WO2018123732A1 - Wiring board, method for producing same and stretchable device - Google Patents

Wiring board, method for producing same and stretchable device Download PDF

Info

Publication number
WO2018123732A1
WO2018123732A1 PCT/JP2017/045535 JP2017045535W WO2018123732A1 WO 2018123732 A1 WO2018123732 A1 WO 2018123732A1 JP 2017045535 W JP2017045535 W JP 2017045535W WO 2018123732 A1 WO2018123732 A1 WO 2018123732A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
rubber
wiring board
meth
acrylate
Prior art date
Application number
PCT/JP2017/045535
Other languages
French (fr)
Japanese (ja)
Inventor
剛史 正木
崇司 川守
薫平 山田
タンイー シム
禎宏 小川
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2018559089A priority Critical patent/JP7124711B2/en
Publication of WO2018123732A1 publication Critical patent/WO2018123732A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections

Definitions

  • the present disclosure relates to a wiring board, a manufacturing method thereof, and a stretchable device.
  • Patent Document 1 As described in Patent Document 1, by providing the sealing material with elasticity, it became possible to realize a member having elasticity that was difficult with a conventional sealing material. On the other hand, since the base substrate does not have stretchability, it has been difficult to provide higher stretchability. Therefore, a wiring board having higher stretchability is required. Further, there is a demand for a wiring board that has higher stretchability and can be interlayer-connected at the time of lamination.
  • an object of the present disclosure is to provide a wiring board having high stretchability and capable of interlayer connection during lamination, a manufacturing method thereof, and a stretchable device.
  • the inventors of the present invention provide high stretchability by using a stretchable resin layer for the base substrate, and combines the stretchable resin layer and the conductive foil, It has been found that the above problem can be solved by providing a via hole in the stretchable resin layer.
  • a wiring board having a stretchable resin layer, a conductor foil provided on the stretchable resin layer and forming a wiring pattern, and a via hole provided in the stretchable resin layer.
  • the stretchable resin layer contains (A) a rubber component, and the rubber component is acrylic rubber, isoprene rubber, butyl rubber, styrene butadiene rubber, butadiene rubber, acrylonitrile butadiene rubber, silicone rubber, urethane rubber, chloroprene.
  • the stretchable resin layer includes (A) a cured product of a resin composition containing a rubber component.
  • the rubber component (A) includes a rubber having a crosslinking group.
  • the crosslinking group is at least one of an acid anhydride group or a carboxyl group.
  • the resin composition further contains (B) a crosslinking component, and the crosslinking component is a (meth) acryl group, vinyl group, epoxy group, styryl group, amino group, isocyanurate group, ureido group, cyanate.
  • a stretchable device comprising the wiring board according to any one of [1] to [13] and an electronic element mounted on the wiring board.
  • the present disclosure it is possible to provide a wiring board that has high stretchability and enables interlayer connection at the time of lamination, a manufacturing method thereof, and a stretchable device. Further, by using the wiring board provided by the present disclosure, it is possible to form a multilayer wiring board having elasticity and high density.
  • FIG. 6 is a stress-strain curve showing an example of measurement of recovery rate. It is a top view which shows one Embodiment of a wiring board. It is a graph which shows the temperature profile of a heat resistance test.
  • (meth) acrylate means at least one of acrylate and methacrylate corresponding thereto.
  • the materials exemplified below may be used alone or in combination of two or more unless otherwise specified.
  • the numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively. “A or B” only needs to include either A or B, and may include both.
  • the upper limit value or lower limit value of a numerical range of a certain step may be replaced with the upper limit value or lower limit value of the numerical range of another step.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples (reference examples).
  • a wiring board includes a stretchable resin layer, a conductor foil provided on the stretchable resin layer and forming a wiring pattern, and a via hole provided in the stretchable resin layer.
  • FIG. 1 is a cross-sectional view showing an embodiment of a wiring board.
  • a wiring board 100 shown in FIG. 1 is formed on a stretchable resin layer 10 as a base material, a conductive foil 20 provided on the stretchable resin layer 10 and forming a wiring pattern, and the stretchable resin layer 10.
  • the wiring board according to the present embodiment uses a base material formed from the stretchable resin layer 10, and thus has excellent stretchability compared to the case where a conventional substrate is used, and does not form the via hole 30.
  • the electroless copper plating layer 40 By forming the electroless copper plating layer 40 by performing electrolytic copper plating, interlayer connection is possible, and a wiring design equivalent to a conventional wiring board is possible. Thereby, it is possible to manufacture a multilayer wiring board having excellent stretchability and capable of high-density wiring.
  • the diameter (hole diameter) D of the opening before forming the electroless copper plating layer 40 of the via hole 30 is preferably 10 ⁇ m or more, and more preferably 40 ⁇ m or more from the viewpoint of the depositability of the electroless copper plating. From the relationship between via processability and wiring density, it is preferably 500 ⁇ m or less, and more preferably 250 ⁇ m or less.
  • the thickness of the electroless copper plating layer 40 is not particularly limited, but is preferably 0.1 to 1.5 ⁇ m, and preferably 0.3 to 1.0 ⁇ m from the viewpoint of adhesion with the stretchable resin layer 10. It is more preferable.
  • electrolytic copper plating may be further performed on the electroless copper plating layer 40 to form an electrolytic copper plating layer.
  • the thickness of the electrolytic copper plating layer is not particularly limited, but is preferably 1 to 100 ⁇ m, more preferably 10 to 50 ⁇ m from the viewpoint of via hole connection reliability.
  • the width W from the end face of the via hole 30 of the land part 50 is preferably 10 ⁇ m or more, and more preferably 100 ⁇ m or more in order to maintain the interlayer connection by the electroless copper plating layer 40 when the substrate is stretched.
  • the land portion 50 is a conductor layer provided around the via hole 30 and is preferably formed concentrically with the via hole 30 on the surface of the stretchable resin layer 10.
  • the land portion 50 may be made of the same material as that of the conductor foil 20 described later.
  • the diameter of the land portion 50 on the surface of the stretchable resin layer 10 is adjusted so that the width W of the land portion 50 falls within the above range.
  • the conductor foil 20 may form a corrugated wiring pattern that meanders along the direction from the near side to the far side in FIG.
  • the elastic modulus of the conductor foil 20 may be 40 to 300 GPa.
  • the elastic modulus of the conductor foil may be 50 GPa or more or 280 GPa or more, or 60 GPa or less, or 250 GPa or less.
  • the elastic modulus of the conductor foil here can be a value measured by a resonance method.
  • the conductor foil can be a metal foil.
  • metal foil copper foil, titanium foil, stainless steel foil, nickel foil, permalloy foil, 42 alloy foil, kovar foil, nichrome foil, beryllium copper foil, phosphor bronze foil, brass foil, white foil, aluminum foil, tin foil, Lead foil, zinc foil, solder foil, iron foil, tantalum foil, niobium foil, molybdenum foil, zirconium foil, gold foil, silver foil, palladium foil, monel foil, inconel foil, hastelloy foil and the like.
  • the conductor foil is preferably selected from copper foil, gold foil, nickel foil, and iron foil. From the viewpoint of wiring formability, it is preferable to use a copper foil.
  • electrolytic copper foil there is no restriction
  • the electrolytic copper foil and rolled copper foil generally used for a copper clad laminated board, a flexible wiring board, etc. can be used.
  • Commercially available electrolytic copper foils include, for example, F0-WS-18 (trade name, manufactured by Furukawa Electric Co., Ltd.), NC-WS-20 (trade name, manufactured by Furukawa Electric Co., Ltd.), YGP-12 (Japan Electrolytic ( (Trade name), GTS-18 (trade name, manufactured by Furukawa Electric Co., Ltd.), and F2-WS-12 (trade name, manufactured by Furukawa Electric Co., Ltd.).
  • Examples of rolled copper foil include TPC foil (manufactured by JX Metals Co., Ltd., trade name), HA foil (manufactured by JX Metals Co., Ltd., trade name), and HA-V2 foil (manufactured by JX Metals Co., Ltd., trade name). , And C1100R (trade name, manufactured by Sumitomo Mitsui Metal Mining Co., Ltd.). From the viewpoint of further improving the adhesiveness with the stretchable resin layer, it is preferable to use a copper foil that has been subjected to a roughening treatment. Moreover, it is preferable to use a rolled copper foil from the viewpoint of folding resistance and stretchability.
  • the stretchable resin layer 10 can have stretchability such that the recovery rate after tensile deformation to 20% strain is 80% or more.
  • This recovery rate is calculated
  • the recovery rate can be measured with X as 20%.
  • FIG. 2 is a stress-strain curve showing an example of measuring the recovery rate. If the recovery rate is 80% or more, it can withstand repeated use, so the recovery rate is more preferably 85% or more, and still more preferably 90% or more.
  • the elastic modulus of the stretchable resin layer is preferably from 0.1 MPa to 1000 MPa.
  • the elastic modulus is 0.1 MPa or more and 1000 MPa or less, the handleability and flexibility as a substrate tend to be particularly excellent.
  • the elastic modulus is more preferably 0.3 MPa or more and 100 MPa or less, and further preferably 0.5 MPa or more and 50 MPa or less.
  • the elongation at break of the stretchable resin layer is preferably 100% or more. When the elongation at break is 100% or more, sufficient stretchability tends to be obtained. In this respect, the elongation at break is more preferably 150% or more, further preferably 200% or more, particularly preferably 300% or more, and extremely preferably 500% or more.
  • the upper limit of the elongation at break is not particularly limited, but is usually about 1000% or less.
  • the stretchable resin layer can contain (A) a rubber component.
  • the rubber component easily imparts stretchability to the stretchable resin layer.
  • the rubber component content may be 30 to 100% by mass with respect to 100% by mass of the stretchable resin layer.
  • Rubber components include, for example, acrylic rubber, isoprene rubber, butyl rubber, styrene butadiene rubber, butadiene rubber, acrylonitrile butadiene rubber, silicone rubber, urethane rubber, chloroprene rubber, ethylene propylene rubber, fluorine rubber, sulfurized rubber, epichlorohydrin rubber, and chlorinated rubber. At least one of butyl rubber can be included. From the viewpoint of protecting the wiring from damage due to moisture absorption or the like, it is preferable that the gas permeability of the rubber component is low. From this viewpoint, the rubber component may be at least one selected from styrene butadiene rubber, butadiene rubber, and butyl rubber.
  • acrylic rubber examples include “Nipol AR Series” manufactured by Nippon Zeon Co., Ltd. and “Clarity Series” manufactured by Kuraray Co., Ltd.
  • Examples of commercially available isoprene rubber include “Nipol IR series” manufactured by Nippon Zeon Co., Ltd.
  • butyl rubber examples include “BUTYL Series” manufactured by JSR Corporation.
  • Examples of commercially available styrene butadiene rubber include “Dynalon SEBS Series”, “Dynalon HSBR Series” manufactured by JSR Corporation, “Clayton D Polymer Series” manufactured by Kraton Polymer Japan Co., Ltd., and Aron Kasei Co., Ltd. "AR series”.
  • Examples of commercially available butadiene rubber include “Nipol BR series” manufactured by Nippon Zeon Co., Ltd.
  • Examples of commercially available acrylonitrile butadiene rubber include “JSR NBR series” manufactured by JSR Corporation.
  • silicone rubber examples include “KMP series” manufactured by Shin-Etsu Silicone Co., Ltd.
  • Examples of commercially available ethylene propylene rubber include “JSR EP Series” manufactured by JSR Corporation.
  • fluoro rubber products examples include “DAIEL Series” manufactured by Daikin Corporation.
  • the rubber component can also be produced by synthesis.
  • acrylic rubber can be obtained by reacting (meth) acrylic acid, (meth) acrylic acid ester, aromatic vinyl compound, vinyl cyanide compound and the like.
  • the rubber component may contain a rubber having a crosslinking group.
  • the cross-linking group may be a reactive group capable of causing a reaction to cross-link the molecular chain of the rubber component. Examples thereof include a reactive group, an acid anhydride group, an amino group, a hydroxyl group, an epoxy group, and a carboxyl group that the (B) crosslinking component described later has.
  • the rubber component may contain a rubber having at least one crosslinking group out of an acid anhydride group or a carboxyl group.
  • rubbers having acid anhydride groups include rubbers that are partially modified with maleic anhydride.
  • Rubber partially modified with maleic anhydride is a polymer containing structural units derived from maleic anhydride.
  • As a commercial product of rubber partially modified with maleic anhydride for example, there is a styrene elastomer “Tufprene 912” manufactured by Asahi Kasei Corporation.
  • the rubber partially modified with maleic anhydride may be a hydrogenated styrene elastomer partially modified with maleic anhydride.
  • the hydrogenated styrene-based elastomer can be expected to have an effect of improving weather resistance.
  • the hydrogenated styrene-based elastomer is an elastomer obtained by adding hydrogen to an unsaturated double bond of a styrene-based elastomer having a soft segment including an unsaturated double bond.
  • Examples of commercially available hydrogenated styrene elastomers partially modified with maleic anhydride include “FG1901” and “FG1924” manufactured by Kraton Polymer Japan Co., Ltd., and “Tuftec M1911” manufactured by Asahi Kasei Corporation. , “Tuff Tech M1913” and “Tuff Tech M1943”.
  • the weight average molecular weight of the rubber component may be 20,000 to 200,000, 30,000 to 150,000, or 50,000 to 125,000 from the viewpoint of coating properties.
  • the weight average molecular weight (Mw) here means a standard polystyrene conversion value determined by gel permeation chromatography (GPC).
  • the stretchable resin layer may be a cured product of a resin composition containing (A) a rubber component.
  • a curable resin composition is used as the resin composition for forming the stretchable resin layer.
  • This curable resin composition may further contain, for example, (B) a crosslinking component. That is, the stretchable resin layer may further contain (B) a crosslinked polymer of a crosslinking component.
  • the crosslinking component is, for example, selected from the group consisting of (meth) acrylic group, vinyl group, epoxy group, styryl group, amino group, isocyanurate group, ureido group, cyanate group, isocyanate group, mercapto group, hydroxyl group, and carboxyl group.
  • the crosslinking component may be a compound having a reactive group selected from an epoxy group, an amino group, a hydroxyl group, and a carboxyl group. These compounds can be used alone or in combination of two or more.
  • (A) (meth) acrylate compound is mentioned as a compound which has a (meth) acryl group.
  • the (meth) acrylate compound may be monofunctional, bifunctional or polyfunctional, and is not particularly limited, but bifunctional or polyfunctional (meth) acrylate is preferred in order to obtain sufficient curability.
  • Examples of the monofunctional (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, butoxyethyl (meth) acrylate, Isoamyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, heptyl (meth) acrylate, octylheptyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, undecyl (meth) acrylate , Lauryl (meth) acrylate, tridecyl (meth) acrylate, tetradecyl (meth) acrylate, pentadecyl (meth) acrylate,
  • (Meth) acrylate cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, cyclopentyl (meth) acrylate, dicyclopentanyl (me ) Acrylate, dicyclopentenyl (meth) acrylate, isobornyl (meth) acrylate, mono (2- (meth) acryloyloxyethyl) tetrahydrophthalate, mono (2- (meth) acryloyloxyethyl) hexahydrophthalate, etc.
  • bifunctional (meth) acrylate examples include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, and polyethylene glycol di (meth) acrylate.
  • modified caprolactones such as neopentyl glycol type epoxy (meth) acrylate; cyclohexanedimethanol type epoxy (meth) acrylate, hydrogenated bisphenol A type epoxy (meth) acrylate, hydrogenated bisphenol Cycloaliphatic epoxy (meth) acrylates such as F type epoxy (meth) acrylate; and resorcinol type epoxy (meth) acrylate, bisphenol A type epoxy (meth) acrylate, bisphenol F type e Carboxymethyl (meth) acrylate, bisphenol AF type epoxy (meth) acrylates, and aromatic epoxy (meth) acrylates such as fluorene epoxy (meth) acrylate.
  • the aliphatic (meth) acrylate and the aromatic (meth) acrylate are preferable from the viewpoint of compatibility with the styrene-based elastomer, transparency, and heat resistance.
  • Examples of the trifunctional or higher polyfunctional (meth) acrylate include trimethylolpropane tri (meth) acrylate, ethoxylated trimethylolpropane tri (meth) acrylate, propoxylated trimethylolpropane tri (meth) acrylate, and ethoxylated propoxylated tri Methylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ethoxylated pentaerythritol tri (meth) acrylate, propoxylated pentaerythritol tri (meth) acrylate, ethoxylated propoxylated pentaerythritol tri (meth) acrylate, pentaerythritol Tetra (meth) acrylate, ethoxylated pentaerythritol tetra (meth) acrylate, propoxylated pentaerythri
  • the compound containing an epoxy group is not particularly limited as long as it has an epoxy group in the molecule, and can be, for example, a general epoxy resin.
  • the epoxy resin may be monofunctional, bifunctional, or polyfunctional, and is not particularly limited, but a bifunctional or polyfunctional epoxy resin is preferable in order to obtain sufficient curability.
  • Examples of the epoxy resin include bisphenol A type, bisphenol F type, phenol novolac type, naphthalene type, dicyclopentadiene type, and cresol novolac type.
  • An epoxy resin modified with a fatty chain is preferred because flexibility can be imparted.
  • Examples of commercially available fatty chain-modified epoxy resins include EXA-4816 manufactured by DIC Corporation. From the viewpoints of curability, low tack, and heat resistance, a phenol novolac type, a cresol novolac type, a naphthalene type, and a dicyclopentadiene type may be selected. These epoxy resins can be used alone or in combination of two or more.
  • the content of the crosslinked polymer formed from the crosslinking component is preferably 10 to 50% by mass based on the mass of the stretchable resin layer. If the content of the cross-linked polymer formed from the cross-linking component is in the above range, the adhesion with the conductor foil tends to be improved while maintaining the properties of the stretchable resin layer. From the above viewpoint, the content of the crosslinked polymer formed from the crosslinking component is more preferably 15 to 40% by mass. The content of the crosslinking component in the resin composition for forming the stretchable resin layer may be within these ranges.
  • the stretchable resin layer or the resin composition used to form it can further contain an additive as the component (C).
  • the additive may be at least one of a curing agent or a curing accelerator.
  • the curing agent is a compound that itself participates in the curing reaction
  • the curing accelerator is a compound that functions as a catalyst for the curing reaction.
  • a compound having both functions of a curing agent and a curing accelerator can also be used.
  • the curing agent may be a polymerization initiator. These can be appropriately selected according to other components contained in the resin composition. For example, if it is a resin composition containing a (meth) acrylate compound, a polymerization initiator may be added.
  • the polymerization initiator is not particularly limited as long as it initiates polymerization by heating or irradiation with ultraviolet rays or the like.
  • a thermal radical polymerization initiator or a photo radical polymerization initiator can be used. If it is a thermal radical initiator, it is preferable at the point that reaction of a resin composition advances uniformly. If it is a photo radical initiator, since normal temperature hardening is possible, it is preferable at the point which prevents the deterioration by the heat
  • thermal radical polymerization initiator examples include ketone peroxides such as methyl ethyl ketone peroxide, cyclohexanone peroxide, and methylcyclohexanone peroxide; 1,1-bis (t-butylperoxy) cyclohexane, 1,1-bis (t-Butylperoxy) -2-methylcyclohexane, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1- Peroxyketals such as bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane; hydroperoxides such as p-menthane hydroperoxide; ⁇ , ⁇ ′-bis (t-butylperoxy) diisopropylbenzene , Dicumyl peroxide, t-butyl cumyl peroxy Dial
  • radical photopolymerization initiators include benzoin ketals such as 2,2-dimethoxy-1,2-diphenylethane-1-one; 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropane- ⁇ -hydroxy ketones such as 1-one, 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one; 2-benzyl-2-dimethylamino-1 ⁇ -amino ketones such as-(4-morpholinophenyl) -butan-1-one, 1,2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one; Oxime esters such as 4- (phenylthio) phenyl] -1,2-octadion-2- (benzoyl) oxime; bis (2,4,6-tri Phosphine oxides such as methylbenzoyl) phenylphosphine oxide
  • the substituents of the aryl groups at the two triarylimidazole sites may give the same and symmetrical compounds, or differently give asymmetrical compounds.
  • a thioxanthone compound and a tertiary amine may be combined.
  • thermal and photo radical polymerization initiators can be used alone or in combination of two or more. Furthermore, it can also be used in combination with a suitable sensitizer.
  • the curable resin composition for forming the stretchable resin layer contains (A) a rubber component, (B) a crosslinking component, and a curing agent as the (C) component, it contains a curing agent (or a polymerization initiator).
  • the amount is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the rubber component and the crosslinking component.
  • the content of the curing agent (or polymerization initiator) is 0.1 parts by mass or more, sufficient curing tends to be easily obtained.
  • the content of the curing agent (or polymerization initiator) is 10 parts by mass or less, sufficient light transmittance tends to be easily obtained.
  • the content of the curing agent (or polymerization initiator) is more preferably 0.3 to 7 parts by mass, and further preferably 0.5 to 5 parts by mass.
  • the curing agent may contain at least one selected from the group consisting of aliphatic polyamines, polyaminoamides, polymercaptans, aromatic polyamines, acid anhydrides, carboxylic acids, phenol novolac resins, ester resins, and dicyandiamide. These curing agents can be used in combination with, for example, a compound having an epoxy group (epoxy resin).
  • a curing accelerator selected from tertiary amine, imidazole, acid anhydride, and phosphine may be added as a component (C) to the resin composition containing an epoxy resin. From the viewpoint of storage stability and curability of the varnish, it is preferable to use imidazole.
  • the rubber component includes a rubber partially modified with maleic anhydride, an imidazole compatible with the rubber may be selected.
  • the content of imidazole is 100 parts by mass with respect to the total amount of the rubber component and the crosslinking component. It may be 0.1 to 10 parts by mass. When the content of imidazole is 0.1 parts by mass or more, sufficient curing tends to be easily obtained. When the content of imidazole is 10 parts by mass or less, sufficient heat resistance tends to be obtained. From the above viewpoint, the imidazole content may be 0.3 to 7 parts by mass, or 0.5 to 5 parts by mass.
  • the content of the rubber component is (A) the rubber component, (B It may be 30-98% by weight, 50-97% by weight, or 60-95% by weight, based on the total amount of)) crosslinking component and (C) additive.
  • the content of the rubber component is 30% by mass or more, sufficient stretchability is easily obtained.
  • the stretchable resin layer tends to have particularly excellent characteristics in terms of adhesion, insulation reliability, and heat resistance.
  • the stretchable resin layer or the resin composition for forming the resin layer may contain an antioxidant, a yellowing inhibitor, an ultraviolet absorber, a visible light absorber, a colorant, a plasticizer, if necessary.
  • An agent, a stabilizer, a filler, a flame retardant, a leveling agent, and the like may be further included as long as the effects of the present disclosure are not significantly impaired.
  • the stretchable resin layer is obtained by, for example, dissolving or dispersing a coupling agent, a rubber component and, if necessary, other components in an organic solvent to obtain a resin varnish, and the resin varnish on a conductor foil or carrier film by a method described later. It can manufacture by the method including forming into a film.
  • the organic solvent used here is not particularly limited, and examples thereof include aromatic hydrocarbons such as toluene, xylene, mesitylene, cumene and p-cymene; cyclic ethers such as tetrahydrofuran and 1,4-dioxane; acetone, methyl ethyl ketone, Ketones such as methyl isobutyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone; esters such as methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, ⁇ -butyrolactone; ethylene carbonate, propylene carbonate, etc.
  • aromatic hydrocarbons such as toluene, xylene, mesitylene, cumene and p-cymene
  • cyclic ethers such as tetrahydrofuran and 1,4-dioxane
  • organic solvents can be used alone or in combination of two or more. From the viewpoint of solubility and boiling point, toluene or N, N-dimethylacetamide may be used.
  • concentration of solids (components other than organic solvents) in the resin varnish is usually preferably 20 to 80% by mass.
  • the material of the carrier film is not particularly limited, but for example, polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate; polyolefins such as polyethylene and polypropylene; polycarbonates, polyamides, polyimides, polyamideimides, polyetherimides , Polyether sulfide, polyether sulfone, polyether ketone, polyphenylene ether, polyphenylene sulfide, polyarylate, polysulfone and liquid crystal polymer.
  • polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate
  • polyolefins such as polyethylene and polypropylene
  • polycarbonates polyamides, polyimides, polyamideimides, polyetherimides , Polyether sulfide, polyether sulfone, polyether ketone, polyphenylene ether, polyphenylene sulfide
  • a polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polypropylene, polycarbonate, polyamide, polyimide, polyamideimide, polyphenylene ether, polyphenylene sulfide, polyarylate, or polysulfone film is a carrier. It may be used as a film.
  • the thickness of the carrier film is not particularly limited, but is preferably 3 to 250 ⁇ m. When it is 3 ⁇ m or more, the film strength is sufficient, and when it is 250 ⁇ m or less, sufficient flexibility is obtained. From the above viewpoint, the thickness is more preferably 5 to 200 ⁇ m, and further preferably 7 to 150 ⁇ m. From the viewpoint of improving releasability from the stretchable resin layer, a film obtained by subjecting the base film to a release treatment with a silicone compound, a fluorine-containing compound, or the like may be used as necessary.
  • a protective film may be attached on the stretchable resin layer to form a laminated film having a three-layer structure including a conductor foil or a carrier film, a stretchable resin layer, and a protective film.
  • the material of the protective film is not particularly limited, and examples thereof include polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; and polyolefins such as polyethylene and polypropylene.
  • polyesters such as polyethylene terephthalate; and polyolefins such as polyethylene and polypropylene are preferable.
  • a release treatment may be performed with a silicone compound, a fluorine-containing compound, or the like.
  • the thickness of the protective film may be appropriately changed depending on the intended flexibility, but is preferably 10 to 250 ⁇ m. When the thickness is 10 ⁇ m or more, the film strength tends to be sufficient, and when it is 250 ⁇ m or less, sufficient flexibility tends to be obtained. From the above viewpoint, the thickness is more preferably 15 to 200 ⁇ m, and further preferably 20 to 150 ⁇ m.
  • the wiring board according to one embodiment includes, for example, a step of preparing a laminate having a stretchable resin layer and a conductive foil laminated on the stretchable resin layer, a step of forming a via hole in the stretchable resin layer, A step of forming a plating layer such as a copper plating layer on the inner wall surface of the via hole; a step of forming an etching resist on the conductive foil; and exposing the etching resist; developing the etched resist after the exposure; It can be manufactured by a method including a step of forming a resist pattern covering a part, a step of removing a portion of the conductor film not covered with the resist pattern, and a step of removing the resist pattern.
  • any method may be used. For example, a varnish of a resin composition for forming a stretchable resin layer is applied to a conductor foil. And a method of laminating a conductive foil on a stretchable resin layer formed on a carrier film by a vacuum press or a laminator.
  • the resin composition for forming the stretchable resin layer contains a crosslinking component
  • the stretchable resin layer is formed by advancing a crosslinking reaction (curing reaction) of the crosslinking component by heating or light irradiation.
  • Any method may be used for laminating the stretchable resin layer on the carrier film on the conductor foil.
  • a roll laminator, a vacuum laminator, a vacuum press, or the like is used. From the viewpoint of production efficiency, it is preferable to laminate using a roll laminator or a vacuum laminator.
  • the thickness of the stretchable resin layer after drying is not particularly limited, but is usually 5 to 1000 ⁇ m. Within the above range, sufficient strength of the stretchable base material can be easily obtained, and since the drying can be sufficiently performed, the amount of residual solvent in the resin film can be reduced.
  • a laminate having conductor foils formed on both sides of the stretchable resin layer may be produced by further laminating a conductor foil on the surface of the stretchable resin layer opposite to the conductor foil.
  • the via hole can be easily formed by drilling or laser processing.
  • drilling a through-hole shape can be formed.
  • laser processing a blind via shape can be formed in addition to a through-through hole shape, and the tolerance of wiring design can be further increased.
  • drilling or laser processing it is preferable to select drilling or laser processing depending on the shape and diameter of the via hole. It is preferable to use drilling when forming through vias and laser processing when forming non-penetrating blind via shapes.
  • a plating layer such as a copper plating layer can be formed by a known method. For example, after applying a plating catalyst for depositing palladium on the inner wall surface of a via hole, the electroless plating layer (conductor) having a thickness of 0.3 to 1.5 ⁇ m is immersed on the entire inner wall surface of the via hole by immersion in an electroless plating solution. Layer). If necessary, electrolytic plating (electroplating) can be further performed to adjust to a required thickness.
  • an electroless plating solution used for electroless plating a known electroless plating solution can be used, and there is no particular limitation.
  • a well-known method can be used also about electrolytic plating, and there is no restriction
  • a technique for forming a wiring pattern on a conductive foil of a laminated board wiring board forming laminated board
  • a technique using etching or the like is generally used.
  • a mixed solution of concentrated sulfuric acid and hydrogen peroxide, a ferric chloride solution, or the like can be used as the etching solution.
  • a land portion around the via hole can be formed together with the wiring pattern.
  • Etching resists used for etching include, for example, Fotec H-7005 (trade name, manufactured by Hitachi Chemical Co., Ltd.), Fotech H-7030 (trade name, manufactured by Hitachi Chemical Co., Ltd.), and X-87 (Taiyo Holdings Co., Ltd.). ), Product name).
  • the etching resist is usually removed after the wiring pattern is formed.
  • a stretchable device can be obtained by mounting various electronic elements on a wiring board.
  • Resin varnish B As component (A), hydrogenated styrene-butadiene rubber (manufactured by JSR Corporation, Dynalon 2324P, trade name) 20 g, as component (B), butanediol acrylate (manufactured by Hitachi Chemical Co., Ltd., FANCL FA-124AS, trade name) ) 5 g, and 0.4 g of bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (manufactured by BASF Corp., Irgacure 819, trade name) as component (C) and 15 g of toluene as a solvent while stirring.
  • the resin varnish B was obtained by mixing.
  • Resin varnish C (A) Acrylic polymer (manufactured by Kuraray Co., Ltd., Clarity LA2140, trade name) 20 g as component (A), aliphatic chain modified epoxy resin (DIC Corporation, EXA4816, trade name) 5 g as component (B), and (C) Resin varnish C was obtained by mixing 0.5 g of 2-phenylimidazole (manufactured by Shikoku Kasei Co., Ltd., 2PZ, trade name) as a component and 15 g of methyl ethyl ketone as a solvent while stirring.
  • 2-phenylimidazole manufactured by Shikoku Kasei Co., Ltd., 2PZ, trade name
  • the laminated film A was obtained by pasting as a protective film in such a direction that the release treatment surface was on the stretchable resin layer side.
  • the protective film of the laminated film A was peeled off, and the stretchable resin layer of the laminated film A was laminated on the roughened surface side of a copper foil (manufactured by Nippon Electrolytic Co., Ltd., YGP-12, trade name).
  • V130 manufactured by Nichigo-Morton Co., Ltd.
  • pressure-bonding was performed under the conditions of a pressure of 0.5 MPa, a temperature of 90 ° C., and a pressurization time of 60 seconds to produce a laminate with a conductor layer.
  • Reference Example 1-2 Except for changing resin varnish A to resin varnish B and copper foil to another copper foil (BHY-82F-HA-V2-12 ⁇ m, trade name, manufactured by JX Metals Co., Ltd.), the same as Reference Example 1-1 Thus, a laminate having a copper foil and an uncured resin layer was obtained. Thereafter, the resin layer was cured by irradiating 2000 mJ / cm 2 of ultraviolet rays (wavelength 365 nm) with an ultraviolet exposure machine (“ML-320FSAT” manufactured by Mikasa Co., Ltd.) to obtain a laminate with a conductor layer.
  • ML-320FSAT ultraviolet exposure machine manufactured by Mikasa Co., Ltd.
  • Reference Example 1-3 A laminate having a copper foil and an uncured resin layer was obtained in the same manner as in Reference Example 1-1 except that the resin varnish A was changed to the resin varnish C. Then, the resin layer was hardened on 180 degreeC 1 hour conditions using the dryer, and the laminated board with a conductor layer was obtained.
  • Comparative Reference Example 1-1 A laminate having a copper foil and an uncured resin layer was obtained in the same manner as in Reference Example 1-1 except that the resin varnish A was changed to the resin varnish D. Then, the resin layer was hardened on 180 degreeC 1 hour conditions using the dryer, and the laminated board with a conductor layer was obtained.
  • a test wiring board 1 having a stretchable resin layer 3 and a conductive foil 5 having a corrugated pattern formed on the stretchable resin layer 3 as a conductor layer was produced.
  • an etching resist manufactured by Hitachi Chemical Co., Ltd., Photoc RY-5325, product name
  • a photo tool having a corrugated pattern formed thereon is provided. Adhered.
  • the etching resist was exposed with an energy amount of 50 mJ / cm 2 using an EXM-1201 type exposure machine manufactured by Oak Manufacturing Co., Ltd.
  • Table 1 shows the evaluation results of Reference Examples 1-1 to 1-3 and Comparative Reference Example 1-1.
  • the stretchable resin layer does not break even when stretched by 10%, and the corrugated wiring pattern It turned out that there was no problem with the appearance.
  • Comparative Reference Example 1-1 since the resin layer did not have elasticity, it was found that the resin layer was broken before stretching by 10%, and the wiring was also broken at the same time.
  • a release-treated polyethylene terephthalate (PET) film (“Purex A31” manufactured by Teijin DuPont Films Ltd., thickness 25 ⁇ m) was prepared as a carrier film.
  • the resin varnish was applied onto the release-treated surface of this PET film using a knife coater ("SNC-350” manufactured by Yasui Seiki Co., Ltd.)
  • the coating film was dried ("MSO-80TPS” manufactured by Futaba Kagaku Co., Ltd.). )) was dried by heating at 100 ° C. for 20 minutes to form a resin layer having a thickness of 100 ⁇ m.
  • the same release treatment PET film as that of the carrier film was formed.
  • a laminated film was obtained by pasting as a protective film in the direction toward the resin layer side.
  • An electrolytic copper foil having a roughened surface with a surface roughness Ra of 1.5 ⁇ m on the exposed resin layer after peeling off the protective film of the laminated film (F2-WS-12, trade name, manufactured by Furukawa Electric Co., Ltd.) Were stacked in such a direction that the roughened surface was on the resin layer side.
  • an electrolytic copper foil is laminated to the resin layer under the conditions of a pressure of 0.5 MPa, a temperature of 90 ° C. and a pressurization time of 60 seconds using a vacuum pressure laminator (“V130” manufactured by Nikko Materials Co., Ltd.). did.
  • a conductive substrate having a stretchable resin layer, which is a cured product of the resin layer, and an electrolytic copper foil is heated by heating at 180 ° C. for 60 minutes in a dryer (“MSO-80TPS” manufactured by Futaba Kagaku Co., Ltd.). Obtained.
  • Reference Example 2-2 Maleic anhydride-modified styrene ethylene butadiene rubber (manufactured by KRATON Co., Ltd., FG1924GT, trade name) 10 g, (B) component as dicyclopentadiene type epoxy resin (DIC Corporation, EPICLON HP7200H, trade name) 2.5 g, 1-benzyl-2-methylimidazole (manufactured by Shikoku Kasei Co., Ltd., 1B2MZ, trade name) 0.38 g as component (C) (curing accelerator), phenolic antioxidant (ADEKA Corporation) Made of AO-60, trade name) 0.1 g, and phosphite antioxidant (produced by ADEKA, 2112, trade name) 0.1 g and toluene 50 g were mixed with stirring to obtain a resin varnish. Obtained. Using the obtained resin varnish, a laminated film having a resin layer and a conductor substrate were produced in the same manner as in Reference Example 2-1.
  • thermo resistance test The laminated film was heated at 180 ° C. for 60 minutes to cure the resin layer, thereby forming a stretchable resin layer. After removing the carrier film and the protective film, the temperature of FIG. 4 conforming to IPC / JEDEC J-STD-020 is applied to the stretchable resin layer using a nitrogen reflow system (Tamura Seisakusho Co., Ltd., TNV-EN). A heat resistance test in which heat treatment was performed with a profile was performed. The elongation and tensile modulus of the stretchable resin layer before and after the heat resistance test were measured. The conductor substrate was also subjected to the same heat resistance test, and the 90 degree peel strength before and after the heat resistance test was measured.
  • the laminated film was heated at 180 ° C. for 60 minutes to cure the resin layer and form a stretchable resin layer.
  • the carrier film and the protective film were removed from the laminated film after curing, and a test piece of a laminated film having a length of 70 mm and a width of 20 mm was prepared.
  • the tack of the surface of the exposed resin layer was measured using a tacking tester (“TACII” manufactured by Resuka Co., Ltd.). The measurement conditions were set to a constant load mode, an immersion speed of 120 mm / min, a test speed of 600 mm / min, a load of 100 gf, a load holding time of 1 s, and a temperature of 30 ° C.
  • the stretchable resin layers of Reference Example 2-1 and Reference Example 2-2 maintained excellent stretchability and high adhesion to the copper foil even after the heat resistance test. Further, the tackiness of the resin layer was moderately low, and the handleability of the resin layer was excellent.
  • it has high stretchability and can be connected between layers at the time of lamination, and excellent stretchability even after a heat resistance test. And excellent adhesion between the copper foil and the stretchable resin layer can be maintained, and a wiring board having a reasonably low tack of the stretchable resin layer can be obtained.

Abstract

Disclosed is a wiring board 100 which comprises a stretchable resin layer 10, a conductor foil 20 that is arranged on the stretchable resin layer 10 and forms a wiring pattern; and a via hole 30 that is formed in the stretchable resin layer 10.

Description

配線基板及びその製造方法、並びにストレッチャブルデバイスWIRING BOARD, MANUFACTURING METHOD THEREOF, AND STRETCHABLE DEVICE
 本開示は、配線基板及びその製造方法、並びにストレッチャブルデバイスに関する。 The present disclosure relates to a wiring board, a manufacturing method thereof, and a stretchable device.
 近年、ウェアラブル機器、ヘルスケア関連機器等の分野において、例えば身体の曲面又は関節部に沿って使用できると共に、脱着しても接続不良が生じにくいためのフレキシブル性及び伸縮性が求められている。このような機器を構成するためには、高い伸縮性を持つ部材が求められる。 In recent years, in the fields of wearable devices, healthcare-related devices, etc., there are demands for flexibility and stretchability that can be used along, for example, the curved surface or joints of the body, and that connection failure does not easily occur even when detached. In order to configure such a device, a member having high stretchability is required.
 高い伸縮性を持つ部材を実現させる方法として、高い耐折性を有したポリイミド樹脂等をベースとしたフレキシブル基板にチップ又は半導体素子等を実装し、伸縮性を有した樹脂組成物を用いて封止する方法が報告されている(特許文献1参照)。 As a method of realizing a member having high stretchability, a chip or a semiconductor element is mounted on a flexible substrate based on polyimide resin having high folding resistance, and sealed with a stretchable resin composition. A method of stopping is reported (see Patent Document 1).
国際公開第2016/080346号International Publication No. 2016/080346
 特許文献1に記載のように、封止材に伸縮性を持たせることで従来の封止材では困難であった伸縮性を有した部材の実現が可能となった。一方で、ベース基材は伸縮性を有していないため、より高い伸縮性を持たせるのが困難であった。そのため、より高い伸縮性を有する配線基板が求められている。また、より高い伸縮性を有しつつ、積層時に層間接続が可能な配線基板が求められている。 As described in Patent Document 1, by providing the sealing material with elasticity, it became possible to realize a member having elasticity that was difficult with a conventional sealing material. On the other hand, since the base substrate does not have stretchability, it has been difficult to provide higher stretchability. Therefore, a wiring board having higher stretchability is required. Further, there is a demand for a wiring board that has higher stretchability and can be interlayer-connected at the time of lamination.
 このような状況において、本開示は、高い伸縮性を有すると共に、積層時に層間接続が可能な配線基板及びその製造方法、並びにストレッチャブルデバイスを提供することを目的とする。 In such a situation, an object of the present disclosure is to provide a wiring board having high stretchability and capable of interlayer connection during lamination, a manufacturing method thereof, and a stretchable device.
 本発明者らは上記の課題を解決するために鋭意研究した結果、ベース基材に伸縮性樹脂層を用いることで高い伸縮性を付与し、伸縮性樹脂層と導体箔とを組み合わせると共に、その伸縮性樹脂層にビアホールを設けることにより、上記課題を解決できることを見出した。 As a result of diligent research to solve the above problems, the inventors of the present invention provide high stretchability by using a stretchable resin layer for the base substrate, and combines the stretchable resin layer and the conductive foil, It has been found that the above problem can be solved by providing a via hole in the stretchable resin layer.
 すなわち、本開示の一側面は、以下の発明を提供する。
[1]伸縮性樹脂層と、上記伸縮性樹脂層上に設けられ、配線パターンを形成している導体箔と、上記伸縮性樹脂層に設けられたビアホールと、を有する、配線基板。
[2]上記導体箔が銅箔である、上記[1]に記載の配線基板。
[3]上記ビアホールがレーザ又はドリルにより形成されたものである、上記[1]又は[2]に記載の配線基板。
[4]上記ビアホールの直径が10~500μmである、上記[1]~[3]のいずれかに記載の配線基板。
[5]上記ビアホールの内壁面に設けられた銅めっき層を有する、上記[1]~[4]のいずれかに記載の配線基板。
[6]上記伸縮性樹脂層上において上記ビアホールの周囲に設けられ、上記銅めっき層と接続されたランド部を有し、上記ランド部の上記ビアホールの端面からの幅が10μm以上である、上記[5]に記載の配線基板。
[7]上記伸縮性樹脂層が、(A)ゴム成分を含有し、上記ゴム成分が、アクリルゴム、イソプレンゴム、ブチルゴム、スチレンブタジエンゴム、ブタジエンゴム、アクリロニトリルブタジエンゴム、シリコーンゴム、ウレタンゴム、クロロプレンゴム、エチレンプロピレンゴム、フッ素ゴム、硫化ゴム、エピクロルヒドリンゴム、及び塩素化ブチルゴムからなる群より選ばれる少なくとも1種を含む、上記[1]~[6]のいずれかに記載の配線基板。
[8]上記伸縮性樹脂層が、(A)ゴム成分を含有する樹脂組成物の硬化物を含む、上記[1]~[7]のいずれかに記載の配線基板。
[9]上記(A)ゴム成分が、架橋基を有するゴムを含む、上記[8]に記載の配線基板。
[10]上記架橋基が、酸無水物基又はカルボキシル基のうち少なくとも一方である、上記[9]に記載の配線基板。
[11]上記樹脂組成物が、(B)架橋成分を更に含有し、上記架橋成分が、(メタ)アクリル基、ビニル基、エポキシ基、スチリル基、アミノ基、イソシアヌレート基、ウレイド基、シアネート基、イソシアネート基、及びメルカプト基からなる群より選ばれる少なくとも1種の反応性基を有する化合物である、上記[8]~[10]のいずれかに記載の配線基板。
[12]上記樹脂組成物が、(C)硬化剤又は硬化促進剤のうち少なくとも一方を更に含有する、上記[8]~[11]のいずれかに記載の配線基板。
[13]上記ゴム成分の含有量が、上記伸縮性樹脂層100質量%に対して30~100質量%である、上記[7]~[12]のいずれかに記載の配線基板。
[14]伸縮性樹脂層と上記伸縮性樹脂層上に積層された導体箔とを有する積層板を準備する工程と、上記伸縮性樹脂層にビアホールを形成する工程と、上記導体箔上にエッチングレジストを形成する工程と、上記エッチングレジストを露光し、露光後の上記エッチングレジストを現像して、上記導体箔の一部を覆うレジストパターンを形成する工程と、上記レジストパターンによって覆われていない部分の上記導体箔を除去する工程と、上記レジストパターンを除去する工程と、を含む、上記[1]~[13]のいずれかに記載の配線基板を製造する方法。
[15]上記伸縮性樹脂層にビアホールを形成する工程の後に、上記ビアホールの内壁面に銅めっき層を形成する工程を更に含む、上記[14]に記載の方法。
[16]上記[1]~[13]のいずれかに記載の配線基板と、上記配線基板に搭載された電子素子と、を備えるストレッチャブルデバイス。
That is, one aspect of the present disclosure provides the following invention.
[1] A wiring board having a stretchable resin layer, a conductor foil provided on the stretchable resin layer and forming a wiring pattern, and a via hole provided in the stretchable resin layer.
[2] The wiring board according to [1], wherein the conductor foil is a copper foil.
[3] The wiring board according to [1] or [2], wherein the via hole is formed by a laser or a drill.
[4] The wiring board according to any one of [1] to [3], wherein the via hole has a diameter of 10 to 500 μm.
[5] The wiring board according to any one of [1] to [4], further including a copper plating layer provided on an inner wall surface of the via hole.
[6] The land having a land portion provided around the via hole on the stretchable resin layer and connected to the copper plating layer, and a width of the land portion from an end surface of the via hole is 10 μm or more. The wiring board according to [5].
[7] The stretchable resin layer contains (A) a rubber component, and the rubber component is acrylic rubber, isoprene rubber, butyl rubber, styrene butadiene rubber, butadiene rubber, acrylonitrile butadiene rubber, silicone rubber, urethane rubber, chloroprene. The wiring board according to any one of the above [1] to [6], comprising at least one selected from the group consisting of rubber, ethylene propylene rubber, fluoro rubber, sulfurized rubber, epichlorohydrin rubber, and chlorinated butyl rubber.
[8] The wiring board according to any one of [1] to [7], wherein the stretchable resin layer includes (A) a cured product of a resin composition containing a rubber component.
[9] The wiring board according to [8], wherein the rubber component (A) includes a rubber having a crosslinking group.
[10] The wiring board according to [9], wherein the crosslinking group is at least one of an acid anhydride group or a carboxyl group.
[11] The resin composition further contains (B) a crosslinking component, and the crosslinking component is a (meth) acryl group, vinyl group, epoxy group, styryl group, amino group, isocyanurate group, ureido group, cyanate. The wiring board according to any one of the above [8] to [10], which is a compound having at least one reactive group selected from the group consisting of a group, an isocyanate group, and a mercapto group.
[12] The wiring board according to any one of [8] to [11], wherein the resin composition further contains at least one of (C) a curing agent or a curing accelerator.
[13] The wiring board according to any one of [7] to [12], wherein the rubber component content is 30 to 100% by mass with respect to 100% by mass of the stretchable resin layer.
[14] A step of preparing a laminate having a stretchable resin layer and a conductor foil laminated on the stretchable resin layer, a step of forming a via hole in the stretchable resin layer, and etching on the conductor foil Forming a resist; exposing the etching resist; developing the exposed etching resist to form a resist pattern covering a portion of the conductor foil; and a portion not covered by the resist pattern A method for producing a wiring board according to any one of the above [1] to [13], comprising the step of removing the conductive foil and the step of removing the resist pattern.
[15] The method according to [14], further comprising a step of forming a copper plating layer on the inner wall surface of the via hole after the step of forming a via hole in the stretchable resin layer.
[16] A stretchable device comprising the wiring board according to any one of [1] to [13] and an electronic element mounted on the wiring board.
 本開示によれば、高い伸縮性を有すると共に、積層時に層間接続が可能な配線基板及びその製造方法、並びにストレッチャブルデバイスを提供することができる。また、本開示により提供される配線基板を用いることで、伸縮性を有し且つ高密度な多層配線基板を形成することができる。 According to the present disclosure, it is possible to provide a wiring board that has high stretchability and enables interlayer connection at the time of lamination, a manufacturing method thereof, and a stretchable device. Further, by using the wiring board provided by the present disclosure, it is possible to form a multilayer wiring board having elasticity and high density.
配線基板の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of a wiring board. 回復率の測定例を示す応力-ひずみ曲線である。6 is a stress-strain curve showing an example of measurement of recovery rate. 配線基板の一実施形態を示す平面図である。It is a top view which shows one Embodiment of a wiring board. 耐熱性試験の温度プロファイルを示すグラフである。It is a graph which shows the temperature profile of a heat resistance test.
 以下、図面を参照しながら本開示の好適な実施形態について詳細に説明する。なお、以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the drawings. In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.
 本明細書において、「(メタ)アクリレート」とは、アクリレート、及び、それに対応するメタクリレートの少なくとも一方を意味する。「(メタ)アクリル」等の他の類似の表現においても同様である。以下で例示する材料は、特に断らない限り、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。 In the present specification, “(meth) acrylate” means at least one of acrylate and methacrylate corresponding thereto. The same applies to other similar expressions such as “(meth) acryl”. The materials exemplified below may be used alone or in combination of two or more unless otherwise specified. The numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively. “A or B” only needs to include either A or B, and may include both.
 本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例(参考例)に示されている値に置き換えてもよい。 In the numerical ranges described step by step in this specification, the upper limit value or lower limit value of a numerical range of a certain step may be replaced with the upper limit value or lower limit value of the numerical range of another step. Further, in the numerical ranges described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples (reference examples).
 一実施形態に係る配線基板は、伸縮性樹脂層と、伸縮性樹脂層上に設けられ、配線パターンを形成している導体箔と、伸縮性樹脂層に設けられたビアホールと、を有する。 A wiring board according to an embodiment includes a stretchable resin layer, a conductor foil provided on the stretchable resin layer and forming a wiring pattern, and a via hole provided in the stretchable resin layer.
 図1は、配線基板の一実施形態を示す断面図である。図1に示す配線基板100は、基材としての伸縮性樹脂層10と、伸縮性樹脂層10上に設けられ、配線パターンを形成している導体箔20と、伸縮性樹脂層10に形成されたビアホール30と、ビアホール30の内壁面に設けられた無電解銅めっき層40と、伸縮性樹脂層10上においてビアホール30の周囲に設けられ、無電解銅めっき層40と接続されたランド部50と、を有する。 FIG. 1 is a cross-sectional view showing an embodiment of a wiring board. A wiring board 100 shown in FIG. 1 is formed on a stretchable resin layer 10 as a base material, a conductive foil 20 provided on the stretchable resin layer 10 and forming a wiring pattern, and the stretchable resin layer 10. Via hole 30, electroless copper plating layer 40 provided on the inner wall surface of via hole 30, and land portion 50 provided around via hole 30 on stretchable resin layer 10 and connected to electroless copper plating layer 40. And having.
 本実施形態に係る配線基板は、伸縮性樹脂層10から形成された基材を用いることで、従来の基板を用いた場合に比して優れた伸縮性を有し、ビアホール30を形成し無電解銅めっきを施して無電解銅めっき層40を形成することで、層間接続を可能とし、従来の配線基板と同等な配線設計が可能となる。これにより、優れた伸縮性を有し、高密度配線が可能な多層配線基板の製造が可能となる。 The wiring board according to the present embodiment uses a base material formed from the stretchable resin layer 10, and thus has excellent stretchability compared to the case where a conventional substrate is used, and does not form the via hole 30. By forming the electroless copper plating layer 40 by performing electrolytic copper plating, interlayer connection is possible, and a wiring design equivalent to a conventional wiring board is possible. Thereby, it is possible to manufacture a multilayer wiring board having excellent stretchability and capable of high-density wiring.
 ビアホール30の無電解銅めっき層40を形成する前の開口部の直径(穴径)Dは、無電解銅めっきの析出性の観点から10μm以上あることが望ましく、40μm以上であることがより望ましく、ビア加工性及び配線密度の関係から500μm以下であることが望ましく、250μm以下であることがより望ましい。 The diameter (hole diameter) D of the opening before forming the electroless copper plating layer 40 of the via hole 30 is preferably 10 μm or more, and more preferably 40 μm or more from the viewpoint of the depositability of the electroless copper plating. From the relationship between via processability and wiring density, it is preferably 500 μm or less, and more preferably 250 μm or less.
 無電解銅めっき層40の厚さは特に限定されないが、伸縮性樹脂層10との密着性の観点から、0.1~1.5μmであることが好ましく、0.3~1.0μmであることがより好ましい。 The thickness of the electroless copper plating layer 40 is not particularly limited, but is preferably 0.1 to 1.5 μm, and preferably 0.3 to 1.0 μm from the viewpoint of adhesion with the stretchable resin layer 10. It is more preferable.
 また、導体厚を厚くすることを目的として、無電解銅めっき層40上に更に電解銅めっきを行い、電解銅めっき層を形成してもよい。電解銅めっき層の厚さは特に限定されないが、ビアホール接続信頼性の観点から、1~100μmであることが好ましく、10~50μmであることがより好ましい。 Further, for the purpose of increasing the conductor thickness, electrolytic copper plating may be further performed on the electroless copper plating layer 40 to form an electrolytic copper plating layer. The thickness of the electrolytic copper plating layer is not particularly limited, but is preferably 1 to 100 μm, more preferably 10 to 50 μm from the viewpoint of via hole connection reliability.
 ランド部50のビアホール30の端面からの幅Wは、基板伸縮時の無電解銅めっき層40による層間接続を維持するために、10μm以上であることが望ましく、100μm以上であることがより望ましい。 The width W from the end face of the via hole 30 of the land part 50 is preferably 10 μm or more, and more preferably 100 μm or more in order to maintain the interlayer connection by the electroless copper plating layer 40 when the substrate is stretched.
 ランド部50は、ビアホール30の周囲に設けられた導体層であり、伸縮性樹脂層10表面にビアホール30と同心円状に形成されていることが望ましい。ランド部50は、後述する導体箔20と同様の材料で構成されていてもよい。伸縮性樹脂層10表面におけるランド部50の直径は、ランド部50の幅Wが上記範囲となるように調整される。 The land portion 50 is a conductor layer provided around the via hole 30 and is preferably formed concentrically with the via hole 30 on the surface of the stretchable resin layer 10. The land portion 50 may be made of the same material as that of the conductor foil 20 described later. The diameter of the land portion 50 on the surface of the stretchable resin layer 10 is adjusted so that the width W of the land portion 50 falls within the above range.
 導体箔20は、図1中の手前側から奥側に向かう方向に沿って蛇行する波形の配線パターンを形成していてもよい。なお、導体箔20の配線パターンの形状に特に制限はなく、適宜決定できる。 The conductor foil 20 may form a corrugated wiring pattern that meanders along the direction from the near side to the far side in FIG. In addition, there is no restriction | limiting in particular in the shape of the wiring pattern of the conductor foil 20, and it can determine suitably.
 導体箔20の弾性率は、40~300GPaであってもよい。導体箔の弾性率が40~300GPaであることにより、配線基板の伸長による導体箔の破断が生じ難い傾向がある。同様の観点から、導体箔の弾性率は50GPa以上又は280GPa以上であってもよく、60GPa以下、又は250GPa以下であってもよい。ここでの導体箔の弾性率は、共振法によって測定される値であることができる。 The elastic modulus of the conductor foil 20 may be 40 to 300 GPa. When the elastic modulus of the conductor foil is 40 to 300 GPa, the conductor foil tends not to break due to the elongation of the wiring board. From the same viewpoint, the elastic modulus of the conductor foil may be 50 GPa or more or 280 GPa or more, or 60 GPa or less, or 250 GPa or less. The elastic modulus of the conductor foil here can be a value measured by a resonance method.
 導体箔は、金属箔であることができる。金属箔としては、銅箔、チタン箔、ステンレス箔、ニッケル箔、パーマロイ箔、42アロイ箔、コバール箔、ニクロム箔、ベリリウム銅箔、燐青銅箔、黄銅箔、洋白箔、アルミニウム箔、錫箔、鉛箔、亜鉛箔、半田箔、鉄箔、タンタル箔、ニオブ箔、モリブデン箔、ジルコニウム箔、金箔、銀箔、パラジウム箔、モネル箔、インコネル箔、ハステロイ箔等が挙げられる。適切な弾性率等の観点から、導体箔は、銅箔、金箔、ニッケル箔、及び鉄箔から選ばれることが好ましい。配線形成性の観点から、銅箔を使用することが好ましい。 The conductor foil can be a metal foil. As metal foil, copper foil, titanium foil, stainless steel foil, nickel foil, permalloy foil, 42 alloy foil, kovar foil, nichrome foil, beryllium copper foil, phosphor bronze foil, brass foil, white foil, aluminum foil, tin foil, Lead foil, zinc foil, solder foil, iron foil, tantalum foil, niobium foil, molybdenum foil, zirconium foil, gold foil, silver foil, palladium foil, monel foil, inconel foil, hastelloy foil and the like. From the viewpoint of an appropriate elastic modulus and the like, the conductor foil is preferably selected from copper foil, gold foil, nickel foil, and iron foil. From the viewpoint of wiring formability, it is preferable to use a copper foil.
 銅箔としては、特に制限はなく、例えば、銅張積層板、フレキシブル配線板等に一般的に用いられる電解銅箔及び圧延銅箔を使用できる。市販の電解銅箔としては、例えばF0-WS-18(古河電工(株)製、商品名)、NC-WS-20(古河電工(株)製、商品名)、YGP-12(日本電解(株)製、商品名)、GTS-18(古河電工(株)製、商品名)、及びF2-WS-12(古河電工(株)製、商品名)が挙げられる。圧延銅箔としては、例えばTPC箔(JX金属(株)製、商品名)、HA箔(JX金属(株)製、商品名)、HA-V2箔(JX金属(株)製、商品名)、及びC1100R(三井住友金属鉱山伸銅(株)製、商品名)が挙げられる。伸縮性樹脂層との接着性が更に向上する観点から、粗化処理を施している銅箔を使用することが好ましい。また、耐折性及び伸縮性の観点から、圧延銅箔を用いることが好ましい。 There is no restriction | limiting in particular as copper foil, For example, the electrolytic copper foil and rolled copper foil generally used for a copper clad laminated board, a flexible wiring board, etc. can be used. Commercially available electrolytic copper foils include, for example, F0-WS-18 (trade name, manufactured by Furukawa Electric Co., Ltd.), NC-WS-20 (trade name, manufactured by Furukawa Electric Co., Ltd.), YGP-12 (Japan Electrolytic ( (Trade name), GTS-18 (trade name, manufactured by Furukawa Electric Co., Ltd.), and F2-WS-12 (trade name, manufactured by Furukawa Electric Co., Ltd.). Examples of rolled copper foil include TPC foil (manufactured by JX Metals Co., Ltd., trade name), HA foil (manufactured by JX Metals Co., Ltd., trade name), and HA-V2 foil (manufactured by JX Metals Co., Ltd., trade name). , And C1100R (trade name, manufactured by Sumitomo Mitsui Metal Mining Co., Ltd.). From the viewpoint of further improving the adhesiveness with the stretchable resin layer, it is preferable to use a copper foil that has been subjected to a roughening treatment. Moreover, it is preferable to use a rolled copper foil from the viewpoint of folding resistance and stretchability.
 伸縮性樹脂層10は、例えば歪み20%まで引張変形した後の回復率が80%以上であるような、伸縮性を有することができる。この回復率は、伸縮性樹脂層の測定サンプルを用いた引張試験において求められる。1回目の引っ張り試験で加えたひずみ(変位量)をX、次に初期位置に戻し再度引っ張り試験を行ったときに荷重が掛かり始めるときの位置とXとの差をYとし、式:R(%)=Y/X×100で計算されるRが、回復率として定義される。回復率は、Xを20%として測定することができる。図2は、回復率の測定例を示す応力-ひずみ曲線である。回復率が80%以上であれば繰り返しの使用に耐えることができるため、回復率は、85%以上であることがより好ましく、90%以上であることが更に好ましい。 The stretchable resin layer 10 can have stretchability such that the recovery rate after tensile deformation to 20% strain is 80% or more. This recovery rate is calculated | required in the tension test using the measurement sample of an elastic resin layer. The strain (displacement amount) applied in the first tensile test is X, and then the difference between X and the position at which the load starts when the tensile test is performed again after returning to the initial position is defined as Y: %) = R calculated as Y / X × 100 is defined as the recovery rate. The recovery rate can be measured with X as 20%. FIG. 2 is a stress-strain curve showing an example of measuring the recovery rate. If the recovery rate is 80% or more, it can withstand repeated use, so the recovery rate is more preferably 85% or more, and still more preferably 90% or more.
 伸縮性樹脂層の弾性率は、0.1MPa以上1000MPa以下であることが好ましい。弾性率が0.1MPa以上1000MPa以下であると、基材としての取り扱い性及び可撓性が特に優れる傾向がある。この観点から、弾性率が0.3MPa以上100MPa以下であることがより好ましく、0.5MPa以上50MPa以下であることが更に好ましい。 The elastic modulus of the stretchable resin layer is preferably from 0.1 MPa to 1000 MPa. When the elastic modulus is 0.1 MPa or more and 1000 MPa or less, the handleability and flexibility as a substrate tend to be particularly excellent. In this respect, the elastic modulus is more preferably 0.3 MPa or more and 100 MPa or less, and further preferably 0.5 MPa or more and 50 MPa or less.
 伸縮性樹脂層の破断伸び率は、100%以上であることが好ましい。破断伸び率が100%以上であると、十分な伸縮性が得られ易い傾向がある。この観点から、破断伸び率は150%以上であることがより好ましく、200%以上であることが更に好ましく、300%以上であることが特に好ましく、500%以上であることが極めて好ましい。破断伸び率の上限は、特に制限されないが、通常1000%程度以下である。 The elongation at break of the stretchable resin layer is preferably 100% or more. When the elongation at break is 100% or more, sufficient stretchability tends to be obtained. In this respect, the elongation at break is more preferably 150% or more, further preferably 200% or more, particularly preferably 300% or more, and extremely preferably 500% or more. The upper limit of the elongation at break is not particularly limited, but is usually about 1000% or less.
 伸縮性樹脂層は、(A)ゴム成分を含有することができる。主にこのゴム成分によって、伸縮性樹脂層に容易に伸縮性が付与される。ゴム成分の含有量が、伸縮性樹脂層100質量%に対して30~100質量%であってもよい。 The stretchable resin layer can contain (A) a rubber component. Mainly, the rubber component easily imparts stretchability to the stretchable resin layer. The rubber component content may be 30 to 100% by mass with respect to 100% by mass of the stretchable resin layer.
 ゴム成分は、例えば、アクリルゴム、イソプレンゴム、ブチルゴム、スチレンブタジエンゴム、ブタジエンゴム、アクリロニトリルブタジエンゴム、シリコーンゴム、ウレタンゴム、クロロプレンゴム、エチレンプロピレンゴム、フッ素ゴム、硫化ゴム、エピクロルヒドリンゴム、及び塩素化ブチルゴムの少なくとも1種を含むことができる。吸湿等による配線へのダメージを保護する観点から、ゴム成分のガス透過性が低いことが好ましい。かかる観点から、ゴム成分が、スチレンブタジエンゴム、ブタジエンゴム、及びブチルゴムから選ばれる少なくとも1種であってもよい。 Rubber components include, for example, acrylic rubber, isoprene rubber, butyl rubber, styrene butadiene rubber, butadiene rubber, acrylonitrile butadiene rubber, silicone rubber, urethane rubber, chloroprene rubber, ethylene propylene rubber, fluorine rubber, sulfurized rubber, epichlorohydrin rubber, and chlorinated rubber. At least one of butyl rubber can be included. From the viewpoint of protecting the wiring from damage due to moisture absorption or the like, it is preferable that the gas permeability of the rubber component is low. From this viewpoint, the rubber component may be at least one selected from styrene butadiene rubber, butadiene rubber, and butyl rubber.
 アクリルゴムの市販品としては、例えば日本ゼオン(株)製の「Nipol ARシリーズ」、クラレ(株)製の「クラリティシリーズ」が挙げられる。 Examples of commercially available acrylic rubber include “Nipol AR Series” manufactured by Nippon Zeon Co., Ltd. and “Clarity Series” manufactured by Kuraray Co., Ltd.
 イソプレンゴムの市販品としては、例えば日本ゼオン(株)製の「Nipol IRシリーズ」が挙げられる。 Examples of commercially available isoprene rubber include “Nipol IR series” manufactured by Nippon Zeon Co., Ltd.
 ブチルゴムの市販品としては、例えばJSR(株)製の「BUTYLシリーズ」が挙げられる。 Examples of commercially available butyl rubber include “BUTYL Series” manufactured by JSR Corporation.
 スチレンブタジエンゴムの市販品としては、例えばJSR(株)製の「ダイナロンSEBSシリーズ」、「ダイナロンHSBRシリーズ」、クレイトンポリマージャパン(株)製の「クレイトンDポリマーシリーズ」、及びアロン化成(株)製の「ARシリーズ」が挙げられる。 Examples of commercially available styrene butadiene rubber include “Dynalon SEBS Series”, “Dynalon HSBR Series” manufactured by JSR Corporation, “Clayton D Polymer Series” manufactured by Kraton Polymer Japan Co., Ltd., and Aron Kasei Co., Ltd. "AR series".
 ブタジエンゴムの市販品としては、例えば日本ゼオン(株)製の「Nipol BRシリーズ」が挙げられる。 Examples of commercially available butadiene rubber include “Nipol BR series” manufactured by Nippon Zeon Co., Ltd.
 アクリロニトリルブタジエンゴムの市販品としては、例えばJSR(株)製の「JSR NBRシリーズ」が挙げられる。 Examples of commercially available acrylonitrile butadiene rubber include “JSR NBR series” manufactured by JSR Corporation.
 シリコーンゴムの市販品としては、例えば信越シリコーン(株)製の「KMPシリーズ」が挙げられる。 Examples of commercially available silicone rubber include “KMP series” manufactured by Shin-Etsu Silicone Co., Ltd.
 エチレンプロピレンゴムの市販品としては、例えばJSR(株)製の「JSR EPシリーズ」が挙げられる。 Examples of commercially available ethylene propylene rubber include “JSR EP Series” manufactured by JSR Corporation.
 フッ素ゴムの市販品としては、例えばダイキン(株)製の「ダイエルシリーズ」が挙げられる。 Examples of commercially available fluoro rubber products include “DAIEL Series” manufactured by Daikin Corporation.
 エピクロルヒドリンゴムの市販品としては、例えば日本ゼオン(株)製の「Hydrinシリーズ」が挙げられる。 As a commercial product of epichlorohydrin rubber, for example, “Hydrin series” manufactured by Nippon Zeon Co., Ltd. may be mentioned.
 ゴム成分は、合成により作製することもできる。例えば、アクリルゴムでは、(メタ)アクリル酸、(メタ)アクリル酸エステル、芳香族ビニル化合物、シアン化ビニル化合物等を反応させることにより得られる。 The rubber component can also be produced by synthesis. For example, acrylic rubber can be obtained by reacting (meth) acrylic acid, (meth) acrylic acid ester, aromatic vinyl compound, vinyl cyanide compound and the like.
 ゴム成分は、架橋基を有するゴムを含んでいてもよい。架橋基を有するゴムを用いることにより、伸縮性樹脂層の耐熱性が向上し易い傾向がある。架橋基は、ゴム成分の分子鎖を架橋する反応を進行させ得る反応性基であればよい。その例としては、後述する(B)架橋成分が有する反応性基、酸無水物基、アミノ基、水酸基、エポキシ基及びカルボキシル基が挙げられる。 The rubber component may contain a rubber having a crosslinking group. By using the rubber having a crosslinking group, the heat resistance of the stretchable resin layer tends to be improved. The cross-linking group may be a reactive group capable of causing a reaction to cross-link the molecular chain of the rubber component. Examples thereof include a reactive group, an acid anhydride group, an amino group, a hydroxyl group, an epoxy group, and a carboxyl group that the (B) crosslinking component described later has.
 ゴム成分は、酸無水物基又はカルボキシル基のうち少なくとも一方の架橋基を有するゴムを含んでいてもよい。酸無水物基を有するゴムの例としては、無水マレイン酸で部分的に変性されたゴムが挙げられる。無水マレイン酸で部分的に変性されたゴムは、無水マレイン酸に由来する構成単位を含む重合体である。無水マレイン酸で部分的に変性されたゴムの市販品としては、例えば、旭化成(株)製のスチレン系エラストマ「タフプレン912」がある。 The rubber component may contain a rubber having at least one crosslinking group out of an acid anhydride group or a carboxyl group. Examples of rubbers having acid anhydride groups include rubbers that are partially modified with maleic anhydride. Rubber partially modified with maleic anhydride is a polymer containing structural units derived from maleic anhydride. As a commercial product of rubber partially modified with maleic anhydride, for example, there is a styrene elastomer “Tufprene 912” manufactured by Asahi Kasei Corporation.
 無水マレイン酸で部分的に変性されたゴムは、無水マレイン酸で部分的に変性された水素添加型スチレン系エラストマであってもよい。水素添加型スチレン系エラストマは、耐候性向上等の効果も期待できる。水素添加型スチレン系エラストマは、不飽和二重結合を含むソフトセグメントを有するスチレン系エラストマの不飽和二重結合に水素を付加反応させて得られるエラストマである。無水マレイン酸で部分的に変性された水素添加型スチレン系エラストマの市販品の例としては、クレイトンポリマージャパン(株)製の「FG1901」、「FG1924」、旭化成(株)製の「タフテックM1911」、「タフテックM1913」、「タフテックM1943」がある。 The rubber partially modified with maleic anhydride may be a hydrogenated styrene elastomer partially modified with maleic anhydride. The hydrogenated styrene-based elastomer can be expected to have an effect of improving weather resistance. The hydrogenated styrene-based elastomer is an elastomer obtained by adding hydrogen to an unsaturated double bond of a styrene-based elastomer having a soft segment including an unsaturated double bond. Examples of commercially available hydrogenated styrene elastomers partially modified with maleic anhydride include “FG1901” and “FG1924” manufactured by Kraton Polymer Japan Co., Ltd., and “Tuftec M1911” manufactured by Asahi Kasei Corporation. , “Tuff Tech M1913” and “Tuff Tech M1943”.
 ゴム成分の重量平均分子量は、塗膜性の観点から、20000~200000、30000~150000、又は50000~125000であってもよい。ここでの重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)によって求められる標準ポリスチレン換算値を意味する。 The weight average molecular weight of the rubber component may be 20,000 to 200,000, 30,000 to 150,000, or 50,000 to 125,000 from the viewpoint of coating properties. The weight average molecular weight (Mw) here means a standard polystyrene conversion value determined by gel permeation chromatography (GPC).
 伸縮性樹脂層は、(A)ゴム成分を含有する樹脂組成物の硬化物であってもよい。この場合、伸縮性樹脂層を形成するための樹脂組成物として硬化性樹脂組成物が用いられる。この硬化性樹脂組成物は、例えば、(B)架橋成分を更に含有していてもよい。すなわち、伸縮性樹脂層は、(B)架橋成分の架橋重合体を更に含有していてもよい。架橋成分は、例えば、(メタ)アクリル基、ビニル基、エポキシ基、スチリル基、アミノ基、イソシアヌレート基、ウレイド基、シアネート基、イソシアネート基、メルカプト基、水酸基、及びカルボキシル基からなる群より選ばれる少なくとも1種の反応性基を有する化合物であってもよく、これら反応性基の反応によって架橋重合体を含む硬化物を形成することができる。伸縮性樹脂層の耐熱性向上の観点から、架橋成分は、エポキシ基、アミノ基、水酸基、及びカルボキシル基から選ばれる反応性基を有する化合物であってもよい。これらの化合物は、単独で又は2種類以上組み合わせて使用することができる。 The stretchable resin layer may be a cured product of a resin composition containing (A) a rubber component. In this case, a curable resin composition is used as the resin composition for forming the stretchable resin layer. This curable resin composition may further contain, for example, (B) a crosslinking component. That is, the stretchable resin layer may further contain (B) a crosslinked polymer of a crosslinking component. The crosslinking component is, for example, selected from the group consisting of (meth) acrylic group, vinyl group, epoxy group, styryl group, amino group, isocyanurate group, ureido group, cyanate group, isocyanate group, mercapto group, hydroxyl group, and carboxyl group. It may be a compound having at least one kind of reactive group, and a cured product containing a crosslinked polymer can be formed by the reaction of these reactive groups. From the viewpoint of improving the heat resistance of the stretchable resin layer, the crosslinking component may be a compound having a reactive group selected from an epoxy group, an amino group, a hydroxyl group, and a carboxyl group. These compounds can be used alone or in combination of two or more.
 (メタ)アクリル基を有する化合物としては、(メタ)アクリレート化合物が挙げられる。(メタ)アクリレート化合物としては、単官能、2官能又は多官能のいずれでもよく、特に制限はないが、十分な硬化性を得るためには2官能又は多官能の(メタ)アクリレートが好ましい。 (A) (meth) acrylate compound is mentioned as a compound which has a (meth) acryl group. The (meth) acrylate compound may be monofunctional, bifunctional or polyfunctional, and is not particularly limited, but bifunctional or polyfunctional (meth) acrylate is preferred in order to obtain sufficient curability.
 単官能(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチルヘプチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、エトキシポリプロピレングリコール(メタ)アクリレート、モノ(2-(メタ)アクリロイロキシエチル)スクシネート等の脂肪族(メタ)アクリレート;シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、モノ(2-(メタ)アクリロイロキシエチル)テトラヒドロフタレート、モノ(2-(メタ)アクリロイロキシエチル)ヘキサヒドロフタレート等の脂環式(メタ)アクリレート;ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、o-ビフェニル(メタ)アクリレート、1-ナフチル(メタ)アクリレート、2-ナフチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、p-クミルフェノキシエチル(メタ)アクリレート、o-フェニルフェノキシエチル(メタ)アクリレート、1-ナフトキシエチル(メタ)アクリレート、2-ナフトキシエチル(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、フェノキシポリプロピレングリコール(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-(o-フェニルフェノキシ)プロピル(メタ)アクリレート、2-ヒドロキシ-3-(1-ナフトキシ)プロピル(メタ)アクリレート、2-ヒドロキシ-3-(2-ナフトキシ)プロピル(メタ)アクリレート等の芳香族(メタ)アクリレート;2-テトラヒドロフルフリル(メタ)アクリレート、N-(メタ)アクリロイロキシエチルヘキサヒドロフタルイミド、2-(メタ)アクリロイロキシエチル-N-カルバゾール等の複素環式(メタ)アクリレート、及びこれらのカプロラクトン変性体が挙げられる。これらの中でもスチレン系エラストマとの相溶性、また透明性及び耐熱性の観点から、上記脂肪族(メタ)アクリレート及び上記芳香族(メタ)アクリレートが好ましい。 Examples of the monofunctional (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, butoxyethyl (meth) acrylate, Isoamyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, heptyl (meth) acrylate, octylheptyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, undecyl (meth) acrylate , Lauryl (meth) acrylate, tridecyl (meth) acrylate, tetradecyl (meth) acrylate, pentadecyl (meth) acrylate, hexadecyl (meth) acrylate, stearyl (Meth) acrylate, behenyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate , Methoxypolyethyleneglycol (meth) acrylate, ethoxypolyethyleneglycol (meth) acrylate, methoxypolypropyleneglycol (meth) acrylate, ethoxypolypropyleneglycol (meth) acrylate, mono (2- (meth) acryloyloxyethyl) succinate, etc. (Meth) acrylate; cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, cyclopentyl (meth) acrylate, dicyclopentanyl (me ) Acrylate, dicyclopentenyl (meth) acrylate, isobornyl (meth) acrylate, mono (2- (meth) acryloyloxyethyl) tetrahydrophthalate, mono (2- (meth) acryloyloxyethyl) hexahydrophthalate, etc. Cyclic (meth) acrylate; benzyl (meth) acrylate, phenyl (meth) acrylate, o-biphenyl (meth) acrylate, 1-naphthyl (meth) acrylate, 2-naphthyl (meth) acrylate, phenoxyethyl (meth) acrylate, p-cumylphenoxyethyl (meth) acrylate, o-phenylphenoxyethyl (meth) acrylate, 1-naphthoxyethyl (meth) acrylate, 2-naphthoxyethyl (meth) acrylate, phenoxypolyethyleneglycol (Meth) acrylate, nonylphenoxypolyethylene glycol (meth) acrylate, phenoxypolypropylene glycol (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 2-hydroxy-3- (o-phenylphenoxy) propyl ( Aromatic (meth) acrylates such as (meth) acrylate, 2-hydroxy-3- (1-naphthoxy) propyl (meth) acrylate, 2-hydroxy-3- (2-naphthoxy) propyl (meth) acrylate; Heterocyclic (meth) acrylates such as furyl (meth) acrylate, N- (meth) acryloyloxyethyl hexahydrophthalimide, 2- (meth) acryloyloxyethyl-N-carbazole, and their caprolactone modified And the like. Among these, the aliphatic (meth) acrylate and the aromatic (meth) acrylate are preferable from the viewpoint of compatibility with the styrene-based elastomer, transparency, and heat resistance.
