211740 A JP2009211740 A JP 2009211740A JP 2009211740 A JP2009211740 A JP 2009211740A JP 2011058771 A JP2011058771 A JP 2011058771A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
heat
transfer tube
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009211740A
Other languages
English (en)
Other versions
JP4983878B2 (ja
Inventor
Soubu Ri
相武 李
Daisuke Ito
大輔 伊東
Takuya Matsuda
拓也 松田
Akira Ishibashi
晃 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009211740A priority Critical patent/JP4983878B2/ja
Publication of JP2011058771A publication Critical patent/JP2011058771A/ja
Application granted granted Critical
Publication of JP4983878B2 publication Critical patent/JP4983878B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】 従来の熱交換器の構成を改善することにより、冷媒通路とフィンとの接触面積を大きくし、冷媒通路の形状を適当なものとして、空気と冷媒との熱交換効率を高めた熱交換器、及びこの熱交換器を用いた冷蔵庫又は空気調和機を提供することを目的とする。
【解決手段】 扁平形状をなしかつ扁平な面に沿って複数の冷媒通路16が形成された伝熱管11と、伝熱管11の扁平な表面を切り起こして形成した複数のフィン10と、を備えた。
【選択図】 図2

Description

この発明は、例えば冷凍装置や空気調和装置等の蒸発器や凝縮器等に広く利用されている熱交換器に関するものである。
従来の冷蔵庫や空気調和機を構成する熱交換器には、冷媒の流路を形成する配管を扁平管とし、波形状のアルミフィンを扁平管の外側にロウ付けし、複数の扁平管の両端部にヘッダが接続されたものがある(例えば、特許文献1参照)。また、フィンとチューブを一体構造とすることにより熱伝導の安定恒常化を図っている蒸発器がある(例えば、特許文献2参照)。
特開2006−200881(第8頁7行目、第16頁図1) 特開昭63−150585(第2頁左上段10行目、第4頁図1)
しかしながら、特許文献1に記載された熱交換器の構成では、扁平管と波形状のアルミフィンとの接続には、高温炉中におけるロウ付けにより行われているが、ロウ付けによる接続された扁平管波形状のアルミフィンの間には接触熱抵抗が存在する。また、熱交換器の加熱工程が必要になるため、製造コストが上昇する。さらに、複数の扁平管の両端部にヘッダが接続されていることで、全ての扁平管の冷媒流路に均等分配ができないことで、優れた伝熱性能が得られないことがあった。
また、特許文献2に記載された熱交換器の構成は、断面略H形状に形成されてなるもので、フィンと冷媒通路との接触面積が小さく熱交換が効率的でないという問題があった。また、管内伝熱面積を大きくするために冷媒通路を複数設けるときには、気流に垂直方向に冷媒通路を追加することとなるが、冷媒通路の面積を一定とした場合には厚さ寸法が大きくなり気流抵抗が大きくなってしまい、また、厚さ寸法を一定とした場合には冷媒通路の面積が小さくなり冷媒抵抗が大きくなってしまう。これに加えて、いずれの場合でも、フィンと接触しない冷媒通路ができてしまうという問題もあり、結局熱交換効率を高めることはできない。
この発明は、上記のような課題を解決するためになされたもので、冷媒通路とフィンとの接触面積を大きくし、冷媒通路の形状を適当なものとして、空気と冷媒との熱交換効率を高めた熱交換器、及びこの熱交換器を用いた冷蔵庫又は空気調和機を提供することを目的とする。
