WO2019218560A1 - 一种二硼化钛基复相陶瓷及其制备方法和应用 - Google Patents

一种二硼化钛基复相陶瓷及其制备方法和应用 Download PDF

Info

Publication number
WO2019218560A1
WO2019218560A1 PCT/CN2018/106357 CN2018106357W WO2019218560A1 WO 2019218560 A1 WO2019218560 A1 WO 2019218560A1 CN 2018106357 W CN2018106357 W CN 2018106357W WO 2019218560 A1 WO2019218560 A1 WO 2019218560A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
titanium diboride
metal
based composite
composite ceramic
Prior art date
Application number
PCT/CN2018/106357
Other languages
English (en)
French (fr)
Inventor
郭伟明
吴利翔
牛文彬
陈志伟
林华泰
伍尚华
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Publication of WO2019218560A1 publication Critical patent/WO2019218560A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58071Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on titanium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62842Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/665Local sintering, e.g. laser sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the invention belongs to the technical field of multiphase ceramics, and more particularly to a titanium diboride (TiB 2 ) based composite ceramic and a preparation method and application thereof.
  • TiB 2 titanium diboride
  • titanium diboride (TiB 2 )-based composite ceramics As a structural material, titanium diboride (TiB 2 )-based composite ceramics have excellent mechanical properties, such as high hardness, high strength, wear resistance, high temperature resistance, physical and chemical stability, etc., and can be widely used in structures. Parts, tool cutting, aerospace, etc., but because of its excellent mechanical properties limit its processing diversity, for complex shapes of ceramic materials can not be obtained by traditional processing techniques. Considering its huge application scenario, it is urgent to develop a ceramic material that can realize arbitrarily complex shapes.
  • TiB 2 based multiphase ceramic molding processes include injection molding, injection molding, pressure filtration molding, pressure molding, and gel injection molding.
  • additive manufacturing has been applied to ceramic molding, it is mainly through the use of photocuring, direct extrusion, inkjet printing, selective laser sintering and other technologies to achieve the additive manufacturing of ceramic materials.
  • the next heat treatment is required after molding.
  • Selective laser melting allows dense materials to be prepared in one step. The principle is that the powder is melt-formed by laser and then scanned layer by layer to print the final three-dimensional structure.
  • ceramic materials generally do not have a fixed melting point or the melting point is too high (above 2000 ° C). Therefore, ceramic materials have not been directly formed by selective laser melting technology.
  • the multiphase ceramic is a ceramic material of a complex shape having a net size.
  • Another object of the present invention is to provide a method for preparing the above TiB 2 -based multiphase ceramic, which is prepared by one-step molding by a selective laser melting method, and is prepared by printing a B 4 C mixed powder with a metal Ti. In the process of reaction, a complex shape TiB 2 based multiphase ceramic was prepared.
  • TiB 2 titanium diboride
  • the TiB 2 -based composite ceramic is made of metal Ti powder and B 4 C powder
  • the WC ball is used as a ball milling medium, and is ball milled and mixed on a high-energy ball mill.
  • metallic Ti obtained the wrapping Ti-B 4 C B 4 C powder, Ti-B 4 C and then printing powder molding was prepared under an Ar or vacuum conditions by selective laser melting method.
