CN110791686A - 一种用于增材制造的铝合金粉末材料、制备方法及应用 - Google Patents

一种用于增材制造的铝合金粉末材料、制备方法及应用 Download PDF

Info

Publication number
CN110791686A
CN110791686A CN201911173154.XA CN201911173154A CN110791686A CN 110791686 A CN110791686 A CN 110791686A CN 201911173154 A CN201911173154 A CN 201911173154A CN 110791686 A CN110791686 A CN 110791686A
Authority
CN
China
Prior art keywords
aluminum alloy
alloy powder
powder material
component
additive manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911173154.XA
Other languages
English (en)
Inventor
柳林
司丞
张�诚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201911173154.XA priority Critical patent/CN110791686A/zh
Publication of CN110791686A publication Critical patent/CN110791686A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明属于增材制造技术领域,并具体公开了一种用于增材制造的铝合金粉末材料、制备方法及应用。所述铝合金粉末的表达式为Al‑X‑Y,X组分为Fe、Co、Ni的一种或多种,Y组分为Sc、Ti、Zr的一种或多种,其中,X和Y组分的原子百分比分别为0.1~10%、0.1~5%,其余为Al。所述制备方法为:按照铝合金粉末的表达式进行配料,采用加热方法熔炼制备母合金铸锭,然后将母合金铸锭进行雾化制粉,从而获得铝合金粉末材料。该铝合金粉末材料可应用于选区激光熔融与同步送粉激光立体成形中。本发明铝合金粉末增材制造成形后的零件具有力学性能优异、强度高、热稳定性好、高温强度优异、可热处理调控性能等优点。

Description

一种用于增材制造的铝合金粉末材料、制备方法及应用
技术领域
本发明属于增材制造技术领域,更具体地,涉及一种用于增材制造的铝合金粉末材料、制备方法及应用。
背景技术
铝合金因其轻质以及优良的物理、化学和力学性能,在航空航天、制造业、交通业、电子、国防军事等领域获得了广泛应用。但传统加工成形技术(如塑性加工、铸造加工)制造铝合金存在材料利用率低、制造周期长、难以成形加工3D复杂构效的零件等弊端。
金属增材(又称3D打印)技术是一种根据依据三维(3D)建模数据,在计算机程序控制下逐层堆积材料,直接快速精确成形零件的制造技术。相比传统制造技术,增材制造技术具有更高的材料利用率,并能一次成形三维复杂构型的各类零件与产品的“近净成形”。增材技术可以制造定制产品,或者采用复合材料实现单一组元或成分无法实现的性能。因此,增材制造技术已经广泛应用于各个领域,也是未来重点发展的新型材料成形技术。目前,金属增材制造技术包括选区激光熔融(SLM)和同步送粉激光立体成形(LENS)两大类,其中SLM技术被更多采用用于制备铝合金。
当前用于SLM成形的金属材料非常有限,主要有钛合金、铝合金、不锈钢、镍基合金等。其中,能够用于增材制造的铝合金成分更是屈指可数,包括Al-Si、AlSiMg、AlMgScZr等,绝大多数牌号的铝合金成分因打印开裂不适用于增材制造技术。此外,国外对增材制造高端铝合金粉末材料采取限量出口的政策,其成分体系和制造方法严格保护和保密,大幅抬高粉末原料价格,严重制约我国增材制造产业的发展。以往的研究工作集中于对铝合金粉末的表面改性或添加陶瓷增强相制备铝基复合材料,但针对增材制造技术所专门设计铝合金成分的工作鲜有报道。