この発明に係る熱交換器は、扁平形状をなしかつ扁平な面に沿って複数の冷媒通路が形成された伝熱管と、前記伝熱管の扁平な表面を切り起こして形成した複数のフィンと、を備えたものである。
本発明によれば、熱交換器における空気と冷媒との熱交換効率を高めることができる。また、この熱交換器を冷蔵庫又は空気調和機に用いることにより、熱交換効率が向上し、有効である。
実施の形態1に係る熱交換器の外観図である。 (a)は実施の形態1に係る伝熱管の側面図、(b)は同じく断面図である。 実施の形態1に係る伝熱管の外観図である。 実施の形態2に係る伝熱管の外観図である。 実施の形態2に係る熱交換器の要部外観図である。 実施の形態3に係る伝熱管の外観図である。 実施の形態4に係る熱交換器の外観図である。 実施の形態5に係る冷媒通路の数(穴数)と熱交換率との関係を示す図である。 実施の形態6に係る伝熱管の拡大断面図である。 伝熱管の突条高さと外径との比と熱交換率との関係を示す図である。 伝熱管の突条個数と熱交換率との関係を示す図である。 実施の形態9に係る空気調和装置の構成図である。
実施の形態1.
図1は本発明の実施の形態1に係る熱交換器の外観図である。図1において、熱交換器1は、扁平形状をした伝熱管11と、伝熱管11の扁平な面に設けられた複数の熱交換器用のフィン10とで構成されている。伝熱管11は、折り曲げ部分13において、伝熱管11の扁平な面と平行な面内で蛇行状に曲げられており、伝熱管11内部を流れる冷媒が、扁平な面に沿って流れる気流に対して複数回横切るように構成されている。気流は例えば図の下方から図の上方に流れており、フィン10は、この気流に対して平行となるように設けられており、気流に対する抵抗とならないように形成されている。なお、フィン10は、伝熱管11のうち折り曲げ部分13以外に形成されている。
図2(a)は、実施の形態1に係る伝熱管11の側面図で、図2(b)は、実施の形態1に係る伝熱管の断面図である。伝熱管11は四角型の扁平形状をしており、伝熱管11の一方の扁平な面には、所定の間隔をあけてフィン10が、伝熱管11の長手方向に対して垂直かつ平行に切り起こされる。このフィン10は伝熱管11の素材表面を所定の厚さでほぼ垂直になるまで切り起こされて一体形成されている。また、伝熱管11の内部には、冷媒が流れるための冷媒通路16が設けられており、フィン10の面に対して直交する方向に冷媒が流れるように構成されている。また、冷媒通路16は、例えば、伝熱管11をなす金属に穴を空けるなどして、伝熱管11と一体として形成されている。また、冷媒通路16は、伝熱管11の扁平な面に沿って形成されており、気流に対する抵抗が大きくならないように構成されている。
図3は、実施の形態1に係る伝熱管の外観図であり、折り曲げ部分13が1箇所の場合の、曲げ加工を行う前の状態の伝熱管を示している。図3において、伝熱管11の全体の長さのほぼ1/2に相当する範囲の扁平な面に切り起しフィン10を設け、折り曲げ代となる所定の間隔を有する折り曲げ部分13を隔て、残り1/2の扁平な面に切り起しフィン10を設け、フィン10と伝熱管11が一体化して形成されている。図3では、折り曲げ部分13が1箇所の例を示しているが、折り曲げ部分13が2箇所以上の場合にも同様にして形成することが出来る。このような伝熱管を水平に曲げ加工を行うことにより、熱交換器1が形成される。
なお、伝熱管11は、銅若しくは銅合金又はアルミニウム若しくはアルミニウム合金、チタンなどの熱伝導率の高い金属材料からなる。これは、他の実施の形態においても同様である。また、冷媒通路16の数は2に限るものではない。
なお、フィン10の形状は板形状に限定するものではなく、短冊形状、針形状等、適宜のフィン形状とすることができる。
次に動作について説明する。
伝熱管11は冷凍サイクル装置における冷媒回路の一部となる。そして、図1の右下から冷媒が伝熱管11内に入り管内を流れる一方、気流は図の下方から上方に流れ、複数回伝熱管11と空気は交差することになる。そして、伝熱管11の内部を流れる冷媒の持つ熱の一部は、フィン10に伝わり、伝熱管11の外部を流れる空気との間で熱交換が行われる。
