WO2019219121A1 - Antriebsstrang mit fliehkraftpendel - Google Patents

Antriebsstrang mit fliehkraftpendel Download PDF

Info

Publication number
WO2019219121A1
WO2019219121A1 PCT/DE2019/100403 DE2019100403W WO2019219121A1 WO 2019219121 A1 WO2019219121 A1 WO 2019219121A1 DE 2019100403 W DE2019100403 W DE 2019100403W WO 2019219121 A1 WO2019219121 A1 WO 2019219121A1
Authority
WO
WIPO (PCT)
Prior art keywords
pendulum
drive
differential
centrifugal pendulum
centrifugal
Prior art date
Application number
PCT/DE2019/100403
Other languages
English (en)
French (fr)
Inventor
Vincent Meyer
Nicolas Waltz
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to JP2020564089A priority Critical patent/JP2021523854A/ja
Priority to EP19724078.1A priority patent/EP3794251A1/de
Priority to CN201980032605.XA priority patent/CN112166267A/zh
Priority to DE112019002460.4T priority patent/DE112019002460A5/de
Priority to US17/055,266 priority patent/US11815154B2/en
Publication of WO2019219121A1 publication Critical patent/WO2019219121A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/0006Vibration-damping or noise reducing means specially adapted for gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/14Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers
    • F16F15/1407Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers the rotation being limited with respect to the driving means
    • F16F15/145Masses mounted with play with respect to driving means thus enabling free movement over a limited range
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/14Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers
    • F16F15/1407Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers the rotation being limited with respect to the driving means
    • F16F15/1464Masses connected to driveline by a kinematic mechanism or gear system
    • F16F15/1471Masses connected to driveline by a kinematic mechanism or gear system with a kinematic mechanism, i.e. linkages, levers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/0006Vibration-damping or noise reducing means specially adapted for gearings
    • F16H2057/0012Vibration-damping or noise reducing means specially adapted for gearings for reducing drive line oscillations

