WO2019216355A1 - アルコールの水酸基の変換方法 - Google Patents

アルコールの水酸基の変換方法 Download PDF

Info

Publication number
WO2019216355A1
WO2019216355A1 PCT/JP2019/018447 JP2019018447W WO2019216355A1 WO 2019216355 A1 WO2019216355 A1 WO 2019216355A1 JP 2019018447 W JP2019018447 W JP 2019018447W WO 2019216355 A1 WO2019216355 A1 WO 2019216355A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituent
general formula
following general
formula
Prior art date
Application number
PCT/JP2019/018447
Other languages
English (en)
French (fr)
Inventor
英雄 清水
清人 堀
裕徳 前田
Original Assignee
高砂香料工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高砂香料工業株式会社 filed Critical 高砂香料工業株式会社
Priority to JP2020518324A priority Critical patent/JP7339244B2/ja
Priority to EP19800032.5A priority patent/EP3792241A4/en
Priority to CA3098663A priority patent/CA3098663A1/en
Priority to US17/051,261 priority patent/US11407703B2/en
Publication of WO2019216355A1 publication Critical patent/WO2019216355A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/2243At least one oxygen and one nitrogen atom present as complexing atoms in an at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • C07C45/70Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction with functional groups containing oxygen only in singly bound form
    • C07C45/71Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction with functional groups containing oxygen only in singly bound form being hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • B01J2231/76Dehydrogenation
    • B01J2231/763Dehydrogenation of -CH-XH (X= O, NH/N, S) to -C=X or -CX triple bond species
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0202Polynuclearity
    • B01J2531/0205Bi- or polynuclear complexes, i.e. comprising two or more metal coordination centres, without metal-metal bonds, e.g. Cp(Lx)Zr-imidazole-Zr(Lx)Cp
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/827Iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/04Saturated compounds containing keto groups bound to acyclic carbon atoms
    • C07C49/12Ketones containing more than one keto group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/04Saturated compounds containing keto groups bound to acyclic carbon atoms
    • C07C49/17Saturated compounds containing keto groups bound to acyclic carbon atoms containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/20Unsaturated compounds containing keto groups bound to acyclic carbon atoms
    • C07C49/203Unsaturated compounds containing keto groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/782Ketones containing a keto group bound to a six-membered aromatic ring polycyclic
    • C07C49/784Ketones containing a keto group bound to a six-membered aromatic ring polycyclic with all keto groups bound to a non-condensed ring

Definitions

  • the present invention relates to a method for converting a hydroxyl group of alcohol and a catalyst for efficiently converting the hydroxyl group.
  • Non-Patent Documents 1 and 6 The reaction of extending compounds having active protons such as ketones and amines by alkylation is important in producing useful substances such as various pharmaceuticals and fragrances.
  • an alkyl halide As the alkylating agent, an alkyl halide is generally used.
  • the alkyl halide is expensive, is prone to excessive reaction, and has a problem that a stoichiometric amount of salt is by-produced. . Therefore, in recent years, a method of catalytically converting a relatively inexpensive hydroxyl group of alcohol, that is, a method of using alcohol as an alkylating agent has been attempted (Non-Patent Documents 1 and 6).
  • Non-Patent Document 2 carbonyldihydridotris (triphenylphosphine) ruthenium (II) ([RuH 2 (CO) (PPh 3 ) 3 ]), 4,5-Bis (diphenylphosphino) -9,9-dimethylxanthene Benzyl alcohol and 4,4-dimethyl-3-oxopentanenitrile are reacted to convert to 4,4-dimethyl-3-oxo-2-benzylpentanenitrile using a catalyst comprising (Xantphos) and piperidinium acetate Techniques are known.
  • Patent Document 1 an alkylene glycol and a catalyst comprising chloro (1,5-cyclooctadiene) iridium (I) dimer ([IrCl (cod)] 2 ), triphenylphosphine, and potassium hydroxide are used.
  • a method is known in which a compound having a carbonyl group is obtained by reacting a compound containing a carbonyl group with both ends of the alkylene group.
  • the present inventors have found that a combination of a metal complex of Groups 7 to 11 of the periodic table and a layered double hydroxide has a good catalytic activity in the conversion of alcohol hydroxyl groups. Further, as a result of further studies by the present inventors, a combination of a solid base selected from the group consisting of a metal complex of Groups 7 to 11 of the periodic table, a composite oxide, and calcium hydroxide is a good catalyst in the conversion of the hydroxyl group of alcohol. It has been found that it has activity, and the present invention has been completed. That is, the present invention relates to a method for converting a hydroxyl group of alcohol shown below and a metal complex that enables the method.
  • the solid base has two or more metal elements, and at least one of the metal elements is a complex oxide selected from the group consisting of aluminum, magnesium and calcium.
  • a compound having an active proton represented by the general formula (2) is represented by the following general formula (2-1): (In the formula, X 1 is as defined above, and R 5 represents a hydrogen atom, an alkyl group which may have a substituent, an alkenyl group which may have a substituent, or a substituent.
  • An alkoxy group which may be substituted, an aryloxy group which may have a substituent, an amino group which may have a substituent, or a carbonyl group which may have a substituent, X 1 And R 5 may combine with each other to form a ring.
  • the compound having an active proton represented by the general formula (2) is represented by the following general formula (2-2): (Wherein X 1 is as defined above.) The nitrile represented by these may be sufficient.
  • the compound having an active proton represented by the general formula (2) is represented by the following general formula (2-3): (Wherein R 3 and R 4 are as defined above.)
  • An amine represented by [6] The method for converting a hydroxyl group according to any one of [1] to [5], wherein the metal complex of Groups 7 to 11 of the periodic table is an iridium complex or a ruthenium complex.
  • the iridium complex has the following general formula (4-1): (Wherein Y 1 is a cyclopentadienyl group which may have a substituent, or an indenyl group which may have a substituent, Z 1 is a hydride or an anion group; 1 is an aryl group which may have a substituent, a heterocyclic group which may have a substituent, or a carbonyl group which may have a substituent, and a part of A 1 is iridium X 4 , X 5 , X 6 , X 7 and X 8 are each independently a hydrogen atom or a substituent, and X 4 and X 5 , X 5 and X 6 , X 6 and X 7 , X 7 and X 8 may be bonded to each other to form a ring, or Y 1 and A 1 , and Y 1 and X 4 may be bonded to each other to form a ring.
  • the iridium complex has the following general formula (5-1): [Y 1 IrZ 1 2 ] (5-1) (In the formula, Y 1 is a cyclopentadienyl group which may have a substituent, or an indenyl group which may have a substituent, and Z 1 is a hydride or an anion group.)
  • a heterocyclic group which may have a substituent, or a carbonyl group which may have a substituent, and a part of A 1 may be coordinated to a ruthenium atom, and X 4 , X 5 , X 6 , X 7 and X 8 are each independently a hydrogen atom or a substituent, and X 4 and X 5 , X 5 and X 6 , X 6 and X 7 , X 7 and X 8 are bonded to each other.
  • Y 2 and A 1 , Y 1 and X 4 may be bonded to each other to form a ring, m is 1 or 2, and n is 1 or 0.
  • the alcohol represented by the general formula (1) is represented by the following general formula (1-1): (In the formula, p is an integer of 0 to 48.) It is preferable that it is diol represented by these.
  • the alcohol represented by the general formula (1) is represented by the following formula (1-1a):
  • a diol represented by The compound represented by the general formula (3) is represented by the following formula (3-2a): It is preferable that it is a diketone represented by these.
  • a heterocyclic group which may have a substituent, or a carbonyl group which may have a substituent, and a part of A 1 may be coordinated to a ruthenium atom, and X 4 , X 5 , X 6 , X 7 and X 8 are each independently a hydrogen atom or a substituent, and X 4 and X 5 , X 5 and X 6 , X 6 and X 7 , X 7 and X 8 are bonded to each other.
  • Y 1 and A 1 , Y 1 and X 4 may be bonded to each other to form a ring, m is 1 or 2, and n is 1 or 0.
  • a ruthenium complex selected from the group consisting of compounds represented by: [15] The ruthenium complex according to [14], which is a catalyst used for a conversion reaction of a hydroxyl group of alcohol.
  • a novel method for converting a hydroxyl group of alcohol and a metal complex that enables the method can be provided.
  • high catalytic activity can be realized.
  • the hydroxyl group converting method according to the present invention is at least one selected from the group consisting of metal complexes of Groups 7 to 11 of the periodic table, layered double hydroxides, composite oxides and calcium hydroxide.
  • the following general formula (1) In the presence of a seed solid base, the following general formula (1): (In the formula, R 1 and R 2 each independently have a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent.
  • R 1 , R 2 and Nu are as defined above, and X 1 or R 3 in R 1 and Nu may combine with each other to form a ring.
  • an alcohol and an activity in the presence of at least one solid base selected from the group consisting of a metal complex of Groups 7 to 11 of the periodic table, a layered double hydroxide, a composite oxide, and calcium hydroxide.
  • a compound having an active proton can be alkylated by reacting a compound having a proton, or by reacting in a molecule when they form a single molecule, and directly converting the hydroxyl group of the alcohol.
  • the hydroxyl group conversion method of the present invention will be specifically described below.
  • Metal complexes of groups 7 to 11 of the periodic table In the present invention, a metal complex containing a metal element of Groups 7 to 11 of the periodic table is used as a catalyst.
  • the metal elements of Groups 7 to 11 of the periodic table include one or more selected from manganese, technetium, rhenium, iron, ruthenium, osmium, cobalt, rhodium, iridium, nickel, palladium, platinum, copper, silver and gold. .
  • the metal complex belonging to Groups 7 to 11 of the periodic table used in the present invention is not particularly limited as long as it is a complex containing these metal elements.
  • Non Patent Literature 3 Ligand Platforms in Homogeneous Catalytic Reaction with Metals, Yamaguchi, R., Fujita, K. Eds: Wiley, 2014.
  • Non Patent Literature 3 and Science of Synthesis, Trost, BM Ed: Thieme, 2001.
  • Non Patent Literature 3 Examples thereof include the metal complexes described in 4). Of these, a ruthenium complex and an iridium complex are preferable, and an iridium complex is particularly preferable.
  • iridium Complex examples include the following complexes: Tris (acetylacetonato) iridium (III) ([Ir (acac) 3 ]), chloro (1,5-cyclooctadiene) iridium (I) dimer ([IrCl (cod)] 2 ), methoxy (1,5 -Cyclooctadiene) iridium (I) dimer ([Ir (OMe) (cod)] 2 ), chlorobis (cyclooctene) iridium (I) dimer ([IrCl (coe) 2 ] 2 ), dichloro (pentamethylcyclopenta Dienyl) iridium (III) dimer ([Cp * IrCl 2 ] 2 ), dibromo (pentamethylcyclopentadienyl) iridium (III) dimer ([Cp * IrBr 2 ]
  • the complex which has the ligand L is mentioned as an example of an iridium complex.
  • the ligand L include a phosphine ligand L 1, a nitrogen-containing ligand L 2 , and a carbene ligand L 3 .
  • Examples of the phosphine ligand L 1 include a monodentate phosphine ligand and a bidentate phosphine ligand.
  • Monodentate phosphine ligands include triphenylphosphine, tri (4-tolyl) phosphine, tri (3,5-xylyl) phosphine, tricyclohexylphosphine, tri (tert-butylphosphine), 2-diphenylphosphino-2 Examples include '-methoxy-1,1'-binaphthyl (MOP).
  • Bidentate phosphine ligands include 1,1′-bis (diphenylphosphino) ferrocene (DPPF), 1,1-bis (diphenylphosphino) methane (DPPM), 1,2-bis (diphenylphosphino) Ethane (DPPE), 1,3-bis (diphenylphosphino) propane (DPPP), 1,4-bis (diphenylphosphino) butane (DPPE), 1,5-bis (diphenylphosphino) benzene, 2,2 '-Bis (diphenylphosphino) -1,1'-binaphthalene (BINAP), 5,5'-bis (diphenylphosphino) -4,4'-bi-1,3-benzodioxole (SEGPHOS), 5,5′-bis [bis (3,5-dimethylphenyl) phosphino] -4,4′-bi-1,3-benzodioxole
  • nitrogen-containing ligand L 2 examples include monodentate or bidentate nitrogen-containing ligands. Specific examples include a monodentate amine ligand, a bidentate amine ligand, a monodentate amide ligand, a bidentate amide ligand, and the like. Examples of the monodentate amine ligand include pyridine, 4-dimethylaminopyridine, ethylamine, diethylamine, triethylamine, tributylamine, quinuclidine and the like.
  • Bidentate amine ligands include 2-picolylamine, ethylenediamine (EDA), tetramethylethylenediamine, 1,2-diphenylethylenediamine (DPEN), N- (p-toluenesulfonyl) -1,2-diphenylethylenediamine (Ts -DPEN), N- (methanesulfonyl) -1,2-diphenylethylenediamine (Ts-DPEN), 1,1-bis (4-methoxyphenyl) -3-methylbutane-1,2-diamine (DAIPEN), etc. It is done.
  • Monodentate or bidentate amide ligands include formamide, acetamide, benzamide, acetanilide, oxalic acid amide, N, N′-dimethyl oxalic acid amide, N, N′-diethyl oxalic acid amide, N, N′-dibutyl N, N′-dialkyl oxalates having 4 to 20 carbon atoms such as oxalate amides, or The following general formula (6-1): (Wherein, A 1 is an optionally substituted aryl group, optionally substituted heterocyclic group, or may have a substituent group carbonyl group, X 4 , X 5 , X 6 , X 7 and X 8 are each independently a hydrogen atom or a substituent, and X 4 and X 5 , X 5 and X 6 , X 6 and X 7 , X 7 and X 8 May be bonded to each other to form a ring.)
  • the anilide represented by the general formula (6-1) and the anilide represented by the general formula (6-2) are each an anilide represented by the general formula (6-1) used in the preparation of the iridium complex. And the same compound as the anilide represented by the general formula (6-2).
  • anilide as a ligand examples include the following compounds.
  • Examples of the carbene ligand L 3 include an N-heterocyclic carbene ligand. Specifically, 1,3-dimethylimidazol-2-ylidene, 1,3-diisopropylimidazol-2-ylidene, 1,3-dibutylimidazol-2-ylidene, 1,3-bis (2,4,6- And trimethylphenyl) imidazol-2-ylidene, 1,3-dimethylbenzimidazol-2-ylidene, 1,3-dimethyldihydroimidazol-2-ylidene, and the like.
  • a bidentate or tridentate compound having a plurality of sites selected from a phosphine, a nitrogen-containing site, and a carbene site in the same molecule may be used.
  • Specific examples include 2- (diphenylphosphino) ethylamine and bis [(2-diphenylphosphino) ethyl] amine.
  • these ligands L When these ligands L have chirality, they may be racemic, meso, or optically active.
  • the complex having the ligand L include the following compounds: [IrL 1 b Cl] 2 , [IrL 1 b Br] 2 , [IrL 1 b I] 2 , [Ir (cod) L 1 b ] BF 4 , [Ir (cod) L 1 b ] ClO 4 , [Ir (Cod) L 1 b ] PF 6 , [Ir (cod) L 1 b ] BPh 4 , [Ir (cod) L 1 b ] OTf, [Ir (nbd) L 1 b ] BF 4 , [Ir (nbd) L 1 b ] ClO 4 , [Ir (nbd) L 1 b ] PF 6 , [Ir (nbd) L 1 b ] BPh 4 , [Ir (nbd) L 1 b ] OTf, Cp * IrClL 2 c, Cp * IrClL
  • L 1 is a monodentate phosphine ligand
  • b 1 is a bidentate phosphine ligand
  • L 2 is a monodentate nitrogen-containing ligand
  • L 2 is a nitrogen-containing compound
  • the nitrogen atom of L 2 may be coordinated to the iridium atom as it is, or the proton on the nitrogen atom of L 2 may be eliminated to form iridium and a metal amide.
  • iridium complex examples include the following general formula (4-1): (Wherein Y 1 is a cyclopentadienyl group which may have a substituent, or an indenyl group which may have a substituent, Z 1 is a hydride or an anion group; 1 is an aryl group which may have a substituent, a heterocyclic group which may have a substituent, or a carbonyl group which may have a substituent, and a part of A 1 is iridium X 4 , X 5 , X 6 , X 7 and X 8 are each independently a hydrogen atom or a substituent, and X 4 and X 5 , X 5 and X 6 , X 6 and X 7 , X 7 and X 8 may be bonded to each other to form a ring, or Y 1 and A 1 , and Y 1 and X 4 may be bonded to each other to form a ring.
  • M is 1 or 2, n is 1 or 0, when m is 1, n is 1 and m is When n is 2, n is 0.
  • An aryl group or an optionally substituted carbonyl group, a part of A 2 may be coordinated to an iridium atom, and Y 1 and A 2 , Y 1 and X 4 may be They may combine to form a ring.
  • the compound represented by these is mentioned.
  • iridium complexes may form a multimer such as a dimer via a hydride group, an anion group or a ligand.
  • the cyclopentadienyl group which may have a substituent is a group in which 0 to 5 of the hydrogen atoms of the pentadienyl group are substituted with a substituent.
  • 3,4,5-pentamethylcyclopentadienyl group (Cp *) 1-hydroxymethyl-2,3,4,5-tetramethylcyclopentadienyl group, 1-hydroxyethyl-2,3,4 , 5-tetraethylcyclopentadienyl group and the like.
  • the indenyl group which may have a substituent is one in which 0 to 7 of the hydrogen atoms of the indenyl group are substituted with a substituent, and the indenyl group, 1,2,3-trimethylindene is substituted.
  • Anionic groups include hydroxyl, oxo, alkoxy, aryloxy, fluoro, chloro, bromo, iodo, acetoxy, trifluoroacetoxy, trifluoromethanesulfonate, tetrafluoroborate, tetrahydro
  • Examples thereof include a borate group, a tetrakis (pentafluorophenyl) borate group, a hexafluorophosphate group, and a tetrakis [3,5-bis (trifluoromethyl) phenyl] borate group.
  • Specific examples of the alkoxy group include a methoxy group, an ethoxy group, and an isopropoxy group.
  • Specific examples of the aryloxy group include a phenoxy group.
  • the aryl group is preferably a monocyclic, polycyclic or condensed cyclic aryl group having 6 to 18 carbon atoms, more preferably 6 to 14 carbon atoms. Specific examples include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, and a biphenyl group.
  • heterocyclic group examples include heteroaryl groups having 2 to 15 carbon atoms and containing at least one, preferably 1 to 3, hetero atoms such as nitrogen atom, oxygen atom and / or sulfur atom as hetero atoms. Or a heterocycloalkyl group.
  • heteroaryl group examples include a 5- or 6-membered monocyclic heteroaryl group and a polycyclic or condensed cyclic heteroaryl group.
  • heterocycloalkyl group examples include 3- to 6-membered heterocycloalkyl groups. Specific examples thereof include an aziridino group, an azetidino group, a pyrrolidino group, a piperidino group, an oxolano group, an oxano group, and a morpholino group.
  • R 7 , R 8 , R 9 and R 10 are each independently A hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, a heterocyclic group which may have a substituent, or a substituent. Represents an aralkyl group which may be.
  • the substituent may have various arbitrary ones, and is not limited thereto, but examples thereof include an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic group, and an aralkyl group.
  • the aryl group, the heterocyclic group, the alkoxy group, the aryloxy group, and the carbonyl group which may have a substituent have the same meanings as described above. These substituents may be further substituted with other substituents.
  • an alkyl group which may have a substituent an alkenyl group which may have a substituent, an alkynyl group which may have a substituent, and a substituent.
  • Examples of a substituent in a good aryloxy group and an optionally substituted amino group include an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, an aryloxy group, a halogeno group, an optionally protected hydroxyl group, and a halogeno group.
  • a group, a carbonyl group which may have a substituent, and an amino group which may be protected are preferred.
  • the substituent in the cyclopentadienyl group which may have a substituent and the indenyl group which may have a substituent is preferably a methyl group or an ethyl group, Is more preferable.
  • X ⁇ 4 >, X ⁇ 5 >, X ⁇ 6 >, X ⁇ 7 > and X ⁇ 8 > have, an alkyl group, an alkoxy group, a halogeno group, and the amino group which may be protected are preferable.
  • alkyl group examples include a linear or branched alkyl group and a cycloalkyl group.
  • linear or branched alkyl group examples include a linear or branched alkyl group having 1 to 50 carbon atoms, preferably 1 to 20 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
  • cycloalkyl group examples include monocyclic, polycyclic or condensed cyclic cycloalkyl groups having 3 to 20 carbon atoms, more preferably 3 to 10 carbon atoms. Examples thereof include a cyclopropyl group, a cyclopentyl group, and a cyclohexyl group. Etc.
  • alkenyl group examples include linear or branched alkenyl groups.
  • linear or branched alkenyl group examples include linear or branched alkenyl groups having 1 to 50 carbon atoms, preferably 1 to 20 carbon atoms, such as vinyl group, 1-propenyl group, 1-butenyl. Group, 1-hexenyl group, 1-octyl group, 1-decenyl group and the like.
  • alkynyl group examples include linear or branched alkynyl groups.
  • linear or branched alkynyl group examples include linear or branched alkynyl groups having 1 to 50 carbon atoms, preferably 1 to 20 carbon atoms, such as ethynyl group, 1-propynyl group, 1-butynyl group and the like. Is mentioned.
  • aralkyl group examples include a group in which at least one hydrogen atom of the alkyl group is substituted with the aryl group described above.
  • an aralkyl group having 7 to 15 carbon atoms is preferable.
  • halogeno group examples include a fluoro group, a chloro group, a bromo group, and an iodo group.
  • Examples of the substituted silyl group include those in which three hydrogen atoms of the silyl group are each independently replaced with the alkyl group, the cycloalkyl group, the aryl group, the aralkyl group, or the like. Specific examples include a trimethylsilyl group, a triethylsilyl group, a tert-butyldimethylsilyl group, a tert-butyldiphenylsilyl group, and a triphenylsilyl group.
  • hydroxyl group that may be protected examples include an unprotected hydroxyl group, or a silyl group such as a trimethylsilyl group, tert-butyldimethylsilyl group, or tert-butyldiphenylsilyl group, a benzyl group or a methoxymethyl group, for example, Protective ⁇ ⁇ ⁇ Groups in Examples include hydroxyl groups that may be protected with a common hydroxyl protecting group used in peptide synthesis and the like described in Organic Synthesis Second Edition, JOHN WILEY & SONS, INC.1991.
  • the amino group which may be protected includes an unprotected amino group; N-methylamino group, N, N-dimethylamino group, N, N-diethylamino group, N, N-diisopropylamino group, N-cyclohexylamino group Mono- or dialkylamino groups such as N; phenyl-amino groups, N-N-diphenylamino groups, N-naphthylamino groups, N-naphthyl-N-phenylamino groups, etc .; N-benzylamino Group, mono or diaralkylamino group such as N, N-dibenzylamino group; acylamino such as formylamino group, acetylamino group, propionylamino group, pivaloylamino group, pentanoylamino group, hexanoylamino group, benzoylamino group, etc.
  • the amino group that may be further protected include an amino group protected by a general amino-protecting group used in peptide synthesis and the like described in the above-mentioned literature.
  • Examples of the substituted phosphino group include those in which two hydrogen atoms of the phosphino group are replaced with the aforementioned alkyl group, the aforementioned cycloalkyl group, the aforementioned aryl group, the aforementioned aralkyl group, and the like.
  • Specific examples include a diphenylphosphino group, a bis (4-methylphenyl) phosphino group, a bis (3,5-dimethylphenyl) phosphino group, and a dicyclohexylphosphino group.
  • Examples of the substituted phosphonyl group include those in which two hydrogen atoms of a phosphonyl group are replaced with the above-described alkyl group, the above-described cycloalkyl group, the above-described aryl group, the above-described aralkyl group, or the like. Specific examples include a dimethylphosphonyl group, a diethylphosphonyl group, and a diphenylphosphonyl group.
  • Y 1 is an optionally substituted cyclopentadienyl group
  • Z 1 is an anionic group (eg, a halogeno group)
  • X 4 , X 5 , X 6 , X 7 and X 8 are each independently a hydrogen atom or a substituent (for example, an alkyl group, an alkoxy group, a hydroxyl group, a halogeno group, an amino group which may be protected). It is preferable.
  • Y 1 is an optionally substituted cyclopentadienyl group
  • Z 1 is an anionic group (eg, a halogeno group)
  • a 1 is a phenyl group which may have a substituent, a part of A 1 may be coordinated to an iridium atom
  • X 4 , X 5 , X 6 , X 7 and X 8 are each Independently, it is preferably a hydrogen atom or a substituent (for example, an alkyl group, an alkoxy group, a halogeno group, an amino group which may be protected).
  • Y 1 is an optionally substituted cyclopentadienyl group
  • Z 1 is an anionic group (eg, a halogeno group)
  • a 1 is a heterocyclic group (for example, a pyridyl group) which may have a substituent, a part of A 1 may be coordinated to an iridium atom
  • X 4 , X 5 , X 6 , X 7 and X 8 are preferably each independently a hydrogen atom or a substituent (preferably an alkyl group, an alkoxy group, a hydroxyl group, a halogeno group, or an amino group which may be protected).
  • Y 1 is an optionally substituted cyclopentadienyl group
  • Z 1 is an anionic group (eg, a halogeno group)
  • a 1 is an optionally substituted carbonyl group, for example, —CO—NR 9 R 10
  • R 9 and R 10 are each independently a hydrogen atom, an optionally substituted alkyl; A group, an aryl group that may have a substituent, a heterocyclic group that may have a substituent, and an aralkyl group that may have a substituent.
  • X 4 , X 5 , X 6 , X 7 and X 8 are each independently a hydrogen atom or a substituent (preferably an alkyl group, an alkoxy group, a halogeno group, a protective group)
  • one ligand may be coordinated to two
  • iridium complex examples include, for example, the following compounds, but are not limited thereto.
  • Non-Patent Document 4 the method described in Science of Synthesis, Trost, B. M. Ed: Thieme, 2001.
  • Non-Patent Document 5 Experimental Chemistry Course, Vol.
  • it can be prepared by mixing an iridium compound and a ligand in the presence of a base.
  • the iridium compound may be an inorganic iridium compound in addition to the iridium complex.
  • the inorganic iridium compound include iridium (III) chloride hydrate (IrCl 3 ⁇ nH 2 O), iridium chloride (IV) acid hydrate (H 2 IrCl 6 ⁇ nH 2 O) , iridium nitrate ( IV) (Ir (NO 3 ) 4 ), ammonium iridium (IV) chloride ((NH 4 ) 2 IrCl 6 ), and the like.
  • the metal complex may be prepared in advance, prepared at the time of use, or prepared in the reaction system.
  • iridium complex when the iridium complex is prepared in the reaction system, for example, the following general formula (5-2): [Cp * IrX 2 ] (5-2) (In the formula, Cp * is 1,2,3,4,5-pentamethylcyclopentadienyl, and X is a chloro group, a bromo group, or an iodo group.)
  • the anilide has the general formula (6-1a): (Wherein A 2 , X 4 , X 5 , X 6 , X 7 and X 8 are as defined above.)
  • the anilide represented by these may be sufficient.
  • anilide as a ligand examples include as described above.
  • the amount of the ligand used is preferably from 0.1 to 200 equivalents (molar equivalent), more preferably from 0.5 to 100 equivalents, still more preferably from 0.5 to 50 equivalents based on the iridium atom.
  • Examples of the ruthenium complex used in the present invention include the following complexes: Dichlorotris (triphenylphosphine) ruthenium (II) ([RuCl 2 (PPh 3 ) 3 ]), dibromotris (triphenylphosphine) ruthenium (II) ([RuBr 2 (PPh 3 ) 3 ]), diiodotris (triphenyl) Phosphine) ruthenium (II) ([RuI 2 (PPh 3 ) 3 ]), dodecacarbonyltriruthenium (0) ([Ru 3 (CO) 12 ]), dichloro (benzene) ruthenium (II) dimer ([RuCl 2 ( benzone)] 2 ), dibromo (benzene) ruthenium (II) dimer ([RuBr 2 (benzone)] 2 ), diiodo (benzene) ruthenium (II) dimer
  • ruthenium complex a complex having the ligand L described in the above [Iridium complex] can be given.
  • the ruthenium complex having the ligand L include, for example, the following compounds: Ru (OAc) 2 L 1 b , Ru (OCOCF 3 ) 2 L 1 b , Ru 2 Cl 4 (L 1 ) 2 b NEt 3 , [RuCl (benzene) L 1 b ] Cl, [RuBr (benzene) L 1 b ] Br, [RuI (benzene) L 1 b ] I, [RuCl (p-cymene) L 1 b ] Cl, [RuBr (p-cymene) L 1 b ] Br, [RuI (p-cymene) L 1 b ] I, [[RuClL 1 b ] 2 ( ⁇ -Cl) 3 ] [Me 2 NH 2 ], [[RuClL 1 b ] 2 ( ⁇ -Cl) 3 ] [Et 2 NH 2 ], RuCl 2 L 1 b , RuBr 2 L 1 , [
  • L 1 is a monodentate phosphine ligand
  • b 2
  • b 1
  • L 2 is a monodentate nitrogen-containing ligand
  • ruthenium complex examples include the following general formula (4-3): (In the formula, Y 2 is an arene which may have a substituent, Z 1 is a hydride or an anion group, and A 1 is an aryl group or a substituent which may have a substituent.
  • a heterocyclic group which may have a substituent, or a carbonyl group which may have a substituent, and a part of A 1 may be coordinated to a ruthenium atom, and X 4 , X 5 , X 6 , X 7 and X 8 are each independently a hydrogen atom or a substituent, and X 4 and X 5 , X 5 and X 6 , X 6 and X 7 , X 7 and X 8 are bonded to each other.
  • Y 1 and A 1 , Y 1 and X 4 may be bonded to each other to form a ring, m is 1 or 2, and n is 1 or 0.
  • These ruthenium complexes may form a multimer such as a dimer through a hydride group, an anion group or a ligand.
  • examples of arenes include benzene and naphthalene.
  • substituent of the arene which may have a substituent include an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, an aryloxy group, a halogeno group, an optionally protected hydroxyl group, a halogeno group, and a substituent.
  • Specific examples of the arenes that may have a substituent include benzene, p-cymene, mesitylene, 1,2,3,4,5,6-hexamethylbenzene, and the like.
  • Z 1 , A 1 , X 4 , X 5 , X 6 , X 7 , X 8 , m and n are the same as those described in the iridium complex.
  • the ruthenium complex includes, in the general formula (4-4), Y 2 is an arene which may have a substituent, and Z 1 is an anionic group (for example, a halogeno group).
  • X 4 , X 5 , X 6 , X 7 and X 8 are each independently a hydrogen atom or a substituent (for example, an alkyl group, an alkoxy group, a halogeno group, an optionally protected amino group). Group).
  • ruthenium complex examples include, for example, the following compounds, but are not limited thereto.
  • Non-Patent Document 4 the method described in Science of Synthesis, Trost, B. M. Ed: Thieme, 2001.
  • Non-Patent Document 5 Experimental Chemistry Course Vol.
  • it can be prepared by mixing a ruthenium compound and a ligand in the presence of a base.
  • the metal complex may be prepared in advance, prepared at the time of use, or prepared in the reaction system.
  • ruthenium complex when the ruthenium complex is prepared in the reaction system, for example, the following general formula (5-4): [Y 2 RuX 2 ] (5-4) (In the formula, Y 2 is as defined above, and X is a chloro group, a bromo group, or an iodo group.)
  • the anilide has the general formula (6-1a): (Wherein A 2 , X 4 , X 5 , X 6 , X 7 and X 8 are as defined above.)
  • the anilide represented by these may be sufficient.
  • anilide as a ligand examples include as described above.
  • the amount of the ligand used is preferably from 0.1 to 200 equivalents (molar equivalent), more preferably from 0.5 to 100 equivalents, still more preferably from 0.5 to 50 equivalents based on the ruthenium atom.
  • Solid base The solid base used in the present invention is not particularly limited as long as it is at least one selected from the group consisting of layered double hydroxides, composite oxides, and calcium hydroxide.
  • a layered double hydroxide is used as the solid base.
  • the layered double hydroxide has the general formula (7): [(M 1 ) xy (M 2 ) x (OH) 2 y (A) x / k ⁇ zH 2 O] (7) It is preferable that it is a hydrotalcite compound represented by these.
  • M 1 represents one selected from the group consisting of Mg, Fe, Zn, Ca, Li, Ni, Co and Cu, or a divalent ion of a plurality of metals selected at an arbitrary ratio
  • M 2 Represents one selected from the group consisting of Al, Fe and Mn, or a trivalent ion of a plurality of metals selected at an arbitrary ratio
  • A represents an interlayer anion
  • k represents the valence of A.
  • interlayer anions include carbonate ions, sulfate ions, fluoride ions, chloride ions, bromide ions, iodide ions, hydroxide ions, and acetate ions.
  • the layered double hydroxide preferably has one or more metal elements selected from the group consisting of aluminum, magnesium and calcium.
  • layered double hydroxide examples include desoterite, hydrotalcite, iowite, pyroaulite, tacobite, welmurandite, and zackagnite.
  • the layered double hydroxide can be prepared by mixing a basic solution with an aqueous solution of a mixture of a divalent metal salt and a trivalent metal salt.
  • the hydrotalcite compound can be synthesized, for example, by the method described in US Pat. No. 4,351,814, the method described in US Pat. No. 4,904,457, or US Pat. No. 5,250,279. Specifically, it can be prepared, for example, by dropping a sodium hydroxide aqueous solution and a sodium carbonate aqueous solution into a mixed aqueous solution of magnesium chloride and aluminum chloride. Moreover, you may use the commercially available hydrotalcite.
  • a complex oxide is used as the solid base.
  • the composite oxide has two or more metal elements, and at least one of the metal elements is preferably selected from the group consisting of aluminum, magnesium and calcium.
  • Specific examples of the composite oxide include sodium aluminate, calcium aluminate, magnesium silicate, calcium silicate, aluminum silicate, magnesium aluminate silicate, and magnesium aluminate metasilicate.
  • calcium hydroxide is used as the solid base. According to a preferred embodiment of the present invention, even when calcium hydroxide is used alone as a solid base, high catalytic activity can be exhibited in the alcohol hydroxyl group conversion reaction.
  • the alcohol used in the present invention is represented by the following general formula (1): (In the formula, R 1 and R 2 each independently have a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. A heterocyclic group which may be substituted, or an aralkyl group which may have a substituent, and at least one of R 1 and R 2 may have a hydroxyl group as a substituent, and R 1 and R 2 are They may combine to form a ring.) Indicated by The alkyl group, aryl group, heterocyclic group, aralkyl group and substituent are as defined above.
  • R 1 is an alkyl group which may have a substituent or an aryl group which may have a substituent, and R 1 has a hydroxyl group as a substituent.
  • R 2 is preferably a hydrogen atom. When R 1 and R 2 are bonded to each other to form a ring, the ring may have a saturated or unsaturated ring structure. For example, the cycloalkyl group may have a substituent. Etc.
  • the alcohol is a polyhydric alcohol.
  • the polyhydric alcohol include, for example, the following general formula (1-1): (Wherein p is an integer from 0 to 48) The compound represented by these is mentioned. Here, p is preferably 0 to 24, more preferably 3 to 20, and still more preferably 5 to 12.
  • the compound having an active proton used in the present invention has the following general formula (2): (In the formula, Nu is a group represented by —CHX 1 -EWG 1 or —NR 3 R 4 , where X 1 is a hydrogen atom or a substituent, and EWG 1 is an electron-withdrawing group. Each of R 3 and R 4 may independently have a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. A heterocyclic group or an aralkyl group which may have a substituent, and R 3 and R 4 may be bonded to each other to form a ring.) It is represented by
  • the substituent, the alkyl group, the aryl group, the heterocyclic group, and the aralkyl group in the general formula (2) are as defined above.
  • the ring only needs to have a saturated ring structure, and examples thereof include a heterocycloalkyl group which may have a substituent. .
  • Examples of the electron-withdrawing group include a carbonyl group which may have a substituent, an aryl group which may have a substituent, a heteroaryl group which may have a substituent, and a substituent.
  • the carbonyl group, aryl group, heteroaryl group and substituent which may have a substituent are as defined above.
  • X 1 is as defined above, and R 5 represents a hydrogen atom, an alkyl group which may have a substituent, an alkenyl group which may have a substituent, or a substituent.
  • R 5 represents a hydrogen atom, an alkyl group which may have a substituent, an alkenyl group which may have a substituent, or a substituent.
  • an alkoxy group which may be substituted, an aryloxy group which may have a substituent, an amino group which may have a substituent, or a carbonyl group which may have a substituent, X 1 And R 5 may combine with each other to form a ring.
  • the carbonyl compound represented by these is mentioned.
  • the substituent, the alkyl group, the alkenyl group, the alkynyl group, the aryl group, the heterocyclic group, the aralkyl group, the alkoxy group, the aryloxy group and the carbonyl group which may have a substituent are as defined above. It is.
  • the ring When X 1 and R 5 are bonded to each other to form a ring, the ring may have a saturated or unsaturated ring structure, for example, a cycloalkyl group that may have a substituent. Etc.
  • carbonyl compound represented by the general formula (2-1) examples include acetone, 2-butanone, 2-pentanone, 3-pentanone, acetophenone, propiophenone, ethyl acetate, butyl acetate, phenyl acetate, cyanoacetic acid.
  • Examples include methyl, methyl acetoacetate, methyl lactate, and cyclohexanone.
  • Examples of the compound having an active proton include the following general formula (2-2): (Wherein X 1 is as defined above.) The nitrile represented by these is mentioned.
  • nitrile represented by the general formula (5) examples include acetonitrile, propionitrile, butyronitrile, phenylacetonitrile, and malonitrile.
  • Specific examples of the compound represented by the general formula (2-3) include ammonia, methylamine, dimethylamine, ethylamine, diethylamine, piperidine, morpholine, aniline and the like.
  • a solvent in the method for converting a hydroxyl group of an alcohol of the present invention, can be appropriately used in consideration of physical and chemical properties of the alcohol, a compound having an active proton, a metal complex, and a solid base.
  • the solvent examples include hydrocarbon solvents such as toluene, xylene, mesitylene and decane; ester solvents such as ethyl acetate and butyl acetate; amide solvents such as N-methylpyrrolidone; isopropyl ether, methyl-tert-butyl ether, Ether solvents such as tetrahydrofuran, methyltetrahydrofuran and 1,4-dioxane; alcohol solvents such as isopropyl alcohol, tert-butyl alcohol and amyl alcohol; ketone solvents such as cyclohexanone and diacetone alcohol; halogen solvents such as methylene chloride Etc.
  • a solvent may be used independently or may be used in combination of multiple types.
  • the amount of the solvent used is not particularly limited and may be appropriately determined. Usually, the amount used is preferably 0 to 100 times (mass basis) with respect to the alcohol.
  • the amount of the compound having an active proton is preferably 0.01 to 100 equivalents (molar equivalent), more preferably 0.05 to 20 equivalents, and still more preferably the alcohol Is 0.1 to 15 equivalents.
  • the amount of the metal complex used is preferably from 0.0001 to 100 mol%, more preferably from 0.001 to 10 mol%, still more preferably from 0.005 to 1 mol%, based on the metal atom, based on the alcohol.
  • the amount of at least one solid base selected from the group consisting of layered double hydroxides, composite oxides and calcium hydroxide is usually preferably 0.1 to 500% (mass basis) with respect to the alcohol, more Preferably it is 1 to 100% (mass basis), more preferably 2 to 50% (mass basis).
  • the alcohol when the alcohol is a polyhydric alcohol, only one hydroxyl group may be converted or a plurality of hydroxyl groups may be converted.
  • a compound having an active proton when a compound having an active proton has a hydroxyl group as one of the substituents, it may react and cyclize in the molecule.
  • the compound having active protons when the compound having active protons has a plurality of active protons, they may react at one place or at several places.
  • R 1 of the general formula (1) and X 1 or R 3 in Nu of the general formula (2) are bonded to form a molecule of an alcohol and a compound having an active proton, You may react within a molecule.
  • the general formula (3) (Wherein R 1 , R 2 and Nu are as defined above, and X 1 or R 3 in R 1 and Nu may combine with each other to form a ring.)
  • the compound represented by these can be produced
  • X 1 or R 3 in R 1 and Nu are bonded to each other to form a ring, the ring only needs to have a saturated or unsaturated ring structure, and for example, has a substituent.
  • the compound produced by the method for converting a hydroxyl group of an alcohol of the present invention may be a single compound or a mixture.
  • the product has the following general formula: Any of (3-1) and (3-2) or a mixture thereof may be used. (Wherein X 1 , R 5 and p are as defined above.) (Wherein X 1 , R 5 and p are as defined above.)
  • the product thereof has the following general formula: Any of (3-3) and (3-4) or a mixture thereof may be used. (Wherein R 3 and p are as defined above.) (Wherein R 3 and p are as defined above.)
  • a compound having an active proton is a carbonyl compound represented by the general formula (2-1) (wherein X 1 is a hydrogen atom and R 5 is methyl Group), and
  • the alcohol represented by the general formula (1) is represented by the following formula (1-1a):
  • the product represented by the general formula (3) is represented by the following formula (3-2a): The case where it is a diketone represented by these is mentioned.
  • an additive may be added as necessary.
  • the additive include compounds described in Chemical Reviews 2016, 116, 4006-4123, such as water, acid, base, inorganic salt, organic salt, phosphine compound, amine compound, amide compound and the like.
  • the acid include inorganic acids such as hydrochloric acid and sulfuric acid, and organic acids such as acetic acid, trifluoroacetic acid, p-toluenesulfonic acid, trifluoromethylsulfonic acid, and camphor-sulfonic acid.
  • Examples of the base include lithium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, sodium carbonate, magnesium carbonate, potassium carbonate, calcium carbonate, cesium carbonate, magnesium oxide, and calcium oxide.
  • Organic bases such as inorganic bases, triethylamine, diazabicycloundecene, pyridine, N, N-dimethylaminopyridine, and 2,6-lutidine.
  • Examples of the inorganic salt include lithium chloride, sodium chloride, potassium chloride, lithium bromide, lithium iodide, and lithium tetrafluoroborate.
  • Examples of the organic salt include sodium acetate, ammonium acetate, tetrabutylammonium chloride, tetrabutylammonium bromide, tetrabutylammonium iodide, tetrabutylphosphonium iodide and the like.
  • Examples of the phosphine compound include compounds defined by the above phosphine ligand.
  • Examples of the amine compound include compounds defined as the amine ligand.
  • Examples of the amide compound include compounds defined as the amide ligand.
  • the use amount of the additive is preferably 0 to 200% (mass basis), more preferably 0 to 100% (mass basis) with respect to the alcohol.
  • water produced may be removed as appropriate using a physical means such as azeotrope or a desiccant such as molecular sieve.
  • the reaction temperature is not particularly limited, but is preferably 0 ° C. to 250 ° C., more preferably room temperature to 200 ° C.
  • the reaction may be performed under normal pressure, under pressure, or under reduced pressure.
  • the reaction atmosphere is not particularly limited, and may be any of nitrogen atmosphere, argon atmosphere, air atmosphere, carbon dioxide gas atmosphere, hydrogen gas atmosphere, and the like.
  • the product can be purified by, for example, filtration, extraction, concentration, crystallization, distillation, column chromatography, or a combination thereof.
  • the reaction format in this reaction may be batch or continuous.
  • Example 1 Synthesis of hexadecane-2,15-dione ([Cp * IrCl 2 ] 2 and N, N′-diphenyloxalic acid amide) 200mL autoclave decane-1,10-diol 7.09 g (40.7 mmol), hydrotalcite (Mg 6 Al 2 (CO 3 ) (OH) 16 ⁇ 4H 2 O) 2.54g ( decane-1,10 35 wt% relative to the diol), [Cp * IrCl 2 ] 2 16.2 mg (1/1000 equivalent to decane-1,10-diol in terms of Ir), 48.7 mg of N, N′-diphenyloxalic acid amide (5 equivalents to Ir) was added and the interior was replaced with nitrogen.
  • Example 2 After distilling off the solvent of the reaction solution of Example 1, 70 mL of butyl acetate was added to the residue. After warming to 50 ° C., the mixture was cooled to ⁇ 5 ° C. with stirring and aged for 1 hour. The produced solid was collected by filtration, washed with butyl acetate (20 mL), and dried to obtain 5.99 g of hexadecane-2,15-dione with a GC purity of 96%.
  • Example 3 Synthesis of hexadecane-2,15-dione ([Cp * IrCl 2 ] 2 and 1,2,3,4,5-pentafluorobenzanilide)
  • 59.2 mg of 1,2,3,4,5-pentafluorobenzanilide (5 equivalents to Ir) was used instead of N, N′-diphenyloxalic acid amide.
  • 13% of 13-hydroxytridecan-2-one and 73% of hexadecane-2,15-dione were produced.
  • the quantitative yield of hexadecane-2,15-dione was 55%.
  • Example 4 Synthesis of hexadecane-2,15-dione ([Cp * IrCl 2 ] 2 and N-phenylpicolinamide)
  • N-phenylpicolinamide 5 equivalents relative to Ir
  • -On was 4%
  • hexadecane-2,15-dione was 72%.
  • the quantitative yield of hexadecane-2,15-dione was 53%.
  • Example 5 Synthesis of hexadecane-2,15-dione ([Cp * IrCl 2 ] 2 and N, N′-diphenyloxalic acid amide; 160 ° C.)
  • Example 1 when the reaction was conducted at a reaction temperature of 155 to 160 ° C., 16% of 13-hydroxytridecan-2-one and 66% of hexadecan-2,15-dione were produced in GC area%. It was. The quantitative yield of hexadecane-2,15-dione was 49%.
  • Example 6 Synthesis of hexadecane-2,15-dione ([Cp * IrCl 2 ] 2 and 1,2,3,4,5-pentafluorobenzanilide; 160 ° C.)
  • 1,2,3,4,5-pentafluorobenzanilide 5 equivalents to Ir
  • GC area% 58.3 mg of 1,2,3,4,5-pentafluorobenzanilide (5 equivalents to Ir) was used instead of N, N′-diphenyloxalic acid amide
  • GC area% GC area%
  • 16% of 13-hydroxytridecan-2-one and 62% of hexadecan-2,15-dione were produced.
  • the quantitative yield of hexadecane-2,15-dione was 51%.
  • Example 7 Synthesis of hexadecane-2,15-dione ([Cp * IrCl 2 ] 2 and benzanilide; 160 ° C)
  • 40.3 mg (5 equivalents to Ir) of benzanilide was used instead of N, N′-diphenyloxalic acid amide, and when GC area%, 13-hydroxytridecan-2-one was 42%. %, 30% hexadecane-2,15-dione was produced. The quantitative yield of hexadecane-2,15-dione was 23%.
  • Example 8 Synthesis of 13-hydroxytridecan-2-one ([Cp * IrCl 2 ] 2 and N-phenylthiophene-2-carboxamide; 160 ° C.)
  • N-phenylthiophene-2-carboxamide 5 equivalents relative to Ir
  • 70% of tridecan-2-one and 8% of hexadecan-2,15-dione were produced.
  • the quantitative yield of hexadecane-2,15-dione was 6%.
  • Example 9 Synthesis of hexadecane-2,15-dione ([Cp * IrCl 2 ] 2 and N, N′-diphenyloxalic acid amide; no xylene solvent) 200mL autoclave decane-1,10-diol 20.0g (114.8mmol), hydrotalcite (Mg 6 Al 2 (CO 3 ) (OH) 16 ⁇ 4H 2 O) 7.0g ( decane-1,10 35 wt% with respect to the diol), 22.9 mg of [Cp * IrCl 2 ] 2 (1/2000 equivalent to decane-1,10-diol in terms of Ir), 206.8 mg of N, N′-diphenyloxalic acid amide (15 equivalents to Ir) was added and the interior was replaced with nitrogen.
  • Example 10 Synthesis of hexadecane-2,15-dione ([Cp * IrCl 2 ] 2 and N, N'-di-p-tolyloxalic acid amide; no xylene solvent)
  • Example 9 when 228.9 mg of N, N′-di-p-tolyloxalic acid amide was used in place of N, N′-diphenyloxalic acid amide, 13-hydroxytridecane-2- 41% of on and 35% of hexadecan-2,15-dione were produced.
  • the quantitative yield of hexadecane-2,15-dione was 26%.
  • the reaction was carried out at a reaction temperature of 155 to 160 ° C. and an amount of Ir-1 used of 24.6 mg (1/1000 equivalent to decane-1,10-diol in terms of Ir).
  • area% 13-hydroxytridecan-2-one was produced at 10% and hexadecane-2,15-dione was produced at 70%.
  • the quantitative yield of hexadecane-2,15-dione was 57%.
  • Example 15 hexadecane-2,15-dione ([Cp * 2 Ir 2 Cl 2 ( ⁇ -N, N'- di -p- tolyl-oxa formidacillin g)] 200mL autoclave decane-1,10-diol 20.0g (114.7mmol), hydrotalcite (Mg 6 Al 2 (CO 3 ) (OH) 16 ⁇ 4H 2 O) 7.00g ( decane-1,10 35 wt% relative to diol) was synthesized in reference example 1 [Cp * 2 Ir 2 Cl 2 ( ⁇ -N, N'- di -p- tolyl-oxa Mida DOO)] 29.1 mg (decane -1 Ir terms , 10-diol), and the inside was replaced with nitrogen.
  • Example 16 Synthesis of hexadecane-2,15-dione ([Cp * 2 Ir 2 Cl 2 ( ⁇ -N, N'- bis (4-fluorophenyl) Okisamidato)]) Under the conditions of Example 15, [Cp * 2 Ir 2 Cl 2 ( ⁇ -N, N'- di -p- tolyl-oxa formidacillin g)] in place of, synthesized in Example 14 [Cp * 2 Ir 2 Cl 2 ( ⁇ -N, N′-bis (4-fluorophenyl) oxamidato)] 34.3 mg (about 1/1670 equivalent in terms of Ir to decane-1,10-diol) was used.
  • Example 19 Instead of [Cp * 2 Ir 2 Cl 2 ( ⁇ -N, N'- di -p- tolyl-oxa formidacillin g)] under the conditions of Example 15, using a catalyst mixture 36.7mg synthesized in Example 17 . As a result of analysis by gas chromatography, it was found that 48% of 13-hydroxytridecan-2-one and 5% of hexadecan-2,15-dione (4) were produced in GC area%.
  • Example 20 Instead of [Cp * 2 Ir 2 Cl 2 ( ⁇ -N, N'- di -p- tolyl-oxa formidacillin g)] under the conditions of Example 15, using a catalyst mixture 57.4mg synthesized in Example 18 . As a result of analysis by gas chromatography, it was found that 48% of 13-hydroxytridecan-2-one and 17% of hexadecan-2,15-dione (4) were produced in GC area%.
  • Example 25 tetradecane-2-ONE 200ml mechanical autoclave hydrotalcite (Mg 6 Al 2 (CO 3 ) (OH) 16 ⁇ 4H 2 O) 4.8g, Ir-1 9.6mg (0. 016 mmol), 16.8 ml (80 mmol) of 1-decanol, 29.3 ml (400 mmol) of acetone and 130 ml of xylene were added and reacted at 160 ° C. for 5 hours. After cooling, the reaction mixture was measured by gas chromatography to obtain 76% tridecan-2-one at GC area%.
  • Example 26 N-benzyl pyrrolidine synthesis 100mL autoclave hydrotalcite (Mg 6 Al 2 (CO 3 ) (OH) 16 ⁇ 4H 2 O) 63mg, [Cp * IrCl 2] 2 40mg (0.10mmol; After replacing with nitrogen, 1,4-butanediol (180 ⁇ l, 2 mmol) and benzylamine (214 ⁇ l, 2 mmol) were added and reacted at 160 ° C. for 5 hours. After cooling, the reaction solution was filtered and concentrated. Purification by silica gel column chromatography gave 82 mg (yield 25%) of N-benzylpyrrolidine. 1 H-NMR (400 MHz, CDCl 3 ): ⁇ 7.34-7.20 (m, 5H), 3.61 (s, 2H), 2.53-2.49 (m, 4H), 1.79 -1.76 (m, 4H)
  • the solid was washed twice with 20 mL acetonitrile. Next, 20 mL of degassed water was added to the solid and stirred. After filtration of the suspension, the solid was washed twice with 10 mL of degassed water followed by twice with 5 mL of acetonitrile. The solid was dried under reduced pressure to give 1.00 g of the title compound as a yellow solid (yield 81%).
  • the solid was washed 3 times with 5 mL of acetonitrile. Next, 5 mL of degassed water was added to the solid and stirred. After filtration of the suspension, the solid was washed twice with 5 mL of degassed water followed by 5 mL of acetonitrile. The solid was dried under reduced pressure to give 237 mg of the title compound as a yellow solid (yield 92%).
  • Example 38 Synthesis of hexadecane-2,15-dione (Ir-2 to Ir-10)
  • Acetone 25 mL (12 equivalents) and isopropyl alcohol 0.44 mL (0.2 equivalents) were added, and heating and stirring were started. After stirring at 140 ° C. for a total of 17-18 hours in two days, the autoclave was cooled.
  • Example 40 Synthesis of hexadecane-2,15-dione (addition effect of N, N'-diphenyloxalic acid amide)
  • Ir -2, N, N'-Diphenyloxalic acid amide was added and the inside was replaced with nitrogen.
  • Acetone 25 mL (12 equivalents) and isopropyl alcohol 0.44 mL (0.2 equivalents) were added, and heating and stirring were started. After stirring at 120 ° C., the autoclave was cooled. Hydrotalcite and calcium hydroxide were removed by filtration and analyzed by gas chromatography. The results are shown in Table 3.
  • decane-1,10-diol 100.0 g (578.8 mmol)
  • hydrotalcite 35.0 g 35 mass%)
  • Example 43 Synthesis of hexadecane-2,15-dione (Ir-2, magnesium aluminate metasilicate)
  • magnesium metasilicate aluminate 7.0 g (35 mass%) calcium hydroxide 4.00 g (20 mass%)
  • Example 44 Synthesis of hexadecane-2,15-dione (Ir-2, magnesium aluminate silicate)
  • a compound having an active proton can be alkylated by converting a relatively inexpensive hydroxyl group of an alcohol. Therefore, when producing a useful substance such as a pharmaceutical or a fragrance, Useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Pyrrole Compounds (AREA)

