WO2019216352A1 - Conductor substrate, stretchable wiring board, and stretchable resin film for wiring board - Google Patents

Conductor substrate, stretchable wiring board, and stretchable resin film for wiring board Download PDF

Info

Publication number
WO2019216352A1
WO2019216352A1 PCT/JP2019/018440 JP2019018440W WO2019216352A1 WO 2019216352 A1 WO2019216352 A1 WO 2019216352A1 JP 2019018440 W JP2019018440 W JP 2019018440W WO 2019216352 A1 WO2019216352 A1 WO 2019216352A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
stretchable
resin film
stretchable resin
Prior art date
Application number
PCT/JP2019/018440
Other languages
French (fr)
Japanese (ja)
Inventor
タンイー シム
剛史 正木
崇司 川守
禎宏 小川
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to KR1020207031452A priority Critical patent/KR20210007966A/en
Priority to JP2020518322A priority patent/JP7306381B2/en
Priority to CN201980030605.6A priority patent/CN112106450A/en
Publication of WO2019216352A1 publication Critical patent/WO2019216352A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • H05K1/0283Stretchable printed circuits
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/068Thermal details wherein the coefficient of thermal expansion is important

Definitions

  • the present invention relates to a conductor substrate, a stretchable wiring substrate, and a stretchable resin film for a wiring substrate.
  • Patent Document 1 proposes a stretchable flexible circuit board composed of a stretchable thermoplastic elastomer.
  • stretchable wiring boards are often exposed to high temperatures exceeding, for example, 100 ° C. along with the mounting of various electronic components.
  • the stretchable wiring board greatly expands at a high temperature, which may hinder stable production of the stretchable device.
  • the stretchable resin film constituting the conventional stretchable wiring board has a high tack, particularly at high temperatures, there is a problem with the handleability of the stretchable wiring board at high temperatures.
  • an object of one aspect of the present invention is to provide a stretchable wiring board that has excellent stretchability, a low coefficient of thermal expansion, low tack at high temperatures, and excellent handleability, and a conductor used for obtaining the same.
  • the object is to provide a substrate and a stretchable resin film.
  • One aspect of the present invention provides a conductive substrate having a stretchable resin film and a conductor layer provided on the stretchable resin film.
  • the stretchable resin film contains a rubber component and a filler.
  • the rubber component may be cross-linked.
  • the conductor substrate according to one aspect of the present invention it is possible to obtain a stretchable wiring substrate that has excellent stretchability, a low thermal expansion coefficient, low tack at high temperature, and excellent handleability.
  • Another aspect of the present invention provides a stretchable wiring board including the above-described conductor board, wherein the conductor layer forms a wiring pattern.
  • the above-mentioned conductor substrate has an excellent stretchability, has a low coefficient of thermal expansion, and has a low tack at high temperatures and excellent handleability.
  • Still another aspect of the present invention provides a stretchable resin film for a wiring board containing a rubber component and a filler.
  • still another aspect of the present invention provides an application for producing a wiring board of a stretchable resin film containing a rubber component and a filler, and the rubber component may be crosslinked.
  • the rubber component may be cross-linked.
  • the above-mentioned stretchable resin film can provide a stretchable wiring board that has excellent stretchability, has a low coefficient of thermal expansion, and has low tack at high temperatures and excellent handleability.
  • a stretchable wiring board having excellent stretchability, a low coefficient of thermal expansion, a low tack at high temperature, and excellent handleability.
  • FIG. 1 is a plan view showing an embodiment of a stretchable wiring board.
  • a stretchable wiring substrate 1 shown in FIG. 1 is a conductor substrate having a stretchable resin film 3 and a conductor layer 5 provided on the stretchable resin film 3 and forming a wiring pattern.
  • the stretchable resin film 3 contains a rubber component and a filler. Elasticity is easily imparted to the elastic resin film mainly by the rubber component.
  • the conductor layer 5 forms a wiring pattern including a corrugated portion that can be expanded and contracted.
  • the stretchable resin film 3 can have stretchability such that the recovery rate after tensile deformation to 20% strain is 80% or more.
  • This recovery rate is calculated
  • FIG. 2 is a stress-strain curve showing an example of measuring the recovery rate.
  • the recovery rate can be measured, for example, when X is 50%. From the viewpoint of resistance to repeated use, the recovery rate may be 80% or more, 85% or more, or 90% or more. The upper limit on the definition of the recovery rate is 100%.
  • the rubber component includes one or more rubbers.
  • the rubber contained in the rubber component may be a thermoplastic elastomer.
  • thermoplastic elastomers include hydrogenated styrene elastomers.
  • a hydrogenated styrene-based elastomer is an elastomer obtained by adding hydrogen to an unsaturated double bond of a styrene-based elastomer having a soft segment including an unsaturated double bond.
  • the hydrogenated styrene-based elastomer can be expected to have an effect of improving weather resistance.
  • hydrogenated styrene elastomers examples include styrene-ethylenebutylene-styrene block copolymer elastomers (SEBS, sometimes referred to as “hydrogenated styrene butadiene rubber”).
  • SEBS styrene-ethylenebutylene-styrene block copolymer elastomers
  • Rubber components are acrylic rubber, isoprene rubber, butyl rubber, styrene butadiene rubber, butadiene rubber, acrylonitrile butadiene rubber, silicone rubber, urethane rubber, chloroprene rubber, ethylene propylene rubber, fluoro rubber, sulfurized rubber, epichlorohydrin rubber, and chlorinated butyl rubber. It may contain at least one rubber selected from the group consisting of
  • the rubber component may include at least one rubber selected from styrene butadiene rubber, butadiene rubber, and butyl rubber.
  • styrene butadiene rubber By using styrene butadiene rubber, the resistance of the stretchable resin film to various chemicals used in the plating process is improved, and a wiring board can be manufactured with high yield.
  • acrylic rubber examples include ZEON Corporation “Nipol AR Series” and Kuraray Co., Ltd. “Clarity Series”.
  • isoprene rubber for example, Nippon Zeon Co., Ltd. “Nipol IR Series” can be mentioned.
  • butyl rubber examples include JSR Corporation “BUTYL Series”
  • styrene butadiene rubber examples include JSR Corporation “Dynalon SEBS Series”, “Dynalon HSBR Series”, Kraton Polymer Japan Co., Ltd. “Clayton D Polymer Series”, and Aron Kasei Corporation “AR Series”.
  • Examples of commercially available butadiene rubber include ZEON Corporation “Nipol BR Series”. Examples of commercially available acrylonitrile butadiene rubber include JSR Corporation “JSR NBR Series”. Examples of commercially available silicone rubber include Shin-Etsu Silicone Co., Ltd. “KMP Series”. Examples of commercially available ethylene propylene rubber include JSR Corporation “JSR EP Series”.
  • fluororubber for example, Daikin Co., Ltd. “DAIEL series” is exemplified.
  • As a commercial item of epichlorohydrin rubber Nippon Zeon Co., Ltd. "Hydrin series” is mentioned, for example.
  • the rubber component can also be produced by synthesis.
  • acrylic rubber can be obtained by reacting (meth) acrylic acid, (meth) acrylic acid ester, aromatic vinyl compound, vinyl cyanide compound and the like.
  • the rubber component may be crosslinked by a reaction of a crosslinking group.
  • the cross-linking group may be a reactive group capable of proceeding with the reaction of cross-linking the molecular chain of the rubber component or the formation of a cross-linked structure by the reaction of the molecular chain of the rubber component with the cross-linking component described later. Examples include (meth) acryloyl groups, vinyl groups, epoxy groups, styryl groups, amino groups, isocyanurate groups, ureido groups, cyanate groups, isocyanate groups, mercapto groups, hydroxyl groups, carboxyl groups, and acid anhydride groups. Can be mentioned.
  • the rubber component may be crosslinked by the reaction of at least one of the acid anhydride group or the carboxyl group.
  • rubbers having acid anhydride groups include rubbers that are partially modified with maleic anhydride.
  • As a commercial product of rubber partially modified with maleic anhydride for example, there is a styrene elastomer “Tuffprene 912” manufactured by Asahi Kasei Corporation.
  • the rubber partially modified with maleic anhydride may be a hydrogenated styrene elastomer modified with maleic anhydride.
  • the hydrogenated styrene elastomer modified with maleic anhydride include maleic anhydride-modified styrene-ethylenebutylene-styrene block copolymer elastomer.
  • Examples of such commercially available products include “FG1901” and “FG1924” from Clayton Polymer Japan Co., Ltd., “Tuff Tech M1911”, “Tuff Tech M1913” and “Tuff Tech M1943” from Asahi Kasei Corporation.
  • the weight average molecular weight of the rubber component may be 20,000 to 200,000, 30,000 to 150,000, or 50,000 to 125,000 from the viewpoint of coating properties.
  • the weight average molecular weight (Mw) here means a standard polystyrene conversion value determined by gel permeation chromatography (GPC).
  • the content of the rubber component in the stretchable resin film may be 30 to 100% by weight, 50 to 100% by weight, or 70 to 100% by weight based on the weight of components other than the filler in the stretchable resin film. . When the content of the rubber component is within this range, the stretchable resin film tends to have particularly excellent stretchability.
  • the stretchable resin film contains one or more fillers dispersed in a resin phase containing a rubber component.
  • the filler can be an inorganic filler, an organic filler, or a combination thereof.
  • the filler may include at least one inorganic filler selected from the group consisting of silica, glass, alumina, titanium oxide, carbon black, mica, and boron nitride.
  • the average particle size of the filler may be 10 to 500 nm. When the average particle diameter of the filler is within this range, a more remarkable effect can be obtained in terms of reducing the thermal expansion coefficient of the stretchable resin film and suppressing tackiness of the stretchable resin film at a high temperature. From the same viewpoint, the average particle size of the filler may be 400 nm or less, 300 nm or less, 200 nm or less, 150 nm or less, or 80 nm or less. In the present specification, the average particle diameter of the filler means an average particle diameter (average primary particle diameter) obtained by a laser diffraction / scattering method. The average particle size of the filler can be measured using, for example, a nano particle size distribution measuring device SALD-7500 nano (manufactured by Shimadzu Corporation).
  • the shape of the filler is not particularly limited, and the filler can have any shape such as a substantially spherical shape, a fiber shape, and an indefinite shape.
  • the surface of the filler may be modified with a functional group.
  • the functional group that can be introduced on the surface of the filler include an amino group, a phenylamino group, and a phenyl group.
  • a filler having a surface modified with a functional group can contribute to improving the adhesion between the stretchable resin film and the conductor layer.
  • the filler content in the stretchable resin film may be 1 to 200 parts by mass with respect to 100 parts by mass of the rubber component.
  • the filler content may be 150 parts by mass or less or 100 parts by mass or less with respect to 100 parts by mass of the rubber component.
  • the stretchable resin film may be a cured product of a resin composition containing a rubber component and a filler.
  • the resin composition may further contain a crosslinking component.
  • the cured product of the resin composition includes a crosslinked structure formed by a reaction between the crosslinking groups of the rubber component, a reaction between the crosslinking group of the rubber component and the crosslinking component, a polymerization reaction of the crosslinking component, or a combination thereof. If the stretchable resin film is a cured product of the resin composition, the heat resistance of the stretchable resin film tends to be improved.
  • the crosslinking component that can be contained in the resin composition for forming the stretchable resin film is a compound having one or more reactive groups.
  • the crosslinking component is selected from the group consisting of, for example, an epoxy group, a (meth) acryloyl group, a vinyl group, a styryl group, an amino group, an isocyanurate group, a ureido group, a cyanate group, an isocyanate group, a mercapto group, a hydroxyl group, and a carboxyl group. It may be a compound having at least one reactive group.
  • the crosslinking component may be a compound having a reactive group selected from an epoxy group, an amino group, a hydroxyl group, and a carboxyl group.
  • the combination of a rubber having at least one of a maleic anhydride group or a carboxyl group and a compound having an epoxy group (epoxy resin), heat resistance and low moisture permeability of the stretchable resin film, stretchable resin film and conductive layer In particular, excellent effects are obtained in terms of adhesion to the resin and low tack of the stretchable resin film after curing.
  • the heat resistance of the stretchable resin film is improved, deterioration of the stretchable resin film in a heating process such as nitrogen reflow can be suppressed. If the stretchable resin film after curing has a low tack, the conductor substrate or the wiring substrate can be handled with good workability.
  • the compound containing an epoxy group that can be used as a crosslinking component can be a monofunctional, bifunctional, or trifunctional or higher polyfunctional epoxy resin.
  • the crosslinking component may contain a bifunctional or trifunctional or higher functional epoxy resin in order to obtain sufficient curability.
  • epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy resin, cresol novolac type epoxy resin, and epoxy resin having a fatty chain. It may be at least one selected.
  • An example of a commercially available epoxy resin having a fatty chain is EXA-4816 manufactured by DIC Corporation.
  • An epoxy resin that gives a cured product having a high glass transition temperature can contribute to the reduction of the thermal expansion coefficient of the stretchable resin film and the suppression of tack at a high temperature.
  • Specific examples of such an epoxy resin include dicyclopentadiene type epoxy resins and naphthalene type epoxy resins.
  • the crosslinking component may contain a compound having a (meth) acryloyl group.
  • the compound having a (meth) acryloyl group may be a (meth) acrylic acid ester.
  • the compound having a (meth) acryloyl group is a compound having one, two, three or more (meth) acryloyl groups (for example, a monofunctional, bifunctional, or trifunctional (meth) acrylic acid ester). May be.
  • the crosslinking component may be a compound having two or more (meth) acryloyl groups.
  • Examples of monofunctional (meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, and butoxyethyl (meth).
  • a monofunctional (meth) acrylate may be selected from the above aliphatic (meth) acrylate and the above aromatic (meth) acrylate from the viewpoint of compatibility with the styrene-based elastomer, transparency and heat resistance.
  • bifunctional (meth) acrylic acid ester examples include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) ) Acrylate, propylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetrapropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, ethoxylated polypropylene glycol Di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, neo Nthyl glycol di (meth) acrylate, 3-methyl-1,5-pentanediol di (me
  • a bifunctional (meth) acrylate may be selected from the aliphatic (meth) acrylate and the aromatic (meth) acrylate.
  • trifunctional or higher polyfunctional (meth) acrylic acid ester examples include trimethylolpropane tri (meth) acrylate, ethoxylated trimethylolpropane tri (meth) acrylate, propoxylated trimethylolpropane tri (meth) acrylate, and ethoxylated propoxy.
  • a polyfunctional (meth) acrylate may be selected from the aliphatic (meth) acrylate and the aromatic (meth) acrylate.
  • the content of the crosslinking component in the resin composition for forming the stretchable resin film may be 10 parts by mass, 15 parts by mass or 20 parts by mass with respect to 100 parts by mass of the rubber component. It may be less than or equal to 60 parts by weight, or less than or equal to 50 parts by weight. When the content of the crosslinking component is in the above range, the adhesion with the conductor layer tends to be improved while maintaining the properties of the stretchable resin film.
  • the resin composition for forming the stretchable resin film may further contain a curing agent for the polymerization reaction (curing reaction) of the crosslinking component, a curing accelerator, or both.
  • a curing agent is a compound that itself becomes a reaction substrate for a polymerization reaction (curing reaction) that reacts with a crosslinking component.
  • the curing accelerator is a compound that functions as a catalyst for the curing reaction. A compound having both functions of a curing agent and a curing accelerator can also be used.
  • the content of the curing agent and the curing accelerator may be 0.1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the rubber component and the crosslinking component, respectively.
  • a compound having an epoxy group epoxy resin
  • aliphatic polyamine, polyaminoamide, polymercaptan, aromatic polyamine, acid anhydride, carboxylic acid, phenol novolac resin, ester resin, and At least one selected from the group consisting of dicyandiamide may be used.
  • the curing agent or curing accelerator for the compound having an epoxy group at least one selected from the group consisting of a tertiary amine, imidazole, and phosphine may be used. From the viewpoints of storage stability and curability of the resin composition before curing, imidazole may be used.
  • an imidazole compatible with the rubber may be selected.
  • the content of imidazole may be 0.1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the rubber component and the crosslinking component.
  • a thermal radical polymerization initiator or a photo radical polymerization initiator may be used as the curing agent.
  • thermal radical polymerization initiator examples include ketone peroxides such as methyl ethyl ketone peroxide, cyclohexanone peroxide, and methylcyclohexanone peroxide; 1,1-bis (t-butylperoxy) cyclohexane, 1,1-bis (t -Butylperoxy) -2-methylcyclohexane, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, and 1, Peroxyketals such as 1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane; hydroperoxides such as p-menthane hydroperoxide; ⁇ , ⁇ ′-bis (t-butylperoxy) Diisopropylbenzene, dicumyl peroxide, t-butyl Dialkyl peroxide
  • radical photopolymerization initiators examples include benzoinketals such as 2,2-dimethoxy-1,2-diphenylethane-1-one; 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropane- 1-one and ⁇ -hydroxy ketones such as 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one; 2-benzyl-2-dimethylamino- ⁇ -amino ketones such as 1- (4-morpholinophenyl) -butan-1-one and 1,2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one; Oxime esters such as [4- (phenylthio) phenyl] -1,2-octadion-2- (benzoyl) oxime; bis ( Phosphine oxides such as 2,4,6-trimethylbenzoyl) phenylphosphine oxide,
  • 2,4,5-triarylimidazole dimer benzophenone, N, N, N Benzophenone compounds such as N, N'-tetramethyl-4,4'-diaminobenzophenone, N, N, N ', N'-tetraethyl-4,4'-diaminobenzophenone, and 4-methoxy-4'-dimethylaminobenzophenone 2-ethylanthraquinone, phenanthrenequinone, 2-tert-butylanthraquinone, octamethylanthraquinone, 1,2-benzanthraquinone, 2,3-benzanthraquinone, 2-phenylanthraquinone, 2,3-diphenylanthraquinone, 1-chloroanthraquinone Quinone compounds such as 2-methylanthraquinone, 1,4-naphthoquinone, 9,10-phenanthraquinone, 2-
  • the stretchable resin film, or the resin composition for forming the same may contain, as necessary, an antioxidant, a heat stabilizer, an ultraviolet absorber, a hydrolysis inhibitor, a yellowing inhibitor, Further, a visible light absorber, a colorant, a plasticizer, a flame retardant, a leveling agent and the like may be further contained within a range that does not significantly impair the effects of the present invention.
  • the thickness of the stretchable resin film 3 may be 5 to 1000 ⁇ m. When the thickness of the stretchable resin film is within this range, sufficient strength as a stretchable substrate can be easily obtained, and drying can be performed sufficiently, so that the amount of residual solvent in the stretchable resin film can be reduced.
  • the surface roughness Ra value of the main surface of the stretchable resin film 3 opposite to the conductor layer 5 may be 0.1 ⁇ m or more.
  • the Ra value may be 0.2 ⁇ m or more, 0.3 ⁇ m or more, or 0.4 ⁇ m or more.
  • the upper limit of the Ra value is not particularly limited, but may be 2.0 ⁇ m or less from the viewpoint of the strength of the stretchable resin film.
  • the surface roughness Ra value can be measured using, for example, a step gauge (manufactured by Kosaka Laboratory Ltd., ET-200).
  • the surface roughness Ra value of the stretchable resin film can be within the above range.
  • the unevenness transfer group A method of peeling the material, a method of performing imprint processing such as etching treatment and thermal imprint processing on the stretchable resin film after curing, and pressing the roughened surface of the metal foil on the stretchable resin film, There is a method of etching.
  • the tack value of the surface of the stretchable resin film is 0.7 gf / mm 2 or less (6.9 kPa or less), 0.5 gf / mm 2 or less (4.9 kPa or less), or 0.4 gf / mm 2 or less at 30 ° C. (3.9 kPa or less).
  • the tack value of the surface of the stretchable resin film may be 4.5 gf / mm 2 or less (44 kPa or less) or 4.0 gf / mm 2 or less (39 kPa or less) at 200 ° C.
  • the lower limit of the tack value is not particularly limited, and may be 0 gf / mm 2 (0 kPa).
  • the tack value is measured using, for example, a tacking tester (“TACII” manufactured by Reska Co., Ltd.).
  • the elastic modulus (tensile modulus) of the stretchable resin film may be 0.1 MPa or more and 1000 MPa or less.
  • the elastic modulus When the elastic modulus is 0.1 MPa or more and 1000 MPa or less, the handleability and flexibility as a substrate tend to be particularly excellent. From this viewpoint, the elastic modulus may be 0.3 MPa to 100 MPa, or 0.5 MPa to 50 MPa.
  • the elongation at break of the stretchable resin film may be 100% or more. When the elongation at break is 100% or more, sufficient stretchability tends to be obtained. From this viewpoint, the elongation at break may be 150% or more, 200% or more, 300% or more, or 500% or more.
  • the upper limit of the elongation at break is not particularly limited, but is usually about 1000% or less.
  • the stretchable resin film may be supplied in a state of a carrier film and a laminated film having a stretchable resin film provided on the carrier film.
  • Polyester such as polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate
  • Polycarbonate Polyolefin, such as polyethylene and polypropylene
  • Polyamide Polyimide
  • Polyamideimide Polyetherimide
  • Polyethersulfide polyethersulfone
  • polyketone polyphenylene ether
  • polyphenylene sulfide polyarylate
  • polysulfone and liquid crystal polymer.
  • a film of polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polypropylene, polycarbonate, polyamide, polyimide, polyamideimide, polyphenylene ether, polyphenylene sulfide, polyarylate, or polysulfone is used as a carrier film. Also good.
  • the thickness of the carrier film is not particularly limited, but may be 3 to 250 ⁇ m. When the thickness of the carrier film is 3 ⁇ m or more, the carrier film tends to have sufficient film strength. When the thickness of the carrier film is 250 ⁇ m or less, sufficient flexibility tends to be easily obtained. From the above viewpoint, the thickness of the carrier film may be 5 to 200 ⁇ m, or 7 to 150 ⁇ m. From the viewpoint of improving peelability from the stretchable resin film, a film obtained by subjecting the base film to a release treatment with a silicone compound, a fluorine-containing compound, or the like may be used as necessary.
  • the laminated film may further have a protective film covering the stretchable resin film.
  • the protective film is not particularly limited, and examples thereof include polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyolefins such as polyethylene and polypropylene. From the viewpoints of flexibility and toughness, a film of polyester such as polyethylene terephthalate or polyolefin such as polyethylene and polypropylene may be used as the protective film. From the viewpoint of improving the peelability from the stretchable resin film, the protective film may be subjected to a release treatment with a silicone compound, a fluorine-containing compound, or the like.
  • the thickness of the protective film may be appropriately changed depending on the intended flexibility, but may be 10 to 250 ⁇ m. When the thickness of the protective film is 10 ⁇ m or more, the protective film tends to have sufficient film strength. When the thickness of the protective film is 250 ⁇ m or less, the protective film tends to have sufficient flexibility. From the above viewpoint, the thickness of the protective film may be 15 to 200 ⁇ m, or 20 to 150 ⁇ m.
  • the conductor layer 5 of the stretchable wiring board 1 can be, for example, a conductor foil or a conductor plating film.
  • the conductor foil can be a metal foil.
  • metal foil include copper foil, titanium foil, stainless steel foil, nickel foil, permalloy foil, 42 alloy foil, kovar foil, nichrome foil, beryllium copper foil, phosphor bronze foil, brass foil, white foil, aluminum foil, Examples include tin foil, lead foil, zinc foil, solder foil, iron foil, tantalum foil, niobium foil, molybdenum foil, zirconium foil, gold foil, silver foil, palladium foil, monel foil, inconel foil, and hastelloy foil.
  • the conductor foil may be selected from a copper foil, a gold foil, a nickel foil, and an iron foil from the viewpoint of an appropriate elastic modulus and the like.
  • the conductor foil may be a copper foil.
  • the copper foil can easily form a wiring pattern by photolithography without impairing the properties of the stretchable resin substrate.
  • copper foil There is no restriction
  • the electrolytic copper foil and rolled copper foil used for a copper clad laminated board, a flexible wiring board, etc. can be used.
  • the conductor plating film can be a film formed by a normal plating method used in the additive method or the semi-additive method. For example, after applying a plating catalyst for depositing palladium, the stretchable resin film is immersed in an electroless plating solution, and an electroless plating layer (conductor layer) having a thickness of 0.3 to 1.5 ⁇ m is formed on the entire surface of the primer. To precipitate. If necessary, electrolytic plating (electroplating) can be further performed to adjust to a required thickness. As an electroless plating solution used for electroless plating, any electroless plating solution can be used, and there is no particular limitation. An ordinary method can be employed for electrolytic plating, and there is no particular limitation.
  • the conductor plating film (electroless plating film, electrolytic plating film) may be a copper plating film from the viewpoint of cost and resistance.
  • the thickness of the conductor layer is not particularly limited, but may be 1 to 50 ⁇ m. When the thickness of the conductor layer is 1 ⁇ m or more, the wiring pattern can be more easily formed. When the thickness of the conductor layer is 50 ⁇ m or less, etching and handling are particularly easy.
  • the stretchable wiring board is manufactured by, for example, a method including preparing a stretchable resin film and a conductor substrate having a conductor layer provided on the stretchable resin film, and forming a wiring pattern on the conductor layer. Is done.
  • a conductive substrate having a conductive foil as a conductive layer is obtained by, for example, applying a varnish of a resin composition for forming a stretchable resin film on a conductive foil, or on a stretchable resin film formed on a carrier film.
  • You may form a stretchable resin film by drying the coating film of the resin composition for forming a stretchable resin film, and hardening this by heating or light irradiation of the formed resin layer.
  • a conductor substrate having a conductor plating film as a conductor layer is obtained by, for example, a method of forming a conductor plating film on a stretchable resin film formed on a carrier film by an ordinary plating method used in an additive method or a semi-additive method. ,Obtainable.
  • the method for forming the wiring pattern on the conductor layer includes, for example, a step of forming an etching resist on the conductor layer of the conductor substrate, exposing the etching resist, developing the exposed etching resist, and forming a part of the conductor layer.
  • a step of forming a resist pattern to be covered, a step of removing a portion of the conductor layer not covered with the resist pattern with an etching solution, and a step of removing the resist pattern can be included.
  • the method of forming a wiring pattern on the conductor layer includes a step of forming a plating resist on the conductor layer of the conductor substrate, exposing the plating resist, developing the exposed plating resist, and forming a part of the conductor layer.
  • a stretchable device can be obtained by mounting various electronic components on the wiring board.
  • Raw materials The following were prepared as raw materials for producing a stretchable resin film.
  • Laminated film having a stretchable resin film 100 parts by mass of a maleic anhydride-modified styrene-ethylenebutylene-styrene block copolymer elastomer (FG1924GT), 200 parts by mass of silica filaments (SE2050), and 50 parts by mass of toluene were uniformly mixed with stirring. To the obtained mixture, 25 parts by mass of a dicyclopentadiene type epoxy resin (HP7200H) and 3.75 parts by mass of 1-benzyl-2-methylimidazole (1B2MZ) were added, and the mixture was further stirred to obtain a resin varnish.
  • FG1924GT maleic anhydride-modified styrene-ethylenebutylene-styrene block copolymer elastomer
  • SE2050 silica filaments
  • toluene 50 parts by mass of toluene were uniformly mixed with stirring.
  • the obtained resin varnish was applied onto the release-treated surface of the carrier film using a knife coater (“SNC-350” manufactured by Yasui Seiki Co., Ltd.
  • the coating film was dried (“MSO-80TPS manufactured by Futaba Kagaku Co., Ltd.) )) Was dried by heating at 100 ° C. for 20 minutes to form a resin layer having a thickness of 100 ⁇ m.
  • the formed resin layer was subjected to the same release treatment PET film as the carrier film, and the release treatment surface was a resin.
  • a laminated film was obtained by sticking as a protective film in the direction of the layer side, and the resin film was cured by heating the laminated film at 180 ° C. for 60 minutes to have a stretchable resin film (cured product of the resin layer).
  • a laminated film was obtained.
  • Example 2 A resin varnish was prepared in the same manner as in Example 1, except that 200 parts by mass of the silica filaments (SE2050) was replaced with 108 parts by mass of the silica filaments (C40) containing 70 parts by mass of filler. Using the obtained resin varnish, a laminated film having a stretchable resin film was obtained in the same manner as in Example 1.
  • Example 3 A resin varnish was prepared in the same manner as in Example 1 except that 200 parts by mass of the silica filaments (SE2050) was replaced with 233 parts by mass of the silica filaments (C120) containing 70 parts by mass of filler. Using the obtained resin varnish, a laminated film having a stretchable resin film was obtained in the same manner as in Example 1.
  • Example 4 A resin varnish was prepared in the same manner as in Example 1, except that 200 parts by mass of the silica filaments (SE2050) was replaced with 100 parts by mass of the silica filaments (F19) containing 70 parts by mass of filler. Using the obtained resin varnish, a laminated film having a stretchable resin film was obtained in the same manner as in Example 1.
  • Example 5 Same as Example 1 except that the compounding amounts of silica filamentous (SE2050), dicyclopentadiene type epoxy resin (HP7200H) and 1-benzyl-2-methylimidazole (1B2MZ) were changed as shown in Table 1. Thus, a resin varnish was prepared. Using the obtained resin varnish, a laminated film having a stretchable resin film was obtained in the same manner as in Example 1.
  • Comparative Example 1 100 parts by weight of maleic anhydride-modified styrene-ethylenebutylene-styrene block copolymer elastomer (FG1924GT), 25 parts by weight of dicyclopentadiene type epoxy resin (HP7200H), and 3.75 parts by weight of 1-benzyl-2- Methylimidazole (1B2MZ) was mixed with 50 parts by mass of toluene, and the mixture was stirred to obtain a resin varnish. Using the obtained resin varnish, a laminated film having a stretchable resin film was obtained in the same manner as in Example 1.
  • Comparative Examples 2 and 3 Similar to Comparative Example 1 except that the blending amounts of maleic anhydride-modified styrene-ethylenebutylene-styrene block copolymer elastomer (FG1924GT) and dicyclopentadiene type epoxy resin (HP7200H) were changed as shown in Table 1. Thus, a resin varnish and a laminated film were obtained.
  • FG1924GT maleic anhydride-modified styrene-ethylenebutylene-styrene block copolymer elastomer
  • HP7200H dicyclopentadiene type epoxy resin
  • thermomechanical analysis TMA
  • Device SS6000 (Seiko Instruments Inc.) Sample size: 10 mm long x 3 mm width Load: 0.05 MPa Temperature: 0 to 120 ° C Temperature increase rate: 5 ° C / min
  • Tensile modulus A test piece of a stretchable resin film having a strip shape having a length of 40 mm and a width of 10 mm from which the carrier film and the protective film were removed was prepared. A tensile test of the test piece was performed using an autograph (Shimadzu Corporation “EZ-S”) to obtain a stress-strain curve. The tensile modulus at room temperature was determined from the obtained stress-strain curve. The tensile test was performed under the conditions of a distance between chucks of 20 mm and a tensile speed of 50 mm / min. The tensile elastic modulus was obtained from the slope of the stress-strain curve in the range of 0.5 to 1.0 N stress.
  • Tack value The protective film was removed from the laminated film, and the tack value of the exposed surface of the stretchable resin film was measured using a tacking tester (“TACII” manufactured by Reska Co., Ltd.). The measurement conditions were set to a constant load mode, an immersion speed of 120 mm / min, a test speed of 600 mm / min, a load of 100 gf, a load holding time of 1 second, and a temperature of 30 ° C. or 200 ° C.
  • Table 1 shows the blending amount of each component of the curable resin composition used to form the stretchable resin film and the evaluation results of the stretchable resin film.
  • the numerical value in the parenthesis regarding the filler in the table is the blending amount of the solid content (filler) in the slurry.
  • the stretchable resin films of the examples containing fillers have excellent stretchability, low thermal expansion coefficient, low tack at high temperature, and excellent handleability.

Abstract

Disclosed is a stretchable wiring board which comprises a stretchable resin film and a conductor layer disposed on the stretchable resin film. The stretchable resin film comprises a rubber ingredient and a filler. The rubber ingredient may have been crosslinked.