  • the molar ratio of the metal Ti powder to the B 4 C powder is (1 to 10):1.
  • the metal Ti powder and the B 4 C powder have a purity of 99%, and the metal Ti powder and the B 4 C powder have a particle diameter of 1 to 100 ⁇ m.
  • the ball milling time is 2 to 40 hours.
  • the TiB 2 -based composite ceramic has a relative density of greater than 95%, the TiB 2 -based composite ceramic has a hardness of 20 to 45 GPa, and the TiB 2 -based composite ceramic has a fracture toughness of 6 to 12 MPa. 1/2 , the TiB 2 -based composite ceramic has a flexural strength of 500 to 1200 MPa.
  • the preparation method of the TiB 2 -based composite ceramics comprises the following specific steps:
  • the Ti-B 4 C powder is scanned by a laser according to a set path, and the surface layer of the powder metal Ti is melted to form a single layer of the powder, and then scanned layer by layer to finally realize selective laser
  • the TiB 2 -based composite ceramic was prepared by melt printing.
  • the parameter of the selective laser melting method in the step S2 is: the laser intensity is 150-550 J/mm 3 , the laser scanning rate is 200-1200 mm/s, the scanning pitch is 20-200 ⁇ m, and the scanning layer thickness is 10 ⁇ . 100 ⁇ m.
  • the parameters of the selective laser melting method in step S2 are: a laser intensity of 400 J/mm 3 , a laser scanning rate of 800 mm/s, a scanning pitch of 100 ⁇ m, and a scanning layer thickness of 30 ⁇ m.
  • the TiB 2 -based multiphase ceramic can realize various complicated shape design through additive manufacturing technology, and has wide application in the aerospace field as a wave transmissive material.
  • the present invention has the following beneficial effects:
  • the invention directly realizes the additive manufacturing molding of the TiB 2 based multiphase ceramic without subsequent sintering or heat treatment;
  • the present invention realizes net size molding of a complex shape TiB 2 -TiC multiphase ceramic
  • the introduction of the metal Ti in the present invention effectively improves the fracture toughness of the TiB 2 -based composite ceramic.
  • Figure 1 is a schematic diagram of powder distribution and reaction during additive manufacturing.
  • Figure 2 is a schematic diagram of selective laser melting forming.
  • Metal Ti powder metal Ti powder purity 99%, particle size 20 ⁇ m
  • B 4 C powder B 4 C powder purity 99%, particle size 10 ⁇ m
  • the ratio of 4:1 is mixed with WC ball as ball milling medium and mixed on high energy ball mill for 25h to obtain metal Ti-coated B 4 C mixed spherical Ti-B 4 C powder.
  • soft The metal phase Ti is wrapped on the surface of the hard phase B 4 C particles. With the extension of the ball milling time, the energy generated by the high energy ball milling causes the B 4 C to decompose, and the C and B generated by the decomposition diffuse into the metal Ti, and then the reaction results in TiC and TiB. 2 phases, as shown in Figure 1.
  • the metal Ti is wrapped with B 4 C mixed spherical Ti-B 4 C powder by selective laser melting method, through the scanning path in Fig. 2, the first layer is the laser beam along the X axis. (Y-axis) makes a reciprocating scan and gradually moves in the Y-axis (X-axis) direction. After the first layer scan is finished, the work surface is lowered by a certain distance, and the laser beam continues to reciprocally scan along the Y-axis (X-axis) and gradually to X.
  • the axis (Y axis) moves, then the work surface continues to descend to a certain height, the laser beam is reciprocally scanned along the X axis (Y axis), and gradually moves toward the Y axis (X axis), and the printing is repeated, and the sample is formed along the molding.