Abstract

本発明は、アルコールの水酸基の変換方法および該方法を可能にする触媒に関する。本発明のアルコールの水酸基の変換方法は、周期表7~11族の金属錯体と、層状複水酸化物、複合酸化物および水酸化カルシウムからなる群から選ばれる少なくとも1種の固体塩基の存在下、CH(R)(R)OH(式中、RおよびRはそれぞれ、水素原子、置換基を有していてもよいアルキル基等である。)で表されるアルコールと、H-Nu(式中、Nuは-CHX-EWGまたは-NRで表される基であり、Xは水素原子等であり、EWGは電子吸引性基であり、RおよびRはそれぞれ、水素原子、置換基を有していてもよいアルキル基等である。)で表される活性プロトンを有する化合物とを反応させて、CH(R)(R)Nu(式中、R、RおよびNuは前記で定義したとおりである。)で表される化合物を生成させることを特徴とする。

Description

アルコールの水酸基の変換方法
 本発明は、アルコールの水酸基の変換方法および該水酸基の変換を効率的に行う触媒に関する。
 ケトンおよびアミンなどの活性プロトンを有する化合物をアルキル化により伸長する反応は、種々の医薬品や香料などの有用物質を製造する際に重要である。アルキル化剤としては、ハロゲン化アルキルが使用されることが一般的であるが、ハロゲン化アルキルは高価であり、過剰反応が起こりやすく、量論量の塩が副生する等の問題があった。そこで近年、比較的安価なアルコールの水酸基を触媒的に変換する方法、すなわち、アルコールをアルキル化剤として使用する方法が試みられている(非特許文献1、6)。
 例えば、非特許文献2では、カルボニルジヒドリドトリス(トリフェニルホスフィン)ルテニウム(II)([RuH(CO)(PPh])、4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene(Xantphos)、および酢酸ピペリジニウムからなる触媒を用いて、ベンジルアルコールと4,4-ジメチル-3-オキソペンタンニトリルを反応させ、4,4-ジメチル-3-オキソ-2-ベンジルペンタンニトリルに変換する手法が知られている。
 また、特許文献1では、クロロ(1,5-シクロオクタジエン)イリジウム(I)ダイマー([IrCl(cod)])、トリフェニルホスフィン、および水酸化カリウムからなる触媒を用いて、アルキレングリコールとカルボニル基を含有する化合物とを反応させて、アルキレン基の両末端部位にカルボニル基を有する化合物を得る方法が知られている。
特開2009-137876号公報
Sustainable Catalysis: Challenges and Practices for the Pharmaceutical and Fine Chemical Industries, 1st Ed. John Wiley & Sons, 2013, pp121-137 Organic Synthesis 2009, 86, 28. Ligand Platforms in Homogeneous Catalytic Reaction with Metals, Yamaguchi, R., Fujita, K. Eds: Wiley, 2014. Science of Synthesis, Trost, B. M. Ed: Thieme, 2001. 実験化学講座 21巻, 日本化学会編:丸善, 2004 Organic Letters 2006, Vol. 8, No. 7, 1375-1378
 しかしながら、従来の手法は、一般的に基質特異性があるうえ、実用化するにあたっては触媒活性が不十分であった。このような状況の下、より高い触媒活性を実現するアルコールの水酸基の変換方法、および該方法を可能にする触媒の開発が望まれている。
 本発明者らは、周期表7~11族の金属錯体と層状複水酸化物の組み合わせが、アルコールの水酸基の変換において良好な触媒活性を有することを見出した。また、本発明者らはさらに検討した結果、周期表7~11族の金属錯体と複合酸化物および水酸化カルシウムからなる群より選ばれる固体塩基の組み合わせが、アルコールの水酸基の変換において良好な触媒活性を有することを見出し、本発明を完成させるに到った。
 すなわち、本発明は、以下に示すアルコールの水酸基の変換方法および該方法を可能にする金属錯体に関する。
[1]周期表7~11族の金属錯体と、層状複水酸化物、複合酸化物および水酸化カルシウムからなる群から選ばれる少なくとも1種の固体塩基の存在下、下記一般式(1):
Figure JPOXMLDOC01-appb-C000017
(式中、RおよびRは、それぞれ独立して、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基、または置換基を有していてもよいアラルキル基であり、RおよびRの少なくとも一方は、置換基として水酸基を有していてもよく、RおよびRは互いに結合して環を形成してもよい。)
で表されるアルコールと、
 下記一般式(2):
Figure JPOXMLDOC01-appb-C000018
(式中、Nuは、-CHX-EWG、または-NRで表される基であり、ここで、Xは水素原子または置換基であり、EWGは電子吸引性基であり、RおよびRは、それぞれ独立して、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基、または置換基を有していてもよいアラルキル基であり、RおよびRは互いに結合して環を形成してもよい。)
で表される活性プロトンを有する化合物とを反応させて、または
 一般式(1)のRと、一般式(2)のNuにおけるXまたはRが結合して、前記アルコールと前記活性プロトンを有する化合物とが一つの分子を形成している場合に、前記分子内で反応させて、
 下記一般式(3):
Figure JPOXMLDOC01-appb-C000019
(式中、R、RおよびNuは前記で定義したとおりであり、RおよびNuにおけるXまたはRは互いに結合して環を形成してもよい。)
で表される化合物を生成させる、アルコールの水酸基の変換方法。
[2]固体塩基が層状複水酸化物である、[1]に記載の水酸基の変換方法。
[3]層状複水酸化物がハイドロタルサイト類化合物である、[2]に記載の水酸基の変換方法。
[4]固体塩基が2種以上の金属元素を有し、そのうちの少なくとも1種の金属元素は、アルミニウム、マグネシウムおよびカルシウムからなる群から選ばれる複合酸化物である、[1]~[3]のいずれか一項に記載の水酸基の変換方法。
[5]一般式(2)で表される活性プロトンを有する化合物が、下記一般式(2-1):
Figure JPOXMLDOC01-appb-C000020
(式中、Xは、前記で定義したとおりであり、Rは、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアリールオキシ基、置換基を有していてもよいアミノ基、または置換基を有していてもよいカルボニル基であり、XおよびRは互いに結合して環を形成してもよい。)
で表されるカルボニル化合物である、[1]~[4]のいずれか一項に記載の水酸基の変換方法。
 本発明の一実施形態において、一般式(2)で表される活性プロトンを有する化合物は、下記一般式(2-2):
Figure JPOXMLDOC01-appb-C000021
(式中、Xは、前記で定義したとおりである。)
で表されるニトリルであってもよい。
 また、本発明の他の一実施形態において、一般式(2)で表される活性プロトンを有する化合物は、下記一般式(2-3):
Figure JPOXMLDOC01-appb-C000022
(式中、RおよびRは、前記で定義したとおりである。)
で表されるアミンであってもよい。
[6]周期表7~11族の金属錯体がイリジウム錯体またはルテニウム錯体である、[1]~[5]のいずれか一項に記載の水酸基の変換方法。
[7]イリジウム錯体が、下記一般式(4-1):
Figure JPOXMLDOC01-appb-C000023
(式中、Yは、置換基を有していてもよいシクロペンタジエニル基、または置換基を有していてもよいインデニル基であり、Zは、ヒドリドまたはアニオン基であり、Aは、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基、または置換基を有していてもよいカルボニル基であり、Aの一部がイリジウム原子に配位してもよく、X、X、X、XおよびXは、それぞれ独立して、水素原子または置換基であり、XとX、XとX、XとX、XとXは、それぞれ互いに結合して環を形成してもよく、また、YとA、YとXがそれぞれ互いに結合して環を形成してもよく、mは1または2であり、nは1または0であり、mが1のとき、nは1であり、mが2のとき、nは0である。)
で表される化合物またはその二量体、または、
 下記一般式(4-2):
Figure JPOXMLDOC01-appb-C000024
(式中、Y、Z、X、X、X、XおよびXは、前記で定義したとおりである。)
で表される化合物である、[6]に記載の水酸基の変換方法。
[8]イリジウム錯体が、下記一般式(5-1):
[YIrZ   (5-1)
(式中、Yは、置換基を有していてもよいシクロペンタジエニル基、または置換基を有していてもよいインデニル基であり、Zは、ヒドリドまたはアニオン基である。)
で表されるイリジウム化合物またはその二量体と、
 下記一般式(6-1):
Figure JPOXMLDOC01-appb-C000025
(式中、Aは、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基、または置換基を有していてもよいカルボニル基であり、X、X、X、XおよびXは、それぞれ独立して、水素原子または置換基であり、XとX、XとX、XとX、XとXは、それぞれ互いに結合して環を形成してもよい。)
で表されるアニリド、または
 下記一般式(6-2):
Figure JPOXMLDOC01-appb-C000026
(式中、X、X、X、XおよびXは前記で定義したとおりである。)
で表されるアニリドとを混合して反応系内で形成させたものである、[6]または[7]に記載の水酸基の変換方法。
[9]ルテニウム錯体が、下記一般式(4-3):
Figure JPOXMLDOC01-appb-C000027
(式中、Yは、置換基を有していてもよいアレーンであり、Zは、ヒドリドまたはアニオン基であり、Aは、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基、または置換基を有していてもよいカルボニル基であり、Aの一部がルテニウム原子に配位してもよく、X、X、X、XおよびXは、それぞれ独立して、水素原子または置換基であり、XとX、XとX、XとX、XとXは、それぞれ互いに結合して環を形成してもよく、また、YとA、YとXがそれぞれ互いに結合して環を形成してもよく、mは1または2であり、nは1または0であり、mが1のとき、nは1であり、mが2のとき、nは0である。)
で表される化合物またはその二量体、または、
 下記一般式(4-4):
Figure JPOXMLDOC01-appb-C000028
(式中、Y、Z、X、X、X、XおよびXは、前記で定義したとおりである。)
で表される化合物である、[6]に記載の水酸基の変換方法。
[10]ルテニウム錯体が、下記一般式(5-3):
[YRuZ   (5-3)
(式中、Yは、置換基を有していてもよいアレーンであり、Zは、ヒドリドまたはアニオン基である。)
で表されるルテニウム化合物またはその二量体と、
 下記一般式(6-1):
Figure JPOXMLDOC01-appb-C000029
(式中、Aは、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基、または置換基を有していてもよいカルボニル基であり、X、X、X、XおよびXは、それぞれ独立して、水素原子または置換基であり、XとX、XとX、XとX、XとXは、それぞれ互いに結合して環を形成してもよい。)
で表されるアニリド、または
 下記一般式(6-2):
Figure JPOXMLDOC01-appb-C000030
(式中、X、X、X、XおよびXは前記で定義したとおりである。)
で表されるアニリドとを混合して反応系内で形成させたものである、[9]のいずれか一項に記載の水酸基の変換方法。
[11]一般式(2-1)で表されるカルボニル化合物が、アセトンである、[5]~[10]のいずれか一項に記載の水酸基の変換方法。
 なお、本発明の一実施形態において、一般式(1)で表されるアルコールは、下記一般式(1-1):
Figure JPOXMLDOC01-appb-C000031
(式中、pは、0~48の整数である。)
で表されるジオールであることが好ましい。
 また、本発明の一実施形態において、一般式(1)で表されるアルコールは、下記式(1-1a):
Figure JPOXMLDOC01-appb-C000032
で表されるジオールであり、
 一般式(3)で表される化合物は、下記式(3-2a):
Figure JPOXMLDOC01-appb-C000033
で表されるジケトンであることが好ましい。
[12]下記一般式(4-1a):
Figure JPOXMLDOC01-appb-C000034
(式中、Yは、置換基を有していてもよいシクロペンタジエニル基、または置換基を有していてもよいインデニル基であり、Zは、ヒドリドまたはアニオン基であり、Aは、置換基を有していてもよいアリール基、または置換基を有していてもよいカルボニル基であり、Aの一部がイリジウム原子に配位してもよく、X、X、X、XおよびXは、それぞれ独立して、水素原子または置換基であり、XとX、XとX、XとX、XとXは、それぞれ互いに結合して環を形成してもよく、また、YとA、YとXがそれぞれ互いに結合して環を形成してもよく、mは1または2であり、nは1または0であり、mが1のとき、nは1であり、mが2のとき、nは0である。)
で表される化合物またはその二量体、および、
 下記一般式(4-2):
Figure JPOXMLDOC01-appb-C000035
(式中、Y、Z、X、X、X、XおよびXは、前記で定義したとおりである。ただし、Yがペンタメチルシクロペンタジエニルであり、Zが塩素原子であり、X、X、XおよびXが水素原子であり、かつ、Xが水素原子またはメチル基である場合を除くこととする。)
で表される化合物からなる群から選ばれるイリジウム錯体。
[13]アルコールの水酸基の変換反応に用いられる触媒である、[12]に記載のイリジウム錯体。
[14]下記一般式(4-3):
Figure JPOXMLDOC01-appb-C000036
(式中、Yは、置換基を有していてもよいアレーンであり、Zは、ヒドリドまたはアニオン基であり、Aは、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基、または置換基を有していてもよいカルボニル基であり、Aの一部がルテニウム原子に配位してもよく、X、X、X、XおよびXは、それぞれ独立して、水素原子または置換基であり、XとX、XとX、XとX、XとXは、それぞれ互いに結合して環を形成してもよく、また、YとA、YとXがそれぞれ互いに結合して環を形成してもよく、mは1または2であり、nは1または0であり、mが1のとき、nは1であり、mが2のとき、nは0である。)
で表される化合物またはその二量体、または、
 下記一般式(4-4):
Figure JPOXMLDOC01-appb-C000037
(式中、Y、Z、X、X、X、XおよびXは、前記で定義したとおりである。)
で表される化合物からなる群より選ばれるルテニウム錯体。
[15]アルコールの水酸基の変換反応に用いられる触媒である、[14]に記載のルテニウム錯体。
 本発明によれば、新規なアルコールの水酸基の変換方法および該方法を可能にする金属錯体を提供することができる。本発明の好ましい態様によれば、高い触媒活性を実現することができる。
 以下、本発明のアルコールの水酸基の変換方法および金属錯体について具体的に説明する。
[1]アルコールの水酸基の変換方法
 本発明による水酸基の変換方法は、周期表7~11族の金属錯体と、層状複水酸化物、複合酸化物および水酸化カルシウムからなる群から選ばれる少なくとも1種の固体塩基の存在下、下記一般式(1):
Figure JPOXMLDOC01-appb-C000038
(式中、RおよびRは、それぞれ独立して、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基、または置換基を有していてもよいアラルキル基であり、RおよびRの少なくとも一方は、置換基として水酸基を有していてもよく、RおよびRは互いに結合して環を形成してもよい。)
で表されるアルコールと、
 下記一般式(2):
Figure JPOXMLDOC01-appb-C000039
(式中、Nuは、-CHX-EWG、または-NRで表される基であり、ここで、Xは水素原子または置換基であり、EWGは電子吸引性基であり、RおよびRは、それぞれ独立して、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基、または置換基を有していてもよいアラルキル基であり、RおよびRは互いに結合して環を形成してもよい。)
で表される活性プロトンを有する化合物とを反応させて、または
 一般式(1)のRと、一般式(2)のNuにおけるXまたはRが結合して、前記アルコールと前記活性プロトンを有する化合物とが一つの分子を形成している場合に、前記分子内で反応させて、
 下記一般式(3):
Figure JPOXMLDOC01-appb-C000040
(式中、R、RおよびNuは前記で定義したとおりであり、RおよびNuにおけるXまたはRは互いに結合して環を形成してもよい。)
で表される化合物を生成させることを特徴としている。
 本発明によれば、周期表7~11族の金属錯体と、層状複水酸化物、複合酸化物および水酸化カルシウムからなる群から選ばれる少なくとも1種の固体塩基の存在下で、アルコールと活性プロトンを有する化合物を反応させ、あるいはこれらが一分子を形成する場合に分子内で反応させて、アルコールの水酸基を直接変換することで、活性プロトンを有する化合物をアルキル化することができる。以下、本発明の水酸基の変換方法について具体的に説明する。
[周期表7~11族の金属錯体]
 本発明では、周期表7~11族の金属元素を含む金属錯体を触媒として用いる。周期表7~11族の金属元素には、マンガン、テクネチウム、レニウム、鉄、ルテニウム、オスミウム、コバルト、ロジウム、イリジウム、ニッケル、パラジウム、白金、銅、銀および金から選ばれる1種以上が含まれる。本発明で用いられる周期表7~11族の金属錯体としては、これらの金属元素を含む錯体であれば特に制限されない。例えば、Ligand Platforms in Homogeneous Catalytic Reaction with Metals, Yamaguchi, R., Fujita, K. Eds: Wiley, 2014.(非特許文献3)およびScience of Synthesis, Trost, B. M. Ed: Thieme, 2001.(非特許文献4)に記載される金属錯体が挙げられる。なかでも、ルテニウム錯体およびイリジウム錯体が好ましく、特にイリジウム錯体が好ましい。
 [イリジウム錯体]
 本発明に用いるイリジウム錯体としては、例えば、以下の錯体: 
トリス(アセチルアセトナト)イリジウム(III)([Ir(acac)])、クロロ(1,5-シクロオクタジエン)イリジウム(I)ダイマー([IrCl(cod)])、メトキシ(1,5-シクロオクタジエン)イリジウム(I)ダイマー ([Ir(OMe)(cod)])、クロロビス(シクロオクテン)イリジウム(I)ダイマー([IrCl(coe))、ジクロロ(ペンタメチルシクロペンタジエニル)イリジウム(III)ダイマー([CpIrCl)、ジブロモ(ペンタメチルシクロペンタジエニル)イリジウム(III)ダイマー([CpIrBr)、ジヨード(ペンタメチルシクロペンタジエニル)イリジウム(III)ダイマー([CpIrI)、ビス(1,5-シクロオクタジエン)イリジウム(I)テトラフルオロホウ酸塩([Ir(cod)]BF)、トリス(ジピバロイルメタナト)イリジウム(III)([Ir(dpm)])、(インデニル)(シクロオクタジエン)イリジウム(I)((cod)Ir(indenyl))などが挙げられる。ここで、Cpは、1,2,3,4,5-ペンタメチルシクロペンタジエニル基を表す。
 また、イリジウム錯体の例として、配位子Lを有する錯体が挙げられる。
 配位子Lとしては、例えば、ホスフィン配位子Lおよび含窒素配位子L、カルベン配位子Lなどが挙げられる。
 ホスフィン配位子Lとしては、単座ホスフィン配位子、二座ホスフィン配位子が挙げられる。
 単座ホスフィン配位子としては、トリフェニルホスフィン、トリ(4-トリル)ホスフィン、トリ(3,5-キシリル)ホスフィン、トリシクロへキシルホスフィン、トリ(tert-ブチルホスフィン)、2-ジフェニルホスフィノ-2’-メトキシ-1,1’-ビナフチル(MOP)などが挙げられる。
 二座ホスフィン配位子としては、1,1’-ビス(ジフェニルホスフィノ)フェロセン(DPPF)、1,1-ビス(ジフェニルホスフィノ)メタン(DPPM)、1,2-ビス(ジフェニルホスフィノ)エタン(DPPE)、1,3-ビス(ジフェニルホスフィノ)プロパン(DPPP)、1,4-ビス(ジフェニルホスフィノ)ブタン(DPPE)、1,5-ビス(ジフェニルホスフィノ)ベンゼン、2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフタレン(BINAP)、5,5’-ビス(ジフェニルホスフィノ)-4,4’-ビ-1,3-ベンゾジオキソール(SEGPHOS)、5,5’-ビス[ビス(3,5-ジメチルフェニル)ホスフィノ]-4,4’-ビ-1,3-ベンゾジオキソール(DM-SEGPHOS)、5,5’-ビス[ビス(3,5-ビス(1,1-ジメチルエチル)-4-メトキシフェニル)ホスフィノ]-4,4’-ビ-1,3-ベンゾジオキソール(DTBM-SEGPHOS)などが挙げられる。
 含窒素配位子Lとしては、単座または二座の含窒素配位子が挙げられる。具体的には、単座アミン配位子、二座アミン配位子、単座アミド配位子または二座のアミド配位子などが挙げられる。
 単座アミン配位子としては、ピリジン、4-ジメチルアミノピリジン、エチルアミン、ジエチルアミン、トリエチルアミン、トリブチルアミン、キヌクリジンなどが挙げられる。
 二座アミン配位子としては、2-ピコリルアミン、エチレンジアミン(EDA)、テトラメチルエチレンジアミン、1,2-ジフェニルエチレンジアミン(DPEN)、N-(p-トルエンスルホニル)-1,2-ジフェニルエチレンジアミン(Ts-DPEN)、N-(メタンスルホニル)-1,2-ジフェニルエチレンジアミン(Ts-DPEN)、1,1-ビス(4-メトキシフェニル)-3-メチルブタン-1,2-ジアミン(DAIPEN)などが挙げられる。
 単座または二座のアミド配位子としては、ホルムアミド、アセトアミド、ベンズアミド、アセトアニリド、シュウ酸アミド、N,N’-ジメチルシュウ酸アミド、N,N’-ジエチルシュウ酸アミド,N,N’-ジブチルシュウ酸アミド等の炭素数4~20のN,N’-ジアルキルシュウ酸アミド、あるいは、
 下記一般式(6-1):
Figure JPOXMLDOC01-appb-C000041
(式中、Aは、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基、または置換基を有していてもよいカルボニル基であり、X、X、X、XおよびXは、それぞれ独立して、水素原子または置換基であり、XとX、XとX、XとX、XとXは、それぞれ互いに結合して環を形成してもよい。)
で表されるアニリド;または、
 下記一般式(6-2):
Figure JPOXMLDOC01-appb-C000042
(式中、X、X、X、XおよびXは、それぞれ独立して、水素原子または置換基であり、XとX、XとX、XとX、XとXは、それぞれ互いに結合して環を形成してもよい。)
で表されるアニリドが挙げられる。なお、この一般式(6-1)で表されるアニリドおよび一般式(6-2)で表されるアニリドはそれぞれ、イリジウム錯体の調製で用いられる一般式(6-1)で表されるアニリドおよび一般式(6-2)で表されるアニリドと同じ化合物である。
 配位子としてのアニリドの例としては、例えば下記の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000043
 カルベン配位子Lとしては、N-ヘテロ環式カルベン配位子などが挙げられる。
具体的には、1,3-ジメチルイミダゾール-2-イリデン、1,3-ジイソプロピルイミダゾール-2-イリデン、1,3-ジブチルイミダゾール-2-イリデン、1,3-ビス(2,4,6-トリメチルフェニル)イミダゾール-2-イリデン、1,3-ジメチルベンゾイミダゾール-2-イリデン、1,3-ジメチルジヒドロイミダゾール-2-イリデンなどが挙げられる。
 また、配位子Lとして、同一分子内にホスフィン、含窒素部位、およびカルベン部位から選ばれる複数の部位をを有する二座または三座の化合物を用いてもよい。具体的には、2-(ジフェニルホスフィノ)エチルアミン、ビス[(2-ジフェニルホスフィノ)エチル]アミンなどが挙げられる。
 これら配位子Lがキラリティを有する場合は、ラセミ体でも、メソ体でも、光学活性体でもよい。
 配位子Lを有する錯体の具体例としては下記の化合物:
[IrL Cl]、[IrL Br]、[IrL I]、[Ir(cod)L ]BF、[Ir(cod)L ]ClO、[Ir(cod)L ]PF、[Ir(cod)L ]BPh、[Ir(cod)L ]OTf、[Ir(nbd)L ]BF、[Ir(nbd)L ]ClO、[Ir(nbd)L ]PF、[Ir(nbd)L ]BPh、[Ir(nbd)L ]OTf、CpIrClL c、CpIrCl 0.5c、CpIrClL 0.5c、CpIrL 、(CpIrCl) c、CpIrCl、CpIr(OTf)などが挙げられる。
 ここで、Lが単座ホスフィン配位子の場合はb=2を表し、二座ホスフィン配位子の場合はb=1を表し、Lが単座の含窒素配位子の場合はc=2を表し、二座の含窒素配位子の場合はc=1を表す。またLが含窒素化合物の場合は、Lの窒素原子がそのままイリジウム原子に配位しても、Lの窒素原子上のプロトンが脱離してイリジウムと金属アミドを形成してもよい。
 また、イリジウム錯体の好ましい具体例としては、下記一般式(4-1):
Figure JPOXMLDOC01-appb-C000044
(式中、Yは、置換基を有していてもよいシクロペンタジエニル基、または置換基を有していてもよいインデニル基であり、Zは、ヒドリドまたはアニオン基であり、Aは、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基、または置換基を有していてもよいカルボニル基であり、Aの一部がイリジウム原子に配位してもよく、X、X、X、XおよびXは、それぞれ独立して、水素原子または置換基であり、XとX、XとX、XとX、XとXは、それぞれ互いに結合して環を形成してもよく、また、YとA、YとXがそれぞれ互いに結合して環を形成してもよく、mは1または2であり、nは1または0であり、mが1のとき、nは1であり、mが2のとき、nは0である。)
で表される化合物、および、
 下記一般式(4-2):
Figure JPOXMLDOC01-appb-C000045
 
(式中、Y、Z、X、X、X、XおよびXは、前記で定義したとおりである。)
で表される化合物からなる群から選ばれるイリジウム錯体が挙げられる。
 また、イリジウム錯体の好ましい具体例として、下記一般式(4-1a):
Figure JPOXMLDOC01-appb-C000046
(式中、Y、Z、X、X、X、X、X、mおよびnは前記で定義したとおりであり、Aは、置換基を有していてもよいアリール基、または置換基を有していてもよいカルボニル基であり、Aの一部がイリジウム原子に配位してもよく、また、YとA、YとXがそれぞれ互いに結合して環を形成してもよい。)
で表される化合物が挙げられる。
 なお、これらのイリジウム錯体はヒドリド基、アニオン基あるいは配位子を介して、二量体などの多量体を形成してもよい。
 本明細書において、置換基を有していてもよいシクロペンタジエニル基としては、ペンタジエニル基の水素原子のうち0~5個が置換基で置換されたものであり、ペンタジエニル基、1,2,3,4,5-ペンタメチルシクロペンタジエニル基(Cp*)、1-ヒドロキシメチル-2,3,4,5-テトラメチルシクロペンタジエニル基、1-ヒドロキシエチル-2,3,4,5-テトラエチルシクロペンタジエニル基などが挙げられる。
 また、置換基を有していてもよいインデニル基としては、インデニル基の水素原子のうち、0~7個が置換基で置換されたものであり、インデニル基、1,2,3-トリメチルインデニル基、1,2,3,4,5,6,7-ヘプタメチルインデニル基などが挙げられる。
 アニオン基としては、水酸基、オキソ基、アルコキシ基、アリールオキシ基、フルオロ基、クロロ基、ブロモ基、ヨード基、アセトキシ基、トリフルオロアセトキシ基、トリフルオロメタンスルホナート基、テトラフルオロボラート基、テトラヒドロボラート基、テトラキス(ペンタフルオロフェニル)ボラート基、ヘキサフルオロホスフエート基、テトラキス[3,5-ビス(トリフルオロメチル)フェニル]ボラート基などが挙げられる。
 アルコキシ基の具体例としては、例えば、メトキシ基、エトキシ基、イソプロポキシ基などが挙げられる。
 アリールオキシ基の具体例としては、フェノキシ基などが挙げられる。
 アリール基としては、好ましくは炭素数6~18、より好ましくは炭素数6~14の単環式、多環式または縮合環式のアリール基が挙げられる。具体的には、フェニル基、ナフチル基、アントリル基、フェナントリル基、ビフェニル基等が挙げられる。
 複素環基としては、例えば、炭素数2~15で、異種原子として少なくとも1個、好ましくは1~3個の窒素原子、酸素原子及び/又は硫黄原子等の異種原子を含んでいるヘテロアリール基、またはヘテロシクロアルキル基が挙げられる。
 ヘテロアリール基としては、5又は6員の単環式ヘテロアリール基、多環式又は縮合環式のヘテロアリール基が挙げられる。その具体例としては、フリル基、チエニル基、ピリジル基、ピリミジル基、ピラジル基、ピリダジル基、ピラゾリル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ベンゾフリル基、ベンゾチエニル基、キノリル基、イソキノリル基、キノキサリル基、フタラジル基、キナゾリル基、ナフチリジル基、シンノリル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、アクリジル基、アクリジニル基等が挙げられる。
 ヘテロシクロアルキル基としては、3~6員環のヘテロシクロアルキル基が挙げられる。その具体例としては、アジリジノ基、アゼチジノ基、ピロリジノ基、ピペリジノ基、オキソラノ基、オキサノ基、モルホリノ基などが挙げられる。
 置換基を有していてもよいカルボニル基としては、-CO-R、-CO-OR、または-CO-NR10(R、R、RおよびR10は、それぞれ独立して、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基、または置換基を有していてもよいアラルキル基を表す。)。
 本明細書において、置換基としては各種任意のものを有していてもよく、これに限定するものではないが、例えば、アルキル基、アルケニル基、アルキニル基、アリール基、複素環基、アラルキル基、アルコキシ基、アリールオキシ基、ハロゲノ基、シアノ基、ニトロ基、オキソ基、置換基を有していてもよいカルボニル基、カルボキシル基、スルホニル基、スルフェニル基、スルフィニル基、スルホ基、メルカプト基、置換シリル基、保護されていてもよい水酸基、保護されていてもよいアミノ基、置換ホスフィノ基、置換ホスホニル基等が挙げられる。ここで、アリール基、複素環基、アルコキシ基、アリールオキシ基、および置換基を有していてもよいカルボニル基は前述したものと同義である。また、これら置換基は他の置換基によってさらに置換されていてもよい。
 例えば、本明細書において、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアリールオキシ基および置換基を有していてもよいアミノ基における置換基としては、アルキル基、アルコキシ基、アルケニル基、アルキニル基、アリールオキシ基、ハロゲノ基、保護されていてもよい水酸基、ハロゲノ基、置換基を有していてもよいカルボニル基、保護されていてもよいアミノ基が好ましい。
 また、本明細書において、置換基を有していてもよいシクロペンタジエニル基、および置換基を有していてもよいインデニル基における置換基としては、メチル基、エチル基が好ましく、メチル基がより好ましい。
 X、X、X、XおよびXが有する置換基としては、アルキル基、アルコキシ基、ハロゲノ基、保護されていてもよいアミノ基が好ましい。
 アルキル基としては、直鎖又は分岐のアルキル基やシクロアルキル基が挙げられる。直鎖又は分岐のアルキル基としては、炭素数1~50、好ましくは炭素数1~20の直鎖又は分岐のアルキル基が挙げられ、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基等が挙げられる。シクロアルキル基としては炭素数3~20、より好ましくは炭素数3~10の単環式、多環式又は縮合環式のシクロアルキル基が挙げられ、例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
 アルケニル基としては、直鎖又は分岐のアルケニル基が挙げられる。直鎖又は分岐のアルケニル基としては、炭素数1~50、好ましくは炭素数1~20の直鎖又は分岐のアルケニル基が挙げられ、例えば、ビニル基、1-プロぺニル基、1-ブテニル基、1-ヘキセニル基、1-オクチル基、1-デセニル基などが挙げられる。
 アルキニル基としては、直鎖又は分岐のアルキニル基が挙げられる。直鎖又は分岐のアルキニル基としては、炭素数1~50、好ましくは炭素数1~20の直鎖又は分岐のアルキニル基が挙げられ、例えば、エチニル基、1-プロピニル基、1-ブチニル基などが挙げられる。
 アラルキル基としては、前記のアルキル基の少なくとも1個の水素原子が前記したアリール基で置換された基が挙げられ、例えば炭素数7~15のアラルキル基が好ましく、具体的にはベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルプロピル基、3-ナフチルプロピル基等が挙げられる。
 ハロゲノ基としては、フルオロ基、クロロ基、ブロモ基、およびヨード基が挙げられる。
 置換シリル基は、シリル基の水素原子の3個がそれぞれ独立して前記したアルキル基、前記したシクロアルキル基、前記したアリール基、前記したアラルキル基等に置き換ったものが挙げられる。具体的にはトリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基、tert-ブチルジフェニルシリル基、トリフェニルシリル基等が挙げられる。
 保護されていてもよい水酸基としては、無保護の水酸基、又は例えばトリメチルシリル基、tert-ブチルジメチルシリル基、tert-ブチルジフェニルシリル基などのシリル基、ベンジル基やメトキシメチル基など、例えばProtective Groups in Organic Synthesis Second Edition, JOHN WILEY&SONS, INC.1991に記載されているペプチド合成等で用いられている一般的な水酸基の保護基で保護されていてもよい水酸基などが挙げられる。
 保護されていてもよいアミノ基としては、無保護のアミノ基;N-メチルアミノ基、N,N-ジメチルアミノ基、N,N-ジエチルアミノ基、N,N-ジイソプロピルアミノ基、N-シクロヘキシルアミノ基等のモノ又はジアルキルアミノ基;N-フェニルアミノ基、N,N-ジフェニルアミノ基、N-ナフチルアミノ基、N-ナフチル-N-フェニルアミノ基等のモノ又はジアリールアミノ基;N-ベンジルアミノ基、N,N-ジベンジルアミノ基等のモノ又はジアラルキルアミノ基;ホルミルアミノ基、アセチルアミノ基、プロピオニルアミノ基、ピバロイルアミノ基、ペンタノイルアミノ基、ヘキサノイルアミノ基、ベンゾイルアミノ基等のアシルアミノ基;メトキシカルボニルアミノ基、エトキシカルボニルアミノ基、n-プロポキシカルボニルアミノ基、n-ブトキシカルボニルアミノ基、tert-ブトキシカルボニルアミノ基、ペンチルオキシカルボニルアミノ基、ヘキシルオキシカルボニルアミノ基等のアルコキシカルボニルアミノ基;フェニルオキシカルボニルアミノ基等のアリールオキシカルボニルアミノ基;ベンジルオキシカルボニルアミノ基等のアラルキルオキシカルボニルアミノ基等が挙げられる。さらに保護されていてもよいアミノ基としては、例えば前記文献に記載されているペプチド合成等で用いられる一般的なアミノ基の保護基で保護されたアミノ基が挙げられる。
 置換ホスフィノ基は、ホスフィノ基の2つの水素原子が前記したアルキル基、前記したシクロアルキル基、前記したアリール基、前記したアラルキル基等に置き換ったものが挙げられる。具体的には、ジフェニルホスフィノ基、ビス(4-メチルフェニル)ホスフィノ基、ビス(3,5-ジメチルフェニル)ホスフィノ基、ジシクロへキシルホスフィノ基などが挙げられる。
 置換ホスホニル基としてホスホニル基の2つの水素原子が、前記したアルキル基、前記したシクロアルキル基、前記したアリール基、前記したアラルキル基等に置き換ったものが挙げられる。具体的には、ジメチルホスホニル基、ジエチルホスホニル基、ジフェニルホスホニル基などが挙げられる。
 本発明の一実施形態において、イリジウム錯体としては、Yが、置換基を有していてもよいシクロペンタジエニル基であり、Zが、アニオン基(例えば、ハロゲノ基)であり、X、X、X、XおよびXは、それぞれ独立して、水素原子または置換基(例えば、アルキル基、アルコキシ基、水酸基、ハロゲノ基、保護されていてもよいアミノ基)であることが好ましい。
 本発明の一実施形態において、イリジウム錯体としては、Yが、置換基を有していてもよいシクロペンタジエニル基であり、Zが、アニオン基(例えば、ハロゲノ基)であり、Aが、置換基を有していてもよいフェニル基であり、Aの一部はイリジウム原子に配位してもよく、X、X、X、XおよびXは、それぞれ独立して、水素原子または置換基(例えば、アルキル基、アルコキシ基、ハロゲノ基、保護されていてもよいアミノ基)であることが好ましい。
 本発明の一実施形態において、イリジウム錯体としては、Yが、置換基を有していてもよいシクロペンタジエニル基であり、Zが、アニオン基(例えば、ハロゲノ基)であり、Aが、置換基を有していてもよい複素環基(例えば、ピリジル基)であり、Aの一部はイリジウム原子に配位してもよく、X、X、X、XおよびXは、それぞれ独立して、水素原子または置換基(好ましくはアルキル基、アルコキシ基、水酸基、ハロゲノ基、保護されていてもよいアミノ基)であることが好ましい。
 本発明の一実施形態において、イリジウム錯体としては、Yが、置換基を有していてもよいシクロペンタジエニル基であり、Zが、アニオン基(例えば、ハロゲノ基)であり、Aが、置換基を有していてもよいカルボニル基、例えば、-CO-NR10(RおよびR10は、それぞれ独立して、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基、置換基を有していてもよいアラルキル基を表す。)であり、Aの一部はイリジウム原子に配位してもよく、X、X、X、XおよびXは、それぞれ独立して、水素原子または置換基(好ましくはアルキル基、アルコキシ基、ハロゲノ基、保護されていてもよいアミノ基)であることが好ましい。このとき、一つの配位子が2つのイリジウム原子に配位していても良い。
 イリジウム錯体の好ましい具体例としては、例えば下記の化合物が挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
 これらの金属錯体は、例えば、Science of Synthesis, Trost, B. M. Ed: Thieme, 2001.(非特許文献4)に記載の方法や、実験化学講座 21巻, 日本化学会編:丸善, 2004(非特許文献5)に記載の方法で合成することができる。具体的には、イリジウム化合物と配位子を塩基の存在下で混合することにより調製することができる。
 イリジウム化合物としては、前記イリジウム錯体の他、無機イリジウム化合物でもよい。無機イリジウム化合物の具体例としては、塩化イリジウム(III)水和物(IrCl・nHO)、塩化イリジウム(IV)酸水和物)(HIrCl・nHO)硝酸イリジウム(IV)(Ir(NO)、塩化イリジウム(IV)酸アンモニウム((NHIrCl)などが挙げられる。
 金属錯体は、あらかじめ調製したものでも、用時調製したものでもよく、また反応系内で調製したものでもよい。
 イリジウム錯体を反応系内で調製する場合は、例えば、下記一般式(5-1):
[YIrZ   (5-1)
(式中、YおよびZは前記で定義したとおりである。)
で表されるイリジウム化合物またはその二量体と、
 下記一般式(6-1):
Figure JPOXMLDOC01-appb-C000049
(式中、A、X、X、X、XおよびXは前記で定義したとおりである。)
で表されるアニリド、または
 下記一般式(6-2):
Figure JPOXMLDOC01-appb-C000050
(式中、X、X、X、XおよびXは前記で定義したとおりである。)
で表されるアニリドとを混合して反応系内でイリジウム錯体を形成させる。
 本発明の一実施形態において、イリジウム錯体を反応系内で調製する場合は、例えば、下記一般式(5-2):
[CpIrX  (5-2)
(式中、Cpは、1,2,3,4,5-ペンタメチルシクロペンタジエニルであり、Xは、クロロ基、ブロモ基、またはヨード基である。)
で表されるイリジウム化合物またはその二量体と、
 下記一般式(6-1):
Figure JPOXMLDOC01-appb-C000051
(式中、A、X、X、X、XおよびXは前記で定義したとおりである。)
で表されるアニリド、または
 下記一般式(6-2):
Figure JPOXMLDOC01-appb-C000052
(式中、X、X、X、XおよびXは前記で定義したとおりである。)
で表されるアニリドとを混合して反応系内でイリジウム錯体を形成させる。
 本発明の一実施形態において、アニリドは、下記一般式(6-1a):
Figure JPOXMLDOC01-appb-C000053
(式中、A、X、X、X、XおよびXは前記で定義したとおりである。)
で表されるアニリドであってもよい。
 配位子としてのアニリドの例としては、前記のとおりである。
 配位子の使用量は、イリジウム原子に対して、0.1~200当量(モル当量)が好ましく、より好ましくは0.5~100当量、さらに好ましくは0.5~50当量である。
 [ルテニウム錯体]
 本発明に用いるルテニウム錯体としては、例えば、以下の錯体: 
ジクロロトリス(トリフェニルホスフィン)ルテニウム(II)([RuCl(PPh])、ジブロモトリス(トリフェニルホスフィン)ルテニウム(II)([RuBr(PPh])、ジヨードトリス(トリフェニルホスフィン)ルテニウム(II)([RuI(PPh])、ドデカカルボニルトリルテニウム(0)([Ru(CO)12])、ジクロロ(ベンゼン)ルテニウム(II)ダイマー([RuCl(benzene)])、ジブロモ(ベンゼン)ルテニウム(II)ダイマー([RuBr(benzene)])、ジヨード(ベンゼン)ルテニウム(II)ダイマー([RuI(benzene)])、ジクロロ(メシチレン)ルテニウム(II)ダイマー([RuCl(mesitylene)])、ジブロモ(メシチレン)ルテニウム(II)ダイマー([RuBr(mesitylene)])、ジヨード(メシチレン)ルテニウム(II)ダイマー([RuI(mesitylene)])、ジクロロ(p-シメン)ルテニウム(II)ダイマー([RuCl(p-cymene)])、ジブロモ(p-シメン)ルテニウム(II)ダイマー([RuBr(p-cymene)])、ジヨード(p-シメン)ルテニウム(II)ダイマー([RuI(p-cymene)])、ジクロロ(ヘキサメチルベンゼン)ルテニウム(II)ダイマー([RuCl(C(CH)])、ジブロモ(ヘキサメチルベンゼン)ルテニウム(II)ダイマー([RuBr(C(CH)])、ジヨード(ヘキサメチルベンゼン)ルテニウム(II)ダイマー([RuI(C(CH)])、カルボニルクロロヒドリドトリス(トリフェニルホスフィン)ルテニウム(II)([RuHCl(CO)(PPh])、トリス(アセチルアセトナト)ルテニウム(III)([Ru(acac)])、トリス(ジピバロイルメタナト)ルテニウム(III)([Ru(dpm)])、ジクロロ(シクロオクタジエン)ルテニウム([RuCl(cod)])、ジブロモ(シクロオクタジエン)ルテニウム([RuBr(cod)])、ジヨード(シクロオクタジエン)ルテニウム([RuI(cod)])、ジクロロ(ノルボルナジエン)ルテニウム([RuCl(nbd)])、ジブロモ(ノルボルナジエン)ルテニウム([RuBr(nbd)])、ジヨード(ノルボルナジエン)ルテニウム([RuI(nbd)])などが挙げられる。ここで、式中のaは1~3の整数である。
 また、ルテニウム錯体の例として、前記[イリジウム錯体]で説明した配位子Lを有する錯体が挙げられる。
 配位子Lを有するルテニウム錯体の具体例としては、例えば下記の化合物:
Ru(OAc) 、Ru(OCOCF 、RuCl(L2bNEt、[RuCl(benzene)L ]Cl、[RuBr(benzene)L ]Br、[RuI(benzene)L ]I、[RuCl(p-cymene)L ]Cl、[RuBr(p-cymene)L ]Br、[RuI(p-cymene)L ]I、[[RuClL (μ-Cl)][MeNH]、[[RuClL (μ-Cl)][EtNH]、RuCl 、RuBr 、RuI 、RuCl 、RuBr 、RuI 、RuClL (p-cymene)、RuClL (mesitylene)、ジクロロビス[2-(ジフェニルホスフィノ)エチルアミン]ルテニウム、カルボニルクロロヒドリド[ビス(2-ジフェニルホスフィノエチル)アミノ]ルテニウム(Ru-MACHO),カルボニルヒドリド(テトラヒドロボラート)[ビス(2-ジフェニルホスフィノエチル)アミノ]ルテニウム(Ru-MACHO-BH)などが挙げられる。
 ここで、Lが単座ホスフィン配位子の場合はb=2を表し、二座ホスフィン配位子の場合はb=1を表し;Lが単座の含窒素配位子の場合はc=2を表し、二座の含窒素配位子の場合はc=1を表す。
 また、ルテニウム錯体の好ましい具体例としては、下記一般式(4-3):
Figure JPOXMLDOC01-appb-C000054
(式中、Yは、置換基を有していてもよいアレーンであり、Zは、ヒドリドまたはアニオン基であり、Aは、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基、または置換基を有していてもよいカルボニル基であり、Aの一部がルテニウム原子に配位してもよく、X、X、X、XおよびXは、それぞれ独立して、水素原子または置換基であり、XとX、XとX、XとX、XとXは、それぞれ互いに結合して環を形成してもよく、また、YとA、YとXがそれぞれ互いに結合して環を形成してもよく、mは1または2であり、nは1または0であり、mが1のとき、nは1であり、mが2のとき、nは0である。)
で表される化合物またはその二量体、または、
 下記一般式(4-4):
Figure JPOXMLDOC01-appb-C000055
(式中、Y、Z、X、X、X、XおよびXは、前記で定義したとおりである。)
で表される化合物からなる群から選ばれるルテニウム錯体が挙げられる。
 なお、これらのルテニウム錯体はヒドリド基、アニオン基あるいは配位子を介して、二量体などの多量体を形成してもよい。
 本明細書において、アレーンとしては、ベンゼン、ナフタレンなどが挙げられる。置換基を有していてもよいアレーンの置換基としては、アルキル基、アルコキシ基、アルケニル基、アルキニル基、アリールオキシ基、ハロゲノ基、保護されていてもよい水酸基、ハロゲノ基、置換基を有していてもよいカルボニル基、保護されていてもよいアミノ基が挙げられる。置換基を有していてもよいアレーンの具体例としては、ベンゼン、p-シメン、メシチレン、1,2,3,4,5,6-ヘキサメチルベンゼンなどが好ましく挙げられる。
 なお、式中、Z、A、X、X、X、X、X、mおよびnについては、イリジウム錯体において説明したものと同じである。
 本発明の一実施形態において、ルテニウム錯体としては、前記一般式(4-4)において、Yが、置換基を有していてもよいアレーンであり、Zが、アニオン基(例えば、ハロゲノ基)であり、X、X、X、XおよびXは、それぞれ独立して、水素原子または置換基(例えば、アルキル基、アルコキシ基、ハロゲノ基、保護されていてもよいアミノ基)であることが好ましい。
 ルテニウム錯体の好ましい具体例としては、例えば下記の化合物が挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000056
 これらの金属錯体は、例えば、Science of Synthesis, Trost, B. M. Ed: Thieme, 2001.(非特許文献4)に記載の方法や、実験化学講座 21巻, 日本化学会編:丸善, 2004(非特許文献5)に記載の方法で合成することができる。具体的には、ルテニウム化合物と配位子を塩基の存在下で混合することにより調製することができる。
 金属錯体は、あらかじめ調製したものでも、用時調製したものでもよく、また反応系内で調製したものでもよい。
 ルテニウム錯体を反応系内で調製する場合は、例えば、下記一般式(5-3):
[YRuZ   (5-3)
(式中、YおよびZは前記で定義したとおりである。)
で表されるルテニウム化合物またはその二量体と、
 下記一般式(6-1):
Figure JPOXMLDOC01-appb-C000057
(式中、A、X、X、X、XおよびXは前記で定義したとおりである。)
で表されるアニリド、または
 下記一般式(6-2):
Figure JPOXMLDOC01-appb-C000058
(式中、X、X、X、XおよびXは前記で定義したとおりである。)
で表されるアニリドとを混合して反応系内で形成させる。
 本発明の一実施形態において、ルテニウム錯体を反応系内で調製する場合は、例えば、下記一般式(5-4):
[YRuX  (5-4)
(式中、Yは前記で定義したとおりであり、Xは、クロロ基、ブロモ基、またはヨード基である。)
で表されるルテニウム化合物またはその二量体と、
 下記一般式(6-1):
Figure JPOXMLDOC01-appb-C000059
(式中、A、X、X、X、XおよびXは前記で定義したとおりである。)
で表されるアニリド、または
 下記一般式(6-2):
Figure JPOXMLDOC01-appb-C000060
(式中、X、X、X、XおよびXは前記で定義したとおりである。)
で表されるアニリドとを混合して反応系内でルテニウム錯体を形成させる。
 本発明の一実施形態において、アニリドは、下記一般式(6-1a):
Figure JPOXMLDOC01-appb-C000061
(式中、A、X、X、X、XおよびXは前記で定義したとおりである。)
で表されるアニリドであってもよい。
 配位子としてのアニリドの例としては、前記のとおりである。
 配位子の使用量は、ルテニウム原子に対して、0.1~200当量(モル当量)が好ましく、より好ましくは0.5~100当量、さらに好ましくは0.5~50当量である。
[固体塩基]
 本発明に用いる固体塩基としては、層状複水酸化物、複合酸化物および水酸化カルシウムからなる群から選ばれる少なくとも1種であれば特に制限されない。
 [層状複水酸化物]
 本発明の一実施態様においては固体塩基として層状複水酸化物を用いる。層状複水酸化物は一般式(7):
[(My-x(M(OH)2y(A)x/k・zHO]  (7)
で表されるハイドロタルサイト類化合物であることが好ましい。
 式中、Mは、Mg、Fe、Zn、Ca、Li、Ni、CoおよびCuからなる群から選ばれる1つ、または任意の割合で選ばれる複数の金属の2価イオンを表し、Mは、Al、FeおよびMnからなる群から選ばれる1つ、または任意の割合で選ばれる複数の金属の3価イオンを表す。
 Aは、層間陰イオンを表し、kは、Aの価数を表す。層間陰イオンとしては、炭酸イオン、硫酸イオン、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン、水酸化物イオン、および酢酸イオンなどの陰イオンが挙げられる。また、x、yおよびzはそれぞれ自然数であり、x<yであり、0≦z<yである条件を満たすこととする。
 これらの中でも、層状複水酸化物としては、アルミニウム、マグネシウムおよびカルシウムからなる群から選ばれる1種以上の金属元素を有するものであることが好ましい。
 層状複水酸化物の具体例としては、デソーテルサイト、ハイドロタルサイト、アイオワイト、パイロオーライト、タコバイト、ウェルムランダイト、およびザッカグナイトなどが挙げられる。
 これらの中でも、一般式(7a):
[Mgy-xAl(OH)2y(A)x/k・zHO] (7a)
(式中、x、y、kおよびzは、上記で定義したとおりである。)
で表されるハイドロタルサイトが好ましく、特にMgAl(CO)(OH)16・4HOが好ましい。
 層状複水酸化物は、2価の金属塩と3価の金属塩の混合物の水溶液に塩基性溶液を混合することにより調製することができる。ハイドロタルサイト類化合物は、例えば、米国特許第4351814号明細書に記載の方法や、米国特許第4904457号明細書、または米国特許第5250279号明細書に記載の方法で合成することができる。具体的には、たとえば塩化マグネシウムと塩化アルミニウムの混合水溶液に水酸化ナトリウム水溶液と炭酸ナトリウム水溶液を滴下することにより調製することができる。また、市販されているハイドロタルサイトを使用してもよい。
 [複合酸化物]
 本発明の一実施態様においては固体塩基として複合酸化物を用いる。複合酸化物は、2種以上の金属元素を有し、そのうちの少なくとも1種の金属元素は、アルミニウム、マグネシウムおよびカルシウムからなる群から選ばれることが好ましい。複合酸化物の具体例としては、アルミン酸ナトリウム、アルミン酸カルシウム、ケイ酸マグネシウム、ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸アルミン酸マグネシウム、およびメタケイ酸アルミン酸マグネシウムなどが挙げられる。
 [水酸化カルシウム]
 本発明の一実施態様においては固体塩基として水酸化カルシウムを用いる。本発明の好ましい態様によれば、固体塩基として水酸化カルシウムを単独で用いた場合であってもアルコールの水酸基の変換反応において高い触媒活性を示すことができる。
 なお、これらの固体塩基は1種単独で用いても、複数を組み合わせて用いてもよい。
[アルコール]
 本発明で使用されるアルコールは下記一般式(1):
Figure JPOXMLDOC01-appb-C000062
(式中、RおよびRは、それぞれ独立して、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基、または置換基を有していてもよいアラルキル基であり、RおよびRの少なくとも一方は、置換基として水酸基を有していてもよく、RおよびRは互いに結合して環を形成してもよい。)
で示される。なお、アルキル基、アリール基、複素環基、アラルキル基および置換基は前記で定義したとおりである。
 本発明の一実施形態では、Rが、置換基を有していてもよいアルキル基または置換基を有していてもよいアリール基であり、Rは、置換基として水酸基を有していてもよく、Rが、水素原子であることが好ましい。
 RおよびRは互いに結合して環を形成している場合、上記環は飽和または不飽和の環構造を有していればよく、例えば、置換基を有していてもよいシクロアルキル基などが挙げられる。
 RおよびRの少なくとも一方が置換基として水酸基を有する場合、アルコールは多価アルコールとなる。多価アルコールの例としては、例えば下記一般式(1-1):
Figure JPOXMLDOC01-appb-C000063
(式中、pは、0~48の整数である)
で表される化合物が挙げられる。ここで、pは、0~24が好ましく、より好ましくは3~20、さらに好ましくは5~12である。
 好ましい具体例としては、下記の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000064
[活性プロトンを有する化合物]
 本発明で使用する活性プロトンを有する化合物は、下記一般式(2):
Figure JPOXMLDOC01-appb-C000065
(式中、Nuは、-CHX-EWG、または-NRで表される基であり、ここで、Xは水素原子または置換基であり、EWGは電子吸引性基であり、RおよびRは、それぞれ独立して、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基、または置換基を有していてもよいアラルキル基であり、RおよびRは互いに結合して環を形成してもよい。)
で表される。
 一般式(2)における置換基、アルキル基、アリール基、複素環基およびアラルキル基は、前記で定義したとおりである。RおよびRが互いに結合して環を形成している場合、上記環は飽和の環構造を有していればよく、置換基を有していてもよいヘテロシクロアルキル基などが挙げられる。
 電子吸引性基としては、置換基を有していてもよいカルボニル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいスルホニル基、置換基を有していてもよいスルフィニル基、置換基を有していてもよいアンモニウム基、置換基を有していてもよいホスホニウム基、ニトロ基、シアノ基などが挙げられる。ここで、置換基を有していてもよいカルボニル基、アリール基、ヘテロアリール基および置換基は前記で定義したとおりである。
 活性プロトンを有する化合物としては、下記一般式(2-1):
Figure JPOXMLDOC01-appb-C000066
(式中、Xは、前記で定義したとおりであり、Rは、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアリールオキシ基、置換基を有していてもよいアミノ基、または置換基を有していてもよいカルボニル基であり、XおよびRは互いに結合して環を形成してもよい。)
で表されるカルボニル化合物が挙げられる。ここで、置換基、アルキル基、アルケニル基、アルキニル基、アリール基、複素環基、アラルキル基、アルコキシ基、アリールオキシ基および置換基を有していてもよいカルボニル基は、前記で定義したとおりである。XおよびRが互いに結合して環を形成している場合、上記環は飽和または不飽和の環構造を有していればよく、例えば、置換基を有していてもよいシクロアルキル基などが挙げられる。
 一般式(2-1)で表されるカルボニル化合物の具体例としては、アセトン、2-ブタノン、2-ペンタノン、3-ペンタノン、アセトフェノン、プロピオフェノン、酢酸エチル、酢酸ブチル、酢酸フェニル、シアノ酢酸メチル、アセト酢酸メチル、乳酸メチル、およびシクロヘキサノンなどが挙げられる。
 また、活性プロトンを有する化合物としては、下記一般式(2-2):
Figure JPOXMLDOC01-appb-C000067
(式中、Xは、前記で定義したとおりである。)
で表されるニトリルが挙げられる。
 一般式(5)で表されるニトリルの具体例としては、アセトニトリル、プロピオニトリル、ブチロニトリル、フェニルアセトニトリル、およびマロニトリルなどが挙げられる。
 さらに、活性プロトンを有する化合物としては、下記一般式(2-3):
Figure JPOXMLDOC01-appb-C000068
(式中、RおよびRは、前記で定義したとおりである。)
で表されるアミンが挙げられる。
 一般式(2-3)で表される化合物の具体例としては、アンモニア、メチルアミン、ジメチルアミン、エチルアミン、ジエチルアミン、ピペリジン、モルホリン、アニリンなどが挙げられる。
[反応の形態]
 本発明のアルコールの水酸基の変換方法では、アルコール、活性プロトンを有する化合物、金属錯体および固体塩基の物理的および化学的性質を考慮して、適宜溶媒を用いることが出来る。
 溶媒としては、例えば、トルエン、キシレン、メシチレン、デカンなどの炭化水素系溶媒;酢酸エチル、酢酸ブチルなどのエステル系溶媒;N-メチルピロリドンなどのアミド系溶媒;イソプロピルエーテル、メチル-tert-ブチルエーテル、テトラヒドロフラン、メチルテトラヒドロフラン、1,4-ジオキサンなどのエーテル系溶媒;イソプロピルアルコール、tert-ブチルアルコール、アミルアルコールなどのアルコール系溶媒;シクロヘキサノン、ジアセトンアルコールなどのケトン系溶媒;塩化メチレンなどのハロゲン系溶媒などが挙げられる。溶媒は単独で用いても、複数種類を組み合わせて用いてもよい。溶媒の使用量は、特に制限されなく適宜決定すればよいが、通常、アルコールに対して0~100倍量(質量基準)が好ましい。
 本発明のアルコールの水酸基の変換方法において、活性プロトンを有する化合物の使用量は、アルコールに対して0.01~100当量(モル当量)が好ましく、より好ましくは0.05~20当量、さらに好ましくは0.1~15当量である。
 金属錯体の使用量は、金属原子換算で、アルコールに対して0.0001~100mol%が好ましく、より好ましくは0.001~10mol%、さらに好ましくは0.005~1mol%である。
 層状複水酸化物、複合酸化物および水酸化カルシウムからなる群から選ばれる少なくとも1種の固体塩基の使用量は、通常、アルコールに対して0.1~500%(質量基準)が好ましく、より好ましくは1~100%(質量基準)、さらに好ましくは2~50%(質量基準)である。
 本発明の一実施形態において、アルコールが多価アルコールの場合、一つの水酸基のみが変換されても、複数の水酸基が変換されてもよい。
 また本発明の一実施形態において、活性プロトンを持つ化合物が置換基の一つとして水酸基を有する場合は、分子内で反応し環化してもよい。また、活性プロトンを持つ化合物が複数の活性プロトンを有する場合は、一箇所で反応しても、複数個所で反応してもよい。
 また、一般式(1)のRと、一般式(2)のNuにおけるXまたはRが結合して、アルコールと活性プロトンを有する化合物とが一つの分子を形成している場合は、分子内で反応してもよい。
 本発明のアルコールの水酸基の変換方法では、一般式(3):
Figure JPOXMLDOC01-appb-C000069
(式中、R、RおよびNuは前記で定義したとおりであり、RおよびNuにおけるXまたはRは互いに結合して環を形成してもよい。)
で表される化合物を生成させることができる。RおよびNuにおけるXまたはRが互いに結合して環を形成している場合、上記環は飽和または不飽和の環構造を有していればよく、例えば、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基などが挙げられる。
 本発明のアルコールの水酸基の変換方法で生成する化合物は、単一の化合物でもよく、混合物でもよい。
 例えば、活性プロトンを持つ化合物が、一般式(2-1)で表されるカルボニル化合物であり、アルコールが一般式(1-1)で表されるジオールの場合、その生成物は、下記一般式(3-1)および(3-2)のいずれか、またはこれらの混合物でもよい。
Figure JPOXMLDOC01-appb-C000070
(式中、X、Rおよびpは上記で定義したとおりである。)
Figure JPOXMLDOC01-appb-C000071
(式中、X、Rおよびpは上記で定義したとおりである。)
 また、例えば、活性プロトンを持つ化合物が、一般式(2-3)で表されるアミンあり、アルコールが一般式(1-1)で表されるジオールの場合、その生成物は、下記一般式(3-3)および(3-4)のいずれか、またはこれらの混合物でもよい。
Figure JPOXMLDOC01-appb-C000072
(式中、Rおよびpは上記で定義したとおりである。)
Figure JPOXMLDOC01-appb-C000073
(式中、Rおよびpは上記で定義したとおりである。)
 本発明のアルコールの水酸基の変換方法の一例としては、活性プロトンを持つ化合物が、一般式(2-1)で表されるカルボニル化合物(式中、Xが水素原子であり、Rがメチル基である)であり、
 一般式(1)で表されるアルコールが、下記式(1-1a):
Figure JPOXMLDOC01-appb-C000074
で表されるジオールであり、
 一般式(3)で表される生成物が、下記式(3-2a):
Figure JPOXMLDOC01-appb-C000075
で表されるジケトンである場合が挙げられる。
 本発明のアルコールの水酸基の変換方法では、必要に応じて、添加剤を加えてもよい。
 添加剤としては、例えば、Chemical Reviews 2016, 116, 4006-4123に記載されている化合物が挙げられ、例えば、水、酸、塩基、無機塩、有機塩、ホスフィン化合物、アミン化合物、アミド化合物などが挙げられる。
 酸としては、塩酸、硫酸などの無機酸、酢酸、トリフルオロ酢酸、p-トルエンスルホン酸、トリフルオロメチルスルホン酸、カンファ―スルホン酸などの有機酸が挙げられる。
 塩基としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、炭酸ナトリウム、炭酸マグネシウム、炭酸カリウム、炭酸カルシウム、炭酸セシウム、酸化マグネシウム、酸化カルシウムのような無機塩基、トリエチルアミン、ジアザビシクロウンデセン、ピリジン、N,N-ジメチルアミノピリジン、2,6-ルチジンのような有機塩基が挙げられる。
無機塩としては、塩化リチウム、塩化ナトリウム、塩化カリウム、臭化リチウム、ヨウ化リチウム、テトラフルオロホウ酸リチウムなどが挙げられる。
 有機塩としては、酢酸ナトリウム、酢酸アンモニウム、塩化テトラブチルアンモニウム、臭化テトラブチルアンモニウム、ヨウ化テトラブチルアンモニウム、ヨウ化テトラブチルホスホニウムなどが挙げられる。
ホスフィン化合物としては、前記のホスフィン配位子で定義した化合物が挙げられる。
 アミン化合物としては、前記のアミン配位子として定義した化合物が挙げられる。
アミド化合物としては、前記のアミド配位子として定義した化合物が挙げられる。
 添加剤の使用量は、アルコールに対して、0~200%(質量基準)が好ましく、より好ましくは0~100%(質量基準)である。
 反応中、生成する水をアゼオトロープのような物理的手段、あるいはモレキュラーシーブなどの乾燥剤を用いて適宜除去してもよい。
 反応温度は、特に制限はないが、0℃~250℃が好ましく、室温~200℃がより好ましい。
 反応は常圧下で行っても、加圧下で行っても、減圧下で行っても良い。
 反応雰囲気は特に限定されず、窒素雰囲気、アルゴン雰囲気、空気雰囲気、炭酸ガス雰囲気下、水素ガス雰囲気下などのいずれでもよい。
 反応終了後、生成物の精製は、例えば濾過、抽出、濃縮、晶析、蒸留、カラムクロマトグラフィ-などやそれらの組み合わせにより行うことができる。
 本反応における反応形式は、バッチ式でも連続式でもよい。
 以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例に何ら制限されるものではない。なお、本実施例中における各種測定には、下記の装置を使用した。
 核磁気共鳴スペクトル(NMR):400-MR-DD2(400MHz)(アジレントテクノロジー社製)または、Avance III 500(500MHz)(Bruker社製)
 内部標準物質:重クロロホルム(テトラメチルシラン)
 質量分析(HRMS):Impact II spectrometer(BRUKER社製)
 ガスクロマトグラフィー(GC):GC4000Plus(ジーエルサイエンス株式会社製)
 カラム:HP-5(30m×0.320mm×0.25μm)(アジレント社製)
 注入口温度:250℃、検出器温度:250℃、昇温条件:100℃(15℃/分)-300℃、または
 注入口温度:230℃、検出器温度:310℃、昇温条件100℃(10℃/分)-300℃、または、
 注入口温度:230℃、検出器温度:310℃、昇温条件、50℃(10分保持後、10℃/分)-200℃(20℃/分)-300℃
[実施例1]ヘキサデカン-2,15-ジオンの合成([CpIrClとN,N’-ジフェニルシュウ酸アミド)
Figure JPOXMLDOC01-appb-C000076
 200mLオートクレーブにデカン-1,10-ジオール7.09g(40.7mmol)、ハイドロタルサイト(MgAl(CO)(OH)16・4HO)2.54g(デカン-1,10-ジオールに対して35wt%)、[CpIrCl 16.2mg(Ir換算でデカン-1,10-ジオールに対して1/1000当量)、N,N’-ジフェニルシュウ酸アミド48.7mg(Irに対して5当量)を加えて、内部を窒素で置換した。窒素気流下、内部にキシレン50mL、アセトン30mL(デカン-1,10-ジオールに対して10当量)を入れ、加熱および撹拌を開始した。170~175℃にて5時間撹拌した後、オートクレーブを冷却した。ガスクロマトグラフィーで分析したところ、GCエリア%で、13-ヒドロキシトリデカン-2-オンが3%、ヘキサデカン-2,15-ジオンが79%生成していた。なお、ヘキサデカン-2,15-ジオンの定量収率は61%であった。
[実施例2]
 実施例1の反応液の溶媒を留去した後、残渣に酢酸ブチル70mLを加えた。50℃に加温した後、撹拌しながら-5℃まで冷却して、1時間熟成させた。生成した固体を濾取、酢酸ブチル(20mL)にて洗浄、乾燥させたところ、ヘキサデカン-2,15-ジオン5.99gを96%のGC純度で得た。(収率56%)
H-NMR(400MHz、CDCl):δ=2.41(t,J=7.6Hz,4H),2.13(s,6H),1.62-1.50(m,4H),1.32-1.20(m,16H)
[実施例3]ヘキサデカン-2,15-ジオンの合成([CpIrClと1,2,3,4,5-ペンタフルオロベンズアニリド)
 実施例1において、N,N’-ジフェニルシュウ酸アミドのかわりに1,2,3,4,5-ペンタフルオロベンズアニリド59.2mg(Irに対して5当量)を使用したところ、GCエリア%で、13-ヒドロキシトリデカン-2-オンが2%、ヘキサデカン-2,15-ジオンが73%生成していた。なお、ヘキサデカン-2,15-ジオンの定量収率は55%であった。
[実施例4]ヘキサデカン-2,15-ジオンの合成([CpIrClとN-フェニルピコリンアミド)
 実施例1において、N,N’-ジフェニルシュウ酸アミドのかわりにN-フェニルピコリンアミド40.0mg(Irに対して5当量)を使用したところ、GCエリア%で、13-ヒドロキシトリデカン-2-オンが4%、ヘキサデカン-2,15-ジオンが72%生成していた。なお、ヘキサデカン-2,15-ジオンの定量収率は53%であった。
[実施例5]ヘキサデカン-2,15-ジオンの合成([CpIrClとN,N’-ジフェニルシュウ酸アミド;160℃)
 実施例1において、反応温度155~160℃にて反応を行ったところ、GCエリア%で、13-ヒドロキシトリデカン-2-オンが16%、ヘキサデカン-2,15-ジオンが66%生成していた。なお、ヘキサデカン-2,15-ジオンの定量収率は49%であった。
[実施例6]ヘキサデカン―2,15-ジオンの合成([CpIrClと1,2,3,4,5-ペンタフルオロベンズアニリド;160℃)
 実施例5において、N,N’-ジフェニルシュウ酸アミドのかわりに1,2,3,4,5-ペンタフルオロベンズアニリド58.3mg(Irに対して5当量)を使用したところ、GCエリア%で、13-ヒドロキシトリデカン-2-オンが16%、ヘキサデカン-2,15-ジオンが62%生成していた。なお、ヘキサデカン-2,15-ジオンの定量収率は51%であった。
[実施例7]ヘキサデカン―2,15-ジオンの合成([CpIrClとベンズアニリド;160℃)
 実施例5において、N,N’-ジフェニルシュウ酸アミドのかわりにベンズアニリド40.3mg(Irに対して5当量)を使用したところ、GCエリア%で、13-ヒドロキシトリデカン-2-オンが42%、ヘキサデカン-2,15-ジオンが30%生成していた。なお、ヘキサデカン-2,15-ジオンの定量収率は23%であった。
[実施例8]13-ヒドロキシトリデカン-2-オンの合成([CpIrClとN-フェニルチオフェン-2-カルボキシアミド;160℃)
 実施例5において、N,N’-ジフェニルシュウ酸アミドのかわりにN-フェニルチオフェン-2-カルボキシアミド41.5mg(Irに対して5当量)を使用したところ、GCエリア%で、13-ヒドロキシトリデカン-2-オンが70%、ヘキサデカン-2,15-ジオンが8%生成していた。なお、ヘキサデカン-2,15-ジオンの定量収率は6%であった。
[実施例9]ヘキサデカン―2,15-ジオンの合成([CpIrClとN,N’-ジフェニルシュウ酸アミド;キシレン溶媒なし)
 200mLオートクレーブにデカン-1,10-ジオール20.0g(114.8mmol)、ハイドロタルサイト(MgAl(CO)(OH)16・4HO)7.0g(デカン-1,10-ジオールに対して35wt%)、[CpIrCl 22.9mg(Ir換算でデカン-1,10-ジオールに対して1/2000当量)、N,N’-ジフェニルシュウ酸アミド206.8mg(Irに対して15当量)を加えて、内部を窒素で置換した。窒素気流下、内部にアセトン101mL(デカン-1,10-ジオールに対して12当量)、イソプロピルアルコール1.75mLを入れ、加熱および撹拌を開始した。155~160℃にて5時間撹拌した後、オートクレーブを冷却した。ガスクロマトグラフィーで分析したところ、GCエリア%で、13-ヒドロキシトリデカン-2-オンが22%、ヘキサデカン-2,15-ジオンが60%生成していた。なお、ヘキサデカン-2,15-ジオンの定量収率は45%であった。
[実施例10]ヘキサデカン―2,15-ジオンの合成([CpIrClとN,N’-ジ-p-トリルシュウ酸アミド;キシレン溶媒なし)
 実施例9において、N,N’-ジフェニルシュウ酸アミドのかわりにN,N’-ジ-p-トリルシュウ酸アミド228.9mgを使用したところ、GCエリア%で、13-ヒドロキシトリデカン-2-オンが41%、ヘキサデカン-2,15-ジオンが35%生成していた。なお、ヘキサデカン-2,15-ジオンの定量収率は26%であった。
[実施例11]ヘキサデカン―2,15-ジオンの合成(Ir-1;S/C(金属原子換算での基質/触媒のモル比)=5000)
 200mLオートクレーブにデカン-1,10-ジオール7.08g(40.6 mmol)、ハイドロタルサイト(MgAl(CO)(OH)16・4HO)2.50g(デカン-1,10-ジオールに対して35wt%)、クロロ[N-[4-(ジメチルアミノ)フェニル]-2-ピリジンカルボキシアミダト](ペンタメチルチクロペンタジエニル)イリジウム(III)(Ir-1)5.0mg(Ir換算でデカン-1,10-ジオールに対して1/5000当量)を加えて、内部を窒素で置換した。窒素気流下、内部にキシレン50mL、アセトン30mL(デカン-1,10-ジオールに対して)を入れ、加熱および撹拌を開始した。170~175℃にて5時間撹拌した後、オートクレーブを冷却した。ガスクロマトグラフィーで分析したところ、GCエリア%で、13-ヒドロキシトリデカン-2-オンが3%、ヘキサデカン-2,15-ジオンが69%生成していた。なお、ヘキサデカン-2,15-ジオンの定量収率は46%であった。
[実施例12]ヘキサデカン―2,15-ジオンの合成(Ir-1;S/C=1000)
 実施例11において、反応温度155~160℃、Ir-1の使用量を24.6mg(Ir換算でデカン-1,10-ジオールに対して1/1000当量)にして反応を行ったところ、GCエリア%で、13-ヒドロキシトリデカン-2-オンが10%、ヘキサデカン-2,15-ジオンが70%生成していた。なお、ヘキサデカン-2,15-ジオンの定量収率は57%であった。
[実施例13]ヘキサデカン―2,15-ジオンの合成(Ir-1;S/C=1000,12時間)
 実施例12において、反応時間を12時間にして反応を行ったところ、GCエリア%で、13-ヒドロキシトリデカン-2-オンが5%、ヘキサデカン-2,15-ジオン(4)が78%生成していた。なお、ヘキサデカン-2,15-ジオンの定量収率は62%であった。
[参考例1][Cp IrCl(μ-N,N’-ジ-p-トリルオキサミダト)]の合成
Figure JPOXMLDOC01-appb-C000077
 20mLシュレンクにN,N’-ジ-p-トリルシュウ酸アミド34.8mg(0.130mmol)、[CpIrCl 100.7mg(0.252mmol;Ir換算)、炭酸カリウム69.3mg(0.253mmol)を加え、内部を窒素置換した。そこにアセトニトリル10mLを加えて、60℃にて5時間加熱撹拌したところ黄色固体が生成した。反応の上澄み液をシリンジで除去した後、固体をアセトニトリル5mLで洗浄、減圧乾燥を行った。固体にジクロロメタン5mLを加えたのち、セライト濾過、ジクロロメタン5mLで洗いこみを行った。溶媒を留去した後、減圧乾燥を行ったところ、表題化合物90.4mgを黄色固体として得た(収率72%)。
H-NMR(400MHz、CDCl):δ 7.49 (d,J=8.0Hz,4H),7.07(d,J=8.0Hz,4H),2.34(s,6H),1.33(s,30H);
13C-NMR(126MHz,CDCl):σ171.81(C),142.81(C),134.39(C),128.33(CH),125.96(CH),83.95(C),21.12(CH3),8.59(CH3);
HRMS(APCl):m/z calc’d for C3644ClIr [M-Cl]+ 957.2344; measured 957.2334.
[参考例2][Cp IrCl(μ-N,N’-ジフェニルオキサミダト)]の合成
Figure JPOXMLDOC01-appb-C000078
 20mLシュレンクにN,N’-ジフェニルシュウ酸アミド60.0mg(0.250mmol)、[CpIrCl 201.6mg(0.506mmol;Ir換算)、炭酸カリウム139.1mg(1.01mmol)を加え、内部を窒素置換した。そこにアセトニトリル10mLを加えて、60℃にて5時間加熱撹拌したところ黄色固体が生成した。反応の上澄み液をシリンジで除去した後、固体をアセトニトリル5mLで2回、続いて蒸留水5mLで3回、アセトニトリル5mLで洗浄した。減圧乾燥を行ったところ、表題化合物113.3mgを黄色固体として得た(収率46%)。
H-NMR(500MHz,CDCl):σ7.65-7.55(m,4H), 7.35-7.25(m,4H),7.15-7.05(m,2H),1.33(s, 30H);
13C-NMR(126MHz,CDCl):σ171.87(C),145.45(C),127.82(CH),126.20(CH),125.03(CH),84.02(C),8.57(CH3);
HRMS(APCI):m/z calc’d for C3440ClIr [M] 929.2031; measured = 929.2019.
[実施例14][Cp IrCl(μ-N,N’-ビス(4-フルオロフェニル)オキサミダト)]の合成
Figure JPOXMLDOC01-appb-C000079
 20mLシュレンクにN,N’-ビス(4-フルオロフェニル)シュウ酸アミド69.2mg(0.250mmol)、[CpIrCl 198.7mg(0.499mmol;Ir換算)、炭酸カリウム141.1mg(1.02mmol)を加え、内部を窒素置換した。そこにアセトニトリル10mLを加えて、60℃にて4時間加熱撹拌したところ黄色固体が生成した。反応の上澄み液をシリンジで除去した後、固体をアセトニトリル5mLで2度洗浄、減圧乾燥を行った。固体にジクロロメタン5mLを加えたのち、セライト濾過を行い、ジクロロメタン5mLで洗いこみを行った。溶媒を留去した後、減圧乾燥を行ったところ、表題化合物162.9mgを黄色固体として得た。収率65%。
1H-NMR(400MHz、CDCl):δ 7.65-7.55 (m,4H),6.91(dd,J=8.4Hz,4H),1.35(s,30H)
[実施例15]ヘキサデカン-2,15-ジオンの合成([Cp IrCl(μ-N,N’-ジ-p-トリルオキサミダト)]
 200mLオートクレーブにデカン-1,10-ジオール20.0g(114.7mmol)、ハイドロタルサイト(MgAl(CO)(OH)16・4HO)7.00g(デカン-1,10-ジオールに対して35wt%)、参考例1で合成した[Cp IrCl(μ-N,N’-ジ-p-トリルオキサミダト)]29.1mg(Ir換算でデカン-1,10-ジオールに対して約1/2000当量)を加えて、内部を窒素で置換した。窒素気流下、内部にアセトン101mL(デカン-1,10-ジオールに対して12当量)、2-プロパノール1.75mL(デカン-1,10-ジオールに対して0.2当量)を入れ、加熱および撹拌を開始した。155~160℃にて5時間撹拌した後、オートクレーブを冷却した。ガスクロマトグラフィーで分析したところ、GCエリア%で、13-ヒドロキシトリデカン-2-オンが26%、ヘキサデカン-2,15-ジオン(4)が52%生成していた。なお、ヘキサデカン-2,15-ジオンの定量収率は38%であった。
[実施例16]ヘキサデカン-2,15-ジオンの合成([Cp IrCl(μ-N,N’-ビス(4-フルオロフェニル)オキサミダト)])
 実施例15の条件で、[Cp IrCl(μ-N,N’-ジ-p-トリルオキサミダト)]の代わりに、実施例14で合成した[Cp IrCl(μ-N,N’-ビス(4-フルオロフェニル)オキサミダト)]34.3mg(Ir換算でデカン-1,10-ジオールに対して約1/1670当量)を使用した。ガスクロマトグラフィーで分析したところ、GCエリア%で、13-ヒドロキシトリデカン-2-オンが25%、ヘキサデカン-2,15-ジオン(4)が52%生成していた。なお、ヘキサデカン-2,15-ジオンの定量収率は38%であった。
[実施例17][CpIrCl(N-2,3,4,5,6-ペンタフルオロ-N-フェニルベンズアミダト)](A)の合成(主成分が化合物(A)である混合物の合成)
 20mLシュレンクにN-2,3,4,5,6-ペンタフルオロ-N-フェニルベンズアミド(L)72.6mg(0.252mmol)、[CpIrCl  100.0mg(0.251mmol;Ir換算)、炭酸カリウム33.0mg(0.239mmol)を加え、内部を窒素置換した。そこにアセトニトリル10mLを加えて、30℃にて4時間撹拌した。アセトニトリルを留去した後、ジクロロメタン5mLを加えて、セライト濾過、さらにジクロロメタン5mLで洗いこみを行った。濾液を濃縮したところ、(A)、(B)、[CpIrCl、Lの混合物161.3mgを得た。19FNMRで分析したところ、(A)+(B)と(L)の比は79:21、HNMRで分析したところ(A):(B):[CpIrClの比は54:11:35(Ir換算)であった。
Figure JPOXMLDOC01-appb-C000080
H-NMR(400MHz、CDCl):δ 7.21(dd,J=7.2,7.2Hz,2H),7.25-7.15(m,1H),7.00(d,J=7.2Hz,2H),1.66(s,15H)
19F-NMR(376MHz,CDCl):δ-139.55(d,2F),-152.58(t,1F),-162.33(dd,2F)
Figure JPOXMLDOC01-appb-C000081
H-NMR(400MHz、CDCl):δ 7.15-7.05(m,4H),7.05-6.95(m,2H),6.92(d,J=8.0Hz,4H),1.64(s,15H)
19F-NMR(376MHz,CDCl):δ -149.89(d,4F),-155.20(t,2F),-163.05(dd,4F)
[実施例18][CpIrビス(N-2,3,4,5,6-ペンタフルオロ-N-フェニルベンズアミダト)](B)の合成(主成分が化合物(B)である混合物の合成)
 20mLシュレンクにN-2,3,4,5,6-ペンタフルオロ-N-フェニルベンズアミド(L)143mg(0.499mmol)、[CpIrCl 100mg(0.251mmol;Ir換算)、炭酸カリウム69.7mg(0.504mmol)を加え、内部を窒素置換した。そこにアセトニトリル10mLを加えて、30℃にて8時間撹拌した。溶媒を留去した後、ジクロロメタン5mLを加えて、セライト濾過、さらにジクロロメタン5mLで洗いこみを行った。濾液を濃縮したところ黒色固体を得た。次に得られた黒色固体にジクロロメタン1mL、ヘキサン5mLを加えて撹拌、一晩静置した後、濾過を行った。濾液を濃縮、乾燥したところ(B)と(L)の混合物230mgを得た。19FNMRで分析したところ、(B)と(L)のモル比は、88:12であった。
[実施例19]
 実施例15の条件で[Cp IrCl(μ-N,N’-ジ-p-トリルオキサミダト)]のかわりに、実施例17で合成した触媒混合物36.7mgを使用した。ガスクロマトグラフィーで分析したところ、GCエリア%で、13-ヒドロキシトリデカン-2-オンが48%、ヘキサデカン-2,15-ジオン(4)が5%生成していた。
[実施例20]
 実施例15の条件で[Cp IrCl(μ-N,N’-ジ-p-トリルオキサミダト)]のかわりに、実施例18で合成した触媒混合物57.4mgを使用した。ガスクロマトグラフィーで分析したところ、GCエリア%で、13-ヒドロキシトリデカン-2-オンが48%、ヘキサデカン-2,15-ジオン(4)が17%生成していた。
[実施例21・比較例1~4]ハイドロタルサイトと固体塩基の比較
 100mLオートクレーブにデカン-1,10-ジオール2.4g(13.8mmol)、ハイドロタルサイト(MgAl(CO)(OH)16・4HO)または固体塩基0.84g(デカン-1,10-ジオールに対して35wt%)、Ir-1 1.7mg(Ir換算でデカン-1,10-ジオールに対して1/5000当量)を加えて、内部を窒素で置換した。窒素気流下、内部にキシレン17mL、アセトン10.1mL(デカン-1,10-ジオールに対して10当量)を入れ、加熱および撹拌を開始した。160℃にて5時間撹拌した後、オートクレーブを冷却した。ガスクロマトグラフィーで分析して、定量収率を求めた。
Figure JPOXMLDOC01-appb-T000082
[比較例5]KOHを塩基とした反応
 100mLオートクレーブにデカン-1,10-ジオール2.4g(13.8mmol)、Ir-1 1.7mg(Ir換算でデカン-1,10-ジオールに対して1/5000当量)、水酸化カリウム3.1mg(Irに対して20当量)を加えて、内部を窒素で置換した。窒素気流下、内部にキシレン17mL、アセトン10.1mL(デカン-1,10-ジオールに対して10当量)を入れ、加熱および撹拌を開始した。160℃にて5時間撹拌した後、オートクレーブを冷却した。ガスクロマトグラフィーで分析したところ、ヘキサデカン-2,15-ジオンの定量収率は1%であった。
[比較例6]Ir/HTを用いた反応
 100mLオートクレーブにデカン-1,10-ジオール2.4g(13.8mmol)、0.2wt%Ir/HT(塩化イリジウムとハイドロタルサイトを水中で水相が透明になるまで混合して、濾別、乾燥させた固体)1.32g(Ir換算でデカン-1,10-ジオールに対して1/1000当量)を加えて、内部を窒素で置換した。窒素気流下、内部にキシレン17mL、アセトン10.1mL(デカン-1,10-ジオールに対して10当量)を入れ、加熱および撹拌を開始した。160℃にて5時間撹拌した後、オートクレーブを冷却した。ガスクロマトグラフィーで分析したところ、ヘキサデカン-2,15-ジオンは生成していなかった。
[実施例22]1,3-ジフェニル-プロパン-1-オンの合成
Figure JPOXMLDOC01-appb-C000083
 ジムロート管を装備した100mLシュレンク管にハイドロタルサイト(MgAl(CO)(OH)16・4HO)910mg、Ir-1 1.5mg(0.0025mmol)を加え、窒素置換したのち、ベンジルアルコール2.6mL(25mmol)、アセトフェノン3.0mL(25mmol)、キシレン18mLを加え、160℃で12時間還流させた。冷却後、反応液を濾過し、濃縮した。シリカゲルカラムクロマトグラフィーで精製して、1,3-ジフェニル-プロパン-1-オン4.5g(収率86%)を得た。
H-NMR(400MHz、CDCl):δ 7.96(d、J=7.1Hz、2H)、7.56(t、J=7.4Hz、1H)、7.47(t、J=7.6Hz,2H)、7.32-7.20(m、5H)、3.32(t、J=7.7Hz,2H)、3.07(t、J=7.7Hz,2H)
[比較例7]1,3-ジフェニル-プロパン-1-オンの合成([CpIrCl;炭酸水素ナトリウム)
 ジムロート管を装備した100mLシュレンク管に炭酸水素ナトリウム36mg(0.04mmol)、[CpIrCl 4.0mg(0.01mmol;Ir換算)を加え、窒素置換したのち、ベンジルアルコール2.1mL(20mmol)、アセトフェノン2.4mL(20mmol)、キシレン14mLを加え、160℃で5時間還流させた。冷却後、反応液を濾過し、GCにて分析したところ、目的物は生成していなかった。
[比較例8]1,3-ジフェニル-プロパン-1-オンの合成(Ir-1;炭酸水素ナトリウム)
 ジムロート管を装備した100mLシュレンク管に炭酸水素ナトリウム36mg(0.04mmol)、Ir-1 3.0mg(0.005mmol)を加え、窒素置換したのち、ベンジルアルコール2.1mL(20mmol)、アセトフェノン2.4mL(20mmol)、キシレン 14mLを加え、160℃で5時間還流させた。冷却後、反応液を濾過し、GCにて分析したところ、目的物は生成していなかった。
[実施例23]1-フェニル-オクタン-1-オンの合成
Figure JPOXMLDOC01-appb-C000084
 ジムロート管を装備した100mLシュレンク管にハイドロタルサイト(MgAl(CO)(OH)16・4HO)1.4g、Ir-1 4.8mg(0.008mmol)を加え、窒素置換したのち、1-ヘキサノール5.0mL(40mmol)、アセトフェノン4.8mL(40mmol)、キシレン28mLを加え、160℃で12時間還流させた。冷却後、反応液を濾過し、濃縮した。シリカゲルカラムクロマトグラフィーで精製したところ、1-フェニル-オクタン-1-オン6.3g(収率77%)を得た。
H-NMR(400MHz、CDCl):δ 7.96(d、J=7.1Hz、2H)、7.55(t、J=7.4Hz、1H)、7.45(t、J=7.4Hz,2H)、2.96(t、J=7.6Hz,2H)、1.75-1.70(m、2H)、1.40-1.28(m、8H),0.88(t、J=7.0Hz、3H)
[比較例9]1-フェニル-オクタン-1-オンの合成([CpIrCl;炭酸水素ナトリウム)
 ジムロート管を装備した100mLシュレンク管に炭酸水素ナトリウム36mg(0.04mmol)、[CpIrCl 3.3mg(0.0066mmol;Ir換算)を加え、窒素置換したのち、1-ヘキサノール2.5mL(20mmol)、アセトフェノン2.4mL(20mmol)、キシレン14mLを加え、160℃で5時間還流させた。冷却後、反応液を濾過し、GCにて分析したところ、目的物は生成していなかった。
[実施例24]1-フェニル-トリデカン-1-オンの合成
Figure JPOXMLDOC01-appb-C000085
 ジムロート管を装備した100mLシュレンク管にハイドロタルサイト(MgAl(CO)(OH)16・4HO)1.2g、Ir-1 4.0mg(0.0067mmol)を加え、窒素置換したのち、1-ドデカノール4.1mL(20mmol)、アセトフェノン2.4mL(20mmol)、キシレン24mLを加え、160℃で8時間還流させた。冷却後、反応液を濾過し、濃縮した。シリカゲルカラムクロマトグラフィーで精製して、1-フェニル-トリデカン-1-オン4.4g(収率80%)を得た。
H-NMR(400MHz、CDCl):δ 7.87(d、J=7.2Hz、2H)、7.45(t、J=7.4Hz、1H)、7.35(t、J=7.5Hz,2H)、2.86(t、J=7.6Hz,2H)、1.71-1.04(m、18H)、0.79(t、J=6.7Hz、3H)
[比較例10]1-フェニル-トリデカン-1-オンの合成([CpIrCl;炭酸水素ナトリウム)
 ジムロート管を装備した100mLシュレンク管に炭酸水素ナトリウム36mg(0.04mmol)、[CpIrCl 3.3mg(0.0066mmol;Ir換算)を加え、窒素置換したのち1-ドデカノール4.1mL(20mmol)、アセトフェノン2.4mL(20mmol)、キシレン14mLを加え、160℃で5時間還流させた。冷却後、反応液を濾過し、GCにて分析したところ、目的物は生成していなかった。
[実施例25]テトラデカン-2-オンの合成
 200mlメカニカルオートクレーブにハイドロタルサイト(MgAl(CO)(OH)16・4HO)4.8g、Ir-1 9.6mg(0.016mmol)を加え、窒素置換したのち、1-デカノール16.8ml(80mmol)、アセトン29.3ml(400mmol)、キシレン130mlを加え、160℃で5時間反応させた。冷却後、反応液をガスクロマトグラフィーで測定したところ、GCエリア%にて76%のトリデカン-2-オンを得た。
[実施例26]N-ベンジルピロリジンの合成
 100mLオートクレーブにハイドロタルサイト(MgAl(CO)(OH)16・4HO)63mg、[CpIrCl 40mg(0.10mmol;Ir換算)を加え、窒素置換したのち、1,4-ブタンジオール180μl(2mmol)、ベンジルアミン214μl(2mmol)を加え、160℃で5時間反応させた。冷却後、反応液を濾過し、濃縮した。シリカゲルカラムクロマトグラフィーで精製して、N-ベンジルピロリジン82mg(収率25%)を得た。
H-NMR(400MHz、CDCl):δ 7.34-7.20(m、5H)、3.61(s、2H)、2.53-2.49(m、4H)、1.79-1.76(m、4H)
[参考例3]N,N’-ビス(5-tert-ブチル-2-メチルフェニル)シュウ酸アミドの合成
Figure JPOXMLDOC01-appb-C000086
 窒素気流下、滴下ロートを装着した300mL三ツ口フラスコに硝酸テトラメチルアンモニウム1.48g(10.9mmol)、ジクロロメタン25mLを入れ、室温で撹拌した。無水トリフラート3.14g(11.1mmol)を滴下、ジクロロメタン10mLで洗いこみを行った。ドライアイスーアセトンバスにて、反応液を冷却後、-65℃以下を保ちながら、4-(tert-ブチル)トルエン1.48g(9.98mmol)のジクロロメタン15mL溶液を滴下した。室温まで徐々に昇温しながら3時間撹拌した。5%炭酸水素ナトリウム水溶液15mLを加えて、分液を行った後、ジクロロメタン層を水25mLで2回洗浄した。無水硫酸ナトリウムで乾燥後、溶媒を留去して、4-tert-ブチル-1-メチル-2-ニトロベンゼン1.77gを得た(収率92%)。
H-NMR(400MHz,CDCl):σ=7.97(s,1H),7.52(d,J=8.0Hz,1H),7.30-7.20(m,1H),2.56(s,3H),1.34(s,9H).
 300mL三ツ口フラスコに4-(tert-ブチル)-1-メチル-2-ニトロベンゼン1.77g(9.16mmol)を入れメタノール40mLで希釈した後、10%Pd/C174mgを加えた。容器内を水素で置換して、30℃にて3時間撹拌した。反応溶液をセライトで濾過、メタノール10mLでセライトを洗浄したのち、濾液を濃縮して5-tert-ブチル-2-メチルアニリン1.48gを得た(収率99%)。
H-NMR(400MHz,CDCl):σ=6.98(d,J=8.0Hz,1H),6.75(dd,J=2.0,8.0Hz,1H),6.72(d,J=2.0Hz,1H),2.13(s,3H),1.28(s,9H).
 窒素気流下、滴下ロートを装着した300mL三ツ口フラスコに5-(tert-ブチル)-2-メチルアニリン1.48g(9.1mmol)、THF40mL、トリエチルアミン1.2mL(8.6mmol)を加え、氷浴にて5-10℃に冷却した。そこにシュウ酸クロリド0.35mL(4.1mmol)のTHF10mL溶液を滴下したのち、室温で4時間撹拌した。生成した赤―ピンク色の懸濁液をろ過、THF10mLでケーキ洗浄を行った。濾液を濃縮後、残渣にメタノール25mLを加えてしんとうした。固体を濾取したのち、メタノール10mLで固体を洗浄、減圧乾燥を行い、標題化合物1.08gを白色~淡乳白色固体として得た(収率69%)。
H-NMR(500MHz,CDCl):σ=9.37(s,2H),8.17(s,2H),7.20-7.15(m,4H),2.35(s,6H),1.35(s,18H);
13C-NMR(126MHz,CDCl):σ=157.70(C),150.32(C),134.11(C),130.31(CH),125.48(C),122.79(CH),118.43(CH),34.65(C),31.32(CH3),16.98(CH3);
HRMS(APPI(Pos.)):m/z calc’d for C2432 [M+H] 381.2537; measured=381.2534.
[参考例4]N,N’-ビス(2-メチルフェニル)シュウ酸アミドの合成
Figure JPOXMLDOC01-appb-C000087
 窒素気流下、滴下ロートを装着した500mL三ツ口フラスコに2-メチルアニリン2.36g(22.0mmol)、THF200mL、トリエチルアミン2.9mL(20.9mmol)を加え、氷浴にて5-10℃に冷却した。そこにシュウ酸クロリド0.86mL(10.0mmol)のTHF50mL溶液を滴下したのち、室温で5時間撹拌した。生成した白色の懸濁液をろ過した。濾液を濃縮後、残渣にメタノール20mLを加えてしんとうした。固体を濾取したのち、メタノール10mLで2回固体を洗浄、減圧乾燥を行い、標題化合物1.91gを白色固体として得た(収率71%)。
H-NMR(500MHz,CDCl):σ=9.37(s,2H),8.10(d,J=7.9Hz,2H),7.32-7.25(m,4H),7.15(dd,J=6.5,7.5Hz,2H),2.39(s,6H);13C-NMR(126MHz,CDCl):157.65(C),134.35(C),130.73(CH),128.43(C),127.02(CH),125.84(CH),121.22(CH),17.46(CH3);HRMS(APPI(Pos.)):m/z calc’d for C1616 [M] 268.1206; measured=268.1200.
[参考例5]N,N’-ビス(3-メチルフェニル)シュウ酸アミドの合成
Figure JPOXMLDOC01-appb-C000088
 窒素気流下、滴下ロートを装着した500mL三ツ口フラスコに3-メチルアニリン2.34g(21.9mmol)、THF200mL、トリエチルアミン2.9mL(20.9 mmol)を加え、氷浴にて5-10℃に冷却した。そこにシュウ酸クロリド0.86mL(10.0mmol)のTHF50mL溶液を滴下したのち、室温で3時間撹拌した。生成した白色の懸濁液をろ過、少量のTHFで洗浄した。濾液を濃縮後、残渣にメタノール20mLを加えてしんとうした。固体を濾取したのち、メタノール10mLで2回固体を洗浄、減圧乾燥を行い、標題化合物1.93gを白色固体として得た(収率72%)。
H-NMR(500MHz,CDCl):9.30(s,2H),7.55-7.45(m,4H),7.35-7.25(m,2H),7.03(d,J=7.6Hz,2H),2.39(s,6H);
13C-NMR(126MHz,CDCl):157.48(C),139.29(C),136.12(C),129.10(CH),126.38(CH),120.40(CH),116.93(CH),21.49(CH3);
HRMS(APPI(Pos.)):m/z calc’d for C1616 [M] 268.1206; measured=268.1207.
[参考例6]N,N’-ビス(2,3-ジメチルフェニル)シュウ酸アミドの合成
Figure JPOXMLDOC01-appb-C000089
 窒素気流下、滴下ロートを装着した500mL三ツ口フラスコに2,3-ジメチルアニリン2.7mL(22.2mmol)、THF100mL、トリエチルアミン2.9mL(20.9mmol)を加え、氷浴にて5-10℃に冷却した。そこにシュウ酸クロリド0.86mL(10.0mmol)のTHF25mL溶液を滴下したのち、室温で4時間撹拌した。生成した白色の懸濁液をろ過、THF10mLで洗浄した。濾取した固体にメタノール50mLを加えてしんとうした。固体を濾取したのち、メタノール10mLで固体を洗浄、減圧乾燥を行い、標題化合物2.45gを白色固体として得た(収率83%)。
H-NMR(500MHz,CDCl):σ=9.37(s,2H),7.82(d,J=8.1Hz,2H),7.18(dd,J=7.5,8.1Hz,2H),7.07(d,J=7.5Hz,2H),2.34(s,6H),2.26(s,6H);
13C-NMR(126MHz,CDCl):σ=157.94(C),137.68(C),134.07(C),127.98(C),127.81(CH),126.16(CH),119.94(CH),20.61(CH3),13.43(CH3);
HRMS(APPI(Pos.)):m/z calc’d for C1821 [M+H] 297.1598; measured=297.1592.
[参考例7]N,N’-ビス(2,4-ジメチルフェニル)シュウ酸アミドの合成
Figure JPOXMLDOC01-appb-C000090
 窒素気流下、滴下ロートを装着した500mL三ツ口フラスコに2,4-ジメチルアニリン2.7mL(21.6mmol)、THF100mL、トリエチルアミン2.9mL(20.9mmol)を加え、氷浴にて5-10℃に冷却した。そこにシュウ酸クロリド0.86mL(10.0mmol)のTHF30mL溶液を滴下したのち、室温で3時間撹拌した。生成した白色の懸濁液をろ過した。濾取した固体にメタノール50mLを加えてしんとうした。固体を濾取したのち、メタノール10mLで2回固体を洗浄、減圧乾燥を行い、標題化合物1.47gを白色固体として得た(収率50%)。
H-NMR(500MHz,CDCl):σ=9.29(s,2H),7.93(d,J=8.2Hz,2H),7.08(d,J=8.2Hz,2H),7.06(s,2H),2.34(s,6H),2.33(s,6H);
13C-NMR(126MHz,CDCl):σ=157.69(C),135.61(C),131.82(C),131.39(CH),128.52(C),127.50(CH),121.34(CH),20.95(CH3),17.43(CH3);
HRMS(APPI(Pos.)):m/z calc’d for C1820 [M] 297.1519; measured=297.1518.
[参考例8]N,N’-ビス(2,5-ジメチルフェニル)シュウ酸アミドの合成
Figure JPOXMLDOC01-appb-C000091
 窒素気流下、滴下ロートを装着した500mL三ツ口フラスコに2,4-ジメチルアニリン2.8mL(21.6mmol)、THF100mL、トリエチルアミン2.9mL(20.9mmol)を加え、氷浴にて5-10℃に冷却した。そこにシュウ酸クロリド0.86mL(10.0mmol)のTHF25mL溶液を滴下したのち、室温で4.5時間撹拌した。生成した白色の懸濁液をろ過、THF10mLで洗浄した。濾取した固体にメタノール50mLを加えてしんとうした。固体を濾取したのち、メタノール10mLで固体を洗浄、減圧乾燥を行い、標題化合物1.62gを白色固体として得た(収率54%)。
H-NMR(500MHz,CDCl):σ=9.34(s,2H),7.94(s,2H),7.12(d,J=7.7Hz,2H),6.96(d,J=7.7Hz,2H),2.37(s,6H),2.34(s,6H);
13C-NMR(126MHz,CDCl):σ=157.63(C),136.89(C),134.17(C),130.51(CH),126.59(CH),125.19(C),121.65(CH),21.23(CH3),17.00(CH3);
HRMS(APPI(Pos.)):m/z calc’d for C1821 [M+H] 297.1598; measured=297.151887.
[参考例9]N,N’-ビス(2-メチルフェニル)シュウ酸アミドの合成
Figure JPOXMLDOC01-appb-C000092
 窒素気流下、滴下ロートを装着した500mL三ツ口フラスコに2-エチルアニリン2.75mL(22.0mmol)、THF100 mL、トリエチルアミン2.9mL(20.9mmol)を加え、氷浴にて5-10℃に冷却した。そこにシュウ酸クロリド0.86mL(10.0mmol)のTHF25mL溶液を滴下したのち、室温で4時間撹拌した。生成した白色の懸濁液をろ過、THFで洗浄した。濾液を濃縮後、残渣にメタノール50mLを加えてしんとうした。固体を濾取したのち、メタノール20mLで固体を洗浄、減圧乾燥を行い、標題化合物2.52gを白色固体として得た(収率85%)。
H-NMR(500MHz,CDCl):σ=9.46(s,2H),8.13(d,J=8.1Hz),7.35-7.25(m,4H),7.19(ddd,J=1.1,7.5,7.5Hz,2H),2.74(q,J=7.6Hz,4H),1.31(t,J=7.6Hz,6H);
13C-NMR(126MHz,CDCl):σ=157.75(C),134.24(C),133.71(C),128.92(CH),126.94(CH),126.04(CH),121.45(CH),24.28(CH2),13.97(CH3);
HRMS(APCI(Pos.)):m/z calc’d for C1821 [M+H] 297.1598; measured=297.1596.
[参考例10]N,N’-ビス(5-イソプロピル-2-メチルフェニル)シュウ酸アミドの合成
Figure JPOXMLDOC01-appb-C000093
 窒素気流下、滴下ロートを装着した200mL三ツ口フラスコに5-イソプロピル-2-メチルアニリン1.0mL(6.4mmol)、THF30mL、トリエチルアミン0.85mL(6.1mmol)を加え、氷浴にて5-10℃に冷却した。そこにシュウ酸クロリド0.25mL(2.9mmol)のTHF10mL溶液を滴下したのち、室温で4時間撹拌した。生成した懸濁液をろ過、THF10mLでケーキ洗浄を行った。濾液を濃縮後、残渣にメタノール30mLを加えてしんとうした。固体を濾取したのち、メタノール10mLで固体を洗浄、減圧乾燥を行い、標題化合物813mgを白色固体として得た(収率80%)。
H-NMR(500MHz,CDCl):σ=9.37(s,2H),8.02(d,J=1.6Hz,2H),7.17(d,J=7.8Hz,2H),7.02(dd,J=1.6,7.8Hz,2H),2.93(sept,J=6.9Hz,2H),2.35(s,6H),1.27(d,J=6.9Hz,12H);
13C-NMR(126MHz,CDCl):σ=157.64(C),148.04(C),134.28(C),130.58(CH),125.61(C),123.80(CH),119.24(CH),33.91(CH),23.97(CH3),17.04(CH3);
HRMS(APPI(Pos.)):m/z calc’d for C2229 [M+H] 353.2224; measured=353.2217.
[参考例11]N,N’-ビス(5-(アダマンタン-1-イル)-2-メチルフェニル)シュウ酸アミドの合成
Figure JPOXMLDOC01-appb-C000094
 窒素気流下、滴下ロートを装着した300mL三ツ口フラスコに硝酸テトラメチルアンモニウム1.43g(10.5mmol)、ジクロロメタン25mLを入れ、室温で撹拌した。無水トリフラート3.10g(11.0mmol)を滴下、ジクロロメタン10mLで洗いこみを行った。ドライアイスーアセトンバスにて、反応液を冷却後、-65℃以下を保ちながら、4-(アダマンタン-1-イル)トルエン2.26g(9.99mmol)のジクロロメタン15mL溶液を滴下した。室温まで徐々に昇温しながら2.5時間撹拌した。5% 炭酸水素ナトリウム水溶液25mLを加えて、分液を行った後、ジクロロメタン層を水25mLで2回洗浄した。無水硫酸ナトリウムで乾燥後、溶媒を留去して、1-(4-メチル-3-ニトロフェニル)アダマンタン2.58gを得た(収率95%)。
H-NMR(400MHz,CDCl):σ=7.94(d,J=2.0Hz,1H),7.49(dd,J=2.0,8.4Hz,1H),7.27(d,J=8.4Hz,1H),2.56(s,3H),2.15-2.05(m,3H),1.95-1.85(m,6H),1.85-1.70(6H).
 500mL三ツ口フラスコに1-(4-メチル-3-ニトロフェニル)アダマンタン2.58g(9.50mmol)を入れエタノール40mLで希釈した後、10%Pd/C260mgを加えた。容器内を水素で置換して、室温で5時間撹拌した。反応溶液をセライトで濾過したのち、濾液を濃縮し、シリカゲルクロマトグラフィー(溶離液:トルエン)にて精製して、5-(アダマンタン-1-イル)-2-メチルアニリン1.36gを得た(収率59%)。
H-NMR(400MHz,CDCl):σ=7.00(d,J=8.0Hz,1H),6.73(dd,J=1.6,8.0Hz,1H),6.69(d,J=1.6Hz,1H),3.56(s,2H),2.14(s,3H),2.10-2.00(m,3H),1.90-1.85(m,6H),1.80-1.70(m,6H).
 窒素気流下、滴下ロートを装着した300mL三ツ口フラスコに5-(アダマンタン-1-イル)-2-メチルアニリン1.36g(5.6mmol)、THF30mL、トリエチルアミン0.75mL(5.4mmol)を加え、氷浴にて5-10℃に冷却した。そこにシュウ酸クロリド0.22mL(2.57mmol)のTHF溶液(10mL)を滴下したのち、室温で4時間撹拌した。生成した懸濁液をろ過、THFで洗浄を行った。濾取した固体にメタノール20mLを加えてしんとうした。固体を濾取したのち、メタノール10mLで固体を洗浄、減圧乾燥を行い、標題化合物868mgを白色固体として得た(収率63%)。
H-NMR(500MHz,CDCl):σ=9.39(s,2H),8.16(d,J=1.9Hz,2H),7.19(d,J=8.1Hz,2H),7.15(dd,J=1.9 Hz,8.1Hz,2H),2.35(s,6H),2.15-2.05(m,6H),2.00-1.90(m,12H),1.85-1.75(m,12H);
13C-NMR(126 MHz,CDCl):σ=157.70(C),150.64(C),134.23(C),130.35(CH),125.40(C),122.37(CH),117.93(CH),43.23(CH2),36.86(CH2),36.15(C),28.99(CH),17.00(CH3);
HRMS(APPI(Pos.)): m/z calc’d for C3645 [M+H] 537.3476; measured=537.3466.
[実施例27][Cp IrCl(μ-N,N’-ビス(5-tert-ブチル-2-メチルフェニル)オキサミダト)](Ir-2)の合成
Figure JPOXMLDOC01-appb-C000095
 20mLシュレンクにN,N’-ビス(5-tert-ブチル-2-メチルフェニル)シュウ酸アミド95.7mg(0.251mmol)、[CpIrCl200.0mg(0.502mmol;Ir換算)、炭酸カリウム139.1mg(1.01mmol)を入れ、内部を窒素置換した。アセトニトリル10mLを加えた後、60℃にて4時間撹拌した。生成した懸濁液を静置後、デカンテーションにより液相を除去した。固体をアセトニトリル5mLで3回洗浄した。次に固体に脱気水5mLを加えて撹拌した。懸濁液を濾過後、固体を脱気水5mL、続いてアセトニトリル5mLで2回洗浄した。濾取した固体を減圧乾燥したところ、標題化合物245mgを黄色固体として得た(収率89%)。
H-NMR(500MHz,CDCl):σ=7.78(s,2H),7.1-7.0(m,4H),2.27(s,6H),1.31(s,18H),1.29(s,30H);
13C-NMR(126MHz,CDCl):σ=170.91(C),148.42(C),144.11(C),131.37(C),128.85(CH),122.58(CH),122.04(CH),83.74(C),34.49(C),31.54(CH),19.65(CH),8.55(CH);
HRMS(APCl(Pos.)):m/z calc’d for C4460ClIr [M-Cl] 1069.3596; measured=1069.3585.
[実施例28][Cp IrCl(μ-N,N’-ビス(2-メチルフェニル)オキサミダト)](Ir-3)の合成
Figure JPOXMLDOC01-appb-C000096
 20mLシュレンクにN,N’-ビス(2-メチルフェニル)シュウ酸アミド67.6mg(0.252mmol)、[CpIrCl 200.0mg(0.502mmol;Ir換算)、炭酸カリウム139.0mg(1.01mmol)を入れ、内部を窒素置換した。アセトニトリル10mLを加えた後、60℃にて4時間撹拌した。生成した懸濁液を静置後、デカンテーションにより液相を除去した。固体をアセトニトリル5mLで2回洗浄した。次に固体に脱気水5mLを加えて撹拌した。懸濁液を濾過後、固体を脱気水5mL、続いてアセトニトリル5mLで2回洗浄した。濾取した固体を減圧乾燥したところ、標題化合物217mgを黄色固体として得た(収率87%)。
H-NMR(500MHz,CDCl):σ=7.72(d,2H,J=7.8Hz),7.15-7.10(m,4H),7.07-7.02(m,2H),2.31(s,6H),1.30(s,30H);
13C-NMR(126MHz,CDCl):σ=170.86(C),144.52(C),134.68(C),129.32(CH),125.80(CH),125.46(CH),125.19(CH),83.88(C),20.12(CH3),8.48(CH3);
HRMS(APCl):m/z calc’d for C3644ClIr [M-Cl] 957.2344; measured 957.2338.
[実施例29][Cp IrCl(μ-N,N’-ビス(3-メチルフェニル)オキサミダト)](Ir-4)の合成
Figure JPOXMLDOC01-appb-C000097
 100mLシュレンクにN,N’-ビス(3-メチルフェニル)シュウ酸アミド336.7mg(1.25mmol)、[CpIrCl 1.00g(2.51mmol;Ir換算)、炭酸カリウム695.0mg(5.02mmol)を入れ、内部を窒素置換した。アセトニトリル50mLを加えた後、60℃にて4時間撹拌した。生成した懸濁液を静置後、デカンテーションにより液相を除去した。固体をアセトニトリル20mLで2回洗浄した。次に固体に脱気水20mLを加えて撹拌した。懸濁液を濾過後、固体を脱気水10mLで2回、続いてアセトニトリル5mLで2回洗浄した。固体を減圧乾燥したところ、標題化合物1.00gを黄色固体として得た(収率81%)。
H-NMR(500MHz,CDCl):σ=7.45-7.40(m,4H),7.20-7.10(m,2H),6.91(d,J=7.4Hz,2H),2.34(s,6H),1.34(s,30H);
13C-NMR(126MHz,CDCl):σ=171.89(C),145.38(C),137.38(C),127.49(CH),126.66(CH),125.74(CH),123.49(CH),83.98(C),21.43(CH3),8.56(CH3);
HRMS(APCI):m/z calc’d for C3644ClIr [M-Cl] 957.2344; measured 957.2330.
[実施例30][Cp IrCl(μ-N,N’-ビス(2,3-ジメチルフェニル)オキサミダト)](Ir-5)の合成
Figure JPOXMLDOC01-appb-C000098
 20mLシュレンクにN,N’-ビス(2,3-ジメチルフェニル)シュウ酸アミド74.4mg(0.251mmol)、[CpIrCl 200.3mg(0.503mmol;Ir換算)、炭酸カリウム138.4mg(1.00mmol)を入れ、内部を窒素置換した。アセトニトリル10mLを加えた後、60℃にて4時間撹拌した。生成した懸濁液を静置後、デカンテーションにより液相を除去した。固体をアセトニトリル5mLで3回洗浄した。次に固体に脱気水5mLを加えて撹拌した。懸濁液を濾過後、固体を脱気水5mL、続いてアセトニトリル5mLで2回洗浄した。濾取した固体を減圧乾燥したところ、標題化合物236mgを黄色固体として得た(収率92%)。
H-NMR(500MHz,CDCl):σ=7.59(d,2H,7.7Hz),7.02(dd,2H,J=7.7,7.7Hz),6.94(d,2H,J=7.7Hz),2.31(s,6H),2.17(s,6H),1.29(s,30H);
13C-NMR(126 MHz,CDCl):σ=171.07(C),144.50(C),135.97(C),133.03(C),126.59(CH),124.82(CH),123.42(CH),83.80(C),20.66(CH3),16.35(CH3),8.48(CH3);
HRMS(APPI(Direct)):m/z calc’d for C3848ClIr [M]+ 1020.2346; measured 1020.2334.
[実施例31][Cp IrCl(μ-N,N’-ビス(2,4-ジメチルフェニル)オキサミダト)](Ir-6)の合成
Figure JPOXMLDOC01-appb-C000099
 20mLシュレンクにN,N’-ビス(2,4-ジメチルフェニル)シュウ酸アミド74.6mg(0.252mmol)、[CpIrCl 200.6mg(0.504mmol;Ir換算)、炭酸カリウム139.0mg(1.01mmol)を入れ、内部を窒素置換した。アセトニトリル10mLを加えた後、60℃にて4時間撹拌した。生成した懸濁液を静置後、デカンテーションにより液相を除去した。固体をアセトニトリル5mLで3回洗浄した。次に固体に脱気水5mLを加えて撹拌した。懸濁液を濾過後、固体を脱気水5mL、続いてアセトニトリル5mLで2回洗浄した。濾取した固体を減圧乾燥したところ、標題化合物194mgを黄色固体として得た(収率75%)。
H-NMR(500MHz,CDCl):σ=7.57(d,2H,8.0Hz),6.93(s,2H),6.91(d,2H,8.0Hz),2.31(s,6H),2.26(s,6H),1.30(s,30H);
13C-NMR(126MHz,CDCl):σ=170.88(C),141.91(C),134.40(C),134.26(C),129.90(CH),126.07(CH),125.56(CH),83.79(C),21.00(CH3),20.09(CH3),8.50(CH3);
HRMS(APPI(Direct)):m/z calc’d for C3848ClIr [M]+ 1020.2346;measured 1020.2330.
[実施例32][Cp IrCl(μ-N,N’-ビス(2,5-ジメチルフェニル)オキサミダト)](Ir-7)の合成
Figure JPOXMLDOC01-appb-C000100
 20mLシュレンクにN,N’-ビス(2,5-ジメチルフェニル)シュウ酸アミド74.6mg(0.252mmol)、[CpIrCl 199.5mg(0.501mmol;Ir換算)、炭酸カリウム138.7mg(1.00mmol)を入れ、内部を窒素置換した。アセトニトリル10mLを加えた後、60℃にて4時間撹拌した。生成した懸濁液を静置後、デカンテーションにより液相を除去した。固体をアセトニトリル5mLで3回洗浄した。次に固体に脱気水5mLを加えて撹拌した。懸濁液を濾過後、固体を脱気水5mL、続いてアセトニトリル5mLで2回洗浄した。濾取した固体を減圧乾燥したところ、標題化合物222mgを黄色固体として得た(収率87%)。
H-NMR(500MHz,CDCl):σ=7.53(s,2H),7.01(d,2H,J=7.6Hz),6.85(d,7.6Hz),2.29(s,6H),2.26(s,6H),1.29(s,30H);
13C-NMR(126MHz,CDCl):σ=170.80(C),144.31(C),134.73(C),131.63(C),129.11(CH),126.34(CH),125.93(CH),83.84(C),20.92(CH3),19.82(CH3),8.45(CH3);
HRMS(APPI (Direct)):m/z calc’d for C3848ClIr [M]+ 1020.2346; measured 1020.2340.
[実施例33][Cp IrCl(μ-N,N’-ビス(2-エチルフェニル)オキサミダト)](Ir-8)の合成
Figure JPOXMLDOC01-appb-C000101
 20mLシュレンクにN,N’-ビス(2-エチルフェニル)シュウ酸アミド75.0mg(0.253mmol)、[CpIrCl 200.7mg(0.504mmol; Ir換算)、炭酸カリウム139.2mg(1.01mmol)を入れ、内部を窒素置換した。アセトニトリル10mLを加えた後、60℃にて4時間撹拌した。生成した懸濁液を静置後、デカンテーションにより液相を除去した。固体をアセトニトリル5mLで3回洗浄した。次に固体に脱気水5mLを加えて撹拌した。懸濁液を濾過後、固体を脱気水5mL、続いてアセトニトリル5mLで2回洗浄した。固体を減圧乾燥したところ、標題化合物237mgを黄色固体として得た(収率92%)。
H-NMR(500MHz,CDCl):σ=7.70-7.80(m,2H),7.25-7.20(m,2H),7.15-6.95(m,4H),2.84(qd,2H,J=7.5,15.0Hz),2.46(qd,2H,J=7.5Hz,15.0Hz),1.35-1.20(m,36H);
13C-NMR(126MHz,CDCl):σ=171.45(C),143.87(C),139.75(C),127.22(CH),125.91(CH),125.37(CH),125.30(CH),83.78(C),24.12(CH2),14.31(CH3),8.45(CH3);
HRMS(APCI):m/z calc’d for C3848ClIr [M-Cl]+ 985.2657;measured 985.2646.
[実施例34][Cp IrCl(μ-N,N’-ビス(5-イソプロピル-2-メチルフェニル)オキサミダト)](Ir-9)の合成
Figure JPOXMLDOC01-appb-C000102
 20mLシュレンクにN,N’-ビス(5-イソプロピル-2-メチルフェニル)シュウ酸アミド88.6mg(0.251mmol)、[CpIrCl 199.7mg(0.501mmol;Ir換算)、炭酸カリウム138.5mg(1.00mmol)を入れ、内部を窒素置換した。アセトニトリル10mLを加えた後、60℃にて4時間撹拌した。生成した懸濁液を静置後、デカンテーションにより液相を除去した。固体をアセトニトリル5mLで3回洗浄した。次に固体に脱気水5mLを加えて撹拌した。懸濁液を濾過後、固体を脱気水5mL、続いてアセトニトリル5mLで2回洗浄した。濾取した固体を減圧乾燥したところ、標題化合物241mgを黄色固体として得た(収率89%)。
H-NMR(500MHz,CDCl):σ=7.58(d,J=1.9Hz,2H),7.05(d,J=7.8Hz,2H),6.92(dd,J=1.9,7.8Hz,2H),2.87(sept,J=6.9Hz,2H),2.27(s,6H),1.29(s,30H),1.25(d,J=6.9Hz,6H),1.23(d,J=6.9Hz,6H);
13C-NMR(126MHz,CDCl):σ=170.88(C),146.05(C),144.28(C),131.83(C),129.16(CH),123.73(CH),123.04(CH),83.79(C),33.69(CH),24,21(CH3),24.02(CH3),19.75(CH3),8.52(CH3);
HRMS(APCI pos):m/z calc’d for C4256ClIr [M-Cl]+ 1041.3283; measured 1041.3293.
[実施例35][Cp IrCl(μ-N,N’-ビス(5-(アダマンタン-1-イル)-2-メチルフェニル)オキサミダト)](Ir-10)の合成
Figure JPOXMLDOC01-appb-C000103
 50mLシュレンクにN,N’-ビス(5-(アダマンタン-1-イル)-2-メチルフェニル)シュウ酸アミド135.7mg(0.253mmol)、[CpIrCl 401.7mg(1.01mmol;Ir換算)、炭酸カリウム141.7mg(1.03mmol)を入れ、内部を窒素置換した。アセトニトリル20mLを加えた後、60℃にて6時間撹拌した。生成した懸濁液を静置後、デカンテーションにより液相を除去した。固体をアセトニトリル5mLで5回洗浄した。次に固体に脱気水5mLを加えて撹拌した。懸濁液を濾過後、固体を脱気水5mL、続いてアセトニトリル5mLで2回洗浄した。固体を減圧乾燥したところ、標題化合物160mgを黄色固体として得た(収率50%)。
13C-NMR(126MHz,CDCl):σ=170.80(C),148.79(C),144.18(C),131.41(C),128.82(CH),122.14(CH),121.56(CH),83.74(C),43.29(CH2),36.86(CH2),36.00(C),29.02(CH),19.65(CH3),8.58(CH3);
HRMS(APPI pos): m/z calc’d for C5672ClIr [M-Cl]+ 1225.4535; measured 1225.4520.
[実施例36][(メシチレン)RuCl(μ-N,N’-ビス(5-イソプロピル-2-メチルフェニル)オキサミダト)](Ru-1)の合成
Figure JPOXMLDOC01-appb-C000104
 20mLシュレンクにN,N’-ビス(5-イソプロピル-2-メチルフェニル)シュウ酸アミド120.2mg(0.341mmol)、[(メシチレン)RuCl 200.0mg(0.685mmol;Ru換算)、炭酸カリウム190.4mg(1.38mmol)を入れ、内部を窒素置換した。アセトニトリル10mLを加えた後、60℃にて7時間撹拌した。生成した懸濁液を静置後、デカンテーションにより液相を除去した。固体をアセトニトリル5mLで2回洗浄した。次に固体に脱気水5mLを加えて撹拌した。懸濁液を濾過後、固体を脱気水5mL、続いてアセトニトリル5mLで2回洗浄した。濾取した固体を減圧乾燥したところ、標題化合物248mgを黄色固体として得た(収率84%)。
H-NMR(500MHz,CDCl):7.70(d,J=1.6Hz,2H),7.07(d,J=7.8Hz,2H),6.95(dd,J=1.6Hz,7.8Hz),4.62(s,6H),2.91(sept,J=6.9Hz,2H),2.28(s,6H),1.79(s,18H),1.30-1.25(m,12H);
13C-NMR(126MHz,CDCl):168.45(C),146.38(C),146.01(C),132.00(C),129.32(CH),123.72(CH),123.09(CH),98.77(CH),33.67(CH),24.48(CH3),23.99(CH3),20.07(CH3),17.84(CH3);
HRMS(APPI pos): m/z calc’d for C4050ClRu [M]+ 864.1331; measured 864.1358.
[実施例37][(p-シメン)RuCl(μ-N,N’-ビス(5-イソプロピル-2-メチルフェニル)オキサミダト)](Ru-2)の合成
Figure JPOXMLDOC01-appb-C000105
 20mLシュレンクにN,N’-ビス(5-イソプロピル-2-メチルフェニル)シュウ酸アミド115.1mg(0.326mmol)、[(p-シメン)RuCl 199.6mg(0.652mmol;Ru換算)、炭酸カリウム179.5mg(1.30mmol)を入れ、内部を窒素置換した。アセトニトリル10mLを加えた後、60℃にて7時間撹拌した。生成した懸濁液を静置後、デカンテーションにより液相を除去した。固体をアセトニトリル5mLで2回洗浄した。次に固体に脱気水5mLを加えて撹拌した。懸濁液を濾過後、固体を脱気水5mL、続いてアセトニトリル5mLで2回洗浄した。濾取した固体を減圧乾燥したところ、標題化合物151mgを黄色固体として得た(収率52%)。
H-NMR(500MHz,CDCl):7.45-7.35(m,2H),7.13(d,J=7.8Hz,2H),6.98(dd,J=1.9,7.8Hz,2H),5.20(d,J=5.9Hz,2H),5.13(d,J=5.6Hz,2H),5.07(d,J=5.9Hz,2H),4.61(d,J=5.6Hz,2H),2.88(sept,J=6.9Hz,2H),2.40(sept,J=6.9Hz,2H),2.31(s,6H),1.74(s,6H),1.25-1.20(m,12H),1.12(d,J=6.9Hz,6H),1.02(d,J=6.9Hz,6H);
13C-NMR(126MHz,CDCl):168.45(C),147.25(C),146.63(C),130.12(C),129.68(CH),123.51(CH),122.77(CH),102.34(C),91.13(C),84.23(CH),82.26(CH),79.41(CH),77.91(CH),33.70(CH3),30.61(CH3),24.23(CH3),24.01(CH3),22.00(CH3),21.90(CH3),18.85(CH3),17.57(CH3);
HRMS(APPI pos): m/z calc’d for C4254ClRu [M]+ 892.1644; measured 892.1663.
[実施例38]ヘキサデカン-2,15-ジオンの合成(Ir-2~Ir-10)
Figure JPOXMLDOC01-appb-C000106
 マグネチックスターラーの入った100mLオートクレーブにデカン-1,10-ジオール5.00g(28.7mmol)、ハイドロタルサイト1.75g(35質量%)、水酸化カルシウム1.00g(20質量%)、Ir触媒(S/C=4000)を入れ、内部を窒素で置換した。アセトン25mL(12当量)、イソプロピルアルコール0.44mL(0.2当量)を入れた後、加熱および撹拌を開始した。2日間に分けて合計17-18時間、140℃にて撹拌した後、オートクレーブを冷却した。ハイドロタルサイト、水酸化カルシウムを濾過により除去し、ガスクロマトグラフィーで分析した結果を表2に記す。表2の結果より、2位にメチル基が存在する金属錯体を用いた場合に特に触媒活性が高く、高い収率で目的化合物が得られることがわかる。
 なお、撹拌時間において、例えば7+10時間の表記は2日間に分けてそれぞれ7時間と10時間、合計17時間、設定温度にて撹拌したことを意味する。
Figure JPOXMLDOC01-appb-T000107
[実施例39]ヘキサデカン-2,15-ジオンの合成(反応時間:連続24時間)
 マグネチックスターラーの入った100mLオートクレーブにデカン-1,10-ジオール5.00g(28.7mmol)、ハイドロタルサイト1.75g(35質量%)、水酸化カルシウム1.00g(20質量%)、Ir-2 4.1mg(S/C=4000)を入れ、内部を窒素で置換した。アセトン25mL(12当量)、イソプロピルアルコール0.44mL(0.2当量)を入れた後、加熱および撹拌を開始した。120℃にて24時間撹拌した後、オートクレーブを冷却した。ハイドロタルサイトおよび水酸化カルシウムを濾過により除去し、ガスクロマトグラフィーで分析したところ、ヘキサデカン-2,15-ジオンの定量収率は87%であった。
[実施例40]ヘキサデカン-2,15-ジオンの合成(N,N’-ジフェニルシュウ酸アミドの添加効果)
 マグネチックスターラーの入った100mLオートクレーブにデカン-1,10-ジオール5.00g(28.7mmol)、ハイドロタルサイト1.75g(35質量%)、水酸化カルシウム1.00g(20質量%)、Ir-2、N,N’-ジフェニルシュウ酸アミドを入れ、内部を窒素で置換した。アセトン25mL(12当量)、イソプロピルアルコール0.44mL(0.2当量)を入れた後、加熱および撹拌を開始した。120℃にて撹拌した後、オートクレーブを冷却した。ハイドロタルサイトおよび水酸化カルシウムを濾過により除去し、ガスクロマトグラフィーで分析した。結果を表3に記す。
Figure JPOXMLDOC01-appb-T000108
[実施例41]ヘキサデカン-2,15-ジオンの合成([CpIrCl+N,N’-ジフェニルシュウ酸アミド、S/C=3000)
 碇型攪拌羽根を取り付けた1000mLオートクレーブにデカン-1,10-ジオール 100.0g(578.8mmol)、ハイドロタルサイト35.0g(35質量%)、水酸化カルシウム20.00g(20質量%)、[CpIrCl76.2mg(S/C=3000)、N,N’-ジフェニルシュウ酸アミド1.61g(Irに対して35当量)を入れ、内部を窒素で置換した。アセトン505mL(12当量)、イソプロピルアルコール8.8mL(0.2当量)を入れた後、加熱および撹拌を開始した。24時間、120℃にて撹拌した後、オートクレーブを冷却した。ハイドロタルサイト、水酸化カルシウムを濾過により除去し、ガスクロマトグラフィーで分析した結果、ヘキサデカン-2,15-ジオンの定量収率は77%、純分は112.0gであった。
 反応液をエバポレーターにて濃縮し、租蒸留を行うことでヘキサデカン-2,15-ジオンの粗製物116.5gを得た。ガスクロマトグラフィーで分析したところ、純度は88質量%であり、純分は101.9gであった(収率70%)。
[実施例42]ヘキサデカン-2,15-ジオンの合成(Ir-2、ハイドロタルサイト S/C=6000)
 碇型攪拌羽根を取り付けた200mLオートクレーブにデカン-1,10-ジオール 20.0g(114.8mmol)、ハイドロタルサイト7.0g(35質量%)、水酸化カルシウム4.00g(20質量%)、Ir-2 10.6mg(S/C=6000)、N,N’-ジフェニルシュウ酸アミド161mg(Irに対して35当量)を入れ、内部を窒素で置換した。アセトン101mL(12当量)、イソプロピルアルコール1.8mL(0.2当量)を入れた後、加熱および撹拌を開始した。15時間(8時間+7時間)、120℃にて撹拌した後、オートクレーブを冷却した。ハイドロタルサイト、水酸化カルシウムを濾過により除去し、ガスクロマトグラフィーで分析した結果、ヘキサデカン-2,15-ジオンの定量収率は75%であった。
[実施例43]ヘキサデカン-2,15-ジオンの合成(Ir-2、メタケイ酸アルミン酸マグネシウム)
 碇型攪拌羽根を取り付けた200mLオートクレーブにデカン-1,10-ジオール20.0g(114.8mmol)、メタケイ酸アルミン酸マグネシウム7.0g(35質量%)、水酸化カルシウム4.00g(20質量%)、Ir-2 10.6mg(S/C=6000)、N,N’-ジフェニルシュウ酸アミド161mg(Irに対して35当量)を入れ、内部を窒素で置換した。アセトン101mL(12当量)、イソプロピルアルコール1.8mL(0.2当量)を入れた後、加熱および撹拌を開始した。20時間(7時間+9時間+4時間)、120℃にて撹拌した後、オートクレーブを冷却した。メタケイ酸アルミン酸マグネシウム、水酸化カルシウムを濾過により除去し、ガスクロマトグラフィーで分析した結果、ヘキサデカン-2,15-ジオンの定量収率は74%であった。
[実施例44]ヘキサデカン-2,15-ジオンの合成(Ir-2、ケイ酸アルミン酸マグネシウム)
 碇型攪拌羽根を取り付けた200mLオートクレーブにデカン-1,10-ジオール20.0g(114.8mmol)、ケイ酸アルミン酸マグネシウム7.0g(35質量%)、水酸化カルシウム4.00g(20質量%)、Ir-2 10.6mg(S/C=6000)、N,N’-ジフェニルシュウ酸アミド161mg(Irに対して35当量)を入れ、内部を窒素で置換した。アセトン101mL(12当量)、イソプロピルアルコール1.8mL(0.2当量)を入れた後、加熱および撹拌を開始した。15時間(8時間+7時間)、120℃にて撹拌した後、オートクレーブを冷却した。ケイ酸アルミン酸マグネシウム、水酸化カルシウムを濾過により除去し、ガスクロマトグラフィーで分析した結果、ヘキサデカン-2,15-ジオンの定量収率は65%であった。
[実施例45]ヘキサデカン-2,15-ジオンの合成(水酸化カルシウム)
 碇型攪拌羽根を取り付けた200mLオートクレーブにデカン-1,10-ジオール 20.0g(114.8mmol)、水酸化カルシウム11.0g(55質量%)、[CpIrCl 15.2mg(S/C=3000)、N,N’-ジフェニルシュウ酸アミド321mg(Irに対して35当量)を入れ、内部を窒素で置換した。アセトン101mL(12当量)、イソプロピルアルコール1.8mL(0.2当量)を入れた後、加熱および撹拌を開始した。15時間(8時間+7時間)、120℃にて撹拌した後、オートクレーブを冷却した。水酸化カルシウムを濾過により除去し、ガスクロマトグラフィーで分析した結果、ヘキサデカン-2,15-ジオンの定量収率は37%であった。
[実施例46]オクタン-2-オンの合成
Figure JPOXMLDOC01-appb-C000109
 マグネチックスターラーの入った100mLオートクレーブにハイドロタルサイト1.75g(35質量%)、水酸化カルシウム1.00g(20質量%)、Ir-2 2.7mg(S/C=12,000)を入れ、内部を窒素で置換した。1-ペンタノール5.00g(56.7mmol)、アセトン25mL(6当量)、イソプロピルアルコール0.87mL(0.2当量)を入れた後、加熱および撹拌を開始した。120℃にて6+10時間撹拌した後、オートクレーブを冷却した。ハイドロタルサイトおよび水酸化カルシウムを濾過により除去し、ガスクロマトグラフィーで分析したところ、オクタン-2-オンの定量収率は80%であった。
[実施例47]オクタン-2-オンの合成(ルテニウム錯体)
 マグネチックスターラーの入った100mLオートクレーブにメタケイ酸アルミン酸マグネシウム1.75g(70質量%)、水酸化カルシウム1.00g(40質量%)、Ru-1 12mg(S/C=1000)を入れ、内部を窒素で置換した。1-ペンタノール2.5g(28.4mmol)、アセトン12.5mL(6当量)、イソプロピルアルコール0.43mL(0.2当量)を入れた後、加熱および撹拌を開始した。120℃にて撹拌した後、オートクレーブを冷却した。固体塩基および水酸化カルシウムを濾過により除去し、ガスクロマトグラフィーで分析した。結果を表4に記す。
Figure JPOXMLDOC01-appb-T000111
[実施例48]ノナン-3-オンの合成
Figure JPOXMLDOC01-appb-C000112
 マグネチックスターラーの入った100mLオートクレーブにハイドロタルサイト1.75g(70質量%)、水酸化カルシウム1.00g(40質量%)、Ir-2 5.3mg(S/C=3000)を入れ、内部を窒素で置換した。1-ペンタノール2.50g(28.4mmol)、2-ブタノン30.5mL(12当量)、2-ブタノール0.52mL(0.2当量)を入れた後、加熱および撹拌を開始した。120℃にて9.5+8.5時間撹拌した後、オートクレーブを冷却した。ハイドロタルサイトおよび水酸化カルシウムを濾過により除去し、ガスクロマトグラフィーで分析したところ、GC area%で、ノナン-3-オン71%と3-メチルオクタン-2-オン25%が生成していた。なお、このときのノナン-3-オンの定量収率は67%であった。
[実施例49]デカン-4-オンの合成
Figure JPOXMLDOC01-appb-C000113
 マグネチックスターラーの入った100mLオートクレーブにハイドロタルサイト1.75g(70質量%)、水酸化カルシウム1.00g(40質量%)、Ir-2 5.1mg(S/C=3000)を入れ、内部を窒素で置換した。1-ペンタノール2.51g(28.5mmol)、2-ペンタノン18.2mL(6当量)を入れた後、加熱および撹拌を開始した。120℃にて8+9時間撹拌した後、オートクレーブを冷却した。ハイドロタルサイトおよび水酸化カルシウムを濾過により除去し、ガスクロマトグラフィーで分析したところ、デカン-4-オンを定量収率93%で与えた。
[実施例50]8-ノネン-2-オンの合成
Figure JPOXMLDOC01-appb-C000114
 1000mLメカニカルオートクレーブに、[CpIrCl76.2mg(S/C=3000;Ir換算)、N,N’-ジフェニルシュウ酸アミド1.61g(Irにたいして35当量 )、ハイドロタルサイト20.1g(35質量%)、Ca(OH)11.5g(20質量%)を加え、内部の窒素置換を行った。仕込み口より、5-ヘキセン-1-オール57.5g(574mmol)、アセトン400g(12当量)、イソプロピルアルコール6.9g(0.2当量)を窒素気流下シリンジ加え、仕込み口を閉じた。120℃にて22時間撹拌したのち、オートクレーブを冷却した。ガスクロマトグラフィーで分析したところ、8-ノネン-2-オンを定量収率87%で得た。
 本発明のアルコールの水酸基の変換方法は、比較的安価なアルコールの水酸基を変換することで、活性プロトンを有する化合物をアルキル化することができるので、医薬品や香料などの有用物質を製造する際に有用である。

Claims (15)

  1.  周期表7~11族の金属錯体と、層状複水酸化物、複合酸化物および水酸化カルシウムからなる群から選ばれる少なくとも1種の固体塩基の存在下、下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中、RおよびRは、それぞれ独立して、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基、または置換基を有していてもよいアラルキル基であり、RおよびRの少なくとも一方は、置換基として水酸基を有していてもよく、RおよびRは互いに結合して環を形成してもよい。)
    で表されるアルコールと、
     下記一般式(2):
    Figure JPOXMLDOC01-appb-C000002
    (式中、Nuは、-CHX-EWG、または-NRで表される基であり、ここで、Xは水素原子または置換基であり、EWGは電子吸引性基であり、RおよびRは、それぞれ独立して、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基、または置換基を有していてもよいアラルキル基であり、RおよびRは互いに結合して環を形成してもよい。)
    で表される活性プロトンを有する化合物とを反応させて、または
     一般式(1)のRと、一般式(2)のNuにおけるXまたはRが結合して、前記アルコールと前記活性プロトンを有する化合物とが一つの分子を形成している場合に、前記分子内で反応させて、
     下記一般式(3):
    Figure JPOXMLDOC01-appb-C000003
    (式中、R、RおよびNuは前記で定義したとおりであり、RおよびNuにおけるXまたはRは互いに結合して環を形成してもよい。)
    で表される化合物を生成させる、アルコールの水酸基の変換方法。
  2.  固体塩基が層状複水酸化物である、請求項1に記載の水酸基の変換方法。
  3.  層状複水酸化物がハイドロタルサイト類化合物である、請求項2に記載の水酸基の変換方法。
  4.  固体塩基が2種以上の金属元素を有し、そのうちの少なくとも1種の金属元素は、アルミニウム、マグネシウムおよびカルシウムからなる群から選ばれる複合酸化物である、請求項1~3のいずれか一項に記載の水酸基の変換方法。
  5.  一般式(2)で表される活性プロトンを有する化合物が、下記一般式(2-1):
    Figure JPOXMLDOC01-appb-C000004
    (式中、Xは、前記で定義したとおりであり、Rは、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアリールオキシ基、置換基を有していてもよいアミノ基、または置換基を有していてもよいカルボニル基であり、XおよびRは互いに結合して環を形成してもよい。)
    で表されるカルボニル化合物である、請求項1~4のいずれか一項に記載の水酸基の変換方法。
  6.  周期表7~11族の金属錯体がイリジウム錯体またはルテニウム錯体である、請求項1~5のいずれか一項に記載の水酸基の変換方法。
  7.  イリジウム錯体が、下記一般式(4-1):
    Figure JPOXMLDOC01-appb-C000005
    (式中、Yは、置換基を有していてもよいシクロペンタジエニル基、または置換基を有していてもよいインデニル基であり、Zは、ヒドリドまたはアニオン基であり、Aは、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基、または置換基を有していてもよいカルボニル基であり、Aの一部がイリジウム原子に配位してもよく、X、X、X、XおよびXは、それぞれ独立して、水素原子または置換基であり、XとX、XとX、XとX、XとXは、それぞれ互いに結合して環を形成してもよく、また、YとA、YとXがそれぞれ互いに結合して環を形成してもよく、mは1または2であり、nは1または0であり、mが1のとき、nは1であり、mが2のとき、nは0である。)
    で表される化合物またはその二量体、または、
     下記一般式(4-2):
    Figure JPOXMLDOC01-appb-C000006
     
    (式中、Y、Z、X、X、X、XおよびXは、前記で定義したとおりである。)
    で表される化合物である、請求項6に記載の水酸基の変換方法。
  8.  イリジウム錯体が、下記一般式(5-1):
    [YIrZ   (5-1)
    (式中、Yは、置換基を有していてもよいシクロペンタジエニル基、または置換基を有していてもよいインデニル基であり、Zは、ヒドリドまたはアニオン基である。)
    で表されるイリジウム化合物またはその二量体と、
     下記一般式(6-1):
    Figure JPOXMLDOC01-appb-C000007
    (式中、Aは、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基、または置換基を有していてもよいカルボニル基であり、X、X、X、XおよびXは、それぞれ独立して、水素原子または置換基であり、XとX、XとX、XとX、XとXは、それぞれ互いに結合して環を形成してもよい。)
    で表されるアニリド、または
     下記一般式(6-2):
    Figure JPOXMLDOC01-appb-C000008
    (式中、X、X、X、XおよびXは前記で定義したとおりである。)
    で表されるアニリドとを混合して反応系内で形成させたものである、請求項6または7に記載の水酸基の変換方法。
  9.  ルテニウム錯体が、下記一般式(4-3):
    Figure JPOXMLDOC01-appb-C000009
    (式中、Yは、置換基を有していてもよいアレーンであり、Zは、ヒドリドまたはアニオン基であり、Aは、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基、または置換基を有していてもよいカルボニル基であり、Aの一部がルテニウム原子に配位してもよく、X、X、X、XおよびXは、それぞれ独立して、水素原子または置換基であり、XとX、XとX、XとX、XとXは、それぞれ互いに結合して環を形成してもよく、また、YとA、YとXがそれぞれ互いに結合して環を形成してもよく、mは1または2であり、nは1または0であり、mが1のとき、nは1であり、mが2のとき、nは0である。)
    で表される化合物またはその二量体、または、
     下記一般式(4-4):
    Figure JPOXMLDOC01-appb-C000010
    (式中、Y、Z、X、X、X、XおよびXは、前記で定義したとおりである。)
    で表される化合物である、請求項6に記載の水酸基の変換方法。
  10.  ルテニウム錯体が、下記一般式(5-3):
    [YRuZ   (5-3)
    (式中、Yは、置換基を有していてもよいアレーンであり、Zは、ヒドリドまたはアニオン基である。)
    で表されるルテニウム化合物またはその二量体と、
     下記一般式(6-1):
    Figure JPOXMLDOC01-appb-C000011
    (式中、Aは、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基、または置換基を有していてもよいカルボニル基であり、X、X、X、XおよびXは、それぞれ独立して、水素原子または置換基であり、XとX、XとX、XとX、XとXは、それぞれ互いに結合して環を形成してもよい。)
    で表されるアニリド、または
     下記一般式(6-2):
    Figure JPOXMLDOC01-appb-C000012
    (式中、X、X、X、XおよびXは前記で定義したとおりである。)
    で表されるアニリドとを混合して反応系内で形成させたものである、請求項6または9に記載の水酸基の変換方法。
  11.  一般式(2-1)で表されるカルボニル化合物が、アセトンである、請求項5~10のいずれか一項に記載の水酸基の変換方法。
  12.  下記一般式(4-1a):
    Figure JPOXMLDOC01-appb-C000013
    (式中、Yは、置換基を有していてもよいシクロペンタジエニル基、または置換基を有していてもよいインデニル基であり、Zは、ヒドリドまたはアニオン基であり、Aは、置換基を有していてもよいアリール基、または置換基を有していてもよいカルボニル基であり、Aの一部がイリジウム原子に配位してもよく、X、X、X、XおよびXは、それぞれ独立して、水素原子または置換基であり、XとX、XとX、XとX、XとXは、それぞれ互いに結合して環を形成してもよく、また、YとA、YとXがそれぞれ互いに結合して環を形成してもよく、mは1または2であり、nは1または0であり、mが1のとき、nは1であり、mが2のとき、nは0である。)
    で表される化合物またはその二量体、および、
     下記一般式(4-2):
    Figure JPOXMLDOC01-appb-C000014
    (式中、Y、Z、X、X、X、XおよびXは、前記で定義したとおりである。ただし、Yがペンタメチルシクロペンタジエニルであり、Zが塩素原子であり、X、X、XおよびXが水素原子であり、かつ、Xが水素原子またはメチル基である場合を除くこととする。)
    で表される化合物からなる群から選ばれるイリジウム錯体。
  13.  アルコールの水酸基の変換反応に用いられる触媒である、請求項12に記載のイリジウム錯体。
  14.  下記一般式(4-3):
    Figure JPOXMLDOC01-appb-C000015
    (式中、Yは、置換基を有していてもよいアレーンであり、Zは、ヒドリドまたはアニオン基であり、Aは、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基、または置換基を有していてもよいカルボニル基であり、Aの一部がルテニウム原子に配位してもよく、X、X、X、XおよびXは、それぞれ独立して、水素原子または置換基であり、XとX、XとX、XとX、XとXは、それぞれ互いに結合して環を形成してもよく、また、YとA、YとXがそれぞれ互いに結合して環を形成してもよく、mは1または2であり、nは1または0であり、mが1のとき、nは1であり、mが2のとき、nは0である。)
    で表される化合物またはその二量体、または、
     下記一般式(4-4):
    Figure JPOXMLDOC01-appb-C000016
    (式中、Y、Z、X、X、X、XおよびXは、前記で定義したとおりである。)
    で表される化合物からなる群より選ばれるルテニウム錯体。
  15.  アルコールの水酸基の変換反応に用いられる触媒である、請求項14に記載のルテニウム錯体。
     
     
PCT/JP2019/018447 2018-05-09 2019-05-08 アルコールの水酸基の変換方法 WO2019216355A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020518324A JP7339244B2 (ja) 2018-05-09 2019-05-08 アルコールの水酸基の変換方法
EP19800032.5A EP3792241A4 (en) 2018-05-09 2019-05-08 PROCESS FOR THE CONVERSION OF A HYDROXYL GROUP OF ALCOHOL
CA3098663A CA3098663A1 (en) 2018-05-09 2019-05-08 Method for converting hydroxyl group of alcohol
US17/051,261 US11407703B2 (en) 2018-05-09 2019-05-08 Method for converting hydroxyl group of alcohol

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-090639 2018-05-09
JP2018090639 2018-05-09

Publications (1)

Publication Number Publication Date
WO2019216355A1 true WO2019216355A1 (ja) 2019-11-14

Family

ID=68468082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018447 WO2019216355A1 (ja) 2018-05-09 2019-05-08 アルコールの水酸基の変換方法

Country Status (5)

Country Link
US (1) US11407703B2 (ja)
EP (1) EP3792241A4 (ja)
JP (1) JP7339244B2 (ja)
CA (1) CA3098663A1 (ja)
WO (1) WO2019216355A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114957339B (zh) * 2022-03-25 2023-11-24 大连理工大学 一类新型配合物的合成方法及其催化甲酸储放氢应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4351814A (en) 1980-12-18 1982-09-28 Kyowa Chemical Industry Co., Ltd. Hydrotalcites having a hexagonal needle-like crystal structure and process for production thereof
US4904457A (en) 1974-03-30 1990-02-27 Aluminum Company Of America Synthetic hydrotalcite
US5250279A (en) 1991-12-20 1993-10-05 J. M. Huber Corporation Method for the manufacture of hydrotalcite
JP2009137876A (ja) 2007-12-06 2009-06-25 Daicel Chem Ind Ltd カルボニル基含有化合物及び大環状ケトンの製造法
CN101693726A (zh) * 2009-10-22 2010-04-14 复旦大学 一种含有半夹心结构钌、铱或铑四核矩形大环配合物及其制备方法
JP2012229189A (ja) * 2011-04-27 2012-11-22 Nihon Univ 乳酸エステルの合成方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1582621A (ja) 1968-08-12 1969-10-03
JPS4738413Y1 (ja) 1969-09-19 1972-11-21

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4904457A (en) 1974-03-30 1990-02-27 Aluminum Company Of America Synthetic hydrotalcite
US4351814A (en) 1980-12-18 1982-09-28 Kyowa Chemical Industry Co., Ltd. Hydrotalcites having a hexagonal needle-like crystal structure and process for production thereof
US5250279A (en) 1991-12-20 1993-10-05 J. M. Huber Corporation Method for the manufacture of hydrotalcite
JP2009137876A (ja) 2007-12-06 2009-06-25 Daicel Chem Ind Ltd カルボニル基含有化合物及び大環状ケトンの製造法
CN101693726A (zh) * 2009-10-22 2010-04-14 复旦大学 一种含有半夹心结构钌、铱或铑四核矩形大环配合物及其制备方法
JP2012229189A (ja) * 2011-04-27 2012-11-22 Nihon Univ 乳酸エステルの合成方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"Encyclopedia of Experimental Chemistry", vol. 21, 2004, THE CHEMICAL SOCIETY OF JAPAN: MARUZEN CO., LTD.
"Protective Groups in Organic Synthesis", 1991, JOHN WILEY & SONS, INC.
"Sustainable Catalysis: Challenges and Practices for the Pharmaceutical and Fine Chemical Industries", 2013, JOHN WILEY & SONS, pages: 121 - 137
CHEMICAL REVIEWS, vol. 116, 2016, pages 4006 - 4123
ORGANIC LETTERS, vol. 8, no. 7, 2006, pages 1375 - 1378
ORGANIC SYNTHESIS, vol. 86, 2009, pages 28
TROST, B. M.: "Science of Synthesis", 2001, THIEME
TURLINGTON, C. R. ET AL.: "Oxygen atom transfer to a half-sandwich iridium complex: Clean oxidation yielding a molecular product", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 136, no. 10, 2014, pages 3981 - 3994, XP055652818, ISSN: 0002-7863, DOI: 10.1021/ja413023f *
YAMAGUCHI, R.FUJITA, K.: "Ligand Platforms in Homogeneous Catalytic Reaction with Metals", 2014, WILEY

Also Published As

Publication number Publication date
EP3792241A1 (en) 2021-03-17
US20210047254A1 (en) 2021-02-18
CA3098663A1 (en) 2019-11-14
JPWO2019216355A1 (ja) 2021-06-10
EP3792241A4 (en) 2022-05-04
JP7339244B2 (ja) 2023-09-05
US11407703B2 (en) 2022-08-09

Similar Documents

Publication Publication Date Title
Salem et al. Formation of Stable trans-Dihydride Ruthenium (II) and 16-Electron Ruthenium (0) Complexes Based on Phosphinite PONOP Pincer Ligands. Reactivity toward Water and Electrophiles
JP5671456B2 (ja) 3座配位子を有する新規ルテニウムカルボニル錯体、並びにその製造法及び用途
JP2004537588A (ja) 移動水素化条件下でのカルボニル化合物の還元アミノ化による、アミンの製造方法
JPH0481596B2 (ja)
JP2681057B2 (ja) 2,2’―ビス(ジフェニルホスフィノ)―5,5’,6,6’,7,7’,8,8’―オクタヒドロ―1,1’―ビナフチル及びこれを配位子とする遷移金属錯体
JPWO2010140636A1 (ja) 不斉水素化触媒
JP5711209B2 (ja) 均一系不斉水素化触媒
ES2676580T3 (es) Catalizadores de rutenio -fenol para reacciones de hidrogenación por transferencia
JP5432895B2 (ja) アルミニウム錯体とその使用
JPS63145291A (ja) ルテニウム−ホスフイン錯体
CN109438205B (zh) 一种2-甲基-2,3-二芳基丙醛衍生物的合成方法
CN105308058B (zh) 包含三齿氨基二碳烯配体的金属配合物和使用其的氢化还原方法
JP2014114257A (ja) ルテニウムカルボニル錯体を用いたハロゲン置換安息香酸エステルの還元方法
JP7339244B2 (ja) アルコールの水酸基の変換方法
Cadierno et al. An Easy Entry to Dimers [{RuX (μ-X)(CO)(P⌒ P)} 2](X= Cl, Br; P⌒ P= 1, 1 ‘-Bis (diphenylphosphino) ferrocene, 1, 1 ‘-Bis (diisopropylphosphino) ferrocene) from η3-Allylruthenium (II) Derivatives [RuX (η3-2-C3H4R)(CO)(P⌒ P)](R= H, Me): Efficient Catalyst Precursors in Transfer Hydrogenation of Ketones
JPS6154036B2 (ja)
JP2850068B2 (ja) ルテニウム−ホスフィン錯体及びこれを触媒とする光学活性1−置換−1,3−プロパンジオールの製造方法
US6583305B1 (en) Ferrocene-based diphosphonites for asymmetrical catalysis
Nirmala et al. Ruthenium (II) complexes bearing pyridine-functionalized N-heterocyclic carbene ligands: Synthesis, structure and catalytic application over amide synthesis
JP2011503220A (ja) 不斉付加反応に使用する二座第二級ホスフィンオキシドキラル配位子
JP5142492B2 (ja) (1−メチル−2,2,2−トリフルオロ)エチルアミン類およびその製造方法
JP5417842B2 (ja) イミダゾール化合物およびそれを用いたクロスカップリング反応用触媒組成物
JP3517591B2 (ja) 光学活性アミンの製造法
JP4156857B2 (ja) 3−クロロ−3−ブテン酸エステル誘導体及びその製造方法
JP5568976B2 (ja) 多置換ホスフィン化合物及び該ホスフィン化合物を含む触媒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800032

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020518324

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3098663

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019800032

Country of ref document: EP

Effective date: 20201209