このとき、気流の流れに対して、上述したようにフィン10及び冷媒通路16は、空気抵抗が小さくなるように構成されているので、気流は効率的に熱交換器1を通過する。また、伝熱管11とフィン10とは一体形成されているので、接触熱抵抗はゼロであり、伝熱管11内を流れる冷媒の熱が効率よくフィン10に伝わる。また、フィン10は、空気との接触面となる伝熱面積が大きいので、フィン10に伝わった熱は効率よく空気と熱交換される。
また、伝熱管11内部を流れる冷媒は、伝熱管11の折り曲げ部分13を通過して伝熱管11内を流れる。折り曲げ部分13を通過した後は、気流の流れに対して冷媒通路16が逆になる、すなわち、気流に対して上流側を流れていた冷媒通路16は、折り曲げ部分13を通過した後は、気流に対して下流側を流れることになり、どの冷媒通路16を流れる冷媒も均等に熱交換されるようにすることができるので、熱交換器の効率が高まる。
また、熱交換器1は伝熱管11を曲げ加工して形成されるため、ロウ付け点数が減り、加工費の低減と信頼性の向上を図ることができる。
上記のように、実施の形態1によれば、気流に対する空気抵抗が小さく、熱交換効率の高い熱交換器が得られるという効果がある。
実施の形態2.
図4は、実施の形態2に係る伝熱管の外観図であり、折り曲げ部分13を挟んでフィンピッチが小さくなるようにフィンを形成している。すなわち、図4において折り曲げ部分13の左側のフィンピッチよりも右側のフィンピッチの方が小さくなるように形成されている。図4では、折り曲げ部分13が1つの例を示しているが、折り曲げ部分13が複数あっても同様に形成することができる。
図5は、図4で示した伝熱管を折り曲げて形成した熱交換器1の要部外観図であり、折り曲げ部分13は省略している。図5では、気流の上流側に位置する伝熱管11の上面に形成されるフィン10のピッチが、気流の下流側のものに比べて大きくなるように配置している。
一般にフィン10のピッチは小さい方が多くのフィン10が形成され、伝熱面積が大きくなるので熱交換効率は高まるが、上流側のフィン10のピッチが小さい場合には、空気によって運ばれる埃がフィン10に付着したり、空気に含まれる水蒸気が霜となってフィン10に付着したりして、空気の通路が狭くなり、空気抵抗が大きくなってしまうおそれがある。
そこで、実施の形態2によれば、フィンピッチを折り曲げ部分を挟んで漸次小さくなるように形成し、気流の上流側にフィンピッチが大きい伝熱管を配置したことにより、埃や霜などの付着に伴う空気通路の狭まりを低減することが出来るので、空気抵抗の増加を抑制することが出来る効果がある。
実施の形態3.
上述した実施の形態では、フィン10は伝熱管11の扁平な面の片面を切り起こして形成していたが、実施の形態3では、扁平な面の両面にフィン10を切り起こして形成する。
図6は、実施の形態3に係る伝熱管11の外観図であり、折り曲げ部分13が1箇所の場合の、曲げ加工を行う前の状態の伝熱管11を示している。図6において、伝熱管11の長さのほぼ1/2の範囲に、扁平な面の上下両面に切り起しフィン10を設け、水平に曲げるための折り曲げ代となる所定の間隔を有する折り曲げ部分13を隔て、残り1/2の範囲に同様に切り起しフィン10を設け、フィン10と伝熱管11が一体化されて形成されている。このような伝熱管を水平曲げ加工を行うことにより、熱交換器1が形成される。そして、この熱交換器1内を冷媒が流れることにより、冷媒と空気との熱交換が行われる。
実施の形態3によれば、フィン10が両面に設けられたことにより、空気との接触面となる伝熱面積が広くなるので、冷媒と空気との熱交換の効率を高めることが出来るという効果がある。
実施の形態4.
図7は、実施の形態4に係る熱交換器の外観図である。実施の形態1に係る熱交換器を扁平面に垂直方向に重ね合わせて複数配置し、図の右上部にある双方の冷媒通路16の一方の端部をリターンベンド管12で接続した構成としている。リターンベンド管12の内部に仕切りはなく、1つの通路を有する構造をしている。リターンベンド管12は、例えば、銅又は銅合金、アルミ又はアルミ合金等の金属材料から形成されている。