 2官能(メタ)アクリレートとしては、例えばエチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エトキシ化ポリプロピレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、2-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレート、エトキシ化2-メチル-1,3-プロパンジオールジ(メタ)アクリレート等の脂肪族(メタ)アクリレート;シクロヘキサンジメタノール(メタ)アクリレート、エトキシ化シクロヘキサンジメタノール(メタ)アクリレート、プロポキシ化シクロヘキサンジメタノール(メタ)アクリレート、エトキシ化プロポキシ化シクロヘキサンジメタノール(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレート、エトキシ化トリシクロデカンジメタノール(メタ)アクリレート、プロポキシ化トリシクロデカンジメタノール(メタ)アクリレート、エトキシ化プロポキシ化トリシクロデカンジメタノール(メタ)アクリレート、エトキシ化水添ビスフェノールAジ(メタ)アクリレート、プロポキシ化水添ビスフェノールAジ(メタ)アクリレート、エトキシ化プロポキシ化水添ビスフェノールAジ(メタ)アクリレート、エトキシ化水添ビスフェノールFジ(メタ)アクリレート、プロポキシ化水添ビスフェノールFジ(メタ)アクリレート、エトキシ化プロポキシ化水添ビスフェノールFジ(メタ)アクリレート等の脂環式(メタ)アクリレート;エトキシ化ビスフェノールAジ(メタ)アクリレート、プロポキシ化ビスフェノールAジ(メタ)アクリレート、エトキシ化プロポキシ化ビスフェノールAジ(メタ)アクリレート、エトキシ化ビスフェノールFジ(メタ)アクリレート、プロポキシ化ビスフェノールFジ(メタ)アクリレート、エトキシ化プロポキシ化ビスフェノールFジ(メタ)アクリレート、エトキシ化ビスフェノールAFジ(メタ)アクリレート、プロポキシ化ビスフェノールAFジ(メタ)アクリレート、エトキシ化プロポキシ化ビスフェノールAFジ(メタ)アクリレート、エトキシ化フルオレン型ジ(メタ)アクリレート、プロポキシ化フルオレン型ジ(メタ)アクリレート、エトキシ化プロポキシ化フルオレン型ジ(メタ)アクリレート等の芳香族(メタ)アクリレート;エトキシ化イソシアヌル酸ジ(メタ)アクリレート、プロポキシ化イソシアヌル酸ジ(メタ)アクリレート、エトキシ化プロポキシ化イソシアヌル酸ジ(メタ)アクリレート等の複素環式(メタ)アクリレート;これらのカプロラクトン変性体;ネオペンチルグリコール型エポキシ(メタ)アクリレート等の脂肪族エポキシ(メタ)アクリレート;シクロヘキサンジメタノール型エポキシ(メタ)アクリレート、水添ビスフェノールA型エポキシ(メタ)アクリレート、水添ビスフェノールF型エポキシ(メタ)アクリレート等の脂環式エポキシ(メタ)アクリレート;及びレゾルシノール型エポキシ(メタ)アクリレート、ビスフェノールA型エポキシ(メタ)アクリレート、ビスフェノールF型エポキシ(メタ)アクリレート、ビスフェノールAF型エポキシ(メタ)アクリレート、フルオレン型エポキシ(メタ)アクリレート等の芳香族エポキシ(メタ)アクリレートが挙げられる。これらの中でもスチレン系エラストマとの相溶性、また透明性及び耐熱性の観点から、上記脂肪族(メタ)アクリレート及び上記芳香族(メタ)アクリレートが好ましい。 Examples of the bifunctional (meth) acrylate include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, and polyethylene glycol di (meth) acrylate. , Propylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetrapropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, ethoxylated polypropylene glycol di ( (Meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, neopent Glycol di (meth) acrylate, 3-methyl-1,5-pentanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 2-butyl-2-ethyl-1,3-propanediol di (Meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, glycerin di (meth) acrylate, tricyclodecane dimethanol (meth) acrylate, ethoxylated 2- Aliphatic (meth) acrylates such as methyl-1,3-propanediol di (meth) acrylate; cyclohexanedimethanol (meth) acrylate, ethoxylated cyclohexanedimethanol (meth) acrylate, propoxylated cyclohexanedimethanol (meth) acrylate, Etoki Propoxylated cyclohexanedimethanol (meth) acrylate, tricyclodecane dimethanol (meth) acrylate, ethoxylated tricyclodecane dimethanol (meth) acrylate, propoxylated tricyclodecane dimethanol (meth) acrylate, ethoxylated propoxylated tri Cyclodecane dimethanol (meth) acrylate, ethoxylated hydrogenated bisphenol A di (meth) acrylate, propoxylated hydrogenated bisphenol A di (meth) acrylate, ethoxylated propoxylated hydrogenated bisphenol A di (meth) acrylate, ethoxylated water Alicyclic such as bisphenol F di (meth) acrylate, propoxylated hydrogenated bisphenol F di (meth) acrylate, ethoxylated propoxy hydrogenated bisphenol F di (meth) acrylate (Meth) acrylate; ethoxylated bisphenol A di (meth) acrylate, propoxylated bisphenol A di (meth) acrylate, ethoxylated propoxylated bisphenol A di (meth) acrylate, ethoxylated bisphenol F di (meth) acrylate, propoxylated bisphenol F di (meth) acrylate, ethoxylated propoxylated bisphenol F di (meth) acrylate, ethoxylated bisphenol AF di (meth) acrylate, propoxylated bisphenol AF di (meth) acrylate, ethoxylated propoxylated bisphenol AF di (meth) acrylate , Ethoxylated fluorene-type di (meth) acrylate, propoxylated fluorene-type di (meth) acrylate, ethoxylated propoxylated fluorene-type di (meth) acrylate Aromatic (meth) acrylates such as ethoxylated isocyanuric acid di (meth) acrylate, propoxylated isocyanuric acid di (meth) acrylate, ethoxylated propoxylated isocyanuric acid di (meth) acrylate, etc. These modified caprolactones; aliphatic epoxy (meth) acrylates such as neopentyl glycol type epoxy (meth) acrylate; cyclohexanedimethanol type epoxy (meth) acrylate, hydrogenated bisphenol A type epoxy (meth) acrylate, hydrogenated bisphenol Cycloaliphatic epoxy (meth) acrylates such as F type epoxy (meth) acrylate; and resorcinol type epoxy (meth) acrylate, bisphenol A type epoxy (meth) acrylate, bisphenol F type e Carboxymethyl (meth) acrylate, bisphenol AF type epoxy (meth) acrylates, and aromatic epoxy (meth) acrylates such as fluorene epoxy (meth) acrylate. Among these, the aliphatic (meth) acrylate and the aromatic (meth) acrylate are preferable from the viewpoint of compatibility with the styrene-based elastomer, transparency, and heat resistance.
 3官能以上の多官能(メタ)アクリレートとしては、例えばトリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、エトキシ化プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化ペンタエリスリトールトリ(メタ)アクリレート、プロポキシ化ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化プロポキシ化ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の脂肪族(メタ)アクリレート;エトキシ化イソシアヌル酸トリ(メタ)アクリレート、プロポキシ化イソシアヌル酸トリ(メタ)アクリレート、エトキシ化プロポキシ化イソシアヌル酸トリ(メタ)アクリレート等の複素環式(メタ)アクリレート;これらのカプロラクトン変性体;及びフェノールノボラック型エポキシ(メタ)アクリレート、クレゾールノボラック型エポキシ(メタ)アクリレート等の芳香族エポキシ(メタ)アクリレートが挙げられる。これらの中でもスチレン系エラストマとの相溶性、また透明性及び耐熱性の観点から、上記脂肪族(メタ)アクリレート及び上記芳香族(メタ)アクリレートが好ましい。 Examples of the trifunctional or higher polyfunctional (meth) acrylate include trimethylolpropane tri (meth) acrylate, ethoxylated trimethylolpropane tri (meth) acrylate, propoxylated trimethylolpropane tri (meth) acrylate, and ethoxylated propoxylated tri Methylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ethoxylated pentaerythritol tri (meth) acrylate, propoxylated pentaerythritol tri (meth) acrylate, ethoxylated propoxylated pentaerythritol tri (meth) acrylate, pentaerythritol Tetra (meth) acrylate, ethoxylated pentaerythritol tetra (meth) acrylate, propoxylated pentaerythritol tetra ( ) Aliphatic (meth) acrylates such as acrylate, ethoxylated propoxylated pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetraacrylate, dipentaerythritol hexa (meth) acrylate; ethoxylated isocyanuric acid tri (meth) acrylate, propoxy Heterocyclic (meth) acrylates such as triisocyanuric acid tri (meth) acrylate and ethoxylated propoxylated isocyanuric acid tri (meth) acrylate; modified caprolactone thereof; and phenol novolac type epoxy (meth) acrylate and cresol novolac type epoxy Aromatic epoxy (meth) acrylates such as (meth) acrylates may be mentioned. Among these, the aliphatic (meth) acrylate and the aromatic (meth) acrylate are preferable from the viewpoint of compatibility with the styrene-based elastomer, transparency, and heat resistance.
 無水マレイン酸基又はカルボキシル基を有するゴムと、エポキシ基を有する化合物(エポキシ樹脂)との組み合わせにより、伸縮性樹脂層の耐熱性及び低透湿度、伸縮性樹脂層と導電層との密着性、及び、硬化後の樹脂層の低いタックの点で、特に優れた効果が得られる。伸縮性樹脂層の耐熱性が向上すると、例えば窒素リフローのような加熱工程における伸縮性樹脂層の劣化を抑制することができる。硬化後の樹脂層が低いタックを有すると、作業性良く導体基板又は配線基板を取り扱うことができる。 By combining a rubber having a maleic anhydride group or a carboxyl group and a compound having an epoxy group (epoxy resin), heat resistance and low moisture permeability of the stretchable resin layer, adhesion between the stretchable resin layer and the conductive layer, And the especially outstanding effect is acquired at the point of the low tack of the resin layer after hardening. When the heat resistance of the stretchable resin layer is improved, deterioration of the stretchable resin layer in a heating process such as nitrogen reflow can be suppressed. When the cured resin layer has a low tack, the conductor substrate or the wiring substrate can be handled with good workability.
 エポキシ基を含有する化合物は、分子内にエポキシ基を有していれば特に制限されず、例えば一般的なエポキシ樹脂であることができる。エポキシ樹脂としては、単官能、2官能又は多官能のいずれでもよく、特に制限はないが、十分な硬化性を得るためには2官能又は多官能のエポキシ樹脂が好ましい。 The compound containing an epoxy group is not particularly limited as long as it has an epoxy group in the molecule, and can be, for example, a general epoxy resin. The epoxy resin may be monofunctional, bifunctional, or polyfunctional, and is not particularly limited, but a bifunctional or polyfunctional epoxy resin is preferable in order to obtain sufficient curability.
 エポキシ樹脂としては、ビスフェノールA型、ビスフェノールF型、フェノールノボラック型、ナフタレン型、ジシクロペンタジエン型、クレゾールノボラック型等が挙げられる。脂肪鎖で変性したエポキシ樹脂であれば、柔軟性を付与でき、好ましい。市販の脂肪鎖変性エポキシ樹脂としては、例えばDIC(株)製のEXA-4816が挙げられる。硬化性、低タック性、及び耐熱性の観点から、フェノールノボラック型、クレゾールノボラック型、ナフタレン型、ジシクロペンタジエン型を選択してもよい。これらのエポキシ樹脂は、単独で又は2種類以上を組み合わせて使用することができる。 Examples of the epoxy resin include bisphenol A type, bisphenol F type, phenol novolac type, naphthalene type, dicyclopentadiene type, and cresol novolac type. An epoxy resin modified with a fatty chain is preferred because flexibility can be imparted. Examples of commercially available fatty chain-modified epoxy resins include EXA-4816 manufactured by DIC Corporation. From the viewpoints of curability, low tack, and heat resistance, a phenol novolac type, a cresol novolac type, a naphthalene type, and a dicyclopentadiene type may be selected. These epoxy resins can be used alone or in combination of two or more.
 架橋成分から形成された架橋重合体の含有量は、伸縮性樹脂層の質量を基準として、10~50質量%であることが好ましい。架橋成分から形成された架橋重合体の含有量が上記の範囲であれば、伸縮性樹脂層の特性を維持したまま、導体箔との密着力が向上する傾向がある。以上の観点から、架橋成分から形成された架橋重合体の含有量が15~40質量%であることがより好ましい。伸縮性樹脂層を形成するための樹脂組成物における架橋成分の含有量が、これらの範囲内にあってもよい。 The content of the crosslinked polymer formed from the crosslinking component is preferably 10 to 50% by mass based on the mass of the stretchable resin layer. If the content of the cross-linked polymer formed from the cross-linking component is in the above range, the adhesion with the conductor foil tends to be improved while maintaining the properties of the stretchable resin layer. From the above viewpoint, the content of the crosslinked polymer formed from the crosslinking component is more preferably 15 to 40% by mass. The content of the crosslinking component in the resin composition for forming the stretchable resin layer may be within these ranges.
 伸縮性樹脂層、又はこれを形成するために用いられる樹脂組成物は、(C)成分として添加剤を更に含有することもできる。(C)添加剤は、硬化剤又は硬化促進剤のうち少なくとも一方であってもよい。硬化剤は、それ自体が硬化反応に関与する化合物であり、硬化促進剤は、硬化反応の触媒として機能する化合物である。硬化剤及び硬化促進剤の両方の機能を有する化合物を用いることもできる。硬化剤は、重合開始剤であってもよい。これらは樹脂組成物が含有する他の成分に応じて適宜選択できる。例えば、(メタ)アクリレート化合物等を含有する樹脂組成物であれば、重合開始剤を添加してもよい。重合開始剤としては、加熱又は紫外線等の照射によって重合を開始させるものであれば特に制限はなく、例えば熱ラジカル重合開始剤、又は光ラジカル重合開始剤を用いることができる。熱ラジカル開始剤であれば、樹脂組成物の反応が均一に進行するという点で好ましい。光ラジカル開始剤であれば、常温硬化が可能なことから、デバイスの熱による劣化を防止するという点、及び、伸縮性樹脂層の反りを抑制できるという点で好ましい。 The stretchable resin layer or the resin composition used to form it can further contain an additive as the component (C). (C) The additive may be at least one of a curing agent or a curing accelerator. The curing agent is a compound that itself participates in the curing reaction, and the curing accelerator is a compound that functions as a catalyst for the curing reaction. A compound having both functions of a curing agent and a curing accelerator can also be used. The curing agent may be a polymerization initiator. These can be appropriately selected according to other components contained in the resin composition. For example, if it is a resin composition containing a (meth) acrylate compound, a polymerization initiator may be added. The polymerization initiator is not particularly limited as long as it initiates polymerization by heating or irradiation with ultraviolet rays or the like. For example, a thermal radical polymerization initiator or a photo radical polymerization initiator can be used. If it is a thermal radical initiator, it is preferable at the point that reaction of a resin composition advances uniformly. If it is a photo radical initiator, since normal temperature hardening is possible, it is preferable at the point which prevents the deterioration by the heat | fever of a device, and the point which can suppress the curvature of a stretchable resin layer.
 熱ラジカル重合開始剤としては、例えば、メチルエチルケトンパーオキシド、シクロヘキサノンパーオキシド、メチルシクロヘキサノンパーオキシド等のケトンパーオキシド;1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-2-メチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン等のパーオキシケタール;p-メンタンヒドロパーオキシド等のヒドロパーオキシド;α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキシド、t-ブチルクミルパーオキシド、ジ-t-ブチルパーオキシド等のジアルキルパーオキシド;オクタノイルパーオキシド、ラウロイルパーオキシド、ステアリルパーオキシド、ベンゾイルパーオキシド等のジアシルパーオキシド;ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-2-エトキシエチルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジ-3-メトキシブチルパーオキシカーボネート等のパーオキシカーボネート;t-ブチルパーオキシピバレート、t-ヘキシルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサン、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウリレート、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ブチルパーオキシベンゾエート、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ビス(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート等のパーオキシエステル;及び2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2’-ジメチルバレロニトリル)等のアゾ化合物が挙げられる。これらの中で、硬化性、透明性、及び耐熱性の観点から、上記ジアシルパーオキシド、上記パーオキシエステル、及び上記アゾ化合物が好ましい。 Examples of the thermal radical polymerization initiator include ketone peroxides such as methyl ethyl ketone peroxide, cyclohexanone peroxide, and methylcyclohexanone peroxide; 1,1-bis (t-butylperoxy) cyclohexane, 1,1-bis (t- Butylperoxy) -2-methylcyclohexane, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1- Peroxyketals such as bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane; hydroperoxides such as p-menthane hydroperoxide; α, α′-bis (t-butylperoxy) diisopropylbenzene , Dicumyl peroxide, t-butyl cumyl peroxy Dialkyl peroxides such as sid and di-t-butyl peroxide; diacyl peroxides such as octanoyl peroxide, lauroyl peroxide, stearyl peroxide and benzoyl peroxide; bis (4-t-butylcyclohexyl) peroxydicarbonate Peroxycarbonates such as di-2-ethoxyethyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, di-3-methoxybutyl peroxycarbonate; t-butyl peroxypivalate, t-hexyl peroxy Pivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-bis (2-ethylhexanoylperoxy) hexane, t-hexylper Oxy-2-ethylhexa Ate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyisobutyrate, t-hexylperoxyisopropyl monocarbonate, t-butylperoxy-3,5,5-trimethylhexanoate, t-butyl peroxylaurate, t-butyl peroxyisopropyl monocarbonate, t-butyl peroxy-2-ethylhexyl monocarbonate, t-butyl peroxybenzoate, t-hexyl peroxybenzoate, 2,5-dimethyl-2 , 5-bis (benzoylperoxy) hexane, peroxyesters such as t-butylperoxyacetate; and 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile) ), 2,2′-azobis (4-methoxy- '- dimethyl valeronitrile) azo compounds, and the like. Among these, the diacyl peroxide, the peroxyester, and the azo compound are preferable from the viewpoints of curability, transparency, and heat resistance.
 光ラジカル重合開始剤としては、例えば2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン等のベンゾインケタール;1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン等のα-ヒドロキシケトン;2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、1,2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン等のα-アミノケトン;1-[4-(フェニルチオ)フェニル]-1,2-オクタジオン-2-(ベンゾイル)オキシム等のオキシムエステル;ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキシド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド等のホスフィンオキシド;2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2-(p-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体;ベンゾフェノン、N,N,N’,N’-テトラメチル-4,4’-ジアミノベンゾフェノン、N,N,N’,N’-テトラエチル-4,4’-ジアミノベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン等のベンゾフェノン化合物;2-エチルアントラキノン、フェナントレンキノン、2-tert-ブチルアントラキノン、オクタメチルアントラキノン、1,2-ベンズアントラキノン、2,3-ベンズアントラキノン、2-フェニルアントラキノン、2,3-ジフェニルアントラキノン、1-クロロアントラキノン、2-メチルアントラキノン、1,4-ナフトキノン、9,10-フェナントラキノン、2-メチル-1,4-ナフトキノン、2,3-ジメチルアントラキノン等のキノン化合物;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル;ベンゾイン、メチルベンゾイン、エチルベンゾイン等のベンゾイン化合物;ベンジルジメチルケタール等のベンジル化合物;9-フェニルアクリジン、1,7-ビス(9,9’-アクリジニルヘプタン)等のアクリジン化合物;N-フェニルグリシン;及びクマリンが挙げられる。 Examples of radical photopolymerization initiators include benzoin ketals such as 2,2-dimethoxy-1,2-diphenylethane-1-one; 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropane- Α-hydroxy ketones such as 1-one, 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one; 2-benzyl-2-dimethylamino-1 Α-amino ketones such as-(4-morpholinophenyl) -butan-1-one, 1,2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one; Oxime esters such as 4- (phenylthio) phenyl] -1,2-octadion-2- (benzoyl) oxime; bis (2,4,6-tri Phosphine oxides such as methylbenzoyl) phenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide; 2- (o-chlorophenyl) ) -4,5-diphenylimidazole dimer, 2- (o-chlorophenyl) -4,5-di (methoxyphenyl) imidazole dimer, 2- (o-fluorophenyl) -4,5-diphenylimidazole dimer 2,4,5-triaryl such as 2-mer, 2- (o-methoxyphenyl) -4,5-diphenylimidazole dimer, 2- (p-methoxyphenyl) -4,5-diphenylimidazole dimer Imidazole dimer; benzophenone, N, N, N ′, N′-tetramethyl-4, Benzophenone compounds such as '-diaminobenzophenone, N, N, N', N'-tetraethyl-4,4'-diaminobenzophenone, 4-methoxy-4'-dimethylaminobenzophenone; 2-ethylanthraquinone, phenanthrenequinone, 2- tert-butylanthraquinone, octamethylanthraquinone, 1,2-benzanthraquinone, 2,3-benzanthraquinone, 2-phenylanthraquinone, 2,3-diphenylanthraquinone, 1-chloroanthraquinone, 2-methylanthraquinone, 1,4-naphthoquinone Quinone compounds such as 9,10-phenanthraquinone, 2-methyl-1,4-naphthoquinone, 2,3-dimethylanthraquinone; benzoin methyl ether, benzoin ethyl ether, benzoin phenyl ether Benzoin ethers such as benzoin; benzoin compounds such as benzoin, methylbenzoin and ethylbenzoin; benzyl compounds such as benzyldimethyl ketal; acridines such as 9-phenylacridine and 1,7-bis (9,9'-acridinylheptane) Compounds; N-phenylglycine; and coumarin.
 2,4,5-トリアリールイミダゾール二量体において、2つのトリアリールイミダゾール部位のアリール基の置換基は、同一で対称な化合物を与えてもよく、相違して非対称な化合物を与えてもよい。ジエチルチオキサントンとジメチルアミノ安息香酸との組み合わせのように、チオキサントン化合物と3級アミンとを組み合わせてもよい。 In the 2,4,5-triarylimidazole dimer, the substituents of the aryl groups at the two triarylimidazole sites may give the same and symmetrical compounds, or differently give asymmetrical compounds. . Like a combination of diethylthioxanthone and dimethylaminobenzoic acid, a thioxanthone compound and a tertiary amine may be combined.
 これらの中で、硬化性、透明性、及び耐熱性の観点から、上記α-ヒドロキシケトン及び上記ホスフィンオキシドが好ましい。これらの熱及び光ラジカル重合開始剤は、単独で又は2種類以上を組み合わせて使用することができる。更に、適切な増感剤と組み合わせて使用することもできる。 Of these, the α-hydroxy ketone and the phosphine oxide are preferable from the viewpoints of curability, transparency, and heat resistance. These thermal and photo radical polymerization initiators can be used alone or in combination of two or more. Furthermore, it can also be used in combination with a suitable sensitizer.
 伸縮性樹脂層を形成するための硬化性樹脂組成物が(A)ゴム成分、(B)架橋成分及び(C)成分としての硬化剤を含有する場合、硬化剤(又は重合開始剤)の含有量は、ゴム成分及び架橋成分の合計量100質量部に対して、0.1~10質量部であることが好ましい。硬化剤(又は重合開始剤)の含有量が0.1質量部以上であると、十分な硬化が得られ易い傾向がある。硬化剤(又は重合開始剤)の含有量が10質量部以下であると十分な光透過性が得られ易い傾向がある。以上の観点から、硬化剤(又は重合開始剤)の含有量は0.3~7質量部であることがより好ましく、0.5~5質量部であることが更に好ましい。 When the curable resin composition for forming the stretchable resin layer contains (A) a rubber component, (B) a crosslinking component, and a curing agent as the (C) component, it contains a curing agent (or a polymerization initiator). The amount is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the rubber component and the crosslinking component. When the content of the curing agent (or polymerization initiator) is 0.1 parts by mass or more, sufficient curing tends to be easily obtained. When the content of the curing agent (or polymerization initiator) is 10 parts by mass or less, sufficient light transmittance tends to be easily obtained. From the above viewpoint, the content of the curing agent (or polymerization initiator) is more preferably 0.3 to 7 parts by mass, and further preferably 0.5 to 5 parts by mass.
 硬化剤は、脂肪族ポリアミン、ポリアミノアミド、ポリメルカプタン、芳香族ポリアミン、酸無水物、カルボン酸、フェノールノボラック樹脂、エステル樹脂、及びジシアンジアミドからなる群より選ばれる少なくとも1種を含んでいてもよい。これらの硬化剤は、例えばエポキシ基を有する化合物(エポキシ樹脂)と組み合わせて使用することができる。 The curing agent may contain at least one selected from the group consisting of aliphatic polyamines, polyaminoamides, polymercaptans, aromatic polyamines, acid anhydrides, carboxylic acids, phenol novolac resins, ester resins, and dicyandiamide. These curing agents can be used in combination with, for example, a compound having an epoxy group (epoxy resin).
 エポキシ樹脂を含有する樹脂組成物に、(C)成分として、三級アミン、イミダゾール、酸無水物、ホスフィン系から選ばれる硬化促進剤を添加してもよい。ワニスの保存安定性及び硬化性の観点から、イミダゾールを使用することが好ましい。ゴム成分が無水マレイン酸で部分的に変性されたゴムを含む場合、これと相溶するイミダゾールを選択してもよい。 A curing accelerator selected from tertiary amine, imidazole, acid anhydride, and phosphine may be added as a component (C) to the resin composition containing an epoxy resin. From the viewpoint of storage stability and curability of the varnish, it is preferable to use imidazole. When the rubber component includes a rubber partially modified with maleic anhydride, an imidazole compatible with the rubber may be selected.
 伸縮性樹脂層を形成するための樹脂組成物が(A)ゴム成分及び(B)架橋成分を含有する場合、イミダゾールの含有量は、ゴム成分及び架橋成分の合計量100質量部に対して、0.1~10質量部であってもよい。イミダゾールの含有量が0.1質量部以上であると、十分な硬化が得られ易い傾向がある。イミダゾールの含有量が10質量部以下であると十分な耐熱性が得られ易い傾向がある。以上の観点から、イミダゾールの含有量は0.3~7質量部、又は0.5~5質量部であってもよい。 When the resin composition for forming the stretchable resin layer contains (A) a rubber component and (B) a crosslinking component, the content of imidazole is 100 parts by mass with respect to the total amount of the rubber component and the crosslinking component. It may be 0.1 to 10 parts by mass. When the content of imidazole is 0.1 parts by mass or more, sufficient curing tends to be easily obtained. When the content of imidazole is 10 parts by mass or less, sufficient heat resistance tends to be obtained. From the above viewpoint, the imidazole content may be 0.3 to 7 parts by mass, or 0.5 to 5 parts by mass.
 伸縮性樹脂層を形成するための樹脂組成物が(A)ゴム成分、(B)架橋成分及び(C)添加剤を含有する場合、ゴム成分の含有量は、(A)ゴム成分、(B)架橋成分及び(C)添加剤の総量を基準として、30~98質量%、50~97質量%、又は60~95質量%であってもよい。ゴム成分の含有量が30質量%以上であると、十分な伸縮性が得られ易い。ゴム成分の含有量が98質量%以下であると、伸縮性樹脂層が密着性、絶縁信頼性、及び耐熱性の点で特に優れた特性を有する傾向がある。 When the resin composition for forming the stretchable resin layer contains (A) a rubber component, (B) a crosslinking component, and (C) an additive, the content of the rubber component is (A) the rubber component, (B It may be 30-98% by weight, 50-97% by weight, or 60-95% by weight, based on the total amount of)) crosslinking component and (C) additive. When the content of the rubber component is 30% by mass or more, sufficient stretchability is easily obtained. When the content of the rubber component is 98% by mass or less, the stretchable resin layer tends to have particularly excellent characteristics in terms of adhesion, insulation reliability, and heat resistance.
 伸縮性樹脂層、又はこれを形成するための樹脂組成物は、以上の成分の他、必要に応じて、酸化防止剤、黄変防止剤、紫外線吸収剤、可視光吸収剤、着色剤、可塑剤、安定剤、充填剤、難燃剤、レべリング剤等を、本開示の効果を著しく損なわない範囲で更に含んでもよい。 In addition to the above components, the stretchable resin layer or the resin composition for forming the resin layer may contain an antioxidant, a yellowing inhibitor, an ultraviolet absorber, a visible light absorber, a colorant, a plasticizer, if necessary. An agent, a stabilizer, a filler, a flame retardant, a leveling agent, and the like may be further included as long as the effects of the present disclosure are not significantly impaired.
 伸縮性樹脂層は、例えば、カップリング剤、ゴム成分及び必要により他の成分を、有機溶剤に溶解又は分散して樹脂ワニスを得ることと、樹脂ワニスを後述の方法によって導体箔又はキャリアフィルム上に成膜することとを含む方法により、製造することができる。 The stretchable resin layer is obtained by, for example, dissolving or dispersing a coupling agent, a rubber component and, if necessary, other components in an organic solvent to obtain a resin varnish, and the resin varnish on a conductor foil or carrier film by a method described later. It can manufacture by the method including forming into a film.
 ここで用いる有機溶剤としては、特に制限はないが、例えば、トルエン、キシレン、メシチレン、クメン、p-シメン等の芳香族炭化水素;テトラヒドロフラン、1,4-ジオキサン等の環状エーテル;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、4-ヒドロキシ-4-メチル-2-ペンタノン等のケトン;酢酸メチル、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、γ-ブチロラクトン等のエステル;エチレンカーボネート、プロピレンカーボネート等の炭酸エステル;及びN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミドが挙げられる。これらの有機溶剤は、単独で又は2種類以上を組み合わせて使用することができる。溶解性及び沸点の観点から、トルエン、又はN,N-ジメチルアセトアミドを用いてもよい。樹脂ワニス中の固形分(有機溶媒以外の成分)濃度は、通常20~80質量%であることが好ましい。 The organic solvent used here is not particularly limited, and examples thereof include aromatic hydrocarbons such as toluene, xylene, mesitylene, cumene and p-cymene; cyclic ethers such as tetrahydrofuran and 1,4-dioxane; acetone, methyl ethyl ketone, Ketones such as methyl isobutyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone; esters such as methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, γ-butyrolactone; ethylene carbonate, propylene carbonate, etc. And carbonates; and amides such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone and the like. These organic solvents can be used alone or in combination of two or more. From the viewpoint of solubility and boiling point, toluene or N, N-dimethylacetamide may be used. The concentration of solids (components other than organic solvents) in the resin varnish is usually preferably 20 to 80% by mass.
 キャリアフィルムの材質としては、特に制限されないが、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィン;ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルスルフィド、ポリエーテルスルホン、ポリエーテルケトン、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリアリレート、ポリスルホン及び液晶ポリマが挙げられる。これらの中でも、柔軟性及び強靭性の観点から、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリアリレート、又はポリスルホンのフィルムをキャリアフィルムとして用いてもよい。 The material of the carrier film is not particularly limited, but for example, polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate; polyolefins such as polyethylene and polypropylene; polycarbonates, polyamides, polyimides, polyamideimides, polyetherimides , Polyether sulfide, polyether sulfone, polyether ketone, polyphenylene ether, polyphenylene sulfide, polyarylate, polysulfone and liquid crystal polymer. Among these, from the viewpoint of flexibility and toughness, a polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polypropylene, polycarbonate, polyamide, polyimide, polyamideimide, polyphenylene ether, polyphenylene sulfide, polyarylate, or polysulfone film is a carrier. It may be used as a film.
 キャリアフィルムの厚さは、特に制限されないが、3~250μmであることが好ましい。3μm以上であるとフィルム強度が十分であり、250μm以下であると十分な柔軟性が得られる。以上の観点から、厚さは5~200μmであることがより好ましく、7~150μmであることが更に好ましい。伸縮性樹脂層との剥離性向上の観点から、シリコーン系化合物、含フッ素化合物等により基材フィルムに離型処理が施されたフィルムを必要に応じて用いてもよい。 The thickness of the carrier film is not particularly limited, but is preferably 3 to 250 μm. When it is 3 μm or more, the film strength is sufficient, and when it is 250 μm or less, sufficient flexibility is obtained. From the above viewpoint, the thickness is more preferably 5 to 200 μm, and further preferably 7 to 150 μm. From the viewpoint of improving releasability from the stretchable resin layer, a film obtained by subjecting the base film to a release treatment with a silicone compound, a fluorine-containing compound, or the like may be used as necessary.
 必要に応じて、保護フィルムを伸縮性樹脂層上に貼り付け、導体箔又はキャリアフィルム、伸縮性樹脂層及び保護フィルムからなる3層構造の積層フィルムとしてもよい。 If necessary, a protective film may be attached on the stretchable resin layer to form a laminated film having a three-layer structure including a conductor foil or a carrier film, a stretchable resin layer, and a protective film.
 保護フィルムの材質としては、特に制限はなく、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;及びポリエチレン、ポリプロピレン等のポリオレフィンが挙げられる。これらの中で、柔軟性及び強靭性の観点から、ポリエチレンテレフタレート等のポリエステル;及びポリエチレン、ポリプロピレン等のポリオレフィンであることが好ましい。伸縮性樹脂層との剥離性向上の観点から、シリコーン系化合物、含フッ素化合物等により離型処理が施されていてもよい。 The material of the protective film is not particularly limited, and examples thereof include polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; and polyolefins such as polyethylene and polypropylene. Among these, from the viewpoints of flexibility and toughness, polyesters such as polyethylene terephthalate; and polyolefins such as polyethylene and polypropylene are preferable. From the viewpoint of improving releasability from the stretchable resin layer, a release treatment may be performed with a silicone compound, a fluorine-containing compound, or the like.
 保護フィルムの厚さは、目的とする柔軟性により適宜変えてよいが、10~250μmであることが好ましい。厚さが10μm以上であるとフィルム強度が十分である傾向があり、250μm以下であると十分な柔軟性が得られる傾向がある。以上の観点から、厚さは15~200μmであることがより好ましく、20~150μmであることが更に好ましい。 The thickness of the protective film may be appropriately changed depending on the intended flexibility, but is preferably 10 to 250 μm. When the thickness is 10 μm or more, the film strength tends to be sufficient, and when it is 250 μm or less, sufficient flexibility tends to be obtained. From the above viewpoint, the thickness is more preferably 15 to 200 μm, and further preferably 20 to 150 μm.
 次に、一実施形態に係る配線基板の製造方法について説明する。一実施形態に係る配線基板は、例えば、伸縮性樹脂層と伸縮性樹脂層上に積層された導体箔とを有する積層板を準備する工程と、伸縮性樹脂層にビアホールを形成する工程と、ビアホールの内壁面に銅めっき層等のめっき層を形成する工程と、導体箔上にエッチングレジストを形成する工程と、エッチングレジストを露光し、露光後の上記エッチングレジストを現像して、導体箔の一部を覆うレジストパターンを形成する工程と、レジストパターンによって覆われていない部分の導体膜を除去する工程と、レジストパターンを除去する工程と、を含む方法により、製造することができる。 Next, a method for manufacturing a wiring board according to an embodiment will be described. The wiring board according to one embodiment includes, for example, a step of preparing a laminate having a stretchable resin layer and a conductive foil laminated on the stretchable resin layer, a step of forming a via hole in the stretchable resin layer, A step of forming a plating layer such as a copper plating layer on the inner wall surface of the via hole; a step of forming an etching resist on the conductive foil; and exposing the etching resist; developing the etched resist after the exposure; It can be manufactured by a method including a step of forming a resist pattern covering a part, a step of removing a portion of the conductor film not covered with the resist pattern, and a step of removing the resist pattern.
 伸縮性樹脂層及び導体箔を有する積層板を得る手法としては、どのような手法を用いてもよいが、例えば、伸縮性樹脂層を形成するための樹脂組成物のワニスを導体箔に塗工する方法、及び、キャリアフィルム上に形成された伸縮性樹脂層に導体箔を真空プレス又はラミネータ等により積層する方法がある。伸縮性樹脂層を形成するための樹脂組成物が架橋成分を含有する場合、加熱又は光照射によって架橋成分の架橋反応(硬化反応)を進行させることで、伸縮性樹脂層が形成される。 As a method for obtaining a laminate having a stretchable resin layer and a conductor foil, any method may be used. For example, a varnish of a resin composition for forming a stretchable resin layer is applied to a conductor foil. And a method of laminating a conductive foil on a stretchable resin layer formed on a carrier film by a vacuum press or a laminator. When the resin composition for forming the stretchable resin layer contains a crosslinking component, the stretchable resin layer is formed by advancing a crosslinking reaction (curing reaction) of the crosslinking component by heating or light irradiation.
 キャリアフィルム上の伸縮性樹脂層を導体箔に積層する手法としては、どのようなものでもよいが、例えば、ロールラミネータ、真空ラミネータ、真空プレス等が用いられる。生産効率の観点から、ロールラミネータ又は真空ラミネータを用いて積層することが好ましい。 Any method may be used for laminating the stretchable resin layer on the carrier film on the conductor foil. For example, a roll laminator, a vacuum laminator, a vacuum press, or the like is used. From the viewpoint of production efficiency, it is preferable to laminate using a roll laminator or a vacuum laminator.
 伸縮性樹脂層の乾燥後の厚さは、特に限定されないが、通常は5~1000μmである。上記の範囲であると、伸縮性基材の十分な強度が得られ易く、且つ乾燥が十分に行えるため樹脂フィルム中の残留溶媒量を低減できる。 The thickness of the stretchable resin layer after drying is not particularly limited, but is usually 5 to 1000 μm. Within the above range, sufficient strength of the stretchable base material can be easily obtained, and since the drying can be sufficiently performed, the amount of residual solvent in the resin film can be reduced.
 伸縮性樹脂層の導体箔とは反対側の面に更に導体箔を積層することにより、伸縮性樹脂層の両面上に導体箔が形成された積層板を作製してもよい。伸縮性樹脂層の両面上に導体箔を設けることにより、硬化時の積層板の反りを抑制することができる。 A laminate having conductor foils formed on both sides of the stretchable resin layer may be produced by further laminating a conductor foil on the surface of the stretchable resin layer opposite to the conductor foil. By providing the conductive foil on both surfaces of the stretchable resin layer, it is possible to suppress the warp of the laminated board during curing.
 ビアホールの形成は、ドリル加工又はレーザ加工により容易に形成することができる。ドリル加工では貫通スルーホール形状を形成することができる。一方、レーザ加工では貫通スルーホール形状の他、ブラインドビア形状を形成することができ、配線設計の裕度をより高くすることができる。 The via hole can be easily formed by drilling or laser processing. In drilling, a through-hole shape can be formed. On the other hand, in laser processing, a blind via shape can be formed in addition to a through-through hole shape, and the tolerance of wiring design can be further increased.
 ビアホールの形状及び直径によって、ドリル加工又はレーザ加工を選択することが好ましい。貫通ビア形成を行う場合はドリル加工を用い、非貫通のブラインドビア形状を形成する場合はレーザ加工を用いることが好ましい。 It is preferable to select drilling or laser processing depending on the shape and diameter of the via hole. It is preferable to use drilling when forming through vias and laser processing when forming non-penetrating blind via shapes.
 銅めっき層等のめっき層は、公知の方法により形成することができる。例えば、ビアホールの内壁面にパラジウムを付着させるめっき触媒付与処理を行った後、無電解めっき液に浸漬してビアホールの内壁面全面に厚さ0.3~1.5μmの無電解めっき層(導体層)を析出させる。必要に応じて、電解めっき(電気めっき)を更に行って、必要な厚さに調整することができる。無電解めっきに用いる無電解めっき液としては、公知の無電解めっき液を用いることが可能であり、特に制限はない。また、電解めっきについても公知の方法を用いることが可能であり、特に制限はない。これらのめっき(無電解めっき、電解めっき)としては、コスト面及び抵抗値の観点から、銅めっきが好ましい。 A plating layer such as a copper plating layer can be formed by a known method. For example, after applying a plating catalyst for depositing palladium on the inner wall surface of a via hole, the electroless plating layer (conductor) having a thickness of 0.3 to 1.5 μm is immersed on the entire inner wall surface of the via hole by immersion in an electroless plating solution. Layer). If necessary, electrolytic plating (electroplating) can be further performed to adjust to a required thickness. As an electroless plating solution used for electroless plating, a known electroless plating solution can be used, and there is no particular limitation. Moreover, a well-known method can be used also about electrolytic plating, and there is no restriction | limiting in particular. As these plating (electroless plating, electrolytic plating), copper plating is preferable from the viewpoint of cost and resistance.
 積層板(配線基板形成用積層板)の導体箔に配線パターンを形成させる手法としては、一般的にエッチング等を用いた手法が用いられる。例えば導体箔として銅箔を用いた場合、エッチング液としては、例えば濃硫酸と過酸化水素水との混合溶液、塩化第二鉄溶液等を使用できる。なお、配線パターンと共に、ビアホールの周囲のランド部も形成することができる。 As a technique for forming a wiring pattern on a conductive foil of a laminated board (wiring board forming laminated board), a technique using etching or the like is generally used. For example, when copper foil is used as the conductor foil, a mixed solution of concentrated sulfuric acid and hydrogen peroxide, a ferric chloride solution, or the like can be used as the etching solution. A land portion around the via hole can be formed together with the wiring pattern.
 エッチングに用いるエッチングレジストとしては、例えばフォテックH-7025(日立化成(株)製、商品名)、フォテックH-7030(日立化成(株)製、商品名)、及びX-87(太陽ホールディングス(株)製、商品名)が挙げられる。エッチングレジストは、配線パターンの形成の後、通常、除去される。 Etching resists used for etching include, for example, Fotec H-7005 (trade name, manufactured by Hitachi Chemical Co., Ltd.), Fotech H-7030 (trade name, manufactured by Hitachi Chemical Co., Ltd.), and X-87 (Taiyo Holdings Co., Ltd.). ), Product name). The etching resist is usually removed after the wiring pattern is formed.
 配線基板に各種の電子素子を搭載することにより、ストレッチャブルデバイスを得ることができる。 A stretchable device can be obtained by mounting various electronic elements on a wiring board.
 本開示について以下の参考例を挙げて更に具体的に説明する。ただし、本開示はこれらの参考例に限定されるものではない。 This disclosure will be described more specifically with reference to the following reference example. However, the present disclosure is not limited to these reference examples.
検討1
1-1.伸縮性樹脂層形成用のワニス調製
[樹脂ワニスA]
 (A)成分として水添型スチレンブタジエンゴム(旭化成(株)製、タフテックP1500、商品名)30gと、トルエン70gとを攪拌しながら混合し、樹脂ワニスAを得た。
[樹脂ワニスB]
 (A)成分として水添型スチレンブタジエンゴム(JSR(株)製、ダイナロン2324P、商品名)20g、(B)成分としてブタンジオールアクリレート(日立化成(株)製、ファンクリルFA-124AS、商品名)5g、及び(C)成分としてビス(2、4、6-トリメチルベンゾイル)フェニルホスフィンオキシド(BASF(株)製、イルガキュア819、商品名)0.4gと、溶剤としてトルエン15gとを撹拌しながら混合し、樹脂ワニスBを得た。
[樹脂ワニスC]
 (A)成分としてアクリルポリマ((株)クラレ製、クラリティLA2140、商品名)20g、(B)成分として脂肪鎖変性エポキシ樹脂(DIC(株)製、EXA4816、商品名)5g、及び(C)成分として2-フェニルイミダゾール(四国化成(株)製、2PZ、商品名)0.5gと、溶剤としてメチルエチルケトン15gとを撹拌しながら混合し、樹脂ワニスCを得た。
[樹脂ワニスD]
 ビフェニルアラルキル型エポキシ樹脂(日本化薬(株)製、NC-3000H、商品名)50gに、メチルエチルケトン25.0gを混合した。そこにフェノールノボラック型フェノール樹脂(DIC(株)製、TD2131、商品名)20gを加え、更に硬化促進剤として2-フェニルイミダゾール(四国化成工業(株)製、2PZ、商品名)0.15gを添加した。その後、メチルエチルケトンで希釈し、樹脂ワニスDを得た。
Study 1
1-1. Preparation of varnish for forming elastic resin layer [Resin varnish A]
As component (A), 30 g of hydrogenated styrene butadiene rubber (Asahi Kasei Co., Ltd., Tuftec P1500, trade name) and 70 g of toluene were mixed with stirring to obtain resin varnish A.
[Resin varnish B]
As component (A), hydrogenated styrene-butadiene rubber (manufactured by JSR Corporation, Dynalon 2324P, trade name) 20 g, as component (B), butanediol acrylate (manufactured by Hitachi Chemical Co., Ltd., FANCL FA-124AS, trade name) ) 5 g, and 0.4 g of bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (manufactured by BASF Corp., Irgacure 819, trade name) as component (C) and 15 g of toluene as a solvent while stirring. The resin varnish B was obtained by mixing.
[Resin varnish C]
(A) Acrylic polymer (manufactured by Kuraray Co., Ltd., Clarity LA2140, trade name) 20 g as component (A), aliphatic chain modified epoxy resin (DIC Corporation, EXA4816, trade name) 5 g as component (B), and (C) Resin varnish C was obtained by mixing 0.5 g of 2-phenylimidazole (manufactured by Shikoku Kasei Co., Ltd., 2PZ, trade name) as a component and 15 g of methyl ethyl ketone as a solvent while stirring.
[Resin varnish D]
25.0 g of methyl ethyl ketone was mixed with 50 g of a biphenyl aralkyl type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., NC-3000H, trade name). Thereto was added 20 g of a phenol novolac-type phenolic resin (manufactured by DIC Corporation, TD2131, trade name), and 0.15 g of 2-phenylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd., 2PZ, trade name) as a curing accelerator. Added. Then, the resin varnish D was obtained by diluting with methyl ethyl ketone.
1-2.導体層付積層板の作製
参考例1-1
[伸縮性樹脂層を有する積層フィルム]
 キャリアフィルムとして離型処理ポリエチレンテレフタレート(PET)フィルム(帝人デュポンフィルム(株)製「ピューレックスA31」、厚さ25μm)を準備した。このPETフィルムの離型処理面上にナイフコータ((株)康井精機製「SNC-350」を用いて樹脂ワニスAを塗布した。塗膜を乾燥機((株)二葉科学製「MSO-80TPS」)中100℃で20分乾燥して、塗工後の厚さが100μmである伸縮性樹脂層を形成させた。形成された伸縮性樹脂層に、キャリアフィルムと同じ離型処理PETフィルムを、離型処理面が伸縮性樹脂層側になる向きで保護フィルムとして貼付けて、積層フィルムAを得た。
[導体層付積層板]
 積層フィルムAの保護フィルムを剥離し、銅箔(日本電解(株)製、YGP-12、商品名)の粗化面側に積層フィルムAの伸縮性樹脂層を重ねた。真空加圧式ラミネータ(ニチゴー・モートン(株)製「V130」)を用いて、圧力0.5MPa、温度90℃及び加圧時間60秒の条件で圧着して、導体層付積層板を作製した。
1-2. Reference Example 1-1 for Producing Laminate with Conductive Layer 1-1
[Laminated film having stretchable resin layer]
A release-treated polyethylene terephthalate (PET) film (“Purex A31” manufactured by Teijin DuPont Films Ltd., thickness 25 μm) was prepared as a carrier film. Resin varnish A was applied onto the release-treated surface of this PET film using a knife coater ("SNC-350" manufactured by Yasui Seiki Co., Ltd.) The coating film was dried ("MSO-80TPS" manufactured by Futaba Kagaku Co., Ltd.). ]) Was dried at 100 ° C. for 20 minutes to form a stretchable resin layer having a thickness of 100 μm after coating. On the formed stretchable resin layer, the same release treatment PET film as the carrier film was formed. The laminated film A was obtained by pasting as a protective film in such a direction that the release treatment surface was on the stretchable resin layer side.
[Laminated board with conductor layer]
The protective film of the laminated film A was peeled off, and the stretchable resin layer of the laminated film A was laminated on the roughened surface side of a copper foil (manufactured by Nippon Electrolytic Co., Ltd., YGP-12, trade name). Using a vacuum pressure laminator (“V130” manufactured by Nichigo-Morton Co., Ltd.), pressure-bonding was performed under the conditions of a pressure of 0.5 MPa, a temperature of 90 ° C., and a pressurization time of 60 seconds to produce a laminate with a conductor layer.
参考例1-2
 樹脂ワニスAを樹脂ワニスBに、銅箔を別の銅箔(JX金属株式会社製、BHY-82F-HA-V2-12μm、商品名)に変更したこと以外は参考例1-1と同様にして、銅箔及び未硬化の樹脂層を有する積層体を得た。その後、紫外線露光機(ミカサ(株)製「ML-320FSAT」)によって紫外線(波長365nm)を2000mJ/cm照射することで樹脂層を硬化させて、導体層付積層板を得た。
Reference Example 1-2
Except for changing resin varnish A to resin varnish B and copper foil to another copper foil (BHY-82F-HA-V2-12 μm, trade name, manufactured by JX Metals Co., Ltd.), the same as Reference Example 1-1 Thus, a laminate having a copper foil and an uncured resin layer was obtained. Thereafter, the resin layer was cured by irradiating 2000 mJ / cm 2 of ultraviolet rays (wavelength 365 nm) with an ultraviolet exposure machine (“ML-320FSAT” manufactured by Mikasa Co., Ltd.) to obtain a laminate with a conductor layer.
参考例1-3
 樹脂ワニスAを樹脂ワニスCに変更したこと以外は参考例1-1と同様にして、銅箔及び未硬化の樹脂層を有する積層体を得た。その後、乾燥機を用いて180℃1時間の条件で樹脂層を硬化させて、導体層付積層板を得た。
Reference Example 1-3
A laminate having a copper foil and an uncured resin layer was obtained in the same manner as in Reference Example 1-1 except that the resin varnish A was changed to the resin varnish C. Then, the resin layer was hardened on 180 degreeC 1 hour conditions using the dryer, and the laminated board with a conductor layer was obtained.
比較参考例1-1
 樹脂ワニスAを樹脂ワニスDに変更したこと以外は参考例1-1と同様にして、銅箔及び未硬化の樹脂層を有する積層体を得た。その後、乾燥機を用いて180℃1時間の条件で樹脂層を硬化させて、導体層付積層板を得た。
Comparative Reference Example 1-1
A laminate having a copper foil and an uncured resin layer was obtained in the same manner as in Reference Example 1-1 except that the resin varnish A was changed to the resin varnish D. Then, the resin layer was hardened on 180 degreeC 1 hour conditions using the dryer, and the laminated board with a conductor layer was obtained.
[配線基板の作製とその評価]
 図3に示すような、伸縮性樹脂層3及び伸縮性樹脂層3上に形成された波型パターンを有する導体箔5を導体層として有する試験用の配線基板1を作製した。まず、各導体層付積層板の導体層上にエッチングレジスト(日立化成(株)製、Photec RY-5325、商品名)をロールラミネータで貼着し、そこに波型パターンを形成したフォトツールを密着させた。エッチングレジストを、オーク製作所社製EXM-1201型露光機を使用して、50mJ/cmのエネルギー量で露光した。次いで、30℃の1質量%炭酸ナトリウム水溶液で、240秒間スプレー現像を行い、エッチングレジストの未露光部を溶解させ、波型の形状を有するレジストパターンを形成した。次いで、エッチング液により、レジストパターンによって覆われていない部分の銅箔を除去した。その後、はく離液によりエッチングレジストを除去し、配線幅が50μmで所定の方向Xに沿って蛇行する波型の配線パターンを形成している導体箔5を伸縮性樹脂層3上に有する配線基板1を得た。
 得られた配線基板をXの方向に歪み10%まで引張変形させ、元に戻したときの、伸縮性樹脂層及び波型の配線パターンを観察した。伸縮性樹脂層及び配線パターンについては、伸張時に破断を生じなかった場合を「A」、破断を生じた場合を「C」とした。
[Production and evaluation of wiring board]
As shown in FIG. 3, a test wiring board 1 having a stretchable resin layer 3 and a conductive foil 5 having a corrugated pattern formed on the stretchable resin layer 3 as a conductor layer was produced. First, an etching resist (manufactured by Hitachi Chemical Co., Ltd., Photoc RY-5325, product name) is attached to the conductor layer of each laminated board with a conductor layer with a roll laminator, and a photo tool having a corrugated pattern formed thereon is provided. Adhered. The etching resist was exposed with an energy amount of 50 mJ / cm 2 using an EXM-1201 type exposure machine manufactured by Oak Manufacturing Co., Ltd. Next, spray development was performed for 240 seconds with a 1% by mass aqueous sodium carbonate solution at 30 ° C. to dissolve the unexposed portions of the etching resist, thereby forming a resist pattern having a wave shape. Subsequently, the copper foil of the part which is not covered with the resist pattern was removed with the etching liquid. Thereafter, the etching resist is removed by a peeling solution, and the wiring board 1 having the conductive foil 5 on the stretchable resin layer 3 having a wiring width of 50 μm and forming a wavy wiring pattern meandering along a predetermined direction X. Got.
When the obtained wiring board was pulled and deformed in the X direction to a strain of 10% and returned to its original state, the stretchable resin layer and the corrugated wiring pattern were observed. With respect to the stretchable resin layer and the wiring pattern, “A” indicates that no breakage occurred during extension, and “C” indicates that the breakage occurred.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 参考例1-1~1-3及び比較参考例1-1の評価結果を表1に示す。参考例1-1~1-3の導体層付積層板によって形成された波型の配線パターンを有する配線基板においては、10%伸張時も伸縮性樹脂層が破断せず、波型の配線パターンの外観も問題ないことが分かった。一方で、比較参考例1-1では、樹脂層が伸縮性を有しないため、10%伸張前に樹脂層が破断してしまい、配線も同時に破断してしまうことがわかった。上記参考例1-1~1-3の導体層付積層板によって形成された配線基板にビアホールを設けることにより、高い伸縮性を有すると共に、積層時に層間接続が可能な配線基板を得ることができる。 Table 1 shows the evaluation results of Reference Examples 1-1 to 1-3 and Comparative Reference Example 1-1. In the wiring board having the corrugated wiring pattern formed by the laminated plates with the conductor layers of Reference Examples 1-1 to 1-3, the stretchable resin layer does not break even when stretched by 10%, and the corrugated wiring pattern It turned out that there was no problem with the appearance. On the other hand, in Comparative Reference Example 1-1, since the resin layer did not have elasticity, it was found that the resin layer was broken before stretching by 10%, and the wiring was also broken at the same time. By providing a via hole in the wiring board formed of the laminated board with the conductor layer of Reference Examples 1-1 to 1-3, it is possible to obtain a wiring board having high stretchability and capable of interlayer connection during lamination. .
検討2
参考例2-1
[樹脂ワニス]
 (A)成分として無水マレイン酸変性スチレンエチレンブタジエンゴム(KRATON(株)製、FG1924GT、商品名)10g、(B)成分としてジシクロペンタジエン型エポキシ樹脂(DIC(株)製、EPICLON HP7200H、商品名)2.5g、及び(C)成分(硬化促進剤)として1-ベンジル-2-メチルイミダゾール(四国化成(株)製、1B2MZ、商品名)0.38gと、トルエン50gとを撹拌しながら混合して、樹脂ワニスを得た。
Study 2
Reference Example 2-1
[Resin varnish]
(A) Maleic anhydride-modified styrene ethylene butadiene rubber (manufactured by KRATON Co., Ltd., FG1924GT, trade name) 10 g, (B) component as dicyclopentadiene type epoxy resin (DIC Corporation, EPICLON HP7200H, trade name) ) 2.5 g and 0.38 g of 1-benzyl-2-methylimidazole (manufactured by Shikoku Kasei Co., Ltd., 1B2MZ, trade name) as component (C) (curing accelerator) and 50 g of toluene are mixed with stirring. Thus, a resin varnish was obtained.
[積層フィルム]
 キャリアフィルムとして離型処理ポリエチレンテレフタレート(PET)フィルム(帝人デュポンフィルム(株)製「ピューレックスA31」、厚さ25μm)を準備した。このPETフィルムの離型処理面上にナイフコータ((株)康井精機製「SNC-350」を用いて上記樹脂ワニスを塗布した。塗膜を乾燥機((株)二葉科学製「MSO-80TPS」)中で100℃で20分の加熱により乾燥して、厚さ100μmの樹脂層を形成させた。形成された樹脂層に、キャリアフィルムと同じ離型処理PETフィルムを、離型処理面が樹脂層側になる向きで保護フィルムとして貼付けて、積層フィルムを得た。
[Laminated film]
A release-treated polyethylene terephthalate (PET) film (“Purex A31” manufactured by Teijin DuPont Films Ltd., thickness 25 μm) was prepared as a carrier film. The resin varnish was applied onto the release-treated surface of this PET film using a knife coater ("SNC-350" manufactured by Yasui Seiki Co., Ltd.) The coating film was dried ("MSO-80TPS" manufactured by Futaba Kagaku Co., Ltd.). )) Was dried by heating at 100 ° C. for 20 minutes to form a resin layer having a thickness of 100 μm. On the formed resin layer, the same release treatment PET film as that of the carrier film was formed. A laminated film was obtained by pasting as a protective film in the direction toward the resin layer side.
[導体基板の作製]
 積層フィルムの保護フィルムを剥離し、露出した樹脂層に、表面粗さRaが1.5μmの粗化面を有する電解銅箔(古河電気工業(株)製、F2-WS-12、商品名)を、粗化面が樹脂層側になる向きで重ねた。その状態で、真空加圧式ラミネータ(ニッコー・マテリアルズ(株)製「V130」)を用いて、圧力0.5MPa、温度90℃及び加圧時間60秒の条件で電解銅箔を樹脂層にラミネートした。その後、乾燥機((株)二葉科学製「MSO-80TPS」)中、180℃で60分の加熱により、樹脂層の硬化物である伸縮性樹脂層と、電解銅箔とを有する導体基板を得た。
[Preparation of conductor substrate]
An electrolytic copper foil having a roughened surface with a surface roughness Ra of 1.5 μm on the exposed resin layer after peeling off the protective film of the laminated film (F2-WS-12, trade name, manufactured by Furukawa Electric Co., Ltd.) Were stacked in such a direction that the roughened surface was on the resin layer side. In that state, an electrolytic copper foil is laminated to the resin layer under the conditions of a pressure of 0.5 MPa, a temperature of 90 ° C. and a pressurization time of 60 seconds using a vacuum pressure laminator (“V130” manufactured by Nikko Materials Co., Ltd.). did. Thereafter, a conductive substrate having a stretchable resin layer, which is a cured product of the resin layer, and an electrolytic copper foil is heated by heating at 180 ° C. for 60 minutes in a dryer (“MSO-80TPS” manufactured by Futaba Kagaku Co., Ltd.). Obtained.
参考例2-2
 (A)成分として無水マレイン酸変性スチレンエチレンブタジエンゴム(KRATON(株)製、FG1924GT、商品名)10g、(B)成分としてジシクロペンタジエン型エポキシ樹脂(DIC(株)製、EPICLON HP7200H、商品名)2.5g、(C)成分(硬化促進剤)として1-ベンジル-2-メチルイミダゾール(四国化成(株)製、1B2MZ、商品名)0.38g、フェノール系酸化防止剤((株)ADEKA製、AO-60、商品名)0.1g、及びホスファイト酸化防止剤((株)ADEKA製、2112、商品名)0.1gと、トルエン50gとを撹拌しながら混合して、樹脂ワニスを得た。得られた樹脂ワニスを用い、参考例2-1と同様にして樹脂層を有する積層フィルム、及び導体基板を作製した。
Reference Example 2-2
(A) Maleic anhydride-modified styrene ethylene butadiene rubber (manufactured by KRATON Co., Ltd., FG1924GT, trade name) 10 g, (B) component as dicyclopentadiene type epoxy resin (DIC Corporation, EPICLON HP7200H, trade name) 2.5 g, 1-benzyl-2-methylimidazole (manufactured by Shikoku Kasei Co., Ltd., 1B2MZ, trade name) 0.38 g as component (C) (curing accelerator), phenolic antioxidant (ADEKA Corporation) Made of AO-60, trade name) 0.1 g, and phosphite antioxidant (produced by ADEKA, 2112, trade name) 0.1 g and toluene 50 g were mixed with stirring to obtain a resin varnish. Obtained. Using the obtained resin varnish, a laminated film having a resin layer and a conductor substrate were produced in the same manner as in Reference Example 2-1.
評価
[耐熱性試験]
 積層フィルムを180℃で60分加熱することにより樹脂層を硬化させて、伸縮性樹脂層を形成させた。キャリアフィルム及び保護フィルムを除去してから、伸縮性樹脂層を窒素リフローシステム(田村製作所(株)製、TNV-EN)を用いて、IPC/JEDEC J-STD-020に準拠する図4の温度プロファイルで加熱処理する耐熱性試験を行った。耐熱性試験前後の伸縮性樹脂層の伸び率及び引張弾性率を測定した。導体基板も同様の耐熱性試験に供し、耐熱性試験前後の90度ピール強度を測定した。
Evaluation [heat resistance test]
The laminated film was heated at 180 ° C. for 60 minutes to cure the resin layer, thereby forming a stretchable resin layer. After removing the carrier film and the protective film, the temperature of FIG. 4 conforming to IPC / JEDEC J-STD-020 is applied to the stretchable resin layer using a nitrogen reflow system (Tamura Seisakusho Co., Ltd., TNV-EN). A heat resistance test in which heat treatment was performed with a profile was performed. The elongation and tensile modulus of the stretchable resin layer before and after the heat resistance test were measured. The conductor substrate was also subjected to the same heat resistance test, and the 90 degree peel strength before and after the heat resistance test was measured.
[引張弾性率及び破断伸び率]
 長さ40mm、幅10mmの短冊状の伸縮性樹脂層の試験片を準備した。この試験片の引張試験をオートグラフ((株)島津製作所製「EZ-S」)を用いて行い、応力-ひずみ曲線を得た。得られた応力-ひずみ曲線から、引張弾性率及び破断伸び率を求めた。引張試験は、チャック間距離20mm、引張速度50mm/分の条件で行った。引張弾性率は、応力0.5~1.0Nの範囲の応力-ひずみ曲線の傾きから求めた。試験片が破断した時点のひずみを破断伸び率として記録した。
[Tensile modulus and elongation at break]
A test piece of a strip-shaped stretchable resin layer having a length of 40 mm and a width of 10 mm was prepared. A tensile test of this test piece was performed using an autograph (“EZ-S” manufactured by Shimadzu Corporation) to obtain a stress-strain curve. From the obtained stress-strain curve, the tensile modulus and elongation at break were determined. The tensile test was performed under the conditions of a distance between chucks of 20 mm and a tensile speed of 50 mm / min. The tensile elastic modulus was obtained from the slope of the stress-strain curve in the range of 0.5 to 1.0 N stress. The strain at the time when the test piece broke was recorded as the elongation at break.
[密着性(90度ピール強度)]
 導体基板から剥離角度90度で銅箔を剥離する剥離試験によって、銅箔と伸縮性樹脂層との90度ピール強度を測定した。
[Adhesion (90 degree peel strength)]
The 90 degree peel strength between the copper foil and the stretchable resin layer was measured by a peel test in which the copper foil was peeled from the conductor substrate at a peel angle of 90 degrees.
[タック]
 積層フィルムを180℃で60分加熱することにより樹脂層を硬化し、伸縮性樹脂層を形成させた。硬化後の積層フィルムからキャリアフィルム及び保護フィルムを除去し、長さ70mm、幅20mmの積層フィルムの試験片を準備した。露出した樹脂層の表面のタックを、タッキング試験機((株)レスカ製「TACII」)を用いて測定した。測定条件は、定荷重モード、浸没速度120mm/分、テスト速度600mm/分、荷重100gf、荷重保持時間1s、温度30℃に設定した。
[tack]
The laminated film was heated at 180 ° C. for 60 minutes to cure the resin layer and form a stretchable resin layer. The carrier film and the protective film were removed from the laminated film after curing, and a test piece of a laminated film having a length of 70 mm and a width of 20 mm was prepared. The tack of the surface of the exposed resin layer was measured using a tacking tester (“TACII” manufactured by Resuka Co., Ltd.). The measurement conditions were set to a constant load mode, an immersion speed of 120 mm / min, a test speed of 600 mm / min, a load of 100 gf, a load holding time of 1 s, and a temperature of 30 ° C.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、参考例2-1及び参考例2-2の伸縮性樹脂層は、耐熱性試験後も、優れた伸縮性、及び銅箔に対する高い密着性を維持した。また、樹脂層のタックは適度に低く、樹脂層の取り扱い性も優れていた。上記参考例2-1~2-2の導体基板に配線パターン及びビアホールを形成することにより、高い伸縮性を有し、積層時に層間接続が可能であると共に、耐熱性試験後も、優れた伸縮性、及び銅箔と伸縮性樹脂層との優れた密着性を維持することができ、伸縮性樹脂層のタックが適度に低い、配線基板を得ることができる。 As shown in Table 2, the stretchable resin layers of Reference Example 2-1 and Reference Example 2-2 maintained excellent stretchability and high adhesion to the copper foil even after the heat resistance test. Further, the tackiness of the resin layer was moderately low, and the handleability of the resin layer was excellent. By forming wiring patterns and via holes in the conductor substrates of Reference Examples 2-1 and 2-2 above, it has high stretchability and can be connected between layers at the time of lamination, and excellent stretchability even after a heat resistance test. And excellent adhesion between the copper foil and the stretchable resin layer can be maintained, and a wiring board having a reasonably low tack of the stretchable resin layer can be obtained.
 10…伸縮性樹脂層、20…導体箔、30…ビアホール、40…無電解銅めっき層、50…ランド部、100…配線基板。 DESCRIPTION OF SYMBOLS 10 ... Stretchable resin layer, 20 ... Conductive foil, 30 ... Via hole, 40 ... Electroless copper plating layer, 50 ... Land part, 100 ... Wiring board.