Description

導体基板、伸縮性配線基板、及び配線基板用伸縮性樹脂フィルムConductor substrate, stretchable wiring substrate, and stretchable resin film for wiring substrate
 本発明は、導体基板、伸縮性配線基板、及び配線基板用伸縮性樹脂フィルムに関する。 The present invention relates to a conductor substrate, a stretchable wiring substrate, and a stretchable resin film for a wiring substrate.
 近年、ウェアラブル機器及びヘルスケア関連機器等の分野において、例えば身体の曲面又は関節部に沿って使用できると共に、脱着しても接続不良が生じにくい伸縮性電子装置(ストレッチャブルデバイス)が求められている。このような高い伸縮性を有するストレッチャブルデバイスを製造するために、高い伸縮性を有する伸縮性配線基板が求められる。そこで、例えば特許文献1は、伸縮自在の熱可塑性エラストマーから構成される伸縮性フレキシブル回路基板を提案している。 In recent years, there has been a demand for stretchable electronic devices (stretchable devices) that can be used along curved surfaces or joints of the body, and that do not cause poor connection even when attached or detached, in the fields of wearable devices and healthcare-related devices. Yes. In order to manufacture such a stretchable device having high stretchability, a stretchable wiring board having high stretchability is required. Thus, for example, Patent Document 1 proposes a stretchable flexible circuit board composed of a stretchable thermoplastic elastomer.
特開2013-187380号公報JP 2013-187380 A
 伸縮性配線基板は、ストレッチャブルデバイスを製造する過程において、各種電子部品の実装等に伴って、例えば100℃を超える高温に曝されることが多い。ところが、伸縮性配線基板は高温になると大きく熱膨張し、これがストレッチャブルデバイスの安定した製造の妨げになり得ることが明らかになった。また、従来の伸縮性配線基板を構成する伸縮性樹脂フィルムは、特に高温で高いタックを有するため、高温における伸縮性配線基板の取り扱い性にも問題があった。 In the process of manufacturing stretchable devices, stretchable wiring boards are often exposed to high temperatures exceeding, for example, 100 ° C. along with the mounting of various electronic components. However, it has been clarified that the stretchable wiring board greatly expands at a high temperature, which may hinder stable production of the stretchable device. In addition, since the stretchable resin film constituting the conventional stretchable wiring board has a high tack, particularly at high temperatures, there is a problem with the handleability of the stretchable wiring board at high temperatures.
 そこで本発明の一側面の目的は、優れた伸縮性を有しながら、熱膨張率が小さく、しかも高温でのタックが低く取り扱い性に優れる伸縮性配線基板、並びにこれを得るために用いられる導体基板及び伸縮性樹脂フィルムを提供することにある。 Accordingly, an object of one aspect of the present invention is to provide a stretchable wiring board that has excellent stretchability, a low coefficient of thermal expansion, low tack at high temperatures, and excellent handleability, and a conductor used for obtaining the same. The object is to provide a substrate and a stretchable resin film.
 本発明の一側面は、伸縮性樹脂フィルムと、前記伸縮性樹脂フィルム上に設けられた導体層と、を有する導体基板を提供する。前記伸縮性樹脂フィルムがゴム成分及びフィラを含有する。前記ゴム成分が架橋されていてもよい。 One aspect of the present invention provides a conductive substrate having a stretchable resin film and a conductor layer provided on the stretchable resin film. The stretchable resin film contains a rubber component and a filler. The rubber component may be cross-linked.
 上記本発明の一側面に係る導体基板によれば、優れた伸縮性を有しながら、熱膨張率が小さく、しかも高温でのタックが低く取り扱い性に優れる伸縮性配線基板を得ることができる。 According to the conductor substrate according to one aspect of the present invention, it is possible to obtain a stretchable wiring substrate that has excellent stretchability, a low thermal expansion coefficient, low tack at high temperature, and excellent handleability.
 本発明の別の一側面は、上記導体基板を含み、前記導体層が配線パターンを形成している、伸縮性配線基板を提供する。 Another aspect of the present invention provides a stretchable wiring board including the above-described conductor board, wherein the conductor layer forms a wiring pattern.
 上記導体基板は、優れた伸縮性を有しながら、熱膨張率が小さく、しかも高温でのタックが低く取り扱い性に優れる。 The above-mentioned conductor substrate has an excellent stretchability, has a low coefficient of thermal expansion, and has a low tack at high temperatures and excellent handleability.
 本発明の更に別の一側面は、ゴム成分及びフィラを含有する、配線基板用伸縮性樹脂フィルムを提供する。言い換えると、本発明の更に別の一側面は、ゴム成分及びフィラを含有し、前記ゴム成分が架橋されていてもよい、伸縮性樹脂フィルムの、配線基板を製造するための応用を提供する。前記ゴム成分が架橋されていてもよい。 Still another aspect of the present invention provides a stretchable resin film for a wiring board containing a rubber component and a filler. In other words, still another aspect of the present invention provides an application for producing a wiring board of a stretchable resin film containing a rubber component and a filler, and the rubber component may be crosslinked. The rubber component may be cross-linked.
 上記伸縮性樹脂フィルムは、優れた伸縮性を有しながら、熱膨張率が小さく、しかも高温でのタックが低く取り扱い性に優れる伸縮性配線基板を与えることができる。 The above-mentioned stretchable resin film can provide a stretchable wiring board that has excellent stretchability, has a low coefficient of thermal expansion, and has low tack at high temperatures and excellent handleability.
 本発明の一側面によれば、優れた伸縮性を有しながら、熱膨張率が小さく、しかも高温でのタックが低く取り扱い性に優れる伸縮性配線基板が提供される。 According to one aspect of the present invention, there is provided a stretchable wiring board having excellent stretchability, a low coefficient of thermal expansion, a low tack at high temperature, and excellent handleability.
伸縮性配線基板の一実施形態を示す平面図である。It is a top view which shows one Embodiment of a stretchable wiring board. 回復率の測定例を示す応力-ひずみ曲線である。6 is a stress-strain curve showing an example of measurement of recovery rate.
 以下、本発明のいくつかの実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, some embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.
 図1は、伸縮性配線基板の一実施形態を示す平面図である。図1に示す伸縮性配線基板1は、伸縮性樹脂フィルム3と、伸縮性樹脂フィルム3上に設けられ、配線パターンを形成している導体層5とを有する導体基板である。伸縮性樹脂フィルム3は、ゴム成分及びフィラを含有する。主にゴム成分によって、伸縮性樹脂フィルムに容易に伸縮性が付与される。導体層5は、伸縮可能な波形部分を含む配線パターンを形成している。 FIG. 1 is a plan view showing an embodiment of a stretchable wiring board. A stretchable wiring substrate 1 shown in FIG. 1 is a conductor substrate having a stretchable resin film 3 and a conductor layer 5 provided on the stretchable resin film 3 and forming a wiring pattern. The stretchable resin film 3 contains a rubber component and a filler. Elasticity is easily imparted to the elastic resin film mainly by the rubber component. The conductor layer 5 forms a wiring pattern including a corrugated portion that can be expanded and contracted.
 伸縮性樹脂フィルム3は、例えば歪み20%まで引張変形した後の回復率が80%以上であるような、伸縮性を有することができる。この回復率は、伸縮性樹脂フィルムの測定サンプルを用いた引張試験において求められる。図2は、回復率の測定例を示す応力-ひずみ曲線である。1回目の引張試験で変位量(ひずみ)Xに達した時点で引張応力を開放して試験片を初期位置に戻し、その後、2回目の引張試験を行ったときに荷重が掛かり始めた時点の位置とXとの差をYとしたとき、式:R=(Y/X)×100で計算されるRが、回復率として定義される。回復率は、例えばXを50%として測定することができる。繰り返しの使用に対する耐性の観点から、回復率が80%以上、85%以上、又は90%以上であってもよい。回復率の定義上の上限は100%である。 The stretchable resin film 3 can have stretchability such that the recovery rate after tensile deformation to 20% strain is 80% or more. This recovery rate is calculated | required in the tension test using the measurement sample of an elastic resin film. FIG. 2 is a stress-strain curve showing an example of measuring the recovery rate. When the displacement amount (strain) X is reached in the first tensile test, the tensile stress is released and the test piece is returned to the initial position, and then the load is applied when the second tensile test is performed. When the difference between the position and X is Y, R calculated by the formula: R = (Y / X) × 100 is defined as the recovery rate. The recovery rate can be measured, for example, when X is 50%. From the viewpoint of resistance to repeated use, the recovery rate may be 80% or more, 85% or more, or 90% or more. The upper limit on the definition of the recovery rate is 100%.
 ゴム成分は、1種又は2種以上のゴムを含む。ゴム成分に含まれるゴムは、熱可塑性エラストマーであってもよい。熱可塑性エラストマーの例としては、水素添加型スチレン系エラストマーが挙げられる。水素添加型スチレン系エラストマーは、不飽和二重結合を含むソフトセグメントを有するスチレン系エラストマーの不飽和二重結合に水素を付加反応させて得られるエラストマーである。水素添加型スチレン系エラストマーは、耐候性向上などの効果も期待できる。水素添加型スチレン系エラストマーの例としては、スチレン-エチレンブチレン-スチレンブロック共重合体エラストマー(SEBS、「水素添加スチレンブタジエンゴム」といわれることもある。)が挙げられる。 The rubber component includes one or more rubbers. The rubber contained in the rubber component may be a thermoplastic elastomer. Examples of thermoplastic elastomers include hydrogenated styrene elastomers. A hydrogenated styrene-based elastomer is an elastomer obtained by adding hydrogen to an unsaturated double bond of a styrene-based elastomer having a soft segment including an unsaturated double bond. The hydrogenated styrene-based elastomer can be expected to have an effect of improving weather resistance. Examples of hydrogenated styrene elastomers include styrene-ethylenebutylene-styrene block copolymer elastomers (SEBS, sometimes referred to as “hydrogenated styrene butadiene rubber”).
 ゴム成分は、アクリルゴム、イソプレンゴム、ブチルゴム、スチレンブタジエンゴム、ブタジエンゴム、アクリロニトリルブタジエンゴム、シリコーンゴム、ウレタンゴム、クロロプレンゴム、エチレンプロピレンゴム、フッ素ゴム、硫化ゴム、エピクロルヒドリンゴム、及び塩素化ブチルゴムからなる群より選ばれる少なくとも1種のゴムを含んでいてもよい。 Rubber components are acrylic rubber, isoprene rubber, butyl rubber, styrene butadiene rubber, butadiene rubber, acrylonitrile butadiene rubber, silicone rubber, urethane rubber, chloroprene rubber, ethylene propylene rubber, fluoro rubber, sulfurized rubber, epichlorohydrin rubber, and chlorinated butyl rubber. It may contain at least one rubber selected from the group consisting of
 吸湿等による配線へのダメージを保護する観点から、ゴム成分は、スチレンブタジエンゴム、ブタジエンゴム、及びブチルゴムから選ばれる少なくとも1種のゴムを含んでいてもよい。スチレンブタジエンゴムを用いることにより、めっき工程に使用する各種薬液に対する伸縮性樹脂フィルムの耐性が向上し、歩留まりよく配線基板を製造することができる。 From the viewpoint of protecting the wiring from damage due to moisture absorption, the rubber component may include at least one rubber selected from styrene butadiene rubber, butadiene rubber, and butyl rubber. By using styrene butadiene rubber, the resistance of the stretchable resin film to various chemicals used in the plating process is improved, and a wiring board can be manufactured with high yield.
 アクリルゴムの市販品としては、例えば日本ゼオン株式会社「Nipol ARシリーズ」、クラレ株式会社「クラリティシリーズ」が挙げられる。イソプレンゴムの市販品としては、例えば日本ゼオン株式会社「Nipol IRシリーズ」が挙げられる。ブチルゴムの市販品としては、例えばJSR株式会社「BUTYLシリーズ」が挙げられる。スチレンブタジエンゴムの市販品としては、例えばJSR株式会社「ダイナロンSEBSシリーズ」、「ダイナロンHSBRシリーズ」、クレイトンポリマージャパン株式会社「クレイトンDポリマーシリーズ」、アロン化成株式会社「ARシリーズ」が挙げられる。ブタジエンゴムの市販品としては、例えば日本ゼオン株式会社「Nipol BRシリーズ」が挙げられる。アクリロニトリルブタジエンゴムの市販品としては、例えばJSR株式会社「JSR NBRシリーズ」が挙げられる。シリコーンゴムの市販品としては、例えば信越シリコーン株式会社「KMPシリーズ」が挙げられる。エチレンプロピレンゴムの市販品としては、例えばJSR株式会社「JSR EPシリーズ」が挙げられる。フッ素ゴムの市販品としては、例えばダイキン株式会社「ダイエルシリーズ」が挙げられる。エピクロルヒドリンゴムの市販品としては、例えば日本ゼオン株式会社「Hydrinシリーズ」が挙げられる。 Examples of commercially available acrylic rubber include ZEON Corporation “Nipol AR Series” and Kuraray Co., Ltd. “Clarity Series”. As a commercial item of isoprene rubber, for example, Nippon Zeon Co., Ltd. “Nipol IR Series” can be mentioned. As a commercial item of butyl rubber, for example, JSR Corporation “BUTYL Series” may be mentioned. Examples of commercially available styrene butadiene rubber include JSR Corporation “Dynalon SEBS Series”, “Dynalon HSBR Series”, Kraton Polymer Japan Co., Ltd. “Clayton D Polymer Series”, and Aron Kasei Corporation “AR Series”. Examples of commercially available butadiene rubber include ZEON Corporation “Nipol BR Series”. Examples of commercially available acrylonitrile butadiene rubber include JSR Corporation “JSR NBR Series”. Examples of commercially available silicone rubber include Shin-Etsu Silicone Co., Ltd. “KMP Series”. Examples of commercially available ethylene propylene rubber include JSR Corporation “JSR EP Series”. As a commercial item of fluororubber, for example, Daikin Co., Ltd. “DAIEL series” is exemplified. As a commercial item of epichlorohydrin rubber, Nippon Zeon Co., Ltd. "Hydrin series" is mentioned, for example.
 ゴム成分は、合成により作製することもできる。例えば、アクリルゴムは、(メタ)アクリル酸、(メタ)アクリル酸エステル、芳香族ビニル化合物、シアン化ビニル化合物等を反応させることにより得られる。 The rubber component can also be produced by synthesis. For example, acrylic rubber can be obtained by reacting (meth) acrylic acid, (meth) acrylic acid ester, aromatic vinyl compound, vinyl cyanide compound and the like.
 ゴム成分は、架橋基の反応によって架橋されていてもよい。架橋されたゴム成分を用いることにより、伸縮性樹脂フィルムの耐熱性が向上し易い傾向がある。架橋基は、ゴム成分の分子鎖を架橋する反応、又はゴム成分の分子鎖と後述の架橋成分との反応による架橋構造体の形成を進行させ得る反応性基であればよい。その例としては、(メタ)アクリロイル基、ビニル基、エポキシ基、スチリル基、アミノ基、イソシアヌレート基、ウレイド基、シアネート基、イソシアネート基、メルカプト基、水酸基、カルボキシル基、及び酸無水物基が挙げられる。 The rubber component may be crosslinked by a reaction of a crosslinking group. By using a crosslinked rubber component, the heat resistance of the stretchable resin film tends to be improved. The cross-linking group may be a reactive group capable of proceeding with the reaction of cross-linking the molecular chain of the rubber component or the formation of a cross-linked structure by the reaction of the molecular chain of the rubber component with the cross-linking component described later. Examples include (meth) acryloyl groups, vinyl groups, epoxy groups, styryl groups, amino groups, isocyanurate groups, ureido groups, cyanate groups, isocyanate groups, mercapto groups, hydroxyl groups, carboxyl groups, and acid anhydride groups. Can be mentioned.
 ゴム成分は、酸無水物基又はカルボキシル基のうち少なくとも一方の架橋基の反応によって架橋されていてもよい。酸無水物基を有するゴムの例としては、無水マレイン酸で部分的に変性されたゴムが挙げられる。無水マレイン酸で部分的に変性されたゴムの市販品としては、例えば、旭化成株式会社製のスチレン系エラストマー「タフプレン912」がある。 The rubber component may be crosslinked by the reaction of at least one of the acid anhydride group or the carboxyl group. Examples of rubbers having acid anhydride groups include rubbers that are partially modified with maleic anhydride. As a commercial product of rubber partially modified with maleic anhydride, for example, there is a styrene elastomer “Tuffprene 912” manufactured by Asahi Kasei Corporation.
 無水マレイン酸で部分的に変性されたゴムは、無水マレイン酸で変性された水素添加型スチレン系エラストマーであってもよい。無水マレイン酸で変性された水素添加型スチレン系エラストマーの例としては、無水マレイン酸変性スチレン-エチレンブチレン-スチレンブロック共重合体エラストマーが挙げられる。その市販品の例としては、クレイトンポリマージャパン株式会社の「FG1901」、「FG1924」、旭化成株式会社の「タフテックM1911」、「タフテックM1913」、「タフテックM1943」がある。 The rubber partially modified with maleic anhydride may be a hydrogenated styrene elastomer modified with maleic anhydride. Examples of the hydrogenated styrene elastomer modified with maleic anhydride include maleic anhydride-modified styrene-ethylenebutylene-styrene block copolymer elastomer. Examples of such commercially available products include “FG1901” and “FG1924” from Clayton Polymer Japan Co., Ltd., “Tuff Tech M1911”, “Tuff Tech M1913” and “Tuff Tech M1943” from Asahi Kasei Corporation.
 ゴム成分の重量平均分子量は、塗膜性の観点から、20000~200000、30000~150000、又は50000~125000であってもよい。ここでの重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)によって求められる標準ポリスチレン換算値を意味する。 The weight average molecular weight of the rubber component may be 20,000 to 200,000, 30,000 to 150,000, or 50,000 to 125,000 from the viewpoint of coating properties. The weight average molecular weight (Mw) here means a standard polystyrene conversion value determined by gel permeation chromatography (GPC).
 伸縮性樹脂フィルムにおけるゴム成分の含有量は、伸縮性樹脂フィルムのうちフィラ以外の成分の質量を基準として、30~100質量%、50~100質量%又は70~100質量%であってもよい。ゴム成分の含有量がこの範囲にあると、伸縮性樹脂フィルムが特に優れた伸縮性を有し易い。 The content of the rubber component in the stretchable resin film may be 30 to 100% by weight, 50 to 100% by weight, or 70 to 100% by weight based on the weight of components other than the filler in the stretchable resin film. . When the content of the rubber component is within this range, the stretchable resin film tends to have particularly excellent stretchability.
 伸縮性樹脂フィルムは、ゴム成分を含む樹脂相中に分散した1種又は2種以上のフィラを含む。フィラは、無機フィラ、有機フィラ、又はこれらの組み合わせであることができる。フィラは特に、シリカ、ガラス、アルミナ、酸化チタン、カーボンブラック、マイカ、及び窒化ホウ素からなる群より選ばれる少なくとも1種の無機フィラを含んでいてもよい。 The stretchable resin film contains one or more fillers dispersed in a resin phase containing a rubber component. The filler can be an inorganic filler, an organic filler, or a combination thereof. In particular, the filler may include at least one inorganic filler selected from the group consisting of silica, glass, alumina, titanium oxide, carbon black, mica, and boron nitride.
 フィラの平均粒径は、10~500nmであってもよい。フィラの平均粒径がこの範囲内になると、伸縮性樹脂フィルムの熱膨張率の低減、及び伸縮性樹脂フィルムの高温でのタック抑制の点でより一層顕著な効果が得られる。同様の観点から、フィラの平均粒径は、400nm以下、300nm以下、200nm以下、150nm以下、又は80nm以下であってもよい。本明細書において、フィラの平均粒径は、レーザ回折・散乱法によって求められる粒径の平均値(平均一次粒子径)を意味する。フィラの平均粒径の測定は、例えば、ナノ粒子径分布測定装置SALD-7500nano(株式会社島津製作所製)を用いて行うことができる。 The average particle size of the filler may be 10 to 500 nm. When the average particle diameter of the filler is within this range, a more remarkable effect can be obtained in terms of reducing the thermal expansion coefficient of the stretchable resin film and suppressing tackiness of the stretchable resin film at a high temperature. From the same viewpoint, the average particle size of the filler may be 400 nm or less, 300 nm or less, 200 nm or less, 150 nm or less, or 80 nm or less. In the present specification, the average particle diameter of the filler means an average particle diameter (average primary particle diameter) obtained by a laser diffraction / scattering method. The average particle size of the filler can be measured using, for example, a nano particle size distribution measuring device SALD-7500 nano (manufactured by Shimadzu Corporation).
 フィラの形状は特に限定されず、フィラは略球形、繊維状、不定形等の任意の形状を有することができる。 The shape of the filler is not particularly limited, and the filler can have any shape such as a substantially spherical shape, a fiber shape, and an indefinite shape.
 フィラの表面が、官能基によって修飾されていてもよい。フィラの表面上に導入され得る官能基としては、例えば、アミノ基、フェニルアミノ基、フェニル基が挙げられる。官能基によって修飾された表面を有するフィラは、伸縮性樹脂フィルムと導体層の密着性向上に寄与し得る。 The surface of the filler may be modified with a functional group. Examples of the functional group that can be introduced on the surface of the filler include an amino group, a phenylamino group, and a phenyl group. A filler having a surface modified with a functional group can contribute to improving the adhesion between the stretchable resin film and the conductor layer.
 伸縮性樹脂フィルムにおけるフィラの含有量は、ゴム成分100質量部に対して、1~200質量部であってもよい。フィラの含有量がこの範囲にあると、伸縮性樹脂フィルムの熱膨張率の低減、及び伸縮性樹脂フィルムの高温でのタック抑制の点でより一層顕著な効果が得られる。同様の観点から、フィラの含有量は、ゴム成分100質量部に対して、150質量部以下、又は100質量部以下であってもよい。 The filler content in the stretchable resin film may be 1 to 200 parts by mass with respect to 100 parts by mass of the rubber component. When the filler content is within this range, a more remarkable effect can be obtained in terms of reducing the thermal expansion coefficient of the stretchable resin film and suppressing tackiness of the stretchable resin film at a high temperature. From the same viewpoint, the filler content may be 150 parts by mass or less or 100 parts by mass or less with respect to 100 parts by mass of the rubber component.
 伸縮性樹脂フィルムは、ゴム成分及びフィラを含有する樹脂組成物の硬化物であってもよい。この場合、樹脂組成物は架橋成分を更に含有してもよい。樹脂組成物の硬化物は、ゴム成分の架橋基同士の反応、ゴム成分の架橋基と架橋成分との反応、架橋成分の重合反応、又はこれらの組み合わせによって形成された架橋構造体を含む。伸縮性樹脂フィルムが樹脂組成物の硬化物であると、伸縮性樹脂フィルムの耐熱性が向上し易い傾向がある。 The stretchable resin film may be a cured product of a resin composition containing a rubber component and a filler. In this case, the resin composition may further contain a crosslinking component. The cured product of the resin composition includes a crosslinked structure formed by a reaction between the crosslinking groups of the rubber component, a reaction between the crosslinking group of the rubber component and the crosslinking component, a polymerization reaction of the crosslinking component, or a combination thereof. If the stretchable resin film is a cured product of the resin composition, the heat resistance of the stretchable resin film tends to be improved.
 伸縮性樹脂フィルムを形成するための樹脂組成物が含有し得る架橋成分は、1個以上の反応性基を有する化合物である。架橋成分は、例えば、エポキシ基、(メタ)アクリロイル基、ビニル基、スチリル基、アミノ基、イソシアヌレート基、ウレイド基、シアネート基、イソシアネート基、メルカプト基、水酸基、及びカルボキシル基からなる群より選ばれる少なくとも1種の反応性基を有する化合物であってもよい。伸縮性樹脂フィルムの耐熱性向上の観点から、架橋成分は、エポキシ基、アミノ基、水酸基、及びカルボキシル基から選ばれる反応性基を有する化合物であってもよい。特に無水マレイン酸基又はカルボキシル基のうち少なくとも一方を有するゴムと、エポキシ基を有する化合物(エポキシ樹脂)との組み合わせにより、伸縮性樹脂フィルムの耐熱性及び低透湿度、伸縮性樹脂フィルムと導電層との密着性、及び、硬化後の伸縮性樹脂フィルムの低いタックの点で、特に優れた効果が得られる。伸縮性樹脂フィルムの耐熱性が向上すると、例えば窒素リフローのような加熱工程における伸縮性樹脂フィルムの劣化を抑制することができる。硬化後の伸縮性樹脂フィルムが低いタックを有すると、作業性良く導体基板又は配線基板を取り扱うことができる。 The crosslinking component that can be contained in the resin composition for forming the stretchable resin film is a compound having one or more reactive groups. The crosslinking component is selected from the group consisting of, for example, an epoxy group, a (meth) acryloyl group, a vinyl group, a styryl group, an amino group, an isocyanurate group, a ureido group, a cyanate group, an isocyanate group, a mercapto group, a hydroxyl group, and a carboxyl group. It may be a compound having at least one reactive group. From the viewpoint of improving the heat resistance of the stretchable resin film, the crosslinking component may be a compound having a reactive group selected from an epoxy group, an amino group, a hydroxyl group, and a carboxyl group. In particular, the combination of a rubber having at least one of a maleic anhydride group or a carboxyl group and a compound having an epoxy group (epoxy resin), heat resistance and low moisture permeability of the stretchable resin film, stretchable resin film and conductive layer In particular, excellent effects are obtained in terms of adhesion to the resin and low tack of the stretchable resin film after curing. When the heat resistance of the stretchable resin film is improved, deterioration of the stretchable resin film in a heating process such as nitrogen reflow can be suppressed. If the stretchable resin film after curing has a low tack, the conductor substrate or the wiring substrate can be handled with good workability.
 架橋成分として用いられ得る、エポキシ基を含する化合物は、単官能、2官能、又は3官能以上の多官能のエポキシ樹脂であることができる。架橋成分は、十分な硬化性を得るために2官能又は3官能以上のエポキシ樹脂を含んでいてもよい。 The compound containing an epoxy group that can be used as a crosslinking component can be a monofunctional, bifunctional, or trifunctional or higher polyfunctional epoxy resin. The crosslinking component may contain a bifunctional or trifunctional or higher functional epoxy resin in order to obtain sufficient curability.
 エポキシ樹脂は、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、及び脂肪鎖を有するエポキシ樹脂から選ばれる少なくとも1種であってもよい。市販の脂肪鎖を有するエポキシ樹脂としては、例えばDIC株式会社製のEXA-4816が挙げられる。 Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy resin, cresol novolac type epoxy resin, and epoxy resin having a fatty chain. It may be at least one selected. An example of a commercially available epoxy resin having a fatty chain is EXA-4816 manufactured by DIC Corporation.
 高いガラス転移温度を有する硬化物を与えるエポキシ樹脂は、伸縮性樹脂フィルムの熱膨張率低減及び高温でのタック抑制に寄与することができる。例えば、硬化剤としてのフェノールノボラック樹脂との反応により、180℃以上、又は200℃以上のガラス転移温度を有する硬化物を形成するエポキシ樹脂を選択してもよい。そのようなエポキシ樹脂の具体例としては、ジシクロペンタジエン型エポキシ樹脂、及びナフタレン型エポキシ樹脂が挙げられる。 An epoxy resin that gives a cured product having a high glass transition temperature can contribute to the reduction of the thermal expansion coefficient of the stretchable resin film and the suppression of tack at a high temperature. For example, you may select the epoxy resin which forms the hardened | cured material which has a glass transition temperature of 180 degreeC or more or 200 degreeC or more by reaction with the phenol novolak resin as a hardening | curing agent. Specific examples of such an epoxy resin include dicyclopentadiene type epoxy resins and naphthalene type epoxy resins.
 架橋成分は、(メタ)アクリロイル基を有する化合物を含んでいてもよい。(メタ)アクリロイル基を有する化合物は、(メタ)アクリル酸エステルであってもよい。(メタ)アクリロイル基を有する化合物は、1個、2個又は3個以上の(メタ)アクリロイル基を有する化合物(例えば、単官能、2官能又は3官能以上の(メタ)アクリル酸エステル)であってもよい。十分な硬化性を得るためには、架橋成分は、2個又は3個以上の(メタ)アクリロイル基を有する化合物であってもよい。 The crosslinking component may contain a compound having a (meth) acryloyl group. The compound having a (meth) acryloyl group may be a (meth) acrylic acid ester. The compound having a (meth) acryloyl group is a compound having one, two, three or more (meth) acryloyl groups (for example, a monofunctional, bifunctional, or trifunctional (meth) acrylic acid ester). May be. In order to obtain sufficient curability, the crosslinking component may be a compound having two or more (meth) acryloyl groups.
 単官能(メタ)アクリル酸エステルとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチルヘプチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、エトキシポリプロピレングリコール(メタ)アクリレート、及びモノ(2-(メタ)アクリロイロキシエチル)スクシネートなどの脂肪族(メタ)アクリレート;シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、モノ(2-(メタ)アクリロイロキシエチル)テトラヒドロフタレート、及びモノ(2-(メタ)アクリロイロキシエチル)ヘキサヒドロフタレートなどの脂環式(メタ)アクリレート;ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、o-ビフェニル(メタ)アクリレート、1-ナフチル(メタ)アクリレート、2-ナフチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、p-クミルフェノキシエチル(メタ)アクリレート、o-フェニルフェノキシエチル(メタ)アクリレート、1-ナフトキシエチル(メタ)アクリレート、2-ナフトキシエチル(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、フェノキシポリプロピレングリコール(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-(o-フェニルフェノキシ)プロピル(メタ)アクリレート、2-ヒドロキシ-3-(1-ナフトキシ)プロピル(メタ)アクリレート、及び2-ヒドロキシ-3-(2-ナフトキシ)プロピル(メタ)アクリレートなどの芳香族(メタ)アクリレート;2-テトラヒドロフルフリル(メタ)アクリレート、N-(メタ)アクリロイロキシエチルヘキサヒドロフタルイミド、及び2-(メタ)アクリロイロキシエチル-N-カルバゾールなどの複素環式(メタ)アクリレート;並びにこれらのカプロラクトン変性体が挙げられる。これらの中でもスチレン系エラストマーとの相溶性、また透明性及び耐熱性の観点から、上記脂肪族(メタ)アクリレート及び上記芳香族(メタ)アクリレートから単官能(メタ)アクリレートを選択してもよい。 Examples of monofunctional (meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, and butoxyethyl (meth). Acrylate, isoamyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, heptyl (meth) acrylate, octylheptyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, undecyl (meth) ) Acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, tetradecyl (meth) acrylate, pentadecyl (meth) acrylate, hexadecyl (meth) acrylate, Allyl (meth) acrylate, behenyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) Acrylate, methoxypolyethylene glycol (meth) acrylate, ethoxypolyethylene glycol (meth) acrylate, methoxypolypropylene glycol (meth) acrylate, ethoxypolypropylene glycol (meth) acrylate, and mono (2- (meth) acryloyloxyethyl) succinate Aliphatic (meth) acrylate; cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, cyclopentyl (meth) acrylate, dicyclope Tanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, isobornyl (meth) acrylate, mono (2- (meth) acryloyloxyethyl) tetrahydrophthalate, and mono (2- (meth) acryloyloxyethyl) hexahydro Alicyclic (meth) acrylates such as phthalates; benzyl (meth) acrylate, phenyl (meth) acrylate, o-biphenyl (meth) acrylate, 1-naphthyl (meth) acrylate, 2-naphthyl (meth) acrylate, phenoxyethyl ( (Meth) acrylate, p-cumylphenoxyethyl (meth) acrylate, o-phenylphenoxyethyl (meth) acrylate, 1-naphthoxyethyl (meth) acrylate, 2-naphthoxyethyl (meth) acrylate, phenoxypo Liethylene glycol (meth) acrylate, nonylphenoxypolyethylene glycol (meth) acrylate, phenoxypolypropylene glycol (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 2-hydroxy-3- (o-phenylphenoxy) propyl Aromatic (meth) acrylates such as (meth) acrylate, 2-hydroxy-3- (1-naphthoxy) propyl (meth) acrylate, and 2-hydroxy-3- (2-naphthoxy) propyl (meth) acrylate; Heterocyclic (meth) acrylates such as tetrahydrofurfuryl (meth) acrylate, N- (meth) acryloyloxyethyl hexahydrophthalimide, and 2- (meth) acryloyloxyethyl-N-carbazole; These caprolactone-modified products thereof each time. Among these, a monofunctional (meth) acrylate may be selected from the above aliphatic (meth) acrylate and the above aromatic (meth) acrylate from the viewpoint of compatibility with the styrene-based elastomer, transparency and heat resistance.
 2官能(メタ)アクリル酸エステルとしては、例えばエチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エトキシ化ポリプロピレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、2-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレート、及びエトキシ化2-メチル-1,3-プロパンジオールジ(メタ)アクリレートなどの脂肪族(メタ)アクリレート;シクロヘキサンジメタノール(メタ)アクリレート、エトキシ化シクロヘキサンジメタノール(メタ)アクリレート、プロポキシ化シクロヘキサンジメタノール(メタ)アクリレート、エトキシ化プロポキシ化シクロヘキサンジメタノール(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレート、エトキシ化トリシクロデカンジメタノール(メタ)アクリレート、プロポキシ化トリシクロデカンジメタノール(メタ)アクリレート、エトキシ化プロポキシ化トリシクロデカンジメタノール(メタ)アクリレート、エトキシ化水添ビスフェノールAジ(メタ)アクリレート、プロポキシ化水添ビスフェノールAジ(メタ)アクリレート、エトキシ化プロポキシ化水添ビスフェノールAジ(メタ)アクリレート、エトキシ化水添ビスフェノールFジ(メタ)アクリレート、プロポキシ化水添ビスフェノールFジ(メタ)アクリレート、及びエトキシ化プロポキシ化水添ビスフェノールFジ(メタ)アクリレートなどの脂環式(メタ)アクリレート;エトキシ化ビスフェノールAジ(メタ)アクリレート、プロポキシ化ビスフェノールAジ(メタ)アクリレート、エトキシ化プロポキシ化ビスフェノールAジ(メタ)アクリレート、エトキシ化ビスフェノールFジ(メタ)アクリレート、プロポキシ化ビスフェノールFジ(メタ)アクリレート、エトキシ化プロポキシ化ビスフェノールFジ(メタ)アクリレート、エトキシ化ビスフェノールAFジ(メタ)アクリレート、プロポキシ化ビスフェノールAFジ(メタ)アクリレート、エトキシ化プロポキシ化ビスフェノールAFジ(メタ)アクリレート、エトキシ化フルオレン型ジ(メタ)アクリレート、プロポキシ化フルオレン型ジ(メタ)アクリレート、及びエトキシ化プロポキシ化フルオレン型ジ(メタ)アクリレートなどの芳香族(メタ)アクリレート;エトキシ化イソシアヌル酸ジ(メタ)アクリレート、プロポキシ化イソシアヌル酸ジ(メタ)アクリレート、及びエトキシ化プロポキシ化イソシアヌル酸ジ(メタ)アクリレートなどの複素環式(メタ)アクリレート;これらのカプロラクトン変性体;ネオペンチルグリコール型エポキシ(メタ)アクリレートなどの脂肪族エポキシ(メタ)アクリレート;シクロヘキサンジメタノール型エポキシ(メタ)アクリレート、水添ビスフェノールA型エポキシ(メタ)アクリレート、及び水添ビスフェノールF型エポキシ(メタ)アクリレートなどの脂環式エポキシ(メタ)アクリレート;レゾルシノール型エポキシ(メタ)アクリレート、ビスフェノールA型エポキシ(メタ)アクリレート、ビスフェノールF型エポキシ(メタ)アクリレート、ビスフェノールAF型エポキシ(メタ)アクリレート、及びフルオレン型エポキシ(メタ)アクリレートなどの芳香族エポキシ(メタ)アクリレートが挙げられる。スチレン系エラストマーとの相溶性、また透明性及び耐熱性の観点から、上記脂肪族(メタ)アクリレート及び上記芳香族(メタ)アクリレートから2官能(メタ)アクリレートを選択してもよい。 Examples of the bifunctional (meth) acrylic acid ester include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) ) Acrylate, propylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetrapropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, ethoxylated polypropylene glycol Di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, neo Nthyl glycol di (meth) acrylate, 3-methyl-1,5-pentanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 2-butyl-2-ethyl-1,3-propane Diol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, glycerin di (meth) acrylate, tricyclodecane dimethanol (meth) acrylate, and ethoxy Aliphatic (meth) acrylates such as 2-methyl-1,3-propanediol di (meth) acrylate; cyclohexanedimethanol (meth) acrylate, ethoxylated cyclohexanedimethanol (meth) acrylate, propoxylated cyclohexanedimethanol (meta) Acryle Ethoxylated propoxylated cyclohexanedimethanol (meth) acrylate, tricyclodecane dimethanol (meth) acrylate, ethoxylated tricyclodecane dimethanol (meth) acrylate, propoxylated tricyclodecane dimethanol (meth) acrylate, ethoxylated Propoxylated tricyclodecane dimethanol (meth) acrylate, ethoxylated hydrogenated bisphenol A di (meth) acrylate, propoxylated hydrogenated bisphenol A di (meth) acrylate, ethoxylated propoxylated hydrogenated bisphenol A di (meth) acrylate, Ethoxylated hydrogenated bisphenol F di (meth) acrylate, propoxylated hydrogenated bisphenol F di (meth) acrylate, and ethoxylated propoxylated hydrogenated bisphenol F di (meth) acrylate Alicyclic (meth) acrylates such as ethoxylates; ethoxylated bisphenol A di (meth) acrylate, propoxylated bisphenol A di (meth) acrylate, ethoxylated propoxylated bisphenol A di (meth) acrylate, ethoxylated bisphenol F di (meth) ) Acrylate, propoxylated bisphenol F di (meth) acrylate, ethoxylated propoxylated bisphenol F di (meth) acrylate, ethoxylated bisphenol AF di (meth) acrylate, propoxylated bisphenol AF di (meth) acrylate, ethoxylated propoxylated bisphenol AF di (meth) acrylate, ethoxylated fluorene type di (meth) acrylate, propoxylated fluorene type di (meth) acrylate, and ethoxylated propoxylated fluorene Aromatic (meth) acrylates such as type di (meth) acrylate; complex such as ethoxylated isocyanuric acid di (meth) acrylate, propoxylated isocyanuric acid di (meth) acrylate, and ethoxylated propoxylated isocyanuric acid di (meth) acrylate Cyclic (meth) acrylates; modified caprolactones; aliphatic epoxy (meth) acrylates such as neopentyl glycol type epoxy (meth) acrylate; cyclohexanedimethanol type epoxy (meth) acrylate, hydrogenated bisphenol A type epoxy (meta ) Acrylate, and alicyclic epoxy (meth) acrylate such as hydrogenated bisphenol F type epoxy (meth) acrylate; resorcinol type epoxy (meth) acrylate, bisphenol A type epoxy (meth) Acrylate, bisphenol F type epoxy (meth) acrylate, bisphenol AF type epoxy (meth) acrylates, and aromatic epoxy (meth) acrylates such as fluorene epoxy (meth) acrylate and the like. From the viewpoint of compatibility with the styrene-based elastomer, transparency, and heat resistance, a bifunctional (meth) acrylate may be selected from the aliphatic (meth) acrylate and the aromatic (meth) acrylate.
 3官能以上の多官能(メタ)アクリル酸エステルとしては、例えばトリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、エトキシ化プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化ペンタエリスリトールトリ(メタ)アクリレート、プロポキシ化ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化プロポキシ化ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラアクリレート、及びジペンタエリスリトールヘキサ(メタ)アクリレートなどの脂肪族(メタ)アクリレート;エトキシ化イソシアヌル酸トリ(メタ)アクリレート、プロポキシ化イソシアヌル酸トリ(メタ)アクリレート、及びエトキシ化プロポキシ化イソシアヌル酸トリ(メタ)アクリレートなどの複素環式(メタ)アクリレート;これらのカプロラクトン変性体;フェノールノボラック型エポキシ(メタ)アクリレート、及びクレゾールノボラック型エポキシ(メタ)アクリレートなどの芳香族エポキシ(メタ)アクリレートが挙げられる。スチレン系エラストマーとの相溶性、また透明性及び耐熱性の観点から、上記脂肪族(メタ)アクリレート及び上記芳香族(メタ)アクリレートから多官能(メタ)アクリレートを選択してもよい。 Examples of the trifunctional or higher polyfunctional (meth) acrylic acid ester include trimethylolpropane tri (meth) acrylate, ethoxylated trimethylolpropane tri (meth) acrylate, propoxylated trimethylolpropane tri (meth) acrylate, and ethoxylated propoxy. Trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ethoxylated pentaerythritol tri (meth) acrylate, propoxylated pentaerythritol tri (meth) acrylate, ethoxylated propoxylated pentaerythritol tri (meth) acrylate, Pentaerythritol tetra (meth) acrylate, ethoxylated pentaerythritol tetra (meth) acrylate, propoxylated pentaerythritol Aliphatic (meth) acrylates such as la (meth) acrylate, ethoxylated propoxylated pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetraacrylate, and dipentaerythritol hexa (meth) acrylate; ethoxylated isocyanuric acid tri (meth) Heterocyclic (meth) acrylates such as acrylates, propoxylated isocyanuric acid tri (meth) acrylates, and ethoxylated propoxylated isocyanuric acid tri (meth) acrylates; their caprolactone modifications; phenol novolac-type epoxy (meth) acrylates; and Aromatic epoxy (meth) acrylates such as cresol novolac-type epoxy (meth) acrylate are exemplified. From the viewpoint of compatibility with the styrene-based elastomer, transparency, and heat resistance, a polyfunctional (meth) acrylate may be selected from the aliphatic (meth) acrylate and the aromatic (meth) acrylate.
 伸縮性樹脂フィルムを形成するための樹脂組成物における架橋成分の含有量は、ゴム成分100質量部に対して、10質量部以上、15質量部以上又は20質量部以上であってもよく、70質量部以下、60質量部以下、又は50質量部以下であってもよい。架橋成分の含有量が上記の範囲であると、伸縮性樹脂フィルムの特性を維持したまま、導体層との密着力が向上する傾向がある。 The content of the crosslinking component in the resin composition for forming the stretchable resin film may be 10 parts by mass, 15 parts by mass or 20 parts by mass with respect to 100 parts by mass of the rubber component. It may be less than or equal to 60 parts by weight, or less than or equal to 50 parts by weight. When the content of the crosslinking component is in the above range, the adhesion with the conductor layer tends to be improved while maintaining the properties of the stretchable resin film.
 伸縮性樹脂フィルムを形成するための樹脂組成物は、架橋成分の重合反応(硬化反応)のための硬化剤、硬化促進剤又はこれらの両方を更に含有してもよい。硬化剤は、それ自体が架橋成分と反応する重合反応(硬化反応)の反応基質となる化合物である。硬化促進剤は、硬化反応の触媒として機能する化合物である。硬化剤及び硬化促進剤の両方の機能を有する化合物を用いることもできる。硬化剤及び硬化促進剤の含有量は、それぞれ、ゴム成分及び架橋成分の合計量100質量部に対して、0.1~10質量部であってもよい。 The resin composition for forming the stretchable resin film may further contain a curing agent for the polymerization reaction (curing reaction) of the crosslinking component, a curing accelerator, or both. A curing agent is a compound that itself becomes a reaction substrate for a polymerization reaction (curing reaction) that reacts with a crosslinking component. The curing accelerator is a compound that functions as a catalyst for the curing reaction. A compound having both functions of a curing agent and a curing accelerator can also be used. The content of the curing agent and the curing accelerator may be 0.1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the rubber component and the crosslinking component, respectively.
 架橋成分としてエポキシ基を有する化合物(エポキシ樹脂)を用いる場合、その硬化剤として、脂肪族ポリアミン、ポリアミノアミド、ポリメルカプタン、芳香族ポリアミン、酸無水物、カルボン酸、フェノールノボラック樹脂、エステル樹脂、及びジシアンジアミドからなる群より選ばれる少なくとも1種を用いてもよい。エポキシ基を有する化合物の硬化剤又は硬化促進剤として、三級アミン、イミダゾール、及びホスフィンからなる群より選ばれる少なくとも1種を用いてもよい。硬化前の樹脂組成物の保存安定性及び硬化性の観点から、イミダゾールを用いてもよい。ゴム成分が無水マレイン酸で変性されたゴムを含む場合、これと相溶するイミダゾールを選択してもよい。イミダゾールの含有量は、ゴム成分及び架橋成分の合計量100質量部に対して、0.1~10質量部であってもよい。 When a compound having an epoxy group (epoxy resin) is used as a crosslinking component, as its curing agent, aliphatic polyamine, polyaminoamide, polymercaptan, aromatic polyamine, acid anhydride, carboxylic acid, phenol novolac resin, ester resin, and At least one selected from the group consisting of dicyandiamide may be used. As the curing agent or curing accelerator for the compound having an epoxy group, at least one selected from the group consisting of a tertiary amine, imidazole, and phosphine may be used. From the viewpoints of storage stability and curability of the resin composition before curing, imidazole may be used. When the rubber component contains a rubber modified with maleic anhydride, an imidazole compatible with the rubber may be selected. The content of imidazole may be 0.1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the rubber component and the crosslinking component.
 架橋成分として(メタ)アクリロイル基を有する化合物を用いる場合、その硬化剤として、熱ラジカル重合開始剤、又は光ラジカル重合開始剤を用いてもよい。 When a compound having a (meth) acryloyl group is used as a crosslinking component, a thermal radical polymerization initiator or a photo radical polymerization initiator may be used as the curing agent.
 熱ラジカル重合開始剤としては、例えば、メチルエチルケトンパーオキシド、シクロヘキサノンパーオキシド、及びメチルシクロヘキサノンパーオキシドなどのケトンパーオキシド;1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-2-メチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、及び1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサンなどのパーオキシケタール;p-メンタンヒドロパーオキシドなどのヒドロパーオキシド;α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキシド、t-ブチルクミルパーオキシド、及びジ-t-ブチルパーオキシドなどのジアルキルパーオキシド;オクタノイルパーオキシド、ラウロイルパーオキシド、ステアリルパーオキシド、及びベンゾイルパーオキシドなどのジアシルパーオキシド;ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-2-エトキシエチルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、及びジ-3-メトキシブチルパーオキシカーボネートなどのパーオキシカーボネート;t-ブチルパーオキシピバレート、t-ヘキシルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサン、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウリレート、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ブチルパーオキシベンゾエート、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ビス(ベンゾイルパーオキシ)ヘキサン、及びt-ブチルパーオキシアセテートなどのパーオキシエステル;2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、及び2,2’-アゾビス(4-メトキシ-2’-ジメチルバレロニトリル)などのアゾ化合物が挙げられる。硬化性、透明性、及び耐熱性の観点から、上記ジアシルパーオキシド、上記パーオキシエステル、及び上記アゾ化合物から熱ラジカル重合開始剤を選択してもよい。 Examples of the thermal radical polymerization initiator include ketone peroxides such as methyl ethyl ketone peroxide, cyclohexanone peroxide, and methylcyclohexanone peroxide; 1,1-bis (t-butylperoxy) cyclohexane, 1,1-bis (t -Butylperoxy) -2-methylcyclohexane, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, and 1, Peroxyketals such as 1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane; hydroperoxides such as p-menthane hydroperoxide; α, α′-bis (t-butylperoxy) Diisopropylbenzene, dicumyl peroxide, t-butyl Dialkyl peroxides such as cumyl peroxide and di-t-butyl peroxide; diacyl peroxides such as octanoyl peroxide, lauroyl peroxide, stearyl peroxide, and benzoyl peroxide; bis (4-t-butylcyclohexyl) Peroxycarbonates such as peroxydicarbonate, di-2-ethoxyethyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, and di-3-methoxybutyl peroxycarbonate; t-butyl peroxypivalate; t-hexylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-bis (2-ethylhexanoylperoxy) hexane , T-heki Luperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyisobutyrate, t-hexylperoxyisopropylmonocarbonate, t-butylperoxy-3,5, 5-trimethylhexanoate, t-butyl peroxylaurate, t-butyl peroxyisopropyl monocarbonate, t-butyl peroxy-2-ethylhexyl monocarbonate, t-butyl peroxybenzoate, t-hexyl peroxybenzoate, Peroxyesters such as 2,5-dimethyl-2,5-bis (benzoylperoxy) hexane and t-butylperoxyacetate; 2,2′-azobisisobutyronitrile, 2,2′-azobis ( 2,4-dimethylvaleronitrile), Beauty 2,2'-azobis (4-methoxy-2'-dimethylvaleronitrile) azo compounds and the like. From the viewpoint of curability, transparency, and heat resistance, a thermal radical polymerization initiator may be selected from the diacyl peroxide, the peroxy ester, and the azo compound.
 光ラジカル重合開始剤としては、例えば2,2-ジメトキシ-1,2-ジフェニルエタン-1-オンなどのベンゾインケタール;1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、及び1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オンなどのα-ヒドロキシケトン;2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、及び1,2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オンなどのα-アミノケトン;1-[4-(フェニルチオ)フェニル]-1,2-オクタジオン-2-(ベンゾイル)オキシムなどのオキシムエステル;ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキシド、及び2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシドなどのホスフィンオキシド;2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、及び2-(p-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体などの2,4,5-トリアリールイミダゾール二量体;ベンゾフェノン、N,N,N’,N’-テトラメチル-4,4’-ジアミノベンゾフェノン、N,N,N’,N’-テトラエチル-4,4’-ジアミノベンゾフェノン、及び4-メトキシ-4’-ジメチルアミノベンゾフェノンなどのベンゾフェノン化合物;2-エチルアントラキノン、フェナントレンキノン、2-tert-ブチルアントラキノン、オクタメチルアントラキノン、1,2-ベンズアントラキノン、2,3-ベンズアントラキノン、2-フェニルアントラキノン、2,3-ジフェニルアントラキノン、1-クロロアントラキノン、2-メチルアントラキノン、1,4-ナフトキノン、9,10-フェナントラキノン、2-メチル-1,4-ナフトキノン、及び2,3-ジメチルアントラキノンなどのキノン化合物;ベンゾインメチルエーテル、ベンゾインエチルエーテル、及びベンゾインフェニルエーテルなどのベンゾインエーテル;ベンゾイン、メチルベンゾイン、及びエチルベンゾインなどのベンゾイン化合物;ベンジルジメチルケタールなどのベンジル化合物;9-フェニルアクリジン、及び1,7-ビス(9,9’-アクリジニルヘプタン)などのアクリジン化合物;N-フェニルグリシン;並びにクマリンが挙げられる。 Examples of radical photopolymerization initiators include benzoinketals such as 2,2-dimethoxy-1,2-diphenylethane-1-one; 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropane- 1-one and α-hydroxy ketones such as 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one; 2-benzyl-2-dimethylamino- Α-amino ketones such as 1- (4-morpholinophenyl) -butan-1-one and 1,2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one; Oxime esters such as [4- (phenylthio) phenyl] -1,2-octadion-2- (benzoyl) oxime; bis ( Phosphine oxides such as 2,4,6-trimethylbenzoyl) phenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, and 2,4,6-trimethylbenzoyldiphenylphosphine oxide 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer, 2- (o-chlorophenyl) -4,5-di (methoxyphenyl) imidazole dimer, 2- (o-fluorophenyl)- 4,5-diphenylimidazole dimer, 2- (o-methoxyphenyl) -4,5-diphenylimidazole dimer, 2- (p-methoxyphenyl) -4,5-diphenylimidazole dimer, etc. 2,4,5-triarylimidazole dimer; benzophenone, N, N, N Benzophenone compounds such as N, N'-tetramethyl-4,4'-diaminobenzophenone, N, N, N ', N'-tetraethyl-4,4'-diaminobenzophenone, and 4-methoxy-4'-dimethylaminobenzophenone 2-ethylanthraquinone, phenanthrenequinone, 2-tert-butylanthraquinone, octamethylanthraquinone, 1,2-benzanthraquinone, 2,3-benzanthraquinone, 2-phenylanthraquinone, 2,3-diphenylanthraquinone, 1-chloroanthraquinone Quinone compounds such as 2-methylanthraquinone, 1,4-naphthoquinone, 9,10-phenanthraquinone, 2-methyl-1,4-naphthoquinone, and 2,3-dimethylanthraquinone; benzoin methyl ether, benzoy Benzoin ethers such as ethyl ether and benzoin phenyl ether; benzoin compounds such as benzoin, methyl benzoin and ethyl benzoin; benzyl compounds such as benzyl dimethyl ketal; 9-phenylacridine and 1,7-bis (9,9′- Acridine compounds such as (acridinylheptane); N-phenylglycine; and coumarin.
 伸縮性樹脂フィルム、又はこれを形成するための樹脂組成物は、以上の成分の他、必要に応じて、酸化防止剤、熱安定剤、紫外線吸収剤、加水分解防止剤、黄変防止剤、、可視光吸収剤、着色剤、可塑剤、難燃剤、レベリング剤などを、本発明の効果を著しく損なわない範囲で更に含有してもよい。 The stretchable resin film, or the resin composition for forming the same, may contain, as necessary, an antioxidant, a heat stabilizer, an ultraviolet absorber, a hydrolysis inhibitor, a yellowing inhibitor, Further, a visible light absorber, a colorant, a plasticizer, a flame retardant, a leveling agent and the like may be further contained within a range that does not significantly impair the effects of the present invention.
 伸縮性樹脂フィルム3の厚みは、5~1000μmであってもよい。伸縮性樹脂フィルムの厚みがこの範囲であると、伸縮性基材として十分な強度が得られ易く、かつ乾燥が十分に行えるため伸縮性樹脂フィルム中の残留溶媒量を低減できる。 The thickness of the stretchable resin film 3 may be 5 to 1000 μm. When the thickness of the stretchable resin film is within this range, sufficient strength as a stretchable substrate can be easily obtained, and drying can be performed sufficiently, so that the amount of residual solvent in the stretchable resin film can be reduced.
 伸縮性樹脂フィルム3の導体層5とは反対側の主面の表面粗さRa値は、0.1μm以上であってもよい。当該Ra値が0.1μm以上であることにより、伸縮性樹脂フィルム表面のタックがより低減される傾向がある。同様の観点から、当該Ra値は、0.2μm以上、0.3μm以上、又は0.4μm以上であってもよい。当該Ra値の上限値は、特に限定されないが、伸縮性樹脂フィルムの強度の観点から、2.0μm以下であってもよい。表面粗さRa値は、例えば、段差計(株式会社小坂研究所製、ET-200)を用いて測定され得る。 The surface roughness Ra value of the main surface of the stretchable resin film 3 opposite to the conductor layer 5 may be 0.1 μm or more. When the Ra value is 0.1 μm or more, tack on the surface of the stretchable resin film tends to be further reduced. From the same viewpoint, the Ra value may be 0.2 μm or more, 0.3 μm or more, or 0.4 μm or more. The upper limit of the Ra value is not particularly limited, but may be 2.0 μm or less from the viewpoint of the strength of the stretchable resin film. The surface roughness Ra value can be measured using, for example, a step gauge (manufactured by Kosaka Laboratory Ltd., ET-200).
 伸縮性樹脂フィルムに凹凸を付与することにより、伸縮性樹脂フィルムの表面粗さRa値を上記範囲内にすることができる。伸縮性樹脂フィルムに凹凸を付与する方法としては例えば、Bステージの状態の伸縮性樹脂フィルム又は硬化反応後の伸縮性樹脂フィルムに凹凸転写基材を用いて凹凸パターンを転写した後、凹凸転写基材を剥離する方法、硬化後の伸縮性樹脂フィルムにエッチング処理、熱インプリント加工等のインプリント加工を施す方法、及び、金属箔の粗化面を伸縮性樹脂フィルムに圧着し、金属箔をエッチングする方法がある。 By imparting irregularities to the stretchable resin film, the surface roughness Ra value of the stretchable resin film can be within the above range. As a method for imparting unevenness to the stretchable resin film, for example, after transferring the unevenness pattern to the stretchable resin film in the B-stage state or the stretchable resin film after the curing reaction using the unevenness transfer substrate, the unevenness transfer group A method of peeling the material, a method of performing imprint processing such as etching treatment and thermal imprint processing on the stretchable resin film after curing, and pressing the roughened surface of the metal foil on the stretchable resin film, There is a method of etching.
 伸縮性樹脂フィルムの表面のタック値は、30℃において0.7gf/mm以下(6.9kPa以下)、0.5gf/mm以下(4.9kPa以下)、又は0.4gf/mm以下(3.9kPa以下)であってもよい。伸縮性樹脂フィルムの表面のタック値は、200℃において4.5gf/mm以下(44kPa以下)、又は4.0gf/mm以下(39kPa以下)であってもよい。タック値の下限値は、特に限定されなく、0gf/mm(0kPa)であってもよい。タック値は、例えば、タッキング試験機(株式会社レスカ製「TACII」)を用いて測定される。 The tack value of the surface of the stretchable resin film is 0.7 gf / mm 2 or less (6.9 kPa or less), 0.5 gf / mm 2 or less (4.9 kPa or less), or 0.4 gf / mm 2 or less at 30 ° C. (3.9 kPa or less). The tack value of the surface of the stretchable resin film may be 4.5 gf / mm 2 or less (44 kPa or less) or 4.0 gf / mm 2 or less (39 kPa or less) at 200 ° C. The lower limit of the tack value is not particularly limited, and may be 0 gf / mm 2 (0 kPa). The tack value is measured using, for example, a tacking tester (“TACII” manufactured by Reska Co., Ltd.).
 伸縮性樹脂フィルムの弾性率(引張弾性率)は、0.1MPa以上1000MPa以下であってもよい。弾性率が0.1MPa以上1000MPa以下であると、基材としての取り扱い性及び可撓性が特に優れる傾向がある。この観点から、弾性率が0.3MPa以上100MPa以下、又は0.5MPa以上50MPa以下であってもよい。 The elastic modulus (tensile modulus) of the stretchable resin film may be 0.1 MPa or more and 1000 MPa or less. When the elastic modulus is 0.1 MPa or more and 1000 MPa or less, the handleability and flexibility as a substrate tend to be particularly excellent. From this viewpoint, the elastic modulus may be 0.3 MPa to 100 MPa, or 0.5 MPa to 50 MPa.
 伸縮性樹脂フィルムの破断伸び率は、100%以上であってもよい。破断伸び率が100%以上であると、十分な伸縮性が得られ易い傾向がある。この観点から、破断伸び率は150%以上、200%以上、300%以上又は500%以上であってもよい。破断伸び率の上限は、特に制限されないが、通常1000%程度以下である。 The elongation at break of the stretchable resin film may be 100% or more. When the elongation at break is 100% or more, sufficient stretchability tends to be obtained. From this viewpoint, the elongation at break may be 150% or more, 200% or more, 300% or more, or 500% or more. The upper limit of the elongation at break is not particularly limited, but is usually about 1000% or less.
 伸縮性樹脂フィルムは、キャリアフィルム、及びキャリアフィルム上に設けられた伸縮性樹脂フィルムを有する積層フィルムの状態で、供給されてもよい。 The stretchable resin film may be supplied in a state of a carrier film and a laminated film having a stretchable resin film provided on the carrier film.
 キャリアフィルムとしては、特に制限されないが、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、及びポリエチレンナフタレートなどのポリエステル;ポリカーボネート;ポリエチレン、及びポリプロピレンなどのポリオレフィン;ポリアミド;ポリイミド;ポリアミドイミド;ポリエーテルイミド;ポリエーテルスルフィド;ポリエーテルスルホン;ポリエーテルケトン;ポリフェニレンエーテル;ポリフェニレンスルフィド;ポリアリレート;ポリスルホン;並びに液晶ポリマが挙げられる。柔軟性及び強靭性の観点から、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリアリレート、又はポリスルホンのフィルムをキャリアフィルムとして用いてもよい。 Although it does not restrict | limit especially as a carrier film, For example, Polyester, such as polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate; Polycarbonate; Polyolefin, such as polyethylene and polypropylene; Polyamide; Polyimide; Polyamideimide; Polyetherimide Polyethersulfide; polyethersulfone; polyketone; polyphenylene ether; polyphenylene sulfide; polyarylate; polysulfone; and liquid crystal polymer. From the viewpoint of flexibility and toughness, a film of polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polypropylene, polycarbonate, polyamide, polyimide, polyamideimide, polyphenylene ether, polyphenylene sulfide, polyarylate, or polysulfone is used as a carrier film. Also good.
 キャリアフィルムの厚みは、特に制限されないが、3~250μmであってもよい。キャリアフィルムの厚みが3μm以上であると、キャリアフィルムが十分なフィルム強度を有し易い傾向がある。キャリアフィルムの厚みが250μm以下であると十分な柔軟性が得られ易い傾向がある。以上の観点から、キャリアフィルムの厚みは5~200μm、又は7~150μmであってもよい。伸縮性樹脂フィルムとの剥離性向上の観点から、シリコーン系化合物、含フッ素化合物などにより基材フィルムに離型処理が施されたフィルムを必要に応じて用いてもよい。 The thickness of the carrier film is not particularly limited, but may be 3 to 250 μm. When the thickness of the carrier film is 3 μm or more, the carrier film tends to have sufficient film strength. When the thickness of the carrier film is 250 μm or less, sufficient flexibility tends to be easily obtained. From the above viewpoint, the thickness of the carrier film may be 5 to 200 μm, or 7 to 150 μm. From the viewpoint of improving peelability from the stretchable resin film, a film obtained by subjecting the base film to a release treatment with a silicone compound, a fluorine-containing compound, or the like may be used as necessary.
 上記積層フィルムが、伸縮性樹脂フィルムを覆う保護フィルムを更に有していてもよい。 The laminated film may further have a protective film covering the stretchable resin film.
 保護フィルムとしては、特に制限はなく、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル;ポリエチレン、及びポリプロピレンなどのポリオレフィンが挙げられる。柔軟性及び強靭性の観点から、ポリエチレンテレフタレートなどのポリエステル、又は、ポリエチレン及びポリプロピレンなどのポリオレフィンのフィルムを保護フィルムとして用いてもよい。伸縮性樹脂フィルムとの剥離性向上の観点から、シリコーン系化合物、含フッ素化合物などにより保護フィルムに離型処理が施されていてもよい。 The protective film is not particularly limited, and examples thereof include polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyolefins such as polyethylene and polypropylene. From the viewpoints of flexibility and toughness, a film of polyester such as polyethylene terephthalate or polyolefin such as polyethylene and polypropylene may be used as the protective film. From the viewpoint of improving the peelability from the stretchable resin film, the protective film may be subjected to a release treatment with a silicone compound, a fluorine-containing compound, or the like.
 保護フィルムの厚みは、目的とする柔軟性により適宜変えてよいが、10~250μmであってもよい。保護フィルムの厚みが10μm以上であると保護フィルムが十分なフィルム強度を有し易い傾向がある。保護フィルムの厚みが250μm以下であると保護フィルムが十分な柔軟性を有し易い傾向がある。以上の観点から、保護フィルムの厚みは15~200μm、又は20~150μmであってもよい。 The thickness of the protective film may be appropriately changed depending on the intended flexibility, but may be 10 to 250 μm. When the thickness of the protective film is 10 μm or more, the protective film tends to have sufficient film strength. When the thickness of the protective film is 250 μm or less, the protective film tends to have sufficient flexibility. From the above viewpoint, the thickness of the protective film may be 15 to 200 μm, or 20 to 150 μm.
 伸縮性配線基板1(又は導体基板)が有する導体層5は、例えば、導体箔、又は導体めっき膜であることができる。 The conductor layer 5 of the stretchable wiring board 1 (or conductor board) can be, for example, a conductor foil or a conductor plating film.
 導体箔は、金属箔であることができる。金属箔の例としては、銅箔、チタン箔、ステンレス箔、ニッケル箔、パーマロイ箔、42アロイ箔、コバール箔、ニクロム箔、ベリリウム銅箔、燐青銅箔、黄銅箔、洋白箔、アルミニウム箔、錫箔、鉛箔、亜鉛箔、半田箔、鉄箔、タンタル箔、ニオブ箔、モリブデン箔、ジルコニウム箔、金箔、銀箔、パラジウム箔、モネル箔、インコネル箔、及びハステロイ箔が挙げられる。適切な弾性率等の観点から、導体箔は、銅箔、金箔、ニッケル箔、及び鉄箔から選ばれてもよい。配線形成性の観点から、導体箔は銅箔であってもよい。銅箔は、フォトリソグラフィーにより、伸縮性樹脂基材の特性を損なわずに、簡易的に配線パターンを形成できる。銅箔としては、特に制限はなく、例えば銅張積層板及びフレキシブル配線板等に用いられる電解銅箔及び圧延銅箔を使用できる。 The conductor foil can be a metal foil. Examples of metal foil include copper foil, titanium foil, stainless steel foil, nickel foil, permalloy foil, 42 alloy foil, kovar foil, nichrome foil, beryllium copper foil, phosphor bronze foil, brass foil, white foil, aluminum foil, Examples include tin foil, lead foil, zinc foil, solder foil, iron foil, tantalum foil, niobium foil, molybdenum foil, zirconium foil, gold foil, silver foil, palladium foil, monel foil, inconel foil, and hastelloy foil. The conductor foil may be selected from a copper foil, a gold foil, a nickel foil, and an iron foil from the viewpoint of an appropriate elastic modulus and the like. From the viewpoint of wiring formability, the conductor foil may be a copper foil. The copper foil can easily form a wiring pattern by photolithography without impairing the properties of the stretchable resin substrate. There is no restriction | limiting in particular as copper foil, For example, the electrolytic copper foil and rolled copper foil used for a copper clad laminated board, a flexible wiring board, etc. can be used.
 導体めっき膜は、アディティブ法又はセミアディティブ法に用いられる通常のめっき法により形成された膜であることができる。例えば、パラジウムを付着させるめっき触媒付与処理を行った後、伸縮性樹脂フィルムを無電解めっき液に浸漬してプライマーの表面全面に厚み0.3~1.5μmの無電解めっき層(導体層)を析出させる。必要に応じて、電解めっき(電気めっき)をさらに行って、必要な厚みに調整することができる。無電解めっきに用いる無電解めっき液としては、任意の無電解めっき液を用いることが可能であり、特に制限はない。電解めっきについても通常の方法を採用することが可能であり、特に制限はない。導体めっき膜(無電解めっき膜、電解めっき膜)は、コスト面及び抵抗値の観点から銅めっき膜であってもよい。 The conductor plating film can be a film formed by a normal plating method used in the additive method or the semi-additive method. For example, after applying a plating catalyst for depositing palladium, the stretchable resin film is immersed in an electroless plating solution, and an electroless plating layer (conductor layer) having a thickness of 0.3 to 1.5 μm is formed on the entire surface of the primer. To precipitate. If necessary, electrolytic plating (electroplating) can be further performed to adjust to a required thickness. As an electroless plating solution used for electroless plating, any electroless plating solution can be used, and there is no particular limitation. An ordinary method can be employed for electrolytic plating, and there is no particular limitation. The conductor plating film (electroless plating film, electrolytic plating film) may be a copper plating film from the viewpoint of cost and resistance.
 導体層の厚みは、特に制限はないが、1~50μmであってもよい。導体層の厚みが1μm以上であると、より容易に配線パターンを形成することができる。導体層の厚みが50μm以下であると、エッチング及び取り扱いが特に容易である。 The thickness of the conductor layer is not particularly limited, but may be 1 to 50 μm. When the thickness of the conductor layer is 1 μm or more, the wiring pattern can be more easily formed. When the thickness of the conductor layer is 50 μm or less, etching and handling are particularly easy.
 伸縮性配線基板は、例えば、伸縮性樹脂フィルム及び伸縮性樹脂フィルム上に設けられた導体層を有する導体基板を準備することと、導体層に配線パターンを形成させることとを含む方法により、製造される。 The stretchable wiring board is manufactured by, for example, a method including preparing a stretchable resin film and a conductor substrate having a conductor layer provided on the stretchable resin film, and forming a wiring pattern on the conductor layer. Is done.
 導体層として導体箔を有する導体基板は、例えば、伸縮性樹脂フィルムを形成するための樹脂組成物のワニスを導体箔に塗工すること、又は、キャリアフィルム上に形成された伸縮性樹脂フィルム上に導体箔を積層することを含む方法により得ることができる。伸縮性樹脂フィルムを形成するための樹脂組成物の塗膜を乾燥し、形成された樹脂層の加熱又は光照射によってこれを硬化させることで、伸縮性樹脂フィルムを形成してもよい。 A conductive substrate having a conductive foil as a conductive layer is obtained by, for example, applying a varnish of a resin composition for forming a stretchable resin film on a conductive foil, or on a stretchable resin film formed on a carrier film. Can be obtained by a method including laminating a conductive foil on the substrate. You may form a stretchable resin film by drying the coating film of the resin composition for forming a stretchable resin film, and hardening this by heating or light irradiation of the formed resin layer.
 導体層として導体めっき膜を有する導体基板は、例えば、アディティブ法又はセミアディティブ法に用いられる通常のめっき法により、キャリアフィルム上に形成された伸縮性樹脂フィルム上に導体めっき膜を形成させる方法により、得ることができる。 A conductor substrate having a conductor plating film as a conductor layer is obtained by, for example, a method of forming a conductor plating film on a stretchable resin film formed on a carrier film by an ordinary plating method used in an additive method or a semi-additive method. ,Obtainable.