Definitions

  • the invention relates to a drive train for a motor vehicle comprising an internal combustion engine, one of these downstream transmission, drive wheels and arranged between the drive wheels and the transmission differential.
  • torsional vibration isolation devices such as torsional vibration dampers such as dual mass flywheels, Kupplungsusionndämp- Torsional vibration absorbers such as centrifugal pendulums and / or the like, which are arranged between the internal combustion engine and the transmission to be attenuated.
  • torsional vibration dampers such as dual mass flywheels, Kupplungsusionndämp- Torsional vibration absorbers such as centrifugal pendulums and / or the like, which are arranged between the internal combustion engine and the transmission to be attenuated.
  • eigenmodes may remain after the transmission, which are insufficiently damped by the torsional vibration isolation devices between the internal combustion engine and the transmission.
  • the object of the invention is the development of a generic drive train.
  • the object of the invention is to improve the torsional vibration isolation of a drive train of the generic type.
  • the object is solved by the subject matter of claim 1.
  • the claims dependent therefrom represent advantageous embodiments of the subject matter of claim 1.
  • the proposed drive train is used for torque transmission of a torque provided by an internal combustion engine to drive wheels of a motor vehicle.
  • a transmission with several switchable gears and a starting element for example a friction clutch or a hydrodynamic torque converter, is provided between the internal combustion engine and the transmission.
  • a transmission output shaft of the transmission an input shaft of a differential is provided to compensate for the different speeds of rotation of the drive wheels.
  • the drive wheels transmit the upcoming torque to the roadway and thus continue the motor vehicle with the proposed powertrain.
  • one or more torsional vibration isolation devices may be disposed between the engine and the transmission.
  • a torsional vibration damper such as a dual-mass flywheel may be accommodated on the crankshaft of the internal combustion engine.
  • a centrifugal pendulum can be integrated.
  • a centrifugal pendulum can be integrated in a single-mass flywheel.
  • a clutch disc a clutch disc
  • Friction clutch a torsional vibration damper and / or a centrifugal pendulum be accommodated.
  • Torque converters may be outside and / or inside a converter housing one or more torsional vibration damper and / or centrifugal pendulum be arranged.
  • the differential is associated with a centrifugal pendulum adjacent.
  • a centrifugal pendulum pendulum is provided on the output side of the transmission and in close proximity to the differential.
  • Flier be inherent forms occurring at the differential can be effectively isolated by appropriate design of the centrifugal pendulum on this, in particular by the or the torsional vibration isolation devices between the engine and transmission not sufficiently isolated eigenmodes.
  • the rotational speed amplitudes of these eigenmodes occurring at the differential can be isolated from the occurrence at the differential by immediate proximity to the differential without worsening or disturbing the existing insulation of the torsional vibration isolation devices between internal combustion engine and transmission.
  • centrifugal force pendulum arranged adjacent to the differential has proven to be particularly advantageous if, for example, a drive shaft is provided between the transmission and the differential in a standard drive with front-mounted internal combustion engine with transmission and rear-wheel drive.
  • the centrifugal pendulum between the drive shaft and differential can be arranged.
  • a hinge connection for example, a universal joint is provided between the drive shaft and the input shaft of the differential.
  • the centrifugal pendulum can be taken on the drive shaft or on the input shaft.
  • the centrifugal pendulum has a non-rotatably connected to the drive shaft or input shaft pendulum mass carrier. At the pendulum mass carrier are over the Circumference distributed Pendulmassen arranged, which are accommodated by means of pendulum bearings on the pendulum mass carrier.
  • the self-aligning bearings are made of complementary tracks in the pendulum mass carrier and in the pendulum masses on which a pendulum roller rolls.
  • the pendulum masses are radially outwardly accelerated in the centrifugal force field due to the pendulum mass carrier rotating about the rotation axis and are shifted from torsional vibrations to smaller radii which reduce the torsional vibrations, so that centrifugal force-dependent and thus speed-adaptive reassurance of the torque applied to the pendulum mass carrier occurs.
  • the centrifugal pendulum may for example be embodied in several embodiments.
  • the pendulum mass carrier is designed as a pendulum flange on which pendulum masses are arranged on both sides.
  • the axially opposite pendulum masses are axially spaced and connected by means of connecting means and thus form pendulum mass units.