  • the direction is superimposed layer by layer until the sample is printed.
  • the specific parameters are: laser intensity is 400J mm 3 , laser scanning rate is 800mm/s, scanning pitch is 100 ⁇ m, and scanning layer thickness is 30 ⁇ m. Finally, a TiB 2 -TiC multiphase ceramic was prepared.
  • the TiB 2 -TiC multiphase ceramic obtained above has a complex shape and a net size.
  • the TiB 2 -TiC ceramic has a relative density of 98%, a hardness of 35 GPa, a fracture toughness of 12 MPa.m 1/2 and a bending strength of 1000 MPa.
  • the metal Ti powder (metal Ti powder purity 99%, particle size 30 ⁇ m) and B 4 C powder (B 4 C powder purity 99%, particle size 20 ⁇ m) as raw materials, according to Ti: B 4 C molar ratio
  • the TiB 2 -based ceramics were prepared according to the method of Example 1 by 1:1.
  • the laser intensity, scanning rate, and scanning layer thickness were 350 J/mm 3 , 800 mm/s, and 35 ⁇ m, respectively, and the atmosphere during printing was Ar.
  • the net shape molding of the complex shape TiB 2 -TiC-B 4 C multiphase ceramic is realized by a selective laser melting technique, and the relative density of the TiB 2 -TiC-B 4 C composite ceramic is 98%, and the hardness is 40 GPa, the fracture toughness is 10 MPa.m 1/2 , and the flexural strength is 1100 MPa.
  • the metal Ti powder (metal Ti powder purity 99%, particle size 20 ⁇ m) and B 4 C powder (B 4 C powder purity 99%, particle size 20 ⁇ m) as raw materials, according to Ti: B 4 C molar ratio
  • the TiB 2 -based ceramics were prepared in accordance with the method of Example 1 by 4:1, wherein the laser intensity, the scanning rate, and the scanning layer thickness were 350 J/mm 3 , 800 mm/s, and 35 ⁇ m, respectively, and the atmosphere during printing was a vacuum.
  • the net shape molding of the complex shape TiB 2 -TiC multiphase ceramic is realized by a selective laser melting technique, the relative density of the TiB 2 -TiC multiphase ceramic is 98%, the hardness is 30 GPa, and the fracture toughness is 12 MPa.m. 1/2 , the bending strength is 1000 MPa.
  • the metal Ti powder (metal Ti powder purity 99%, particle size 40 ⁇ m) and B 4 C powder (B 4 C powder purity 99%, particle size 40 ⁇ m) as raw materials, according to Ti: B 4 C molar ratio
  • the TiB 2 -based ceramics were prepared according to the method of Example 1 by 1:1.
  • the laser intensity, scanning rate, and scanning layer thickness were 450 J/mm 3 , 500 mm/s, and 45 ⁇ m, respectively, and the atmosphere during printing was a vacuum.
  • the net shape molding of the complex shape TiB 2 -TiC-B 4 C multiphase ceramic is realized by a selective laser melting technique, and the relative density of the TiB 2 -TiC-B 4 C multiphase ceramic is 99%, and the hardness is 42GPa, the fracture toughness is 12 MPa.m 1/2 and the flexural strength is 1200 MPa.
  • the metal Ti powder (metal Ti powder purity 99%, particle size 10 ⁇ m) and B 4 C powder (B 4 C powder purity 99%, particle size 20 ⁇ m) as raw materials, according to Ti: B 4 C molar ratio
  • the ingredients were prepared at 6:1, and TiB 2 -based ceramics were prepared according to the method of Example 1, in which the laser intensity, scanning rate, and scanning layer thickness were 300 J/mm 3 , 500 mm/s, and 30 ⁇ m, respectively, and the atmosphere during printing was a vacuum.
  • the net shape molding of the complex shape TiB 2 -TiC multiphase ceramic is realized by a selective laser melting technique, and the relative density of the TiB 2 -TiC multiphase ceramic is 99%, the hardness is 30 GPa, and the fracture toughness is 12 MPa.m. 1/2 , the bending strength is 1200 MPa.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

一种二硼化钛基复相陶瓷及其制备方法和应用。二硼化钛基复相陶瓷是以金属Ti粉和B 4C粉为原料,以WC球为球磨介质,在高能球磨机上球磨混合,制得金属Ti包裹B 4C的Ti-B 4C粉体,再将Ti-B 4C粉体在Ar或真空的条件下通过选择性激光熔融法打印成型制得。

Description

一种二硼化钛基复相陶瓷及其制备方法和应用 技术领域
本发明属于复相陶瓷技术领域,更具体地,涉及一种二硼化钛(TiB 2)基复相陶瓷及其制备方法和应用。
背景技术
二硼化钛(TiB 2)基复相陶瓷材料作为一种结构材料,具有优异的力学性能,例如高硬度、高强、耐磨、耐高温、物理化学稳定性等优异性能,可广泛应用于结构件、刀具切削、航空航天等方面,但是正因为其优异的力学性能限制了其加工多样化,对于复杂形状的陶瓷材料依靠传统的加工工艺无法得到。考虑到其巨大的应用场景,亟待开发一种可实现任意复杂形状的陶瓷材料的成型。
目前,TiB 2基复相陶瓷成型工艺有:注射成型、注凝成型、压滤成型、压力成型、凝胶注模成型等。但是这些技术难以满足对个性化、精细化、轻量化和复杂化的高端产品快速制造的需求,限制了高性能陶瓷产品的开发与应用。虽然目前增材制造已经应用于陶瓷成型,但主要是通过光固化成型、直接挤压成型、喷墨打印、选择性激光烧结等技术实现陶瓷材料的增材制造。对于以上增材制造技术,在成型后都需要下一步热处理。选择性激光熔融可以通过一步制备致密材料,其原理是通过激光将粉末熔化成型,然后逐层扫描叠加,打印出最终三维结构。然而,由于陶瓷材料通常没有固定熔点或者熔点太高(高于2000℃)。因此,目前还没有直接将陶瓷材料运用选择性激光熔融技术成型。
基于以上应用背景以及研究现状,急需寻求一种净尺寸的复杂形状陶瓷材料直接成型方法。
发明内容
为了解决上述现有技术存在的不足和缺点,提供一种TiB 2基复相陶瓷。该复相陶瓷是具有净尺寸的复杂形状陶瓷材料。
本发明的另一目的在于提供一种上述TiB 2基复相陶瓷的制备方法,该方法采用选择性激光熔融法一步成型制备所需形状样品,通过利用金属Ti包裹B 4C混合粉体在打印过程中反应,制备复杂形状TiB 2基复相陶瓷。
本发明的再一目的在于提供一种上述TiB 2基复相陶瓷的应用。
本发明的目的通过下述技术方案来实现:
一种二硼化钛(TiB 2)基复相陶瓷,所述TiB 2基复相陶瓷是以金属Ti粉和B 4C粉为原料,以WC球为球磨介质,在高能球磨机上球磨混合,制得金属Ti包裹B 4C的Ti-B 4C粉体,再将Ti-B 4C粉体在Ar或真空的条件下通过选择性激光熔融法打印成型制得。
优选地,所述金属Ti粉和B 4C粉的摩尔比为(1~10)∶1。
优选地,所述金属Ti粉和B 4C粉的纯度均为99%,所述金属Ti粉和B 4C粉的粒径均为1~100μm。
优选地,所述球磨的时间为2~40h。
优选地,所述TiB 2基复相陶瓷的相对密度大于95%,所述TiB 2基复相陶瓷的硬度为20~45GPa,所述TiB 2基复相陶瓷的断裂韧性为6~12MPa.m 1/2,所述TiB 2基复相陶瓷的抗弯强度为500~1200MPa。
所述的TiB 2基复相陶瓷的制备方法,包括如下具体步骤:
S1.以金属Ti粉和B 4C粉为原料,以WC球为球磨介质,在高能球磨机上混合,得到金属Ti包裹B 4C的Ti-B 4C粉体;
S2.在气氛为Ar或者真空条件下,将Ti-B 4C粉体通过激光按照设定路径扫描,粉体表层金属Ti熔化使得粉体单层成型,然后逐层扫描,最终实现选择性激光熔融法打印成型,制备得到TiB 2基复相陶瓷。
优选地,步骤S2中所述选择性激光熔融法的参数为:激光强度为150~550J/mm 3,所述激光扫描速率为200~1200mm/s,扫描间距20~200μm,扫描层厚10~100μm。
更为优选地,步骤S2中所述选择性激光熔融法的参数为:激光强度为400J/mm 3,所述激光扫描速率为800mm/s,扫描间距100μm,扫描层厚30μm。
所述的TiB 2基复相陶瓷通过增材制造技术可实现各种复杂形状的设计,作为一种透波材料在航空航天领域具有广泛的应用。
与现有技术相比,本发明具有以下有益效果:
1.本发明直接实现TiB 2基复相陶瓷的增材制造成型,无需后续烧结或者热处理;
2.本发明实现复杂形状TiB 2-TiC复相陶瓷的净尺寸成型;
3.本发明中金属Ti的引入有效改善TiB 2基复相陶瓷的断裂韧性。
附图说明
图1为增材制造过程中粉体分布与反应原理图。
图2为选择性激光熔融法成型原理图。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
1.以金属Ti粉(金属Ti粉纯度为99%,粒径为20μm)和B 4C粉(B 4C粉纯度为99%,粒径10μm)为原料,按Ti∶B 4C的摩尔比为4∶1配比经混料,以WC球为球磨介质,在高能球磨机上混合25h,得到金属Ti包裹B 4C混合球形Ti-B 4C粉体,在高能球磨作用下,软质金属相Ti包裹在硬质相B 4C颗粒表面,随着球磨时间的延长,高能球磨产生的能量使得B 4C分解,分解产生的C和B扩散进入金属Ti中,进而反应得到TiC和TiB 2相,如图1所示。
2.在气氛为Ar的条件下,将金属Ti包裹B 4C混合球形Ti-B 4C粉体采用选择性激光熔融法,通过图2中的扫描路径,首层是激光束沿着X轴(Y轴)作往复扫描,并逐渐向Y轴(X轴)方向移动,首层扫描结束后,工作台面下降一定距离,激光束继续沿着Y轴(X轴)往复扫描,并逐渐向X轴(Y轴)方向移动,接着工作台面继续下降一定高度,激光束沿着X轴(Y轴)作往复扫描,并逐渐向Y轴(X轴)方向移动,一直重复打印,样品沿着成型方向逐层叠加,直到完成样品的打印成型。其具体参数为:激光强度为400J mm 3,激光扫描速率为800mm/s,扫描间距100μm,扫描层厚30μm。最后制备TiB 2-TiC复相陶瓷。
上述所得TiB 2-TiC复相陶瓷具有复杂形状和净尺寸,所述TiB 2-TiC陶瓷的相对密度为98%,硬度为35GPa,断裂韧性为12MPa.m 1/2,抗弯强度为1000MPa。
实施例2
以金属Ti粉(金属Ti粉纯度为99%,粒径为30μm)和B 4C粉(B 4C粉纯 度为99%,粒径20μm)为原料,按照Ti∶B 4C的摩尔比为1∶1进行配料,按照实施例1方法制备TiB 2基陶瓷,其中激光强度、扫描速率、扫描层厚分别为350J/mm 3、800mm/s和35μm,打印过程中的气氛为Ar。本实施例通过选择性激光熔融技术实现复杂形状TiB 2-TiC-B 4C复相陶瓷的净尺寸成型,所述TiB 2-TiC-B 4C复相陶瓷的相对密度为98%,硬度为40GPa,断裂韧性为10MPa.m 1/2,抗弯强度为1100MPa。
实施例3
以金属Ti粉(金属Ti粉纯度为99%,粒径为20μm)和B 4C粉(B 4C粉纯度为99%,粒径20μm)为原料,按照Ti∶B 4C的摩尔比为4∶1进行配料,按照实施例1方法制备TiB 2基陶瓷,其中激光强度、扫描速率、扫描层厚分别为350J/mm 3、800mm/s和35μm,打印过程中的气氛为真空。本实施例通过选择性激光熔融技术实现复杂形状TiB 2-TiC复相陶瓷的净尺寸成型,所述TiB 2-TiC复相陶瓷的相对密度为98%,硬度为30GPa,断裂韧性为12MPa.m 1/2,抗弯强度为1000MPa。
实施例4
以金属Ti粉(金属Ti粉纯度为99%,粒径为40μm)和B 4C粉(B 4C粉纯度为99%,粒径40μm)为原料,按照Ti∶B 4C的摩尔比为1∶1进行配料,按照实施例1方法制备TiB 2基陶瓷,其中激光强度、扫描速率、扫描层厚分别为450J/mm 3、500mm/s和45μm,打印过程中的气氛为真空。本实施例通过选择性激光熔融技术实现复杂形状TiB 2-TiC-B 4C复相陶瓷的净尺寸成型,所述TiB 2-TiC-B 4C复相陶瓷的相对密度为99%,硬度为42GPa,断裂韧性为12MPa.m 1/2,抗弯强度为1200MPa。
实施例5
以金属Ti粉(金属Ti粉纯度为99%,粒径为10μm)和B 4C粉(B 4C粉纯度为99%,粒径20μm)为原料,按照Ti∶B 4C的摩尔比为6∶1进行配料,按照实施例1方法制备TiB 2基陶瓷,其中激光强度、扫描速率、扫描层厚分别为300J/mm 3、500mm/s和30μm,打印过程中的气氛为真空。本实施例通过选择性激光熔融技术实现复杂形状TiB 2-TiC复相陶瓷的净尺寸成型,所述TiB 2-TiC复相 陶瓷的相对密度为99%,硬度为30GPa,断裂韧性为12MPa.m 1/2,抗弯强度为1200MPa。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

  1. 一种二硼化钛基复相陶瓷,其特征在于,所述二硼化钛基复相陶瓷是以金属Ti粉和B 4C粉为原料,以WC球为球磨介质,在高能球磨机上球磨混合,制得金属Ti包裹B 4C的Ti-B 4C粉体,再将Ti-B 4C粉体在Ar或真空的条件下通过选择性激光熔融法打印成型制得。
  2. 根据权利要求1所述的二硼化钛基复相陶瓷,其特征在于,所述金属Ti粉和B 4C粉的摩尔比为(1~10)∶1。
  3. 根据权利要求1所述的二硼化钛基复相陶瓷,其特征在于,所述金属Ti粉和B 4C粉的纯度均为99%,所述金属Ti粉和B 4C粉的粒径均为1~100μm。
  4. 根据权利要求1所述的二硼化钛基复相陶瓷,其特征在于,所述球磨的时间为2~40h。
  5. 根据权利要求1所述的二硼化钛基复相陶瓷,其特征在于,所述二硼化钛基复相陶瓷的相对密度大于95%,所述二硼化钛基复相陶瓷的硬度为20~45GPa,所述二硼化钛基复相陶瓷的断裂韧性为6~12MPa·m 1/2,所述二硼化钛基复相陶瓷的抗弯强度为500~1200MPa。
  6. 根据权利要求1-5任一项所述的二硼化钛基复相陶瓷的制备方法,其特征在于,包括如下具体步骤:
    S1.以金属Ti粉和B 4C粉为原料,以WC球为球磨介质,在高能球磨机上球磨混合,得到金属Ti包裹B 4C的Ti-B 4C粉体;
    S2.在气氛为Ar或者真空条件下,将Ti-B 4C粉体通过激光按照设定路径扫描,Ti-B 4C粉体表层金属Ti熔化使得该粉体单层成型,然后逐层扫描,最终实现选择性激光熔融法打印成型,制备得到二硼化钛基复相陶瓷。
  7. 根据权利要求6所述的二硼化钛基复相陶瓷的制备方法,其特征在于,步骤S2中所述选择性激光熔融法的参数为:激光强度为150~550J/mm 3,激光扫描速率为200~1200mm/s,扫描间距20~200μm,扫描层厚10~100μm。
  8. 根据权利要求7所述的二硼化钛基复相陶瓷的制备方法,其特征在于,步骤S2中所述选择性激光熔融法的参数为:激光强度为400J/mm 3,所述激光扫描速率为800mm/s,扫描间距100μm,扫描层厚30μm。
  9. 权利要求1-5任一项所述的二硼化钛基复相陶瓷在航空航天领域中的应用。
PCT/CN2018/106357 2018-05-17 2018-09-19 一种二硼化钛基复相陶瓷及其制备方法和应用 WO2019218560A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810475218.0 2018-05-17
CN201810475218.0A CN108610052A (zh) 2018-05-17 2018-05-17 一种二硼化钛基复相陶瓷及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2019218560A1 true WO2019218560A1 (zh) 2019-11-21

Family

ID=63663307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106357 WO2019218560A1 (zh) 2018-05-17 2018-09-19 一种二硼化钛基复相陶瓷及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN108610052A (zh)
WO (1) WO2019218560A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109735743A (zh) * 2019-03-22 2019-05-10 上海材料研究所 一种钛合金复合材料及其制备方法、激光增材制造成型方法
CN110282977B (zh) * 2019-06-17 2021-01-08 东北大学 一种B4C/TiB2层状复合陶瓷材料的制备方法
CN110627508A (zh) * 2019-08-28 2019-12-31 广东工业大学 一种高熵硼化物基陶瓷及其制备方法和应用
CN111118323B (zh) * 2020-01-07 2021-10-01 昆明理工大学 一种用于激光3d打印金属陶瓷复合材料粉末的制备方法
CN112521160A (zh) * 2020-12-29 2021-03-19 山东硅纳新材料科技有限公司 一种B4C/h-BN高温复相陶瓷及其制备方法
CN113880585B (zh) * 2021-10-29 2023-10-27 武汉科技大学 具有复杂形状的硼化钛-碳化硼复合陶瓷及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104928513A (zh) * 2015-07-09 2015-09-23 哈尔滨工业大学 一种钛合金激光3d打印改进方法
CN106636841A (zh) * 2016-10-13 2017-05-10 聊城大学 一种金属微孔材料及其制备方法
CN107130138A (zh) * 2017-05-19 2017-09-05 淮阴工学院 医用高耐磨钛合金复合材料及3d打印梯度原位纳米复相减磨医用钛合金的方法
CN107127342A (zh) * 2017-04-19 2017-09-05 华中科技大学 一种粉床多材料区域铺放成形的工艺方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101704676A (zh) * 2009-11-11 2010-05-12 昆明理工大学 室温下合成制备二硼化钛-碳化钛复相陶瓷微粉的方法
CN101704678A (zh) * 2009-11-11 2010-05-12 昆明理工大学 二硼化钛-碳化钛复相陶瓷微粉的自蔓延高温合成制备方法
CN107973607B (zh) * 2016-10-21 2020-02-07 南京理工大学 一种无粘结剂的陶瓷浆料激光选区熔化/烧结成形方法
CN107352999A (zh) * 2017-07-21 2017-11-17 成都职业技术学院 一种3d打印用无机物粉末激光烧结性能的模拟测试方法
CN107937762B (zh) * 2017-10-20 2019-11-19 上海交通大学 基于SLM制备原位自生TiB2增强复合材料的方法
CN107805066B (zh) * 2017-11-13 2020-10-09 成都优材科技有限公司 基于激光选区烧结的生物陶瓷零件的加工方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104928513A (zh) * 2015-07-09 2015-09-23 哈尔滨工业大学 一种钛合金激光3d打印改进方法
CN106636841A (zh) * 2016-10-13 2017-05-10 聊城大学 一种金属微孔材料及其制备方法
CN107127342A (zh) * 2017-04-19 2017-09-05 华中科技大学 一种粉床多材料区域铺放成形的工艺方法
CN107130138A (zh) * 2017-05-19 2017-09-05 淮阴工学院 医用高耐磨钛合金复合材料及3d打印梯度原位纳米复相减磨医用钛合金的方法

Also Published As

Publication number Publication date
CN108610052A (zh) 2018-10-02

Similar Documents

Publication Publication Date Title
WO2019218560A1 (zh) 一种二硼化钛基复相陶瓷及其制备方法和应用
CN111992708B (zh) 一种制备高性能金刚石/铜复合材料的方法
Li et al. Selective laser melting W–10 wt.% Cu composite powders
JP6162311B1 (ja) 積層造形法による粉末冶金焼結体の製造方法
US20200399135A1 (en) Boron-containing titanium-based composite powder for 3d printing and method of preparing same
CN107721408B (zh) 一种3D打印制备β-磷酸三钙多孔生物陶瓷的方法
CN109396434A (zh) 一种基于选区激光熔化技术制备钛合金零件的方法
CN110791686A (zh) 一种用于增材制造的铝合金粉末材料、制备方法及应用
CN106583735B (zh) 一种制备具有高体积分数金刚石/铜复合材料零件的方法
CN112008079B (zh) 一种原位热处理提高3d打印镍基高温合金力学性能的方法
CN107900327A (zh) 一种结合3d打印技术制备金刚石/铜复合材料的方法
Zhang et al. Processing parameters for selective laser sintering or melting of oxide ceramics
WO2017195695A1 (ja) 複合部材の製造方法及び複合部材
WO2024021218A1 (zh) 钽钨合金制品及其制备方法
CN109014230A (zh) 一种钼金属格栅的制备方法
CN103752824A (zh) 一种轻质铌基合金粉末及零部件的制备方法
CN114318037A (zh) 一种基于激光增材制造的高钨含量钨镍合金材料及其制备方法
CN105689712A (zh) 金属基复合材料结构件激光直接制造方法及装置
CN113979764A (zh) 基于增材的网格微结构陶瓷-金属复合制品的制备方法
CN104658917B (zh) 一种含高体积分数SiC的金属基复合电子封装件的制备方法
KR101995377B1 (ko) 텅스텐-몰리브덴 합금 제조방법
Hu et al. Achieving high-performance pure tungsten by additive manufacturing: Processing, microstructural evolution and mechanical properties
Shen et al. Study on preparation and property of porous tungsten via tape-casting
JP2017222899A (ja) 積層造形用金属粉末および金属粉末を用いた積層造形体
CN103159484B (zh) ZrO2/SiC复合掺杂增韧Al2O3基陶瓷件的激光近净成形方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918691

Country of ref document: EP

Kind code of ref document: A1