 導体層に配線パターンを形成させる方法は、例えば、導体基板の導体層上にエッチングレジストを形成する工程と、エッチングレジストを露光し、露光後のエッチングレジストを現像して、導体層の一部を覆うレジストパターンを形成する工程と、レジストパターンによって覆われていない部分の導体層をエッチング液で除去する工程と、レジストパターンを除去する工程と、を含むことができる。 The method for forming the wiring pattern on the conductor layer includes, for example, a step of forming an etching resist on the conductor layer of the conductor substrate, exposing the etching resist, developing the exposed etching resist, and forming a part of the conductor layer. A step of forming a resist pattern to be covered, a step of removing a portion of the conductor layer not covered with the resist pattern with an etching solution, and a step of removing the resist pattern can be included.
 あるいは、導体層に配線パターンを形成させる方法は、導体基板の導体層上にめっきレジストを形成する工程と、めっきレジストを露光し、露光後のめっきレジストを現像して、導体層の一部を覆うレジストパターンを形成する工程と、レジストパターンによって覆われていない部分の導体層上に、無電解めっき又は電解めっきによって導体めっき膜をさらに形成する工程と、レジストパターンを除去する工程と、導体層のうち、上記電解めっきによって形成された導体めっき膜によって覆われていない部分を除去する工程と、を含んでいてもよい。 Alternatively, the method of forming a wiring pattern on the conductor layer includes a step of forming a plating resist on the conductor layer of the conductor substrate, exposing the plating resist, developing the exposed plating resist, and forming a part of the conductor layer. A step of forming a resist pattern to cover, a step of further forming a conductive plating film on the portion of the conductor layer not covered with the resist pattern by electroless plating or electrolytic plating, a step of removing the resist pattern, and a conductor layer Among them, a step of removing a portion not covered with the conductor plating film formed by the electrolytic plating may be included.
 配線基板に各種の電子部品を搭載することにより、ストレッチャブルデバイスを得ることができる。 A stretchable device can be obtained by mounting various electronic components on the wiring board.
 以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
1.原材料
 伸縮性樹脂フィルムを作製するための原材料として以下を準備した。
(A)ゴム成分
・無水マレイン酸変性スチレン-エチレンブチレン-スチレンブロック共重合体エラストマー(商品名「FG1924GT」、クレイトンポリマージャパン株式会社製)
(B)架橋成分
・ジシクロペンタジエン型エポキシ樹脂(商品名「EPICLON HP7200H」、DIC(株)製)
(C)硬化促進剤
・1-ベンジル-2-メチルイミダゾール(商品名「1B2MZ」、四国化成株式会社製)
(D)フィラ
・シリカフィラスラリSE2050(商品名「SE2050KNK」、株式会社アドマテックス製、平均粒径500nm、フェニルアミノ基で表面修飾された球状シリカ粒子、シリカ濃度70質量%のメチルイソブチルケトン分散液)
・シリカフィラスラリC40(商品名「C40」、CIKナノテック株式会社製、フェニルアミノ基で表面修飾されたシリカ粒子、平均粒径100nm、シリカ濃度65質量%のMIBK(メチルイソブチルケトン)分散液)
・シリカフィラスラリC120(商品名「C120」、CIKナノテック株式会社製、フェニルアミノ基で表面修飾されたシリカ粒子、平均粒径30nm、シリカ濃度30質量%のMIBK分散液)
・シリカフィラスラリF19(商品名「F19」、CIKナノテック株式会社製、フェニル基で表面修飾されたシリカ粒子、平均粒径100nm、シリカ濃度70質量%のMIBK分散液)
(E)溶剤
・トルエン
(キャリアフィルム/保護フィルム)
・離型処理ポリエチレンテレフタレート(PET)フィルム(商品名「ピューレックスA31」、帝人デュポンフィルム株式会社製、厚み25μm)
1. Raw materials The following were prepared as raw materials for producing a stretchable resin film.
(A) Rubber component / maleic anhydride modified styrene-ethylene butylene-styrene block copolymer elastomer (trade name “FG1924GT”, manufactured by Kraton Polymer Japan Co., Ltd.)
(B) Crosslinking component / dicyclopentadiene type epoxy resin (trade name “EPICLON HP7200H”, manufactured by DIC Corporation)
(C) Curing accelerator 1-benzyl-2-methylimidazole (trade name “1B2MZ”, manufactured by Shikoku Kasei Co., Ltd.)
(D) Phila-Silica Filas Lari SE2050 (trade name “SE2050KNK”, manufactured by Admatechs Co., Ltd., average particle diameter 500 nm, spherical silica particles surface-modified with phenylamino groups, methyl isobutyl ketone dispersion with a silica concentration of 70 mass% )
・ Silica Filassari C40 (trade name “C40”, manufactured by CIK Nanotech Co., Ltd., silica particles surface-modified with phenylamino groups, average particle size 100 nm, silica concentration 65 mass% MIBK (methyl isobutyl ketone) dispersion)
・ Silica Filassari C120 (trade name “C120”, manufactured by CIK Nanotech Co., Ltd., silica particles surface-modified with phenylamino group, MIBK dispersion liquid having an average particle size of 30 nm and a silica concentration of 30% by mass)
Silica Filass Falli F19 (trade name “F19”, manufactured by CIK Nanotech Co., Ltd., silica particles surface-modified with phenyl group, MIBK dispersion liquid having an average particle diameter of 100 nm and a silica concentration of 70% by mass)
(E) Solvent / Toluene (Carrier film / Protective film)
・ Release-treated polyethylene terephthalate (PET) film (trade name “Purex A31”, manufactured by Teijin DuPont Films, Inc., thickness 25 μm)
2.伸縮性樹脂フィルムを有する積層フィルム
実施例1
 100質量部の無水マレイン酸変性スチレン-エチレンブチレン-スチレンブロック共重合体エラストマー(FG1924GT)、200質量部のシリカフィラスラリ(SE2050)、及び50質量部のトルエンを撹拌しながら均一に混合した。得られた混合物に、25質量部のジシクロペンタジエン型エポキシ樹脂(HP7200H)、及び3.75質量部の1-ベンジル-2-メチルイミダゾール(1B2MZ)を加え、混合物を更に撹拌して、樹脂ワニスを得た。得られた樹脂ワニスを、キャリアフィルムの離型処理面上にナイフコータ(株式会社康井精機製「SNC-350」を用いて塗布した。塗膜を乾燥機(株式会社二葉科学製「MSO-80TPS」)中で100℃で20分の加熱により乾燥して、厚み100μmの樹脂層を形成させた。形成された樹脂層に、キャリアフィルムと同じ離型処理PETフィルムを、離型処理面が樹脂層側になる向きで保護フィルムとして貼付けて、積層フィルムを得た。積層フィルムを180℃で60分加熱することにより樹脂層を硬化させて、伸縮性樹脂フィルム(樹脂層の硬化物)を有する積層フィルムを得た。
2. Laminated film having a stretchable resin film Example 1
100 parts by mass of a maleic anhydride-modified styrene-ethylenebutylene-styrene block copolymer elastomer (FG1924GT), 200 parts by mass of silica filaments (SE2050), and 50 parts by mass of toluene were uniformly mixed with stirring. To the obtained mixture, 25 parts by mass of a dicyclopentadiene type epoxy resin (HP7200H) and 3.75 parts by mass of 1-benzyl-2-methylimidazole (1B2MZ) were added, and the mixture was further stirred to obtain a resin varnish. Got. The obtained resin varnish was applied onto the release-treated surface of the carrier film using a knife coater (“SNC-350” manufactured by Yasui Seiki Co., Ltd. The coating film was dried (“MSO-80TPS manufactured by Futaba Kagaku Co., Ltd.) )) Was dried by heating at 100 ° C. for 20 minutes to form a resin layer having a thickness of 100 μm.The formed resin layer was subjected to the same release treatment PET film as the carrier film, and the release treatment surface was a resin. A laminated film was obtained by sticking as a protective film in the direction of the layer side, and the resin film was cured by heating the laminated film at 180 ° C. for 60 minutes to have a stretchable resin film (cured product of the resin layer). A laminated film was obtained.
実施例2
 200質量部のシリカフィラスラリ(SE2050)を70質量部のフィラを含む108質量部のシリカフィラスラリ(C40)に代えたこと以外は実施例1と同様にして、樹脂ワニスを調製した。得られた樹脂ワニスを用いて、実施例1と同様の方法で伸縮性樹脂フィルムを有する積層フィルムを得た。
Example 2
A resin varnish was prepared in the same manner as in Example 1, except that 200 parts by mass of the silica filaments (SE2050) was replaced with 108 parts by mass of the silica filaments (C40) containing 70 parts by mass of filler. Using the obtained resin varnish, a laminated film having a stretchable resin film was obtained in the same manner as in Example 1.
実施例3
 200質量部のシリカフィラスラリ(SE2050)を70質量部のフィラを含む233質量部のシリカフィラスラリ(C120)に代えたこと以外は実施例1と同様にして、樹脂ワニスを調製した。得られた樹脂ワニスを用いて、実施例1と同様の方法で伸縮性樹脂フィルムを有する積層フィルムを得た。
Example 3
A resin varnish was prepared in the same manner as in Example 1 except that 200 parts by mass of the silica filaments (SE2050) was replaced with 233 parts by mass of the silica filaments (C120) containing 70 parts by mass of filler. Using the obtained resin varnish, a laminated film having a stretchable resin film was obtained in the same manner as in Example 1.
実施例4
 200質量部のシリカフィラスラリ(SE2050)を70質量部のフィラを含む100質量部のシリカフィラスラリ(F19)に代えたこと以外は実施例1と同様にして、樹脂ワニスを調製した。得られた樹脂ワニスを用いて、実施例1と同様の方法で伸縮性樹脂フィルムを有する積層フィルムを得た。
Example 4
A resin varnish was prepared in the same manner as in Example 1, except that 200 parts by mass of the silica filaments (SE2050) was replaced with 100 parts by mass of the silica filaments (F19) containing 70 parts by mass of filler. Using the obtained resin varnish, a laminated film having a stretchable resin film was obtained in the same manner as in Example 1.
実施例5
 シリカフィラスラリ(SE2050)、ジシクロペンタジエン型エポキシ樹脂(HP7200H)、及び1-ベンジル-2-メチルイミダゾール(1B2MZ)の配合量を表1に示されるように変更したこと以外は実施例1と同様にして、樹脂ワニスを調製した。得られた樹脂ワニスを用いて、実施例1と同様の方法で伸縮性樹脂フィルムを有する積層フィルムを得た。
Example 5
Same as Example 1 except that the compounding amounts of silica filamentous (SE2050), dicyclopentadiene type epoxy resin (HP7200H) and 1-benzyl-2-methylimidazole (1B2MZ) were changed as shown in Table 1. Thus, a resin varnish was prepared. Using the obtained resin varnish, a laminated film having a stretchable resin film was obtained in the same manner as in Example 1.
比較例1
 100質量部の無水マレイン酸変性スチレン-エチレンブチレン-スチレンブロック共重合体エラストマー(FG1924GT)、25質量部のジシクロペンタジエン型エポキシ樹脂(HP7200H)、及び3.75質量部の1-ベンジル-2-メチルイミダゾール(1B2MZ)を、50質量部のトルエンと混合し、混合物を撹拌して、樹脂ワニスを得た。得られた樹脂ワニスを用いて、実施例1と同様の方法で伸縮性樹脂フィルムを有する積層フィルムを得た。
Comparative Example 1
100 parts by weight of maleic anhydride-modified styrene-ethylenebutylene-styrene block copolymer elastomer (FG1924GT), 25 parts by weight of dicyclopentadiene type epoxy resin (HP7200H), and 3.75 parts by weight of 1-benzyl-2- Methylimidazole (1B2MZ) was mixed with 50 parts by mass of toluene, and the mixture was stirred to obtain a resin varnish. Using the obtained resin varnish, a laminated film having a stretchable resin film was obtained in the same manner as in Example 1.
比較例2及び3
 無水マレイン酸変性スチレン-エチレンブチレン-スチレンブロック共重合体エラストマー(FG1924GT)、及びジシクロペンタジエン型エポキシ樹脂(HP7200H)の配合量を表1に示されるように変更したこと以外は比較例1と同様にして、樹脂ワニス及び積層フィルムを得た。
Comparative Examples 2 and 3
Similar to Comparative Example 1 except that the blending amounts of maleic anhydride-modified styrene-ethylenebutylene-styrene block copolymer elastomer (FG1924GT) and dicyclopentadiene type epoxy resin (HP7200H) were changed as shown in Table 1. Thus, a resin varnish and a laminated film were obtained.
3.評価
熱膨張率(CTE)
 積層フィルムから得た伸縮性樹脂フィルムのサンプルを用いて、伸縮性樹脂フィルムの0℃から120℃にかけての熱膨張率を以下の条件の熱機械分析(TMA)法で測定した。
装置:SS6000(セイコーインスツル株式会社)
サンプルサイズ:10mm長×3mm幅
荷重:0.05MPa
温度:0~120℃
昇温速度:5℃/min
3. Evaluation coefficient of thermal expansion (CTE)
Using a sample of the stretchable resin film obtained from the laminated film, the thermal expansion coefficient of the stretchable resin film from 0 ° C. to 120 ° C. was measured by a thermomechanical analysis (TMA) method under the following conditions.
Device: SS6000 (Seiko Instruments Inc.)
Sample size: 10 mm long x 3 mm width Load: 0.05 MPa
Temperature: 0 to 120 ° C
Temperature increase rate: 5 ° C / min
引張弾性率
 長さ40mm、幅10mmの短冊状で、キャリアフィルム及び保護フィルムが除去された伸縮性樹脂フィルムの試験片を準備した。この試験片の引張試験をオートグラフ(株式会社島津製作所「EZ-S」)を用いて行い、応力-ひずみ曲線を得た。得られた応力-ひずみ曲線から、室温における引張弾性率を求めた。引張試験は、チャック間距離20mm、引張速度50mm/分の条件で行った。引張弾性率は、応力0.5~1.0Nの範囲の応力-ひずみ曲線の傾きから求めた。
Tensile modulus A test piece of a stretchable resin film having a strip shape having a length of 40 mm and a width of 10 mm from which the carrier film and the protective film were removed was prepared. A tensile test of the test piece was performed using an autograph (Shimadzu Corporation “EZ-S”) to obtain a stress-strain curve. The tensile modulus at room temperature was determined from the obtained stress-strain curve. The tensile test was performed under the conditions of a distance between chucks of 20 mm and a tensile speed of 50 mm / min. The tensile elastic modulus was obtained from the slope of the stress-strain curve in the range of 0.5 to 1.0 N stress.
回復率
 長さ40mm、幅10mmの短冊状で、キャリアフィルム及び保護フィルムが除去された伸縮性樹脂フィルムの試験片を準備した。この試験片の回復率をマイクロフォース試験機(IllinoisTool WorksInc「Instron 5948」)を用いた引張試験により測定した。1回目の引張試験で変位量(ひずみ)Xに達した時点で引張応力を開放して試験片を初期位置に戻し、その後、2回目の引張試験を行ったときに荷重が掛かり始めた時点の位置とXとの差をYとしたとき、式:R=(Y/X)×100で計算されるRの値を回復率として記録した。本実施例では、ひずみXを50%とした。
Recovery rate A test piece of a stretchable resin film having a strip shape having a length of 40 mm and a width of 10 mm from which the carrier film and the protective film were removed was prepared. The recovery rate of this test piece was measured by a tensile test using a micro force tester (Illinois Tool Works Inc "Instron 5948"). When the displacement amount (strain) X is reached in the first tensile test, the tensile stress is released and the test piece is returned to the initial position, and then the load is applied when the second tensile test is performed. When the difference between the position and X is Y, the value of R calculated by the formula: R = (Y / X) × 100 was recorded as the recovery rate. In this embodiment, the strain X is 50%.
タック値
 積層フィルムから保護フィルムを除去し、露出した伸縮性樹脂フィルムの表面のタック値を、タッキング試験機(株式会社レスカ製「TACII」)を用いて測定した。測定条件は、定荷重モード、浸没速度120mm/分、テスト速度600mm/分、荷重100gf、荷重保持時間1秒、温度30℃又は200℃に設定した。
Tack value The protective film was removed from the laminated film, and the tack value of the exposed surface of the stretchable resin film was measured using a tacking tester (“TACII” manufactured by Reska Co., Ltd.). The measurement conditions were set to a constant load mode, an immersion speed of 120 mm / min, a test speed of 600 mm / min, a load of 100 gf, a load holding time of 1 second, and a temperature of 30 ° C. or 200 ° C.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に、伸縮性樹脂フィルムを形成するために用いられた硬化性樹脂組成物の各成分の配合量、及び伸縮性樹脂フィルムの評価結果を示す。表中のフィラに関する括弧内の数値は、スラリ中の固形分(フィラ)の配合量である。 Table 1 shows the blending amount of each component of the curable resin composition used to form the stretchable resin film and the evaluation results of the stretchable resin film. The numerical value in the parenthesis regarding the filler in the table is the blending amount of the solid content (filler) in the slurry.
 表に示されるように、フィラを含有する実施例の伸縮性樹脂フィルムは、優れた伸縮性を有しながら、熱膨張率が小さく、しかも高温でのタックが低く取り扱い性に優れるものであることが確認された。フィラを含有しない伸縮性樹脂フィルムであっても、比較例3のように架橋成分を増量することで高温でのタックは低減できるものの、その場合は熱膨張率が大きい点で問題があった。 As shown in the table, the stretchable resin films of the examples containing fillers have excellent stretchability, low thermal expansion coefficient, low tack at high temperature, and excellent handleability. Was confirmed. Even in a stretchable resin film containing no filler, although the tack at a high temperature can be reduced by increasing the amount of the crosslinking component as in Comparative Example 3, there is a problem in that the thermal expansion coefficient is large in that case.
 1…伸縮性配線基板、3…伸縮性樹脂フィルム、5…導体層。 1 ... stretchable wiring board, 3 ... stretchable resin film, 5 ... conductor layer.

