CN106636841A - 一种金属微孔材料及其制备方法 - Google Patents

一种金属微孔材料及其制备方法 Download PDF

Info

Publication number
CN106636841A
CN106636841A CN201610894797.3A CN201610894797A CN106636841A CN 106636841 A CN106636841 A CN 106636841A CN 201610894797 A CN201610894797 A CN 201610894797A CN 106636841 A CN106636841 A CN 106636841A
Authority
CN
China
Prior art keywords
powder
titanium
metal
boron
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610894797.3A
Other languages
English (en)
Other versions
CN106636841B (zh
Inventor
郭安福
付慧兵
唐娟
李辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaocheng University
Original Assignee
Liaocheng University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaocheng University filed Critical Liaocheng University
Priority to CN201610894797.3A priority Critical patent/CN106636841B/zh
Publication of CN106636841A publication Critical patent/CN106636841A/zh
Application granted granted Critical
Publication of CN106636841B publication Critical patent/CN106636841B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/14Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on borides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/058Mixtures of metal powder with non-metallic powder by reaction sintering (i.e. gasless reaction starting from a mixture of solid metal compounds)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/49Scanners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开一种金属微孔材料及其制备方法,该制备方法包括:(1)将钛粉末和硼粉末混合均匀,利用3D打印金属激光烧结技术在2800~3200℃下将混合金属粉末打印成所需形状的材料;(2)将步骤(1)中具有特定形状材料加热至2500~2700℃,使未完全反应的硼和钛液化,流出所述特定形状材料外,即得到所需形状的金属微孔材料。本发明采用3D打印激光金属烧结技术可以直接打印成零件形状,不需要二次加工;加工零件形状建模更容易,柔性更强;3D打印设备科提供两种粉末化学反应所需要的能量。设置合适的3D打印加工参数,将硼粉末和钛粉末打印成型,得到的金属微孔材料的硬度和熔点较高,孔径大小为3~100μm。

