CN111992708B - 一种制备高性能金刚石/铜复合材料的方法 - Google Patents

一种制备高性能金刚石/铜复合材料的方法 Download PDF

Info

Publication number
CN111992708B
CN111992708B CN202010891223.7A CN202010891223A CN111992708B CN 111992708 B CN111992708 B CN 111992708B CN 202010891223 A CN202010891223 A CN 202010891223A CN 111992708 B CN111992708 B CN 111992708B
Authority
CN
China
Prior art keywords
diamond
powder
copper
scanning
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010891223.7A
Other languages
English (en)
Other versions
CN111992708A (zh
Inventor
刘祖铭
任亚科
吕学谦
魏冰
周旭
农必重
卢思哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202010891223.7A priority Critical patent/CN111992708B/zh
Publication of CN111992708A publication Critical patent/CN111992708A/zh
Application granted granted Critical
Publication of CN111992708B publication Critical patent/CN111992708B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/46Sputtering by ion beam produced by an external ion source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开一种制备高性能金刚石/铜基复合材料的方法,针对铜与金刚石润湿性差、界面结合弱,以及金刚石高温下易发生石墨化等问题,本发明采用磁控溅射技术在金刚石表面均匀镀覆一层B或强碳化物元素Ti、Zr、Nb、Cr来改善其界面结合强度,再溅射一层金属铜,厚度为1‑3μm;然后将表面改性后的金刚石颗粒在500‑700℃热处理5‑30min,使镀层之间互相扩散、反应,实现冶金结合;利用选区激光熔融(SLM))技术对铜合金粉末及表面改性后的金刚石颗粒进行烧结成形,极快的冷却速度显著细化基体合金组织,提高了复合材料的强度,双镀层表面改性有效的避免了金刚石在高能量激光束下石墨化;采用放电等离子烧结处理(SPS),进一步提高制件致密度;结合时效热处理,使固溶原子在铜基体中均匀析出,实现复合材料的热导性能和力学性能的综合提升。

Description

一种制备高性能金刚石/铜复合材料的方法
技术领域
本发明提供一种制备高性能金刚石/铜复合材料的方法,属于增材制造及金属基复合材料领域。
背景技术
电子信息技术的快速发展,使传统的电子封装散热材料很难保证大规模集成电路、半导体激光器等高功率器件运行的安全性和可靠性。金刚石颗粒增强铜基复合材料具有高热导率和匹配电子元器件热膨胀系数的特点,近年来受到广泛关注。由于铜与金刚石不润湿,直接复合会存在很大的界面热阻,降低了复合材料的热物理性能和力学性能。为了降低这种惰性界面带来的不利影响,目前采取的方法为基体合金化法和表面改性法。
车飞妮等(车飞妮等.微量钛调控金刚石/铜复合材料界面及热性能[J].材料科学,2018,8(12):1135-1145.)通过在铜基体中加入微量Ti来调控金刚石/铜复合材料界面及热性能,在金刚石(45vol.%)/铜混合粉末中加入3vol.%-Ti,利用放电等离子烧结技术制备的复合材料热导率达到670W/(m·K),加入的钛元素通过扩散聚集至金刚石表面,在金刚石与铜界面处生成TiC和Cu3Ti2,明显改善了其界面粘结,从而实现了高的热导率。Kang等(Kang Q P,et al.Preparation of copper-diamond composites with chromiumcarbide coatings on diamond particles for heat sink applications[J].AppliedThermal Engineering,2013,60(1-2):423-429.)利用混合熔盐法在金刚石颗粒表面镀覆Cr7C3层改善铜基体和金刚石颗粒的润湿性,随后采用真空压力浸渗法制备了Cu/金刚石-Cr7C3复合材料,金刚石体积分数为65%时复合材料具有最高热导率562W/(m·K),热膨胀系数为7.8×10-6/K。Zhang等(Zhang C.Wang R C.Cai Z Y,et al.Effects of dual-layercoatings on microstructure and thermal conductivity of diamond/Cu compositeprepared by vacuum hot pressing[J].Surface&Coatings Technology,2015,277:299-307)设计了内部为W层和外部为Cu层的双镀层金刚石颗粒,通过真空热压制备Cu/金刚石复合材料。内部的W涂层改善了界面结合,减小了铜基体和金刚石颗粒的界面热阻,而外部Cu镀层则促进了烧结过程,有利于Cu/金刚石复合材料的低温致密化,所制备Cu/金刚石复合材料的热导率达到721W/(m·K),接近理论预测值。
为进一步提高金刚石/铜基复合材料的力学性能及热导性能,本发明采用磁控溅射技术在金刚石表面均匀镀覆一层B或强碳化物元素Ti、Zr、Nb、Cr来改善其界面结合强度,再溅射一层金属铜,厚度为1-3μm,双镀层有效的避免了后续高能激光照射金刚石的石墨化;然后将表面改性后的金刚石颗粒在500-700℃热处理5-30min,使镀层之间互相扩散、反应,实现冶金结合;利用激光选区熔化(SLM)技术对铜合金粉末及表面改性后的金刚石颗粒进行成形,极快的冷却速度显著细化基体合金组织,大大提升了铜基体与金刚石增强体的结合强度;对SLM成形件进行放电等离子烧结(SPS),进一步提高制件致密度;结合时效热处理,使固溶原子在铜基体中均匀析出,实现复合材料的热导性能和力学性能的综合提升。
发明内容
针对铜与金刚石润湿性差、界面结合弱,以及金刚石高温下易发生石墨化等问题,本发明一种制备高性能金刚石/铜复合材料的方法,采用磁控溅射技术在金刚石表面均匀镀覆一层B或强碳化物元素Ti、Zr、Nb、Cr来改善其界面结合强度,再溅射一层金属铜,厚度为1-3μm,双镀层有效的避免了后续高能激光照射金刚石的石墨化;然后将表面改性后的金刚石颗粒在500-700℃热处理5-30min,使镀层之间互相扩散、反应,实现冶金结合;利用SLM技术对铜合金粉末及表面改性后的金刚石颗粒进行成形,极快的冷却速度显著细化基体合金组织,大大提升了铜基体与金刚石增强体的结合强度;对选区激光熔融成形件进行SPS处理,进一步提高制件致密度;结合时效热处理,使固溶原子在铜基体中均匀析出,实现复合材料的热导性能和力学性能的综合提升。所制备的金刚石/铜铬复合材料,当金刚石体积分数为50vol.%时,基体为CuCr合金,金刚石表面镀Zr和Cu时,致密度为99.8%,热导率达到713W/(m·K),抗弯强度达到413MPa。
本发明一种制备高性能金刚石/铜复合材料的方法,按照以下步骤实施:
(1)金刚石表面改性
采用酒精对金刚石进行超声波清洗10-15min,采用离子束磁控溅射多功能真空镀膜机对粒度为20μm-53μm的金刚石粉末表面镀一层A,然后再进行磁控溅射镀一层Cu,设备本底真空度为5×10-4Pa,工作气压为0.5-1.5Pa,工作气体为高纯氩气(99.999%),溅射过后的粉末在气氛管式炉中用氢气含量为1-3%、余量为氩气的混合气氛还原2-3小时,温度为100-200℃;所述A选自Cr、B、Ti、Zr、Nb中的至少一种。
(2)表面改性得到的金刚石颗粒在真空环境中热处理5-30min,热处理温度为500-700℃。
(3)通过SLM进行增材制造
将表面改性后的金刚石粉末与Cu-Cr-M合金粉末充分混合,利用刮刀在基板上铺设一层混合粉末,然后根据切片层的信息进行激光选择熔化,扫描方式包括轮廓扫描和实体扫描,每一层扫描时,先进行轮廓扫描再进行实体扫描,实体扫描采用蛇形扫描策略,之后再一次轮廓扫描;上述步骤为铺粉和激光熔化过程,重复上述步骤直到整个零件打印完成,之后将成形的零件从基板上分离,得到成形件;所述M为Nb或Zr。
(4)放电等离子烧结
对成形件进行SPS处理,SPS参数:温度为850℃-950℃,烧结时间为10-15min;烧结压力为40-50MPa。
(5)成形件在真空气氛中进行时效处理,得到制品。
本发明一种制备高性能金刚石/铜复合材料的方法,步骤(1)中磁控溅射镀A时,施加的偏压为-50V,磁控靶功率为70W-150W,时间为5~30min,A镀层的厚度为200-700nm,靶基距为5.0cm。
本发明一种制备高性能金刚石/铜复合材料的方法,步骤(1)中磁控溅射镀Cu,靶材为高纯Cu靶,纯度≥99.99%,施加的偏压为-50V,磁控靶功率为70W-150W,时间为5~30min,Cu层厚度为1-2μm。
本发明一种制备高性能金刚石/铜复合材料的方法,步骤(3)中表面改性后的金刚石粉末在混合粉末中的体积分数为5%-50%。
本发明一种制备高性能金刚石/铜复合材料的方法,步骤(3)所述Cu-Cr-M合金粉末中Cr的质量百分比为0.5-11.0%、M的质量百分比为0%-11.0%、余量为铜;所述Cu-Cr-M合金粉末的粒径为15-67μm,且D10为15-25μm、D50为27-33μm、D90为40-55μm。
本发明一种制备高性能金刚石/铜复合材料的方法,打印所用的基板为不锈钢基板或铜质基板,打印前,基板预加热温度为100-150℃。
本发明一种制备高性能金刚石/铜复合材料的方法,激光增材制造需在设备工作腔内通入氩气,使工作腔内氧气含量<0.1%。
本发明一种制备高性能金刚石/铜复合材料的方法,轮廓扫描参数为:激光光斑直径为0.08-0.1mm,激光功率为100W-150W,扫描速度为1000-1400mm/s;实体扫描的激光功率为300W-360W,扫描速率为650mm/s-1100mm/s,搭接间距为0.06mm-0.16mm,体能量密度为100J/mm3-280 J/mm3,成形层之间旋转67°,层厚为30-70μm。
本发明一种制备高性能金刚石/铜复合材料的方法,成形件的致密度达到99.8%。
本发明一种制备高性能金刚石/铜复合材料的方法,直接时效温度为350℃-550℃,直接时效时间为1h-3h,升温速率为10℃/min,水冷。
本发明一种制备高性能金刚石/铜复合材料的方法,所得产品的致密度大于等于99.8%,热导率为683W/(m·K)~713W/(m·K),抗弯强度达到413MPa~433MPa。本发明的优点和积极效果:
(1)本发明通过磁控溅射双镀层对金刚石进行表面改性,Cr(或B、Ti、Zr、Nb中的一种)是碳化物形成元素,可以与金刚石形成附着力良好的反应物,如Cr3C2,也可以与镀层铜形成结合力很强的金属键,改善了其与铜基体的润湿性,提高了结合强度,降低了界面之间的热阻。
(2)本发明通过在金刚石表面先镀Cr(或B、Ti、Zr、Nb中的一种),再镀Cu,利用表层Cu的高激光反射率避免了3D打印过程中金刚石的石墨化,提高了复合材料的热导率。
(3)本发明磁控溅射过后的粉末在气氛管式炉中用氩氢混合气体在100-200℃下还原2-3小时,降低了粉末中的氧含量,为后期制备高热导复合材料创造条件。
(4)本发明通过对表面改性后的金刚石粉末进行500-700℃热处理,使得镀层之间互相扩散、反应,提升了界面结合强度。
(5)本发明通过在铜基体中添加少量Cr、Nb等元素,进一步促进了铜基体与金刚石的冶金结合;同时,在凝固过程中,Cr、Nb等元素形成均匀分布的纳米相,诱导非均匀形核,促进了等轴晶的形成,减少了裂纹的产生,从而提高了成形件的致密度。
(6)本发明先通过SLM技术制备金刚石/铜基复合材料,极快的冷却速度显著细化基体合金组织,大大提升了铜基体与金刚石增强体的结合强度;采用SPS处理,在压力和放电的协同作用下,进一步提升成形件相对密度,抑制了烧结过程中晶粒长大。
(7)本发明采用时效热处理,使固溶原子从铜基体中均匀析出,提高了复合材料的力学性能及热导性能。
具体实施方式
实施例一:(基体为Cu-Cr-Nb,镀Cr和Cu)
(1)金刚石表面改性
采用酒精对金刚石进行超声波清洗10min,通过离子束磁控溅射多功能真空镀膜机对粒度为20μm-53μm的金刚石粉末表面镀Cr,再进行磁控溅射镀Cu,设备本底真空度为5×10-4Pa,工作气压为1Pa,工作气体为高纯氩气,溅射过后的粉末在气氛管式炉中用氢气含量为3%、余量为氩气的混合气在150℃下还原2小时;
(2)表面改性后得到的金刚石颗粒在真空环境中热处理25min,热处理温度为500℃;
(3)通过SLM进行增材制造
将表面改性的金刚石粉末与Cu-Cr-Nb合金粉末充分混合,金刚石体积分数占45%,利用设计软件构建三维长方体模型,转换成STL文件后导入SLM建造软件中,软件自行切片处理后,将工艺参数导入SLM打印系统中。基板加热到100℃后,将混合粉末加入供粉缸并进行铺粉,往工作腔内通入氩气至氧含量低于100ppm。之后进入打印程序,不断重复铺粉、激光扫描粉末的步骤,直到打印完成,得到长方块。
其中,Cu-Cr-Nb合金粉末中Cr的质量百分比为1.37,Nb的质量百分比为1.21,余量为铜,合金粉末的粒径为17-63μm,D10为18.3μm、D50为35.2μm、D90为47.3μm。
SLM轮廓扫描参数为:激光光斑直径为0.1mm,激光功率为150W,扫描速度为1200mm/s。
SLM实体扫描的激光功率为350W,扫描速率为700mm/s,搭接间距为0.10mm,激光光斑直径为0.12mm,成形层之间旋转67°,层厚为30μm。
通过阿基米德排水法测试其相对密度为95.1%。
(4)放电等离子烧结
对成形件进行放电等离子烧结处理,即SPS处理,SPS参数:温度为900℃,烧结时间为15min;烧结压力为45MPa。
(5)将成形件在真空环境中时效处理,时效温度为470℃,时效时间为3h。通过阿基米德排水法测试其密度达到致密度为99.8%,热导率为689W/(m·K),抗弯强度达到427MPa。
实施例二:
(1)金刚石表面改性(基体为Cu-Cr,镀Zr和Cu)
采用酒精对金刚石进行超声波清洗10min,通过离子束磁控溅射多功能真空镀膜机对粒度为20μm-53μm的金刚石粉末表面镀Zr,再进行磁控溅射镀Cu,设备本底真空度为5×10-4Pa,工作气压为0.8Pa,工作气体为高纯氩气,溅射过后的粉末在气氛管式炉中用氢气含量为3%、余量为氩气混合气在100℃下还原2.5小时;
(2)表面改性后得到的金刚石颗粒在真空环境中热处理20min,热处理温度为550℃;
(3)通过SLM进行增材制造
将表面改性后的金刚石粉末与Cu-Cr合金粉末充分混合,金刚石体积分数占50%,利用设计软件构建三维长方体模型,转换成STL文件后导入SLM建造软件中,软件自行切片处理后,将工艺参数导入SLM打印系统中。基板加热到100℃后,将混合粉末加入供粉缸并进行铺粉,往工作腔内通入氩气至氧含量低于100ppm。之后进入打印程序,不断重复铺粉、激光扫描粉末的步骤,直到打印完成,得到长方块。
其中,Cu-Cr合金粉末中Cr的质量百分比为1.7,余量为铜,合金粉末的粒径为18-51μm,D10为16.7μm、D50为29.8μm、D90为47μm。
SLM轮廓扫描参数为:激光光斑直径为0.1mm,激光功率为150W,扫描速度为1200mm/s。
SLM实体扫描的激光功率为350W,扫描速率为800mm/s,搭接间距为0.10mm,激光光斑直径为0.12mm,成形层之间旋转67°,层厚为30μm。
通过阿基米德排水法测试其相对密度为96.9%。
(4)放电等离子烧结
对成形件进行SPS处理,SPS参数:温度为900℃,烧结时间为20min;烧结压力为45MPa。
(5)将成形件在真空环境中时效处理,时效温度为470℃,时效时间为3h。通过阿基米德排水法测试其密度达到致密度为99.8%,热导率为713W/(m·K),抗弯强度达到413MPa。
实施例三:
(1)金刚石表面改性(基体为Cu-Ti,镀Ti和Cu)
采用酒精对金刚石进行超声波清洗10min,通过离子束磁控溅射多功能真空镀膜机对粒度为20μm-53μm的金刚石粉末表面镀Ti,再进行磁控溅射镀Cu,设备本底真空度为5×10-4Pa,工作气压为0.8Pa,工作气体为高纯氩气,溅射过后的粉末在气氛管式炉中用氢气含量为3%、余量为氩气混合气在200℃下还原2小时;
(2)表面改性后得到的金刚石颗粒在真空环境中热处理20min,热处理温度为550℃;
(3)通过SLM进行增材制造
将表面改性后的金刚石粉末与Cu-Ti合金粉末充分混合,金刚石体积分数占45%,利用设计软件构建三维长方体模型,转换成STL文件后,将工艺参数导入SLM建造软件中,软件自行切片处理后导入SLM打印系统中。基板加热到100℃后,将混合粉末加入供粉缸并进行铺粉,往工作腔内通入氩气至氧含量低于100ppm。之后进入打印程序,不断重复铺粉、激光扫描粉末的步骤,直到打印完成,得到长方块。
其中,Cu-Ti合金粉末中Ti的质量百分比为1.1,余量为铜,合金粉末的粒径为18-57μm,D10为19.7μm、D50为31.3μm、D90为49μm。
SLM轮廓扫描参数为:激光光斑直径为0.1mm,激光功率为150W,扫描速度为1200mm/s。
SLM实体扫描的激光功率为350W,扫描速率为800mm/s,搭接间距为0.10mm,激光光斑直径为0.12mm,成形层之间旋转67°,层厚为30μm。
通过阿基米德排水法测试其相对密度为96.9%。
(4)放电等离子烧结
对成形件进行SPS处理,SPS参数:温度为920℃,烧结时间为20min;烧结压力为50MPa。
(5)将成形件在真空环境中时效处理,时效温度为490℃,时效时间为2h。通过阿基米德排水法测试其密度达到致密度为99.8%,热导率为683W/(m·K),抗弯强度达到433MPa。
对比例一:(镀单层Zr)
1)金刚石表面改性
采用酒精对金刚石进行超声波清洗10min,通过离子束磁控溅射多功能真空镀膜机对粒度为20μm-53μm的金刚石粉末表面镀Zr,设备本底真空度为5×10-4Pa,工作气压为0.7Pa,工作气体为高纯氩气,溅射过后的粉末在气氛管式炉中用氢气含量为3%、余量为氩气的混合气在150℃下还原2小时;(2)表面改性后得到的金刚石颗粒在真空环境中热处理20min,热处理温度为550℃;
(3)通过SLM进行增材制造
将表面改性后的金刚石粉末与Cu-Cr合金粉末充分混合,金刚石体积分数占50%,利用设计软件构建三维长方体模型,转换成STL文件后,将工艺参数导入SLM建造软件中,软件自行切片处理后导入SLM打印系统中。基板加热到100℃后,将混合粉末加入供粉缸并进行铺粉,往工作腔内通入氩气至氧含量低于100ppm。之后进入打印程序,不断重复铺粉、激光扫描粉末的步骤,直到打印完成,得到长方块。
其中,Cu-Cr合金粉末中Cr的质量百分比为1.7,余量为铜,合金粉末的粒径为18-51μm,D10为16.7μm、D50为29.8μm、D90为47μm。
SLM轮廓扫描参数为:激光光斑直径为0.1mm,激光功率为150W,扫描速度为1200mm/s。
SLM实体扫描的激光功率为350W,扫描速率为800mm/s,搭接间距为0.10mm,激光光斑直径为0.12mm,成形层之间旋转67°,层厚为30μm。
通过阿基米德排水法测试其相对密度为92.9%。
(4)放电等离子烧结
对成形件进行SPS处理,SPS参数:温度为900℃,烧结时间为20min;烧结压力为45MPa。
(5)将成形件在真空环境中时效处理,时效温度为470℃,时效时间为3h。通过阿基米德排水法测试其密度达到致密度为99.1%,热导率为643W/(m·K),抗弯强度达到373MPa。
对比例二:(表面改性后的粉末不进行热处理)
(1)金刚石表面改性
采用酒精对金刚石进行超声波清洗10min,通过离子束磁控溅射多功能真空镀膜机对粒度为20μm-53μm的金刚石粉末表面镀Zr,再进行磁控溅射镀Cu,设备本底真空度为5×10-4Pa,工作气压为0.7Pa,工作气体为高纯氩气,溅射过后的粉末在气氛管式炉中用氢气含量为3%、余量为氩气的混合气在150℃下还原2小时;(2)通过SLM进行增材制造
将表面改性后的金刚石粉末与Cu-Cr合金粉末充分混合,金刚石体积分数占50%,利用设计软件构建三维长方体模型,转换成STL文件后,将工艺参数导入SLM建造软件中,软件自行切片处理后导入SLM打印系统中。基板加热到100℃后,将混合粉末加入供粉缸并进行铺粉,往工作腔内通入氩气至氧含量低于100ppm。之后进入打印程序,不断重复铺粉、激光扫描粉末的步骤,直到打印完成,得到长方块。
其中,Cu-Cr合金粉末中Cr的质量百分比为1.7,余量为铜,合金粉末的粒径为18-51μm,D10为16.7μm、D50为29.8μm、D90为47μm。
SLM轮廓扫描参数为:激光光斑直径为0.1mm,激光功率为150W,扫描速度为1200mm/s。
SLM实体扫描的激光功率为350W,扫描速率为800mm/s,搭接间距为0.10mm,激光光斑直径为0.12mm,成形层之间旋转67°,层厚为30μm。
通过阿基米德排水法测试其相对密度为93.9%。
(3)放电等离子烧结
对成形件进行SPS处理,SPS参数:温度为900℃,烧结时间为20min;烧结压力为45MPa。
(4)将成形件在真空环境中时效处理,时效温度为470℃,时效时间为3h。通过阿基米德排水法测试其密度达到致密度为99.3%,热导率为667W/(m·K),抗弯强度达到385MPa。
对比例三:(不进行选区激光熔融成形)
(1)金刚石表面改性
采用酒精对金刚石进行超声波清洗10min,通过离子束磁控溅射多功能真空镀膜机对粒度为20μm-53μm的金刚石粉末表面镀Zr,再进行磁控溅射镀Cu,设备本底真空度为5×10-4Pa,工作气压为0.7Pa,工作气体为高纯氩气,溅射过后的粉末在气氛管式炉中用氢气含量为3%、余量为氩气的混合气在150℃下还原2小时;(2)表面改性后得到的金刚石颗粒在真空环境中热处理20min,热处理温度为550℃;
(3)放电等离子烧结
将表面改性的金刚石粉末与Cu-Cr合金粉末充分混合,金刚石体积分数占50%,对其进行SPS处理,SPS参数为:直径为40mm的石墨磨具,升温速率为60℃/min,降温速率为60℃/min,温度为900℃,烧结时间为20min;烧结压力为45MPa
(4)将成形件在真空环境中时效处理,时效温度为470℃,时效时间为3h。通过阿基米德排水法测试其密度达到致密度为98.1%,热导率为633W/(m·K),抗弯强度达到370MPa。
通过实施例和对比例可以看出,本发明通过各条件参数和工艺的协同作用,才能得到性能优越的产品,当实施步骤或者实施条件参数中有一个或几个不在本发明所要求的保护的范围内时,产品的性能远远低于本发明。