Claims (9)

  1.  伸縮性樹脂フィルムと、
     前記伸縮性樹脂フィルム上に設けられた導体層と、を有し、
     前記伸縮性樹脂フィルムがゴム成分及びフィラを含有し、前記ゴム成分が架橋されていてもよい、導体基板。
    An elastic resin film;
    A conductor layer provided on the stretchable resin film,
    The conductive substrate, wherein the stretchable resin film contains a rubber component and a filler, and the rubber component may be crosslinked.
  2.  前記フィラの平均粒径が10~500nmである、請求項1に記載の導体基板。 The conductor substrate according to claim 1, wherein the filler has an average particle diameter of 10 to 500 nm.
  3.  前記伸縮性樹脂フィルムが、前記ゴム成分、前記フィラ、及び架橋成分を含有する硬化性樹脂組成物の硬化物を含む、請求項1又は2に記載の導体基板。 The conductive substrate according to claim 1, wherein the stretchable resin film includes a cured product of a curable resin composition containing the rubber component, the filler, and a crosslinking component.
  4.  前記ゴム成分が、前記架橋成分との反応により架橋されている、請求項3に記載の導体基板。 The conductor substrate according to claim 3, wherein the rubber component is crosslinked by reaction with the crosslinking component.
  5.  請求項1~4のいずれか一項に記載の導体基板を含み、前記導体層が配線パターンを形成している、伸縮性配線基板。 A stretchable wiring board comprising the conductor board according to any one of claims 1 to 4, wherein the conductor layer forms a wiring pattern.
  6.  ゴム成分及びフィラを含有し、前記ゴム成分が架橋されていてもよい、配線基板用伸縮性樹脂フィルム。 A stretchable resin film for a wiring board, containing a rubber component and a filler, and wherein the rubber component may be cross-linked.
  7.  前記フィラの平均粒径が10~500nmである、請求項6に記載の配線基板用伸縮性樹脂フィルム。 The stretchable resin film for a wiring board according to claim 6, wherein the filler has an average particle size of 10 to 500 nm.
  8.  前記ゴム成分、前記フィラ、及び架橋成分を含有する硬化性樹脂組成物の硬化物を含む、請求項6又は7に記載の配線基板用伸縮性樹脂フィルム。 The stretchable resin film for a wiring board according to claim 6 or 7, comprising a cured product of a curable resin composition containing the rubber component, the filler, and a crosslinking component.
  9.  前記ゴム成分が、前記架橋成分との反応により架橋されている、請求項8に記載の配線基板用伸縮性樹脂フィルム。 The stretchable resin film for a wiring board according to claim 8, wherein the rubber component is crosslinked by reaction with the crosslinking component.
PCT/JP2019/018440 2018-05-11 2019-05-08 Conductor substrate, stretchable wiring board, and stretchable resin film for wiring board WO2019216352A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207031452A KR20210007966A (en) 2018-05-11 2019-05-08 Conductor boards, stretchable wiring boards, and stretchable resin films for wiring boards
JP2020518322A JP7306381B2 (en) 2018-05-11 2019-05-08 Conductor substrate, elastic wiring substrate, and elastic resin film for wiring substrate
CN201980030605.6A CN112106450A (en) 2018-05-11 2019-05-08 Conductor substrate, stretchable wiring substrate, and stretchable resin film for wiring substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018092494 2018-05-11
JP2018-092494 2018-05-11

Publications (1)

Publication Number Publication Date
WO2019216352A1 true WO2019216352A1 (en) 2019-11-14

Family

ID=68467517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018440 WO2019216352A1 (en) 2018-05-11 2019-05-08 Conductor substrate, stretchable wiring board, and stretchable resin film for wiring board

Country Status (5)

Country Link
JP (1) JP7306381B2 (en)
KR (1) KR20210007966A (en)
CN (1) CN112106450A (en)
TW (1) TWI826445B (en)
WO (1) WO2019216352A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014435A1 (en) * 2022-07-12 2024-01-18 株式会社レゾナック Curable resin composition, curable film, and laminated film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7385483B2 (en) * 2020-01-27 2023-11-22 キオクシア株式会社 Semiconductor device and its manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016080346A1 (en) * 2014-11-18 2016-05-26 日立化成株式会社 Semiconductor device and manufacturing method therefor, and resin composition for forming flexible resin layer
JP2017183328A (en) * 2016-03-28 2017-10-05 住友ベークライト株式会社 Electronic device and manufacturing method of electronic device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119410A (en) 1998-10-16 2000-04-25 Nitto Denko Corp Polymeric film and adhesive sheet
WO2003066741A1 (en) * 2002-02-06 2003-08-14 Sekisui Chemical Co., Ltd. Resin composition
JP5082373B2 (en) * 2005-10-18 2012-11-28 日立化成工業株式会社 Resin composition for printed wiring board, prepreg, substrate, metal foil-clad laminate, metal foil with resin, and printed wiring board
JP4871646B2 (en) * 2006-05-26 2012-02-08 太陽ホールディングス株式会社 Thermosetting solder resist composition for flexible substrate, flexible substrate and method for producing flexible substrate
TWI551587B (en) * 2009-03-27 2016-10-01 Hitachi Chemical Co Ltd A thermosetting resin composition, and an insulating film, a laminate, and a printed wiring board
JP2013187380A (en) 2012-03-08 2013-09-19 Nippon Mektron Ltd Elastic flexible circuit board and manufacturing method of the same
EP3333225A4 (en) 2015-08-07 2019-02-27 Taiyo Ink Mfg. Co., Ltd. Electroconductive composition, conductor, and flexible printed wiring board
JP6888262B2 (en) 2016-09-30 2021-06-16 住友ベークライト株式会社 Wiring boards and electronics

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016080346A1 (en) * 2014-11-18 2016-05-26 日立化成株式会社 Semiconductor device and manufacturing method therefor, and resin composition for forming flexible resin layer
JP2017183328A (en) * 2016-03-28 2017-10-05 住友ベークライト株式会社 Electronic device and manufacturing method of electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014435A1 (en) * 2022-07-12 2024-01-18 株式会社レゾナック Curable resin composition, curable film, and laminated film

Also Published As

Publication number Publication date
CN112106450A (en) 2020-12-18
JPWO2019216352A1 (en) 2021-05-27
TW202003665A (en) 2020-01-16
TWI826445B (en) 2023-12-21
KR20210007966A (en) 2021-01-20
JP7306381B2 (en) 2023-07-11

Similar Documents

Publication Publication Date Title
JP6624065B2 (en) Semiconductor device, method of manufacturing the same, and resin composition for forming flexible resin layer
JP6789496B2 (en) Curable resin sheet, flexible base material for electric circuit, flexible electric circuit body and semiconductor device
JP2017034117A (en) Dicing/die-bonding integrated tape
JP2018116959A (en) Circuit board device
WO2019216352A1 (en) Conductor substrate, stretchable wiring board, and stretchable resin film for wiring board
WO2018092778A1 (en) Conductor substrate, wiring substrate and method for producing wiring substrate
WO2018079608A1 (en) Curable composition for forming elastic resin layer
JP6805821B2 (en) Resin composition for forming a stretchable resin layer
WO2018123732A1 (en) Wiring board, method for producing same and stretchable device
WO2018123818A1 (en) Stretchable member with metal foil
JP2021027099A (en) Conductor substrate, stretchable wiring board, and stretchable resin film
JP2019123786A (en) Curable composition, stretchable resin layer, and semiconductor device including the same
JP2019189775A (en) Photosetting composition for forming elastic resin layer, elastic resin layer, and semiconductor device
JP2017186433A (en) Curable resin sheet, flexible electric circuit body and semiconductor device
JP2018104607A (en) Curable resin composition, curable film, stretchable electric circuit body and semiconductor device
JP2018172460A (en) Composition for forming flexible resin, resin film, electric circuit body, and semiconductor device
JP6939097B2 (en) A curable resin composition for forming a flexible resin and a semiconductor device using the same.
JP2018103524A (en) Flexible resin film and flexible composite sheet
JP7439815B2 (en) Wiring board and its manufacturing method
JP2018116958A (en) Manufacturing method of circuit board device
JP2019197867A (en) Manufacturing method of conductive substrate, conductive substrate, stretchable wiring substrate, and stretchable device
WO2018092328A1 (en) Wiring board, and production method therefor
JP7410633B2 (en) Wiring board, stretchable device, laminate for forming wiring board, and method for manufacturing wiring board
WO2018092329A1 (en) Wiring board, and production method therefor
JP2019160965A (en) Conductor substrate, wiring board, and method for manufacturing them

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19798970

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020518322

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19798970

Country of ref document: EP

Kind code of ref document: A1