Description

一种金属微孔材料及其制备方法
技术领域
本发明涉及一种金属微孔材料及其制备方法,属于材料合成与加工领域。
背景技术
近年来金属微孔材料的开发和应用日益受到人们的关注。金属微孔材料是20世纪80年代后期国际上迅速发展起来的,该材料是一种具有明显空隙特征的金属材料,由于微孔的存在而呈现出一系列有别于金属致密材料的特殊功能,如:密度小、刚度大、比表面积大、吸能减震性好、消音降噪效果好、电磁屏蔽性能高,广泛应用于冶金机械、石油化工、能源环保、国防军工、核技术和生物制药等工业过程中的过滤分离、流体渗透与分布控制、液态化、高效燃烧、强化传质传热、阻燃防爆等。基于金属微孔材料的广泛应用,目前亟需研究一种新的金属微孔材料以及其制备方法,以期该金属微孔材料具有更加优异的性能,扩大了其应用范围。
发明内容
本发明的技术解决的问题是:提出了一种新型金属微孔材料及其制备方法,突破了以铝为主要研究对象的金属微孔材料的研究现状,获得了高熔点的金属微孔材料。
本发明采用的技术方案如下:
本发明提供一种金属微孔材料的制备方法,包括以下步骤:
(1)将钛粉末和硼粉末混合均匀,利用3D打印金属激光烧结技术在2800~3200℃下将混合金属粉末打印成所需形状的材料;
(2)将步骤(1)中具有所需形状材料加热至2500~2700℃,使未完全反应的硼和钛部分或全部液化,流出所述所需形状材料外,即得到所需形状的金属微孔材料。
步骤(1)中,利用3D打印技术的激光提供2800~3200℃的温度使所述钛粉末和硼粉末发生反应,根据硼粉末和钛粉末混合比例不同,所得材料含有二硼化钛及未完全反应的硼和钛。
所述钛粉末的大小为15~45μm,硼粉末的大小为小于5μm。选择此粒径金属粉末的原因是:一是满足3D打印条件;二是从最后得到的金属微孔材料的性能考虑,选择此粒径粉末得到的金属微孔材料性能优异。若是选择其他尺寸的粉末,要重新确定3d打印的工艺条件,同时材料性能也发生一些变化。经过大量实验,本尺寸粉末为最优粉末。
进一步的,为了能够得到金属微孔材料,所述硼粉末和钛粉末未按照2:1的摩尔比例混合。
进一步的,硼粉末和钛粉末混合时采用的设备为行星球混合机(型号:Retsch PM200),混合参数:转速150~250rpm进行5~7h(优选的为转速200rpm、6h),每5分钟停留10秒。
进一步的,为了得到理想结构的金属微孔材料,所述钛粉和硼粉的反应温度为3000℃。
进一步的,为了获得性能较好的金属微孔材料,3D打印技术的加工参数为:180~220W,激光直径为60~80μm;更进一步的,所述参数为:200W,激光直径为70μm。
本发明还提供一种上述制备方法得到的金属微孔材料,该金属微孔材料的组成为:TiB2的质量百分含量为55~65%,剩余为TiB和Ti4B3或者TiB、Ti4B3与纯硼和/或纯钛;孔径大小为3~100μm,洛式硬度(HRC)为45~55,熔点为2900~3100℃。微孔率根据硼和钛的摩尔比例可以调整,孔隙率大约为10%-60%。
本发明通过打印出来的这种材料,可以称之为金属。
本发明中的金属微孔材料中的“微孔”是指具有孔径大小为3~100μm的孔。
本发明还提供一种上述金属微孔材料在制备汽车减振部件或汽车车身部件中的应用。由于该金属微孔材料具有微孔结构,吸能减震性好,适合制备减震部件;由于该金属材料的硬度和熔点较高、质量轻适合制备汽车车身部件。
上述技术方案中的一个技术方案具有如下有益效果:
(1)本发明采用钛粉末和硼粉末两种物质利用3D打印激光金属烧结技术得到所需要形状的材料,无需其他辅料(粘结剂、成型剂)的添加。
(2)本发明采用3D打印激光金属烧结技术可以直接打印成零件形状,不需要二次加工;加工零件形状建模更容易,柔性更强;3D打印设备科提供两种粉末化学反应所需要的能量。
(3)设置合适的3D打印加工参数,将硼粉末和钛粉末打印成型,然后经过高温液化即得到的金属微孔材料,制备金属微孔材料不需要造孔剂等添加剂,并且制备得到的材料硬度和熔点较高,孔径大小为3~100μm。
(4)本发明的金属微孔材料应用于汽车减振材料和替代汽车板材,降低汽车重量,实现汽车轻量化。
附图说明
图1是3D打印过程示意图。
图2是本发明金属微孔材料的SEM图。
图3是本发明3个实例的xrd图谱分析。
其中,1、电机,2、激光镜,3、计算机,4、铺粉板,5、工件,6、工件支撑台,7、平台,8、储存箱。
具体实施方式
本发明中所用设备均为现有技术:(1)行星球混合机,型号为Retsch PM 200;(2)3D打印机,型号为RENISHAW250。
实施例1
一种金属微孔材料的制备方法,包括以下步骤:准备硼和钛粉末,其中钛粉末的大小为15-45微米,硼粉末的大小为小于5微米,将这两种金属粉末按照1:1的摩尔比例均匀混合,混合设备为行星球混合机,混合参数:转速200rpm进行6小时,每5分钟停留10秒;硼和钛在3000℃的高温下会发生反应,生成二硼化钛,该反应不完全,会有残余的钛,利用3D打印设备将硼和钛的混合金属粉末在3000℃的条件下打印成所需形状,3D打印机的加工参数:功率200W,激光直径70μm;而硼的熔点为2180℃,钛的熔点为1668℃,二硼化钛的熔点为2980℃。将所得材料在高温加热器中加热至2500~2700℃,使材料内反应不完全所残留的钛液化,得到新型金属微孔材料。如图2所示,本材料泡孔直径约50-100微米,微孔直径较大;孔隙率较大为31~60%左右;洛式硬度(HRC)为45~55;熔点为3000℃左右。经过试验测得,本材料的组成为TiB2含量约60%,TiB、Ti4B3、纯硼、钛约40%,如图3所示。该金属微孔材料适合制备成为减震部件或制备成为汽车车身部件。
3D打印的基本过程如图1所示,通过3D打印激光烧结技术,为本领域技术人员常规知晓的技术,基本部件包括:电机1、激光镜2、计算机3、铺粉板4、工件5、工件支撑台6、平台7和储存箱8等。
实施例2
一种金属微孔材料的制备方法,包括以下步骤:准备硼和钛粉末,其中钛粉末的大小为15-45微米,硼粉末的大小为小于5微米,将这两种金属粉末按照4:1的摩尔比例均匀混合,混合设备为行星球混合机,混合参数:转速180rpm进行7小时,每5分钟停留10秒;硼和钛在3000度的高温下会发生反应,生成二硼化钛,该反应不完全,会有残余的硼,利用3D打印设备将硼和钛的混合金属粉末在3000℃的条件下打印成所需形状,而硼的熔点为2180℃,钛的熔点为1668℃,二硼化钛的熔点为2980℃。将所得材料在高温加热器中加热至2500~2700℃,使材料内反应不完全所残留的硼液化,得到新型金属微孔材料。本材料泡孔直径约3-20微米,微孔直径较小,孔隙率较小为10~30%左右;洛式硬度(HRC)为45~55;熔点为3000℃左右。经过试验测得,本材料的组成为TiB2含量约60%,TiB、Ti4B3、纯硼、钛约40%,如图3所示。该金属微孔材料适合制备成为减震部件或制备成为汽车车身部件。
实施例3
一种金属微孔材料的制备方法,包括以下步骤:准备硼和钛粉末,其中钛粉末的大小为15-45微米,硼粉末的大小为小于5微米,将这两种金属粉末按照3:1的摩尔比例均匀混合,混合设备为行星球混合机,混合参数:转速220rpm进行6.5小时,每5分钟停留10秒;硼和钛在3000度的高温下会发生反应,生成二硼化钛,该反应不完全,会有残余的硼,利用3D打印设备将硼和钛的混合金属粉末在3000℃的条件下打印成所需形状,而硼的熔点为2180℃,钛的熔点为1668℃,二硼化钛的熔点为2980℃。将所得材料在高温加热器中加热至2500~2700℃,使材料内反应不完全所残留的硼液化,得到新型金属微孔材料。本材料泡孔直径约20~70微米,微孔直径较小,洛式硬度(HRC)为45~55;熔点为3000℃左右。经过试验测得,本材料的组成为TiB2含量约60%,TiB、Ti4B3、纯硼、钛约40%,如图3所示。该金属微孔材料适合制备成为减震部件或制备成为汽车车身部件。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种金属微孔材料的制备方法,其特征是,包括以下步骤:
(1)将钛粉末和硼粉末混合均匀,利用3D打印金属激光烧结技术在2800~3200℃下将混合金属粉末打印成所需形状的材料;
(2)将步骤(1)中具有所需形状材料加热至2500~2700℃,使未完全反应的硼和钛部分或全部液化,流出所述所需形状材料外,即得到所需形状的金属微孔材料。
2.如权利要求1所述的制备方法,其特征是:步骤(1)中,根据硼粉末和钛粉末混合比例不同,所得材料含有二硼化钛及未完全反应的硼和钛。
3.如权利要求1所述的制备方法,其特征是:所述硼粉末和钛粉末未按照2:1的摩尔比例混合。
4.如权利要求1所述的制备方法,其特征是:步骤(1)中,所述钛粉末的大小为15~45μm,硼粉末的大小为小于5μm。
5.如权利要求1所述的制备方法,其特征是:步骤(1)中,所述钛粉和硼粉的反应温度为3000℃。
6.如权利要求1所述的制备方法,其特征是:步骤(1)中,3D打印技术的加工参数为:180~220W,激光直径为60~80μm。
7.如权利要求6所述的制备方法,其特征是:3D打印技术的加工参数为:200W,激光直径为70μm。
8.权利要求1~7中任一项所述的方法制备得到的金属微孔材料。
9.一种金属微孔材料,其特征是:该金属微孔材料的组成为:TiB2的质量百分含量为55~65%,剩余为TiB和Ti4B3或者TiB、Ti4B3与纯硼和/或纯钛;洛式硬度为45~55,熔点为2900~3100℃。
10.权利要求8或9所述的金属微孔材料在制备汽车减振部件或汽车车身部件中的应用。
CN201610894797.3A 2016-10-13 2016-10-13 一种金属微孔材料及其制备方法 Active CN106636841B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610894797.3A CN106636841B (zh) 2016-10-13 2016-10-13 一种金属微孔材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610894797.3A CN106636841B (zh) 2016-10-13 2016-10-13 一种金属微孔材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106636841A true CN106636841A (zh) 2017-05-10
CN106636841B CN106636841B (zh) 2018-01-05

Family

ID=58856474

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610894797.3A Active CN106636841B (zh) 2016-10-13 2016-10-13 一种金属微孔材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106636841B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108620586A (zh) * 2018-05-11 2018-10-09 武汉科技大学 3d打印高致密度钛-硼化钛的复合材料及其制备方法
WO2019218560A1 (zh) * 2018-05-17 2019-11-21 广东工业大学 一种二硼化钛基复相陶瓷及其制备方法和应用
CN110564968A (zh) * 2019-09-30 2019-12-13 曾世林 一种三相交流多功能环保还原炉

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102120261A (zh) * 2011-04-20 2011-07-13 林锦新 一种制备钛制品的方法
CN102747249A (zh) * 2012-07-25 2012-10-24 广州有色金属研究院 一种增强钛基复合材料及其粉末冶金制备方法
CN103192080A (zh) * 2013-04-27 2013-07-10 余振新 一种选择性激光烧结成型方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102120261A (zh) * 2011-04-20 2011-07-13 林锦新 一种制备钛制品的方法
CN102747249A (zh) * 2012-07-25 2012-10-24 广州有色金属研究院 一种增强钛基复合材料及其粉末冶金制备方法
CN103192080A (zh) * 2013-04-27 2013-07-10 余振新 一种选择性激光烧结成型方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108620586A (zh) * 2018-05-11 2018-10-09 武汉科技大学 3d打印高致密度钛-硼化钛的复合材料及其制备方法
WO2019218560A1 (zh) * 2018-05-17 2019-11-21 广东工业大学 一种二硼化钛基复相陶瓷及其制备方法和应用
CN110564968A (zh) * 2019-09-30 2019-12-13 曾世林 一种三相交流多功能环保还原炉

Also Published As

Publication number Publication date
CN106636841B (zh) 2018-01-05

Similar Documents

Publication Publication Date Title
Liu et al. Porous materials: processing and applications
Reeb et al. Incorporation of organic liquids into geopolymer materials-A review of processing, properties and applications
Brun et al. Hybrid foams, colloids and beyond: From design to applications
Medpelli et al. Geopolymer with hierarchically meso‐/macroporous structures from reactive emulsion templating
Shu et al. Fabrication of porous NiAl intermetallic compounds with a hierarchical open-cell structure by combustion synthesis reaction and space holder method
CN106636841B (zh) 一种金属微孔材料及其制备方法
Utela et al. Development process for custom three-dimensional printing (3DP) material systems
WO2014062268A2 (en) High strength-to-density nanocellular foam
CN104994975A (zh) 烧结用铝原料、烧结用铝原料的制造方法以及多孔铝烧结体的制造方法
CN106903316B (zh) 泡沫钛及其制备方法和用途
CN101307400A (zh) 一种镍钛记忆合金海绵及其混盐压坯高温合成制备方法
CN105271177B (zh) 一种石墨烯化多层次泡沫炭材料的制备方法
JoSHi et al. Synthesis & characterization of stainless steel foam via powder metallurgy taking acicular urea as space holder
de la Fuente Mesoporous copper oxide as a new combustion catalyst for composite propellants
Dong et al. 3D electrospinning of Al2O3/ZrO2 fibrous aerogels for multipurpose thermal insulation
Pandey et al. Metal foam manufacturing, mechanical properties and its designing aspects—a review
Hassan et al. A Review of Different Manufacturing Methods of Metallic Foams
Mirzaei-Solhi et al. Fabrication of aluminum foams by using CaCO3 foaming agent
Jiang et al. Thermal expansion behavior of CNT reinforced AlSi10Mg composite fabricated via laser powder bed fusion
US20140109386A1 (en) Non ionic/electrolyte, liquid/gaseous, mechanically refined/nanoparticle dispersion Building Materials/High Wear-Heat Resistant Part Brushes, Windings, Battery Cells, Brake Pads, Die Cast Molding, Refrigeration, Polarized/Integrated Optical, Spectrometric Processors, Central Processor Unit Processors, Electronic Storage Media, Analogous Series/Parallel Circuit Generators/Transceivers, Particulate Matter PM Carbonaceous-Polyamide, Crystalline Silica, and Cellulosic Filament Extraction/Miners Suit
Yang et al. Submicron mullite hollow spheres synthesized via UV polymerization of Pickering emulsions
JP2018059016A (ja) 化学蓄熱材複合物
CN107511482B (zh) 一种由焦炭复合发泡剂制备泡沫金属的方法
Depardieu et al. Integrative Chemistry: Advanced functional cellular materials bearing multiscale porosity
JP5761689B2 (ja) アルミニウムの固化成形方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant