WO2019216138A1 - 制御装置、コンバータ装置、モータ駆動装置、制御方法及びプログラム - Google Patents

制御装置、コンバータ装置、モータ駆動装置、制御方法及びプログラム Download PDF

Info

Publication number
WO2019216138A1
WO2019216138A1 PCT/JP2019/016451 JP2019016451W WO2019216138A1 WO 2019216138 A1 WO2019216138 A1 WO 2019216138A1 JP 2019016451 W JP2019016451 W JP 2019016451W WO 2019216138 A1 WO2019216138 A1 WO 2019216138A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
terminal
reference signal
switching
voltage
Prior art date
Application number
PCT/JP2019/016451
Other languages
English (en)
French (fr)
Inventor
一允 川島
雄 佐藤
清水 健志
角藤 清隆
貴政 渡辺
高田 潤一
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Publication of WO2019216138A1 publication Critical patent/WO2019216138A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a control device, a converter device, a motor drive device, a control method, and a program.
  • the converter device has a switching frequency that satisfies the harmonic regulation value as a lower limit value, and an upper and lower limit range that has a switching frequency that satisfies the noise regulation value as an upper limit value.
  • a switching frequency that satisfies the harmonic regulation value as a lower limit value
  • an upper and lower limit range that has a switching frequency that satisfies the noise regulation value as an upper limit value.
  • An object of the present invention is to provide a control device, a converter device, a motor drive device, a control method, and a program that can solve the above-described problems.
  • the control device includes a reference signal generation unit that generates a reference signal in which the end timing of one cycle does not coincide with the end timing of the half cycle of the voltage of the AC power supply, and the reference signal A control signal generator for generating a switching signal for controlling the switching circuit of the converter device on the basis of the voltage command having the same period as the voltage of the AC power supply and outputting the generated switching signal to the switching circuit And comprising.
  • the control device includes a voltage command generation unit that generates the voltage command, and the control signal generation unit outputs the voltage command and the reference signal.
  • the switching signal may be generated based on the comparison result.
  • An absolute value processing unit that outputs the generated voltage command to the control signal generating unit, the control signal generating unit based on the voltage command generated by the absolute value processing unit and the reference signal The switching signal may be generated, and the generated switching signal may be output to the switching circuit.
  • a converter device includes: a control device according to any one of the first to third aspects; a switching circuit that operates based on a switching signal generated by the control device; Is provided.
  • the motor drive device converts the converter device according to the fourth aspect and the direct-current voltage supplied from the converter device into a desired alternating-current voltage necessary for the motor that is a load. And an inverter device.
  • the control method generates a reference signal in which the end timing of one cycle does not coincide with the end timing of the half cycle of the voltage of the AC power supply, and the reference signal and the AC Generating a switching signal for controlling the switching circuit of the converter device based on a voltage command having a cycle that matches the voltage of the power supply, and outputting the generated switching signal to the switching circuit.
  • the program generates a reference signal in which the end timing of one cycle does not coincide with the end timing of the half cycle of the voltage of the AC power supply, and the reference signal Generating a switching signal for controlling the switching circuit of the converter device based on a voltage command having a period that matches the voltage of the AC power supply; and outputting the generated switching signal to the switching circuit; Is executed.
  • control device the converter device, the motor drive device, the control method, and the program according to the embodiment of the present invention, it is possible to reduce the beat sound in the converter device.
  • FIG. 1 is a diagram showing a configuration of a motor drive device 1 according to an embodiment of the present invention.
  • the motor drive device 1 is a device that converts AC power from the AC power supply 4 into DC power, converts the DC power into three-phase AC power, and outputs the same to the compressor motor 20.
  • the motor drive device 1 includes a converter device 2 and an inverter device 3.
  • the converter device 2 is a device that converts AC power from the AC power source 4 into DC power and outputs the DC power to the inverter device 3.
  • converter device 2 includes rectifier circuit 5, switching circuit 10 a, switching circuit 10 b, smoothing capacitor 12, converter control unit 15, and input current detection unit 30.
  • Converter device 2 generates a reference signal in which the end timing of one cycle does not coincide with the end timing of the half cycle of the output voltage of AC power supply 4, and does not cause resonance between the output voltage of AC power supply 4 and the reference signal. And reduce the roaring sound.
  • the term “match” includes both complete match and substantially match.
  • the rectifier circuit 5 includes an input terminal, an input-side reference terminal, an output terminal, and an output-side reference terminal.
  • the potential of the reference terminal on the input side is a potential that serves as a reference for the potential at the input terminal.
  • the potential of the reference terminal on the output side is a potential that serves as a reference for the potential at the output terminal.
  • the rectifier circuit 5 converts AC power input from the AC power supply 4 into DC power, and outputs the DC power to the switching circuit 10a and the switching circuit 10b.
  • the switching circuit 10 a causes a current flowing through the smoothing capacitor 12 to flow and generates a voltage input to the inverter device 3.
  • the switching circuit 10a includes a reactor 6a, a diode 7a, and a switching element 8a.
  • Reactor 6a includes a first terminal and a second terminal.
  • the diode 7a includes an anode terminal and a cathode terminal.
  • the switching element 8a includes a first terminal, a second terminal, and a third terminal.
  • the switching element 8a controls a current flowing from the second terminal to the third terminal by switching between a period in which the switching element 8a is turned on and a period in which the switching element 8a is turned off according to a signal received by the first terminal. Change the value of the flowing current.
  • Examples of the switching element 8a include a field effect transistor (FET), an insulated gate bipolar transistor (IGBT), and the like.
  • FET field effect transistor
  • IGBT insulated gate bipolar transistor
  • the switching circuit 10b causes a current to flow through the smoothing capacitor 12 and generates a voltage that is input to the inverter device 3 in the same manner as the switching circuit 10a.
  • the switching circuit 10b includes a reactor 6b, a diode 7b, and a switching element 8b.
  • Reactor 6b includes a first terminal and a second terminal.
  • the diode 7b includes an anode terminal and a cathode terminal. Similar to the switching element 8a, the switching element 8b includes a first terminal, a second terminal, and a third terminal.
  • the switching element 8b controls a current flowing from the second terminal to the third terminal by switching between a period in which the switching element 8b is turned on and a period in which the switching element 8b is turned off in accordance with a signal received by the first terminal. Change the value of the flowing current.
  • Examples of the switching element 8b include a field effect transistor and an IGBT. When the switching element 8b is, for example, an nMOS transistor, the first terminal of the switching element 8b is a gate terminal, the second terminal is a source terminal, and the third terminal is a drain terminal.
  • the smoothing capacitor 12 includes a first terminal and a second terminal. Smoothing capacitor 12 receives current from both switching circuit 10a and switching circuit 10b. That is, the voltage input to the inverter device 3 is determined by the sum of the current values flowing from both the switching circuit 10a and the switching circuit 10b to the smoothing capacitor 12.
  • the input current detection unit 30 includes an input terminal and an output terminal.
  • the input current detection unit 30 detects a return current (hereinafter referred to as “input current”) to the AC power supply 4.
  • the input current detection unit 30 gives the detected input current information to the converter control unit 15.
  • Converter control unit 15 includes a first input terminal, a second input terminal, a first output terminal, and a second output terminal.
  • the converter control unit 15 receives information on the input current from the input current detection unit 30 via the first input terminal, and observes the input current waveform.
  • the converter control unit 15 controls the switching circuit 10a via the first output terminal.
  • the converter control part 15 controls 10b via a 2nd output terminal.
  • the converter control unit 15 identifies a control signal with a small distortion of the input current waveform from the input current waveform when the control signal Sg1 of the switching circuit 10a and the control signal Sg2 of the switching circuit 10b are changed.
  • the AC power supply 4 includes an output terminal and a reference terminal.
  • the AC power supply 4 supplies AC power to the converter device 2.
  • the zero cross detection unit 17 includes a first input terminal, a second input terminal, and an output terminal.
  • the zero cross detection unit 17 detects the zero cross point of the voltage output from the AC power supply 4 via the first input terminal and the second input terminal.
  • the zero cross point indicates the time when the voltage output from the AC power supply 4 crosses zero volts, and this time becomes the reference time in the processing of the motor drive device 1.
  • the zero cross detection unit 17 generates a zero cross signal including information on the zero cross point.
  • the zero cross detection unit 17 outputs a zero cross signal to the converter control unit 15 via the output terminal.
  • the inverter device 3 is a device that converts the DC power output from the converter device 2 into three-phase AC power and outputs it to the compressor motor 20.
  • the inverter device 3 includes a bridge circuit 18 and an inverter control unit 19. As illustrated in FIG. 1, the bridge circuit 18 includes an input terminal, a first output terminal, a second output terminal, a third output terminal, and a reference terminal.
  • the potential of the reference terminal is a potential that serves as a reference for the potential at each of the input terminal, the first output terminal, the second output terminal, and the third output terminal.
  • the bridge circuit 18 includes switching elements 181, 182, 183, 184, 185 and 186.
  • the bridge circuit 18 is configured by switching elements 181 and 182, switching elements 183 and 184, and switching elements 185 and 186 forming a pair.
  • Each of the switching elements 181 to 186 includes a first terminal, a second terminal, and a third terminal.
  • Each of the switching elements 181 to 186 controls the current flowing from the second terminal to the third terminal by switching between the period in which it is turned on and the period in which it is turned off according to the signal received by the first terminal, Three-phase AC power for driving the compressor motor 20 is generated, and the generated three-phase AC power is output to the compressor motor 20.
  • Examples of the switching elements 181, 182, 183, 184, 185 and 186 include power field effect transistors and IGBTs.
  • the inverter control unit 19 includes a first output terminal, a second output terminal, a third output terminal, a fourth output terminal, a fifth output terminal, and a sixth output terminal.
  • the first output terminal of the inverter control unit 19 is a terminal for outputting to the first terminal of the switching element 181 a gate drive signal for switching between a period during which the switching element 181 is turned on and a period during which the switching element 181 is turned off.
  • the second output terminal of the inverter control unit 19 is a terminal for outputting to the first terminal of the switching element 182 a gate drive signal that switches between a period in which the switching element 182 is turned on and a period in which the switching element 182 is turned off.
  • the third output terminal of the inverter control unit 19 is a terminal for outputting to the first terminal of the switching element 183 a gate drive signal for switching between a period during which the switching element 183 is turned on and a period during which the switching element 183 is turned off.
  • the fourth output terminal of the inverter control unit 19 is a terminal for outputting to the first terminal of the switching element 184 a gate drive signal for switching between a period during which the switching element 184 is turned on and a period during which the switching element 184 is turned off.
  • the fifth output terminal of the inverter control unit 19 is a terminal for outputting to the first terminal of the switching element 185 a gate drive signal for switching the period during which the switching element 185 is turned on and the period during which the switching element 185 is turned off.
  • the sixth output terminal of the inverter control unit 19 is a terminal for outputting to the first terminal of the switching element 186 a gate drive signal for switching between a period during which the switching element 186 is turned on and a period during which the switching element 186 is turned off.
  • the first to sixth output terminals of the inverter control unit 19 are omitted.
  • the gate drive signals output from the first to sixth output terminals of the inverter control unit 19 to the bridge circuit 18 are collectively referred to as a gate drive signal Spwm.
  • the inverter control unit 19 controls opening and closing of the switching elements in the bridge circuit 18.
  • the inverter control unit 19 generates the gate drive signal Spwm for the switching elements 181 to 186 based on, for example, a requested rotation speed command input from a host device (not shown).
  • the inverter control unit 19 supplies the gate drive signal Spwm to the bridge circuit 18 via the first to sixth output terminals. Examples of specific methods of inverter control include vector control, sensorless vector control, V / F (Variable Frequency) control, overmodulation control, and 1 pulse control.
  • the input terminal of the rectifier circuit 5 is connected to the output terminal of the AC power supply 4 and the first input terminal of the zero cross detector 17.
  • the reference terminal on the input side of the rectifier circuit 5 is connected to the reference terminal of the AC power supply 4, the second input terminal of the zero cross detector 17, and the input terminal of the input current detector 30.
  • the output terminal of the rectifier circuit 5 is connected to the first terminal of the reactor 6a and the first terminal of the reactor 6b.
  • the reference terminal on the output side of the rectifier circuit 5 is the third terminal of the switching element 8a, the third terminal of the switching element 8b, the second terminal of the smoothing capacitor 12, and the reference terminals (switching elements 182, 184) of the inverter device 3. 186, the third terminal of each of 186).
  • the second terminal of the reactor 6a is connected to the anode terminal of the diode 7a and the second terminal of the switching element 8a.
  • the second terminal of the reactor 6b is connected to the anode terminal of the diode 7b and the second terminal of the switching element 8b.
  • the cathode terminal of the diode 7a is connected to the cathode terminal of the diode 7b, the first terminal of the smoothing capacitor 12, and the input terminal of the inverter device 3 (second terminals of the switching elements 181, 183, 185).
  • a first terminal of the switching element 8 a is connected to a first output terminal of the converter control unit 15.
  • a first terminal of the switching element 8 b is connected to a second output terminal of the converter control unit 15.
  • the first terminal of the converter control unit 15 is connected to the output terminal of the input current detection unit 30.
  • the second terminal of the converter control unit 15 is connected to the output terminal of the zero cross detection unit 17.
  • a first terminal of the switching element 181 is connected to a first output terminal of the inverter control unit 19.
  • a first terminal of the switching element 182 is connected to a second output terminal of the inverter control unit 19.
  • the first terminal of the switching element 183 is connected to the third output terminal of the inverter control unit 19.
  • the first terminal of the switching element 184 is connected to the fourth output terminal of the inverter control unit 19.
  • the first terminal of the switching element 185 is connected to the fifth output terminal of the inverter control unit 19.
  • the first terminal of the switching element 186 is connected to the sixth output terminal of the inverter control unit 19.
  • the third terminal of the switching element 181 is connected to the second terminal of the switching element 182 and the first terminal of the compressor motor 20.
  • the third terminal of the switching element 183 is connected to the second terminal of the switching element 184 and the second terminal of the compressor motor 20.
  • the third terminal of the switching element 185 is connected to the second terminal of the switching element 186 and the first terminal of the compressor motor 20.
  • the motor drive device 1 may be provided with a DC voltage detection unit and a motor current detection unit.
  • the DC voltage detector is a detector that detects the input DC voltage Vdc of the bridge circuit 18.
  • the motor current detection unit is a detection unit that detects each phase current iu, iv, iw flowing through the compressor motor 20.
  • the motor current detection unit inputs these detection values Vdc, iu, iv, and iw to the inverter control unit 19.
  • the motor current detection unit may detect a current flowing in the negative power line between the bridge circuit 18 and the smoothing capacitor 12 and acquire each phase current iu, iv, iw from this detection signal.
  • FIG. 2 is a functional block diagram of the converter control unit 15.
  • Converter control unit 15 generates a reference signal in which the end timing of one cycle does not coincide with the end timing of the half cycle of the output voltage of AC power supply 4.
  • the converter control unit 15 includes a reference signal generation unit 31, a voltage command generation unit 32, an absolute value processing unit 33, and a control signal generation unit 34.
  • the reference signal generator 31 generates a reference signal X having a carrier frequency that is not synchronized with the period of the AC power supply 4.
  • the reference signal X is a triangular wave.
  • the carrier frequency is set within a range in which the switching frequency that satisfies the harmonic regulation value is the lower limit and the switching frequency that satisfies the noise regulation value is the upper limit.
  • a specific example in the case where the reference signal X is a triangular wave is shown below.
  • FIG. 3A is a diagram showing signal components constituting the reference signal X in one cycle of the reference signal X.
  • part (a) of FIG. 3A shows a reference signal X that repeats a continuous triangular wave of 3.15 kHz, 4 kHz, 5 kHz, 6.3 kHz, 8 kHz, 6.3 kHz, 5 kHz, and 4 kHz as one cycle T1.
  • the waveform of the reference signal X in the part (a) in FIG. 3A is a triangular wave shown in the part (a) in FIG. 3B.
  • FIG. 3A shows a reference signal X that repeats a continuous triangular wave of 3.15 kHz, 4 kHz, 5 kHz, 6.3 kHz, and 8 kHz as one cycle T2.
  • the waveform of the reference signal X in part (b) of FIG. 3A is a triangular wave shown in part (b) of FIG. 3B.
  • the part (b) in FIG. 3A shows a reference signal X that repeats a continuous triangular wave of 3.15 kHz, 4 kHz, 5 kHz, 6.3 kHz, and 8 kHz as one cycle T2.
  • the waveform of the reference signal X in part (b) of FIG. 3A is a triangular wave shown in part (b) of FIG. 3B.
  • the part (b) in FIG. 3A shows a reference signal X that repeats a continuous triangular wave of 3.15 kHz, 4 kHz, 5 kHz, 6.3 kHz, and 8 kHz as one cycle T2.
  • the waveform of the reference signal X in part (b) of FIG. 3A is a triangular wave shown in part (b) of FIG. 3B.
  • FIG. 4 is a table summarizing whether or not the reference signal X shown in FIGS. 3A and 3B is synchronized with the half cycle of the output voltage of the AC power supply 4.
  • the reference signal X shown in part (a) of FIG. 3B has one triangular wave of 3.15 kHz, two triangular waves of 4 kHz, two triangular waves of 5 kHz, and triangular wave of 6.3 kHz within one period. And one triangular wave of 8 kHz. Therefore, one cycle T1 of the reference signal X shown in the part (a) of FIG. 3B is 1660 us.
  • the reference signal X shown in part (b) of FIG. 3B has one triangular wave of 3.15 kHz, one triangular wave of 4 kHz, one triangular wave of 5 kHz, and triangular wave of 6.3 kHz within one period. And one triangular wave of 8 kHz. Therefore, one cycle T2 of the reference signal X shown in part (b) of FIG. 3B is 1051 us. Therefore, when (half cycle T) ⁇ (1 cycle T2) is calculated, it becomes 9.5 times (not an integer multiple), and the end timing of 1 cycle T2 of the reference signal X is the output voltage of the AC power supply 4 This indicates that the timing does not coincide with the end timing of the half cycle.
  • 3B includes one 4 kHz triangular wave, one 5 kHz triangular wave, and one 6.3 kHz triangular wave within one period. Therefore, one period T4 of the reference signal X shown in the part (d) of FIG. 3B is 609 us. Therefore, when (half cycle T) ⁇ (1 cycle T4) is calculated, it is 16.4 times (not an integer multiple), and the end timing of 1 cycle T4 of the reference signal X is the output voltage of the AC power supply 4 This indicates that the timing does not coincide with the end timing of the half cycle.
  • the voltage command generation unit 32 generates a sine wave voltage based on the zero cross signal from the zero cross detection unit 17, the converter control phase registered in advance (phase difference with the output voltage of the AC power supply 4), and the voltage command amplitude value. Command R is generated.
  • the absolute value processing unit 33 inverts the negative waveform of the sine wave voltage command R generated by the voltage command generation unit 32 to obtain a positive waveform. Thereby, the absolute value processing unit 33 generates a waveform of the voltage command R as shown in the part (a) of FIG.
  • the reference signal X shown in part (a) of FIG. 5 is an enlarged part of the whole, but the entire voltage command R has a waveform only on the positive side.
  • the control signal generator 34 generates a first switching signal Sg1 for controlling the switching circuit 10a and a second switching signal Sg2 for controlling the switching circuit 10b. Specifically, the control signal generation unit 34 reverses the reference waveform X generated by the reference signal generation unit 31 and the negative waveform output from the absolute value processing unit 33, as shown in part (b) of FIG. Compare with the subsequent voltage command R. The control signal generator 34 generates a first switching signal Sg1 and a second switching signal Sg2 based on the comparison result. For example, the control signal generation unit 34 sets a section in which the reference signal X is larger than the voltage command R as a high level signal and a section in which the reference signal X is smaller than the voltage command R as a low level signal (b in FIG. ), The first switching signal Sg1 and the second switching signal Sg2 are generated.
  • the zero cross detector 17 detects the zero cross point of the voltage output from the AC power supply 4.
  • the zero cross detection unit 17 generates a zero cross signal including information on the cell cross points.
  • the zero cross detection unit 17 outputs a zero cross signal to the converter control unit 15.
  • the voltage command generator 32 receives a zero cross signal from the zero cross detector 17 (step S1).
  • the voltage command generator 32 generates a voltage command R based on the received zero cross signal, a converter control phase registered in advance, and a preset voltage command amplitude value (step S2).
  • the voltage command generation unit 32 outputs the generated voltage command R to the absolute value processing unit 33.
  • the absolute value processing unit 33 receives the voltage command R from the voltage command generation unit 32.
  • the absolute value processing unit 33 inverts the negative waveform in the received voltage command R to obtain a positive waveform (step S3).
  • the absolute value processing unit 33 outputs, to the control signal generation unit 34, a voltage command R that inverts the negative waveform to obtain a positive waveform.
  • the reference signal generator 31 generates a reference signal X having a carrier frequency that is not synchronized with the cycle of the AC power supply 4 (step S4).
  • the reference signal generation unit 31 outputs the generated reference signal X to the control signal generation unit 34.
  • the control signal generation unit 34 receives a voltage command R from the voltage command generation unit 32 by inverting the negative waveform to obtain a positive waveform.
  • the control signal generation unit 34 receives the reference signal X from the reference signal generation unit 31.
  • the control signal generator 34 includes a first switching signal Sg1 for controlling the switching circuit 10a and a second switching signal for controlling the switching circuit 10b.
  • Sg2 is generated (step S5).
  • the control signal generation unit 34 reverses the reference waveform X generated by the reference signal generation unit 31 and the negative waveform output from the absolute value processing unit 33, as shown in part (b) of FIG. Compare with the subsequent voltage command R.
  • the control signal generator 34 generates a first switching signal Sg1 and a second switching signal Sg2 based on the comparison result. For example, the control signal generation unit 34 sets a section in which the reference signal X is larger than the voltage command R as a high level signal and a section in which the reference signal X is smaller than the voltage command R as a low level signal (b in FIG. ), The first switching signal Sg1 and the second switching signal Sg2 are generated. The control signal generator 34 outputs the generated first switching signal Sg1 to the switching circuit 10a. Further, the control signal generation unit 34 outputs the generated second switching signal Sg2 to the switching circuit 10b.
  • the motor drive device 1 by one Embodiment of this invention was demonstrated.
  • the reference signal generator 31 generates a reference signal X having a carrier frequency that is not synchronized with the period of the AC power supply 4.
  • the resonance between the reference signal X and the output voltage of the AC power supply 4 can be suppressed in the converter device 2 of the motor drive device 1.
  • converter device 2 it is possible to reduce beat noise based on resonance between reference signal X and the output voltage of AC power supply 4.
  • the reference signal generation unit 31 generates the reference signal X by repeating one of a plurality of signals having different carrier frequencies as shown in FIG. 3B. It was. However, in another embodiment of the present invention, the reference signal generation unit 31 generates a reference signal X by combining two or more of a plurality of signals having carrier frequencies having different periods as shown in FIG. 3B. It may be a thing.
  • the reference signal X is described as a triangular wave.
  • any signal may be used as long as the desired first switching signal Sg1 and second switching signal Sg2 can be generated.
  • the reference signal X may be a sawtooth wave, a staircase wave, or the like.
  • the output voltage of the AC power supply 4 is 50 Hz
  • the reference signal X is described as including 3.15 kHz, 4 kHz, 5 kHz, 6.3 kHz, and 8 kHz as signal components.
  • the reference signal X including 3.15 kHz, 4 kHz, 5 kHz, 6.3 kHz, and 8 kHz as signal components in an embodiment of the present invention is an example.
  • the reference signal X may be a signal including a signal component having a suitable frequency based on the frequency of the output voltage of the AC power supply 4 and the frequency suitable for the load.
  • the storage unit and other storage devices in each embodiment of the present invention may be provided anywhere as long as appropriate information is transmitted and received.
  • a plurality of storage units, other storage devices, and the like may exist in a range where appropriate information is transmitted and received, and data may be distributed and stored.
  • the order of processing may be changed within a range where appropriate processing is performed.
  • FIG. 7 is a schematic block diagram illustrating a configuration of a computer according to at least one embodiment.
  • the computer 50 includes a CPU 60, a main memory 70, a storage 80, and an interface 90.
  • each of the above-described converter control unit 15, inverter control unit 19, and other control devices is mounted on the computer 50.
  • each processing unit described above is stored in the storage 80 in the form of a program.
  • the CPU 60 reads the program from the storage 80, expands it in the main memory 70, and executes the above processing according to the program. Further, the CPU 60 secures a storage area corresponding to each of the storage units described above in the main memory 70 according to the program.
  • Examples of the storage 80 include HDD (Hard Disk Drive), SSD (Solid State Drive), magnetic disk, magneto-optical disk, CD-ROM (Compact Disc Only Memory), DVD-ROM (Digital VersatileDiscResidentialReadyMediaDistributionMix). And semiconductor memory.
  • the storage 80 may be an internal medium directly connected to the bus of the computer 50, or may be an external medium connected to the computer 50 via the interface 90 or a communication line. When this program is distributed to the computer 50 through a communication line, the computer 50 that has received the distribution may develop the program in the main memory 70 and execute the above-described processing.
  • storage 80 is a non-transitory tangible storage medium.
  • the above program may realize part of the functions described above. Further, the program may be a so-called difference file (difference program) that can realize the above-described functions in combination with a program already recorded in the computer system.
  • difference file difference program
  • control device the converter device, the motor drive device, the control method, and the program according to the embodiment of the present invention, it is possible to reduce the beat sound in the converter device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

制御装置は、交流電源の電圧の半周期の終わりのタイミングに1周期の終わりのタイミングが一致しない基準信号を生成する基準信号生成部と、前記基準信号と前記交流電源の電圧と周期が一致する電圧指令とに基づいて、コンバータ装置のスイッチング回路を制御するためのスイッチング信号を生成し、生成した前記スイッチング信号を前記スイッチング回路に出力する制御信号生成部と、を備える。

Description

制御装置、コンバータ装置、モータ駆動装置、制御方法及びプログラム
 本発明は、制御装置、コンバータ装置、モータ駆動装置、制御方法及びプログラムに関する。
 本願は、2018年5月10日に日本に出願された特願2018-091709号について優先権を主張し、その内容をここに援用する。
 コンバータ装置は、定常負荷時において、高調波の規制値を満足するスイッチング周波数を下限値とし、かつ、ノイズの規制値を満足するスイッチング周波数を上限値とする上下限範囲内において、上限値よりも下限値をキャリア周波数とするものが知られている(特許文献1参照)。
特開2014-150622号公報
 ところで、特許文献1に記載されている上記のキャリア周波数を有する基準波形の信号の1周期の終わるタイミングが、交流電源の出力電圧の半周期の終わるタイミングに一致する場合、基準波形の信号と交流電源の出力電圧との共振に基づくうなり音が発生する可能性がある。
 そこで、特許文献1に記載されているようなコンバータ装置において、うなり音を低減することのできる技術が求められている。
 本発明は、上記の課題を解決することのできる制御装置、コンバータ装置、モータ駆動装置、制御方法及びプログラムを提供することを目的としている。
 本発明の第1の態様によれば、制御装置は、交流電源の電圧の半周期の終わりのタイミングに1周期の終わりのタイミングが一致しない基準信号を生成する基準信号生成部と、前記基準信号と前記交流電源の電圧と周期が一致する電圧指令とに基づいて、コンバータ装置のスイッチング回路を制御するためのスイッチング信号を生成し、生成した前記スイッチング信号を前記スイッチング回路に出力する制御信号生成部と、を備える。
 本発明の第2の態様によれば、第1の態様における制御装置は、前記電圧指令を生成する電圧指令生成部、を備え、前記制御信号生成部は、前記電圧指令と前記基準信号とを比較し、比較結果に基づいて、前記スイッチング信号を生成するものであってもよい。
 本発明の第3の態様によれば、第2の態様における制御装置は、前記電圧指令生成部が生成した前記電圧指令における負側波形を反転させて正側波形とした前記電圧指令を生成し、生成した当該電圧指令を前記制御信号生成部に出力する絶対値処理部、を備え、前記制御信号生成部は、前記絶対値処理部が生成した当該電圧指令と、前記基準信号とに基づいて前記スイッチング信号を生成し、生成した前記スイッチング信号を前記スイッチング回路に出力するものであってもよい。
 本発明の第4の態様によれば、コンバータ装置は、第1の態様から第3の態様の何れか1つの制御装置と、前記制御装置が生成したスイッチング信号に基づいて動作するスイッチング回路と、を備える。
 本発明の第5の態様によれば、モータ駆動装置は、第4の態様のコンバータ装置と、前記コンバータ装置から供給される直流電圧を、負荷であるモータに必要な所望の交流電圧に変換するインバータ装置と、を備える。
 本発明の第6の態様によれば、制御方法は、交流電源の電圧の半周期の終わりのタイミングに1周期の終わりのタイミングが一致しない基準信号を生成することと、前記基準信号と前記交流電源の電圧と周期が一致する電圧指令とに基づいて、コンバータ装置のスイッチング回路を制御するためのスイッチング信号を生成することと、生成した前記スイッチング信号を前記スイッチング回路に出力することと、を含む。
 本発明の第7の態様によれば、プログラムは、コンピュータに、交流電源の電圧の半周期の終わりのタイミングに1周期の終わりのタイミングが一致しない基準信号を生成することと、前記基準信号と前記交流電源の電圧と周期が一致する電圧指令とに基づいて、コンバータ装置のスイッチング回路を制御するためのスイッチング信号を生成することと、生成した前記スイッチング信号を前記スイッチング回路に出力することと、を実行させる。
 本発明の実施形態による制御装置、コンバータ装置、モータ駆動装置、制御方法及びプログラムによれば、コンバータ装置において、うなり音を低減することができる。
本発明の一実施形態によるモータ駆動装置の構成を示す図である。 本発明の一実施形態によるコンバータ制御部の構成を示す図である。 本発明の一実施形態における基準信号を説明するための第1の図である。 本発明の一実施形態における基準信号を説明するための第2の図である。 本発明の一実施形態における基準信号が交流電源の出力電圧の半周期に同期するか否かをまとめた図である。 本発明の一実施形態によるスイッチング信号の生成を説明するための図である。 本発明の一実施形態によるコンバータ制御部の処理フローを示す図である。 少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
<実施形態>
 以下、図面を参照しながら実施形態について詳しく説明する。
 本発明の一実施形態によるモータ駆動装置について説明する。
 図1は、本発明の一実施形態によるモータ駆動装置1の構成を示す図である。モータ駆動装置1は、交流電源4からの交流電力を直流電力に変換し、その直流電力を三相交流電力に変換して圧縮機モータ20に出力する装置である。モータ駆動装置1は、図1に示すように、コンバータ装置2と、インバータ装置3と、を備える。
 コンバータ装置2は、交流電源4からの交流電力を直流電力に変換してインバータ装置3に出力する装置である。コンバータ装置2は、図1に示すように、整流回路5と、スイッチング回路10aと、スイッチング回路10bと、平滑コンデンサ12と、コンバータ制御部15と、入力電流検出部30と、を備える。コンバータ装置2は、交流電源4の出力電圧の半周期の終わりのタイミングに1周期の終わりのタイミングが一致しない基準信号を生成し、交流電源4の出力電圧と基準信号との共振を生じさせないことで、うなり音を低減する。ここでの、一致とは、完全一致、及び、略一致の両方を含む。
 整流回路5は、入力端子と、入力側の基準端子と、出力端子と、出力側の基準端子と、を備える。入力側の基準端子の電位は、入力端子における電位の基準となる電位である。出力側の基準端子の電位は、出力端子における電位の基準となる電位である。整流回路5は、交流電源4より入力された交流電力を直流電力に変換し、スイッチング回路10aと、スイッチング回路10bとに出力する。
 スイッチング回路10aは、平滑コンデンサ12に流れる電流を流し、インバータ装置3に入力される電圧を生成する。スイッチング回路10aは、リアクトル6aと、ダイオード7aと、スイッチング素子8aと、を備える。
 リアクトル6aは、第1端子と、第2端子と、を備える。
 ダイオード7aは、アノード端子と、カソード端子と、を備える。
 スイッチング素子8aは、第1端子と、第2端子と、第3端子と、を備える。スイッチング素子8aは、第1端子が受ける信号に応じて、オン状態となる期間とオフ状態となる期間とが切り替わることにより、第2端子から第3端子に流れる電流を制御し、スイッチング回路10aに流れる電流の値を変化させる。スイッチング素子8aとしては、電界効果トランジスタ(FET:Field Effect Transistor)、IGBT(Insulated Gate Bipolar Transistor)等が挙げられる。スイッチング素子8aが例えばnMOSトランジスタである場合、スイッチング素子8aの第1端子はゲート端子であり、第2端子はソース端子であり、第3端子はドレイン端子である。
 スイッチング回路10bは、スイッチング回路10aと同様に、平滑コンデンサ12に電流を流し、インバータ装置3に入力される電圧を生成する。スイッチング回路10bは、リアクトル6bと、ダイオード7bと、スイッチング素子8bと、を備える。
 リアクトル6bは、第1端子と、第2端子と、を備える。
 ダイオード7bは、アノード端子と、カソード端子と、を備える。
 スイッチング素子8bは、スイッチング素子8aと同様に、第1端子と、第2端子と、第3端子と、を備える。スイッチング素子8bは、第1端子が受ける信号に応じて、オン状態となる期間とオフ状態となる期間とが切り替わることにより、第2端子から第3端子に流れる電流を制御し、スイッチング回路10bに流れる電流の値を変化させる。スイッチング素子8bとしては、電界効果トランジスタ、IGBT等が挙げられる。スイッチング素子8bが例えばnMOSトランジスタである場合、スイッチング素子8bの第1端子はゲート端子であり、第2端子はソース端子であり、第3端子はドレイン端子である。
 平滑コンデンサ12は、第1端子と、第2端子と、を備える。平滑コンデンサ12は、スイッチング回路10aとスイッチング回路10bの両方から電流を受ける。つまり、インバータ装置3に入力される電圧は、スイッチング回路10aとスイッチング回路10bの両方から平滑コンデンサ12に流れる電流値の総和によって決定される。
 入力電流検出部30は、入力端子と、出力端子と、を備える。入力電流検出部30は、交流電源4へのリターン電流(以下、「入力電流」と記載)を検出する。入力電流検出部30は、検出した入力電流の情報をコンバータ制御部15に与える。
 コンバータ制御部15は、第1入力端子と、第2入力端子と、第1出力端子と、第2出力端子と、を備える。コンバータ制御部15は、第1入力端子を介して、入力電流検出部30から入力電流の情報を受け、入力電流波形を観測する。コンバータ制御部15は、第1出力端子を介してスイッチング回路10aを制御する。また、コンバータ制御部15は、第2出力端子を介して10bを制御する。コンバータ制御部15は、スイッチング回路10aの制御信号Sg1、スイッチング回路10bの制御信号Sg2を変化させたときの入力電流波形から、入力電流波形の歪みが小さい制御信号を特定する。
 交流電源4は、出力端子と、基準端子と、を備える。交流電源4は、コンバータ装置2に交流電力を供給する。
 ゼロクロス検出部17は、第1入力端子と、第2入力端子と、出力端子と、を備える。ゼロクロス検出部17は、第1入力端子と、第2入力端子とを介して、交流電源4が出力する電圧のゼロクロス点を検出する。ゼロクロス点は、交流電源4が出力する電圧がゼロボルトを交差する時刻を示し、その時刻がモータ駆動装置1の処理において基準の時刻となる。ゼロクロス検出部17は、ゼロクロス点の情報を含むゼロクロス信号を生成する。ゼロクロス検出部17は、出力端子を介してゼロクロス信号をコンバータ制御部15に出力する。
 インバータ装置3は、コンバータ装置2から出力された直流電力を三相交流電力に変換して圧縮機モータ20に出力する装置である。インバータ装置3は、ブリッジ回路18と、インバータ制御部19と、を備える。
 ブリッジ回路18は、図1に示すように、入力端子と、第1出力端子と、第2出力端子と、第3出力端子と、基準端子と、を備える。基準端子の電位は、入力端子、第1出力端子、第2出力端子及び第3出力端子のそれぞれにおける電位の基準となる電位である。ブリッジ回路18は、スイッチング素子181、182、183、184、185、186を備える。ブリッジ回路18は、スイッチング素子181と182、スイッチング素子183と184、スイッチング素子185と186のそれぞれが対を成して構成される。スイッチング素子181~186のそれぞれは、第1端子と、第2端子と、第3端子と、を備える。スイッチング素子181~186のそれぞれは、第1端子が受ける信号に応じて、オン状態となる期間とオフ状態となる期間とが切り替わることにより、第2端子から第3端子に流れる電流を制御し、圧縮機モータ20を駆動する三相交流電力を生成し、生成した三相交流電力を圧縮機モータ20に出力する。スイッチング素子181、182、183、184、185、186としては、パワー電界効果トランジスタ、IGBT等が挙げられる。
 インバータ制御部19は、第1出力端子と、第2出力端子と、第3出力端子と、第4出力端子と、第5出力端子と、第6出力端子と、を備える。インバータ制御部19の第1出力端子は、スイッチング素子181のオン状態となる期間とオフ状態となる期間とを切り替えるゲート駆動信号をスイッチング素子181の第1端子に出力するための端子である。インバータ制御部19の第2出力端子は、スイッチング素子182のオン状態となる期間とオフ状態となる期間とを切り替えるゲート駆動信号をスイッチング素子182の第1端子に出力するための端子である。インバータ制御部19の第3出力端子は、スイッチング素子183のオン状態となる期間とオフ状態となる期間とを切り替えるゲート駆動信号をスイッチング素子183の第1端子に出力するための端子である。インバータ制御部19の第4出力端子は、スイッチング素子184のオン状態となる期間とオフ状態となる期間とを切り替えるゲート駆動信号をスイッチング素子184の第1端子に出力するための端子である。インバータ制御部19の第5出力端子は、スイッチング素子185のオン状態となる期間とオフ状態となる期間とを切り替えるゲート駆動信号をスイッチング素子185の第1端子に出力するための端子である。インバータ制御部19の第6出力端子は、スイッチング素子186のオン状態となる期間とオフ状態となる期間とを切り替えるゲート駆動信号をスイッチング素子186の第1端子に出力するための端子である。なお、図1では、インバータ制御部19の第1~第6出力端子を省略して示している。また、図1では、インバータ制御部19の第1~第6出力端子からブリッジ回路18に出力されるゲート駆動信号をまとめてゲート駆動信号Spwmと示している。インバータ制御部19は、ブリッジ回路18におけるスイッチング素子の開閉を制御する。インバータ制御部19は、例えば、図示していない上位装置から入力される要求回転数指令に基づいて、スイッチング素子181~186のゲート駆動信号Spwmを生成する。インバータ制御部19は、第1~第6出力端子を介して、ゲート駆動信号Spwmをブリッジ回路18に与える。なお、インバータ制御の具体的な手法の例としては、ベクトル制御、センサレスベクトル制御、V/F(Variable Frequency)制御、過変調制御、1パルス制御などが挙げられる。
 整流回路5の入力端子は、交流電源4の出力端子と、ゼロクロス検出部17の第1入力端子とに接続される。整流回路5の入力側の基準端子は、交流電源4の基準端子と、ゼロクロス検出部17の第2入力端子と、入力電流検出部30の入力端子とに接続される。整流回路5の出力端子は、リアクトル6aの第1端子と、リアクトル6bの第1端子とに接続される。整流回路5の出力側の基準端子は、スイッチング素子8aの第3端子と、スイッチング素子8bの第3端子と、平滑コンデンサ12の第2端子と、インバータ装置3の基準端子(スイッチング素子182、184、186それぞれの第3端子)とに接続される。
 リアクトル6aの第2端子は、ダイオード7aのアノード端子と、スイッチング素子8aの第2端子とに接続される。リアクトル6bの第2端子は、ダイオード7bのアノード端子と、スイッチング素子8bの第2端子とに接続される。
 ダイオード7aのカソード端子は、ダイオード7bのカソード端子と、平滑コンデンサ12の第1端子と、インバータ装置3の入力端子(スイッチング素子181、183、185それぞれの第2端子)とに接続される。
 スイッチング素子8aの第1端子は、コンバータ制御部15の第1出力端子に接続される。スイッチング素子8bの第1端子は、コンバータ制御部15の第2出力端子に接続される。
 コンバータ制御部15の第1端子は、入力電流検出部30の出力端子に接続される。コンバータ制御部15の第2端子は、ゼロクロス検出部17の出力端子に接続される。
 スイッチング素子181の第1端子は、インバータ制御部19の第1出力端子に接続される。スイッチング素子182の第1端子は、インバータ制御部19の第2出力端子に接続される。スイッチング素子183の第1端子は、インバータ制御部19の第3出力端子に接続される。スイッチング素子184の第1端子は、インバータ制御部19の第4出力端子に接続される。スイッチング素子185の第1端子は、インバータ制御部19の第5出力端子に接続される。スイッチング素子186の第1端子は、インバータ制御部19の第6出力端子に接続される。
 スイッチング素子181の第3端子は、スイッチング素子182の第2端子と、圧縮機モータ20の第1端子とに接続される。スイッチング素子183の第3端子は、スイッチング素子184の第2端子と、圧縮機モータ20の第2端子とに接続される。スイッチング素子185の第3端子は、スイッチング素子186の第2端子と、圧縮機モータ20の第1端子とに接続される。
 なお、上記のような制御を実現する際に、特許文献1に記載されているように、モータ駆動装置1に直流電圧検出部、及び、モータ電流検出部が設けられてもよい。
 直流電圧検出部は、ブリッジ回路18の入力直流電圧Vdcを検出する検出部である。
 モータ電流検出部は、圧縮機モータ20に流れる各相電流iu、iv、iwを検出する検出部である。モータ電流検出部は、これらの検出値Vdc、iu、iv、iwをインバータ制御部19に入力する。なお、モータ電流検出部は、ブリッジ回路18と平滑コンデンサ12の間の負極側電力線に流れる電流を検出し、この検出信号から各相電流iu、iv、iwを取得するものであってもよい。
 図2は、コンバータ制御部15の機能ブロック図である。
 コンバータ制御部15は、交流電源4の出力電圧の半周期の終わりのタイミングに1周期の終わりのタイミングが一致しない基準信号を生成する。コンバータ制御部15は、図2に示すように、基準信号生成部31と、電圧指令生成部32と、絶対値処理部33と、制御信号生成部34と、を備えている。
 基準信号生成部31は、交流電源4の周期に同期しないキャリア周波数の基準信号Xを生成する。例えば、基準信号Xは、三角波である。また、例えば、キャリア周波数は、高調波の規制値を満足するスイッチング周波数を下限値、かつ、ノイズの規制値を満足するスイッチング周波数を上限値とする範囲内に設定されている。
 基準信号Xが三角波である場合の具体例を以下に示す。
 図3Aは、基準信号Xの1周期における基準信号Xを構成する信号成分を示す図である。例えば、図3Aの(a)の部分は、3.15kHz、4kHz、5kHz、6.3kHz、8kHz、6.3kHz、5kHz、4kHzの連続する三角波を1周期T1として繰り返す基準信号Xを示している。図3Aの(a)の部分の基準信号Xの波形は、図3Bの(a)の部分に示す三角波である。また、図3Aの(b)の部分は、3.15kHz、4kHz、5kHz、6.3kHz、8kHzの連続する三角波を1周期T2として繰り返す基準信号Xを示している。図3Aの(b)の部分の基準信号Xの波形は、図3Bの(b)の部分に示す三角波である。また、図3Aの(b)の部分は、3.15kHz、4kHz、5kHz、6.3kHz、8kHzの連続する三角波を1周期T2として繰り返す基準信号Xを示している。図3Aの(b)の部分の基準信号Xの波形は、図3Bの(b)の部分に示す三角波である。また、図3Aの(b)の部分は、3.15kHz、4kHz、5kHz、6.3kHz、8kHzの連続する三角波を1周期T2として繰り返す基準信号Xを示している。図3Aの(b)の部分の基準信号Xの波形は、図3Bの(b)の部分に示す三角波である。
 図4は、図3A及び図3Bに示した基準信号Xが交流電源4の出力電圧の半周期に同期するか否かをまとめた図である。
 例えば、図3Bの(a)の部分に示す基準信号Xは、1周期内に、3.15kHzの三角波を1つ、4kHzの三角波を2つ、5kHzの三角波を2つ、6.3kHzの三角波を2つ、8kHzの三角波を1つ含む。そのため、図3Bの(a)の部分に示す基準信号Xの1周期T1は、1660usである。ここで交流電源4の出力電圧を50Hzの交流電圧とし、その半周期をTとすると、半周期Tは、10000usとなる。したがって、(半周期T)÷(1周期T1)を演算すると、6.0倍(ほぼ整数倍)となり、基準信号Xの1周期T1が終わりのタイミングは、交流電源4の出力電圧の半周期の終わりのタイミングに一致することを示している。つまり、交流電源4の出力電圧が50Hzの場合、1周期T1の基準信号Xは、うなり音が発生する基準信号の一例である(T=10000us、T1=1600usのときに、うなり音が発生することは、実験により確認されている)。
 一方、図3Bの(b)の部分に示す基準信号Xは、1周期内に、3.15kHzの三角波を1つ、4kHzの三角波を1つ、5kHzの三角波を1つ、6.3kHzの三角波を1つ、8kHzの三角波を1つ含む。そのため、図3Bの(b)の部分に示す基準信号Xの1周期T2は、1051usである。したがって、(半周期T)÷(1周期T2)を演算すると、9.5倍となり(整数倍とはならず)、基準信号Xの1周期T2の終わりのタイミングは、交流電源4の出力電圧の半周期の終わりのタイミングに一致しないことを示している。つまり、交流電源4の出力電圧が50Hzの場合、1周期T2の基準信号Xは、うなり音が発生しない基準信号の一例である(T=10000us、T2=1051usのときに、うなり音が発生しないことは、実験により確認されている)。
 また、図3Bの(c)の部分に示す基準信号Xは、1周期内に、4kHzの三角波を1つ、5kHzの三角波を2つ、6.3kHzの三角波を1つ含む。そのため、図3Bの(c)の部分に示す基準信号Xの1周期T3は、809usである。したがって、(半周期T)÷(1周期T3)を演算すると、12.4倍となり(整数倍とはならず)、基準信号Xの1周期T3の終わりのタイミングは、交流電源4の出力電圧の半周期の終わりのタイミングに一致しないことを示している。つまり、交流電源4の出力電圧が50Hzの場合、1周期T3の基準信号Xは、うなり音が発生しない基準信号の一例である(T=10000us、T3=809usのときに、うなり音が発生しないことは、実験により確認されている)。
 また、図3Bの(d)の部分に示す基準信号Xは、1周期内に、4kHzの三角波を1つ、5kHzの三角波を1つ、6.3kHzの三角波を1つ含む。そのため、図3Bの(d)の部分に示す基準信号Xの1周期T4は、609usである。したがって、(半周期T)÷(1周期T4)を演算すると、16.4倍となり(整数倍とはならず)、基準信号Xの1周期T4の終わりのタイミングは、交流電源4の出力電圧の半周期の終わりのタイミングに一致しないことを示している。つまり、交流電源4の出力電圧が50Hzの場合、1周期T4の基準信号Xは、うなり音が発生しない基準信号の一例である(T=10000us、T4=609usのときに、うなり音が発生しないことは、実験により確認されている)。
 つまり、基準信号生成部31は、例えば、交流電源4の出力電圧が50Hzの場合、図3Bの(b)、(c)、(d)に示すような交流電源4の周期に同期しないキャリア周波数の基準信号Xを生成する。
 電圧指令生成部32は、ゼロクロス検出部17からのゼロクロス信号及び予め登録されているコンバータ制御位相(交流電源4の出力電圧との位相差)及びその電圧指令振幅値に基づいて、正弦波の電圧指令Rを生成する。
 絶対値処理部33は、電圧指令生成部32が生成した正弦波の電圧指令Rにおける負側波形を反転させて正側波形とする。これにより、絶対値処理部33は、例えば、図5の(a)の部分に示すような電圧指令Rの波形を生成する。図5の(a)の部分に示す基準信号Xは、全体の一部分を拡大したものであるが、全体の電圧指令Rは正側のみの波形となる。
 制御信号生成部34は、スイッチング回路10aを制御するための第1スイッチング信号Sg1、及び、スイッチング回路10bを制御するための第2スイッチング信号Sg2を生成する。
 具体的には、制御信号生成部34は、図5の(b)の部分に示すように、基準信号生成部31が生成した基準波形Xと、絶対値処理部33が出力する負側波形反転後の電圧指令Rとを比較する。制御信号生成部34は、比較結果に基づいて、第1スイッチング信号Sg1、及び、第2スイッチング信号Sg2を生成する。例えば、制御信号生成部34は、電圧指令Rよりも基準信号Xが大きい区間をHighレベルの信号とし、電圧指令Rよりも基準信号Xが小さい区間をLowレベルの信号として、図5の(b)の部分に示すような第1スイッチング信号Sg1、及び、第2スイッチング信号Sg2を生成する。
 次に、本発明の一実施形態によるコンバータ装置2の処理について説明する。
 ここでは、図6に示すコンバータ制御部15の処理について説明する。
 ゼロクロス検出部17は、交流電源4が出力する電圧のゼロクロス点を検出する。ゼロクロス検出部17は、セロクロス点の情報を含むゼロクロス信号を生成する。ゼロクロス検出部17は、ゼロクロス信号をコンバータ制御部15に出力する。
 電圧指令生成部32は、ゼロクロス検出部17からゼロクロス信号を受ける(ステップS1)。電圧指令生成部32は、受けたゼロクロス信号、予め登録されているコンバータ制御位相、予め設定されている電圧指令振幅値に基づいて、電圧指令Rを生成する(ステップS2)。電圧指令生成部32は、生成した電圧指令Rを絶対値処理部33に出力する。
 絶対値処理部33は、電圧指令生成部32から電圧指令Rを受ける。絶対値処理部33は、受けた電圧指令Rにおける負側波形を反転させて正側波形とする(ステップS3)。絶対値処理部33は、負側波形を反転させて正側波形とした電圧指令Rを制御信号生成部34に出力する。
 基準信号生成部31は、交流電源4の周期に同期しないキャリア周波数の基準信号Xを生成する(ステップS4)。基準信号生成部31は、生成した基準信号Xを制御信号生成部34に出力する。
 制御信号生成部34は、負側波形を反転させて正側波形とした電圧指令Rを電圧指令生成部32から受ける。また、制御信号生成部34は、基準信号Xを基準信号生成部31から受ける。制御信号生成部34は、受けた電圧指令Rと、基準信号Xとに基づいて、スイッチング回路10aを制御するための第1スイッチング信号Sg1、及び、スイッチング回路10bを制御するための第2スイッチング信号Sg2を生成する(ステップS5)。
 具体的には、制御信号生成部34は、図5の(b)の部分に示すように、基準信号生成部31が生成した基準波形Xと、絶対値処理部33が出力する負側波形反転後の電圧指令Rとを比較する。制御信号生成部34は、比較結果に基づいて、第1スイッチング信号Sg1、及び、第2スイッチング信号Sg2を生成する。例えば、制御信号生成部34は、電圧指令Rよりも基準信号Xが大きい区間をHighレベルの信号とし、電圧指令Rよりも基準信号Xが小さい区間をLowレベルの信号として、図5の(b)の部分に示すような第1スイッチング信号Sg1、及び、第2スイッチング信号Sg2を生成する。
 制御信号生成部34は、生成した第1スイッチング信号Sg1をスイッチング回路10aに出力する。また、制御信号生成部34は、生成した第2スイッチング信号Sg2をスイッチング回路10bに出力する。
 以上、本発明の一実施形態によるモータ駆動装置1について説明した。
 本発明の一実施形態によるモータ駆動装置1において、基準信号生成部31は、交流電源4の周期に同期しないキャリア周波数の基準信号Xを生成する。
 こうすることで、モータ駆動装置1のコンバータ装置2において、基準信号Xと交流電源4の出力電圧との共振を抑制することができる。その結果、コンバータ装置2において、基準信号Xと交流電源4の出力電圧との共振に基づくうなり音を低減することができる。
 なお、本発明の一実施形態では、基準信号生成部31は、図3Bに示すような、異なる1周期となるキャリア周波数の複数の信号のうちの1つを繰り返して基準信号Xを生成するものとした。しかしながら、本発明の別の実施形態では、基準信号生成部31は、図3Bに示すような、異なる1周期となるキャリア周波数の複数の信号のうち2つ以上を組み合わせて基準信号Xを生成するものであってもよい。
 なお、本発明の一実施形態では、基準信号Xは、三角波であるものとして説明した。しかしながら、本発明の別の実施形態では、所望の第1スイッチング信号Sg1、第2スイッチング信号Sg2が生成できる信号であればどのような信号であってもよい。例えば、基準信号Xは、のこぎり波、階段波などであってもよい。
 なお、本発明の一実施形態では、交流電源4の出力電圧を50Hzとし、基準信号Xは、3.15kHz、4kHz、5kHz、6.3kHz、8kHzを信号成分として含むものとして説明した。しかしながら、本発明の一実施形態における3.15kHz、4kHz、5kHz、6.3kHz、8kHzを信号成分として含む基準信号Xは一例である。本発明の別の実施形態では、基準信号Xは、交流電源4の出力電圧の周波数と、負荷に適した周波数とに基づく、適した周波数の信号成分を含む信号であってよい。
 なお、本発明の各実施形態における記憶部、その他の記憶装置等は、適切な情報の送受信が行われる範囲においてどこに備えられていてもよい。また、記憶部、その他の記憶装置等は、適切な情報の送受信が行われる範囲において複数存在しデータを分散して記憶していてもよい。
 なお、本発明の実施形態における処理は、適切な処理が行われる範囲において、処理の順番が入れ替わってもよい。
 本発明の実施形態について説明したが、上述のコンバータ制御部15、インバータ制御部19、その他の制御装置は内部に、コンピュータシステムを有していてもよい。そして、上述した処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。コンピュータの具体例を以下に示す。
 図7は、少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
 コンピュータ50は、図7に示すように、CPU60、メインメモリ70、ストレージ80、インターフェース90を備える。
 例えば、上述のコンバータ制御部15、インバータ制御部19、その他の制御装置のそれぞれは、コンピュータ50に実装される。そして、上述した各処理部の動作は、プログラムの形式でストレージ80に記憶されている。CPU60は、プログラムをストレージ80から読み出してメインメモリ70に展開し、当該プログラムに従って上記処理を実行する。また、CPU60は、プログラムに従って、上述した各記憶部に対応する記憶領域をメインメモリ70に確保する。
 ストレージ80の例としては、HDD(Hard Disk Drive)、SSD(Solid State Drive)、磁気ディスク、光磁気ディスク、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)、半導体メモリ等が挙げられる。ストレージ80は、コンピュータ50のバスに直接接続された内部メディアであってもよいし、インターフェース90または通信回線を介してコンピュータ50に接続される外部メディアであってもよい。また、このプログラムが通信回線によってコンピュータ50に配信される場合、配信を受けたコンピュータ50が当該プログラムをメインメモリ70に展開し、上記処理を実行してもよい。少なくとも1つの実施形態において、ストレージ80は、一時的でない有形の記憶媒体である。
 また、上記プログラムは、前述した機能の一部を実現してもよい。さらに、上記プログラムは、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるファイル、いわゆる差分ファイル(差分プログラム)であってもよい。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例であり、発明の範囲を限定しない。これらの実施形態は、発明の要旨を逸脱しない範囲で、種々の追加、種々の省略、種々の置き換え、種々の変更を行ってよい。
 本発明の実施形態による制御装置、コンバータ装置、モータ駆動装置、制御方法及びプログラムによれば、コンバータ装置において、うなり音を低減することができる。
1・・・モータ駆動装置
2・・・コンバータ装置
3・・・インバータ装置
4・・・交流電源
5・・・整流回路
6a、6b・・・リアクトル
7a、7b・・・ダイオード
8a、8b・・・スイッチング素子
10a、10b・・・スイッチング回路
12・・・平滑コンデンサ
15・・・コンバータ制御部
17・・・ゼロクロス検出部
18・・・ブリッジ回路
19・・・インバータ制御部
30・・・入力電流検出部
31・・・基準信号生成部
32・・・電圧指令生成部
33・・・絶対値処理部
34・・・制御信号生成部
50・・・コンピュータ
60・・・CPU
70・・・メインメモリ
80・・・ストレージ
90・・・インターフェース
Lp・・・正極母線

Claims (7)

  1.  交流電源の電圧の半周期の終わりのタイミングに1周期の終わりのタイミングが一致しない基準信号を生成する基準信号生成部と、
     前記基準信号と前記交流電源の電圧と周期が一致する電圧指令とに基づいて、コンバータ装置のスイッチング回路を制御するためのスイッチング信号を生成し、生成した前記スイッチング信号を前記スイッチング回路に出力する制御信号生成部と、
     を備える制御装置。
  2.  前記電圧指令を生成する電圧指令生成部、
     を備え、
     前記制御信号生成部は、
     前記電圧指令と前記基準信号とを比較し、比較結果に基づいて、前記スイッチング信号を生成する、
     請求項1に記載の制御装置。
  3.  前記電圧指令生成部が生成した前記電圧指令における負側波形を反転させて正側波形とした前記電圧指令を生成し、生成した当該電圧指令を前記制御信号生成部に出力する絶対値処理部、
     を備え、
     前記制御信号生成部は、
     前記絶対値処理部が生成した当該電圧指令と、前記基準信号とに基づいて前記スイッチング信号を生成し、生成した前記スイッチング信号を前記スイッチング回路に出力する、
     請求項2に記載の制御装置。
  4.  請求項1から請求項3の何れか一項に記載の制御装置と、
     前記制御装置が生成したスイッチング信号に基づいて動作するスイッチング回路と、
     を備えるコンバータ装置。
  5.  請求項4に記載のコンバータ装置と、
     前記コンバータ装置から供給される直流電圧を、負荷であるモータに必要な所望の交流電圧に変換するインバータ装置と、
     を備えるモータ駆動装置。
  6.  交流電源の電圧の半周期の終わりのタイミングに1周期の終わりのタイミングが一致しない基準信号を生成することと、
     前記基準信号と前記交流電源の電圧と周期が一致する電圧指令とに基づいて、コンバータ装置のスイッチング回路を制御するためのスイッチング信号を生成することと、
     生成した前記スイッチング信号を前記スイッチング回路に出力することと、
     を含む制御方法。
  7.  コンピュータに、
     交流電源の電圧の半周期の終わりのタイミングに1周期の終わりのタイミングが一致しない基準信号を生成することと、
     前記基準信号と前記交流電源の電圧と周期が一致する電圧指令とに基づいて、コンバータ装置のスイッチング回路を制御するためのスイッチング信号を生成することと、
     生成した前記スイッチング信号を前記スイッチング回路に出力することと、
     を実行させるプログラム。
PCT/JP2019/016451 2018-05-10 2019-04-17 制御装置、コンバータ装置、モータ駆動装置、制御方法及びプログラム WO2019216138A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-091709 2018-05-10
JP2018091709A JP2019198189A (ja) 2018-05-10 2018-05-10 制御装置、コンバータ装置、モータ駆動装置、制御方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2019216138A1 true WO2019216138A1 (ja) 2019-11-14

Family

ID=68468138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016451 WO2019216138A1 (ja) 2018-05-10 2019-04-17 制御装置、コンバータ装置、モータ駆動装置、制御方法及びプログラム

Country Status (2)

Country Link
JP (1) JP2019198189A (ja)
WO (1) WO2019216138A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011172372A (ja) * 2010-02-18 2011-09-01 Murata Mfg Co Ltd Pfcコンバータ
JP2014027844A (ja) * 2012-07-30 2014-02-06 Fujitsu General Ltd 直流電源装置
JP2016063581A (ja) * 2014-09-16 2016-04-25 株式会社東芝 電力変換装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011172372A (ja) * 2010-02-18 2011-09-01 Murata Mfg Co Ltd Pfcコンバータ
JP2014027844A (ja) * 2012-07-30 2014-02-06 Fujitsu General Ltd 直流電源装置
JP2016063581A (ja) * 2014-09-16 2016-04-25 株式会社東芝 電力変換装置

Also Published As

Publication number Publication date
JP2019198189A (ja) 2019-11-14

Similar Documents

Publication Publication Date Title
CN107425758B (zh) 用于控制电动机控制装置的方法和系统
JP2014068498A (ja) 電力変換装置の制御方法
TWI660566B (zh) 電力變換裝置
US9276487B2 (en) Power-level waveform generation method
WO2012160615A1 (ja) 交流変換回路、交流変換方法、および記録媒体
JPWO2013076937A1 (ja) 交流変換回路
TW201603471A (zh) 電力轉換裝置及三相交流電源裝置
Dordevic et al. A comparison of PWM techniques for three-level five-phase voltage source inverters
JP5844945B1 (ja) 電力変換装置および車両駆動システム
JP3755089B2 (ja) 電気車の制御装置
JP2015023641A (ja) 電力変換装置およびエレベーター
JP6253975B2 (ja) コンバータ装置、モータ駆動装置、コンバータ装置の制御方法およびコンバータ装置の制御プログラム
JP6518693B2 (ja) 電力変換装置および電力変換装置の制御方法
WO2019216138A1 (ja) 制御装置、コンバータ装置、モータ駆動装置、制御方法及びプログラム
JP7265838B2 (ja) コンバータ装置、制御方法及びプログラム
WO2018159027A1 (ja) 電源制御装置、電力変換システム及び電源制御方法
Baranwal et al. A modified four-step commutation to suppress common-mode voltage during commutations in open-end winding matrix converter drives
JP2020171184A (ja) コンバータ装置、空気調和機、コンバータ装置の制御方法及びプログラム
JP2005137200A (ja) 電気車の制御装置
KR100685444B1 (ko) 단상인버터의 병렬제어시스템
JP2005176600A (ja) 電気車の制御装置
JP3873221B2 (ja) 電気車の制御装置
JP6234776B2 (ja) コンバータの制御装置及び制御方法並びに空気調和機
JP7328834B2 (ja) コンバータ装置、制御方法及びプログラム
JP2020171183A (ja) コンバータ装置、空気調和機、コンバータ装置の制御方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19800478

Country of ref document: EP

Kind code of ref document: A1