  • two circumferentially spaced pendulum bearings per pendulum mass unit thereby contain tracks in the axially opposite pendulum masses and a track in the pendulum, the raceways axially overlaps a spherical roller and rolls on this.
  • the pendulum mass carrier can be formed from two side parts, for example housing parts of the centrifugal pendulum housing, which form an axial free space between them, in which the Pendulum masses are included.
  • the preferably two spaced circumferentially pendent det pendulum bearings per pendulum mass are each formed of raceways in the side panels and a track in the pendulum mass, on which a raceways axially overlapping pendulum roller rolls.
  • the pendulum masses may be accommodated in recesses of the pendulum mass carrier designed as a pendulum flange, wherein raceways in the recesses and on the pendulum masses are arranged axially at the same height and radially above one another to form two circumferentially spaced pendulum bearings.
  • a pendulum roller rolls in the axial space of the pendulum mass carrier between the tracks of the pendulum mass carrier and the pendulum mass.
  • the pendulum masses may be formed as rolling elements, which roll on complementary to the pendulum mass carrier arranged raceways.
  • the design of the rolling surface of the pendulum masses and the raceways forms the pendulum track.
  • the centrifugal pendulum can be integrated in the housing of the differential.
  • the centrifugal pendulum can be designed to be encapsulated separately from a housing of the differential by means of a centrifugal pendulum housing.
  • the centrifugal pendulum housing may be rotatably received on the drive shaft or on the input shaft.
  • the centrifugal pendulum housing can be rotatably outward, for example, elastically supported to compensate for the spring movement of the differential to the vehicle body.
  • a pendulum mass carrier rotatably connected to the drive shaft or the input shaft can be accommodated, on which Distributed on the circumference in the centrifugal force field along a predetermined pendulum track, pivotable pendulum masses are arranged on the circumference.
  • the centrifugal pendulum housing can directly form the pendulum mass carrier, wherein within the housing on the two axially spaced housing walls the pendulum masses distributed over the circumference are pivotably received in the centrifugal force field of the rotating centrifugal pendulum housing along a predetermined pendulum track.
  • the centrifugal pendulum housing is for this purpose rotatably connected to the drive shaft or the input shaft of the differential. If necessary, the centrifugal pendulum housing of a
  • Be surrounded protective cage which is connected, for example, with appropriate game with the vehicle body.
  • Figure 1 is a schematic representation of a drive train with an adjacent to a differential centrifugal pendulum
  • FIG. 2 shows a partial section through a structurally trained centrifugal pendulum of Figure 1.
  • FIG. 1 shows a schematic representation of the drive train 1 of a motor vehicle with front-mounted internal combustion engine 2, front-mounted transmission 3, drive shaft 4, differential 5 with input shaft 6 and drive wheels 7 for a stain drive of the motor vehicle.
  • the drive shaft 4 is connected by means of the articulated connection 11 such as a universal joint with the transmission output shaft 12 of the transmission 3 and by means of the joint connection 13 such as a universal joint with the input shaft 6 of the differential 5.
  • the centrifugal pendulum 14 Adjacent to the differential 5, the centrifugal pendulum 14 is arranged. Flierzu is the pendulum mass carrier 15 of the centrifugal pendulum pendulum 14 rotatably connected to the input shaft 6 or to the drive shaft 4.
  • the pendulum mass carrier 15 is disc-shaped as a pendulum flange on which the pendulum masses 16 distributed over the circumference are arranged on both sides by means of a non-illustrated self-aligning bearing. Axially opposite pendulum masses 16 are in each case connected to one another by means of recesses of the pendulum mass carrier 15.
  • the centrifugal pendulum pendulum 14 is tuned to intrinsic shapes of the differential and optionally taking into account a design of the torsional vibration isolation device 9.
  • the centrifugal pendulum in a manner not shown may be surrounded by a protective cage or a centrifugal pendulum housing, which may be rotatably connected, for example with the housing 17 of the differential.
  • FIG. 2 shows a possible embodiment of the centrifugal force pendulum 14 in partial section with the pendulum mass carrier 15 and the pendulum masses 16 arranged on both sides of the pendulum mass carrier 15.
  • the centrifugal force pendulum 14 is in the centrifugal force del housing 18 added, which is taken from the two interconnected, for example screwed here housing parts 19, 20.
  • the centrifugal pendulum 14 may be enclosed in the centrifugal pendulum housing 18 and operated wet by the centrifugal pendulum housing is at least partially filled with a Radiomit-, for example, oil.
  • the centrifugal force pendulum 14 can be operated dry.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Arrangement Of Transmissions (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Retarders (AREA)
  • Motor Power Transmission Devices (AREA)