冷媒通路16入口から伝熱管11内に入った冷媒は、空気と熱交換しながら伝熱管11を進む。リターンベンド管12は1つの通路を有する構造をしているので、冷媒通路16からリターンベンド管12に進入した冷媒は、リターンベンド管12内で混合されて、各冷媒通路16の気相と液相との質量比率が同じになる。このことにより、各冷媒通路16を流れる冷媒の熱交換能力が均等となるので、熱交換器の効率を高めることが出来る。そして、混合された冷媒は、他段の伝熱管11内を流れ更に空気と熱交換して、冷媒出口から排出される。
実施の形態4によれば、リターンベンド管12により各冷媒通路16を流れる冷媒が混合されて、冷媒の熱交換能力が均等となるので、熱交換機の効率を更に高めることが出来るという効果がある。
なお、本実施の形態では、伝熱管11の片面に等ピッチにフィン10を切り起こした例をあげて説明をしているが、実施の形態2のように、上流側伝熱管11のフィンピッチを大きくしても構わないし、実施の形態3のように両面にフィン10を切り起こしても構わない。
実施の形態5.
実施の形態5は、扁平形状の伝熱管11に冷媒通路16を2乃至5本並べて形成したものである。
図8は、伝熱管11に形成した冷媒通路の本数と熱交換率との関係を示す図である。図8に示すように、冷媒通路16が2乃至5本のときの熱交換率が、冷媒通路16が1本又は6本以上のときよりも大きくなっており、伝熱管11内部には2乃至5本の冷媒通路16を設けることが望ましいことが分かる。
これは、冷媒通路が1本では、管内伝熱面積が小さくなり、管内伝熱性能が低下し、一方、冷媒通路を5本よりも大きくすると、伝熱管の幅が広くなり、空気側圧力損失が大きくなるためと考えられる。また、伝熱管11の幅を一定としたときには、5本を超える冷媒通路16を設けると冷媒通路16の内径が小さくなり、管内側圧力損失も大きくなるものと考えられる。
なお、冷媒通路16の形状は四角形状に限定するものではなく、楕円形状、円形状等、適宜の断面形状とすることができる。
実施の形態5によれば、扁平形状をした伝熱管11に冷媒通路16を2乃至5本形成することにより、さらに熱交換率の効率化を図ることが出来るという効果がある。
実施の形態6.
図9は実施の形態6における伝熱管11の断面図を示したものである。図9では、冷媒通路16の数が2本のものを示しているが、これに限られるものではない。冷媒通路16内には冷媒の流れる方向に連続した突条15が一体に複数設けられており、冷媒と伝熱管11との接触面積が大きくなるように構成されている。また、図中hは突条の突出高さを、Dは伝熱管11の扁平方向の幅を示している。
また、突条15の断面形状は四角形状に限定するものではなく、三角形状、台形状、半円形状等、適宜の断面形状とすることができる。
実施の形態6によれば、突条15によって冷媒と伝熱管との伝熱面積を大きくしたことにより、熱交換効率をさらに高めることが出来るという効果がある。
実施の形態7.
実施の形態7では、伝熱管11の扁平方向の幅Dに対する突条15の高さhの比(h/D)が0.02乃至0.05程度となるように、突条15を形成している。
図10は、扁平方向の幅Dに対する突条15の高さhの比(h/D)と熱交換率との関係を示す図である。図10に示すように、h/Dを増加させていくと、管内の冷媒接触面積が増大するため熱交換率も高くなる。しかしながら、h/Dが0.05を超えると、熱交換率の増加量よりも圧力損失の増加量の方が多くなり、結果として、熱交換率が低下する。
実施の形態7によれば、伝熱管11の扁平方向の幅Dに対する突条15の高さhの比を0.02乃至0.05程度となるように突条15を形成することにより、熱交換率を高めることが出来る効果がある。
実施の形態8.
実施の形態8では、突条15の個数nが2乃至5個程度となるように、突条15を形成する。
図11は、突条15の個数nと熱交換率との関係を示す図である。図11に示すように、突条15の個数nを増やしていくと、管内の冷媒接触面積が増大するため熱伝達率も高くなる。しかしながら、突条15の個数nが5個を超えると、熱伝達率の増加量よりも圧力損失の増加量の方が多くなり、結果として、熱交換率が低下する。