随着增材制造技术在各个领域的快速发展,开发一种综合力学性能优异的增材制造用的新型铝合金材料体系及制备方法迫在眉睫。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种用于增材制造的铝合金粉末材料、制备方法及应用,其根据铝合金凝固过程和强化机理的特点,相应引入传统铝合金成分中难以成形的过渡族元素,高凝固速率避免粗大金属间化合物产生,过渡族元素X形成的纳米级特殊结构有效的阻碍位错,提高力学性能,为增材制造铝合金的成分设计提供新的思路和方向。Y组元则为铝合金中常见的形核元素和纳米析出强化元素,可以提高增材制造铝合金的成形性能和综合性能。因而尤其适用于选区激光熔融与同步送粉激光立体成形中的应用场合。
为实现上述目的,按照本发明的一个方面,提出了一种用于增材制造的铝合金粉末材料,该铝合金粉末材料的表达式为:Al-X-Y,X组分为Fe、Co、Ni的一种或多种,Y组分为Sc、Ti、Zr的一种或多种,其中,X组分的原子百分比为0.1~10%、Y组分的原子百分比为0.1~5%,其余的组分为Al,上述各组分的原子百分比之和为100%;
所述X组分在铝合金粉末中的扩散系数低,用于提高铝合金的室温强度及热稳定性,所述Y组分成分能与Al形成金属间化合物,在增材制造成形过程中细化铝合金的晶粒,并且产生析出强化效果。
作为进一步优选的,所述铝合金粉末材料为球形度为90%以上的球形粉末,所述铝合金粉末材料的粒径为5μm~60μm。
作为进一步优选的,所添加的X组分均为元素周期表中第VIII过渡族元素,其在铝合金粉末材料中扩散系数低,用于提高铝合金的室温强度及热稳定性,所添加的Y组分均能与Al形成金属间化合物,在增材制造成形过程中细化铝合金的晶粒,并且产生析出强化效果。
作为进一步优选的,本发明的增材制造用的铝合金粉末材料中,X组分为铁、钴、镍过渡族元素,是以往常规成形铝合金成分中的非主要添加元素。X组分作为本发明的铝合金粉末材料成分的主要强化元素,由于增材制造的高冷却速度,X组分能够在增材制造过程中形成特殊的纳米级微观结构,有效的阻碍位错移动以增强力学性能。Y组分为钪、钛、锆等铝合金中能够有效细化晶粒的元素并能在增材制造快速凝固过程中产生AlmYn纳米尺度金属间化合物,提高熔体凝固性能,避免材料开裂,起到析出强化的效果。
按照本发明的另一个方面,还提供了一种铝合金粉末材料的制备方法,,包括以下步骤:
S1按照铝合金粉末材料的表达式Al-X-Y中,各组分的原子百分比进行配料,然后采用电弧或感应加热方法制备母合金铸锭;
S2采用高压惰性气体雾化方法将步骤S1制备得到的母合金铸锭进行雾化制粉,从而获得粒度可控的球形微米级铝合金粉末材料。
作为进一步优选的,步骤S1中,在真空熔炼炉中采用电弧或感应加热方法制备母合金铸锭,其中,先熔炼X-Y高熔点金属,然后再将熔炼后的X-Y高熔点金属与Al低熔点金属混熔,以此方式反复多次,保证成分均匀。
作为进一步优选的,熔炼过程中,熔炼的温度为1100℃~1500℃。
作为进一步优选的,熔炼过程中所采用的气源为氩气或氮气,所述气源的压力为7MPa~10MPa。
作为进一步优选的,步骤S2中,所述铝合金粉末材料为球形度为90%以上的球形粉末,所述铝合金粉末材料的粒径为5μm~60μm。
按照本发明的另一方面,提供了一种铝合金粉末材料在选区激光熔融与同步送粉激光立体成形中的应用。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,主要具备以下的技术优点:
1.本发明基于增材制造技术的特点,依据铝合金凝固过程和强化机理的理论,开发出一种新的合金成分,引入传统铝合金成分中难以成形的过渡族元素,高凝固速率避免粗大金属间化合物产生。过渡族元素X形成的纳米级特殊结构有效的阻碍位错,提高力学性能,为增材制造铝合金的成分设计提供新的思路和方向。Y组元则为铝合金中常见的形核元素和纳米析出强化元素,可以提高增材制造铝合金的成形性能和综合性能。
2.本发明的增材制造用的铝合金粉末材料中,X组分为铁、钴、镍过渡族元素,是以往常规成形铝合金成分中的非主要添加元素。X组分作为本发明的铝合金粉末材料成分的主要强化元素,由于增材制造的高冷却速度,X组分能够在增材制造过程中形成特殊的纳米级微观结构,有效的阻碍位错移动以增强力学性能。Y组分为钪、钛、锆等铝合金中能够有效细化晶粒的元素并能在增材制造快速凝固过程中产生AlmYn纳米尺度金属间化合物,提高熔体凝固性能,避免材料开裂,起到析出强化的效果。
3.本发明所述X组分在铝合金中的扩散系数低,用于提高铝合金的室温强度及热稳定性,其中,Fe的扩散系数为1.8x10-20,Co的扩散系数为9.33x10-18,Ni的扩散系数为2.66x10-17
4.相对于现有的铝合金,采用本发明技术所获得的新型铝合金具有力学性能优异、强度高、热稳定性好、高温强度优异、可热处理调控性能等优点,其尤其适用于增材制造技术,能够满足制造高强度零部件的要求。
附图说明
图1为实施例1制得的增材制造用铝合金粉末的SEM宏观形貌图。
图2为实施例2制得的增材制造用铝合金粉末SLM成形后三维X射线断层扫描结果。
图3为实施例3制得的增材制造用铝合金粉末SLM成形后的工件拉伸曲线。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
如图1所示,本发明提供了一种用于增材制造的铝合金粉末材料,该铝合金粉末材料的表达式为:Al-X-Y,X组分为Fe、Co、Ni的一种或多种,Y组分为Sc、Ti、Zr的一种或多种,其中,X组分的原子百分比为0.1~10%、Y组分的原子百分比为0.1~5%,其余的组分为Al,上述各组分的原子百分比之和为100%;
进一步的,在本发明中,该铝合金粉末材料中可以不含Y组分。
所述X组分在铝合金粉末中的扩散系数低,用于提高铝合金的室温强度及热稳定性,所述Y组分成分能与Al形成金属间化合物,在增材制造成形过程中细化铝合金的晶粒,并且产生析出强化效果。
作为进一步优选的,所述铝合金粉末材料为球形度为90%以上的球形粉末,所述铝合金粉末材料的粒径为5μm~60μm。
作为进一步优选的,所添加的X组分均为元素周期表中第VIII过渡族元素,其在铝合金粉末材料中扩散系数低,用于提高铝合金的室温强度及热稳定性,所述Y组分成分能与Al形成金属间化合物,在增材制造成形过程中细化铝合金的晶粒,并且产生析出强化效果。
作为进一步优选的,本发明的增材制造用的铝合金粉末材料中,X组分为铁、钴、镍过渡族元素,是以往常规成形铝合金成分中的非主要添加元素。X组分作为本发明的铝合金粉末材料成分的主要强化元素,由于增材制造的高冷却速度,X组分能够在增材制造过程中形成特殊的纳米级微观结构,有效的阻碍位错移动以增强力学性能。Y组分为钪、钛、锆等铝合金中能够有效细化晶粒的元素并能在增材制造快速凝固过程中产生AlmYn纳米尺度金属间化合物,提高熔体凝固性能,避免材料开裂,起到析出强化的效果。
按照本发明的另一个方面,还提供了一种铝合金粉末材料的制备方法,包括以下步骤:
S1按照铝合金粉末材料的表达式Al-X-Y中,各组分的原子百分比进行配料,然后采用电弧或感应加热方法制备母合金铸锭;
S2采用高压惰性气体雾化方法将步骤S1制备得到的母合金铸锭进行雾化制粉,从而获得粒度可控的球形微米级铝合金粉末材料。
作为进一步优选的,步骤S1中,在真空熔炼炉中采用电弧或感应加热方法制备母合金铸锭,其中,先熔炼X-Y高熔点金属,然后再将熔炼后的X-Y高熔点金属与Al低熔点金属混熔,以此方式反复多次,保证成分均匀。
作为进一步优选的,熔炼过程中,熔炼的温度为1100℃~1500℃。
作为进一步优选的,熔炼过程中所采用的气源为氩气或氮气,所述气源的压力为7MPa~10MPa。
作为进一步优选的,步骤S2中,所述铝合金粉末材料为球形度为90%以上的球形粉末,所述铝合金粉末材料的粒径为5μm~60μm。
按照本发明的另一方面,提供了一种铝合金粉末材料在选区激光熔融与同步送粉激光立体成形中的应用。
本发明的增材制造用铝合金成分,按原子百分比包括以下组分:
X(Fe、Co、Ni)组分的原子百分比为0.1%~10%;Y(Ti、Sc、Zr)组分的原子百分比为0.1%~5%;余量为铝。
所述的增材制造用铝合金粉末的制备及增材制造成形方法包括以下步骤:
(1)按照上述组成来配置原料;
(2)在高纯氩气环境下对步骤(1)配好的原料进行电弧熔炼,熔炼前先把高熔点的材料放在上面先熔化与混合,低熔点、易挥发的材料放在下方最后熔化混合均匀,以减少实际成分和名义成分的偏差;
(3)电弧熔炼至少重复四次,以保证成分均匀,得到待雾化的合金锭子;
(4)采用气体雾化法将步骤(2)得到的熔体制成粉末,并筛选出15~53μm粒径的粉末;
(5)将步骤(4)得到的15μm~53μm的粉末用于SLM成形,先进行工艺参数调整,选择不同的扫描速度、扫描功率、扫描策略、单层厚度成形7mm×7mm×5mm的方块。根据排水法测得的方块密度,选择致密度最高的工艺参数,成形力学件或结构件。
实施例1
本实施例制备增材制造用二元铝铁合金(Al-6Fe)的粉末,具体步骤如下:
(1)配料:按Fe组分的原子百分比为6%、余量为铝的组分构成,计算并称取相应重量的纯铝(纯度>99.95%)、纯铁(纯度>99.95%)作为原料。
(2)真空熔炼:采用真空电弧熔炼炉,先用电弧将纯铁完全熔化,再与纯铝混合,混合并搅拌金属熔体四次以上,待金属熔体成分均匀后冷却。
(3)气雾化制粉:将步骤(2)得到的合金块体放入石墨坩埚,利用感应线圈加热至1300℃~1500℃,进行气雾化制粉,气雾化制粉所采取的条件为:采用氩气作为雾化气体,雾化气体压力为8MPa~10MPa,雾化温度1300℃~1500℃,雾化喷嘴直径为3mm~5mm,出缸压力为90kPa~200kPa。
(4)粉末分级:对步骤(3)制得的粉末进行筛分,筛分完成后得到粒径为15μm~53μm的增材制造用铝合金粉末。
(5)SLM成形:用步骤(4)的粉末进行SLM成形,用不同的扫描速度和扫描功率成形7mm×7mm×5mm的方块,层厚为0.04mm,扫描策略为XY交叉,当扫描速度2000mm/s,扫描功率250w时,用排水法测得的SLM成形件密度最大,致密度达99%以上。用最佳工艺参数成形所需力学件或结构件。
本实施例制得的增材制造用铝铁合金粉末的宏观形貌如图1所示,粉末球形度较好。
实施例2
本实施例制备增材制造用三元铝铁锆合金(Al-1.5Fe-0.2Zr)的粉末,具体步骤如下:
(1)配料:按Fe组分的原子百分比为1.5%、锆组分的原子百分比为0.2%、余量为铝的原子百分比组成,计算并称取相应重量的纯铝(纯度>99.95%)、纯铁(纯度>99.95%)、纯锆(纯度>99.95%)作为原料。
(2)真空熔炼:采用真空电弧熔炼炉,先用电弧将纯铁与纯锆完全熔化并混合均匀,再熔化铁锆中间合金与纯铝并混合,多次混合并搅拌金属熔体,待金属熔体成分均匀后冷却。
(3)气雾化制粉:将步骤(2)得到的合金块体放入石墨坩埚,利用感应线圈加热至1300℃~1500℃,进行气雾化制粉,雾化制粉所采取的条件为:采用氩气作为雾化气体,雾化气体压力为8MPa~10MPa,雾化温度为1300℃~1500℃,雾化喷嘴直径为3mm~5mm,出缸压力为90kPa~200kPa。
(4)粉末分级:对步骤(3)制得的粉末进行筛分,筛分完成后得到粒径为15μm~53μm的增材制造用铝铁基合金粉末。
(5)SLM成形:用步骤(4)的粉末进行SLM成形,用不同的扫描速度和扫描功率成形7mm×7mm×5mm的方块,层厚为0.04mm,扫描策略为XY交叉,当扫描速度1800mm/s,扫描功率250w时,用排水法得的SLM成形件密度最大,致密度达99.8%以上。用最佳工艺参数成形所需力学件或结构件。
本实施例制得的增材制造用铝铁锆合金粉末,通过合适的工艺调控得到孔隙率为0.07%的SLM成形件,其三维X射线断层扫描结果如图2所示。
实施例3
本实施例制备增材制造用三元铝镍锆合金(Al-2Ni-0.2Zr)的粉末,具体制备方法与实施例2类似。其中,配料:按Ni组分的原子百分比为2%、Zr组分的原子百分比为0.2%、余量为铝的原子百分比组成,计算并称取相应重量的纯铝(纯度>99.95%)、纯Ni(纯度>99.95%)、纯Zr(纯度>99.95%)作为原料。
真空熔炼:采用真空电弧熔炼炉,先用电弧将纯Ni与纯Zr完全熔化并混合均匀,再熔化NiZr中间合金与纯铝并混合,多次混合并搅拌金属熔体,待金属熔体成分均匀后冷却。
气雾化制粉:将得到的合金块体放入石墨坩埚,利用感应线圈加热至1300℃,进行气雾化制粉,雾化制粉所采取的条件为:采用氩气作为雾化气体,雾化气体压力为8MPa,雾化温度为1300℃,雾化喷嘴直径为3mm,出缸压力为90kPa。
本实施例得到的增材制造用铝镍锆合金粉末,通过合适的工艺调控得到致密度99.8%以上的SLM成形件,室温拉伸性能和高温退火处理后的拉伸性能如图3所示。
实施例4
本实施例制备增材制造用二元铝钴合金(Al-2Co)的粉末,具体制备方法与实施例1类似。其中,配料:按Co组分的原子百分比为2%、余量为铝的原子百分比组成,计算并称取相应重量的纯铝(纯度>99.95%)、纯Co(纯度>99.95%)作为原料。
真空熔炼:采用真空电弧熔炼炉,先用电弧将纯Co完全熔化,再熔化后与纯铝并混合,多次混合并搅拌金属熔体,待金属熔体成分均匀后冷却。
气雾化制粉:将得到的合金块体放入石墨坩埚,利用感应线圈加热至1500℃,进行气雾化制粉,雾化制粉所采取的条件为:采用氩气作为雾化气体,雾化气体压力为10MPa,雾化温度为1500℃,雾化喷嘴直径为5mm,出缸压力为200kPa。
本实施例得到的增材制造用铝钴合金粉末,通过合适的工艺调控得到致密度99%以上的SLM成形件,室温拉伸屈服强度达200Mpa以上。
实施例5
本实施例制备增材制造用三元铝钴锆合金(Al-2Co-0.2Zr)的粉末,具体制备方法与实施例2类似。其中,配料:按Co组分的原子百分比为2%、Zr组分的原子百分比为0.2%、余量为铝的原子百分比组成,计算并称取相应重量的纯铝(纯度>99.95%)、纯Co(纯度>99.95%)、纯Zr(纯度>99.95%)作为原料。
真空熔炼:采用真空电弧熔炼炉,先用电弧将纯Co与纯Zr完全熔化并混合均匀,再熔化Co Zr中间合金与纯铝并混合,多次混合并搅拌金属熔体,待金属熔体成分均匀后冷却。
气雾化制粉:将得到的合金块体放入石墨坩埚,气雾化制粉:将得到的合金块体放入石墨坩埚,利用感应线圈加热至1400℃,进行气雾化制粉,雾化制粉所采取的条件为:采用氩气作为雾化气体,雾化气体压力为9MPa,雾化温度为1400℃,雾化喷嘴直径为4mm,出缸压力为150kPa。
本实施例得到的增材制造用铝钴锆合金粉末,通过合适的工艺调控得到致密度99.5%以上的SLM成形件,相比于二元铝钴合金成分能够显著提高塑性,提升综合性能。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种用于增材制造的铝合金粉末材料,其特征在于,该铝合金粉末材料的表达式为:Al-X-Y,X组分为Fe、Co、Ni的一种或多种,Y组分为Sc、Ti、Zr的一种或多种,其中,X组分的原子百分比为0.1~10%、Y组分的原子百分比为0.1~5%,其余的组分为Al;
利用所述X组分在铝合金中的扩散特点,以提高铝合金的室温强度及热稳定性,所述Y组分成分能与Al形成金属间化合物,在增材制造成形过程中细化铝合金的晶粒,并且产生析出强化效果。
2.根据权利要求1所述的铝合金粉末材料,其特征在于,所述铝合金粉末材料为球形度为90%以上的球形粉末,所述铝合金粉末材料的粒径为5μm~60μm。
3.一种如权利要求1或2所述的铝合金粉末材料的制备方法,其特征在于,包括以下步骤:
S1按照铝合金粉末材料的表达式Al-X-Y中,各组分的原子百分比进行配料,然后采用电弧或感应加热方法制备母合金铸锭;
S2采用高压惰性气体雾化方法将步骤S1制备得到的母合金铸锭进行雾化制粉,从而获得粒度可控的球形微米级铝合金粉末材料。
4.根据权利要求3所述的制备方法,其特征在于,步骤S1中,在真空熔炼炉中采用电弧或感应加热方法制备母合金铸锭,其中,先熔炼X-Y高熔点金属,然后再将熔炼后的X-Y高熔点金属与Al低熔点金属混熔,以此方式反复多次,保证成分均匀。
5.根据权利要求4所述的制备方法,其特征在于,熔炼过程中,熔炼的温度为1100℃~1500℃。
6.根据权利要求4所述的制备方法,其特征在于,熔炼过程中所采用的气源为氩气或氮气,所述气源的压力为7MPa~10MPa。
7.根据权利要求3-6任一项所述的制备方法,其特征在于,步骤S2中,所述铝合金粉末材料为球形度为90%以上的球形粉末,所述铝合金粉末材料的粒径为5μm~60μm。
8.一种如权利要求1或2所述的铝合金粉末材料在选区激光熔融与同步送粉激光立体成形中的应用。
CN201911173154.XA 2019-11-26 2019-11-26 一种用于增材制造的铝合金粉末材料、制备方法及应用 Pending CN110791686A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911173154.XA CN110791686A (zh) 2019-11-26 2019-11-26 一种用于增材制造的铝合金粉末材料、制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911173154.XA CN110791686A (zh) 2019-11-26 2019-11-26 一种用于增材制造的铝合金粉末材料、制备方法及应用

Publications (1)

Publication Number Publication Date
CN110791686A true CN110791686A (zh) 2020-02-14

Family

ID=69446049

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911173154.XA Pending CN110791686A (zh) 2019-11-26 2019-11-26 一种用于增材制造的铝合金粉末材料、制备方法及应用

Country Status (1)

Country Link
CN (1) CN110791686A (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112658268A (zh) * 2020-12-11 2021-04-16 长沙新材料产业研究院有限公司 一种用于增材制造的稀土改性TiAl合金粉末及其制备方法
CN112743073A (zh) * 2020-12-23 2021-05-04 长沙新材料产业研究院有限公司 一种增材制造用改性NiAl粉末材料及其制备方法
CN112743072A (zh) * 2020-12-29 2021-05-04 长沙新材料产业研究院有限公司 一种用于增材制造的NiAl粉末材料及其制备方法
CN112813310A (zh) * 2020-06-28 2021-05-18 中南大学 一种可用于激光增材制造的高强度Al-Fe-Sc合金
CN112981392A (zh) * 2021-01-26 2021-06-18 山东新升实业发展有限责任公司 一种激光熔覆材料
CN113355668A (zh) * 2021-06-03 2021-09-07 滨州学院 一种铝合金零件局部重熔增强的方法
CN113388759A (zh) * 2021-06-17 2021-09-14 燕山大学 一种耐热铝合金粉末及其制备方法和一种铝合金成型件及其制备方法
CN113528901A (zh) * 2021-07-20 2021-10-22 重庆增隆新材料科技有限公司 一种增材制造用耐热铝合金球形粉体材料及其制备方法
DE102020208086A1 (de) 2020-06-30 2021-12-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Bauteil aus einer Aluminium-Nickel-Legierung sowie Verfahren zu dessen Herstellung und dessen Verwendung
CN115121800A (zh) * 2022-06-15 2022-09-30 北京理工大学 一种具有燃烧微爆特性的AlTiZr基多主元合金粉的制备方法
CN115443200A (zh) * 2020-04-21 2022-12-06 日本轻金属株式会社 铝合金成型体及其制造方法
CN115990669A (zh) * 2023-03-24 2023-04-21 湖南东方钪业股份有限公司 一种用于增材制造的钪铝合金粉末及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106868353A (zh) * 2015-12-14 2017-06-20 空中客车防卫和太空有限责任公司 用于粉末冶金技术的含钪的铝合金
CN108330344A (zh) * 2018-03-20 2018-07-27 中南大学 一种3D打印7xxx铝合金及其制备方法
CN108372292A (zh) * 2018-01-31 2018-08-07 上海交通大学 一种激光增材制造用铝基复合材料粉末及其制备方法
KR20190109863A (ko) * 2018-03-19 2019-09-27 삼성전자주식회사 고내식-고광택 알루미늄계 스퍼터링 타겟 합금 조성, 미세구조 및 그 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106868353A (zh) * 2015-12-14 2017-06-20 空中客车防卫和太空有限责任公司 用于粉末冶金技术的含钪的铝合金
CN108372292A (zh) * 2018-01-31 2018-08-07 上海交通大学 一种激光增材制造用铝基复合材料粉末及其制备方法
KR20190109863A (ko) * 2018-03-19 2019-09-27 삼성전자주식회사 고내식-고광택 알루미늄계 스퍼터링 타겟 합금 조성, 미세구조 및 그 제조 방법
CN108330344A (zh) * 2018-03-20 2018-07-27 中南大学 一种3D打印7xxx铝合金及其制备方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115443200A (zh) * 2020-04-21 2022-12-06 日本轻金属株式会社 铝合金成型体及其制造方法
CN112813310A (zh) * 2020-06-28 2021-05-18 中南大学 一种可用于激光增材制造的高强度Al-Fe-Sc合金
DE102020208086A1 (de) 2020-06-30 2021-12-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Bauteil aus einer Aluminium-Nickel-Legierung sowie Verfahren zu dessen Herstellung und dessen Verwendung
CN112658268A (zh) * 2020-12-11 2021-04-16 长沙新材料产业研究院有限公司 一种用于增材制造的稀土改性TiAl合金粉末及其制备方法
CN112743073A (zh) * 2020-12-23 2021-05-04 长沙新材料产业研究院有限公司 一种增材制造用改性NiAl粉末材料及其制备方法
CN112743072A (zh) * 2020-12-29 2021-05-04 长沙新材料产业研究院有限公司 一种用于增材制造的NiAl粉末材料及其制备方法
CN112743072B (zh) * 2020-12-29 2023-01-17 航天科工(长沙)新材料研究院有限公司 一种用于增材制造的NiAl粉末材料及其制备方法
CN112981392B (zh) * 2021-01-26 2022-11-04 山东新升实业发展有限责任公司 一种激光熔覆材料
CN112981392A (zh) * 2021-01-26 2021-06-18 山东新升实业发展有限责任公司 一种激光熔覆材料
CN113355668A (zh) * 2021-06-03 2021-09-07 滨州学院 一种铝合金零件局部重熔增强的方法
CN113388759A (zh) * 2021-06-17 2021-09-14 燕山大学 一种耐热铝合金粉末及其制备方法和一种铝合金成型件及其制备方法
CN113528901B (zh) * 2021-07-20 2022-03-29 重庆增隆新材料科技有限公司 一种增材制造用耐热铝合金球形粉体材料及其制备方法
CN113528901A (zh) * 2021-07-20 2021-10-22 重庆增隆新材料科技有限公司 一种增材制造用耐热铝合金球形粉体材料及其制备方法
CN115121800A (zh) * 2022-06-15 2022-09-30 北京理工大学 一种具有燃烧微爆特性的AlTiZr基多主元合金粉的制备方法
CN115121800B (zh) * 2022-06-15 2023-11-17 北京理工大学 一种具有燃烧微爆特性的AlTiZr基多主元合金粉的制备方法
CN115990669A (zh) * 2023-03-24 2023-04-21 湖南东方钪业股份有限公司 一种用于增材制造的钪铝合金粉末及其制备方法
CN115990669B (zh) * 2023-03-24 2023-06-27 湖南东方钪业股份有限公司 一种用于增材制造的钪铝合金粉末及其制备方法

Similar Documents

Publication Publication Date Title
CN110791686A (zh) 一种用于增材制造的铝合金粉末材料、制备方法及应用
WO2022041258A1 (zh) 一种用于3d打印的纳米陶瓷金属复合粉末及应用
WO2022041255A1 (zh) 采用微米陶瓷颗粒制备纳米相增强镍基高温合金的方法
US20240123502A1 (en) Titanium alloy powder for selective laser melting 3d printing, selective laser melted titanium alloy and preparation thereof
CN111872386B (zh) 一种高强度铝镁合金的3d打印工艺方法
CN101899592B (zh) 一种原位合成任意形状NiTi形状记忆合金的方法
KR102432787B1 (ko) Ods 합금 분말, 플라즈마 처리에 의한 이의 제조 방법, 및 그 용도
CN111659889A (zh) 一种高强度铝锰合金的3d打印工艺方法
CN113881875A (zh) 一种三维骨架结构金属增强铝基复合材料及制备方法
CN108044123B (zh) 一种具有定向凝固组织的Nb-Si-Ti合金制备方法
CN110117789A (zh) 一种基于激光熔覆沉积的高熵合金制备方法及装置
CN112251646A (zh) 内生纳米复合陶瓷颗粒的钛合金粉体及其制备方法和应用
CN111850332A (zh) 一种高强度铝锌合金的3d打印工艺方法
Cheng et al. Refractory high-entropy alloys fabricated using laser technologies: A concrete review
CN102864343B (zh) 一种原位铝基复合材料孕育剂的制备方法
CN112247156A (zh) 内生纳米TiC颗粒的钛合金粉体及其制备方法和应用
CN108044122B (zh) 一种Nb-Si基合金空心涡轮叶片的制备方法
CN111842914A (zh) 一种高强度铝铜合金的3d打印工艺方法
CN111101043A (zh) 一种激光增材制造的CrMoVNbAl高熵合金及其成形工艺
CN113528901B (zh) 一种增材制造用耐热铝合金球形粉体材料及其制备方法
CN114318179B (zh) 一种高强超韧仿生结构非晶合金复合材料的制备方法
CN114535602B (zh) 一种基于激光近净成形技术的镍基高温合金/不锈钢梯度复合材料及其制备方法
Zhang et al. Refractory high-entropy alloys fabricated by powder metallurgy: Progress, challenges and opportunities
CN113843415A (zh) 钽铌合金粉末及其制备方法
CN114959379A (zh) 一种适用于激光选区熔化的耐热高强铝合金及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200214