Abstract

Die Erfindung betrifft einen Antriebsstrang (1) für ein Kraftfahrzeug enthaltend eine Brennkraftmaschine (2), ein dieser nachgeschaltetes Getriebe (3), Antriebsräder (7) und ein zwischen den Antriebsrädern (7) und dem Getriebe (3) angeordnetes Differential (5). Um verbleibende Schwingungseigenformen hinter dem Getriebe (3) zu eliminieren oder zumindest zu verringern, ist dem Differential (5) ein Fliehkraftpendel (14) benachbart zugeordnet.

Description

Antriebsstranq mit Fliehkraftpendel
Die Erfindung betrifft einen Antriebsstrang für ein Kraftfahrzeug enthaltend eine Brennkraftmaschine, ein dieser nachgeschaltetes Getriebe, Antriebsräder und ein zwischen den Antriebsrädern und dem Getriebe angeordnetes Differential.
Gattungsgemäße Antriebsstränge mit einer Brennkraftmaschine und einem Getriebe, beispielsweise einem automatisierten oder handbetätigten Schaltgetriebe, einem Au- tomatgetriebe oder dergleichen, welches ein geeignetes Drehmoment über ein Diffe- rential auf die Antriebsräder eines Kraftfahrzeugs übertragen, sind für Kraftfahrzeuge seit Langem beispielsweise aus der Druckschrift DE 195 27 112 C1 bekannt und nicht weiter erläuterungsbedürftig. Aufgrund der konstruktiv bedingten Behaftung der Brennkraftmaschine mit Drehschwingungen sowie einem Resonanzverhalten des Kraftfahrzeugs treten in den Antriebssträngen mit Drehschwingungen überlagerte Drehmomente auf, die wie beispielsweise aus der Druckschrift DE 10 2016 222 575 A1 bekannt mittels Drehschwingungsisolationseinrichtungen, beispielsweise Dreh- schwingungsdämpfern wie Zweimassenschwungrädern, Kupplungsscheibendämp- fern, Drehschwingungstilgern wie beispielsweise Fliehkraftpendeln und/oder derglei- chen, die zwischen der Brennkraftmaschine und dem Getriebe angeordnet sind, be- dämpft werden. Hierbei können Eigenformen nach dem Getriebe verbleiben, die in nicht ausreichender Weise von den Drehschwingungsisolationseinrichtungen zwi- schen Brennkraftmaschine und Getriebe bedämpft werden.
Aufgabe der Erfindung ist die Weiterbildung eines gattungsgemäßen Antriebsstrangs. Insbesondere ist Aufgabe der Erfindung, die Drehschwingungsisolation eines gat- tungsgemäßen Antriebsstrangs zu verbessern. Die Aufgabe wird durch den Gegenstand des Anspruchs 1 gelöst. Die von diesen ab- hängigen Ansprüche geben vorteilhafte Ausführungsformen des Gegenstands des Anspruchs 1 wieder.
Der vorgeschlagene Antriebsstrang dient der Drehmomentübertragung eines von ei- ner Brennkraftmaschine bereitgestellten Drehmoments auf Antriebsräder eines Kraft- fahrzeugs. Zur Anpassung des Drehmoments an die Fahrbedingungen des Kraftfahr- zeugs, insbesondere an die Fahrgeschwindigkeit ist ein Getriebe mit mehreren schalt- baren Gängen und einem Anfahrelement, beispielsweise einer Reibungskupplung oder einem hydrodynamischen Drehmomentwandler zwischen der Brennkraftmaschi- ne und dem Getriebe vorgesehen. An der Getriebeausgangswelle des Getriebes ist eine Eingangswelle eines Differentials zum Ausgleich der unterschiedlichen Kurven- drehzahlen der Antriebsräder vorgesehen. Die Antriebsräder übertragen das anste- hende Drehmoment auf die Fahrbahn und bewegen damit das Kraftfahrzeug mit dem vorgeschlagenen Antriebsstrang fort.
Zur primären Drehschwingungsisolierung können eine oder mehrere Drehschwin- gungsisolationseinrichtungen zwischen der Brennkraftmaschine und dem Getriebe angeordnet sein. Beispielsweise kann an der Kurbelwelle der Brennkraftmaschine ein Drehschwingungsdämpfer wie beispielsweise ein Zweimassenschwungrad aufge- nommen sein. In dem Drehschwingungsdämpfer kann ein Fliehkraftpendel integriert sein. Alternativ kann in einem Einmassenschwungrad ein Fliehkraftpendel integriert sein. Alternativ oder zusätzlich können in einer Kupplungsscheibe einer
Reibungskupplung ein Drehschwingungsdämpfer und/oder ein Fliehkraftpendel untergebracht sein. In einem Antriebsstrang mit hydrodynamischem
Drehmomentwandler können außerhalb und/oder innerhalb eines Wandlergehäuses ein oder mehrere Drehschwingungsdämpfer und/oder Fliehkraftpendel angeordnet sein.
Zur weiteren Verbesserung der Drehschwingungsisolation von Drehschwingungen im Antriebsstrang ist dem Differential ein Fliehkraftpendel benachbart zugeordnet. Dies bedeutet, dass ein Fliehkraftpendel ausgangsseitig des Getriebes und in unmittelbarer Nähe zum Differential vorgesehen ist. Flierdurch können am Differential auftretende Eigenformen durch entsprechende Auslegung des Fliehkraftpendels auf diese, insbe- sondere von der oder den Drehschwingungsisolationseinrichtungen zwischen Brenn- kraftmaschine und Getriebe nicht in ausreichender Weise isolierten Eigenformen ef- fektiv isoliert werden. Weiterhin können die an dem Differential auftretenden Dreh- zahlamplituden dieser Eigenformen ohne die bestehende Isolation der Drehschwin- gungsisolationseinrichtungen zwischen Brennkraftmaschine und Getriebe zu ver- schlechtern beziehungsweise zu stören, durch unmittelbare Nähe zum Differential di- rekt an dem Auftreten an dem Differential isoliert werden.