実施の形態8によれば、突条15の個数nを2乃至5個程度となるように突条15を形成することにより、熱交換率を高めることが出来る効果がある。
実施の形態9.
図12は本発明の実施の形態9に係る空気調和装置の構成図である。
本実施の形態では、冷凍サイクル装置の例として空気調和装置について説明する。図12の空気調和装置は、熱源側ユニット(室外機)100と負荷側ユニット(室内機)200とを備え、これらが冷媒配管で連結され、冷媒回路を構成して冷媒を循環させている。
冷媒配管のうち、気体の冷媒(ガス冷媒)が流れる配管をガス配管300とし、液体の冷媒(液冷媒。気液二相冷媒の場合もある)が流れる配管を液配管400とする。ここで、冷媒として、例えば、HC単一冷媒又はHCを含む混合冷媒、あるいは、R32、R410A、R407C、二酸化炭素等のいずれかの冷媒等を用いるものとする。
熱源側ユニット100では、圧縮機101、油分離器102、四方弁103、熱源側熱交換器104、熱源側絞り装置(膨張弁)107、アキュムレータ106、冷媒間熱交換器108、バイパス絞り装置109が冷媒配管により図12のように接続されている。また、熱源側熱交換器104には、熱源側ファン105が設けられている。また、熱源側ユニット100内には、圧縮機101、四方弁103及び熱源側ファン105を制御するための熱源側制御装置110が設けられている。
圧縮機101は電動機を有しており、アキュムレータ106を経由した冷媒を吸入し圧縮して、高温・高圧のガス状態にして冷媒配管に流す。圧縮機101は、インバータ回路(図示せず)によって運転周波数を任意に変化させることにより、圧縮機101の容量(単位時間あたりの冷媒を送り出す量)を細かく変化させることができるものとする。
また、油分離器102は、冷媒に混じって圧縮機101から吐出された潤滑油を分離させるものである。分離された潤滑油は圧縮機101に戻される。四方弁103は、熱源側制御装置110からの指示に基づいて、冷房運転時と暖房運転時とによって冷媒の流れを切り換える。
また、熱源側熱交換器104は、実施の形態1〜8において説明した熱交換器1を用いて構成し、冷媒と空気(室外の空気)との熱交換を行う。例えば、暖房運転時においては蒸発器として機能し、熱源側絞り装置107を介して流入した低圧の冷媒と空気との熱交換を行い、冷媒を蒸発させ、気化させる。また、冷房運転時においては凝縮器として機能し、四方弁103側から流入した圧縮機101において圧縮された冷媒と空気との熱交換を行い、冷媒を凝縮して液化させる。
また、熱源側熱交換器104には、冷媒と空気との熱交換を効率よく行うため、熱源側ファン105が設けられている。熱源側ファン105もインバータ回路(図示せず)を有してファンモータの運転周波数を任意に変化させてファンの回転速度を細かく変化させるようにしてもよい。
冷媒間熱交換器108は、冷媒回路の主となる流路を流れる冷媒と、その流路から分岐してバイパス絞り装置109(膨張弁)により流量調整された冷媒との間で熱交換を行う。特に冷房運転時において冷媒を過冷却する必要がある場合に、冷媒を過冷却して負荷側ユニット200に供給するものである。冷媒間熱交換器108についても、実施の形態1〜8において説明した熱交換器1を用いて構成する。
バイパス絞り装置109を介して流れる液体は、アキュムレータ106に戻される。アキュムレータ106は例えば液体の余剰冷媒を溜めておく手段である。
熱源側制御装置110は、例えばマイクロコンピュータ等からなる。負荷側制御装置204と有線または無線で通信することができ、例えば、空気調和装置内の各種検知手段(センサ)の検知に係るデータに基づいて、インバータ回路制御による圧縮機101の運転周波数制御等、空気調和装置に係る各手段を制御して空気調和装置全体の動作制御を行う。
一方、負荷側ユニット200は、負荷側熱交換器201、負荷側絞り装置(膨張弁)202、負荷側ファン203および負荷側制御装置204で構成される。
負荷側熱交換器201についても、実施の形態1〜8において説明した熱交換器1を用いて構成し、冷媒と空気調和の対象となる空間の空気との熱交換を行う。例えば、暖房運転時においては凝縮器として機能し、ガス配管300から流入した冷媒と空気との熱交換を行い、冷媒を凝縮させて液化(または気液二相化)させ、液配管400側に流出させる。一方、冷房運転時においては蒸発器として機能し、負荷側絞り装置202により低圧状態にされた冷媒と空気との熱交換を行い、冷媒に空気の熱を奪わせて蒸発させて気化させ、ガス配管300側に流出させる。
また、負荷側ユニット200には、熱交換を行う空気の流れを調整するための負荷側ファン203が設けられている。この負荷側ファン203の運転速度は、例えば利用者の設定により決定される。負荷側絞り装置202は、開度を変化させることで、負荷側熱交換器201内における冷媒の圧力を調整するために設ける。
また、負荷側制御装置204もマイクロコンピュータ等からなり、例えば熱源側制御装置110と有線または無線で通信することができる。熱源側制御装置110からの指示、居住者等からの指示に基づいて、例えば室内が所定の温度となるように、負荷側ユニット200の各装置(手段)を制御する。また、負荷側ユニット200に設けられた検知手段の検知に係るデータを含む信号を送信する。
次に空気調和装置の動作について説明する。
まず、冷房運転時の冷媒回路における基本的な冷媒循環について説明する。圧縮機101の駆動運転により、圧縮機101から吐出した高温、高圧ガス(気体)の冷媒は、四方弁103から熱源側熱交換器104内を通過することで凝縮し、液冷媒となって熱源側ユニット100を流出する。
液配管400を通って負荷側ユニット200に流入した冷媒は、負荷側絞り装置202の開度調整により圧力調整された低温低圧の液冷媒が負荷側熱交換器201内を通過して蒸発して流出する。そして、ガス配管300を通って熱源側ユニット100に流入し、四方弁103、アキュムレータ106を介して圧縮機101に吸入され、再度加圧され吐出することで循環する。
次に、暖房運転時の冷媒回路における基本的な冷媒循環について説明する。圧縮機101の駆動運転により、圧縮機101から吐出した高温、高圧ガス(気体)の冷媒は、四方弁103からガス配管300を通って負荷側ユニット200に流入する。
負荷側ユニット200においては、負荷側絞り装置202の開度調整により圧力調整され、負荷側熱交換器201内を通過することにより凝縮し、中間圧力の液体または気液二相状態の冷媒となって負荷側ユニット200を流出する。液配管400を通って熱源側ユニット100に流入した冷媒は、熱源側絞り装置107の開度調整により圧力調整され、熱源側熱交換器104内を通過することで蒸発し、ガスの冷媒となって四方弁103、アキュムレータ106を介して圧縮機101に吸入され、前述したように加圧され吐出することで循環する。
以上のように実施の形態9の空気調和装置によれば、熱源側ユニット100の熱源側熱交換器104、冷媒間熱交換器108、負荷側ユニット200の負荷側熱交換器201について、熱交換率の高い実施の形態1〜8の熱交換器1を蒸発器、凝縮器として用いるようにしたので、COP(Coefficient of Performance :エネルギ消費効率、成績係数)等を向上させることができ、省エネルギ等を図ることができるという効果がある。
また、冷媒としてHC単一冷媒又はHCを含む混合冷媒、あるいは、R32、R410A、R407C、二酸化炭素等のいずれかの冷媒を用いることにより、熱搬送能力が高められ、熱交換率を高めることができるという効果がある。
本発明に係る熱交換器に関し、空気調和装置に限定することなく、例えば、冷凍装置、ヒートポンプ装置等、冷媒回路を構成し、蒸発器、凝縮器となる熱交換器を有する他の冷凍サイクル装置にも適用することができる。
1 熱交換器
10 フィン
11 伝熱管
12 リターンベンド管
13 折り曲げ部分
15 突条
16 冷媒通路
100 熱源側ユニット
101 圧縮機
102 油分離器
103 四方弁
104 熱源側熱交換器
105 熱源側ファン
106 アキュムレータ
107 熱源側絞り装置
108 冷媒間熱交換器
109 バイパス絞り装置
110 熱源側制御装置
200 負荷側ユニット
201 負荷側熱交換器
202 負荷側絞り装置
203 負荷側ファン
204 負荷側制御装置
300 ガス配管
400 液配管

Claims (12)

  1. 扁平形状をなしかつ扁平な面に沿って複数の冷媒通路が形成された伝熱管と、
    前記伝熱管の扁平な表面を切り起こして形成した複数のフィンと
    を備えた熱交換器。
  2. 前記伝熱管をその扁平面内で蛇行状に折り曲げて形成された請求項1記載の熱交換器。
  3. 前記伝熱管に形成されるフィンは、前記伝熱管の折り曲げ部分以外に形成され、前記フィンのフィンピッチは、前記折り曲げ部分を挟んで漸次小さくなるよう形成されている請求項2記載の熱交換器。
  4. 前記フィンは前記伝熱管の両扁平面に形成されている請求項1乃至3のいずれかに記載の熱交換器。
  5. 請求項1乃至4のいずれかに記載の熱交換器を、その扁平面に垂直方向に重ね合わせて複数配置するとともに、隣接する該熱交換器同士をリターンベンド管で接続して形成される熱交換器。
  6. 前記冷媒通路が2乃至5本である請求項1乃至5のいずれかに記載の熱交換器用。
  7. 前記冷媒通路内部に、冷媒の流れる方向に連続した突条を設けた請求項1乃至6のいずれかに記載の熱交換器。
  8. 前記伝熱管の扁平方向の幅に対する前記突条の高さの比が0.02乃至0.05である請求項7記載の熱交換器。
  9. 前記突条の個数が2乃至5個である請求項7又は8に記載の熱交換器。
  10. 冷媒を圧縮する圧縮機と、熱交換により前記冷媒を凝縮させる凝縮器と、
    凝縮された冷媒を減圧させるための膨張手段と、減圧された前記冷媒を熱交換により蒸発させる蒸発器と、を配管接続して前記冷媒を循環させる冷媒回路を構成する冷凍サイクル装置であって、
    前記凝縮器、前記蒸発器のうち一方又は双方に請求項1乃至9のいずれかに記載の熱交換器を用いる冷凍サイクル装置。
  11. 前記冷媒は、HC単一冷媒、またはHCを含む混合冷媒、R32、R410A、R407C、二酸化炭素のいずれかを用いる請求項10記載の冷凍サイクル装置。
  12. 請求項10又は11のいずれかに記載の冷凍サイクル装置を用いた冷蔵庫または空気調和機。
JP2009211740A 2009-09-14 2009-09-14 熱交換器及びこの熱交換器を備えた冷蔵庫、空気調和機 Active JP4983878B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009211740A JP4983878B2 (ja) 2009-09-14 2009-09-14 熱交換器及びこの熱交換器を備えた冷蔵庫、空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009211740A JP4983878B2 (ja) 2009-09-14 2009-09-14 熱交換器及びこの熱交換器を備えた冷蔵庫、空気調和機

Publications (2)

Publication Number Publication Date
JP2011058771A true JP2011058771A (ja) 2011-03-24
JP4983878B2 JP4983878B2 (ja) 2012-07-25

Family

ID=43946609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009211740A Active JP4983878B2 (ja) 2009-09-14 2009-09-14 熱交換器及びこの熱交換器を備えた冷蔵庫、空気調和機

Country Status (1)

Country Link
JP (1) JP4983878B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014001882A (ja) * 2012-06-18 2014-01-09 Mitsubishi Electric Corp 熱交換器および空気調和機
CN109357276A (zh) * 2018-08-08 2019-02-19 广东顺德巴林电器制造有限公司 一种高效节能燃气热转换器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53107357U (ja) * 1977-02-04 1978-08-29
JPS5526355U (ja) * 1978-08-09 1980-02-20
JPS56128986U (ja) * 1980-03-03 1981-09-30
JPS63150585A (ja) * 1986-12-15 1988-06-23 Showa Alum Corp 蒸発器
JPH06185885A (ja) * 1992-07-24 1994-07-08 Furukawa Electric Co Ltd:The 偏平多穴凝縮伝熱管
JPH0979770A (ja) * 1995-03-27 1997-03-28 Mdh Ltd 熱交換器及びその製造方法
JP2000154987A (ja) * 1998-11-19 2000-06-06 Daikin Ind Ltd 空気熱交換器
JP2006064245A (ja) * 2004-08-25 2006-03-09 Matsushita Electric Ind Co Ltd 熱交換器
JP2007263491A (ja) * 2006-03-29 2007-10-11 Sanyo Electric Co Ltd 冷媒サイクル装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53107357U (ja) * 1977-02-04 1978-08-29
JPS5526355U (ja) * 1978-08-09 1980-02-20
JPS56128986U (ja) * 1980-03-03 1981-09-30
JPS63150585A (ja) * 1986-12-15 1988-06-23 Showa Alum Corp 蒸発器
JPH06185885A (ja) * 1992-07-24 1994-07-08 Furukawa Electric Co Ltd:The 偏平多穴凝縮伝熱管
JPH0979770A (ja) * 1995-03-27 1997-03-28 Mdh Ltd 熱交換器及びその製造方法
JP2000154987A (ja) * 1998-11-19 2000-06-06 Daikin Ind Ltd 空気熱交換器
JP2006064245A (ja) * 2004-08-25 2006-03-09 Matsushita Electric Ind Co Ltd 熱交換器
JP2007263491A (ja) * 2006-03-29 2007-10-11 Sanyo Electric Co Ltd 冷媒サイクル装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014001882A (ja) * 2012-06-18 2014-01-09 Mitsubishi Electric Corp 熱交換器および空気調和機
CN109357276A (zh) * 2018-08-08 2019-02-19 广东顺德巴林电器制造有限公司 一种高效节能燃气热转换器

Also Published As

Publication number Publication date
JP4983878B2 (ja) 2012-07-25

Similar Documents

Publication Publication Date Title
WO2019239446A1 (ja) 空気調和装置の室外機及び空気調和装置
US20110030932A1 (en) Multichannel heat exchanger fins
WO2007017969A1 (ja) 空気調和機及び空気調和機の製造方法
WO2010016516A1 (ja) 熱交換器用の伝熱管、熱交換器、冷凍サイクル装置及び空気調和装置
WO2011086881A1 (ja) 熱交換器用の伝熱管、熱交換器、冷凍サイクル装置及び空気調和装置
WO2015133626A1 (ja) 熱交換器及び空気調和機
JP4428341B2 (ja) 冷凍サイクル装置
WO2017221400A1 (ja) 冷凍サイクル装置およびそれに用いられる室外熱交換器
JP6157593B2 (ja) 熱交換器およびこれを用いた冷凍サイクル空調装置
JPWO2018225252A1 (ja) 熱交換器及び冷凍サイクル装置
JP5627635B2 (ja) 空気調和機
JP6053693B2 (ja) 空気調和機
WO2018185824A1 (ja) 熱交換器および冷凍サイクル装置
JP5646257B2 (ja) 冷凍サイクル装置
JP4983878B2 (ja) 熱交換器及びこの熱交換器を備えた冷蔵庫、空気調和機
JP6987227B2 (ja) 熱交換器及び冷凍サイクル装置
WO2020202492A1 (ja) 熱交換器及び空気調和機
JP6104357B2 (ja) 熱交換装置およびこれを備えた冷凍サイクル装置
JP2019215161A (ja) 空気調和装置の室外機及び空気調和装置
JPWO2017208419A1 (ja) フィンチューブ型熱交換器、および、このフィンチューブ型熱交換器を備えたヒートポンプ装置
JP2012237518A (ja) 空気調和機
JP7123238B2 (ja) 冷凍サイクル装置
JP2014137172A (ja) 熱交換器及び冷凍装置
JP2013174407A (ja) 加熱器及び冷凍サイクル装置
WO2021234954A1 (ja) 熱交換器、室外機および冷凍サイクル装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120409

R151 Written notification of patent or utility model registration

Ref document number: 4983878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250