WO2019218418A1 - 一种根据克莱森-施密特反应合成光敏化合物的制备方法 - Google Patents

一种根据克莱森-施密特反应合成光敏化合物的制备方法 Download PDF

Info

Publication number
WO2019218418A1
WO2019218418A1 PCT/CN2018/091398 CN2018091398W WO2019218418A1 WO 2019218418 A1 WO2019218418 A1 WO 2019218418A1 CN 2018091398 W CN2018091398 W CN 2018091398W WO 2019218418 A1 WO2019218418 A1 WO 2019218418A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
substituent
claisen
photosensitive compound
follows
Prior art date
Application number
PCT/CN2018/091398
Other languages
English (en)
French (fr)
Inventor
聂俊
李经方
朱晓群
Original Assignee
北京化工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京化工大学 filed Critical 北京化工大学
Publication of WO2019218418A1 publication Critical patent/WO2019218418A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/12Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/22Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D277/24Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/56Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/64Sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/22Radicals substituted by doubly bound hetero atoms, or by two hetero atoms other than halogen singly bound to the same carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/30Hetero atoms other than halogen
    • C07D333/32Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/42Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms with nitro or nitroso radicals directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • C07F17/02Metallocenes of metals of Groups 8, 9 or 10 of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light

Definitions

  • the invention relates to the field of organic synthesis, and mainly relates to a method for preparing a photosensitive compound according to a Claisen-Schmidt reaction.
  • Photoinitiators are a key component of photocuring systems. They are related to the rapid conversion of oligomers and diluents from liquid to solid in the formulation system.
  • the basic function is that the initiator molecules are in the ultraviolet region ( 250 ⁇ 400nm) or visible light (400 ⁇ 800nm) has a certain ability to absorb light. After directly or indirectly absorbing light energy, the initiator transitions from the ground state to the excited singlet state, and the intersystem passes to the excited triplet state.
  • the traditional UV light source mercury lamp is gradually replaced by the LED lamp, and the long-wavelength photoinitiator matched with the LED lamp light source has an absorption wavelength of 400 nm or more.
  • the structure of the long-wavelength photoinitiator must have a large conjugated system to ensure that it has a certain light absorption capacity above 400 nm.
  • the Claisen-Schmidt condensation reaction is a very important reaction.
  • an ⁇ -H-free aromatic aldehyde and an ⁇ -H-containing aliphatic ketone are used, and a mixed aldol condensation reaction is carried out under the condition of a base catalyst to obtain a product ⁇ , ⁇ -unsaturated aldehyde ketone, as follows The figure shows:
  • this structure of unsaturated aldehydes and ketones has a conjugated double bond in the molecule, the absorption spectrum shifts long wavelengths, and its maximum absorption wavelength can reach more than 400. It belongs to the hydrogen abstraction photoinitiator. Under the conditions of adding the initiator EDAB (PI 1 wt%, EDAB 1 wt%), the monomer HDDA can be initiated with LED 405 nm. Its double bond conversion rate can reach 55% within 600s.
  • the invention replaces benzaldehyde with an aldehyde of a hybrid five-membered ring structure with O, S, N, C according to the Claisen-Schmidt reaction, and can form an unsaturated double bond due to the presence of an isolated electron pair on the hetero atom.
  • the maximum absorption wavelength of the product after the reaction of the conjugated system with the ⁇ -H-containing fatty ketone is 450 nm or more. Applicants have found that this photoinitiator not only acts as a long-wavelength photoinitiator, but also has a very high efficiency for the initiation of monomeric PEGDA (see figure). The conversion of double bonds in 60s can reach 70%.
  • the photoinitiator content is only 0.02% of the mass of the monomer.
  • the photoinitiator is irradiated by ultraviolet light, the maximum absorption wavelength is red shifted from 450 nm to 500 nm, and finally the blue shift is below 400 nm, and the color of the initiator changes from yellow to deep yellow under ultraviolet light, and finally becomes colorless, with The effect of photobleaching (see photo).
  • this preparation method is particularly necessary.
  • the synthesized heterocyclic photosensitive compound has an aggregation-induced luminescence AIE effect in addition to being an initiator.
  • AIE aggregation-induced luminescence
  • Conventional fluorescent chromophores reduce or even illuminate at high concentrations, a phenomenon known as the "concentration quenching" effect.
  • concentration quenching is related to the formation of aggregates, so the concentration quenching effect is also commonly referred to as “aggregation leads to fluorescence quenching (ACQ)”.
  • ACQ fluorescence quenching
  • AIE aggregation-induced luminescence
  • the object of the present invention is to provide a preparation method according to a Claisen-Smith counter-synthesis photoinitiator, which has simple conditions and mild reaction, and the synthesized photosensitive compound has the following characteristics as a photoinitiator:
  • the photoinitiator and the polyethylene glycol monomer have a high reaction rate without adding a co-initiator, and the double bond conversion rate can reach about 70% in 60s, and the photoinitiator content is only Achieve 0.02% of the monomer mass.
  • the maximum absorption wavelength is red-shifted from 450 nm to 500 nm, and finally the blue shift is below 400 nm, that is, the color of the initiator changes from yellow to deep yellow under ultraviolet light, and finally becomes colorless.
  • the blue shift is below 400 nm, that is, the color of the initiator changes from yellow to deep yellow under ultraviolet light, and finally becomes colorless.
  • this compound having an AIE effect has a novel heterocyclic structure as compared with the conventional AIE star molecule TPE. It is a major advance in the field of organic synthesis.
  • Photosensitive compounds were prepared by a Claisen-Smith reaction.
  • R O or S or N or C
  • R 1 , R 2 , R 3 , R 4 may be H or a halogen substituent (F, Cl, Br, I) or a substituent with O (-CHO, -COOH, -CO, OH) or a band N Substituents (-NH 3 , -NO 2 , -CN) or substituents with S (-HS, -SO 3 H, -CH 2 S) or alkanes with the above substituents, alkenes, alkynes, aromatics Whole chain or branch.
  • a halogen substituent F, Cl, Br, I
  • O -CHO, -COOH, -CO, OH
  • Substituents -NH 3 , -NO 2 , -CN
  • substituents with S -HS, -SO 3 H, -CH 2 S
  • alkanes with the above substituents, alkenes, alkynes, aromatics Whole chain or branch.
  • R 1 , R 2 , R 3 -NaO 2 S, -B(OH) 2
  • R 5 , R 6 , and R 7 are the substituents described in 1) 2)
  • R 8 - R 28 are the substituents described in 1) 2).
  • R 29 -R 31 may be a substituent as described in 1) 2)
  • a photosensitive compound is synthesized according to the Claisen-Schmidt reaction, and its structural formula is as follows:
  • R O or S or N or C