Claims (16)

  1.  伸縮性樹脂層と、
     前記伸縮性樹脂層上に設けられ、配線パターンを形成している導体箔と、
     前記伸縮性樹脂層に設けられたビアホールと、
    を有する、配線基板。
    An elastic resin layer;
    Conductor foil provided on the stretchable resin layer and forming a wiring pattern;
    Via holes provided in the stretchable resin layer;
    Having a wiring board.
  2.  前記導体箔が銅箔である、請求項1に記載の配線基板。 The wiring board according to claim 1, wherein the conductive foil is a copper foil.
  3.  前記ビアホールがレーザ又はドリルにより形成されたものである、請求項1又は2に記載の配線基板。 The wiring board according to claim 1 or 2, wherein the via hole is formed by a laser or a drill.
  4.  前記ビアホールの直径が10~500μmである、請求項1~3のいずれか一項に記載の配線基板。 4. The wiring board according to claim 1, wherein the via hole has a diameter of 10 to 500 μm.
  5.  前記ビアホールの内壁面に設けられた銅めっき層を有する、請求項1~4のいずれか一項に記載の配線基板。 The wiring board according to any one of claims 1 to 4, further comprising a copper plating layer provided on an inner wall surface of the via hole.
  6.  前記伸縮性樹脂層上において前記ビアホールの周囲に設けられ、前記銅めっき層と接続されたランド部を有し、
     前記ランド部の前記ビアホールの端面からの幅が10μm以上である、請求項5に記載の配線基板。
    Provided around the via hole on the stretchable resin layer, and has a land portion connected to the copper plating layer,
    The wiring board according to claim 5, wherein a width of the land portion from an end face of the via hole is 10 μm or more.
  7.  前記伸縮性樹脂層が、(A)ゴム成分を含有し、
     前記ゴム成分が、アクリルゴム、イソプレンゴム、ブチルゴム、スチレンブタジエンゴム、ブタジエンゴム、アクリロニトリルブタジエンゴム、シリコーンゴム、ウレタンゴム、クロロプレンゴム、エチレンプロピレンゴム、フッ素ゴム、硫化ゴム、エピクロルヒドリンゴム、及び塩素化ブチルゴムからなる群より選ばれる少なくとも1種を含む、請求項1~6のいずれか一項に記載の配線基板。
    The stretchable resin layer contains (A) a rubber component,
    The rubber component is acrylic rubber, isoprene rubber, butyl rubber, styrene butadiene rubber, butadiene rubber, acrylonitrile butadiene rubber, silicone rubber, urethane rubber, chloroprene rubber, ethylene propylene rubber, fluorine rubber, sulfurized rubber, epichlorohydrin rubber, and chlorinated butyl rubber. The wiring board according to any one of claims 1 to 6, comprising at least one selected from the group consisting of:
  8.  前記伸縮性樹脂層が、(A)ゴム成分を含有する樹脂組成物の硬化物を含む、請求項1~7のいずれか一項に記載の配線基板。 The wiring board according to any one of claims 1 to 7, wherein the stretchable resin layer comprises (A) a cured product of a resin composition containing a rubber component.
  9.  前記(A)ゴム成分が、架橋基を有するゴムを含む、請求項8に記載の配線基板。 The wiring board according to claim 8, wherein the rubber component (A) includes a rubber having a crosslinking group.
  10.  前記架橋基が、酸無水物基又はカルボキシル基のうち少なくとも一方である、請求項9に記載の配線基板。 The wiring board according to claim 9, wherein the cross-linking group is at least one of an acid anhydride group or a carboxyl group.
  11.  前記樹脂組成物が、(B)架橋成分を更に含有し、
     前記架橋成分が、(メタ)アクリル基、ビニル基、エポキシ基、スチリル基、アミノ基、イソシアヌレート基、ウレイド基、シアネート基、イソシアネート基、及びメルカプト基からなる群より選ばれる少なくとも1種の反応性基を有する化合物である、請求項8~10のいずれか一項に記載の配線基板。
    The resin composition further contains (B) a crosslinking component,
    The crosslinking component is at least one reaction selected from the group consisting of (meth) acrylic groups, vinyl groups, epoxy groups, styryl groups, amino groups, isocyanurate groups, ureido groups, cyanate groups, isocyanate groups, and mercapto groups. The wiring board according to any one of claims 8 to 10, which is a compound having a functional group.
  12.  前記樹脂組成物が、(C)硬化剤又は硬化促進剤のうち少なくとも一方を更に含有する、請求項8~11のいずれか一項に記載の配線基板。 The wiring board according to any one of claims 8 to 11, wherein the resin composition further contains at least one of (C) a curing agent or a curing accelerator.
  13.  前記ゴム成分の含有量が、前記伸縮性樹脂層100質量%に対して30~100質量%である、請求項7~12のいずれか一項に記載の配線基板。 The wiring board according to any one of claims 7 to 12, wherein a content of the rubber component is 30 to 100% by mass with respect to 100% by mass of the stretchable resin layer.
  14.  伸縮性樹脂層と前記伸縮性樹脂層上に積層された導体箔とを有する積層板を準備する工程と、
     前記伸縮性樹脂層にビアホールを形成する工程と、
     前記導体箔上にエッチングレジストを形成する工程と、
     前記エッチングレジストを露光し、露光後の前記エッチングレジストを現像して、前記導体箔の一部を覆うレジストパターンを形成する工程と、
     前記レジストパターンによって覆われていない部分の前記導体箔を除去する工程と、
     前記レジストパターンを除去する工程と、
    を含む、請求項1~13のいずれか一項に記載の配線基板を製造する方法。
    Preparing a laminate having a stretchable resin layer and a conductive foil laminated on the stretchable resin layer;
    Forming via holes in the stretchable resin layer;
    Forming an etching resist on the conductor foil;
    Exposing the etching resist, developing the exposed etching resist to form a resist pattern covering a part of the conductor foil;
    Removing the portion of the conductor foil not covered by the resist pattern;
    Removing the resist pattern;
    The method for manufacturing a wiring board according to any one of claims 1 to 13, comprising:
  15.  前記伸縮性樹脂層にビアホールを形成する工程の後に、前記ビアホールの内壁面に銅めっき層を形成する工程を更に含む、請求項14に記載の方法。 The method according to claim 14, further comprising a step of forming a copper plating layer on an inner wall surface of the via hole after the step of forming a via hole in the stretchable resin layer.
  16.  請求項1~13のいずれか一項に記載の配線基板と、前記配線基板に搭載された電子素子と、を備えるストレッチャブルデバイス。 A stretchable device comprising the wiring board according to any one of claims 1 to 13 and an electronic element mounted on the wiring board.
PCT/JP2017/045535 2016-12-26 2017-12-19 Wiring board, method for producing same and stretchable device WO2018123732A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018559089A JP7124711B2 (en) 2016-12-26 2017-12-19 Wiring board, manufacturing method thereof, and stretchable device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-251400 2016-12-26
JP2016251400 2016-12-26

Publications (1)

Publication Number Publication Date
WO2018123732A1 true WO2018123732A1 (en) 2018-07-05

Family

ID=62707403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045535 WO2018123732A1 (en) 2016-12-26 2017-12-19 Wiring board, method for producing same and stretchable device

Country Status (3)

Country Link
JP (1) JP7124711B2 (en)
TW (1) TWI753071B (en)
WO (1) WO2018123732A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023042491A1 (en) * 2021-09-16 2023-03-23 パナソニックIpマネジメント株式会社 Method for manufacturing stretchable circuit board, metal-clad laminated sheet, metal foil with resin, stretchable circuit board, and stretchable circuit mounted article
JP7426592B2 (en) 2019-03-27 2024-02-02 パナソニックIpマネジメント株式会社 stretchable circuit board

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112771110B (en) * 2018-10-02 2022-11-04 纳美仕有限公司 Resin composition, film, laminate, and semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173371A (en) * 2005-12-20 2007-07-05 Shinko Electric Ind Co Ltd Method of manufacturing flexible wiring board and method of manufacturing electronic component mounting structure
JP2013187380A (en) * 2012-03-08 2013-09-19 Nippon Mektron Ltd Elastic flexible circuit board and manufacturing method of the same
JP2016178121A (en) * 2015-03-18 2016-10-06 タツタ電線株式会社 Stretchable cable and stretchable circuit board

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5465124B2 (en) * 2010-07-30 2014-04-09 東海ゴム工業株式会社 Flexible wiring body
KR102520360B1 (en) * 2014-11-18 2023-04-11 가부시끼가이샤 레조낙 Semiconductor device and manufacturing method therefor, and resin composition for forming flexible resin layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173371A (en) * 2005-12-20 2007-07-05 Shinko Electric Ind Co Ltd Method of manufacturing flexible wiring board and method of manufacturing electronic component mounting structure
JP2013187380A (en) * 2012-03-08 2013-09-19 Nippon Mektron Ltd Elastic flexible circuit board and manufacturing method of the same
JP2016178121A (en) * 2015-03-18 2016-10-06 タツタ電線株式会社 Stretchable cable and stretchable circuit board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7426592B2 (en) 2019-03-27 2024-02-02 パナソニックIpマネジメント株式会社 stretchable circuit board
WO2023042491A1 (en) * 2021-09-16 2023-03-23 パナソニックIpマネジメント株式会社 Method for manufacturing stretchable circuit board, metal-clad laminated sheet, metal foil with resin, stretchable circuit board, and stretchable circuit mounted article

Also Published As

Publication number Publication date
JPWO2018123732A1 (en) 2019-10-31
JP7124711B2 (en) 2022-08-24
TW201828374A (en) 2018-08-01
TWI753071B (en) 2022-01-21

Similar Documents

Publication Publication Date Title
JP6624065B2 (en) Semiconductor device, method of manufacturing the same, and resin composition for forming flexible resin layer
KR102646349B1 (en) Method of manufacturing conductor boards, wiring boards and wiring boards
WO2018123732A1 (en) Wiring board, method for producing same and stretchable device
JP2018116959A (en) Circuit board device
JP7306381B2 (en) Conductor substrate, elastic wiring substrate, and elastic resin film for wiring substrate
TWI751251B (en) Stretchable member with metal foil
JP2021027099A (en) Conductor substrate, stretchable wiring board, and stretchable resin film
JP2017186433A (en) Curable resin sheet, flexible electric circuit body and semiconductor device
WO2018092328A1 (en) Wiring board, and production method therefor
JP7410633B2 (en) Wiring board, stretchable device, laminate for forming wiring board, and method for manufacturing wiring board
JP2019050333A (en) Stretchable device and manufacturing method thereof
JP2019197867A (en) Manufacturing method of conductive substrate, conductive substrate, stretchable wiring substrate, and stretchable device
JP7110711B2 (en) Conductive substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate
JP7439815B2 (en) Wiring board and its manufacturing method
WO2018092329A1 (en) Wiring board, and production method therefor
JP2018103524A (en) Flexible resin film and flexible composite sheet
JP2019160965A (en) Conductor substrate, wiring board, and method for manufacturing them
JP2018116958A (en) Manufacturing method of circuit board device
JP2018111745A (en) Curable resin composition for forming flexible resin, resin film, electric circuit body and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887626

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018559089

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887626

Country of ref document: EP

Kind code of ref document: A1