CN111424270A - 铜合金表面激光熔覆铜基金刚石颗粒增强复合涂层的方法 - Google Patents

铜合金表面激光熔覆铜基金刚石颗粒增强复合涂层的方法 Download PDF

Info

Publication number
CN111424270A
CN111424270A CN202010449993.6A CN202010449993A CN111424270A CN 111424270 A CN111424270 A CN 111424270A CN 202010449993 A CN202010449993 A CN 202010449993A CN 111424270 A CN111424270 A CN 111424270A
Authority
CN
China
Prior art keywords
copper
diamond
powder
reinforced composite
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010449993.6A
Other languages
English (en)
Other versions
CN111424270B (zh
Inventor
姚成武
杨帆
黄坚
聂璞林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN202010449993.6A priority Critical patent/CN111424270B/zh
Publication of CN111424270A publication Critical patent/CN111424270A/zh
Application granted granted Critical
Publication of CN111424270B publication Critical patent/CN111424270B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • B22F2007/042Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Abstract

本发明属于金属材料表面改性领域,公开了一种在铜及铜合金表面采用激光熔覆技术制备铜基金刚石颗粒增强复合涂层的方法。采用金属铬和银依次镀覆在金刚石颗粒表面,形成铬/银双镀层金刚石颗粒,将所述铬/银双镀层金刚石颗粒与紫铜粉进行混合配制金刚石/紫铜混合粉末,所述金刚石/紫铜混合粉末铺于铜合金基板,再铺上紫铜粉,进行烧结固化成型,然后采用激光熔覆的方法熔化预置的所述金刚石/紫铜混合粉末,凝固后形成铜基金刚石颗粒增强复合涂层。本发明采用双镀层预处理金刚石颗粒,有效避免了金刚石颗粒在加工中出现的结构损伤,同时解决了金刚石与铜基体的结合问题。

Description

铜合金表面激光熔覆铜基金刚石颗粒增强复合涂层的方法
技术领域
本发明涉及金属材料表面改性领域,尤其涉及一种铜合金表面激光熔覆铜基金刚石颗粒增强复合涂层的方法。
背景技术
铜及其合金具有优良的导电和导热性能,在电子封装、大型散热器件中得到广泛应用。然而,随着技术升级造成装备服役环境的愈发恶劣,要求散热器件不仅具备较高的导热导电性能,同时具备较高的耐磨性能,如钢铁生产行业中使用的钢铁连铸结晶器,承受着钢铁连铸生产中的超高温和强摩擦作用;电磁炮作为下一代先进动能杀伤武器,其导轨材料既要承受炮弹发射时热损耗而产生的高温,还要承受炮弹在导轨上运动时的高速摩擦作用。传统的单质铜及铜合金材料已经无法满足这些高技术装备的综合要求和高指标要求。因此铜基材料的表面复合化是其发展的必然趋势,亟需在铜合金表面制备出高耐磨性能的涂层材料,同时不降低铜合金表面与外界的热传导效率。
金刚石是自然界中导热性能最高的材料,导热系数约在2000W/(m·K)左右,同时金刚石的原子结构决定了它具备极高的硬度和较低的热膨胀系数,已被广泛应用在高摩擦工况的切割刀具表面。因此,如果能将金刚石颗粒作为弥散强化相与铜粉混合并在传统导热材料表面制备一种复合材料涂层,则会在确保材料整体导热性能不下降的情况下,极大地提升材料表面的耐磨性能。
目前,对于铜基金刚石颗粒增强复合材料及其激光熔覆涂层已经有一定的研究,例如:在《.铬包覆的金刚石颗粒增强铜基复合材料的热物理性能研究》中,朱聪旭等人通过混合熔盐法对金刚石表面进行镀铬处理,并采用放电等离子烧结技术制备了镀铬金刚石颗粒增强铜基复合材料,结果表明金刚石与铜基体的界面结合得到优化,复合材料的密度和热导率获得较大提升,放电等离子烧结工艺下较长的高温停留时间极易造成金刚石表面镀层厚度的增加,从而导致镀层出现开裂等现象,进而导致金刚石石墨化以及界面结合的恶化;在《激光熔覆/熔注法制备金属基金刚石复合涂层研究》中,吴佳采用激光熔覆技术在45钢表面分别制备了铁基和镍基的金刚石颗粒增强涂层,结果显示铁/镍基金刚石颗粒涂层的应用分别提升了基体表面60%和30%的耐磨性能,但是涂层内部的金刚石颗粒均发生了较大程度的石墨化相变,未镀覆的金刚石颗粒在激光的辐照下极易发生石墨化相变,且镍、铁等传统耐磨材料作为基体粉末在提高涂层耐磨性能的同时牺牲了涂层的导热性。然而,在铜基合金表面激光熔覆制备金刚石颗粒增强铜基涂层材料还存在较多困难,主要存在以下几个问题:
(1)铜基体导热系数很高,而且对于激光的反射率较高,不利于涂层与基体的熔化和界面有效结合;
(2)金刚石在激光照射的高温下易发生石墨化转变,原子结构遭到破坏从而丧失金刚石的物理性质,同时在有氧环境下,金刚石石墨化的温度会进一步降低;
(3)铜在高温下对氧含量较为敏感,易形成氧化物,造成铜基体与金刚石颗粒之间难以形成有效界面结合。
因此,本发明致力于优化激光熔覆工艺方案,以及开发金刚石颗粒界面优化的方法,提供了一种铜合金表面激光熔覆铜基金刚石颗粒增强复合涂层的方法。
发明内容
有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是避免金刚石颗粒在加工中出现的石墨化转变而导致原子结构损伤,同时解决金刚石与铜基体的界面结合问题。
为实现上述目的,本发明提供了一种适用于铜合金表面的含铬/银双镀层的金刚石颗粒增强铜基复合材料涂层,采用金属铬和银依次镀覆在金刚石颗粒表面,形成铬/银的双镀层结构,一方面铬是强碳化物形成元素,可以与金刚石表面形成良好结合,另一方面,银在铜中有一定的固溶度,能够与铜形成有效连接,而且银具有更高的激光反射率,在激光熔覆过程中可减小金刚石颗粒对激光能量的吸收,从而有效保护金刚石颗粒避免石墨化。
具体地,铜合金表面激光熔覆铜基金刚石颗粒增强复合涂层的方法,包括以下步骤:
(1)超声清洗金刚石颗粒,在所述金刚石颗粒表面,通过电镀或化学镀的方法依次镀覆铬、银镀层,形成铬/银双镀层结构,得到铬/银双镀层金刚石颗粒,其中采用电镀或化学镀的方式在金刚石颗粒表面先后镀覆一层均匀的铬层和银层的目的是隔绝金刚石与氧气以及激光热源的直接接触,避免因氧化和过热引起的石墨化,同时改善金刚石颗粒与铜基体的结合;
(2)将所述铬/银双镀层金刚石颗粒与紫铜粉进行混合配制金刚石/紫铜混合粉末;
(3)将铜合金基板上铺上所述金刚石/紫铜混合粉末,再铺上紫铜粉,放入加热炉中进行烧结,使得所述金刚石/紫铜混合粉末在所述铜合金基板上初步固化成型,得到烧结预成型的铜合金基板;
(4)对所述烧结预成型的铜合金基板进行预热,在所述烧结预成型的铜合金基板表面采用激光熔覆的方法熔化预置的所述金刚石/紫铜混合粉末,凝固后形成铜基金刚石颗粒增强复合涂层。
进一步地,所述金刚石颗粒粒径为100~300目。
进一步地,所述步骤(1)金刚石表面电镀铬、银镀层时在通氩气的电阻炉或真空炉中进行反应烧结,烧结温度在700~950℃,保温时间为1~1.5h。
进一步地,所述步骤(1)包括:在镀铬过程中,采用电磁搅拌或超声波震荡金刚石颗粒,确保颗粒表面镀层均匀,制得表面镀层均匀的镀铬金刚石颗粒;将所述镀铬金刚石颗粒与化学镀银液进行混合,并加以超声振荡均匀分布所述金刚石颗粒,得到所述铬/银双镀层金刚石颗粒。
进一步地,所述步骤(2)中所述铬/银双镀层金刚石颗粒与所述紫铜粉按1:(3~5)的质量比混合,混合方式采用机械球磨方式,达到所述紫铜粉与所述金刚石颗粒的初步机械嵌合,球磨罐内抽真空或填充纯氩气氛,所述紫铜粉的粒径为200~325目。
进一步地,所述步骤(3)中所述金刚石/紫铜混合粉末的铺粉厚度为0.4~0.6mm,所述紫铜粉的铺粉厚度为0.35~0.4mm。
进一步地,所述步骤(3)在通惰性气体的电阻炉或真空炉中进行反应烧结,烧结温度在500~900℃,升温速率为10~30℃/min,保温时间为2~10min。
进一步地,所步骤(4)的烧结预成型的铜合金基板的预热温度为450~900℃,预热过程中持续通氩气保护,氩气流量为10~15L/min。
进一步地,所步骤(4)的激光熔覆采用半导体激光器作为热源,激光功率为0.8~1.8kW,扫描速度为3~7mm/s,光斑直径为7mm,氩气流量为15L/min。
进一步地,铜基金刚石颗粒增强复合涂层熔覆完成后,其冷却方式采用惰性气体冷却,气体流量为15~20L/min。
与现有技术相比,本发明的优点在于:
(1)本发明中的金刚石颗粒增强铜基复合材料涂层采用铬/银双镀层包覆金刚石表面,有效避免了金刚石与氧气的直接接触以及激光的直接辐照,抑制了金刚石颗粒的石墨化程度,改善了金刚石与铜基体的界面结合,显著提升了涂层的质量;
(2)本发明金刚石颗粒增强铜基复合材料涂层的激光熔覆工艺,采用预置粉末层铺的方式配合烧结预成型工艺,利用上层的纯铜粉将下层的金刚石粉层与外部空气进行隔离,进一步避免金刚石颗粒氧化;在优化的激光功率和扫描速度下,激光熔覆技术精准的热源调控有效地实现了金刚石结构的完好以及涂层结构的致密。
(3)本发明所涉及的复合材料涂层及其制备方法也可应用于其他导热材料(Al、Ag等)的表面修复,对于工程设备中难以替换的导热材料,可以直接在其表面实现修复再制造,不仅极大地节约了企业成本,而且相关寿命明显超过了修复前的材料本身。
本发明具有实际的应用前景,铬/银镀层有效地保护了金刚石颗粒在激光加工过程中的完整性,改善了金刚石与铜基体的界面结合,在保证涂层高导热性能的基础上进一步提高了耐磨性能,并且通过粉末的层铺处理以及烧结预成型处理,极大地降低了涂层材料在加工过程中的氧化和烧蚀,激光熔覆前的预热处理进一步提高了材料对激光的吸收率,保证了涂层与基体的有效冶金结合。
具体实施方式
以下介绍本发明的多个优选实施例,使其技术内容更加清楚和便于理解。本发明可以通过许多不同形式的实施例来得以体现,本发明的保护范围并非仅限于文中提到的实施例。
实施例一
(1)选取平均粒径为300目的金刚石颗粒,对金刚石颗粒依次进行丙酮和无水乙醇环境下的超声清洗,结束后取出并用去离子水洗至中性,其中,工作气压为常压,超声清洗时间为15min,清洗温度为20℃;
(2)将金刚石颗粒、Cr粉以及混合盐NaCl-KCl(质量比NaCl:KCl=1:1)配置混合原料,金刚石颗粒:Cr粉:混合盐的质量比为1:3:5~10,然后在通氩气的管式电阻炉中以5℃/min的升温速度加热至950℃并保温1h进行反应烧结,在高温下使熔盐中的Cr粉与金刚石表面反应形成Cr7C3/Cr层。随炉冷却后,将产物进行反复超声清洗和过筛处理,得到表面Cr包覆的金刚石颗粒;
(3)将镀Cr金刚石颗粒放置在无水乙醇中进行超声清洗15min,并用去离子水洗至中性后加入配置好的化学镀银液,通过超声振荡使金刚石颗粒均匀分布后,随即加入还原剂C6H12O6进行3min的镀覆反应,反应结束后取出并用去离子水冲洗至中性并烘干后,得到Cr/Ag双镀层金刚石颗粒;
(4)将Cr/Ag双镀层金刚石颗粒与粒径为325目的紫铜粉按照1:3的质量比混合,并进行机械球磨,球磨转速为250r/min,球磨时间为16h,球磨罐内抽真空,使得金刚石颗粒与铜之间达到初步的机械嵌合,得到金刚石/紫铜混合粉末;
(5)对紫铜基板进行除油除锈处理后,将金刚石/紫铜混合粉末铺入预先加工好的紫铜基板上,铺粉厚度为0.6mm,再将紫铜粉均匀铺在混合粉层上,铺粉厚度为0.4mm,最终实现紫铜基板-金刚石/紫铜混合粉末-紫铜粉的层铺粉结构;
(6)将已铺粉的铜合金基板放入真空/惰性气氛加热炉中加热至900℃,升温速率为30℃/min并保温2min,确保层铺粉末层达到初步的固化成型;
(7)预热铜合金基板至450℃,预热过程中持续通氩气保护,氩气流量为10l/min,并采用激光熔覆的方法,激光光斑直径为7mm,激光功率为1.8kW,扫描速度为7mm/s,持续通氩气保护,氩气流量为15L/min,将预置粉末层熔化制备成铜基金刚石颗粒增强复合材料涂层;
(8)铜基金刚石颗粒增强复合材料涂层熔覆完成后,在惰性汽体重冷却,惰性气体流量改为15L/min。
实施例二
(1)将平均粒径为200目的金刚石颗粒,对金刚石颗粒依次进行丙酮和无水乙醇环境下的超声清洗,结束后取出并用去离子水洗至中性,其中,工作气压为常压,超声清洗时间为15min,清洗温度为20℃;
(2)选取金刚石颗粒、Cr粉以及混合盐NaCl-KCl(质量比NaCl:KCl=1:1)配置混合原料,金刚石微粉:Cr粉:混合盐的质量比为1:4:5~10,然后在通氩气的管式电阻炉中以10℃/min的升温速度加热至700℃并保温1.5h进行反应烧结,在高温下使熔盐中的Cr粉与金刚石表面反应形成Cr7C3/Cr层。随炉冷却后,将产物进行反复超声清洗和过筛处理,得到表面Cr包覆的金刚石颗粒;
(3)将镀Cr金刚石粉放置在无水乙醇中进行超声清洗15min,并用去离子水洗至中性后加入配置好的化学镀银液,通过超声振荡使金刚石颗粒均匀分布后,随即加入还原剂C6H12O6进行3min的镀覆反应,反应结束后取出并用去离子水冲洗至中性并烘干后,得到Cr/Ag双镀层金刚石颗粒;
(4)将Cr/Ag双镀层金刚石颗粒与粒径为200目的紫铜粉按照1:4的质量比混合,并进行机械球磨,球磨转速为250r/min,球磨时间为16h,球磨罐内抽真空,使得金刚石颗粒与铜之间达到初步的机械嵌合,得到金刚石/紫铜混合粉末;