  • R 1 , R 2 , R 3 , R 4 are H or a halogen substituent: F, Cl, Br, I or a substituent with O: -CHO, -COOH, -CO, OH or a substituent with N:- NH 3 , -NO 2 , -CN or a substituent with S: -HS, -SO 3 H, -CH 2 S or an alkane having the above substituent, an alkene, an alkyne, an aromatic hydrocarbon chain or a branch;
  • R 1 , R 2 , R 3 -NaO 2 S, -B(OH) 2
  • Example 1 is a 1 H-NMR spectrum of dimethylene fluorenylcyclohexanone (DFC) obtained in Example 1 of the present invention.
  • Example 2 is a UV absorption spectrum of dimethylene fluorenylcyclohexanone (DFC) obtained in Example 1 of the present invention (10 -5 mol/L acetonitrile)
  • DFC dimethylene fluorenylcyclohexanone
  • Example 3 is a real-time infrared spectrum of dimer fluorenylcyclohexanone (DFC) obtained in Example 1 of the present invention for different monomers.
  • DFC dimer fluorenylcyclohexanone
  • Example 4 is a color change of a mixed solution of dimercaptocyclohexanone (DFC) and PEGDA obtained in Example 1 of the present invention under ultraviolet light.
  • DFC dimercaptocyclohexanone
  • Figure 5 is a schematic view showing the AIE effect of dimercaptoacetone (DNA) according to Example 1 of the present invention.
  • a photosensitive compound according to the Claisen-Smitt reaction described in the present invention is prepared as follows:
  • the aldehyde and ketone compound described in 1, 2 is added to the low boiling point reagent at a molar ratio of 2:1, and the alkaline solution having a mass fraction of 1% to 5% is used as a catalyst to adjust the pH to 13, and a nitrogen reaction is carried out. After reacting at a certain temperature for 3-5 hours, the reaction was continued for 3 hours using an ice bath, and pale yellow crystals were precipitated, washed with an organic solvent, and dried in vacuo to give a purified product.
  • the low boiling point (boiling point less than 150 ° C) organic solvent includes methanol, or ethanol, or ethyl acetate, or dichloromethane, or chloroform, or acetonitrile, or acetone, or toluene;
  • the temperature is 20 ° C ⁇ 50 ° C;
  • the alkaline solution as the catalyst is ammonia water, or sodium hydroxide, or potassium hydroxide, or sodium hydrogencarbonate, the mass fraction is 1% to 5%, and the pH is adjusted to 13;
  • the organic solvent for washing the crude product includes methanol, or ethanol, or ethyl acetate, or dichloromethane, or chloroform, or acetonitrile, or acetone.
  • step 2) Add 3-5 drops of 5% aqueous solution of NaOH (0.5 g NaOH, 9.5 g of water) to the mixed solution prepared in step 1), adjust the pH to 13, and react for 3 h at 30 ° C, then pass nitrogen. The reaction was continued for 3 hours using an ice bath to precipitate pale yellow crystals.
  • NaOH 0.5 g NaOH, 9.5 g of water
  • step 3 The pale yellow crystals of step 2 were washed with dichloromethane and dried in vacuo to give a pure pale yellow product.
  • the synthesized photoinitiator has a maximum absorption wavelength of 450 nm, without adding a co-initiator, and the initiator content is only 0.02 wt%, and the double bond conversion rate to monomeric PEGDA is 70% within 300 s, and photobleaching Effect. Has an AIE effect.
  • step 2) 3-5 drops of a 1% NaHCO 3 aqueous solution (0.1 g of NaHCO 3 , 9.9 g of water) were added dropwise to the mixed solution prepared in the step 1), the pH was adjusted to 13, and the reaction was carried out at 30 ° C for 3 hours. Nitrogen gas was introduced, and the reaction was continued for 3 hours using an ice bath to precipitate pale yellow crystals.
  • a 1% NaHCO 3 aqueous solution 0.1 g of NaHCO 3 , 9.9 g of water
  • step 3 The pale yellow crystals of step 2 were washed with methanol and dried in vacuo to give a pure pale yellow product.
  • the maximum absorption wavelength of the synthesized photoinitiator reaches 458 nm, and the initiator content is only 0.02 wt% without adding a co-initiator, and the double bond conversion rate to monomeric PEGDA is 68% within 300 s, with photobleaching. Effect. Has an AIE effect.
  • step 2) Add 3-5 drops of 2% aqueous ammonia solution (0.2 g ammonia water, 9.8 g water) to the mixed solution prepared in step 1), and react at 30 ° C for 3 h, adjust the pH to 13, and pass Nitrogen gas was used for 3 hours using an ice bath to precipitate pale yellow crystals.
  • 2% aqueous ammonia solution 0.2 g ammonia water, 9.8 g water
  • step 3 The pale yellow crystals of step 2 were washed with ethyl acetate and dried in vacuo to give a pale yellow product.
  • the synthesized photoinitiator has a maximum absorption wavelength of 461 nm, without the addition of a co-initiator, and the initiator content is only 0.02 wt%, and the double bond conversion rate to monomeric PEGDA is 78% within 300 s, with photobleaching. Effect. Has an AIE effect.
  • step 2) Add 3-5 drops of 5% aqueous solution of NaOH (0.5 g NaOH, 9.5 g of water) to the mixed solution prepared in step 1), adjust the pH to 13, and react for 3 h at 50 ° C, then pass nitrogen. The reaction was continued for 3 hours using an ice bath to precipitate pale yellow crystals.
  • NaOH 0.5 g NaOH, 9.5 g of water
  • step 3 The pale yellow crystal of step 2 was washed with ethanol and dried in vacuo to give a pure pale yellow product.
  • the synthesized photoinitiator has a maximum absorption wavelength of 470 nm, without the addition of a co-initiator, and the initiator content is only 0.02 wt%, and the double bond conversion to monomeric PEGDA is 55% within 300 s, with photobleaching. Effect. Has an AIE effect.
  • step 2) Add 3-5 drops of 5% aqueous solution of NaOH (0.5 g NaOH, 9.5 g of water) to the mixed solution prepared in step 1), adjust the pH to 13, and react for 3 h at 50 ° C, then pass nitrogen. The reaction was continued for 3 hours using an ice bath to precipitate pale yellow crystals.
  • NaOH 0.5 g NaOH, 9.5 g of water
  • step 3 The pale yellow crystal of step 2 was washed with ethanol and dried in vacuo to give a pure pale yellow product.
  • the synthesized photoinitiator has a maximum absorption wavelength of 456 nm, without the addition of a co-initiator, and the initiator content is only 0.02 wt%, and the double bond conversion rate to the monomeric PEGDA is 33% within 300 s, with photobleaching. Effect. Has an AIE effect.
  • step 2) Add 3-5 drops of 5% aqueous solution of NaOH (0.5 g NaOH, 9.5 g of water) to the mixed solution prepared in step 1), adjust the pH to 13, and react for 3 h at 50 ° C, then pass nitrogen. The reaction was continued for 3 hours using an ice bath to precipitate pale yellow crystals.
  • NaOH 0.5 g NaOH, 9.5 g of water
  • step 3 The pale yellow crystal of step 2 was washed with ethanol and dried in vacuo to give a pure pale yellow product.
  • the synthesized photoinitiator has a maximum absorption wavelength of 456 nm, without adding a co-initiator, and the initiator content is only 0.02 wt%, and the double bond conversion rate to monomeric PEGDA is 61% within 300 s, with photobleaching. Effect. Has an AIE effect.
  • step 2) Add 3-5 drops of 5% aqueous solution of NaOH (0.5 g NaOH, 9.5 g of water) to the mixed solution prepared in step 1), adjust the pH to 13, and react for 3 h at 50 ° C, then pass nitrogen. The reaction was continued for 3 hours using an ice bath to precipitate pale yellow crystals.
  • NaOH 0.5 g NaOH, 9.5 g of water
  • step 3 The pale yellow crystal of step 2 was washed with ethanol and dried in vacuo to give a pure pale yellow product.
  • the maximum absorption wavelength of the synthesized photoinitiator reaches 452 nm, and the initiator content is only 0.02 wt% without adding a co-initiator, and the double bond conversion rate to monomeric PEGDA is 58% within 300 s, with photobleaching. Effect. Has an AIE effect.
  • step 2) Add 3-5 drops of 5% aqueous solution of NaOH (0.5 g NaOH, 9.5 g of water) to the mixed solution prepared in step 1), adjust the pH to 13, and react for 4 h at 50 ° C, then pass nitrogen. The reaction was continued for 3 hours using an ice bath to precipitate pale yellow crystals.
  • NaOH 0.5 g NaOH, 9.5 g of water
  • step 3 The pale yellow crystal of step 2 was washed with ethanol and dried in vacuo to give a pure pale yellow product.
  • the synthesized photoinitiator has a maximum absorption wavelength of 460 nm, without the addition of a co-initiator, and the initiator content is only 0.02 wt%, and the double bond conversion rate to the monomeric PEGDA is 55% within 300 s, with photobleaching. Effect. Has an AIE effect.
  • step 2) Add 3-5 drops of 5% aqueous solution of NaOH (0.5 g NaOH, 9.5 g of water) to the mixed solution prepared in step 1), adjust the pH to 13, and react for 3 h at 40 ° C, then pass nitrogen gas. The reaction was continued for 3 hours using an ice bath to precipitate pale yellow crystals.
  • NaOH 0.5 g NaOH, 9.5 g of water
  • step 3 The pale yellow crystal of step 2 was washed with ethanol and dried in vacuo to give a pure pale yellow product.
  • the synthesized photoinitiator has a maximum absorption wavelength of 480 nm, without adding a co-initiator, and the initiator content is only 0.02 wt%, and the double bond conversion rate to monomeric PEGDA is 58% within 300 s, with photobleaching. Effect. Has an AIE effect.
  • step 3 The pale yellow crystal of step 2 was washed with ethanol and dried in vacuo to give a pure pale yellow product.
  • the synthesized photoinitiator has a maximum absorption wavelength of 480 nm, without adding a co-initiator, and the initiator content is only 0.02 wt%, and the double bond conversion rate to monomeric PEGDA is 59% within 300 s, with photobleaching. Effect. Has an AIE effect.
  • step 3 The pale yellow crystal of step 2 was washed with ethanol and dried under vacuum to give a pure pale yellow product.
  • the maximum absorption wavelength of the synthesized photoinitiator reaches 405 nm, and the initiator content is only 0.02 wt% without adding a co-initiator, and the double bond conversion rate to monomeric PEGDA is 52% within 300 s, with photobleaching. Effect. Has an AIE effect.
  • step 3 The pale yellow crystal of step 2 was washed with ethanol and dried in vacuo to give a pure pale yellow product.
  • the synthesized photoinitiator has a maximum absorption wavelength of 468 nm, without adding a co-initiator, and the initiator content is only 0.02 wt%, and the double bond conversion rate to monomeric PEGDA is 51% within 300 s, with photobleaching. Effect. Has an AIE effect.
  • step 2) 3-5 drops of a 1% NaHCO 3 aqueous solution (0.1 g of NaHCO 3 , 9.9 g of water) were added dropwise to the mixed solution prepared in the step 1), the pH was adjusted to 13, and the reaction was carried out for 3 hours at 25 ° C. Nitrogen gas was introduced, and the reaction was continued for 3 hours using an ice bath to precipitate pale yellow crystals.
  • a 1% NaHCO 3 aqueous solution 0.1 g of NaHCO 3 , 9.9 g of water
  • step 3 The pale yellow crystals of step 2 were washed with acetone and dried in vacuo to give a pure pale yellow product.
  • the synthesized photoinitiator has a maximum absorption wavelength of 430 nm, without adding a co-initiator, and the initiator content is only 0.02 wt%, and the double bond conversion rate to monomeric PEGDA is 56% within 300 s, with photobleaching. Effect. Has an AIE effect.
  • step 2) 3-5 drops of a 1% NaHCO 3 aqueous solution (0.1 g of NaHCO 3 , 9.9 g of water) were added dropwise to the mixed solution prepared in the step 1), the pH was adjusted to 13, and the reaction was carried out for 3 hours at 25 ° C. Nitrogen gas was introduced, and the reaction was continued for 3 hours using an ice bath to precipitate pale yellow crystals.
  • a 1% NaHCO 3 aqueous solution 0.1 g of NaHCO 3 , 9.9 g of water
  • step 3 The pale yellow crystals of step 2 were washed with chloroform and the solvent was evaporated in vacuo to give a pale pale yellow product.
  • the maximum absorption wavelength of the synthesized photoinitiator reaches 413 nm, and the initiator content is only 0.02 wt% without adding a co-initiator, and the double bond conversion rate to monomeric PEGDA is 35% within 300 s, with photobleaching. Effect. Has an AIE effect.
  • step 2) 3-5 drops of a 1% NaHCO 3 aqueous solution (0.1 g of NaHCO 3 , 9.9 g of water) were added dropwise to the mixed solution prepared in the step 1), the pH was adjusted to 13, and the reaction was carried out for 3 hours at 25 ° C. Nitrogen gas was introduced, and the reaction was continued for 3 hours using an ice bath to precipitate pale yellow crystals.
  • a 1% NaHCO 3 aqueous solution 0.1 g of NaHCO 3 , 9.9 g of water
  • step 3 The pale yellow crystals of step 2 were washed with chloroform and the solvent was evaporated in vacuo to give a pale pale yellow product.
  • the maximum absorption wavelength of the synthesized photoinitiator reaches 4120 nm, and the initiator content is only 0.02 wt% without adding a co-initiator, and the double bond conversion rate to monomeric PEGDA is 69% within 300 s, with photobleaching. Effect. Has an AIE effect.
  • step 2) 3-5 drops of a 1% NaHCO 3 aqueous solution (0.1 g of NaHCO 3 , 9.9 g of water) were added dropwise to the mixed solution prepared in the step 1), the pH was adjusted to 13, and the reaction was carried out for 3 hours at 25 ° C. Nitrogen gas was introduced, and the reaction was continued for 3 hours using an ice bath to precipitate pale yellow crystals.
  • a 1% NaHCO 3 aqueous solution 0.1 g of NaHCO 3 , 9.9 g of water
  • step 3 The pale yellow crystals of step 2 were washed with chloroform and the solvent was evaporated in vacuo to give a pale pale yellow product.
  • the maximum absorption wavelength of the synthesized photoinitiator reaches 435 nm, and the initiator content is only 0.02 wt% without adding a co-initiator, and the double bond conversion rate to monomeric PEGDA is 58% within 300 s, with photobleaching. Effect. Has an AIE effect.
  • step 2) Add 3-5 drops of 1% NaHCO 3 aqueous solution (0.1 g NaHCO 3 , 9.9 g water) to the mixed solution prepared in step 1), adjust the pH to 13, and react at 25 ° C for 5 h. Nitrogen gas was used for 3 hours using an ice bath to precipitate pale yellow crystals.
  • 1% NaHCO 3 aqueous solution 0.1 g NaHCO 3 , 9.9 g water
  • step 3 The pale yellow crystal of step 2 was washed with ethanol and dried in vacuo to give a pure pale yellow product.
  • the maximum absorption wavelength of the synthesized photoinitiator reaches 408 nm, and the initiator content is only 0.02 wt% without adding a co-initiator, and the double bond conversion rate to monomeric PEGDA is 69% within 300 s, with photobleaching. Effect. Has an AIE effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polymerisation Methods In General (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供了一种根据克莱森-施密特反应合成光敏化合物的制备方法,选取一种无α-H的醛与一种含有α-H的酮合成得到产物α、β-不饱和醛酮,该制备方法条件简单,反应温和,且制备得到光敏化合物作为的夺氢型光引发剂具有长波长,用量少,在不添加助引发剂的条件下,对单体PEGDA有良好的引发效果,在紫外灯下,吸收波长先从450红移到500,最后蓝移到400以下的功能。且这种光敏化合物具有AIE效应。

Description

一种根据克莱森-施密特反应合成光敏化合物的制备方法 技术领域:
本发明涉及有机合成领域,主要涉及一种根据克莱森-施密特反应制备光敏化合物的方法。
背景技术:
光引发剂是光固化体系的关键组成部分,它关系到配方体系在光照射时低聚物及稀释剂能否迅速由液态转变为固态,其基本作用特点为:引发剂分子在紫外光区(250~400nm)或可见光(400~800nm)有一定的吸光能力,在直接或间接吸收光能后,引发剂从基态跃迁到激发单线态,经系间窜越到激发三线态。
现今,随着节能环保理念在光聚合领域的深入,传统UV光源汞灯逐渐被LED灯取代,而与LED灯光源匹配的长波长光引发剂,其吸收波长在400nm以上。且长波长光引发剂的结构必须存在大的共轭体系,以保证其在400nm以上有一定的吸光能力。
作为羰基化合物羟醛缩合反应的一种,克莱森-施密特缩合反应是一个非常重要的反应。莱纳·路德维希·克莱森和J·古斯塔夫·施密特于1881年各自独立发表了该反应的论文。反应中使用了一种无α-H的芳香醛和一种含有α-H的脂肪酮,在碱催化剂的条件下,进行混合羟醛缩合反应,得到产物α、β-不饱和醛酮,如下图所示:
Figure PCTCN2018091398-appb-000001
申请人已发现这种结构的不饱和醛酮(DBA)由于分子中增加了共轭双键,吸收光谱将长波长移动,其最大吸收波长能达到400以上,属于夺氢型光引发剂,在添加助引发剂EDAB(PI 1wt%,EDAB 1wt%)的条件下,能用LED405nm引发单体HDDA。600s内其双键转化率 能达到55%。
本发明根据克莱森-施密特反应将苯甲醛更换成带O,S,N,C的杂化五元环结构的醛,由于杂原子上存在孤立电子对,能够与不饱和双键形成共轭体系,与含有α-H的脂肪酮反应后的产物的最大吸收波长为450nm以上。申请人已发现这种光引发剂不仅仅作为一种长波长光引发剂,这种引发剂对单体PEGDA有很好的引发效率(见附图),60s内双键转化率能够达到70%左右,且光引发剂的含量仅仅达到单体质量的0.02%。且光引发剂在紫外光照射下,最大吸收波长从450nm红移到500nm,最后蓝移到400nm以下,及引发剂颜色在紫外灯照射下由黄色变为深黄色,最后变为无色,具有光漂白的效果(见附图)。
根据这种条件简单,反应温和的制备方法,且合成的光引发剂具有以上特点,这种制备方法就显得尤为必要。
且合成的杂环光敏化合物除了能作为引发剂以外,还具有聚集诱导发光AIE效应。传统的荧光生色团在高浓度下荧光会减弱甚至不发光,这种现象被称作“浓度猝灭”效应。浓度猝灭的主要原因跟聚集体的形成有关,故浓度猝灭效应通常也被叫做“聚集导致荧光猝灭(ACQ)”。2001年,唐本忠教授课题组发现了一个奇特的现象:一些噻咯分子在溶液中几乎不发光,而在聚集状态或固体薄膜下发光大大增强。因为此发光增强是由聚集所导致的,故我们形象地将此现象定义为“聚集诱导发光(AIE)”.具有AIE效应的冷光材料在细胞成像,生物荧光探针等领域有很好的应用前景。
发明内容:
本发明的目的在于提供一种根据克莱森-斯密特反合成光引发剂的制备方法,条件简单,反应温和,且合成的光敏化合物作为光引发剂具有以下特点:
(1)光引发剂杂化五元环结构上的O,S,N原子具有孤立电对,与苯环相比,能与双键结构形成大共轭体系,从而使引发剂最大吸收波长达到500nm;
(2)光引发剂与聚乙二醇类单体在不添加助引发剂的条件下,具有较高的反应速率,60s内双键转化率能够达到70%左右,且光引发剂的含量仅仅达到单体质量的0.02%。
(3)光引发剂在紫外光照射下,最大吸收波长从450nm红移到500nm,最后蓝移到400nm以下,即引发剂颜色在紫外灯照射下由黄色变为深黄色,最后变为无色,具有光漂白的效果。
且这种具有AIE效应的化合物与传统的AIE明星分子TPE相比,具有新颖的杂环结构。是有机合成领域的一大进展。
本发明的技术方案如下:
通过克莱森-斯密特反应制备光敏化合物。
1.参与反应的无α-H的醛的结构通式如下:
Figure PCTCN2018091398-appb-000002
R=O或S或N或C
1)R 1,R 2,R 3,R 4可以为H或卤素取代基(F,Cl,Br,I)或带O的取代基(-CHO,-COOH,-CO,OH)或带N的取代基(-NH 3,-NO 2,-CN)或带S的取代基(-HS,-SO 3H,-CH 2S)或带有以上取代基的烷烃,烯烃,炔烃,芳烃整链或支链。
2)未涉及1)的取代基归纳如下:
R 1,R 2,R 3=-NaO 2S,-B(OH) 2
Figure PCTCN2018091398-appb-000003
Figure PCTCN2018091398-appb-000004
其中R=O或S或N或C
R 5,R 6,R 7为1)2)所述的取代基
n=1-12
不符合以上结构通式的无α-H的醛的结构通式归纳如下:
Figure PCTCN2018091398-appb-000005
其中R=O或S或N或C
R 8-R 28为1)2)所述的取代基。
2.参与反应的含有α-H的酮的常规结构通式如下:
Figure PCTCN2018091398-appb-000006
R 29-R 31可以为1)2)所述的取代基
n=1-12
其中反应方程式如下
Figure PCTCN2018091398-appb-000007
一种根据克莱森-施密特反应合成光敏化合物,其结构式如下:
Figure PCTCN2018091398-appb-000008
或者一种根据克莱森-施密特反应合成光敏化合物,其结构式如下:
Figure PCTCN2018091398-appb-000009
R=O或S或N或C
R 1,R 2,R 3,R 4为H或卤素取代基:F,Cl,Br,I或带O的取代基:-CHO,-COOH,-CO,OH或带N的取代基:-NH 3,-NO 2,-CN或带S的取代基:-HS,-SO 3H,-CH 2S或带有以上取代基的烷烃,烯烃,炔烃,芳烃整链或支链;
或者,
R 1,R 2,R 3=-NaO 2S,-B(OH) 2
Figure PCTCN2018091398-appb-000010
Figure PCTCN2018091398-appb-000011
Figure PCTCN2018091398-appb-000012
R 5,R 6,R 7为上述的取代基;n=1-12。
附图说明:
图1为本发明实施例1得到的二亚糠基环己酮(DFC) 1H-NMR图谱
图2为本发明实施例1得到的二亚糠基环己酮(DFC)紫外吸收图谱(10 -5mol/L乙腈)
图3为本发明实施例1得到的二亚糠基环己酮(DFC)对不同单体的实时红外谱图
图4为本发明实施例1得到的二亚糠基环己酮(DFC)与PEGDA的混合溶液在紫外灯下的颜色变化
图5为本发明实施例1的到的二吲哚基丙酮(DNA)的AIE效应示意图
本发明中所述的一种根据克莱森-斯密特反应合成光敏化合物,其制备方法如下:
将1,2所述的醛和酮的化合物按照摩尔比2:1加入到低沸点试剂,以质量分数为1%-5%的碱溶液为催化剂,调节pH值为13,通入氮气反应,一定温度下反应3-5小时后,继续使用冰浴反应3h,析出淡黄色晶体,使用有机溶剂洗涤,真空干燥除去溶剂,得到提纯后的产物。
上述的制备方法中,所述的低沸点(沸点小于150℃)有机溶剂包括甲醇,或乙醇,或乙酸乙酯,或二氯甲烷,或三氯甲烷,或乙腈,或丙酮,或甲苯;
上述的制备方法中,所述的温度为20℃~50℃;
上述的制备方法中,所述的作为催化剂的碱溶液为氨水,或氢氧化钠,或氢氧化钾,或碳酸氢钠,质量分数为1%~5%,调节PH值为13;上述的制备方法中,所述的洗涤粗产品的有机溶剂包括甲醇,或乙醇,或乙酸乙酯,或二氯甲烷,或三氯甲烷,或乙腈,或丙酮。
具体实施方式:
实施例1
1)称取2mol呋喃甲醛和1mol环己酮溶于20ml的乙酸乙酯中,在搅拌下均匀混合。
2)在步骤1)所制备的混合溶液滴加3-5滴质量分数为5%的NaOH水溶液(0.5gNaOH,9.5g水),调节pH值为13,30℃下反应3h后,通入氮气,使用冰浴继续反应3h,析出淡黄色晶体。
3)将步骤2的淡黄色晶体使用二氯甲烷洗涤,真空干燥除去溶剂,得到纯净的淡黄色产物。
所合成的光引发剂最大吸收波长达到450nm,在不添加助引发剂的条件下,且引发剂含量仅为0.02wt%,300s内对单体PEGDA的双键转化率为70%,具有光漂白的效果。具有AIE效应。
实施例2
1)称取2mol噻吩甲醛和1mol环己酮溶于20ml的乙醇中,搅拌下均匀混合。
2)在步骤1)所制备的混合溶液滴加3-5滴质量分数为1%的NaHCO 3水溶液(0.1gNaHCO 3,9.9g水),调节pH值为13,30℃下反应3h后,通入氮气,使用冰浴继续反应3h,析出淡黄色晶体。
3)将步骤2的淡黄色晶体使用甲醇洗涤,真空干燥除去溶剂,得到纯净的淡黄色产物。
所合成的光引发剂最大吸收波长达到458nm,在不添加助引发剂的条件下,且引发剂含量仅为0.02wt%,300s内对单体PEGDA的双键转化率为68%,具有光漂白的效果。具有AIE效应。
实施例3
1)称取4mol吲哚甲醛于40ml丙酮中(反应物,底物均为丙酮),在搅拌下均匀混合。
2)在步骤1)所制备的混合溶液滴加3-5滴质量分数为2%的氨水溶液(0.2g氨水,9.8g水),30℃下反应3h后,调节pH值为13,通入氮气,使用冰浴继续反应3h,析出淡黄色晶体。
3)将步骤2的淡黄色晶体使用乙酸乙酯洗涤,真空干燥除去溶剂,得到纯净的淡黄色产物。
所合成的光引发剂最大吸收波长达到461nm,在不添加助引发剂的条件下,且引发剂含量仅为0.02wt%,300s内对单体PEGDA的双键转化率为78%,具有光漂白的效果。具有AIE效应。
实施例4
1)称取5mol噻唑甲醛和2.5mol丙酮溶于50ml的乙酸乙酯中,使得体系温度达到60℃,在搅拌下均匀混合。
2)在步骤1)所制备的混合溶液滴加3-5滴质量分数为5%的NaOH水溶液(0.5gNaOH,9.5g水),调节pH值为13,50℃下反应3h后,通入氮气,使用冰浴继续反应3h,析出淡黄色晶体。
3)将步骤2的淡黄色晶体使用乙醇洗涤,真空干燥除去溶剂,得到纯净的淡黄色产物。
所合成的光引发剂最大吸收波长达到470nm,在不添加助引发剂的条件下,且引发剂含量仅为0.02wt%,300s内对单体PEGDA的双键转化率为55%,具有光漂白的效果。具有AIE效应。
实施例5
1)称取2mol二茂铁甲醛与1mol 4,4-二甲基环己酮溶于50ml的乙酸乙酯中,搅拌下均匀混合。
2)在步骤1)所制备的混合溶液滴加3-5滴质量分数为5%的NaOH水溶液(0.5gNaOH,9.5g水),调节pH值为13,50℃下反应3h后,通入氮气,使用冰浴继续反应3h,析出淡黄色晶体。
3)将步骤2的淡黄色晶体使用乙醇洗涤,真空干燥除去溶剂,得到纯净的淡黄色产物。
所合成的光引发剂最大吸收波长达到456nm,在不添加助引发剂的条件下,且引发剂含量仅为0.02wt%,300s内对单体PEGDA的双键转化率为33%,具有光漂白的效果。具有AIE效应。
实施例6
1)称取2mol二茂铁甲醛与1mol 4,4-二甲基环己酮溶于50ml的乙酸乙酯中,搅拌下均匀混合。
2)在步骤1)所制备的混合溶液滴加3-5滴质量分数为5%的 NaOH水溶液(0.5gNaOH,9.5g水),调节pH值为13,50℃下反应3h后,通入氮气,使用冰浴继续反应3h,析出淡黄色晶体。
3)将步骤2的淡黄色晶体使用乙醇洗涤,真空干燥除去溶剂,得到纯净的淡黄色产物。
所合成的光引发剂最大吸收波长达到456nm,在不添加助引发剂的条件下,且引发剂含量仅为0.02wt%,300s内对单体PEGDA的双键转化率为61%,具有光漂白的效果。具有AIE效应。
实施例7
1)称取2mol 2-甲基呋喃甲醛与1mol环庚酮溶于20ml的乙酸乙酯中,搅拌下均匀混合。
2)在步骤1)所制备的混合溶液滴加3-5滴质量分数为5%的NaOH水溶液(0.5gNaOH,9.5g水),调节pH值为13,50℃下反应3h后,通入氮气,使用冰浴继续反应3h,析出淡黄色晶体。
3)将步骤2的淡黄色晶体使用乙醇洗涤,真空干燥除去溶剂,得到纯净的淡黄色产物。
所合成的光引发剂最大吸收波长达到452nm,在不添加助引发剂的条件下,且引发剂含量仅为0.02wt%,300s内对单体PEGDA的双键转化率为58%,具有光漂白的效果。具有AIE效应。
实施例8
1)称取2mol 2-氯噻吩甲醛与1mol环庚酮溶于20ml的乙酸乙酯中,搅拌下均匀混合。
2)在步骤1)所制备的混合溶液滴加3-5滴质量分数为5%的NaOH水溶液(0.5gNaOH,9.5g水),调节pH值为13,50℃下反应4h后,通入氮气,使用冰浴继续反应3h,析出淡黄色晶体。
3)将步骤2的淡黄色晶体使用乙醇洗涤,真空干燥除去溶剂,得到纯净的淡黄色产物。
所合成的光引发剂最大吸收波长达到460nm,在不添加助引发剂的条件下,且引发剂含量仅为0.02wt%,300s内对单体PEGDA的双键转化率为55%,具有光漂白的效果。具有AIE效应。
实施例9
1)称取2mol 2-羟基噻吩甲醛与1mol环庚酮溶于20ml的乙酸乙酯中,搅拌下均匀混合。
2)在步骤1)所制备的混合溶液滴加3-5滴质量分数为5%的NaOH水溶液(0.5gNaOH,9.5g水),调节pH值为13,40℃下反应3h后,通入氮气,使用冰浴继续反应3h,析出淡黄色晶体。
3)将步骤2的淡黄色晶体使用乙醇洗涤,真空干燥除去溶剂,得到纯净的淡黄色产物。
所合成的光引发剂最大吸收波长达到480nm,在不添加助引发剂的条件下,且引发剂含量仅为0.02wt%,300s内对单体PEGDA的双键转化率为58%,具有光漂白的效果。具有AIE效应。
实施例10
1)称取2mol 2-甲基噻吩甲醛与1mol环戊酮溶于20ml的乙酸乙酯中,搅拌下均匀混合。
2)在步骤1)所制备的混合溶液滴加3-5滴质量分数为1%的NaHCO 3水溶液(0.1gNaHCO 3,9.9g水),调节pH值为13,50℃下反应4h后,通入氮气,使用冰浴继续反应3h,析出淡黄色晶体。
3)将步骤2的淡黄色晶体使用乙醇洗涤,真空干燥除去溶剂,得到纯净的淡黄色产物。
所合成的光引发剂最大吸收波长达到480nm,在不添加助引发剂的条件下,且引发剂含量仅为0.02wt%,300s内对单体PEGDA的双键转化率为59%,具有光漂白的效果。具有AIE效应。
实施例11
1)称取2mol 2-甲基噻吩甲醛与1mol环戊酮溶于20ml的乙酸乙酯中,搅拌下均匀混合。
2)在步骤1)所制备的混合溶液滴加3-5滴质量分数为1%的NaHCO 3水溶液(0.1gNaHCO 3,9.9g水),调节pH值为13,50℃下反应4h后,通入氮气,使用冰浴继续反应3h,析出淡黄色晶体。
3)将步骤2的淡黄色晶体使用乙醇洗涤,真空干燥除去溶剂, 得到纯净的淡黄色产物。
所合成的光引发剂最大吸收波长达到405nm,在不添加助引发剂的条件下,且引发剂含量仅为0.02wt%,300s内对单体PEGDA的双键转化率为52%,具有光漂白的效果。具有AIE效应。
实施例12
1)称取2mol 2-硝基,3-腈基,4-氯噻吩甲醛与1mol 3-甲基环戊酮溶于20ml的乙酸乙酯中,搅拌下均匀混合。
2)在步骤1)所制备的混合溶液滴加3-5滴质量分数为1%的NaHCO 3水溶液(0.1gNaHCO 3,9.9g水),调节pH值为13,50℃下反应4h后,通入氮气,使用冰浴继续反应3h,析出淡黄色晶体。
3)将步骤2的淡黄色晶体使用乙醇洗涤,真空干燥除去溶剂,得到纯净的淡黄色产物。
所合成的光引发剂最大吸收波长达到468nm,在不添加助引发剂的条件下,且引发剂含量仅为0.02wt%,300s内对单体PEGDA的双键转化率为51%,具有光漂白的效果。具有AIE效应。
实施例13
1)称取2,4-二甲基吲哚甲醛与1mol 3-氯环戊酮溶于20ml的乙醇中,搅拌下均匀混合。
2)在步骤1)所制备的混合溶液滴加3-5滴质量分数为1%的NaHCO 3水溶液(0.1gNaHCO 3,9.9g水),调节pH值为13,25℃下反应3h后,通入氮气,使用冰浴继续反应3h,析出淡黄色晶体。
3)将步骤2的淡黄色晶体使用丙酮洗涤,真空干燥除去溶剂,得到纯净的淡黄色产物。
所合成的光引发剂最大吸收波长达到430nm,在不添加助引发剂的条件下,且引发剂含量仅为0.02wt%,300s内对单体PEGDA的双键转化率为56%,具有光漂白的效果。具有AIE效应。
实施例14
1)称取2mol 2-巯基呋喃甲醛与1mol丙酮溶于20ml的乙醇中,搅拌下均匀混合。
2)在步骤1)所制备的混合溶液滴加3-5滴质量分数为1%的NaHCO 3水溶液(0.1gNaHCO 3,9.9g水),调节pH值为13,25℃下反应3h后,通入氮气,使用冰浴继续反应3h,析出淡黄色晶体。
3)将步骤2的淡黄色晶体使用三氯甲烷洗涤,真空干燥除去溶剂,得到纯净的淡黄色产物。
所合成的光引发剂最大吸收波长达到413nm,在不添加助引发剂的条件下,且引发剂含量仅为0.02wt%,300s内对单体PEGDA的双键转化率为35%,具有光漂白的效果。具有AIE效应。
实施例15
1)称取2mol 3,4-环氧噻吩甲醛与1mol环己酮溶于20ml的甲醇中,搅拌下均匀混合。
2)在步骤1)所制备的混合溶液滴加3-5滴质量分数为1%的NaHCO 3水溶液(0.1gNaHCO 3,9.9g水),调节pH值为13,25℃下反应3h后,通入氮气,使用冰浴继续反应3h,析出淡黄色晶体。
3)将步骤2的淡黄色晶体使用三氯甲烷洗涤,真空干燥除去溶剂,得到纯净的淡黄色产物。
所合成的光引发剂最大吸收波长达到4120nm,在不添加助引发剂的条件下,且引发剂含量仅为0.02wt%,300s内对单体PEGDA的双键转化率为69%,具有光漂白的效果。具有AIE效应。
实施例16
1)称取2mol 2-氯噻唑甲醛与1mol环己酮溶于20ml的甲醇中,搅拌下均匀混合。
2)在步骤1)所制备的混合溶液滴加3-5滴质量分数为1%的NaHCO 3水溶液(0.1gNaHCO 3,9.9g水),调节pH值为13,25℃下反应3h后,通入氮气,使用冰浴继续反应3h,析出淡黄色晶体。
3)将步骤2的淡黄色晶体使用三氯甲烷洗涤,真空干燥除去溶剂,得到纯净的淡黄色产物。
所合成的光引发剂最大吸收波长达到435nm,在不添加助引发剂的条件下,且引发剂含量仅为0.02wt%,300s内对单体PEGDA的双 键转化率为58%,具有光漂白的效果。具有AIE效应。
实施例17
1)称取2mol噻吩甲醛与1mol2,3丁二酮溶于20ml的甲醇中,搅拌下均匀混合。
2)在步骤1)所制备的混合溶液滴加3-5滴质量分数为1%的NaHCO3水溶液(0.1gNaHCO 3,9.9g水),调节pH值为13,25℃下反应5h后,通入氮气,使用冰浴继续反应3h,析出淡黄色晶体。
3)将步骤2的淡黄色晶体使用乙醇洗涤,真空干燥除去溶剂,得到纯净的淡黄色产物。
所合成的光引发剂最大吸收波长达到408nm,在不添加助引发剂的条件下,且引发剂含量仅为0.02wt%,300s内对单体PEGDA的双键转化率为69%,具有光漂白的效果。具有AIE效应。

Claims (6)

  1. 一种根据克莱森-施密特反应合成光敏化合物的制备方法,参与反应的无α-H的醛的结构通式如下:
    Figure PCTCN2018091398-appb-100001
    R=O或S或N或C
    1)R 1,R 2,R 3,R 4为H或卤素取代基:F,Cl,Br,I或带O的取代基:-CHO,-COOH,-CO,OH或带N的取代基:-NH 3,-NO 2,-CN或带S的取代基:-HS,-SO 3H,-CH 2S或带有以上取代基的烷烃,烯烃,炔烃,芳烃整链或支链;
    2)未涉及1)的取代基归纳如下:
    Figure PCTCN2018091398-appb-100002
    其中R=O或S或N或C
    R 5,R 6,R 7为1)2)所述的取代基;
    n=1-12
    不符合以上结构通式的无α-H的醛的结构通式归纳如下:
    Figure PCTCN2018091398-appb-100003
    其中R=O或S或N或C
    R 8-R 28为1)2)所述的取代基;
    参与反应的含有α-H的酮的结构通式如下:
    Figure PCTCN2018091398-appb-100004
    R 29-R 31为1)2)所述的取代基
    n=1-12
    其制备方法如下:
    将无α-H的醛和含有α-H的酮按照摩尔比2:1加入到低沸点试剂中溶解,以质量分数为1%-5%的碱溶液为催化剂,调节pH值为13,通入氮气反应,温度下反应3-5小时后,继续使用冰浴反应3h,析出淡黄色晶体,使用有机溶剂洗涤,真空干燥除去溶剂,得到提纯后的产物;低沸点试剂包括甲醇,或乙醇,或乙酸乙酯,或二氯甲烷,或三氯甲烷,或乙腈,或丙酮,或甲苯。
  2. 根据权利要求1所述根据克莱森-施密特反应合成光敏化合物的制备方法,其特征在于:作为催化剂的碱溶液为氨水,或氢氧化钠,或氢氧化钾,或碳酸氢钠。
  3. 根据权利要求1所述根据克莱森-施密特反应合成光敏化合物的制备方法,其特征在于:洗涤粗产品的有机溶剂包括甲醇,或乙醇,或乙酸乙酯,或二氯甲烷,或三氯甲烷,或乙腈,或丙酮。
  4. 根据权利要求1所述根据克莱森-施密特反应合成光敏化合物的 制备方法,其特征在于反应方程式为:
    Figure PCTCN2018091398-appb-100005
  5. 一种根据克莱森-施密特反应合成光敏化合物,其结构式如下:
    Figure PCTCN2018091398-appb-100006
    R=O或S或N或C
    R 1,R 2,R 3,R 4为H或卤素取代基:F,Cl,Br,I或带O的取代基:-CHO,-COOH,-CO,OH或带N的取代基:-NH 3,-NO 2,-CN或带S的取代基:-HS,-SO 3H,-CH 2S或带有以上取代基的烷烃,烯烃,炔烃,芳烃整链或支链;
    或者,
    Figure PCTCN2018091398-appb-100007
    Figure PCTCN2018091398-appb-100008
    R 5,R 6,R 7为上述的取代基;n=1-12。
  6. 一种根据克莱森-施密特反应合成光敏化合物,其结构式如下:
    Figure PCTCN2018091398-appb-100009
    R 1,R 2,R 3,R 4为H或卤素取代基:F,Cl,Br,I或带O的取代基:-CHO,-COOH,-CO,OH或带N的取代基:-NH 3,-NO 2,-CN或带S的取代基:-HS,-SO 3H,-CH 2S或带有以上取代基的烷烃,烯烃,炔烃,芳烃整链或支链;
    或者,
    Figure PCTCN2018091398-appb-100010
    Figure PCTCN2018091398-appb-100011
    R 5,R 6,R 7为上述的取代基;n=1-12。
PCT/CN2018/091398 2018-05-17 2018-06-15 一种根据克莱森-施密特反应合成光敏化合物的制备方法 WO2019218418A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810474497.9A CN108558794A (zh) 2018-05-17 2018-05-17 一种根据克莱森-施密特反应合成光敏化合物的制备方法
CN201810474497.9 2018-05-17

Publications (1)

Publication Number Publication Date
WO2019218418A1 true WO2019218418A1 (zh) 2019-11-21

Family

ID=63539243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091398 WO2019218418A1 (zh) 2018-05-17 2018-06-15 一种根据克莱森-施密特反应合成光敏化合物的制备方法

Country Status (2)

Country Link
CN (1) CN108558794A (zh)
WO (1) WO2019218418A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110003411B (zh) * 2019-04-03 2021-05-07 北京化工大学 缩聚大分子光引发剂的制备方法及制备得到的光引发剂
CN109942475B (zh) * 2019-04-03 2021-01-26 北京化工大学 一类含吡咯衍生物的单组份长波长光引发剂及其制备方法
CN109970727B (zh) * 2019-04-03 2021-04-06 北京化工大学 一种长波长可聚合光引发剂及其制备方法
CN111072796B (zh) * 2019-12-30 2021-05-11 北京化工大学 一种吡咯基酮光引发体系及应用
CN111574350B (zh) * 2020-05-09 2022-08-16 北京化工大学常州先进材料研究院 一种羟基环己基苯乙酮类光引发剂及其制备方法
CN111574351A (zh) * 2020-05-12 2020-08-25 北京化工大学常州先进材料研究院 一种长波长羟基甲基苯基酮类光引发剂及其制备方法
CN113861091B (zh) * 2021-10-22 2024-01-23 重庆邮电大学 一种基于高级脂肪酸的夺氢型光引发剂的制备方法及其产品
CN113943241A (zh) * 2021-10-22 2022-01-18 重庆邮电大学 一种适用于户外涂布、存储的光固化涂层及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102276593A (zh) * 2011-07-01 2011-12-14 华东师范大学 杂环烯酮腙化合物和制备方法及抗结核菌的应用
US20120289720A1 (en) * 2009-08-17 2012-11-15 Silks Louis A Method Of Carbon Chain Extension Using Novel Aldol Reaction
CN102850157A (zh) * 2012-07-30 2013-01-02 华东理工大学 一种由多功能催化剂一步法高效制备长链烷烃的新技术
CN107200721A (zh) * 2017-07-05 2017-09-26 北京化工大学 呋喃环结构的长波长光引发剂及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120289720A1 (en) * 2009-08-17 2012-11-15 Silks Louis A Method Of Carbon Chain Extension Using Novel Aldol Reaction
CN102276593A (zh) * 2011-07-01 2011-12-14 华东师范大学 杂环烯酮腙化合物和制备方法及抗结核菌的应用
CN102850157A (zh) * 2012-07-30 2013-01-02 华东理工大学 一种由多功能催化剂一步法高效制备长链烷烃的新技术
CN107200721A (zh) * 2017-07-05 2017-09-26 北京化工大学 呋喃环结构的长波长光引发剂及制备方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
DATABASE Registry 16 November 1984 (1984-11-16), Database accession no. 61148-52-5 *
DATABASE Registry 20 June 1987 (1987-06-20), Database accession no. 108757-59-1 *
DATABASE Registry 25 July 2005 (2005-07-25), Database accession no. 856785-51-8 *
DATABASE Registry 8 August 1987 (1987-08-08), Database accession no. 10970 1-02 -2 *
GUO, YANING: "Synthesis and Structural Characterization of Several Curcumin-Type 1,4-Pentadiene-3-One Derivatives", CHEMICAL RESEARCH, vol. 24, no. 6, 30 November 2013 (2013-11-30), pages 575 - 579 *
KLEIN, Y.M.: "Positional Isomerism Makes a Difference: Phosphonic Acid Anchoring Ligands with Thienyl Spacers in Copper(I)-Based Dye-Sensitized Solar Cells", DALTON TRANS., vol. 45, no. 11, 9 February 2016 (2016-02-09), pages 4659 - 4672, XP055659042 *
R. NORBERINI ET AL.: "A Disalicylic Acid-Furanyl Derivative Inhibits Ephrin Binding to a Subset of Eph Receptors", CHEMICAL BIOLOGY & DRUG DESIGN, vol. 78, no. 4, 25 July 2011 (2011-07-25), pages 667 - 678, XP055659034 *
SINU, C.R.: "N-Heterocyclic Carbene Catalyzed Reaction of Cinnamils Leading to the Formation of 2, 3, 8-Triaryl Vinyl Fulvenes: An Uncommon Transformation", ORGANIC LETTERS, vol. 24, no. 15, 12 February 2013 (2013-02-12), pages 6230 - 6233, XP055659040 *

Also Published As

Publication number Publication date
CN108558794A (zh) 2018-09-21

Similar Documents

Publication Publication Date Title
WO2019218418A1 (zh) 一种根据克莱森-施密特反应合成光敏化合物的制备方法
Li et al. Synthesis of furan derivative as LED light photoinitiator: One-pot, low usage, photobleaching for light color 3D printing
Dumur Recent advances on carbazole-based photoinitiators of polymerization
Liu et al. Fluorescent linear CO 2-derived poly (hydroxyurethane) for cool white LED
Patil et al. ESIPT-inspired benzothiazole fluorescein: Photophysics of microenvironment pH and viscosity
Janiga et al. Quadrupolar, emission-tunable π-expanded 1, 4-dihydropyrrolo [3, 2-b] pyrroles–synthesis and optical properties
WO2016206602A1 (zh) 一种用于uv-led光固化的增感剂及其制备方法和应用
CN109970696B (zh) 一种香豆素肟酯类光引发剂
Rodríguez et al. Synthesis of conjugated 2, 7-bis (trimethylsilylethynyl)-(phenylethynyl) nfluoren-9-one and 9-(p-methoxyphenyl)-9-methyl derivatives: optical properties
CN106318380A (zh) 一种四苯基乙烯衍生物离子络合物及制备方法
CN113462187B (zh) 一种七甲川吲哚菁染料及其制备方法和应用
CN109942475A (zh) 一类含吡咯衍生物的单组份长波长光引发剂及其制备方法
CN107556408A (zh) 用于可见led光源的共轭炔基吩噻嗪类肟酯光引发剂及组合物
Eçik et al. Novel Bodipy-triazine conjugates: Synthesis and the generation of singlet oxygen
Zhang et al. Near-infrared-emitting difluoroboron β-diketonate dye with AIE characteristics for cellular imaging
Li et al. Study on pyrrole chalcone derivatives used for blue LED free radical photopolymerization: Controllable initiating activity achieved through photoisomerization property
Li et al. Improvement in the storage stability of free radical photocurable materials under sunlight based on the cis→ trans photoisomerization of pyrrole chalcone photoinitiator
JP5803025B2 (ja) フォトクロミック分子
WO2024067719A1 (zh) 三氟甲基有机硅氧杂环烷烃单体及其制备和应用
WO2024041569A1 (zh) 适用于uv-vis led光源深层固化的酰基氧膦肟酯类化合物及其制备和应用
CN105566199B (zh) 一类共轭芳炔基咔唑化合物
CN109265466B (zh) 一种多苯并五元芳杂环并香豆素稠杂环化合物的合成方法
Makino et al. Synthesis and Properties of Highly Sensitive Ether Ring Fused O-Acyloxime Esters as Photoradical Initiator
CN108558834B (zh) 一种哒嗪酮基三色荧光发射有机发光材料及其应用
CN114790257B (zh) 一种基于香豆素和稀土配合物的聚合物白光材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918641

Country of ref document: EP

Kind code of ref document: A1