Als besonders vorteilhaft hat sich der Einsatz eines benachbart zu dem Differential angeordneten Fliehkraftpendels erwiesen, wenn beispielsweise in einem Standardan- trieb mit fronteingebauter Brennkraftmaschine mit Getriebe und Heckantrieb zwischen dem Getriebe und dem Differential eine Antriebswelle vorgesehen ist. Hierbei kann das Fliehkraftpendel zwischen Antriebswelle und Differential angeordnet sein.
Zwischen der Antriebswelle und der Eingangswelle des Differentials ist in bevorzugter Weise eine Gelenkverbindung, beispielsweise ein Kreuzgelenk vorgesehen. Hierbei kann das Fliehkraftpendel an der Antriebswelle oder an der Eingangswelle aufge- nommen sein.
Das Fliehkraftpendel weist einen drehfest mit der Antriebswelle oder Eingangswelle verbundenen Pendelmassenträger auf. An dem Pendelmassenträger sind über den Umfang verteilt Pendelmassen angeordnet, die mittels Pendellagern an dem Pendel- massenträger aufgenommen sind. Die Pendellager sind aus komplementären Lauf- bahnen in dem Pendelmassenträger und in den Pendelmassen gebildet, auf denen eine Pendelrolle abwälzt. Die Auswahl der Krümmung der Laufbahnen, die eine ent- sprechende Pendelbahn der Pendelmassen vorgeben, die Ausbildung der Pendelrolle als Stufenrolle oder als Pendelrolle mit konstantem Durchmesser, der Abstand des Schwerpunkts der Pendelmasse zur Drehachse und dergleichen geben dabei die Ei- genschaften des Fliehkraftpendels, insbesondere die auf Eigenformen des Differenti- als abgestimmte Tilgerordnung vor. Hierbei werden die Pendelmassen aufgrund des um die Drehachse drehenden Pendelmassenträgers im Fliehkraftfeld nach radial au- ßen beschleunigt und von Drehschwingungen zu kleineren, die Drehschwingungen til- genden Radien verlagert, so dass fliehkraftabhängig und damit drehzahladaptiv eine Beruhigung des am Pendelmassenträger anliegenden Drehmoments eintritt.
Das Fliehkraftpendel kann beispielsweise in mehreren Ausführungsformen ausgebil- det sein. In einer ersten Ausführungsform ist der Pendelmassenträger als Pendel- flansch ausgebildet, an dem beidseitig Pendelmassen angeordnet sind. Die axial ge- genüberliegenden Pendelmassen sind dabei mittels Verbindungsmitteln axial beab- standet und verbunden und bilden damit Pendelmasseneinheiten. Bevorzugt zwei in Umfangsrichtung beabstandete Pendellager pro Pendelmasseneinheit enthalten dabei Laufbahnen in den axial gegenüberliegenden Pendelmassen und eine Laufbahn in dem Pendelflansch, wobei die Laufbahnen eine Pendelrolle axial übergreift und auf diesen abwälzt.
In einer weiteren Ausführungsform des Fliehkraftpendels kann der Pendelmassenträ- ger aus zwei Seitenteilen, beispielsweise Gehäuseteilen des Fliehkraftpendelgehäu- ses gebildet sein, welche zwischen sich einen axialen Freiraum bilden, in dem die Pendelmassen aufgenommen sind. Die bevorzugt zwei in Umfangsrichtung beabstan- deten Pendellager pro Pendelmasse sind jeweils aus Laufbahnen in den Seitenteilen und aus einer Laufbahn in der Pendelmasse gebildet, auf denen eine die Laufbahnen axial übergreifende Pendelrolle abwälzt.
In einer weiteren Ausführungsform können die Pendelmassen in Ausnehmungen des als Pendelflansch ausgebildeten Pendelmassenträgers vorgesehenen Ausnehmungen untergebracht sein, wobei zur Bildung bevorzugt zweier in Umfangsrichtung beab- standeter Pendellager Laufbahnen in den Ausnehmungen und an den Pendelmassen axial auf gleicher Höhe und radial übereinander angeordnet sind. Hierbei wälzt eine Pendelrolle im axialen Bauraum des Pendelmassenträgers zwischen den Laufbahnen des Pendelmassenträgers und der Pendelmasse ab.
In einer weiteren Ausführungsform des Fliehkraftpendels können die Pendelmassen als Wälzkörper ausgebildet sein, die auf komplementär an dem Pendelmassenträger angeordneten Laufbahnen abwälzen. Die Ausgestaltung der Wälzfläche der Pendel- massen und der Laufbahnen bildet dabei die Pendelbahn aus.
Das Fliehkraftpendel kann in das Gehäuse des Differentials integriert sein. Insbeson- dere bei Nachrüstungen oder zur Verringerung des Entwicklungsaufwands kann das Fliehkraftpendel separat von einem Gehäuse des Differentials mittels eines Fliehkraft- pendelgehäuses gekapselt ausgebildet sein.
Das Fliehkraftpendelgehäuse kann verdrehbar an der Antriebswelle oder an der Ein- gangswelle aufgenommen sein. Hierbei kann das Fliehkraftpendelgehäuse drehfest nach außen, beispielsweise elastisch zum Ausgleich der Federbewegung des Diffe- rentials an der Fahrzeugkarosserie abgestützt sein.
In dem Fliehkraftpendelgehäuse kann ein mit der Antriebswelle oder der Eingangswel- le drehfest verbundener Pendelmassenträger aufgenommen sein, an welchem beid- seitig über den Umfang verteilt im Fliehkraftfeld entlang einer vorgegebenen Pendel- bahn verschwenkbare Pendelmassen angeordnet sind.
In einer alternativen Ausführungsform kann das Fliehkraftpendelgehäuse direkt den Pendelmassenträger bilden, wobei innerhalb des Gehäuses an den beiden axial be- abstandeten Gehäusewandungen die über den Umfang verteilt angeordneten Pen- delmassen im Fliehkraftfeld des drehenden Fliehkraftpendelgehäuses entlang einer vorgegebenen Pendelbahn verschwenkbar aufgenommen sind. Das Fliehkraftpendel- gehäuse ist hierzu drehfest mit der Antriebswelle oder der Eingangswelle des Diffe- rentials verbunden. Soweit nötig kann das Fliehkraftpendelgehäuse von einem
Schutzkorb umgeben sein, der beispielsweise mit entsprechendem Spiel mit der Fahrzeugkarosserie verbunden ist.
Die Erfindung wird anhand des in den Figuren 1 und 2 dargestellten Ausführungsbei- spiels näher erläutert. Dabei zeigen:
Figur 1 eine schematische Darstellung eines Antriebsstrangs mit einem benach- bart zu einem Differential aufgenommen Fliehkraftpendel und
Figur 2 einen Teilschnitt durch ein konstruktiv ausgebildetes Fliehkraftpendel der Figur 1.
Die Figur 1 zeigt in schematischer Darstellung den Antriebsstrang 1 eines Kraftfahr- zeugs mit der fronteingebauten Brennkraftmaschine 2, dem fronteingebauten Getriebe 3, der Antriebswelle 4, dem Differential 5 mit der Eingangswelle 6 und den Antriebsrä- dern 7 für einen Fleckantrieb des Kraftfahrzeugs.
Zwischen der Brennkraftmaschine 2 und dem Getriebe 3 sind die Reibungskupplung 8 und die erste Drehschwingungsisolationseinrichtung 9 - hier ein mit der Kurbelwelle 10 der Brennkraftmaschine 2 verbundenes Zweimassenschwungrad gegebenenfalls mit einem Fliehkraftpendel - angeordnet.
Die Antriebswelle 4 ist mittels der Gelenkverbindung 11 wie beispielsweise einem Kreuzgelenk mit der Getriebeausgangswelle 12 des Getriebes 3 und mittels der Ge- lenkverbindung 13 wie beispielsweise einem Kreuzgelenk mit der Eingangswelle 6 des Differentials 5 verbunden.
Benachbart zu dem Differential 5 ist das Fliehkraftpendel 14 angeordnet. Flierzu ist der Pendelmassenträger 15 des Fliehkraftpendels 14 drehfest mit der Eingangswelle 6 oder mit der Antriebswelle 4 verbunden. In dem gezeigten Ausführungsbeispiel ist der Pendelmassenträger 15 scheibenartig als Pendelflansch ausgebildet, an dem beidseitig mittels nicht dargestellter Pendellager die über den Umfang verteilt ange- ordneten Pendelmassen 16 angeordnet sind. Axial gegenüberliegende Pendelmassen 16 sind dabei jeweils mittels Ausnehmungen des Pendelmassenträgers 15 durchgrei- fenden Verbindungsmitteln miteinander verbunden.
Das Fliehkraftpendel 14 ist auf Eigenformen des Differentials und gegebenenfalls un- ter Berücksichtigung einer Auslegung der Drehschwingungsisolationseinrichtung 9 abgestimmt.
Zum Schutz des Fliehkraftpendels 14 beziehungsweise der Umgebung, zur Ausbil- dung eines Berstschutzes und dergleichen, kann das Fliehkraftpendel in nicht darge- stellter Weise von einem Schutzkorb oder einem Fliehkraftpendelgehäuse umgeben sein, der beispielsweise drehfest mit dem Gehäuse 17 des Differentials verbunden sein kann.
Die Figur 2 zeigt eine mögliche Ausführungsform des Fliehkraftpendels 14 im Teil- schnitt mit dem Pendelmassenträger 15 und den beidseitig des Pendelmassenträgers 15 angeordneten Pendelmassen 16. Das Fliehkraftpendel 14 ist in dem Fliehkraftpen- delgehäuse 18 aufgenommen, welches aus den beiden miteinander verbundenen, beispielsweise hier verschraubten Gehäuseteilen 19, 20 aufgenommen ist. Das Flieh- kraftpendel 14 kann in dem Fliehkraftpendelgehäuse 18 gekapselt und nass betrieben sein, indem das Fliehkraftpendelgehäuse zumindest zum Teil mit einem Betriebsmit- tel, beispielsweise Öl befüllt ist. In einer alternativen Ausführungsform kann das Flieh- kraftpendel 14 trocken betrieben sein.
Bezuqszeichenliste Antriebsstrang
Brennkraftmaschine
Getriebe
Antriebswelle
Differential
Eingangswelle
Antriebsrad
Reibungskupplung
Drehschwingungsisolationseinrichtung
Kurbelwelle
Gelenkverbindung
Getriebeausgangswelle
Gelenkverbindung
Fliehkraftpendel
Pendelmassenträger
Pendelmasse
Gehäuse
Fliehkraftpendelgehäuse
Gehäuseteil
Gehäuseteil

Claims

Patentansprüche
1. Antriebsstrang (1 ) für ein Kraftfahrzeug enthaltend eine Brennkraftmaschine (2), ein dieser nachgeschaltetes Getriebe (3), Antriebsräder (7) und ein zwi- schen den Antriebsrädern (7) und dem Getriebe (3) angeordnetes Differential (5), dadurch gekennzeichnet, dass dem Differential (5) ein Fliehkraftpendel (14) benachbart zugeordnet ist.
2. Antriebsstrang (1 ) nach Anspruch 1 , dadurch gekennzeichnet, dass zwischen dem Getriebe (3) und dem Differential (5) eine Antriebswelle (4) vorgesehen ist, wobei das Fliehkraftpendel (14) zwischen Antriebswelle (4) und Differential (5) angeordnet ist.
3. Antriebsstrang (1 ) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Getriebe (3) fronteingebaut ist und die Antriebsräder (7) für einen Fleckantrieb vorgesehen sind.
4. Antriebsstrang (1 ) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Fliehkraftpendel (14) separat von einem Gehäuse (17) des Differenti- als (5) mittels eines Fliehkraftpendelgehäuses (18) gekapselt ausgebildet ist.
5. Antriebsstrang (1 ) nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass zwischen einer Eingangswelle (6) des Differentials (5) und der Antriebs- welle (4) eine Gelenkverbindung (13) vorgesehen ist.
6. Antriebsstrang (1 ) nach Anspruch 5, dadurch gekennzeichnet, dass das Flieh- kraftpendel (14) der Eingangswelle (6) zugeordnet ist.
7. Antriebsstrang (1 ) nach Anspruch 5, dadurch gekennzeichnet, dass das Flieh- kraftpendel (14) der Antriebswelle (4) zugeordnet ist.
8. Antriebsstrang (1 ) nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass das Fliehkraftpendelgehäuse (18) verdrehbar an der Antriebswelle (4) oder an der Eingangswelle (6) aufgenommen ist.
9. Antriebsstrang (1 ) nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass in dem Fliehkraftpendelgehäuse (18) ein mit der Antriebswelle (4) oder der Eingangswelle (6) drehfest verbundener Pendelmassenträger (15) aufge- nommen ist, an welchem beidseitig über den Umfang verteilt im Fliehkraftfeld entlang einer vorgegebenen Pendelbahn verschwenkbare Pendelmassen (16) angeordnet sind.
10. Antriebsstrang (1 ) nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass das Fliehkraftpendelgehäuse (18) drehfest nach außen abgestützt ist.
PCT/DE2019/100403 2018-05-16 2019-05-06 Antriebsstrang mit fliehkraftpendel WO2019219121A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020564089A JP2021523854A (ja) 2018-05-16 2019-05-06 遠心振り子を有するドライブトレイン
EP19724078.1A EP3794251A1 (de) 2018-05-16 2019-05-06 Antriebsstrang mit fliehkraftpendel
CN201980032605.XA CN112166267A (zh) 2018-05-16 2019-05-06 具有离心摆的传动系
DE112019002460.4T DE112019002460A5 (de) 2018-05-16 2019-05-06 Antriebsstrang mit Fliehkraftpendel
US17/055,266 US11815154B2 (en) 2018-05-16 2019-05-06 Drive train having centrifugal pendulum

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018111773.6 2018-05-16
DE102018111773.6A DE102018111773A1 (de) 2018-05-16 2018-05-16 Antriebsstrang mit Fliehkraftpendel

Publications (1)

Publication Number Publication Date
WO2019219121A1 true WO2019219121A1 (de) 2019-11-21

Family

ID=66541986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2019/100403 WO2019219121A1 (de) 2018-05-16 2019-05-06 Antriebsstrang mit fliehkraftpendel

Country Status (6)

Country Link
US (1) US11815154B2 (de)
EP (1) EP3794251A1 (de)
JP (1) JP2021523854A (de)
CN (1) CN112166267A (de)
DE (2) DE102018111773A1 (de)
WO (1) WO2019219121A1 (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19527112C1 (de) 1995-07-25 1996-09-19 Forschungsgesellschaft Kraftfa Verfahren zur Kalibrierung eines Kennfeldes einer Antriebsmaschine
DE102008033679A1 (de) * 2008-07-17 2009-03-05 Daimler Ag Schaltgetriebe für einen Kraftfahrzeug-Antriebsstrang sowie Antriebsstrang
DE102008001050A1 (de) * 2008-04-08 2009-10-15 Zf Friedrichshafen Ag System zur Schwingungsreduzierung in einem Achsgetriebe eines Kraftfahrzeugs
DE102010028849A1 (de) * 2010-05-11 2011-11-17 Zf Friedrichshafen Ag Schwingungstilger
DE102014221637A1 (de) * 2014-10-24 2016-04-28 Zf Friedrichshafen Ag Tilgerschwingungsdämpfer und Antriebsstrang
DE102016222575A1 (de) 2015-11-18 2017-05-18 Schaeffler Technologies AG & Co. KG Drehschwingungsdämpfer mit Freiwinkel

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51126515U (de) 1975-04-09 1976-10-13
JPH03129141A (ja) * 1989-10-14 1991-06-03 Mazda Motor Corp 車両の動力伝達装置
JPH1172143A (ja) * 1997-08-29 1999-03-16 Suzuki Motor Corp ダイナミックダンパ
US6889803B2 (en) 2002-10-11 2005-05-10 American Axle & Manufacturing, Inc. Torsional active vibration control system
JP2007320494A (ja) * 2006-06-02 2007-12-13 Toyota Motor Corp ハイブリッド駆動装置
DE102012221854A1 (de) 2012-11-29 2014-06-05 Zf Friedrichshafen Ag Drehschwingungstilger in einem Antriebsstrang eines Fahrzeugs
JP2014145441A (ja) * 2013-01-30 2014-08-14 Toyota Motor Corp 遠心振り子式ダイナミックダンパ
DE102013015982A1 (de) * 2013-09-25 2015-03-26 Audi Ag Drehmomentübertragungsvorrichtung für ein Kraftfahrzeug
US10001205B2 (en) * 2015-01-27 2018-06-19 Mazda Motor Corporation Control apparatus of four-wheel drive vehicle
US20170198783A1 (en) * 2016-01-13 2017-07-13 Ford Global Technologies, Llc Low profile torsional damper for shafts
DE102016201534A1 (de) 2016-02-02 2017-08-03 Schaeffler Technologies AG & Co. KG Fliehkraftpendeleinrichtung, Drehmomentübertragungseinrichtung und Antriebsstrang für ein Fahrzeug
DE102016221579A1 (de) * 2016-11-03 2018-05-03 Schaeffler Technologies AG & Co. KG Fliehkraftpendel und Drehmomentwandler mit Fliehkraftpendel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19527112C1 (de) 1995-07-25 1996-09-19 Forschungsgesellschaft Kraftfa Verfahren zur Kalibrierung eines Kennfeldes einer Antriebsmaschine
DE102008001050A1 (de) * 2008-04-08 2009-10-15 Zf Friedrichshafen Ag System zur Schwingungsreduzierung in einem Achsgetriebe eines Kraftfahrzeugs
DE102008033679A1 (de) * 2008-07-17 2009-03-05 Daimler Ag Schaltgetriebe für einen Kraftfahrzeug-Antriebsstrang sowie Antriebsstrang
DE102010028849A1 (de) * 2010-05-11 2011-11-17 Zf Friedrichshafen Ag Schwingungstilger
DE102014221637A1 (de) * 2014-10-24 2016-04-28 Zf Friedrichshafen Ag Tilgerschwingungsdämpfer und Antriebsstrang
DE102016222575A1 (de) 2015-11-18 2017-05-18 Schaeffler Technologies AG & Co. KG Drehschwingungsdämpfer mit Freiwinkel

Also Published As

Publication number Publication date
JP2021523854A (ja) 2021-09-09
DE112019002460A5 (de) 2021-01-28
EP3794251A1 (de) 2021-03-24
DE102018111773A1 (de) 2019-11-21
CN112166267A (zh) 2021-01-01
US11815154B2 (en) 2023-11-14
US20210123497A1 (en) 2021-04-29

Similar Documents

Publication Publication Date Title
EP2836737B1 (de) Drehschwingungsdämpfungsanordnung
DE102008005138A1 (de) Fliehkraftpendeleinrichtung
WO2007054062A1 (de) Torsionsschwingungsdämpfer sowie hydrodynamische drehmomentwandler- vorrichtung für einen kraftfahrzeug-antriebsstrang
WO2015058757A1 (de) Drehschwingungsisolationseinrichtung
WO2007054052A1 (de) Kraftfahrzeug-antriebsstrang mit einem 8-zylinder-motor
DE102008042466A1 (de) Nasslaufende Anfahrkupplung
DE102018123744A1 (de) Drehmomentübertragungseinrichtung
WO2017190725A1 (de) Drehschwingungsdämpfer
DE102019118504A1 (de) Drehschwingungsdämpfer
EP1948971A1 (de) Kraftfahrzeug-antriebsstrang mit einem 3-zylinder-motor
DE102019113900A1 (de) Drehschwingungsdämpfer
EP1948970A1 (de) Kraftfahrzeug-antriebsstrang mit einem 5-zylinder-motor
DE102018104981A1 (de) Drehschwingungsdämpfer
WO2007054046A1 (de) Kraftfahrzeugantrieb mit einem 6-zylinder-motor
DE102016211094A1 (de) Einmassenschwungrad mit Drehschwingungsdämpfer und Fliehkraftpendel
WO2019219121A1 (de) Antriebsstrang mit fliehkraftpendel
DE102020107702B4 (de) Hybridantriebsstrang
DE102020104021A1 (de) Drehschwingungsdämpfer
DE102019133233A1 (de) Drehschwingungsdämpfer
WO2013174634A1 (de) Nasse doppelkupplung
DE102019104081A1 (de) Kupplungsaggregat
WO2014023306A1 (de) Fliehkraftpendeleinrichtung
WO2017215696A1 (de) Drehschwingungsgedämpfter antriebsstrang für ein kraftfahrzeug
DE102018131522A1 (de) Als Torsionskugeldämpfer aufgebauter Torsionsschwingungsdämpfer
DE102016223394A1 (de) Zweimassenschwungrad mit sekundärseitiger Zusatzmasse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19724078

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020564089

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019724078

Country of ref document: EP

Effective date: 20201216

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112019002460

Country of ref document: DE