(5)对紫铜基板进行除油除锈处理后,将金刚石/紫铜混合粉末铺入预先加工好的紫铜基板上,铺粉厚度为0.4mm,再将紫铜粉均匀铺在金刚石/紫铜混合粉末层上,铺粉厚度为0.35mm,最终实现紫铜基板-金刚石/紫铜混合粉-紫铜粉的层铺粉结构;
(6)将已铺粉的铜合金基板放入真空/惰性气氛加热炉中加热至750℃,升温速率为15℃/min并保温5min,确保层铺粉末层达到初步的固化成型;
(7)预热铜合金基板至700℃,预热过程中持续通氩气保护,氩气流量为15L/min,并采用激光熔覆的方法,激光光斑直径为7mm,激光功率为1.5kW,扫描速度为5mm/s,持续通氩气保护,氩气流量为15L/min,将预置粉末层熔化制备成铜基金刚石颗粒增强复合材料涂层;
(8)铜基金刚石颗粒增强复合材料涂层熔覆完成后,在惰性汽体重冷却,惰性气体流量改为15L/min。
实施例三
(1)将平均粒径为100目的金刚石微粉,对金刚石微粉依次进行丙酮和无水乙醇环境下的超声清洗,结束后取出并用去离子水洗至中性,其中工作气压为常压,超声清洗时间为15min,清洗温度为20℃;
(2)选取金刚石颗粒、Cr粉以及混合盐NaCl-KCl(质量比NaCl:KCl=1:1)配置混合原料,金刚石颗粒:Cr粉:混合盐的质量比为1:5:5~10,然后在通氩气的管式电阻炉中以10℃/min的升温速度加热至800℃并保温1h进行反应烧结,在高温下使熔盐中的Cr粉与金刚石表面反应形成Cr7C3/Cr层,随炉冷却后,将产物进行反复超声清洗和过筛处理,得到表面Cr包覆的金刚石颗粒;
(3)将镀Cr金刚石粉放置在无水乙醇中进行超声清洗15min,并用去离子水洗至中性后加入配置好的化学镀银液,通过超声振荡使金刚石颗粒均匀分布后,随即加入还原剂C6H12O6进行3min的镀覆反应,反应结束后取出并用去离子水冲洗至中性并烘干后,得到Cr/Ag双镀层金刚石颗粒;
(4)将Cr/Ag双镀层金刚石颗粒与粒径为325目的紫铜粉按照1:5的质量比混合,并进行机械球磨,球磨转速为250r/min,球磨时间为16h,球磨罐内抽真空,使得金刚石颗粒与铜之间达到初步的机械嵌合;
(5)对紫铜基板进行除油除锈处理后,将混合后的金刚石/铜混合粉铺入预先加工好的紫铜基板上,铺粉厚度为0.6mm,再将紫铜粉均匀铺在混合粉层上,铺粉厚度为0.35mm,最终实现紫铜基板-金刚石/铜混合粉-紫铜粉的层铺结构;
(6)将已铺粉的铜合金基板放入真空/惰性气氛加热炉中加热至500℃,升温速率为10℃/min并保温10min,确保层铺粉末层达到初步的固化成型;
(7)预热铜合金基板至900℃,预热过程中持续通氩气保护,氩气流量为15L/min,并采用激光熔覆的方法,激光光斑直径为7mm,激光功率为0.8kW,扫描速度为3mm/s,持续通氩气保护,熔覆时氩气流量为10L/min,将预置粉末层熔化制备成铜基金刚石颗粒增强复合材料涂层;
(8)铜基金刚石颗粒增强复合材料涂层熔覆完成后,在惰性汽体重冷却,惰性气体流量改为15L/min。
表1和表2分别为不同实施例得到的复合涂层的硬度和热导率数值。本发明采用了不同的参数进行了完整的制备实验,得到的涂层表面平整且呈现银灰色光泽,与硬度较高的黄铜对比,涂层硬度显著提升2~3倍。与热导率与导热性能优异的紫铜对比,涂层热导率略有下降或相同。
表1实施例1~3得到的涂层的硬度值
Figure BDA0002507175080000061
Figure BDA0002507175080000071
表2实施例1~3得到的涂层的热导率
Figure BDA0002507175080000072
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (10)

1.一种铜合金表面激光熔覆铜基金刚石颗粒增强复合涂层的方法,其特征在于,包括以下步骤:
(1)超声清洗金刚石颗粒,在所述金刚石颗粒表面,通过电镀或化学镀的方法依次镀覆铬、银镀层,形成铬/银双镀层结构,得到铬/银双镀层金刚石颗粒;
(2)将所述铬/银双镀层金刚石颗粒与紫铜粉进行混合配制金刚石/紫铜混合粉末;
(3)将铜合金基板上铺上所述金刚石/紫铜混合粉末,再铺上紫铜粉,放入加热炉中进行烧结,使得所述金刚石/紫铜混合粉末在所述铜合金基板上初步固化成型,得到烧结预成型的铜合金基板;
(4)对所述烧结预成型的铜合金基板进行预热,在所述烧结预成型的铜合金基板表面采用激光熔覆的方法熔化预置的所述金刚石/紫铜混合粉末,凝固后形成铜基金刚石颗粒增强复合涂层。
2.如权利要求1所述的铜合金表面激光熔覆铜基金刚石颗粒增强复合涂层的方法,其特征在于,所述金刚石颗粒粒径为100~300目。
3.如权利要求1所述的铜合金表面激光熔覆铜基金刚石颗粒增强复合涂层的方法,其特征在于,所述步骤(1)金刚石表面电镀铬、银镀层时在通氩气的电阻炉或真空炉中进行反应烧结,烧结温度为700~950℃,保温时间为1~1.5h。
4.如权利要求1-3任一项所述的铜合金表面激光熔覆铜基金刚石颗粒增强复合涂层的方法,其特征在于,所述步骤(1)包括:在镀铬过程中,采用电磁搅拌或超声波震荡所述金刚石颗粒,制得表面镀层均匀的镀铬金刚石颗粒;将所述镀铬金刚石颗粒与化学镀银液进行混合,并加以超声振荡所述镀铬金刚石颗粒,得到所述铬/银双镀层金刚石颗粒。
5.如权利要求1-3任一项所述的铜合金表面激光熔覆铜基金刚石颗粒增强复合涂层的方法,其特征在于,所述步骤(2)中所述铬/银双镀层金刚石颗粒与所述紫铜粉分按1:(3~5)的质量比混合,混合方式采用机械球磨方式,球磨罐内抽真空或填充纯氩气氛,所述紫铜粉的粒径为200~325目。
6.如权利要求1所述的铜合金表面激光熔覆铜基金刚石颗粒增强复合涂层的方法,其特征在于,所述步骤(3)中所述金刚石/紫铜混合粉末的铺粉厚度为0.4~0.6mm,所述紫铜粉的铺粉厚度为0.35~0.4mm。
7.如权利要求1-3或6任一项所述的铜合金表面激光熔覆铜基金刚石颗粒增强复合涂层的方法,其特征在于,所述步骤(3)在通惰性气体的电阻炉或真空炉中进行反应烧结,烧结温度在500~900℃,升温速率为10~30℃/min,保温时间为2~10min。
8.如权利要求1所述的铜合金表面激光熔覆铜基金刚石颗粒增强复合涂层的方法,其特征在于,所步骤(4)的烧结预成型的铜合金基板的预热温度为450~900℃,预热过程中持续通氩气保护,氩气流量为10~15L/min。
9.如权利要求1-3或8任一项所述的铜合金表面激光熔覆铜基金刚石颗粒增强复合涂层的方法,其特征在于,所步骤(4)的激光熔覆采用半导体激光器作为热源,激光功率为0.8~1.8kW,扫描速度为3~7mm/s,光斑直径为7mm,氩气流量为15L/min。
10.如权利要求1-3或6或8任一项所述的铜合金表面激光熔覆铜基金刚石颗粒增强复合涂层的方法,其特征在于,所述铜基金刚石颗粒增强复合涂层熔覆完成后,其冷却方式采用惰性气体冷却,气体流量为15~20L/min。
CN202010449993.6A 2020-05-25 2020-05-25 铜合金表面激光熔覆铜基金刚石颗粒增强复合涂层的方法 Expired - Fee Related CN111424270B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010449993.6A CN111424270B (zh) 2020-05-25 2020-05-25 铜合金表面激光熔覆铜基金刚石颗粒增强复合涂层的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010449993.6A CN111424270B (zh) 2020-05-25 2020-05-25 铜合金表面激光熔覆铜基金刚石颗粒增强复合涂层的方法

Publications (2)

Publication Number Publication Date
CN111424270A true CN111424270A (zh) 2020-07-17
CN111424270B CN111424270B (zh) 2021-11-05

Family

ID=71555247

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010449993.6A Expired - Fee Related CN111424270B (zh) 2020-05-25 2020-05-25 铜合金表面激光熔覆铜基金刚石颗粒增强复合涂层的方法

Country Status (1)

Country Link
CN (1) CN111424270B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111889676A (zh) * 2020-08-06 2020-11-06 哈尔滨工业大学 一种增材制造工艺制备金刚石铜基复合材料的方法
CN111992708A (zh) * 2020-08-30 2020-11-27 中南大学 一种制备高性能金刚石/铜复合材料的方法
CN113118459A (zh) * 2021-04-20 2021-07-16 中南大学 一种低温激光熔覆制备刀锋的方法以及3d打印用金属基复合粉末
CN113953533A (zh) * 2021-11-01 2022-01-21 哈尔滨工业大学 选区激光熔化金属纳米粉末墨水打印铜基复合涂层的方法
CN115786910A (zh) * 2023-02-13 2023-03-14 太原理工大学 一种ZrH2增强钴基金刚石耐磨涂层的激光熔覆制备方法
CN115971475A (zh) * 2022-12-26 2023-04-18 吉林大学 一种含金刚石的超耐磨镍基复合材料及制备方法
CN116926542A (zh) * 2023-07-12 2023-10-24 北方工业大学 一种低摩擦系数的铜-镍-金刚石复合材料及其制备方法
CN116944822A (zh) * 2023-09-20 2023-10-27 华侨大学 一种pcd微钻加工方法及加工装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101279366A (zh) * 2008-05-28 2008-10-08 天津大学 表面金属化与化学沉积制备金刚石增强铜基复合材料的方法
CN101285187A (zh) * 2008-05-15 2008-10-15 西北工业大学 一种颗粒增强金属基复合材料的制备方法
JP2011079929A (ja) * 2009-10-06 2011-04-21 Shingijutsu Kaihatsu Kk 二重被覆ダイヤモンド研磨材粒子及びその製造方法
CN103481025A (zh) * 2013-08-28 2014-01-01 青岛云路新能源科技有限公司 结晶器铜辊表面的改性方法
CN105568037A (zh) * 2016-01-14 2016-05-11 北京科技大学 一种镀铬金刚石颗粒分散铜基复合材料的制备方法
CN105734485A (zh) * 2016-04-19 2016-07-06 太原理工大学 一种铍铜合金表面复合耐磨涂层的制备方法
JP2017088978A (ja) * 2015-11-13 2017-05-25 日産自動車株式会社 摺動機構、該摺動機構を用いた冷媒圧縮機及び空調機、上記摺動機構の製造方法。
CN107058937A (zh) * 2017-03-30 2017-08-18 白洪玮 一种等离子喷涂金刚石耐磨层及其制备方法
CN107900327A (zh) * 2017-11-16 2018-04-13 北京科技大学 一种结合3d打印技术制备金刚石/铜复合材料的方法
CN108277377A (zh) * 2017-06-10 2018-07-13 虞庆煌 一种高导热铜基复合材料及用于制备电子封装材料的用途
CN108330492A (zh) * 2018-03-20 2018-07-27 中南大学 一种铜结晶器表面涂层的制备方法
JP2019199636A (ja) * 2018-05-15 2019-11-21 帝国イオン株式会社 耐摩耗性皮膜、耐摩耗性部材及び耐摩耗性皮膜の製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101285187A (zh) * 2008-05-15 2008-10-15 西北工业大学 一种颗粒增强金属基复合材料的制备方法
CN101279366A (zh) * 2008-05-28 2008-10-08 天津大学 表面金属化与化学沉积制备金刚石增强铜基复合材料的方法
JP2011079929A (ja) * 2009-10-06 2011-04-21 Shingijutsu Kaihatsu Kk 二重被覆ダイヤモンド研磨材粒子及びその製造方法
CN103481025A (zh) * 2013-08-28 2014-01-01 青岛云路新能源科技有限公司 结晶器铜辊表面的改性方法
JP2017088978A (ja) * 2015-11-13 2017-05-25 日産自動車株式会社 摺動機構、該摺動機構を用いた冷媒圧縮機及び空調機、上記摺動機構の製造方法。
CN105568037A (zh) * 2016-01-14 2016-05-11 北京科技大学 一种镀铬金刚石颗粒分散铜基复合材料的制备方法
CN105734485A (zh) * 2016-04-19 2016-07-06 太原理工大学 一种铍铜合金表面复合耐磨涂层的制备方法
CN107058937A (zh) * 2017-03-30 2017-08-18 白洪玮 一种等离子喷涂金刚石耐磨层及其制备方法
CN108277377A (zh) * 2017-06-10 2018-07-13 虞庆煌 一种高导热铜基复合材料及用于制备电子封装材料的用途
CN107900327A (zh) * 2017-11-16 2018-04-13 北京科技大学 一种结合3d打印技术制备金刚石/铜复合材料的方法
CN108330492A (zh) * 2018-03-20 2018-07-27 中南大学 一种铜结晶器表面涂层的制备方法
JP2019199636A (ja) * 2018-05-15 2019-11-21 帝国イオン株式会社 耐摩耗性皮膜、耐摩耗性部材及び耐摩耗性皮膜の製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HONG SUN ET AL.: "Elaborating highly thermal-conductive diamond/Cu composites by sintering intermittently electroplated core-shell powders", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
丁龙先等: "《钛及其合金耐磨涂层与性能》", 31 December 2006, 东北大学出版社 *
吴丽娟等: "金刚石粒径及含量对超音速激光沉积金刚石/Cu复合涂层微观结构及性能的影响", 《表面技术》 *
杨理京等: "超音速激光沉积与激光熔覆金刚石强化涂层的组织形态", 《材料热处理学报》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111889676A (zh) * 2020-08-06 2020-11-06 哈尔滨工业大学 一种增材制造工艺制备金刚石铜基复合材料的方法
CN111889676B (zh) * 2020-08-06 2021-10-19 哈尔滨工业大学 一种增材制造工艺制备金刚石铜基复合材料的方法
CN111992708A (zh) * 2020-08-30 2020-11-27 中南大学 一种制备高性能金刚石/铜复合材料的方法
CN111992708B (zh) * 2020-08-30 2021-10-22 中南大学 一种制备高性能金刚石/铜复合材料的方法
CN113118459A (zh) * 2021-04-20 2021-07-16 中南大学 一种低温激光熔覆制备刀锋的方法以及3d打印用金属基复合粉末
CN113953533A (zh) * 2021-11-01 2022-01-21 哈尔滨工业大学 选区激光熔化金属纳米粉末墨水打印铜基复合涂层的方法
CN115971475A (zh) * 2022-12-26 2023-04-18 吉林大学 一种含金刚石的超耐磨镍基复合材料及制备方法
CN115786910A (zh) * 2023-02-13 2023-03-14 太原理工大学 一种ZrH2增强钴基金刚石耐磨涂层的激光熔覆制备方法
CN116926542A (zh) * 2023-07-12 2023-10-24 北方工业大学 一种低摩擦系数的铜-镍-金刚石复合材料及其制备方法
CN116926542B (zh) * 2023-07-12 2024-03-19 北方工业大学 一种低摩擦系数的铜-镍-金刚石复合材料及其制备方法
CN116944822A (zh) * 2023-09-20 2023-10-27 华侨大学 一种pcd微钻加工方法及加工装置
CN116944822B (zh) * 2023-09-20 2023-12-26 华侨大学 一种pcd微钻加工方法

Also Published As

Publication number Publication date
CN111424270B (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
CN111424270B (zh) 铜合金表面激光熔覆铜基金刚石颗粒增强复合涂层的方法
CN106424713B (zh) 一种铜碳复合材料及其制备方法
CN111992708B (zh) 一种制备高性能金刚石/铜复合材料的方法
CN1932082A (zh) 在结晶器表面激光快速熔覆制备耐磨抗热复合涂层工艺
CN108080629B (zh) 一种金属基碳纳米管复合材料零件的成形方法
CN111519076A (zh) 一种金刚石颗粒增强金属基复合材料及其制备方法和应用
CN104388847A (zh) 一种碳纤维增强的铜基复合材料及其制备方法
CN113881875B (zh) 一种三维骨架结构金属增强铝基复合材料及制备方法
CN105568037B (zh) 一种镀铬金刚石颗粒分散铜基复合材料的制备方法
CN111957975B (zh) 一种石墨烯增强铜基复合材料的制备方法
CN106799496A (zh) 一种石墨和铝硅合金复合电子封装材料及其制备方法
CN112935249B (zh) 一种金刚石/金属基复合材料的高效制备方法
CN110744058A (zh) 一种原位合成铜基复合材料的制备方法
CN114192750A (zh) 一种金刚石/铜复合热导材料及其制备方法
CN111889676A (zh) 一种增材制造工艺制备金刚石铜基复合材料的方法
CN110284019B (zh) 一种在金属中定向掺杂石墨的方法
CN108018548B (zh) 一种修复钨基粉末合金压铸模具涂层合金及其制备方法
CN104532042B (zh) 一种立方氮化硼颗粒增强Cu基电极复合材料及其制备方法
CN110117727A (zh) 一种基于3d打印技术制备颗粒增强金属基复合材料的方法
CN112553498B (zh) 一种铜-球墨铸铁双金属液压耐磨部件及其制备方法
CN109402625B (zh) 一种合金结构钢激光沉积孔洞消除方法
CN110340344B (zh) 一种提高激光增材制造合金钢粉末利用率的方法
CN112705845A (zh) 一种耐磨涂层及其制备方法和应用
CN101214741A (zh) 硬质丝网耐磨复合材料及其制备工艺
CN102864453B (zh) 激光熔覆原位合成硼化物陶瓷涂层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20211105

CF01 Termination of patent right due to non-payment of annual fee