Claims (9)

1.一种制备高性能金刚石/铜复合材料的方法,其特征在于,按照以下步骤实施:
(1)金刚石表面改性
采用酒精对金刚石进行超声波清洗10-15min,采用离子束磁控溅射多功能真空镀膜机对粒度为20µm-53µm的金刚石粉末表面镀一层A,然后再进行磁控溅射镀一层Cu,设备本底真空度小于5×10-4Pa,工作气压为0.5-1.5 Pa,工作气体为高纯氩气,溅射过后的粉末在气氛管式炉中用氢气含量为1-3%、余量为氩气的混合气氛还原2-3小时,温度为100-200 ℃;所述A选自Cr、B、Ti、Zr、Nb中的至少一种;
(2)表面改性得到的金刚石颗粒在真空环境中热处理5-30min,热处理温度为500-700℃;
(3)通过SLM进行增材制造
将表面改性后的金刚石粉末与Cu-Cr-M合金粉末充分混合,利用刮刀在基板上铺设一层混合粉末,然后根据切片层的信息进行激光选择熔化,扫描方式包括轮廓扫描和实体扫描,每一层扫描时,先进行轮廓扫描再进行实体扫描,实体扫描采用蛇形扫描策略,之后再一次轮廓扫描;上述步骤为铺粉和激光熔化过程,重复上述步骤直到整个零件打印完成,之后将成形的零件从基板上分离,得到成形件;所述 M为Nb或Zr;
所述轮廓扫描参数为: 激光光斑直径为0.08-0.1mm,激光功率为100W-150W,扫描速度为1000-1400mm/s;
所述实体扫描的激光功率为300 W-360 W,扫描速率为650 mm/s-1100 mm/s,搭接间距为0.06mm-0.16mm, 体能量密度为100 J/mm3-280 J/mm3,成形层之间旋转67°,层厚为30-70µm;
(4)放电等离子烧结
对成形件进行SPS处理,SPS参数:温度为850℃-950℃,烧结时间为10-15min;烧结压力为40-50MPa;
(5)成形件在真空气氛中进行时效处理,得到制品。
2.根据权利要求1所述的方法,其特征在于:步骤(1)中磁控溅射镀A时,施加的偏压为-50V,磁控靶功率为70W-150W,时间为5~30 min,A镀层的厚度为200-700nm。
3.根据权利要求1所述的方法,其特征在于:步骤(1)中磁控溅射镀Cu,靶材为高纯Cu靶,纯度≥99.99%,施加的偏压为-50V,磁控靶功率为70W-150W,时间为5~30 min,Cu层厚度为1-2μm,靶基距为5.0cm。
4.根据权利要求1所述的方法,其特征在于:步骤(3)中表面改性后的金刚石粉末在混合粉末中的体积分数为5%-50%。
5.根据权利要求1所述的方法,其特征在于:步骤(3)所述Cu-Cr-M合金粉末中Cr的质量百分比为0.5-11.0%、M的质量百分比为0%-11.0%、余量为铜;所述Cu-Cr-M合金粉末的粒径为15-67μm,且D10为15-25μm、D50为27-33μm、D90为40-55μm。
6.根据权利要求1所述的方法,其特征在于:打印所用的基板为不锈钢基板或铜质基板,打印前,基板预加热温度为100-150℃。
7.根据权利要求1所述的方法,其特征在于,激光增材制造需在设备工作腔内通入氩气,使工作腔内氧气含量<0.1%。
8.根据权利要求1所述的方法,其特征在于:步骤(4)中经SPS烧结获得成品的致密度达到99.8%。
9.根据权利要求1所述的方法,其特征在于:步骤(5)中时效温度为350℃-550℃,时效时间为1h-3h,升温速率为10℃/min,水冷。
CN202010891223.7A 2020-08-30 2020-08-30 一种制备高性能金刚石/铜复合材料的方法 Active CN111992708B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010891223.7A CN111992708B (zh) 2020-08-30 2020-08-30 一种制备高性能金刚石/铜复合材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010891223.7A CN111992708B (zh) 2020-08-30 2020-08-30 一种制备高性能金刚石/铜复合材料的方法

Publications (2)

Publication Number Publication Date
CN111992708A CN111992708A (zh) 2020-11-27
CN111992708B true CN111992708B (zh) 2021-10-22

Family

ID=73465658

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010891223.7A Active CN111992708B (zh) 2020-08-30 2020-08-30 一种制备高性能金刚石/铜复合材料的方法

Country Status (1)

Country Link
CN (1) CN111992708B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022105514A1 (de) 2022-03-09 2023-09-14 Kolibri Metals Gmbh Verfahren zur Herstellung hochfester, kohlenstoffhaltiger Bauteile aus Stahl

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112622057A (zh) * 2020-12-22 2021-04-09 中南大学 一种金刚石复合材料、其制备方法、绳锯串珠及绳锯机
CN112969303A (zh) * 2021-02-01 2021-06-15 南昌大学 一种基于3d打印的电路印刷方法及制备的高功率电路板
CN113278835B (zh) * 2021-04-09 2022-01-18 陕西斯瑞新材料股份有限公司 一种高强高导铜钛合金制备方法
CN114012105A (zh) * 2021-04-23 2022-02-08 安泰科技股份有限公司 一种金刚石-金属基复合材料、节块及其制备方法
CN116328024A (zh) * 2021-12-22 2023-06-27 湖南理工学院 一种低熔点致密成型大段骨缺损植入物方法
CN116496760A (zh) * 2022-01-19 2023-07-28 中南大学 一种具有多主元中/高熵合金镀覆层的超硬材料磨粒及其制备方法
CN114799216B (zh) * 2022-04-14 2023-06-27 武汉大学 钛合金的热处理方法
CN115971475A (zh) * 2022-12-26 2023-04-18 吉林大学 一种含金刚石的超耐磨镍基复合材料及制备方法
CN116329553B (zh) * 2023-02-23 2024-04-16 南京瑞为新材料科技有限公司 金刚石/金属复合材料的制备装置及其制备方法
CN116352233B (zh) * 2023-05-30 2023-08-22 中镱新材料智能制造研究院(山西)有限公司 一种弹射式陶瓷颗粒增强复合材料熔融堆积增材制造方法
CN116926494A (zh) * 2023-08-07 2023-10-24 深圳市博源碳晶科技有限公司 一种金刚石铜基复合材料及其制备方法
CN117020209B (zh) * 2023-10-09 2024-01-26 赣州金顺科技有限公司 一种散热基板及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001056736A2 (en) * 2000-02-04 2001-08-09 Optomec Design Company Laser assisted direct material deposition with modified absorption
CN101545057A (zh) * 2009-05-15 2009-09-30 北京科技大学 一种制备高导热金刚石/Cu复合材料方法
CN105112754A (zh) * 2015-10-12 2015-12-02 中南大学 三维网络金刚石骨架增强金属基复合材料及制备方法
CN107900327A (zh) * 2017-11-16 2018-04-13 北京科技大学 一种结合3d打印技术制备金刚石/铜复合材料的方法
CN109930125A (zh) * 2019-04-12 2019-06-25 东南大学 一种金刚石-铝复合材料的磁控溅射镀膜方法
CN109940156A (zh) * 2017-12-20 2019-06-28 北京有色金属研究总院 3d打印近净成形制备金刚石/铜导热复合材料零件的方法
CN111424270A (zh) * 2020-05-25 2020-07-17 上海交通大学 铜合金表面激光熔覆铜基金刚石颗粒增强复合涂层的方法
CN111519076A (zh) * 2020-04-30 2020-08-11 成都本征新材料技术有限公司 一种金刚石颗粒增强金属基复合材料及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001056736A2 (en) * 2000-02-04 2001-08-09 Optomec Design Company Laser assisted direct material deposition with modified absorption
CN101545057A (zh) * 2009-05-15 2009-09-30 北京科技大学 一种制备高导热金刚石/Cu复合材料方法
CN105112754A (zh) * 2015-10-12 2015-12-02 中南大学 三维网络金刚石骨架增强金属基复合材料及制备方法
CN107900327A (zh) * 2017-11-16 2018-04-13 北京科技大学 一种结合3d打印技术制备金刚石/铜复合材料的方法
CN109940156A (zh) * 2017-12-20 2019-06-28 北京有色金属研究总院 3d打印近净成形制备金刚石/铜导热复合材料零件的方法
CN109930125A (zh) * 2019-04-12 2019-06-25 东南大学 一种金刚石-铝复合材料的磁控溅射镀膜方法
CN111519076A (zh) * 2020-04-30 2020-08-11 成都本征新材料技术有限公司 一种金刚石颗粒增强金属基复合材料及其制备方法和应用
CN111424270A (zh) * 2020-05-25 2020-07-17 上海交通大学 铜合金表面激光熔覆铜基金刚石颗粒增强复合涂层的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022105514A1 (de) 2022-03-09 2023-09-14 Kolibri Metals Gmbh Verfahren zur Herstellung hochfester, kohlenstoffhaltiger Bauteile aus Stahl

Also Published As

Publication number Publication date
CN111992708A (zh) 2020-11-27

Similar Documents

Publication Publication Date Title
CN111992708B (zh) 一种制备高性能金刚石/铜复合材料的方法
CN108257925B (zh) 一种硅化金刚石/SiC复合材料的制备方法
CN113097153B (zh) 铝碳化硅热沉基板制备方法及铝碳化硅热沉基板
CN111872386B (zh) 一种高强度铝镁合金的3d打印工艺方法
CN111500892A (zh) 大尺寸薄片状超高热导率金刚石/铜复合材料的制备方法
CN112981164B (zh) 一种高可靠性高导热金刚石增强金属基复合材料的制备方法
CN106799496B (zh) 一种石墨和铝硅合金复合电子封装材料及其制备方法
CN111519076A (zh) 一种金刚石颗粒增强金属基复合材料及其制备方法和应用
CN112935249B (zh) 一种金刚石/金属基复合材料的高效制备方法
CN111676385A (zh) 一种低成本的高导热金刚石铜复合材料的制备方法
CN110744058A (zh) 一种原位合成铜基复合材料的制备方法
CN108774699A (zh) 铝硅/铝金刚石梯度复合材料及其制备方法
CN112063951A (zh) 一种镁铝合金表面激光熔覆自润滑涂层及其施工方法
CN110724845A (zh) 一种高导热高可靠性的金刚石/铝复合材料及其制备工艺
CN115572961A (zh) 一种微波辅助气压浸渗制备高热导率金刚石/金属基复合材料的方法
CN113930635B (zh) 一种不锈钢增强铝碳化硅复合材料及其制备方法
CN113549792A (zh) 一种铝碳化硅复合材料及方法和散热衬板
CN112375946B (zh) 一种高Mg2Si铝合金及其设计与快速凝固制备方法和应用
Zavareh et al. TiC–TiB2 composites: A review of processing, properties and applications
CN1167831C (zh) 一种激光熔覆金属间化合物/陶瓷复合涂层及制备方法
CN110643860A (zh) 一种陶瓷膜修饰的金刚石/铝复合材料及其无压浸渗制备工艺
CN110904446A (zh) 一种钛铝零件的制备方法
CN108044122B (zh) 一种Nb-Si基合金空心涡轮叶片的制备方法
CN102627472B (zh) 低气孔率氧化铝钛陶瓷件的激光近净成形方法
CN112813393B (zh) 一种钼镍合金靶材及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant