CN111118323B - 一种用于激光3d打印金属陶瓷复合材料粉末的制备方法 - Google Patents

一种用于激光3d打印金属陶瓷复合材料粉末的制备方法 Download PDF

Info

Publication number
CN111118323B
CN111118323B CN202010014810.8A CN202010014810A CN111118323B CN 111118323 B CN111118323 B CN 111118323B CN 202010014810 A CN202010014810 A CN 202010014810A CN 111118323 B CN111118323 B CN 111118323B
Authority
CN
China
Prior art keywords
powder
laser
printing
particles
pva
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010014810.8A
Other languages
English (en)
Other versions
CN111118323A (zh
Inventor
张晓伟
易俊超
肖静宇
刘洪喜
蒋业华
黎振华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202010014810.8A priority Critical patent/CN111118323B/zh
Publication of CN111118323A publication Critical patent/CN111118323A/zh
Application granted granted Critical
Publication of CN111118323B publication Critical patent/CN111118323B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • C22C1/053Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds
    • C22C1/055Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds using carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本发明公开一种用于激光3D打印金属陶瓷复合材料粉末的制备方法,属于激光3D打印用粉末材料制备领域。本发明通过物理方法将纯Ti粉与纯B4C粉末颗粒按质量比2.6:1进行包覆(或黏结),依次经干燥、球磨破碎处理,制得Ti/B4C复合粉体材料,随后将该粉体材料与AlSi10Mg粉末加入球磨机中进行真空球磨,最终制得混合均匀的激光3D打印金属陶瓷复合材料用粉末;该制备方法解决了现有金属陶瓷复合材料3D打印过程中,双增强相无法合成的技术难题,提高了激光3D打印过程中Ti与B4C颗粒的反应率,使双相复合材料中的陶瓷增强相含量增加;所制备出的复合粉末可用于激光近净成形或选区激光熔化等高能束3D打印工艺。

Description

一种用于激光3D打印金属陶瓷复合材料粉末的制备方法
技术领域
本发明体涉及一种用于激光3D打印金属陶瓷复合材料粉末的制备方法,属于激光3D打印用粉末制备技术领域。
背景技术
长期以来,金属陶瓷复合材料零件因具有较高的比强度和比刚度,优异的耐腐蚀、耐磨损性能以及良好的高温力学性能,在航空航天、核能和汽车制造领域具有优良的工程应用潜力。目前,金属陶瓷复合材料零件的制备方法主要有外加陶瓷相法和原位生成陶瓷相法,与之相比,原位化学合成的复合材料具有洁净的两相界面、共格或半共格的界面关系、更加细小的晶粒以及更高的组织稳定性,从而使复合材料的综合性能得以提高。
经过对现有技术文献的检索,国内外研究人员在激光3D打印金属陶瓷复合材料零件方面进行了一些积极探索。Kusui等人于1992年申请了题为“Aluminum matrixcomposite powder”的专利(专利号US5435825),其陶瓷颗粒选自包括碳化物、氧化物、氮化物、硼化物材料,将质量分数为1%~40%的SiC陶瓷颗粒和Al2O3陶瓷颗粒分别加入铝合金熔体中,通过快速凝固技术(例如旋转盘雾化法)制得铝基质复合粉末;上海交通大学吴一等人于2018年公开了激光3D打印用铝基复合材料的粉末及其制备方法的专利(公开号CN108372292A),其通过原位自生熔体控制的方法,制备了TiB2颗粒增强铝基复合熔体,利用气雾化设备实现了对原位自生TiB2颗粒增强铝基复合材料粉末的制备。然而对于当前原位生成陶瓷相法,仍局限于合成单一陶瓷增强相。针对双相复合材料的制备,原位反应若未按化学反应计量比进行,生成的其他杂质将直接影响复合材料的机械性能;此外,界面间发生难以控制的化学反应和难以避免的局部残余应力限制了在激光3D打印过程中,通过原位反应制备双相复合材料的应用。
发明内容
本发明要解决的技术问题为:现有技术中复合材料3D打印双增强相无法合成。
本发明的目的在于提供一种用于激光3D打印金属陶瓷复合材料的粉末制备方法,该方法解决了在双相复合材料3D打印过程中,原位合成化学反应率低的不利影响,同时避免原位合成未按化学反应计量比进行的技术问题;具体包括以下步骤:
(1)在Ti/B4C混合粉末中加入PVA黏结剂溶液,其中,PVA黏结剂溶液的质量分数为15%,Ti/B4C混合粉末的质量分数为85%,搅拌均匀、干燥、球磨后得到Ti颗粒与B4C颗粒充分接触的混合粉末,Ti/B4C复合粉体中m(Ti):m(B4C)=2.6:1;
(2)将Ti/B4C复合粉体材料与AlSi10Mg粉末加入球磨机中,进行球磨、混料最终制得激光3D打印金属陶瓷复合材料用粉末;混合粉末中Ti/B4C复合粉体质量分数为1~20%,其余为AlSi10Mg粉末。
优选的,Ti/B4C混合粉末中Ti粉为球形颗粒,粒径小于等于20μm,纯度不低于99.99%;B4C粉末为无定形角状陶瓷颗粒,当量粒径范围为5~15μm,纯度不低于99.99%。
优选的,PVA黏结剂溶液的配制方法为:取PVA颗粒溶于去离子水中,边加热边磁力搅拌直到PVA颗粒溶解得到PVA黏结剂溶液,在PVA黏结剂溶液中PVA的质量百分比为4~10%;所用磁力搅拌器的搅拌速度为30~50rpm,搅拌时间为30min,搅拌溶液温度至90℃。
优选的,本发明步骤(1)中球磨过程采用行星式球磨机,磨球比例为Φ5:Φ10=1:2,球料比为3:1,在转速为150~250rpm的条件下真空球磨破碎2~3h。
优选的,本发明所述AlSi10Mg粉末为粒径范围在15~105μm的球形颗粒,其中,粒径范围在15~53μm的粉体适用于选区激光熔化工艺;粒径范围在53~105μm的粉体适用于激光近净成形工艺;AlSi10Mg粉末中各元素组分及质量分数为:Si9~11%,Mg0.2~0.45%,Fe≤0.55%,Mn≤0.45%,Cu≤0.05%,Ti≤0.15%,Zn≤0.1%,Al为余量。
优选的,本发明步骤(1)中球磨条件为磨球比例为Φ5:Φ10=6:1,球料比为3:1,在转速为150~250rpm的条件下真空球磨混合2h。
根据原位合成化学反应方程式:
Figure BDA0002358478720000021
可知摩尔比n(Ti):n(B4C)=3:1。由于摩尔质量比M(Ti):M(B4C)=47.867:55.255,根据质量与物质的量之间的关系式:m=n·M,可计算出原位合成按化学反应计量比进行时,反应物的质量之比为m(Ti):m(B4C)=2.6:1。
本发明的基本原理:使用所配制的PVA黏结剂溶液将Ti与B4C颗粒包覆(或黏结),随后按特定的比例与AlSi10Mg粉末混合,并令其在AlSi10Mg粉末中均匀分散,所制备的复合粉末在后续的激光3D打印过程中发生原位反应,可生成所需的双相陶瓷增强相;在高能激光束的作用下,Ti和B4C颗粒表面的PVA黏结剂将蒸发逸出,与此同时,惰性气氛的保护也将促进气体的扩散逸出,进而制备出的金属陶瓷复合材料的杂质污染减少。
本发明的有益效果:
(1)本发明所述方法制备得到的复合材料粉末中,Ti粉颗粒与B4C粉末颗粒紧密包覆(或黏结),在后续打印过程中二者得以充分反应,极大的提高了原位合成的化学反应率。
(2)本发明制备的粉末配比严格按照原位合成化学反应方程式中的计量比进行,从而可以精确调控3D打印过程中原位自生陶瓷增强相的含量。
(3)本发明有效地结合了原位自生制备双相陶瓷增强复合材料的优势,利用3D打印过程中发生的原位化学反应,制备出的双相复合材料中,陶瓷增强相在基体均匀弥散分布且与基体相界面结合良好。
(4)采用本发明方法制备的粉末进行3D打印,原位化学反应生成的TiC增强相具有高硬度和良好的耐磨性,TiB2增强相具有优异的高温抗氧化性能;同时,在3D打印过程中,激光与材料的相互作用以及原位反应放出的大量热使熔池温度场分布更为均匀,相应得到的双相复合材料组织也更加均匀且致密。
附图说明
图1为未采用本发明方法制备的3D打印用粉末的SEM图像;
图2为实施例2制备的3D打印用粉末的SEM图像;
图3为3D打印试样的XRD图谱。
具体实施方式
下面结合具体实施例对本发明作进一步详细说明;以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明;应当指出的是,在不脱离本发明构思的前提下,还可作若干变化及改进,本发明的保护范围并不限于所述内容。
实施例1
一种用于激光3D打印金属陶瓷复合材料粉末的制备方法,具体包括以下步骤:
(1)按质量比m(Ti):m(B4C)=2.6:1,称取经真空密封保存的纯Ti粉和纯B4C粉末进行配料;所述Ti粉为粒径在20μm的球形颗粒,纯度不低于99.99%;所述B4C粉末为当量粒径在15μm的无定形角状陶瓷颗粒,纯度不低于99.99%。
(2)配PVA黏结剂溶液:用烧杯称取质量分数为5%的PVA颗粒和95%的去离子水,随后使用磁力搅拌器对其进行充分搅拌以配制PVA黏结剂溶液,磁力搅拌器的搅拌速度为40rpm,搅拌时间为30min,搅拌PVA溶液温度至90℃。
(3)在Ti/B4C混合粉末中加入PVA黏结剂溶液,其中,PVA黏结剂溶液的质量分数为15%,Ti/B4C混合粉末的质量分数为85%,搅拌均匀制得黏着状态的复合粉末;随后将所制备的黏着态混合料进行干燥,干燥温度为50℃,干燥时间为10h;再经球磨机破碎后,制得Ti/B4C复合粉体材料,行星式球磨机采用的球磨罐和磨球均为不锈钢材质,磨球比例为Φ5:Φ10=1:2,球料比为3:1,在转速为200rpm的条件下真空球磨破碎2.5h。
(4)依次将质量分数为1%的Ti/B4C复合粉体材料与99%的AlSi10Mg粉末加入球磨机中进行球磨、混料;所用AlSi10Mg粉末为粒径在33.5μm的球形颗粒,包括如下质量分数的各元素组分:Si9.87%,Mg0.3%,Fe0.09%,Mn0.036%,Cu0.019%,Ti0.014%,Zn0.01%,Al为余量;采用的磨球比例为Φ5:Φ10=6:1,球料比为3:1,在转速为200rpm的条件下真空球磨混粉2h,最终制得可以由激光3D打印后,原位自生增强相含量为1%的金属陶瓷复合材料零件激光3D打印用粉末。
实施例2
一种用于激光3D打印金属陶瓷复合材料粉末的制备方法,具体包括以下步骤:
(1)按质量比m(Ti):m(B4C)=2.6:1,称取经真空密封保存的纯Ti粉及纯B4C粉末进行配料,所述Ti粉为粒径在13.5μm的球形颗粒,纯度不低于99.99%;所述B4C粉末为当量粒径在10μm的无定形角状陶瓷颗粒,纯度不低于99.99%。
(2)配PVA黏结剂溶液:用烧杯称取质量分数为7%的PVA颗粒和93%的去离子水,随后使用磁力搅拌器对其进行充分搅拌以配制PVA黏结剂,所述磁力搅拌器的参数设置与实施例1中一致。
(3)在Ti/B4C混合粉末中加入PVA黏结剂溶液,其中,PVA黏结剂溶液的质量分数为15%,Ti/B4C混合粉末的质量分数为85%,搅拌均匀制得黏着状态的复合粉末;然后将所制备的黏着态混合料放入干燥箱中干燥,再经球磨机破碎,制得Ti/B4C复合粉体材料,所述干燥及球磨破碎工艺与实施例1中一致。
(4)依次将质量分数为4%的Ti/B4C复合粉体材料与96%的AlSi10Mg粉末加入球磨机中进行球磨、混料,所用AlSi10Mg粉末为粒径在33.5μm的球形颗粒,包括如下质量分数的各元素组分:Si9.87%,Mg 0.3%,Fe 0.09%,Mn 0.036%,Cu 0.019%,Ti 0.014%,Zn0.01%;最终制得可以由激光3D打印后,原位自生增强相含量为4%的金属陶瓷复合材料零件激光3D打印用粉末。
实施例3
一种用于激光3D打印金属陶瓷复合材料粉末的制备方法,具体包括以下步骤:
(1)按质量比m(Ti):m(B4C)=2.6:1,称取经真空密封保存的纯Ti粉及纯B4C粉末进行配料,所述Ti粉为粒径在10μm的球形颗粒,纯度不低于99.99%;所述B4C粉末为当量粒径在5μm的无定形角状陶瓷颗粒,纯度不低于99.99%。
(2)配PVA黏结剂溶液:用烧杯称取质量分数为10%的PVA颗粒和90%的去离子水,随后使用磁力搅拌器对其进行充分搅拌以配制PVA黏结剂,所述磁力搅拌器的参数设置与实施例1中一致。
(3)在Ti/B4C混合粉末中加入PVA黏结剂溶液,其中,PVA黏结剂溶液的质量分数为15%,Ti/B4C混合粉末的质量分数为85%,搅拌均匀制得黏着状态的复合粉末;然后将所制备的黏着态混合料放入干燥箱中干燥,再经球磨机破碎后,制得Ti/B4C复合粉体材料,所述干燥及球磨破碎工艺与实施例1中一致。
(4)依次将质量分数为20%的Ti/B4C复合粉体材料与80%的AlSi10Mg粉末加入球磨机中进行球磨、混料,所用AlSi10Mg粉末为粒径在77.5μm的球形颗粒,包括如下质量分数的各元素组分:Si 9.87%,Mg 0.3%,Fe 0.09%,Mn 0.036%,Cu 0.019%,Ti 0.014%,Zn0.01%;最终制得可以由激光3D打印后,原位自生增强相含量为20%的金属陶瓷复合材料零件激光3D打印用粉末。
图1和图2中,(a)为SE模式下的图像;(b)为BSE模式下的图像。粒径较大的灰色球形颗粒为AlSi10Mg,粒径较小的亮白色球形颗粒为纯Ti,黑色无定形角状颗粒为纯B4C陶瓷。可观察到,图1由于Ti与B4C颗粒存在密度差,导致两者并未完全紧密接触,如标示区域所示;而图2中的Ti和B4C颗粒因包覆(或黏结)而紧密接触,如标示区域所示。图3中,(a)为未采用本发明方法所制备粉末的3D打印试样的XRD图谱;(b)为采用实施例2所制备粉末的3D打印试样的XRD图谱。可以看出,(a)中并未检测到预期的原位自生双相陶瓷增强相;(b)物相中存在原位反应合成的陶瓷增强相TiC和TiB2。采用相同的方法对实施例1和实施例3得到的粉末进行分析和3D打印试验,从SEM图像和XRD图谱可以看出,实施例1~3均达到了此效果。
以上对本发明的具体实施例进行了描述,需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内作出各种变化或改进,这并不影响本发明的实质性内容。

Claims (5)

1.一种用于激光3D打印金属陶瓷复合材料粉末的制备方法,其特征在于,具体包括以下步骤:
(1)在Ti/B4C混合粉末中加入PVA黏结剂溶液,其中,PVA黏结剂溶液的质量分数为15%,Ti/B4C混合粉末的质量分数为85%,搅拌均匀、干燥、球磨后得到Ti颗粒与B4C颗粒充分接触的混合粉末,Ti/B4C复合粉体中m(Ti) : m(B4C) = 2.6 : 1;
(2)将Ti/B4C复合粉体材料与AlSi10Mg粉末加入球磨机中,进行球磨、混料最终制得激光3D打印金属陶瓷复合材料用粉末;混合粉末中Ti/B4C复合粉体质量分数为1~20%,其余为AlSi10Mg粉末。
2.根据权利要求1所述用于激光3D打印金属陶瓷复合材料粉末的制备方法,其特征在于:Ti/B4C混合粉末中Ti粉为球形颗粒,粒径小于等于20μm,纯度不低于99.99%;B4C粉末为无定形角状陶瓷颗粒,当量粒径范围为5~15μm,纯度不低于99.99%。
3.根据权利要求1所述用于激光3D打印金属陶瓷复合材料粉末的制备方法,其特征在于,PVA黏结剂溶液的配制方法为:取PVA颗粒溶于去离子水中,边加热边磁力搅拌直到PVA颗粒溶解得到PVA黏结剂溶液,在PVA黏结剂溶液中PVA的质量百分比为4~10%;磁力搅拌的速度为30~50rpm,搅拌时间为30min,搅拌溶液温度至90℃。
4.根据权利要求1所述用于激光3D打印金属陶瓷复合材料粉末的制备方法,其特征在于:步骤(1)中球磨过程采用行星式球磨机,磨球比例为
Figure 707714DEST_PATH_IMAGE001
,球料比为3:1,在转速为150~250rpm的条件下真空球磨破碎2~3h。
5.根据权利要求1所述用于激光3D打印金属陶瓷复合材料粉末的制备方法,其特征在于:所述AlSi10Mg粉末为粒径范围在15~105μm的球形颗粒,AlSi10Mg粉末中各元素组分及质量分数为:Si 9~11%,Mg 0.2~0.45%,Fe ≤ 0.55%,Mn ≤ 0.45%,Cu ≤ 0.05%,Ti ≤0.15%,Zn ≤ 0.1%,Al为余量。
CN202010014810.8A 2020-01-07 2020-01-07 一种用于激光3d打印金属陶瓷复合材料粉末的制备方法 Active CN111118323B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010014810.8A CN111118323B (zh) 2020-01-07 2020-01-07 一种用于激光3d打印金属陶瓷复合材料粉末的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010014810.8A CN111118323B (zh) 2020-01-07 2020-01-07 一种用于激光3d打印金属陶瓷复合材料粉末的制备方法

Publications (2)

Publication Number Publication Date
CN111118323A CN111118323A (zh) 2020-05-08
CN111118323B true CN111118323B (zh) 2021-10-01

Family

ID=70487254

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010014810.8A Active CN111118323B (zh) 2020-01-07 2020-01-07 一种用于激光3d打印金属陶瓷复合材料粉末的制备方法

Country Status (1)

Country Link
CN (1) CN111118323B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111961926A (zh) * 2020-07-08 2020-11-20 南京思锐迪科技有限公司 一种3d打印的纳米颗粒增强铝基复合粉末及其制备方法
CN112024872B (zh) * 2020-09-10 2021-06-08 昆明理工大学 一种溶胶包覆法制备激光3d打印用复合粉末的方法
CN115921849B (zh) * 2023-02-15 2023-07-07 山东理工大学 一种球形Al3BC/Al复合粉体及其制备方法
CN117464008B (zh) * 2023-12-25 2024-03-01 湘潭大学 一种残余应力增韧金属陶瓷刀具的加工系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105112907B (zh) * 2015-08-25 2018-02-02 上海工程技术大学 原位合成TiB2/TiC增强Ti2Ni/TiNi双相金属化合物基复合涂层及制备方法
CN105328186B (zh) * 2015-10-30 2018-05-08 南京航空航天大学 一种基于激光3d打印形成的铝基原位复合材料及其制备方法
CN105728734B (zh) * 2016-03-24 2017-10-20 西安工业大学 高强超细(TixBy‑TiC)/7075Al复合材料及其制备方法
CN108610052A (zh) * 2018-05-17 2018-10-02 广东工业大学 一种二硼化钛基复相陶瓷及其制备方法和应用
CN109396440A (zh) * 2018-12-27 2019-03-01 吉林大学 一种陶瓷颗粒增强铝基复合材料的成型方法

Also Published As

Publication number Publication date
CN111118323A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
CN111118323B (zh) 一种用于激光3d打印金属陶瓷复合材料粉末的制备方法
CN111940723B (zh) 一种用于3d打印的纳米陶瓷金属复合粉末及应用
CN106077695B (zh) 一种高铜钨铜纳米复合粉末的制备方法
CN101594952B (zh) 雾化皮米复合物铝合金及其方法
US11639542B2 (en) Multi-scale and multi-phase dispersion strengthened iron-based alloy, and preparation and characterization methods thereof
CN113880580B (zh) 高熵碳化物超高温陶瓷粉体及其制备方法
JPS63307231A (ja) 金属間物質含有母体から成る複合体
CN106216705A (zh) 一种3d打印用细颗粒单质球形金属粉末的制备方法
CN108374113A (zh) 一种TaTiZrAlSi高熵合金及其粉末的制备方法
Zhao et al. Fabrication of magnesium-coated graphene and its effect on the microstructure of reinforced AZ91 magnesium-matrix composites
US10793476B2 (en) Method of preparing cerium boride powder
CN106868381A (zh) 一种涂层用多主元合金粉末及其制备方法
CN108658038A (zh) 一种基于LiAlH4的储氢材料及其制备方法
Zheng et al. Growth mechanism of core–shell PtNi–Ni nanoparticles using in situ transmission electron microscopy
CN102814503B (zh) 纳米氧化钇颗粒弥散强化铁素体合金钢粉末的制备方法
CN110205513A (zh) 同时提高铜基复合材料电导率和硬度的方法
CN111463417B (zh) 一种在正极材料中掺入导电剂的方法
CN109807324A (zh) 一种镍包覆六方氮化硼纳米片复合粉体的制备方法
CN100489132C (zh) 原位颗粒增强锌基复合材料的制备方法
CN113184870A (zh) 一种宏量粒度可控LaB6粉体的制备方法
CA2315163A1 (en) Methods for treating ores
CN107829009A (zh) 一种多主元合金钻头及其制备方法
CN105731471A (zh) 一种MoSi2-Mo5Si3-SiO2复合材料的制备方法
CN110819860B (zh) 一种铝铜锰多孔复合材料及其制备方法和用途
CN114497587B (zh) 一种质子交换膜燃料电池中的催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant