WO2019215881A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2019215881A1
WO2019215881A1 PCT/JP2018/018168 JP2018018168W WO2019215881A1 WO 2019215881 A1 WO2019215881 A1 WO 2019215881A1 JP 2018018168 W JP2018018168 W JP 2018018168W WO 2019215881 A1 WO2019215881 A1 WO 2019215881A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
valve
state
heat exchanger
flow path
Prior art date
Application number
PCT/JP2018/018168
Other languages
English (en)
French (fr)
Inventor
拓也 松田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/018168 priority Critical patent/WO2019215881A1/ja
Priority to ES18918248T priority patent/ES2936235T3/es
Priority to JP2020517709A priority patent/JP6937899B2/ja
Priority to EP18918248.8A priority patent/EP3792568B1/en
Priority to US16/976,813 priority patent/US11435119B2/en
Publication of WO2019215881A1 publication Critical patent/WO2019215881A1/ja
Priority to US17/701,901 priority patent/US20220214082A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0234Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0292Control issues related to reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves

Definitions

  • the present invention relates to a refrigeration cycle apparatus.
  • Japanese Patent Laid-Open No. 2015-117936 includes an outdoor heat exchanger partitioned into a plurality of unit channels, and at least two of the plurality of unit channels are heated in series with each other during cooling operation.
  • An air conditioner that is connected in parallel to each other during operation is disclosed. In the air conditioner, the heat exchange efficiency is improved by appropriately selecting and using the number of unit channels and the length of the unit channels in the cooling operation and the heating operation.
  • the main object of the present invention is to provide a refrigeration cycle apparatus in which piping is simplified as compared with the above air conditioner, and no redesign is required for piping for each specification of the outdoor heat exchanger. is there.
  • the refrigeration cycle apparatus includes a refrigerant circuit in which the refrigerant circulates.
  • the refrigerant circuit includes a compressor, a first flow path switching unit, a second flow path switching unit, a first heat exchanger, a second heat exchanger, and a third heat exchanger.
  • the first heat exchanger has a first inflow / outflow portion and a second inflow / outflow portion through which refrigerant flows in and out.
  • the 2nd heat exchanger has the 3rd inflow / outflow part in which refrigerant flows in and out, and the 4th outflow / inflow part.
  • the first flow path switching unit switches between the first state and the second state.
  • the second flow path switching unit has a first port, a second port, a third port, a fourth port, a fifth port, and a sixth port through which the refrigerant flows in and out.
  • the first port is connected to the discharge port of the compressor via the first flow path switching unit in the first state, and is connected to the suction port of the compressor via the first flow path switching unit in the second state.
  • the second port is connected to the first inflow / outflow part.
  • the third port is connected to the third inflow / outflow part.
  • the fourth port is connected to the second inflow / outflow part.
  • the fifth port is connected to the fourth inflow / outflow part.
  • the sixth port is connected to the third heat exchanger.
  • the second flow path switching unit switches between the third state and the fourth state. In the third state, the first port, the second port, the first heat exchanger, the fourth port, the third port, the second heat exchanger, the fifth port, and the sixth port are connected in series in order. In the fourth state, the sixth port, the fourth port, the first heat exchanger, the second port, and the first port are connected in series in order, and the sixth port, the fifth port, the second heat exchanger, Three ports and a first port are connected in series in order.
  • FIG. 1 is a diagram showing a refrigeration cycle apparatus according to Embodiment 1.
  • FIG. (A) is a figure which shows the refrigerant
  • (B) is the 1st shown by FIG. It is a figure which shows the refrigerant
  • (C) is a 2nd flow-path switching part shown by FIG.
  • FIG. 3 is a diagram showing a refrigeration cycle apparatus according to Embodiment 2.
  • (A) is a figure which shows the refrigerant
  • (B) is the 1st shown by FIG.
  • FIG. 8E is a diagram showing the refrigerant flow path in the second flow path switching unit when the second flow path switching unit shown in FIG. 7 is in the seventh state.
  • a refrigeration cycle apparatus 100 includes a compressor 1, a four-way valve 2 as a first flow path switching unit, and a first outdoor heat exchanger 3 as a first heat exchange unit.
  • the second outdoor heat exchanger 4 as the second heat exchange part
  • the first indoor heat exchanger 6a as the third heat exchange part
  • the second indoor heat exchanger 6b the first decompression part 7a
  • the second decompression part 7b The third decompression unit 8a, the fourth decompression unit 8b, the on-off valves 9a, 9b, 9c, 9d and the second flow path switching unit 10 are provided, and a refrigerant circuit in which the refrigerant circulates is provided.
  • the refrigeration cycle apparatus 100 includes an outdoor unit 30, a first indoor unit 40a, a second indoor unit 40b, and a relay unit 50.
  • the outdoor circuit 30 includes a compressor 1, a four-way valve 2, a first outdoor heat exchanger 3, a second outdoor heat exchanger 4, and a second flow path switching unit 10 in the first circuit portion of the refrigerant circuit.
  • an outdoor fan 35 are arranged inside the first indoor unit 40a.
  • a second circuit part of the refrigerant circuit including the first indoor heat exchanger 6a and the first pressure reducing part 7a and an indoor fan (not shown) are arranged inside the first indoor unit 40a.
  • a third circuit part of the refrigerant circuit including the second indoor heat exchanger 6b and the second pressure reducing part 7b and an indoor fan (not shown) are arranged inside the second indoor unit 40b.
  • a fourth circuit portion of the refrigerant circuit including a third pressure reducing portion 8a, a fourth pressure reducing portion 8b, and a plurality of on-off valves 9a, 9b, 9c, 9d is disposed inside the repeater 50.
  • the first circuit part of the refrigerant circuit arranged in the outdoor unit 10 and the fourth circuit part of the refrigerant circuit arranged in the relay machine 30 are connected via a first pipe C1 and a second pipe C2. Connected.
  • the fourth circuit portion of the refrigerant circuit arranged in the relay machine 30 and the second circuit portion of the refrigerant circuit arranged in the first indoor unit 20a are connected via two pipes. Yes.
  • the fourth circuit part of the refrigerant circuit arranged in the relay machine 30 and the third circuit part of the refrigerant circuit arranged in the second indoor unit 20b are connected via two pipes. Yes.
  • the second circuit portion and the third circuit portion of the refrigerant circuit are connected in parallel to the fourth circuit portion.
  • the compressor 1 has a discharge port for discharging the refrigerant and a suction port for sucking the refrigerant.
  • the four-way valve 2 includes a first opening connected to the discharge port of the compressor 1 via a discharge pipe, a second opening connected to the suction port of the compressor 1 via a suction pipe, It has the 3rd opening connected to 1 piping C1, and the 4th opening connected to the 2nd piping C2 via the 2nd channel change part 10.
  • the fourth opening of the four-way valve 2 is connected to the first port P1 of the second flow path switching unit 10.
  • the four-way valve 2 includes a first state in which the first outdoor heat exchanger 3 and the second outdoor heat exchanger 4 act as a condenser and the third heat exchange unit acts as an evaporator, the first outdoor heat exchanger 3 and The second outdoor heat exchanger 4 switches between a second state in which it acts as an evaporator and the third heat exchange part acts as a condenser.
  • the solid line arrow shown by FIG. 1 shows the distribution direction of the refrigerant
  • the dotted arrows shown in FIG. 1 indicate the flow direction of the refrigerant that circulates through the refrigerant circuit when the refrigeration cycle apparatus 100 is in the second state.
  • the first outdoor heat exchanger 3 includes a first distribution part 3a as a first inflow / outflow part through which refrigerant flows in and out, a second distribution part 3b as a second inflow / outflow part, a first distribution part 3a and a second distribution part 3b. 1st heat exchange part 3c arranged between.
  • the first heat exchange unit 3c includes, for example, a plurality of heat transfer tubes and a plurality of fins.
  • the 1st distribution part 3a is connected to each end of a plurality of heat exchanger tubes.
  • the 2nd distribution part 3b is connected to each other end of a some heat exchanger tube.
  • the second outdoor heat exchanger 4 includes a third distribution part 4a as a third inflow / outflow part through which refrigerant flows in and out, a fourth distribution part 4b as a fourth inflow / outflow part, a third distribution part 4a and a fourth distribution part 4b. 2nd heat exchange part 4c arranged between.
  • the second heat exchange part 4c has, for example, a plurality of heat transfer tubes and a plurality of fins.
  • the 3rd distribution part 4a is connected to each end of a plurality of heat exchanger tubes.
  • the 4th distribution part 4b is connected to each other end of a plurality of heat exchanger tubes.
  • the capacity of the first outdoor heat exchanger 3 may be equal to or different from the capacity of the second outdoor heat exchanger 4.
  • the capacity of the first outdoor heat exchanger 3 may be larger or smaller than the capacity of the second outdoor heat exchanger 4.
  • the first distribution unit 3a is disposed on the gas refrigerant side of the first outdoor heat exchanger 3, and the second distribution unit 3b is disposed on the liquid refrigerant side of the first outdoor heat exchanger 3. Is arranged.
  • the third distributor 4a is disposed on the gas refrigerant side of the second outdoor heat exchanger 4, and the fourth distributor 4b is on the liquid refrigerant side of the second outdoor heat exchanger 4. Is arranged.
  • the liquid refrigerant side of the heat exchanger means the side from which the liquid refrigerant flows out when the heat exchanger acts as a condenser, and the liquid refrigerant flows in when the heat exchanger acts as an evaporator.
  • the liquid refrigerant means a liquid single-phase refrigerant or a gas-liquid two-phase refrigerant that contains a large amount of liquid phase refrigerant.
  • the gas refrigerant side of the heat exchanger means the side from which the gas refrigerant flows when the heat exchanger acts as a condenser and the gas refrigerant flows out when the heat exchanger acts as an evaporator.
  • the gas refrigerant means a gas single-phase refrigerant.
  • the second flow path switching unit 10 has a first port P1, a second port P2, a third port P3, a fourth port P4, a fifth port P5, and a sixth port P6 through which refrigerant flows.
  • the second flow path switching unit 10 is configured as one unit.
  • the first port P1 is connected to the fourth opening of the four-way valve 2.
  • the first port P1 is connected to the discharge port of the compressor 1 via the four-way valve 2 in the first state, and is connected to the suction port of the compressor 1 via the four-way valve 2 in the second state.
  • the second port P2 is connected to the first distribution unit 3a.
  • the third port P3 is connected to the third distribution unit 4a.
  • the fourth port P4 is connected to the second distribution unit 3b.
  • the fifth port P5 is connected to the fourth distribution unit 4b.
  • the sixth port P6 is connected to the second pipe C2.
  • the sixth port P6 is connected to the second pipe C2 and connected to the first indoor heat exchanger 6a and the second indoor heat exchanger 6b via the relay 50.
  • the second flow path switching unit 10 switches between the third state, the fifth state, the sixth state, and the fourth state.
  • the first port P1, the second port P2, the fourth port P4, the third port P3, the fifth port P5, and the sixth port P6 are serially connected in series. It is connected.
  • the fourth state shown in FIG. 2B and FIG. 4 the fourth port P4 and the fifth port P5 are connected in parallel to the sixth port P6, and the second port P2 and the third port P3 are in the second state. 1 port P1 is connected in parallel.
  • the sixth port P6, the fourth port P4, the first outdoor heat exchanger 3, the second port P2, and the first port P1 are sequentially connected in series, and the sixth port P6,
  • the 5th port P5, the 2nd outdoor heat exchanger 4, the 3rd port P3, and the 1st port P1 are connected in series in order.
  • the first port P1, the second port P2, the fourth port P4, and the sixth port P6 are sequentially connected in series.
  • the sixth state shown in FIGS. 2D and 6 the first port P1, the third port P3, the fifth port P5, and the sixth port P6 are connected in series in order.
  • the second flow path switching unit 10 includes a first flow path that connects the first port P1 and the second port P2 in the third state.
  • the second flow path switching unit 10 in the fourth state, has the first flow path, the fifth flow path, the third flow path, and the fourth flow path. And a flow path.
  • the second flow path switching unit 10 in the fifth state, is a fourth flow path that connects the first flow path, the fourth port P4, and the sixth port P6. And have.
  • FIG. 2A the second flow path switching unit 10 includes a first flow path that connects the first port P1 and the second port P2 in the third state.
  • the second flow path switching unit 10 in the fourth state, has the first flow path, the fifth flow path, the third flow path
  • the second flow path switching unit 10 in the sixth state, includes a fifth flow path that connects the first port P1 and the third port P3, and the third flow path. And have. Note that the arrows shown in FIGS. 2A to 2D indicate the flow direction of the refrigerant in each state.
  • the third state, the fifth state, and the sixth state are selected according to the cooling load when the refrigeration cycle apparatus is in the first state.
  • the fourth state is selected when the refrigeration cycle apparatus is in the second state.
  • the second flow path switching unit 10 may have an arbitrary configuration as long as the third state, the fifth state, the sixth state, and the fourth state can be switched. Below, one structural example of the 2nd flow-path switching part 10 is demonstrated.
  • the second flow path switching unit 10 is directed to the first pipeline connecting the first port P1 and the sixth port P6, and from the first port P1 to the sixth port P6. It includes a second pipeline, a third pipeline, a fourth pipeline, and a fifth pipeline connected to the first pipeline in order along the extending direction of the first pipeline.
  • the first pipe line extends, for example, linearly.
  • the second pipe connects the second port P2 and the first pipe.
  • the third pipeline connects the third port P3 and the first pipeline.
  • the fourth pipe connects the fourth port P4 and the first pipe.
  • the fifth pipe connects the fifth port P5 and the first pipe.
  • the connection part between the first pipe line and the second pipe line is the first connection part
  • the connection part between the first pipe line and the third pipe line is the second connection part
  • the connection between the first pipe line and the fourth pipe line Let the part be the third connection part, and the connection part between the first pipe line and the fifth pipe line be the fourth connection part.
  • the second flow path switching unit 10 includes, for example, a first on-off valve 11, a second on-off valve 12, a third on-off valve 13, a fourth on-off valve 14, and a fifth on-off valve. 15, a sixth on-off valve 16, and a seventh on-off valve 17 are further included.
  • the first on-off valve 11 opens and closes the second pipeline.
  • the second on-off valve 12 opens and closes the third pipeline.
  • the third on-off valve 13 opens and closes the fourth pipeline.
  • the fourth on-off valve 14 opens and closes the fifth pipeline.
  • the fifth on-off valve 15 opens and closes a portion located between the first connection portion and the second connection portion in the first pipeline.
  • the 6th on-off valve 16 opens and closes the part located between the said 2nd connection part and the said 3rd connection part in a 1st pipe line.
  • the seventh on-off valve 17 opens and closes a portion located between the third connection portion and the fourth connection portion in the first pipeline.
  • the first on-off valve 11, the second on-off valve 12, the third on-off valve 13, the fourth on-off valve 14, and the sixth on-off valve 16 are opened, and The fifth on-off valve 15 and the seventh on-off valve 17 are closed.
  • the first on-off valve 11, the second on-off valve 12, the third on-off valve 13, the fourth on-off valve 14, the fifth on-off valve 15 and the seventh on-off valve 17 are Opened, the sixth on-off valve 16 is closed.
  • the first on-off valve 11, the third on-off valve 13, and the seventh on-off valve 17 are opened, and the second on-off valve 12, the fourth on-off valve 14, The fifth on-off valve 15 and the sixth on-off valve 16 are closed.
  • the second on-off valve 12, the fourth on-off valve 14, the fifth on-off valve 15, and the seventh on-off valve 17 are opened, and the first on-off valve 11, the third on-off valve The valve 13 and the sixth on-off valve 16 are closed.
  • the second flow path switching unit 10 can be divided into, for example, a first block and a second block, and a sixth on-off valve 16 disposed between the first block and the second block.
  • the first block includes a part of the first pipeline, the second pipeline, the third pipeline, the first on-off valve 11, the second on-off valve 12, and the fifth on-off valve 15.
  • the second block includes the other part of the first pipe, the fourth pipe, the fifth pipe, the fourth on-off valve 14, the fifth on-off valve 15, and the seventh on-off valve 17.
  • the first block is disposed on the gas refrigerant side with respect to the first outdoor heat exchanger 3 and the second outdoor heat exchanger 4 in the first state and the second state.
  • the second block is disposed on the liquid refrigerant side with respect to the first outdoor heat exchanger 3 and the second outdoor heat exchanger 4 in the first state and the second state.
  • the Cv values of the first on-off valve 11, the second on-off valve 12, and the fifth on-off valve 15 included in the first block are, for example, the third on-off valve 13, the fourth on-off valve 14, and the It is larger than each Cv value of the seventh on-off valve 17.
  • the inner diameters of a part of the first pipe line, the second pipe line, and the third pipe line included in the first block are the other part of the first pipe line included in the second block, for example, the fourth pipe line And it is larger than each inner diameter of the fifth pipe.
  • the second port P2, the third port P3, the fourth port P4, and the fifth port P5 are, for example, arranged on the same plane.
  • the surface on which the first port P1 is disposed is disposed, for example, on the side opposite to the surface on which the sixth port P6 is disposed.
  • the first port P1, the second port P2, the third port P3, the fourth port P4, the fifth port P5, and the sixth port P6 may be disposed on the same plane.
  • the first circuit portion of the refrigerant circuit includes, for example, a compressor 1, a four-way valve 2, a first outdoor heat exchanger 3, and a second outdoor heat exchanger 4.
  • the discharge pipe, the suction pipe, a connection pipe connecting the third opening of the four-way valve 2 and the first pipe C1, and the fourth opening of the four-way valve 2 A connection pipe connecting the first port P1, a connection pipe connecting the second port P2 and the first distribution part 3a, a connection pipe connecting the third port P3 and the third distribution part 4a, and a fourth port P4
  • It has only connection piping that connects the second distribution portion 3b, connection piping that connects the fifth port P5 and the fourth distribution portion 4b, and connection piping that connects the sixth port P6 and the second piping. .
  • the 1st indoor unit 40a, the 2nd indoor unit 40b, and the relay machine 50 should just have arbitrary structures, for example, a cooling only operation, a cooling main operation, a heating operation, and a heating main operation can be implemented. Is provided.
  • the 1st indoor unit 40a, the 2nd indoor unit 40b, and the relay machine 50 have the structure shown by FIG. 1, for example.
  • the third state, the fifth state, or the sixth state is realized according to the cooling load.
  • the cooling load is relatively high
  • the third state is selected.
  • the third state is realized, for example, during a cooling only operation.
  • the fifth state and the sixth state are realized, for example, during cooling main operation.
  • the first outdoor heat exchanger 3 and the second outdoor heat exchanger 4 are connected in series in the first circuit portion. Specifically, the gas single-phase refrigerant discharged from the compressor 1 flows into the first pipe line of the second flow path switching unit 10 from the first port P1.
  • a liquid single-phase refrigerant or a gas-liquid two-phase refrigerant All flow into the third distributor 4a through the fourth pipe, the first pipe, and the third pipe, and are condensed in the second outdoor heat exchanger 4 by exchanging heat with the outside air.
  • the liquid single-phase refrigerant condensed in the second outdoor heat exchanger 4 passes through the fourth distributor 4b and flows into the fifth pipe from the sixth port P6.
  • the refrigerant depends on whether the operation state of the refrigeration cycle apparatus 100 is a cooling only operation or a cooling main operation. 50 is appropriately distributed. For example, during the cooling only operation, a part of the liquid single-phase refrigerant that has flowed into the relay unit 50 is supplied to the first indoor unit 40a and is depressurized by the first decompression unit 7a, and then is supplied to the first indoor heat exchanger 6a. Then, it exchanges heat with indoor air and evaporates to become a gas single-phase refrigerant.
  • the remaining portion of the liquid single-phase refrigerant that has flowed into the relay unit 50 is supplied to the second indoor unit 40b and decompressed by the second decompression unit 7b, and then the indoor air and heat are fed by the second indoor heat exchanger 6b. It exchanges and evaporates to become a gas single-phase refrigerant.
  • the gas single-phase refrigerant flowing out from each indoor unit joins in the relay unit 50 and is sucked into the suction port of the compressor 1 through the first pipe.
  • the gas single-phase refrigerant is compressed by the compressor 1 and then discharged from the discharge port again.
  • the fifth state no refrigerant is supplied to the second outdoor heat exchanger 4, and the second outdoor heat exchanger 4 does not act as a condenser.
  • the first outdoor heat exchanger 3 acts as a condenser.
  • the gas single-phase refrigerant discharged from the compressor 1 flows into the first pipe line of the second flow path switching unit 10 from the first port P1. Since the first on-off valve 11 is open and the fifth on-off valve 15 is closed, all of the gas single-phase refrigerant that has flowed into the first pipe passes through the second pipe to the first distributor 3a. It flows in and is condensed by exchanging heat with the outside air in the first outdoor heat exchanger 3.
  • the liquid single-phase refrigerant or the gas-liquid two-phase refrigerant condensed in the first outdoor heat exchanger 3 passes through the second distributor 3b and flows into the fourth pipeline from the fourth port P4. Since the third on-off valve 13 and the seventh on-off valve 17 are open and the fourth on-off valve 14 and the sixth on-off valve 16 are closed, all of the liquid single-phase refrigerant or the gas-liquid two-phase refrigerant is the fourth The liquid flows out from the second port P2 through the pipe line and the first pipe line.
  • the fourth state is realized.
  • the first outdoor heat exchanger 3 and the second outdoor heat exchanger 4 are connected in parallel in the first circuit portion.
  • the gas single-phase refrigerant discharged from the compressor 1 is condensed in at least one of the first indoor heat exchanger 6a and the second indoor heat exchanger 6b shown in FIG. Becomes a refrigerant.
  • the liquid single-phase refrigerant is decompressed by the first decompression unit 7a or the second decompression unit 7b and becomes a gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant flows into the first pipe of the second flow path switching unit 10 from the sixth port P6 through the second pipe C2.
  • the third on-off valve 13, the fourth on-off valve 14, and the seventh on-off valve 17 are open and the sixth on-off valve 16 is closed. Therefore, a part of the gas-liquid two-phase refrigerant that has flowed into the first pipe flows into the second distributor 3b through the third pipe, evaporates by exchanging heat with the outside air in the first outdoor heat exchanger 3. It becomes a gas single-phase refrigerant. The remaining part of the gas-liquid two-phase refrigerant that has flowed into the first pipe flows into the fourth distribution part 4b through the fourth pipe, and is evaporated by exchanging heat with the outside air in the second outdoor heat exchanger 4. It becomes a gas single-phase refrigerant.
  • the gas single-phase refrigerant evaporated in the first outdoor heat exchanger 3 passes through the first distributor 3a and flows into the second pipe from the second port P2.
  • the gas single-phase refrigerant evaporated in the second outdoor heat exchanger 4 passes through the third distributor 4a and flows into the third conduit from the third port P3. Since the first on-off valve 11, the second on-off valve 12, and the fifth on-off valve 15 are open and the sixth on-off valve 16 is closed, all of the gas single-phase refrigerant passes through the first pipeline. Outflow from the first port P1.
  • the gas single-phase refrigerant flowing out from the first port P1 is sucked into the suction port of the compressor 1.
  • the refrigeration cycle apparatus 100 includes a compressor 1, a four-way valve 2, a second flow path switching unit 10, a first outdoor heat exchanger 3, a second outdoor heat exchanger 4, a first indoor heat exchanger 6a, and a second indoor heat. It includes an exchanger 6b and a second flow path switching unit 10, and includes a refrigerant circuit in which the refrigerant circulates.
  • the 1st outdoor heat exchanger 3 has the 1st distribution part 3a and the 2nd distribution part 3b in which a refrigerant flows in and out.
  • the 2nd outdoor heat exchanger 4 has the 3rd distribution part 4a and the 4th distribution part 4b where refrigerant flows in and out.
  • the four-way valve 2 includes a first state in which at least one of the first outdoor heat exchanger 3 and the second outdoor heat exchanger 4 acts as a condenser, and the first outdoor heat exchanger 3 and the second outdoor heat exchanger 4. Is switched to the second state in which at least one of these acts as an evaporator.
  • the second flow path switching unit 10 has a first port P1, a second port P2, a third port P3, a fourth port P4, a fifth port P5, and a sixth port P6 through which refrigerant flows in and out.
  • the first port P1 is connected to the discharge port of the compressor 1 via the four-way valve 2 in the first state, and is connected to the suction port of the compressor 1 via the four-way valve 2 in the second state.
  • the second port P2 is connected to the first distribution unit 3a.
  • the third port P3 is connected to the third distribution unit 4a.
  • the fourth port P4 is connected to the second distribution unit 3b.
  • the fifth port P5 is connected to the fourth distribution unit 4b.
  • the sixth port P6 is connected to the third heat exchanger.
  • the second flow path switching unit 10 includes a first port P1, a second port P2, a first heat exchanger, a fourth port P4, a third port P3, a second heat exchanger, a fifth port P5, and a sixth port P6.
  • the second flow path switching unit 10 includes the third state in which the first outdoor heat exchanger 3 and the second outdoor heat exchanger 4 are connected in series, and the first outdoor heat exchange.
  • the fourth state in which the vessel 3 and the second outdoor heat exchanger 4 are connected in parallel is switched. Therefore, when the second flow path switching unit 10 realizes the third state during the cooling operation and the fourth state during the heating operation, the coefficient of performance COP of the refrigeration cycle apparatus 100 is determined by the second flow path switching unit 10. Is higher than the coefficient of performance COP of a conventional refrigeration cycle apparatus that does not include the above-described switching.
  • the first outdoor heat exchanger 3 and the fourth outdoor heat exchanger 3 during the cooling operation are compared with the refrigeration cycle apparatus in which the fourth state is maintained during the cooling and heating operation. Since the flow rate of the refrigerant flowing in one heat transfer tube of the second outdoor heat exchanger 4 is increased and the flow rate is increased, the heat transfer coefficient in the tube is high. As a result, the condensation heat transfer performance of the refrigeration cycle apparatus 100 is higher than the condensation heat transfer performance of the refrigeration cycle apparatus, and the coefficient of performance COP of the refrigeration cycle apparatus 100 is higher than the coefficient of performance COP of the refrigeration cycle apparatus. Become.
  • the first outdoor heat exchanger during the heating operation is compared with the refrigeration cycle apparatus in which the third state is maintained during the cooling / heating operation. 3 and the pressure loss of the refrigerant flowing through the heat transfer tubes of the second outdoor heat exchanger 4 can be reduced.
  • the coefficient of performance COP of the refrigeration cycle apparatus 100 is higher than the coefficient of performance COP of the refrigeration cycle apparatus.
  • the second flow path switching unit 10 has one port P1, second port P2, third port P3, fourth port P4, fifth port P5, and sixth port P6. It is configured as a unit. Therefore, the switching of the third state, the fifth state, the sixth state, and the fourth state is realized by switching the flow path inside the second flow path switching unit 10.
  • the pipes constituting the first circuit unit in the outdoor unit 30 are arranged in the ports of the second flow path switching unit 10 and the outdoor unit 30. Only piping that connects other constituent members other than the flow path switching unit 10 on a one-to-one basis is provided. Therefore, the piping of the first circuit unit in the outdoor unit 30 outside the second channel switching unit 10 is performed between the check valve, the on-off valve, and the plurality of unit channels in the conventional air conditioner. Compared to the handling of piping to connect the.
  • the second flow path switching unit 10 can be made constant among a plurality of refrigeration cycle apparatuses 100 having different horsepower numbers and the like. That is, in the refrigeration cycle apparatus 100, there is no need to change the design of the refrigerant piping according to the number of horsepower, the spread period, and whether or not it is a so-called high performance machine. That is, in the refrigeration cycle apparatus 100, standardization design of the first circuit portion of the refrigerant circuit in the outdoor unit 30 is possible.
  • the refrigeration cycle apparatus 100 is arranged in the outdoor unit 30 as compared with the refrigeration cycle apparatus that needs to design the handling of the refrigerant pipe including the check valve and the electromagnetic valve according to the horsepower number of the refrigeration cycle apparatus.
  • the length of the refrigerant pipe can be shortened by simplifying the routing of the refrigerant pipe.
  • the installation space of the refrigerant pipe in the outdoor unit 30 is reduced as compared with the refrigeration cycle apparatus, and the manufacturing cost of the refrigeration cycle apparatus 100 is reduced as compared with the refrigeration cycle apparatus.
  • the second flow path switching unit 10 includes the third state, the fourth state, the first port P1, the second port P2, the first heat exchanger, the fourth port P4, and the sixth state.
  • a fifth state in which the port P6 is connected in series in order and a sixth state in which the first port P1, the third port P3, the second heat exchanger, the fifth port P5, and the sixth port P6 are connected in series in order.
  • the third state, the fifth state, and the sixth state are selected when the refrigeration cycle apparatus is in the first state.
  • the fourth state is selected when the refrigeration cycle apparatus is in the second state.
  • the second flow path switching unit 10 includes the fifth state in which the refrigerant is not supplied to the second outdoor heat exchanger 4, and the first state.
  • the sixth state in which the refrigerant is not supplied to the outdoor heat exchanger 3 is switched.
  • the fifth state and the sixth state are realized during a cooling operation in which the air conditioning load is relatively small (during cooling low load operation).
  • the second flow path switching unit 10 realizes the fifth state or the sixth state, so that the heat dissipation capability of the condenser can be reduced, and the condensation pressure can be reduced. Reduction is suppressed. As a result, the refrigeration cycle apparatus 100 can obtain the required heating capacity even in the above case. Further, in this case, since the refrigeration cycle apparatus 100 suppresses the decrease in the condensation pressure, the reliability of the compressor 1 is ensured.
  • the 2nd flow path switching part 10 changes the said 5th state and the said 6th state according to an air-conditioning load. Can be switched. In this way, fluctuations in the condensation pressure are suppressed.
  • FIG. The refrigeration cycle apparatus 101 according to the second embodiment has basically the same configuration as the refrigeration cycle apparatus 100 according to the first embodiment, but the refrigerant circuit is replaced with the second flow path switching unit 10 and the second flow. It differs in that it includes a path switching unit 20 and further includes a third outdoor heat exchanger 5 as a fourth heat exchange unit.
  • the third outdoor heat exchanger 5 has a fifth distribution part 5a as a fifth inflow / outflow part through which refrigerant flows in and out and a sixth distribution part 5b as a sixth inflow / outflow part.
  • the second flow path switching unit 20 has basically the same configuration as the second flow path switching unit 10, but differs in that it further includes a seventh port P7 and an eighth port P8 through which refrigerant flows. .
  • the seventh port P7 is connected to the fifth distribution unit 5a.
  • the eighth port P8 is connected to the sixth distribution unit 5b.
  • the second flow path switching unit 10 switches between the third state, the fifth state, the sixth state, the fourth state, and the seventh state.
  • the first port P1, the second port P2, the fourth port P4, the third port P3, the fifth port P5, and the sixth port P6 are serially connected in order.
  • the first port P1, the seventh port P7, the eighth port P8, the third port P3, the fifth port P5, and the sixth port P6 are connected in series in order. That is, in the third state, the first outdoor heat exchanger 3 and the second outdoor heat exchanger 4 are connected in series, and the third outdoor heat exchanger 5 and the second outdoor heat exchanger 4 are connected to each other. Connected in series. From a different point of view, in the third state, the first outdoor heat exchanger 3 and the third outdoor heat exchanger 5 are connected in parallel to the second outdoor heat exchanger 4.
  • the second flow path switching unit 20 in the third state, includes a first port in addition to the first flow path, the second flow path, and the third flow path. It further has a sixth flow path connecting P1 and the seventh port P7, and a seventh flow path connecting the eighth port P8 and the third port P3.
  • the first flow path and the sixth flow path are connected in parallel, and the second flow path and the seventh flow path are connected in parallel.
  • the fourth port P4, the fifth port P5 and the eighth port P8 are connected in parallel to the sixth port P6, and the second port P2,
  • the 3 port P3 and the seventh port P7 are connected in parallel to the first port P1.
  • the second channel switching unit 20 includes the first channel, the fifth channel, and the sixth channel, the third channel, the fourth channel, and the seventh channel. And a flow path.
  • the first channel, the fifth channel, and the sixth channel are connected in parallel to each other.
  • the third flow path, the fourth flow path, and the seventh flow path are connected in parallel to each other. That is, in the fourth state, the first outdoor heat exchanger 3, the second outdoor heat exchanger 4, and the third outdoor heat exchanger 5 are connected in parallel.
  • the second flow path switching unit 20 has only the first flow path and the fourth flow path in the fifth state.
  • the sixth state shown in FIGS. 8D and 12 a state similar to the sixth state shown in FIGS. 2D and 6 is realized.
  • the second flow path switching unit 20 has only the fifth flow path and the third flow path. That is, in the fifth state, the refrigerant flowing through the first circuit unit is not supplied to the second outdoor heat exchanger 4 and the third outdoor heat exchanger 5, and the refrigerant is supplied only to the first outdoor heat exchanger 3. Is done. In the sixth state, the refrigerant flowing through the first circuit unit is not supplied to the first outdoor heat exchanger 3 and the third outdoor heat exchanger 5, but is supplied only to the second outdoor heat exchanger 4. .
  • the first port P1, the seventh port P7, the eighth port P8, and the sixth port P6 are connected in series in order.
  • the second flow path switching unit 20 has only the sixth flow path and the eighth flow path in the seventh state. That is, in the seventh state, the refrigerant flowing through the first circuit unit is not supplied to the first outdoor heat exchanger 3 and the second outdoor heat exchanger 4, and the refrigerant is supplied only to the third outdoor heat exchanger 5. Is done. Note that the arrows shown in FIGS. 8A to 8E indicate the flow direction of the refrigerant in each state.
  • the seventh state is selected when the refrigeration cycle apparatus 100 is in the first state.
  • the second flow path switching unit 20 includes the first pipeline, the second pipeline, the third pipeline, the fourth pipeline, the fifth pipeline, the first on-off valve 11, and the second on-off valve 12.
  • the third on-off valve 13 the fourth on-off valve 14
  • the fifth on-off valve 15 the sixth on-off valve 16
  • the seventh on-off valve 17 the sixth pipe line, the seventh pipe line, the eighth on-off valve 18 and A ninth on-off valve 19 is further included.
  • the sixth pipeline connects the seventh port P7 and the first pipeline.
  • the seventh pipe line connects the eighth port P8 and the first pipe line.
  • the second pipeline, the third pipeline, the fourth pipeline, the fifth pipeline, the sixth pipeline, and the seventh pipeline are connected in parallel to the first pipeline. ing.
  • a connection part between the first pipe line and the seventh pipe line is a fifth connection part, and a connection part between the first pipe line and the eighth pipe line is a sixth connection part.
  • the seventh pipe line is connected to a portion of the first pipe line located between the first connection part and the second connection part.
  • the eighth pipe line is connected to a portion located between the third connection part and the fourth connection part in the first pipe line.
  • the eighth on-off valve 18 opens and closes the sixth pipe line.
  • the ninth on-off valve 19 opens and closes the seventh pipe line.
  • the fifth on-off valve 15 opens and closes a portion located between the fifth connection portion and the second connection portion in the first pipeline.
  • the seventh on-off valve 17 opens and closes a portion located between the sixth connection portion and the fourth connection portion in the first pipeline.
  • the first on-off valve 11, the second on-off valve 12, the third on-off valve 13, the fourth on-off valve 14, the sixth on-off valve 16, the eighth on-off valve 18, and The ninth on-off valve 19 is opened, and the fifth on-off valve 15 and the seventh on-off valve 17 are closed.
  • the first on-off valve 11, the second on-off valve 12, the third on-off valve 13, the fourth on-off valve 14, the fifth on-off valve 15, the seventh on-off valve 17, The eighth on-off valve 18 and the ninth on-off valve 19 are opened, and the sixth on-off valve 16 is closed.
  • the first on-off valve 11, the third on-off valve 13, and the seventh on-off valve 17 are opened, and the second on-off valve 12, the fourth on-off valve 14, The fifth on-off valve 15, the sixth on-off valve 16, the eighth on-off valve 18, and the ninth on-off valve 19 are closed.
  • the second on-off valve 12, the fourth on-off valve 14, the fifth on-off valve 15, and the seventh on-off valve 17 are opened, and the first on-off valve 11, the third on-off valve The valve 13 and the sixth on-off valve 16 are closed.
  • the seventh on-off valve 17, the eighth on-off valve 18, and the ninth on-off valve 19 are opened, and the first on-off valve 11, the second on-off valve 12, and the third on-off valve are opened.
  • the valve 13, the fourth on-off valve 14, the fifth on-off valve 15 and the sixth on-off valve 16 are closed.
  • the second flow path switching unit 10 is configured as one unit.
  • the second flow path switching unit 20 can be divided into, for example, a first block and a second block, and a sixth on-off valve 16 disposed between the first block and the second block.
  • the first block includes a part of the first pipe, the second pipe, the third pipe, the sixth pipe, the first on-off valve 11, the second on-off valve 12, the fifth on-off valve 15, and the eighth on-off valve.
  • the second block includes the other part of the first pipe, the fourth pipe, the fifth pipe, the seventh pipe, the fourth on-off valve 14, the fifth on-off valve 15, the seventh on-off valve 17, and the ninth.
  • An on-off valve 19 is provided.
  • the first block is arranged on the gas refrigerant side with respect to the first outdoor heat exchanger 3, the second outdoor heat exchanger 4, and the third outdoor heat exchanger 5 in the first state and the second state.
  • the second block is disposed on the liquid refrigerant side with respect to the first outdoor heat exchanger 3, the second outdoor heat exchanger 4, and the third outdoor heat exchanger 5 in the first state and the second state.
  • the Cv values of the first on-off valve 11, the second on-off valve 12, the fifth on-off valve 15, and the eighth on-off valve 18 included in the first block are, for example, the third on-off valve 13 and the fourth on-off valve included in the second block.
  • the Cv values of the on-off valve 14, the seventh on-off valve 17, and the ninth on-off valve 19 are large.
  • Each inner diameter of the first pipeline included in the first block, the second pipeline, the third pipeline, and the sixth pipeline is, for example, the other part of the first pipeline included in the second block, Larger than the inner diameters of the fourth, fifth and seventh pipelines.
  • the second port P2, the third port P3, the fourth port P4, the fifth port P5, the seventh port P7 and the eighth port P8 are, for example, arranged on the same plane.
  • the first port P1, the second port P2, the third port P3, the fourth port P4, the fifth port P5, the sixth port P6, the seventh port P7, and the eighth port P8 are arranged on the same plane. May be.
  • the third state, the fifth state, the sixth state, or the seventh state is realized according to the cooling load.
  • the cooling load is relatively high
  • the third state is selected.
  • the third state is realized, for example, during a cooling only operation.
  • the fifth state, the sixth state, and the seventh state are realized, for example, during the cooling main operation.
  • the first outdoor heat exchanger 3 and the second outdoor heat exchanger 4 are connected in series in the first circuit section, and the third outdoor heat exchanger 5 is connected. And the second outdoor heat exchanger 4 are connected in series in the first circuit section.
  • the gas single-phase refrigerant discharged from the compressor 1 flows into the first pipeline of the second flow path switching unit 10 from the first port P1.
  • the first on-off valve 11 and the eighth on-off valve 18 are open and the fifth on-off valve 15 is closed. Therefore, a part of the gas single-phase refrigerant that has flowed into the first pipe flows into the first distributor 3a from the second port P2 through the second pipe, and the outside air and the heat in the first outdoor heat exchanger 3 Exchanged and condensed.
  • the liquid single-phase refrigerant or the gas-liquid two-phase refrigerant condensed in the first outdoor heat exchanger 3 passes through the second distributor 3b and flows into the fourth pipeline from the fourth port P4.
  • the remaining portion of the gas single-phase refrigerant that has flowed into the first pipe flows through the sixth pipe from the seventh port P7 to the fifth distributor 5a, and exchanges heat with the outside air in the third outdoor heat exchanger 5. And condensed.
  • the liquid single-phase refrigerant or the gas-liquid two-phase refrigerant condensed in the third outdoor heat exchanger 5 flows through the sixth distributor 5b and into the seventh pipe line from the eighth port P8.
  • the liquid single-phase refrigerant flows into the third distribution portion 4a from the third port P3 through the fourth pipe, the first pipe, and the third pipe, and in the second outdoor heat exchanger 4, the outside air Heat is exchanged and condensed.
  • the liquid single-phase refrigerant condensed in the second outdoor heat exchanger 4 passes through the fourth distributor 4b and flows into the fifth pipe from the sixth port P6.
  • the fifth state no refrigerant is supplied to the second outdoor heat exchanger 4 and the third outdoor heat exchanger 5, and the second outdoor heat exchanger 4 and the third outdoor heat exchange are not supplied.
  • the vessel 5 does not act as a condenser.
  • only the first outdoor heat exchanger 3 acts as a condenser.
  • the gas single-phase refrigerant discharged from the compressor 1 flows into the first pipe line of the second flow path switching unit 10 from the first port P1. Since the first on-off valve 11 is open and the fifth on-off valve 15 and the eighth on-off valve 18 are closed, all of the gas single-phase refrigerant that has flowed into the first pipe passes through the second pipe.
  • FIG. 1st distribution part 3a It flows into the 1st distribution part 3a, is condensed by exchanging heat with outside air in the 1st outdoor heat exchanger 3.
  • FIG. The liquid single-phase refrigerant or the gas-liquid two-phase refrigerant condensed in the first outdoor heat exchanger 3 passes through the second distributor 3b and flows into the fourth pipeline from the fourth port P4. Since the third on-off valve 13 and the seventh on-off valve 17 are open and the fourth on-off valve 14, the sixth on-off valve 16 and the ninth on-off valve 19 are closed, a liquid single-phase refrigerant or a gas-liquid two-phase refrigerant All flow out to the outside from the second port P2 through the fourth pipeline and the first pipeline.
  • the sixth state no refrigerant is supplied to the first outdoor heat exchanger 3 and the third outdoor heat exchanger 5, and the first outdoor heat exchanger 3 and the third outdoor heat exchange are not supplied.
  • the vessel 5 does not act as a condenser.
  • only the second outdoor heat exchanger 4 acts as a condenser. Specifically, the gas single-phase refrigerant discharged from the compressor 1 flows into the first pipe line of the second flow path switching unit 10 from the first port P1.
  • the gas single phase flowing into the first pipe line All of the refrigerant flows into the third distribution portion 4a through the third conduit, and is condensed by exchanging heat with the outside air in the second outdoor heat exchanger 4.
  • the liquid single-phase refrigerant or the gas-liquid two-phase refrigerant condensed in the second outdoor heat exchanger 4 flows through the fourth distributor 4b and flows into the fifth pipe from the sixth port P6.
  • the seventh state no refrigerant is supplied to the first outdoor heat exchanger 3 and the second outdoor heat exchanger 4, and the first outdoor heat exchanger 3 and the second outdoor heat exchange.
  • the vessel 4 does not act as a condenser.
  • only the third outdoor heat exchanger 5 acts as a condenser.
  • the gas single-phase refrigerant discharged from the compressor 1 flows into the first pipe line of the second flow path switching unit 10 from the first port P1. Since the eighth on-off valve 18 is open and the first on-off valve 11 and the fifth on-off valve 15 are closed, all of the gas single-phase refrigerant that has flowed into the first pipe passes through the sixth pipe.
  • the liquid single-phase refrigerant or the gas-liquid two-phase refrigerant condensed in the third outdoor heat exchanger 5 flows through the sixth distributor 5b and into the seventh pipe line from the eighth port P8. Since the seventh on-off valve 17 and the ninth on-off valve 19 are open and the third on-off valve 13, the fourth on-off valve 14 and the sixth on-off valve 16 are closed, a liquid single-phase refrigerant or a gas-liquid two-phase refrigerant All flow out from the second port P2 through the fifth pipe and the first pipe.
  • the fourth state is realized when the refrigeration cycle apparatus 101 is operated for heating.
  • the first outdoor heat exchanger 3, the second outdoor heat exchanger 4, and the third outdoor heat exchanger 5 are connected in parallel in the first circuit unit.
  • the gas single-phase refrigerant discharged from the compressor 1 is condensed in at least one of the first indoor heat exchanger 6a and the second indoor heat exchanger 6b shown in FIG. Becomes a refrigerant.
  • the liquid single-phase refrigerant is decompressed by the first decompression unit 7a or the second decompression unit 7b and becomes a gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant flows into the first pipe of the second flow path switching unit 10 from the sixth port P6 through the second pipe C2.
  • the third on-off valve 13, the fourth on-off valve 14, the seventh on-off valve 17, and the ninth on-off valve 19 are open and the sixth on-off valve 16 is closed. Therefore, a part of the gas-liquid two-phase refrigerant that has flowed into the first pipe flows into the second distributor 3b through the third pipe, evaporates by exchanging heat with the outside air in the first outdoor heat exchanger 3. It becomes a gas single-phase refrigerant. The other part of the gas-liquid two-phase refrigerant that has flowed into the first pipe flows into the fourth distributor 4b through the fourth pipe, and exchanges heat with the outside air in the second outdoor heat exchanger 4. Evaporates into a gas single-phase refrigerant.
  • the remaining part of the gas-liquid two-phase refrigerant that has flowed into the first pipe flows into the sixth distributor 5b through the seventh pipe, and is evaporated by exchanging heat with the outside air in the third outdoor heat exchanger 5. It becomes a single-phase refrigerant.
  • the gas single-phase refrigerant evaporated in the first outdoor heat exchanger 3 passes through the first distributor 3a and flows into the second pipe from the second port P2.
  • the gas single-phase refrigerant evaporated in the second outdoor heat exchanger 4 passes through the third distributor 4a and flows into the third conduit from the third port P3.
  • the gas single-phase refrigerant evaporated in the third outdoor heat exchanger 5 passes through the fifth distributor 5a and flows into the sixth pipe from the seventh port P7. Since the first on-off valve 11, the second on-off valve 12, the fifth on-off valve 15, and the eighth on-off valve 18 are open and the sixth on-off valve 16 is closed, all of the gas single-phase refrigerant is It flows out from the first port P1 through the pipeline. The gas single-phase refrigerant flowing out from the first port P1 is sucked into the suction port of the compressor 1.
  • the refrigeration cycle apparatus 101 in the third state, a part of the gas single-phase refrigerant discharged from the compressor 1 condenses in the first outdoor heat exchanger 3 and the gas-liquid two-phase refrigerant has a reduced dryness.
  • the remainder of the gas single-phase refrigerant is condensed in the third outdoor heat exchanger 5 to be a gas-liquid two-phase refrigerant having a reduced dryness.
  • the gas-liquid two-phase refrigerant merges in the second flow path switching unit 20 and is further condensed in the second outdoor heat exchanger 4 to become a liquid single-phase refrigerant.
  • the flow rate of the liquid single-phase refrigerant flowing through the second outdoor heat exchanger 4 in the third state is increased in the same manner as in the refrigeration cycle apparatus 100, but in the third state,
  • the flow rate of the gas-liquid two-phase refrigerant flowing through the heat exchanger 3 and the third outdoor heat exchanger 5 is made slower than that of the refrigeration cycle apparatus 100. Therefore, the condensation heat transfer performance during the cooling operation of the refrigeration cycle apparatus 101 is further enhanced as compared with the condensation heat transfer performance during the cooling operation of the refrigeration cycle apparatus 100.
  • the capacities of the first outdoor heat exchanger 3 and the third outdoor heat exchanger 5 of the refrigeration cycle apparatus 101 can be made smaller than the capacities of the first outdoor heat exchanger 3 of the refrigeration cycle apparatus 100.
  • the condensation heat transfer performance during the cooling operation of the refrigeration cycle apparatus 101 can be more finely controlled according to the cooling load than the condensation heat transfer performance during the cooling operation of the refrigeration cycle apparatus 100.
  • the range of the air conditioning load in which the refrigeration cycle apparatus 101 can perform the cooling operation is wider than the range of the air conditioning load in which the refrigeration cycle apparatus 100 can perform the cooling operation.
  • the refrigeration cycle apparatuses 100 and 101 include the four-way valve 2 as the first flow path switching unit, but are not limited thereto.
  • the first flow path switching unit only needs to have an arbitrary configuration as long as the first state and the second state can be switched, and may be configured by, for example, a plurality of on-off valves.
  • the refrigeration cycle devices 100 and 101 may further include a configuration.
  • the refrigeration cycle apparatuses 100 and 101 may include four or more outdoor heat exchangers. In that case, the third state in which three or more outdoor heat exchangers are connected in series to each other may be realized by the second flow path switching units 10 and 20.
  • the refrigeration cycle apparatuses 100 and 101 include the relay device 50, the invention is not limited to this, and the relay device 50 may not be included.
  • the refrigeration cycle apparatuses 100 and 101 further include a heat medium circuit through which the heat medium circulates, and the third heat exchanger generates heat between the refrigerant that circulates through the refrigerant circuit and the heat medium that circulates through the heat medium circuit. It may be provided as a heat exchanger to be exchanged.
  • the first outdoor heat exchanger 3, the second outdoor heat exchanger 4, and the third outdoor heat exchanger 5 are capable of exchanging heat between a refrigerant and a heat medium such as air.
  • a heat medium such as air
  • the first outdoor heat exchanger 3 and the second outdoor heat exchanger 4 may be configured as one heat exchanger, for example.
  • the 1st outdoor heat exchanger 3, the 2nd outdoor heat exchanger 4, and the 3rd outdoor heat exchanger 5 may be comprised as one heat exchanger, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

冷凍サイクル装置(100)は、圧縮機(1)、四方弁(2)、第2流路切替部(10)、第1室外熱交換器(3)、第2室外熱交換器(4)、第1室内熱交換器(6a)および第2流路切替部(10)を含み、冷媒が循環する冷媒回路を備える。第2流路切替部(10)は、冷媒が流出入する第1ポート(P1)、第2ポート(P2)、第3ポート(P3)、第4ポート(P4)、第5ポート(P5)および第6ポート(P6)を有している。第2流路切替部(10)は、第1ポート(P1)、第2ポート(P2)、第1室外熱交換器(3)、第4ポート(P4)、第3ポート(P3)、第2室外熱交換器(4)、第5ポート(P5)および第6ポート(P6)が順に直列に接続された第3状態と、第6ポート(P6)、第4ポート(P4)、第1室外熱交換器(3)、第2ポート(P2)、および第1ポート(P1)が順に直列に接続され、かつ第6ポート(P6)、第5ポート(P5)、第2室外熱交換器(4)、第3ポート(P3)、および第1ポート(P1)が順に直列に接続された第4状態とを切り替える。

Description

冷凍サイクル装置
 本発明は、冷凍サイクル装置に関する。
 特開2015-117936号公報には、複数の単位流路に区画された室外熱交換器を含み、複数の単位流路のうちの少なくとも2つの単位流路が、冷房運転時には互いに直列に、暖房運転時には互いに並列に連結される空気調和機が開示されている。上記空気調和機では、冷房運転及び暖房運転において単位流路の個数および単位流路の長さを適切に選択し使用することにより、熱交換効率を向上させている。
特開2015-117936号公報
 しかしながら、上記空気調和機では、逆止弁、電磁弁およびこれらと複数の単位流路の各々とを接続する複数の配管が必要とされる。さらに上記空気調和機では、当該複数の配管の取り回しが複雑となる。そのため、上記空気調和機では、複数の配管を設置するスペースが広く必要とされ、小型化が困難である。また上記空気調和機では、複数の配管の各々を接続するために多大な工数が必要とされるため、製造コストが高くなる。
 さらに、上記空気調和機では、空気調和機の馬力、高性能か否か等に応じて複数の単位流路の数などの室外熱交換器の仕様が異なるものとされた場合、配管およびその取り回しついて再設計が必要となる。
 本発明の主たる目的は、上記空気調和機と比べて配管の取り回しが単純化されており、かつ室外熱交換器の仕様毎に配管の取り回しについて再設計が不要な冷凍サイクル装置を提供することにある。
 本発明に係る冷凍サイクル装置は、冷媒が循環する冷媒回路を備える。冷媒回路は、圧縮機、第1流路切替部、第2流路切替部、第1熱交換器、第2熱交換器、および第3熱交換器を含む。第1熱交換器は、冷媒が流出入する第1流出入部および第2流出入部を有している。第2熱交換器は、冷媒が流出入する第3流出入部および第4流出入部を有している。第1流路切替部は、第1状態と第2状態とを切り替える。第1状態では、第1熱交換器および第2熱交換器の少なくともいずれかが凝縮器として作用し第3熱交換器が蒸発器として作用する。第2状態では、第1熱交換器および第2熱交換器の少なくともいずれかが蒸発器として作用し第3熱交換器が凝縮器として作用する。第2流路切替部は、冷媒が流出入する第1ポート、第2ポート、第3ポート、第4ポート、第5ポート、および第6ポートを有している。第1ポートは、第1状態において第1流路切替部を介して圧縮機の吐出口に接続され、第2状態において第1流路切替部を介して圧縮機の吸入口に接続される。第2ポートは、第1流出入部に接続されている。第3ポートは、第3流出入部に接続されている。第4ポートは、第2流出入部に接続されている。第5ポートは、第4流出入部に接続されている。第6ポートは、第3熱交換器に接続されている。第2流路切替部は、第3状態と第4状態とを切り替える。第3状態では、第1ポート、第2ポート、第1熱交換器、第4ポート、第3ポート、第2熱交換器、第5ポートおよび第6ポートが順に直列に接続される。第4状態では、第6ポート、第4ポート、第1熱交換器、第2ポート、および第1ポートが順に直列に接続され、かつ第6ポート、第5ポート、第2熱交換器、第3ポート、および第1ポートが順に直列に接続される。
 本発明に係る冷凍サイクル装置では、第1室外熱交換器および第2室外熱交換器が直列に接続されている第3状態とこれらが並列に接続されている第4状態との切り替えが第2流路切替部の内部において実現される。そのため、本発明によれば、第2流路切替部の外部において配管の取り回しが上記空気調和機と比べて単純化されており、かつ室外熱交換器の仕様毎に配管の取り回しについて再設計が不要とされた冷凍サイクル装置を提供することができる。
実施の形態1に係る冷凍サイクル装置を示す図である。 (A)は図1に示される第2流路切替部が第3状態にあるときの、第2流路切替部内の冷媒流路を示す図であり、(B)は図1に示される第2流路切替部が第4状態にあるときの、第2流路切替部内の冷媒流路を示す図であり、(C)は図1に示される第2流路切替部が第5状態にあるときの、第2流路切替部内の冷媒流路を示す図であり、(D)は図1に示される第2流路切替部が第6状態にあるときの、第2流路切替部内の冷媒流路を示す図である。 図1に示される第2流路切替部が第3状態にあるときの、室外機内の冷媒流路を示す図である。 図1に示される第2流路切替部が第4状態にあるときの、室外機内の冷媒流路を示す図である。 図1に示される第2流路切替部が第5状態にあるときの、室外機内の冷媒流路を示す図である。 図1に示される第2流路切替部が第6状態にあるときの、室外機内の冷媒流路を示す図である。 実施の形態2に係る冷凍サイクル装置を示す図である。 (A)は図7に示される第2流路切替部が第3状態にあるときの、第2流路切替部内の冷媒流路を示す図であり、(B)は図7に示される第2流路切替部が第4状態にあるときの、第2流路切替部内の冷媒流路を示す図であり、(C)は図7に示される第2流路切替部が第5状態にあるときの、第2流路切替部内の冷媒流路を示す図であり、(D)は図7に示される第2流路切替部が第6状態にあるときの、第2流路切替部内の冷媒流路を示す図であり、(E)は図7に示される第2流路切替部が第7状態にあるときの、第2流路切替部内の冷媒流路を示す図である。 図7に示される第2流路切替部が第3状態にあるときの、室外機内の冷媒流路を示す図である。 図7に示される第2流路切替部が第4状態にあるときの、室外機内の冷媒流路を示す図である。 図7に示される第2流路切替部が第5状態にあるときの、室外機内の冷媒流路を示す図である。 図7に示される第2流路切替部が第6状態にあるときの、室外機内の冷媒流路を示す図である。 図7に示される第2流路切替部が第7状態にあるときの、室外機内の冷媒流路を示す図である。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は原則として繰り返さない。
 実施の形態1.
 図1に示されるように、実施の形態1に係る冷凍サイクル装置100は、圧縮機1、第1流路切替部としての四方弁2、第1熱交換部としての第1室外熱交換器3、第2熱交換部としての第2室外熱交換器4、第3熱交換部としての第1室内熱交換器6a、第2室内熱交換器6b、第1減圧部7a、第2減圧部7b、第3減圧部8a、第4減圧部8b、開閉弁9a,9b,9c,9dおよび第2流路切替部10を含み、冷媒が循環する冷媒回路を備える。
 異なる観点から言えば、冷凍サイクル装置100は、室外機30、第1室内機40a、第2室内機40b、および中継機50を備える。室外機30の内部には、圧縮機1、四方弁2、第1室外熱交換器3、第2室外熱交換器4、および第2流路切替部10を含む上記冷媒回路の第1回路部と、室外ファン35とが配置されている。第1室内機40aの内部には、第1室内熱交換器6aおよび第1減圧部7aを含む上記冷媒回路の第2回路部と、図示しない室内ファンとが配置されている。第2室内機40bの内部には、第2室内熱交換器6bおよび第2減圧部7bを含む上記冷媒回路の第3回路部と、図示しない室内ファンとが配置されている。中継機50の内部には、第3減圧部8a、第4減圧部8b、複数の開閉弁9a,9b,9c,9dを含む上記冷媒回路の第4回路部が配置されている。
 室外機10内に配置された上記冷媒回路の上記第1回路部と、中継機30内に配置された上記冷媒回路の上記第4回路部とは、第1配管C1および第2配管C2を介して接続されている。中継機30内に配置された上記冷媒回路の上記第4回路部と、第1室内機20a内に配置された上記冷媒回路の上記第2回路部とは、2つの配管を介して接続されている。中継機30内に配置された上記冷媒回路の上記第4回路部と、第2室内機20b内に配置された上記冷媒回路の上記第3回路部とは、2つの配管を介して接続されている。上記冷媒回路の上記第2回路部と上記第3回路部とは、上記第4回路部に対して並列に接続されている。
 圧縮機1は、冷媒と吐出する吐出口と、冷媒を吸入する吸入口とを有している。
 四方弁2は、圧縮機1の吐出口と吐出配管を介して接続されている第1開口部と、圧縮機1の吸入口と吸入配管を介して接続されている第2開口部と、第1配管C1に接続されている第3開口部と、第2流路切替部10を介して第2配管C2に接続されている第4開口部とを有している。四方弁2の第4開口部は、第2流路切替部10の第1ポートP1に接続されている。四方弁2は、第1室外熱交換器3および第2室外熱交換器4が凝縮器として作用し第3熱交換部が蒸発器として作用する第1状態と、第1室外熱交換器3および第2室外熱交換器4が蒸発器として作用し第3熱交換部が凝縮器として作用する第2状態とを切り替える。なお、図1に示される実線の矢印は、冷凍サイクル装置100が上記第1状態にあるときの上記冷媒回路を循環する冷媒の流通方向を示す。図1に示される点線の矢印は、冷凍サイクル装置100が上記第2状態にあるときの上記冷媒回路を循環する冷媒の流通方向を示す。
 第1室外熱交換器3は、冷媒が流出入する第1流出入部としての第1分配部3aおよび第2流出入部としての第2分配部3bと、第1分配部3aと第2分配部3bとの間に配置された第1熱交換部3cとを含む。第1熱交換部3cは、例えば複数の伝熱管と、複数のフィンとを有している。第1分配部3aは、複数の伝熱管の各一端に接続されている。第2分配部3bは、複数の伝熱管の各他端に接続されている。
 第2室外熱交換器4は、冷媒が流出入する第3流出入部としての第3分配部4aおよび第4流出入部としての第4分配部4bと、第3分配部4aと第4分配部4bとの間に配置された第2熱交換部4cとを含む。第2熱交換部4cは、例えば複数の伝熱管と、複数のフィンとを有している。第3分配部4aは、複数の伝熱管の各一端に接続されている。第4分配部4bは、複数の伝熱管の各他端に接続されている。
 第1室外熱交換器3の容量は、第2室外熱交換器4の容量と等しくてもよいし、異なっていてもよい。第1室外熱交換器3の容量は、第2室外熱交換器4の容量よりも大きくてもよいし、小さくてもよい。
 上記第1状態および上記第2状態において、第1分配部3aは第1室外熱交換器3のガス冷媒側に配置され、第2分配部3bは第1室外熱交換器3の液冷媒側に配置されている。上記第1状態および上記第2状態において、第3分配部4aは第2室外熱交換器4のガス冷媒側に配置され、第4分配部4bは第2室外熱交換器4の液冷媒側に配置されている。なお、熱交換器の液冷媒側とは、熱交換器が凝縮器として作用するときには液冷媒が流出し、かつ熱交換器が蒸発器として作用するときには液冷媒が流入する側を意味する。なお、液冷媒は、液単相冷媒または気液2相冷媒であって液相冷媒を多く含む冷媒を意味する。一方、熱交換器のガス冷媒側とは、熱交換器が凝縮器として作用するときにはガス冷媒が流入し、かつ熱交換器が蒸発器として作用するときにはガス冷媒が流出する側を意味する。なお、ガス冷媒は、ガス単相冷媒を意味する。
 第2流路切替部10は、冷媒が流出入する第1ポートP1、第2ポートP2、第3ポートP3、第4ポートP4、第5ポートP5、および第6ポートP6を有している。第2流路切替部10は、1つのユニットとして構成されている。
 上述のように、第1ポートP1は、四方弁2の第4開口部に接続されている。これにより、第1ポートP1は、上記第1状態において四方弁2を介して圧縮機1の吐出口に接続され、上記第2状態において四方弁2を介して圧縮機1の吸入口に接続される。第2ポートP2は、第1分配部3aに接続されている。第3ポートP3は、第3分配部4aに接続されている。第4ポートP4は、第2分配部3bに接続されている。第5ポートP5は、第4分配部4bに接続されている。第6ポートP6は、第2配管C2に接続されている。第6ポートP6は、第2配管C2に接続および中継機50を介して第1室内熱交換器6aおよび第2室内熱交換器6bに接続されている。
 図2~図6に示されるように、第2流路切替部10は、第3状態、第5状態、第6状態および第4状態を切り替える。図2(A)および図3に示される上記第3状態では、第1ポートP1、第2ポートP2、第4ポートP4、第3ポートP3、第5ポートP5および第6ポートP6が順に直列に接続されている。図2(B)および図4に示される上記第4状態では、第4ポートP4および第5ポートP5が第6ポートP6に対し並列に接続され、かつ第2ポートP2および第3ポートP3が第1ポートP1に対し並列に接続されている。言い換えると、上記第4状態では、第6ポートP6、第4ポートP4、第1室外熱交換器3、第2ポートP2、および第1ポートP1が順に直列に接続され、かつ第6ポートP6、第5ポートP5、第2室外熱交換器4、第3ポートP3、および第1ポートP1が順に直列に接続される。図2(C)および図5に示される上記第5状態では、第1ポートP1、第2ポートP2、第4ポートP4、および第6ポートP6が順に直列に接続されている。図2(D)および図6に示される上記第6状態では、第1ポートP1、第3ポートP3、第5ポートP5、および第6ポートP6が順に直列に接続されている。
 異なる観点から言えば、図2(A)に示されるように、第2流路切替部10は、上記第3状態において、第1ポートP1と第2ポートP2とを接続する第1流路と、第4ポートP4と第3ポートP3とを接続する第2流路と、第5ポートP5と第6ポートP6とを接続する第3流路とを有している。図2(B)に示されるように、第2流路切替部10は、上記第4状態において、上記第1流路と、上記第5流路と、上記第3流路と、上記第4流路とを有している。図2(C)に示されるように、第2流路切替部10は、上記第5状態において、上記第1流路と、第4ポートP4と第6ポートP6とを接続する第4流路とを有している。図2(D)に示されるように、第2流路切替部10は、上記第6状態において、第1ポートP1と第3ポートP3とを接続する第5流路と、上記第3流路とを有している。なお、図2(A)~(D)に示された矢印は、各状態での冷媒の流通方向を示している。
 上記第3状態、上記第5状態、および上記第6状態は、冷凍サイクル装置が上記第1状態にあるときに、冷房負荷に応じて選択される。上記第4状態は、冷凍サイクル装置が上記第2状態にあるときに選択される。
 第2流路切替部10は、上記第3状態、上記第5状態、上記第6状態、および上記第4状態を切り替えることができる限りにおいて、任意の構成を有していればよい。以下では、第2流路切替部10の1つの構成例を説明する。
 図3~図7に示されるように、第2流路切替部10は、第1ポートP1と第6ポートP6とを接続する第1管路と、第1ポートP1から第6ポートP6に向かう第1管路の延在方向に沿って順に第1管路に接続された第2管路、第3管路、第4管路および第5管路とを含む。第1管路は、例えば直線状に延在している。
 第2管路は第2ポートP2と第1管路とを接続している。第3管路は第3ポートP3と第1管路とを接続している。第4管路は第4ポートP4と第1管路とを接続している。第5管路は第5ポートP5と第1管路とを接続している。第1管路と第2管路との接続部を第1接続部、第1管路と第3管路との接続部を第2接続部、第1管路と第4管路との接続部を第3接続部、第1管路と第5管路との接続部を第4接続部とする。
 図3~図7に示されるように、第2流路切替部10は、例えば、第1開閉弁11、第2開閉弁12、第3開閉弁13、第4開閉弁14、第5開閉弁15、第6開閉弁16、および第7開閉弁17をさらに含む。第1開閉弁11は、第2管路を開閉する。第2開閉弁12は、第3管路を開閉する。第3開閉弁13は、第4管路を開閉する。第4開閉弁14は、第5管路を開閉する。第5開閉弁15は、第1管路において上記第1接続部と上記第2接続部との間に位置する部分を開閉する。第6開閉弁16は、第1管路において上記第2接続部と上記第3接続部との間に位置する部分を開閉する。第7開閉弁17は、第1管路において上記第3接続部と上記第4接続部との間に位置する部分を開閉する。
 図3に示されるように、上記第3状態では、第1開閉弁11、第2開閉弁12、第3開閉弁13、第4開閉弁14、および第6開閉弁16が開かれ、かつ第5開閉弁15および第7開閉弁17が閉じられる。
 図4に示されるように、上記第4状態では、第1開閉弁11、第2開閉弁12、第3開閉弁13、第4開閉弁14、第5開閉弁15および第7開閉弁17が開かれ、第6開閉弁16が閉じされる。
 図5に示されるように、上記第5状態では、第1開閉弁11、第3開閉弁13、および第7開閉弁17が開かれ、かつ第2開閉弁12、第4開閉弁14、第5開閉弁15、および第6開閉弁16が閉じられる。
 図6に示されるように、上記第6状態では、第2開閉弁12、第4開閉弁14、第5開閉弁15、第7開閉弁17が開かれ、第1開閉弁11、第3開閉弁13、第6開閉弁16が閉じられる。
 第2流路切替部10は、例えば第1ブロックおよび第2ブロックと、第1ブロックと第2ブロックとの間に配置された第6開閉弁16とに区分され得る。第1ブロックは、第1管路の一部、第2管路、第3管路、第1開閉弁11、第2開閉弁12、および第5開閉弁15を有する。第2ブロックは、第1管路の他の一部、第4管路、第5管路、第4開閉弁14、第5開閉弁15、および第7開閉弁17を有する。第1ブロックは、上記第1状態および上記第2状態において、第1室外熱交換器3および第2室外熱交換器4に対しガス冷媒側に配置されている。第2ブロックは、上記第1状態および上記第2状態において、第1室外熱交換器3および第2室外熱交換器4に対し液冷媒側に配置されている。
 第1ブロックに含まれる第1開閉弁11、第2開閉弁12、および第5開閉弁15の各Cv値は、例えば第2ブロックに含まれる第3開閉弁13、第4開閉弁14、および第7開閉弁17の各Cv値と比べて、大きい。
 第1ブロックに含まれる第1管路の一部、第2管路、および第3管路の各内径は、例えば第2ブロックに含まれる第1管路の他の一部、第4管路および第5管路の各内径と比べて、大きい。
 第2ポートP2,第3ポートP3、第4ポートP4および第5ポートP5は、例えば同一面上に配置されている。第1ポートP1が配置された面は、例えば第6ポートP6が配置された面とは反対側に配置されている。なお、第1ポートP1、第2ポートP2,第3ポートP3、第4ポートP4、第5ポートP5および第6ポートP6は、同一面上に配置されていてもよい。
 図1、図3~図4に示されるように、上記冷媒回路の上記第1回路部は、例えば、圧縮機1、四方弁2、第1室外熱交換器3、第2室外熱交換器4、および第2流路切替部10の他に、上記吐出配管、上記吸入配管、四方弁2の第3開口部と第1配管C1とを接続する接続配管、四方弁2の第4開口部と第1ポートP1とを接続する接続配管、第2ポートP2と第1分配部3aとを接続する接続配管、第3ポートP3と第3分配部4aとを接続する接続配管、第4ポートP4と第2分配部3bとを接続する接続配管、第5ポートP5と第4分配部4bとを接続する接続配管、および第6ポートP6と第2配管とを接続する接続配管のみを有している。
 第1室内機40a、第2室内機40bおよび中継機50は、任意の構成を有していればよいが、例えば全冷房運転、冷房主体運転、全暖房運転、および暖房主体運転を実施可能に設けられている。第1室内機40a、第2室内機40bおよび中継機50は、例えば図1に示される構成を有している。
 次に、冷凍サイクル装置100の動作について説明する。
 <冷房運転>
 冷凍サイクル装置100が冷房運転されるときには、冷房負荷に応じて、上記第3状態、上記第5状態または上記第6状態が実現される。冷房負荷が比較的高い場合には、上記第3状態が選択される。上記第3状態は、例えば全冷房運転時に実現される。上記第5状態および上記第6状態は、例えば冷房主体運転時に実現される。
 図3に示されるように、上記第3状態では、第1室外熱交換器3と第2室外熱交換器4とが上記第1回路部において直列に接続される。具体的には、圧縮機1から吐出されたガス単相冷媒は、第1ポートP1から第2流路切替部10の上記第1管路に流入する。
 上記第3状態では、第1開閉弁11が開いておりかつ第5開閉弁15が閉じられているため、第1管路に流入したガス単相冷媒の全ては、第2管路を通って第1分配部3aに流入し、第1室外熱交換器3において外気と熱交換して凝縮される。第1室外熱交換器3にて凝縮された液単相冷媒または気液2相冷媒は、第2分配部3bを通り、第4ポートP4から上記第4管路に流入する。第3開閉弁13、第6開閉弁16および第2開閉弁12が開いておりかつ第5開閉弁15および第7開閉弁17が閉じられているため、液単相冷媒または気液2相冷媒の全ては、第4管路、第1管路および第3管路を通って第3分配部4aに流入し、第2室外熱交換器4において外気と熱交換して凝縮される。第2室外熱交換器4にて凝縮された液単相冷媒は、第4分配部4bを通り、第6ポートP6から上記第5管路に流入する。第4開閉弁14が開いておりかつ第7開閉弁17が閉じられているため、第5管路に流入した液単相冷媒の全ては、第5管路および第1管路を通って第2ポートP2から外部に流出する。第2ポートP2から流出した液単相冷媒は、第2配管を介して中継機50に流入する。
 上記冷媒回路の上記第2回路部、上記第3回路部および上記第4回路部において、冷媒は、冷凍サイクル装置100の運転状態が全冷房運転または冷房主体運転のいずれであるかによって、中継機50によって適切に振り分けられる。例えば全冷房運転時では、中継機50に流入した液単相冷媒の一部が第1室内機40aに供給され、第1減圧部7aにて減圧された後、第1室内熱交換器6aにて室内の空気と熱交換して蒸発してガス単相冷媒となる。さらに、中継機50に流入した液単相冷媒の残部が第2室内機40bに供給され、第2減圧部7bにて減圧された後、第2室内熱交換器6bにて室内の空気と熱交換して蒸発してガス単相冷媒となる。各室内機から流出したガス単相冷媒は、中継機50内で合流し、第1配管を通って圧縮機1の吸入口に吸入される。ガス単相冷媒は、圧縮機1によって圧縮された後、再び吐出口から吐出される。
 図5に示されるように、上記第5状態では、第2室外熱交換器4には冷媒が供給されず、第2室外熱交換器4は凝縮器として作用しない。上記第5状態では、第1室外熱交換器3のみが凝縮器として作用する。具体的には、圧縮機1から吐出されたガス単相冷媒は、第1ポートP1から第2流路切替部10の上記第1管路に流入する。第1開閉弁11が開いておりかつ第5開閉弁15が閉じられているため、第1管路に流入したガス単相冷媒の全ては、第2管路を通って第1分配部3aに流入し、第1室外熱交換器3において外気と熱交換して凝縮される。第1室外熱交換器3にて凝縮された液単相冷媒または気液2相冷媒は、第2分配部3bを通り、第4ポートP4から上記第4管路に流入する。第3開閉弁13および第7開閉弁17が開いておりかつ第4開閉弁14および第6開閉弁16が閉じられているため、液単相冷媒または気液2相冷媒の全ては、第4管路および第1管路を通って第2ポートP2から外部に流出する。
 図6に示されるように、上記第6状態では、第1室外熱交換器3には冷媒が供給されず、第1室外熱交換器3は凝縮器として作用しない。上記第5状態では、第2室外熱交換器4のみが凝縮器として作用する。具体的には、圧縮機1から吐出されたガス単相冷媒は、第1ポートP1から第2流路切替部10の上記第1管路に流入する。第2開閉弁12および第5開閉弁15が開いておりかつ第1開閉弁11および第6開閉弁16が閉じられているため、第1管路に流入したガス単相冷媒の全ては、第3管路を通って第3分配部4aに流入し、第2室外熱交換器4において外気と熱交換して凝縮される。第2室外熱交換器4にて凝縮された液単相冷媒または気液2相冷媒は、第4分配部4bを通り、第6ポートP6から上記第5管路に流入する。第4開閉弁14が開いておりかつ第7開閉弁17が閉じられているため、液単相冷媒または気液2相冷媒の全ては、第5管路および第1管路を通って第2ポートP2から外部に流出する。
 <暖房運転>
 冷凍サイクル装置100が暖房運転されるときには、上記第4状態が実現される。図4に示されるように、上記第4状態では、第1室外熱交換器3と第2室外熱交換器4とが上記第1回路部において並列に接続される。具体的には、圧縮機1から吐出されたガス単相冷媒は、図1に示される第1室内熱交換器6aおよび第2室内熱交換器6bの少なくともいずれかにて凝縮され、液単相冷媒となる。液単相冷媒は、第1減圧部7aまたは第2減圧部7bにて減圧され、気液2相冷媒となる。気液2相冷媒は、第2配管C2を通って第6ポートP6から第2流路切替部10の上記第1管路に流入する。
 上記第4状態では、第3開閉弁13、第4開閉弁14、および第7開閉弁17が開いておりかつ第6開閉弁16が閉じられている。そのため、第1管路に流入した気液2相冷媒の一部は、第3管路を通って第2分配部3bに流入し、第1室外熱交換器3において外気と熱交換して蒸発され、ガス単相冷媒となる。また、第1管路に流入した気液2相冷媒の残部は、第4管路を通って第4分配部4bに流入し、第2室外熱交換器4において外気と熱交換して蒸発され、ガス単相冷媒となる。
 第1室外熱交換器3にて蒸発されたガス単相冷媒は、第1分配部3aを通り、第2ポートP2から上記第2管路に流入する。第2室外熱交換器4にて蒸発されたガス単相冷媒は、第3分配部4aを通り、第3ポートP3から上記第3管路に流入する。第1開閉弁11、第2開閉弁12、および第5開閉弁15が開いておりかつ第6開閉弁16が閉じられているため、ガス単相冷媒の全ては、第1管路を通って第1ポートP1から外部に流出する。第1ポートP1から流出したガス単相冷媒は、圧縮機1の吸入口に吸入される。
 <作用効果>
 冷凍サイクル装置100は、圧縮機1、四方弁2、第2流路切替部10、第1室外熱交換器3、第2室外熱交換器4、第1室内熱交換器6a、第2室内熱交換器6b、および第2流路切替部10を含み、冷媒が循環する冷媒回路を備える。第1室外熱交換器3は、冷媒が流出入する第1分配部3aおよび第2分配部3bを有している。第2室外熱交換器4は、冷媒が流出入する第3分配部4aおよび第4分配部4bを有している。四方弁2は、第1室外熱交換器3および第2室外熱交換器4の少なくともいずれかが凝縮器として作用する第1状態と、第1室外熱交換器3および第2室外熱交換器4の少なくともいずれかが蒸発器として作用する第2状態とを切り替える。第2流路切替部10は、冷媒が流出入する第1ポートP1、第2ポートP2、第3ポートP3、第4ポートP4、第5ポートP5、および第6ポートP6を有している。第1ポートP1は、第1状態において四方弁2を介して圧縮機1の吐出口に接続され、第2状態において四方弁2を介して圧縮機1の吸入口に接続される。第2ポートP2は、第1分配部3aに接続されている。第3ポートP3は、第3分配部4aに接続されている。第4ポートP4は、第2分配部3bに接続されている。第5ポートP5は、第4分配部4bに接続されている。第6ポートP6は、第3熱交換器に接続されている。第2流路切替部10は、第1ポートP1、第2ポートP2、第1熱交換器、第4ポートP4、第3ポートP3、第2熱交換器、第5ポートP5および第6ポートP6が順に直列に接続された第3状態と、第6ポートP6、第4ポートP4、第1室外熱交換器3、第2ポートP2、および第1ポートP1が順に直列に接続され、かつ第6ポートP6、第5ポートP5、第2室外熱交換器4、第3ポートP3、および第1ポートP1が順に直列に接続された第4状態とを切り替える。
 冷凍サイクル装置100によれば、第2流路切替部10が、第1室外熱交換器3と第2室外熱交換器4とが直列に接続された上記第3状態と、第1室外熱交換器3と第2室外熱交換器4とが並列に接続された上記第4状態とを切り替える。そのため、第2流路切替部10によって上記第3状態が冷房運転時に、上記第4状態が暖房運転時に実現されることにより、冷凍サイクル装置100の成績係数COPは、第2流路切替部10を備えず上記切り替えが行われない従来の冷凍サイクル装置の成績係数COPと比べて、高い。
 例えば、上記第3状態が上記冷房運転時に実現される冷凍サイクル装置100では、上記第4状態が冷暖房運転時に維持される冷凍サイクル装置と比べて、冷房運転時の第1室外熱交換器3および第2室外熱交換器4の1つの伝熱管内を流れる冷媒の流量が増加し、その流速が高めるられるため、管内熱伝達率が高い。その結果、冷凍サイクル装置100の凝縮伝熱性能は上記冷凍サイクル装置の凝縮伝熱性能と比べて高くなり、冷凍サイクル装置100の成績係数COPは、上記冷凍サイクル装置の成績係数COPと比べて高くなる。
 また、例えば、上記第4状態が上記暖房運転時に実現される冷凍サイクル装置100では、上記第3状態が冷暖房運転時に維持される冷凍サイクル装置と比べて、暖房運転時の第1室外熱交換器3および第2室外熱交換器4の伝熱管内を流れる冷媒の圧力損失を低減することができる。その結果、冷凍サイクル装置100の成績係数COPは、上記冷凍サイクル装置の成績係数COPと比べて高くなる。
 さらに、冷凍サイクル装置100では、第2流路切替部10が第1ポートP1、第2ポートP2、第3ポートP3、第4ポートP4、第5ポートP5、および第6ポートP6を有する1つのユニットとして構成されている。そのため、上記第3状態、上記第5状態、上記第6状態、および上記第4状態の切替は、第2流路切替部10の内部の流路の切替によって、実現される。その結果、第2流路切替部10の外部において、室外機30内の上記第1回路部を構成する配管は、第2流路切替部10の各ポートと室外機30に配置された第2流路切替部10以外の他の構成部材とを1対1で接続する配管のみとなる。そのため、第2流路切替部10の外部において室外機30内の上記第1回路部を構成する配管の取り回しは、上記従来の空気調和機において逆止弁、開閉弁および複数の単位流路間を接続する配管の取り回しと比べて、単純化されている。
 さらに、第2流路切替部10における第2流路切替部10の第1ポートP1、第2ポートP2、第3ポートP3、第4ポートP4、第5ポートP5および第6ポートP6の相対的な位置関係は、異なる仕様の第1室外熱交換器3および第2室外熱交換器4に接続される場合にも、変更される必要がない。そのため、第2流路切替部10は、馬力数等の異なる複数の冷凍サイクル装置100間において、一定とされ得る。つまり、冷凍サイクル装置100では、馬力数、普及期、およびいわゆる高性能機か否か等に応じて冷媒配管の取り回しを設計変更する必要が無い。つまり、冷凍サイクル装置100では、室外機30内の上記冷媒回路の上記第1回路部の標準化設計が可能となる。
 このように、冷凍サイクル装置100では、冷凍サイクル装置の馬力数等に応じて逆止弁および電磁弁を含む冷媒配管の取り回しを設計する必要がある冷凍サイクル装置と比べて、室外機30に配置される冷媒配管の引き回しを単純化して冷媒配管の長さを短くすることができる。その結果、室外機30内の冷媒配管の設置スペースは上記冷凍サイクル装置と比べて縮小され、冷凍サイクル装置100の製造コストは上記冷凍サイクル装置と比べて低減される。
 上記冷凍サイクル装置100では、第2流路切替部10は、第3状態と、第4状態と、第1ポートP1、第2ポートP2、第1熱交換器、第4ポートP4、および第6ポートP6が順に直列に接続された第5状態と、第1ポートP1、第3ポートP3、第2熱交換器、第5ポートP5、および第6ポートP6が順に直列に接続された第6状態とを切り替える。第3状態、第5状態、および第6状態は、冷凍サイクル装置が第1状態にあるときに選択される。第4状態は、冷凍サイクル装置が第2状態にあるときに選択される。
 上記冷凍サイクル装置100によれば、第2流路切替部10が、上記第3状態、上記第4状態に加え、第2室外熱交換器4に冷媒が供給されない上記第5状態、および第1室外熱交換器3に冷媒が供給されない上記第6状態を切り替える。上記第5状態および上記第6状態は、空調負荷が比較的小さい冷房運転時(冷房低負荷運転時)に実現される。
 例えば冷房主体運転時に外気温が低い場合、第1室外熱交換器3および第2室外熱交換器4を凝縮器として作用させるとこれらの放熱能力が過大となり、凝縮圧力が通常の冷房運転時のそれと比べて低下する。その結果、暖房運転している室内熱交換器に供給される気相冷媒の飽和温度が低下し、要求される暖房能力が得られなくなる。また、凝縮圧力の低下に伴い圧縮比(凝縮圧力/蒸発圧力)が低い状態が維持されると、圧縮機の信頼性が低下する。
 このような場合、冷凍サイクル装置100では、第2流路切替部10によって上記第5状態または上記第6状態が実現されることで、凝縮器の放熱能力を低下させることができ、凝縮圧力の低下が抑制される。その結果、冷凍サイクル装置100では、上記のような場合にも、要求される暖房能力を得ることができる。また、この場合、冷凍サイクル装置100では凝縮圧力の低下が抑制されるために、圧縮機1の信頼性が確保されている。
 また、第1室外熱交換器3の容量と第2室外熱交換器4の容量とが異なる場合、第2流路切替部10は空調負荷に応じて上記第5状態と上記第6状態とを切り替えることができる。このようにすれば、凝縮圧力の変動が抑制される。
 実施の形態2.
 実施の形態2に係る冷凍サイクル装置101は、実施の形態1に係る冷凍サイクル装置100と基本的に同様の構成を備えるが、上記冷媒回路が第2流路切替部10に替えて第2流路切替部20を含み、かつ第4熱交換部としての第3室外熱交換器5をさらに含む点で異なる。
 第3室外熱交換器5は、冷媒が流出入する第5流出入部としての第5分配部5aおよび第6流出入部としての第6分配部5bを有している。
 第2流路切替部20は、第2流路切替部10と基本的に同様の構成を備えるが、冷媒が流出入する第7ポートP7および第8ポートP8をさらに有している点で異なる。第7ポートP7は、第5分配部5aに接続されている。第8ポートP8は、第6分配部5bに接続されている。
 第2流路切替部10は、上記第3状態と、上記第5状態と、上記第6状態と、上記第4状態と、第7状態とを切り替える。
 図8(A)および図9に示される上記第3状態では、第1ポートP1、第2ポートP2、第4ポートP4、第3ポートP3、第5ポートP5および第6ポートP6が順に直列に接続されており、かつ第1ポートP1、第7ポートP7、第8ポートP8、第3ポートP3、第5ポートP5および第6ポートP6が順に直列に接続されている。つまり、上記第3状態では、第1室外熱交換器3と第2室外熱交換器4とが直列に接続されているとともに、第3室外熱交換器5と第2室外熱交換器4とが直列に接続されている。異なる観点から言えば、上記第3状態において、第1室外熱交換器3および第3室外熱交換器5は、第2室外熱交換器4に対して並列に接続されている。
 図8(A)に示されるように、上記第3状態において、第2流路切替部20は、上記第1流路、上記第2流路、および上記第3流路に加え、第1ポートP1と第7ポートP7とを接続する第6流路と、第8ポートP8と第3ポートP3とを接続する第7流路とをさらに有している。上記第3状態において、上記第1流路と上記第6流路とは並列に接続されており、かつ上記第2流路と上記第7流路とは並列に接続されている。
 図8(B)および図10に示される上記第4状態では、第4ポートP4、第5ポートP5および第8ポートP8が第6ポートP6に対し並列に接続され、かつ第2ポートP2、第3ポートP3および第7ポートP7が第1ポートP1に対し並列に接続されている。第2流路切替部20は、上記第4状態において、上記第1流路、上記第5流路、および上記第6流路と、上記第3流路、上記第4流路および上記第7流路とを有している。上記第1流路、上記第5流路、および上記第6流路は、互いに並列に接続されている。上記第3流路、上記第4流路および上記第7流路は、互いに並列に接続されている。つまり、上記第4状態では、第1室外熱交換器3、第2室外熱交換器4および第3室外熱交換器5が並列に接続されている。
 図8(C)および図11に示される上記第5状態では、図2(C)および図5に示される上記第5状態と同様の状態が実現される。第2流路切替部20は、上記第5状態において、上記第1流路および上記第4流路のみを有している。図8(D)および図12に示される上記第6状態では、図2(D)および図6に示される上記第6状態と同様の状態が実現される。第2流路切替部20は、上記第6状態において、上記第5流路および上記第3流路のみを有している。つまり、上記第5状態では、上記第1回路部を流れる冷媒は第2室外熱交換器4および第3室外熱交換器5には供給されず、第1室外熱交換器3のみに冷媒が供給される。上記第6状態では、上記第1回路部を流れる冷媒は第1室外熱交換器3および第3室外熱交換器5には供給されず、第2室外熱交換器4のみに冷媒が供給される。
 図8(E)および図13に示される上記第7状態では、第1ポートP1、第7ポートP7、第8ポートP8、および第6ポートP6が順に直列に接続される。第2流路切替部20は、上記第7状態において、上記第6流路および上記第8流路のみを有している。つまり、上記第7状態では、上記第1回路部を流れる冷媒は第1室外熱交換器3および第2室外熱交換器4には供給されず、第3室外熱交換器5のみに冷媒が供給される。なお、図8(A)~(E)に示された矢印は、各状態での冷媒の流通方向を示している。
 上記第7状態は、冷凍サイクル装置100が上記第1状態にあるときに選択される。
 第2流路切替部20は、上記第1管路、上記第2管路、上記第3管路、上記第4管路、上記第5管路、第1開閉弁11、第2開閉弁12、第3開閉弁13、第4開閉弁14、第5開閉弁15、第6開閉弁16、および第7開閉弁17に加え、第6管路、第7管路、第8開閉弁18および第9開閉弁19をさらに含む。
 上記第6管路は、第7ポートP7と上記第1管路とを接続する。上記第7管路は、第8ポートP8と上記第1管路とを接続する。上記第2管路、上記第3管路、上記第4管路、上記第5管路、上記第6管路、および上記第7管路は、上記第1管路に対し互いに並列に接続されている。第1管路と第7管路との接続部を第5接続部、第1管路と第8管路との接続部を第6接続部とする。
 上記第7管路は、上記第1管路において上記第1接続部と上記第2接続部との間に位置する部分に接続されている。上記第8管路は、上記第1管路において上記第3接続部と上記第4接続部との間に位置する部分に接続されている。
 第8開閉弁18は、上記第6管路を開閉する。第9開閉弁19は、上記第7管路を開閉する。第5開閉弁15は、上記第1管路において上記第5接続部と上記第2接続部との間に位置する部分を開閉する。第7開閉弁17は、上記第1管路において上記第6接続部と上記第4接続部との間に位置する部分を開閉する。
 図9に示されるように、上記第3状態では、第1開閉弁11、第2開閉弁12、第3開閉弁13、第4開閉弁14、第6開閉弁16、第8開閉弁18および第9開閉弁19が開かれ、かつ第5開閉弁15および第7開閉弁17が閉じられる。
 図10に示されるように、上記第4状態では、第1開閉弁11、第2開閉弁12、第3開閉弁13、第4開閉弁14、第5開閉弁15、第7開閉弁17、第8開閉弁18および第9開閉弁19が開かれ、第6開閉弁16が閉じされる。
 図11に示されるように、上記第5状態では、第1開閉弁11、第3開閉弁13、および第7開閉弁17が開かれ、かつ第2開閉弁12、第4開閉弁14、第5開閉弁15、第6開閉弁16、第8開閉弁18および第9開閉弁19が閉じられる。
 図12に示されるように、上記第6状態では、第2開閉弁12、第4開閉弁14、第5開閉弁15、第7開閉弁17が開かれ、第1開閉弁11、第3開閉弁13、第6開閉弁16が閉じられる。
 図13に示されるように、上記第7状態では、第7開閉弁17、第8開閉弁18および第9開閉弁19が開かれ、第1開閉弁11、第2開閉弁12、第3開閉弁13、第4開閉弁14、第5開閉弁15および第6開閉弁16が閉じられる。
 第2流路切替部10は、1つのユニットとして構成されている。第2流路切替部20は、例えば第1ブロックおよび第2ブロックと、第1ブロックと第2ブロックとの間に配置された第6開閉弁16とに区分され得る。第1ブロックは、第1管路の一部、第2管路、第3管路、第6管路、第1開閉弁11、第2開閉弁12、第5開閉弁15および第8開閉弁18を有する。第2ブロックは、第1管路の他の一部、第4管路、第5管路、第7管路、第4開閉弁14、第5開閉弁15、第7開閉弁17および第9開閉弁19を有する。第1ブロックは、上記第1状態および上記第2状態において、第1室外熱交換器3、第2室外熱交換器4および第3室外熱交換器5に対しガス冷媒側に配置されている。第2ブロックは、上記第1状態および上記第2状態において、第1室外熱交換器3、第2室外熱交換器4および第3室外熱交換器5に対し液冷媒側に配置されている。
 第1ブロックに含まれる第1開閉弁11、第2開閉弁12、第5開閉弁15および第8開閉弁18の各Cv値は、例えば第2ブロックに含まれる第3開閉弁13、第4開閉弁14、第7開閉弁17および第9開閉弁19の各Cv値と比べて、大きい。
 第1ブロックに含まれる第1管路の一部、第2管路、第3管路および第6管路の各内径は、例えば第2ブロックに含まれる第1管路の他の一部、第4管路、第5管路および第7管路の各内径と比べて、大きい。
 第2ポートP2,第3ポートP3、第4ポートP4、第5ポートP5、第7ポートP7および第8ポートP8は、例えば同一面上に配置されている。なお、第1ポートP1、第2ポートP2,第3ポートP3、第4ポートP4、第5ポートP5、第6ポートP6、第7ポートP7および第8ポートP8は、同一面上に配置されていてもよい。
 次に、冷凍サイクル装置101の動作について説明する。
 <冷房運転>
 冷凍サイクル装置101が冷房運転されるときには、冷房負荷に応じて、上記第3状態、上記第5状態、上記第6状態または上記第7状態が実現される。冷房負荷が比較的高い場合には、上記第3状態が選択される。上記第3状態は、例えば全冷房運転時に実現される。上記第5状態、上記第6状態および上記第7状態は、例えば冷房主体運転時に実現される。
 図9に示されるように、上記第3状態では、第1室外熱交換器3と第2室外熱交換器4とが上記第1回路部において直列に接続され、かつ第3室外熱交換器5と第2室外熱交換器4とが上記第1回路部において直列に接続される。
 圧縮機1から吐出されたガス単相冷媒は、第1ポートP1から第2流路切替部10の上記第1管路に流入する。
 上記第3状態では、第1開閉弁11および第8開閉弁18が開いておりかつ第5開閉弁15が閉じられている。そのため、第1管路に流入したガス単相冷媒の一部は、第2管路を通って第2ポートP2から第1分配部3aに流入し、第1室外熱交換器3において外気と熱交換して凝縮される。第1室外熱交換器3にて凝縮された液単相冷媒または気液2相冷媒は、第2分配部3bを通り、第4ポートP4から上記第4管路に流入する。また、第1管路に流入したガス単相冷媒の残部は、第6管路を通って第7ポートP7から第5分配部5aに流入し、第3室外熱交換器5において外気と熱交換して凝縮される。第3室外熱交換器5にて凝縮された液単相冷媒または気液2相冷媒は、第6分配部5bを通り、第8ポートP8から上記第7管路に流入する。
 第3開閉弁13、第9開閉弁19、第6開閉弁16および第2開閉弁12が開いておりかつ第5開閉弁15および第7開閉弁17が閉じられているため、液単相冷媒または気液2相冷媒の全ては、第4管路、第1管路および第3管路を通って第3ポートP3から第3分配部4aに流入し、第2室外熱交換器4において外気と熱交換して凝縮される。第2室外熱交換器4にて凝縮された液単相冷媒は、第4分配部4bを通り、第6ポートP6から上記第5管路に流入する。第4開閉弁14が開いておりかつ第7開閉弁17が閉じられているため、第5管路に流入した液単相冷媒の全ては、第5管路および第1管路を通って第2ポートP2から外部に流出する。第2ポートP2から流出した液単相冷媒は、第2配管を介して中継機50に流入する。
 図11に示されるように、上記第5状態では、第2室外熱交換器4および第3室外熱交換器5には冷媒が供給されず、第2室外熱交換器4および第3室外熱交換器5は凝縮器として作用しない。上記第5状態では、第1室外熱交換器3のみが凝縮器として作用する。具体的には、圧縮機1から吐出されたガス単相冷媒は、第1ポートP1から第2流路切替部10の上記第1管路に流入する。第1開閉弁11が開いておりかつ第5開閉弁15および第8開閉弁18が閉じられているため、第1管路に流入したガス単相冷媒の全ては、第2管路を通って第1分配部3aに流入し、第1室外熱交換器3において外気と熱交換して凝縮される。第1室外熱交換器3にて凝縮された液単相冷媒または気液2相冷媒は、第2分配部3bを通り、第4ポートP4から上記第4管路に流入する。第3開閉弁13および第7開閉弁17が開いておりかつ第4開閉弁14、第6開閉弁16および第9開閉弁19が閉じられているため、液単相冷媒または気液2相冷媒の全ては、第4管路および第1管路を通って第2ポートP2から外部に流出する。
 図12に示されるように、上記第6状態では、第1室外熱交換器3および第3室外熱交換器5には冷媒が供給されず、第1室外熱交換器3および第3室外熱交換器5は凝縮器として作用しない。上記第5状態では、第2室外熱交換器4のみが凝縮器として作用する。具体的には、圧縮機1から吐出されたガス単相冷媒は、第1ポートP1から第2流路切替部10の上記第1管路に流入する。第2開閉弁12および第5開閉弁15が開いておりかつ第1開閉弁11、第6開閉弁16および第8開閉弁18が閉じられているため、第1管路に流入したガス単相冷媒の全ては、第3管路を通って第3分配部4aに流入し、第2室外熱交換器4において外気と熱交換して凝縮される。第2室外熱交換器4にて凝縮された液単相冷媒または気液2相冷媒は、第4分配部4bを通り、第6ポートP6から上記第5管路に流入する。第4開閉弁14が開いておりかつ第6開閉弁16、第7開閉弁17および第9開閉弁19が閉じられているため、液単相冷媒または気液2相冷媒の全ては、第5管路および第1管路を通って第2ポートP2から外部に流出する。
 図13に示されるように、上記第7状態では、第1室外熱交換器3および第2室外熱交換器4には冷媒が供給されず、第1室外熱交換器3および第2室外熱交換器4は凝縮器として作用しない。上記第7状態では、第3室外熱交換器5のみが凝縮器として作用する。具体的には、圧縮機1から吐出されたガス単相冷媒は、第1ポートP1から第2流路切替部10の上記第1管路に流入する。第8開閉弁18が開いておりかつ第1開閉弁11および第5開閉弁15が閉じられているため、第1管路に流入したガス単相冷媒の全ては、第6管路を通って第5分配部5aに流入し、第3室外熱交換器5において外気と熱交換して凝縮される。第3室外熱交換器5にて凝縮された液単相冷媒または気液2相冷媒は、第6分配部5bを通り、第8ポートP8から上記第7管路に流入する。第7開閉弁17および第9開閉弁19が開いておりかつ第3開閉弁13、第4開閉弁14および第6開閉弁16が閉じられているため、液単相冷媒または気液2相冷媒の全ては、第5管路および第1管路を通って第2ポートP2から外部に流出する。
 <暖房運転>
 冷凍サイクル装置101が暖房運転されるときには、上記第4状態が実現される。図10に示されるように、上記第4状態では、第1室外熱交換器3、第2室外熱交換器4および第3室外熱交換器5が上記第1回路部において並列に接続される。具体的には、圧縮機1から吐出されたガス単相冷媒は、図1に示される第1室内熱交換器6aおよび第2室内熱交換器6bの少なくともいずれかにて凝縮され、液単相冷媒となる。液単相冷媒は、第1減圧部7aまたは第2減圧部7bにて減圧され、気液2相冷媒となる。気液2相冷媒は、第2配管C2を通って第6ポートP6から第2流路切替部10の上記第1管路に流入する。
 上記第4状態では、第3開閉弁13、第4開閉弁14、第7開閉弁17、および第9開閉弁19が開いておりかつ第6開閉弁16が閉じられている。そのため、第1管路に流入した気液2相冷媒の一部は、第3管路を通って第2分配部3bに流入し、第1室外熱交換器3において外気と熱交換して蒸発され、ガス単相冷媒となる。また、第1管路に流入した気液2相冷媒の他の一部は、第4管路を通って第4分配部4bに流入し、第2室外熱交換器4において外気と熱交換して蒸発され、ガス単相冷媒となる。第1管路に流入した気液2相冷媒の残部は、第7管路を通って第6分配部5bに流入し、第3室外熱交換器5において外気と熱交換して蒸発され、ガス単相冷媒となる。
 第1室外熱交換器3にて蒸発されたガス単相冷媒は、第1分配部3aを通り、第2ポートP2から上記第2管路に流入する。第2室外熱交換器4にて蒸発されたガス単相冷媒は、第3分配部4aを通り、第3ポートP3から上記第3管路に流入する。第3室外熱交換器5にて蒸発されたガス単相冷媒は、第5分配部5aを通り、第7ポートP7から上記第6管路に流入する。第1開閉弁11、第2開閉弁12、第5開閉弁15および第8開閉弁18が開いておりかつ第6開閉弁16が閉じられているため、ガス単相冷媒の全ては、第1管路を通って第1ポートP1から外部に流出する。第1ポートP1から流出したガス単相冷媒は、圧縮機1の吸入口に吸入される。
 <作用効果>
 冷凍サイクル装置101によれば、冷凍サイクル装置100と基本的に同様の構成を備えるため、冷凍サイクル装置100と同様の効果を奏することができる。
 さらに、冷凍サイクル装置101では、上記第3状態において、圧縮機1から吐出されたガス単相冷媒の一部が第1室外熱交換器3にて凝縮して低下乾き度の気液2相冷媒とされ、かつガス単相冷媒の残部が第3室外熱交換器5にて凝縮して低下乾き度の気液2相冷媒とされる。その後、気液2相冷媒は第2流路切替部20内において合流し、第2室外熱交換器4にてさらに凝縮して液単相冷媒となる。
 そのため、上記冷凍サイクル装置101および上記冷凍サイクル装置100の各冷媒封入量が同等である場合に、上記冷凍サイクル装置101が上記第3状態にあるときに第1室外熱交換器3および第3室外熱交換器5の各々を流れる冷媒の流量は、上記冷凍サイクル装置100が上記第3状態にあるときに第1室外熱交換器3を流れる冷媒の流量と比べて、少なくなる。そのため、この場合に冷凍サイクル装置101の第1室外熱交換器3および第3室外熱交換器5の各々を流れるガス単相冷媒または気液2相冷媒の流速は、冷凍サイクル装置100の第1室外熱交換器3を流れるガス単相冷媒または気液2相冷媒の流速よりも遅くなる。その結果、冷凍サイクル装置101が上記第3状態にあるときに第1室外熱交換器3および第3室外熱交換器5の各々を流れるガス単相冷媒または気液2相冷媒の圧力損失は、冷凍サイクル装置100が上記第3状態にあるときに第1室外熱交換器3を流れるガス単相冷媒または気液2相冷媒の圧力損失よりも小さくなる。
 つまり、冷凍サイクル装置101では、上記第3状態において第2室外熱交換器4を流れる液単相冷媒の流速が冷凍サイクル装置100と同様に速められていながらも、上記第3状態において第1室外熱交換器3および第3室外熱交換器5を流れる気液2相冷媒の流速が冷凍サイクル装置100のそれよりも遅くされている。そのため、冷凍サイクル装置101の冷房運転時の凝縮伝熱性能は、冷凍サイクル装置100の冷房運転時の凝縮伝熱性能と比べて、さらに高められている。
 また、冷凍サイクル装置101の第1室外熱交換器3および第3室外熱交換器5の容量は、冷凍サイクル装置100の第1室外熱交換器3の容量と比べて、小さくされ得る。このようにすれば、冷凍サイクル装置101の冷房運転時の凝縮伝熱性能は、冷凍サイクル装置100の冷房運転時の凝縮伝熱性能と比べて、冷房負荷に応じてより細かく制御され得る。冷凍サイクル装置101が冷房運転を行うことができる空調負荷の範囲は、冷凍サイクル装置100が冷房運転を行うことができる空調負荷の範囲と比べて、広い。
 <変形例>
 冷凍サイクル装置100,101は、第1流路切替部として四方弁2を備えているが、これに限られるものではない。第1流路切替部は、上記第1状態と上記第2状態とを切替可能な限りにおいて、任意の構成を備えていればよく、例えば複数の開閉弁により構成されていてもよい。
 冷凍サイクル装置100,101は、上記構成を備えている限りにおいて、任意に構成をさらに備えていてもよい。例えば、冷凍サイクル装置100,101は4つ以上の室外熱交換器を備えていてもよい。その場合、第2流路切替部10,20によって、3つ以上の室外熱交換器が互いに直列に接続された上記第3状態が実現されてもよい。
 冷凍サイクル装置100,101は、中継機50を備えているが、これに限られるものではなく、中継機50を備えていなくてもよい。また、冷凍サイクル装置100,101は熱媒体が循環する熱媒体回路をさらに備え、上記第3熱交換器が上記冷媒回路を循環する冷媒と上記熱媒体回路を循環する熱媒体との間で熱交換する熱交換器として設けられていてもよい。
 冷凍サイクル装置100,101において、第1室外熱交換器3、第2室外熱交換器4および第3室外熱交換器5は、冷媒と空気等の熱媒体との間で熱交換が可能な限りにおいて、任意の構成を備えていればよい。第1室外熱交換器3および第2室外熱交換器4は、例えば1つの熱交換器として構成されていてもよい。第1室外熱交換器3、第2室外熱交換器4および第3室外熱交換器5は、例えば1つの熱交換器として構成されていてもよい。
 以上のように本発明の実施の形態について説明を行なったが、上述の実施の形態を様々に変形することも可能である。また、本発明の範囲は上述の実施の形態に限定されるものではない。本発明の範囲は、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更を含むことが意図される。
 1 圧縮機、2 四方弁(第1流路切替部)、3 第1室外熱交換器、3a 第1分配部、3b 第2分配部、3c 第1熱交換部、4 第2室外熱交換器、4a 第3分配部、4b 第4分配部、4c 第2熱交換部、5 第3室外熱交換器、5a 第5分配部、5b 第6分配部、6a 第1室内熱交換器、6b 第2室内熱交換器、7a 第1減圧部、7b 第2減圧部、8a 第3減圧部、8b 第4減圧部、9a,9b,9c,9d 開閉弁、10,20 第2流路切替部、11 第1開閉弁、12 第2開閉弁、13 第3開閉弁、14 第4開閉弁、15 第5開閉弁、16 第6開閉弁、17 第7開閉弁、18 第8開閉弁、19 第9開閉弁、30 室外機、40a 第1室内機、40b 第2室内機、50 中継機、100,101 冷凍サイクル装置。

Claims (8)

  1.  冷媒が循環する冷媒回路を備え、
     前記冷媒回路は、圧縮機、第1流路切替部、第2流路切替部、第1熱交換器、第2熱交換器、および第3熱交換器を含み、
     前記第1熱交換器は、冷媒が流出入する第1流出入部および第2流出入部を有し、
     前記第2熱交換器は、冷媒が流出入する第3流出入部および第4流出入部を有し、
     前記第1流路切替部は、第1状態と第2状態とを切り替え、
     前記第1状態では、前記第1熱交換器および前記第2熱交換器の少なくともいずれかが凝縮器として作用し前記第3熱交換器が蒸発器として作用し、
     前記第2状態では、前記第1熱交換器および前記第2熱交換器の少なくともいずれかが蒸発器として作用し前記第3熱交換器が凝縮器として作用し、
     前記第2流路切替部は、冷媒が流出入する第1ポート、第2ポート、第3ポート、第4ポート、第5ポート、および第6ポートを有し、
     前記第1ポートは、前記第1状態において前記第1流路切替部を介して前記圧縮機の吐出口に接続され、前記第2状態において前記第1流路切替部を介して前記圧縮機の吸入口に接続され、
     前記第2ポートは、前記第1流出入部に接続され、
     前記第3ポートは、前記第3流出入部に接続され、
     前記第4ポートは、前記第2流出入部に接続され、
     前記第5ポートは、前記第4流出入部に接続され、
     前記第6ポートは、前記第3熱交換器に接続され、
     前記第2流路切替部は、第3状態と第4状態とを切り替え、
     前記第3状態では、前記第1ポート、前記第2ポート、前記第1熱交換器、前記第4ポート、前記第3ポート、前記第2熱交換器、前記第5ポートおよび前記第6ポートが順に直列に接続され、
     前記第4状態では、前記第6ポート、前記第4ポート、前記第1熱交換器、前記第2ポート、および前記第1ポートが順に直列に接続され、かつ前記第6ポート、前記第5ポート、前記第2熱交換器、前記第3ポート、および前記第1ポートが順に直列に接続される、冷凍サイクル装置。
  2.  前記第2流路切替部は、
     前記第3状態と、前記第4状態と、
     前記第1ポート、前記第2ポート、前記第1熱交換器、前記第4ポート、および前記第6ポートが順に直列に接続された第5状態と、
     前記第1ポート、前記第3ポート、前記第2熱交換器、前記第5ポート、および前記第6ポートが順に直列に接続された第6状態とを切り替える、請求項1に記載の冷凍サイクル装置。
  3.  前記第3状態、前記第5状態、および前記第6状態は、前記冷凍サイクル装置が前記第1状態にあるときに選択され、
     前記第4状態は、前記冷凍サイクル装置が前記第2状態にあるときに選択される、請求項2に記載の冷凍サイクル装置。
  4.  前記第2流路切替部は、前記第1ポートと前記第6ポートとを接続する第1管路と、前記第1ポートから前記第6ポートに向かう前記第1管路の延在方向に沿って順に前記第1管路に接続された第2管路、第3管路、第4管路および第5管路とを含み、
     前記第2管路は前記第2ポートと前記第1管路とを接続し、前記第3管路は前記第3ポートと前記第1管路とを接続し、前記第4管路は前記第4ポートと前記第1管路とを接続し、前記第5管路は前記第5ポートと前記第1管路とを接続し、
     前記第2流路切替部は、さらに、前記第2管路を開閉する第1開閉弁と、前記第3管路を開閉する第2開閉弁と、前記第4管路を開閉する第3開閉弁と、前記第5管路を開閉する第4開閉弁と、前記第1管路において前記第2管路に接続されている第1接続部と前記第3管路に接続されている第2接続部との間に位置する部分を開閉する第5開閉弁と、前記第1管路において前記第2接続部と前記第4管路と接続されている第3接続部との間に位置する部分を開閉する第6開閉弁と、前記第1管路において前記第3接続部と前記第5管路に接続されている第4接続部との間に位置する部分を開閉する第7開閉弁とを含み、
     前記第3状態では、前記第1開閉弁、前記第2開閉弁、前記第3開閉弁、前記第4開閉弁、および前記第6開閉弁が開かれ、かつ前記第5開閉弁および前記第7開閉弁が閉じられ、
     前記第4状態では、前記第1開閉弁、前記第2開閉弁、前記第3開閉弁、前記第4開閉弁、前記第5開閉弁および前記第7開閉弁が開かれ、前記第6開閉弁が閉じされ、
     前記第5状態では、前記第1開閉弁、前記第3開閉弁、および前記第7開閉弁が開かれ、かつ前記第2開閉弁、前記第4開閉弁、前記第5開閉弁、および前記第6開閉弁が閉じられ、
     前記第6状態では、前記第2開閉弁、前記第4開閉弁、前記第5開閉弁、前記第7開閉弁が開かれ、前記第1開閉弁、前記第3開閉弁、前記第6開閉弁が閉じられる、請求項3に記載の冷凍サイクル装置。
  5.  前記冷媒回路は、第4熱交換器をさらに含み、
     前記第4熱交換器は、冷媒が流出入する第5流出入部および第6流出入部を有し、
     前記第2流路切替部は、冷媒が流出入する第7ポートおよび第8ポートをさらに有し、
     前記第7ポートは、前記第5流出入部に接続され、
     前記第8ポートは、前記第6流出入部に接続され、
     前記第3状態では、さらに、前記第1ポート、前記第7ポート、前記第4熱交換器、前記第8ポート、前記第3ポート、前記第2熱交換器、前記第5ポートおよび前記第6ポートが順に直列に接続され、
     前記第4状態では、さらに、前記第6ポート、前記第8ポート、前記第4熱交換器、前記第7ポート、および前記第1ポートが順に直列に接続される、請求項4に記載の冷凍サイクル装置。
  6.  前記第2流路切替部は、前記第3状態、前記第4状態、前記第5状態、前記第6状態、および前記第1ポート、前記第7ポート、前記第8ポート、および前記第6ポートが順に直列に接続された第7状態とを切り替える、請求項5に記載の冷凍サイクル装置。
  7.  前記第2流路切替部は、前記第7ポートと前記第1管路とを接続する第7管路と、前記第8ポートと前記第1管路とを接続する第8管路と、前記第7管路を開閉する第8開閉弁と、前記第8管路を開閉する第9開閉弁とをさらに含み、
     前記第7管路は、前記第1管路において前記第1接続部と前記第2接続部との間に位置する部分に接続されており、
     前記第8管路は、前記第1管路において前記第3接続部と前記第4接続部との間に位置する部分に接続されており、
     前記第5開閉弁は、前記第1管路において前記第7管路と接続されている第5接続部と前記第2接続部との間に位置する部分を開閉し、前記第7開閉弁は、前記第1管路において前記第8管路と接続されている第6接続部と前記第4接続部との間に位置する部分を開閉し、
     前記第3状態では、前記第8開閉弁および前記第9開閉弁がさらに開かれ、
     前記第5状態では、前記第8開閉弁および前記第9開閉弁がさらに閉じられ、
     前記第6状態では、前記第8開閉弁および前記第9開閉弁がさらに閉じられ、
     前記第4状態では、前記第8開閉弁および前記第9開閉弁がさらに開かれ、
     前記第7状態では、前記第7開閉弁、前記第8開閉弁および前記第9開閉弁が開かれ、前記第1開閉弁、前記第2開閉弁、前記第3開閉弁、前記第4開閉弁、前記第5開閉弁および前記第6開閉弁が閉じられる、請求項6に記載の冷凍サイクル装置。
  8.  前記第1流出入部は前記第1熱交換器のガス冷媒側に配置され、
     前記第2流出入部は前記第1熱交換器の液冷媒側に配置され、
     前記第3流出入部は前記第2熱交換器のガス冷媒側に配置され、
     前記第4流出入部は前記第2熱交換器の液冷媒側に配置される、請求項1~7のいずれか1項に記載の冷凍サイクル装置。
PCT/JP2018/018168 2018-05-10 2018-05-10 冷凍サイクル装置 WO2019215881A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2018/018168 WO2019215881A1 (ja) 2018-05-10 2018-05-10 冷凍サイクル装置
ES18918248T ES2936235T3 (es) 2018-05-10 2018-05-10 Dispositivo de ciclo de refrigeración
JP2020517709A JP6937899B2 (ja) 2018-05-10 2018-05-10 冷凍サイクル装置
EP18918248.8A EP3792568B1 (en) 2018-05-10 2018-05-10 Refrigeration cycle device
US16/976,813 US11435119B2 (en) 2018-05-10 2018-05-10 Refrigeration cycle apparatus
US17/701,901 US20220214082A1 (en) 2018-05-10 2022-03-23 Refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/018168 WO2019215881A1 (ja) 2018-05-10 2018-05-10 冷凍サイクル装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/976,813 A-371-Of-International US11435119B2 (en) 2018-05-10 2018-05-10 Refrigeration cycle apparatus
US17/701,901 Division US20220214082A1 (en) 2018-05-10 2022-03-23 Refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
WO2019215881A1 true WO2019215881A1 (ja) 2019-11-14

Family

ID=68466737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018168 WO2019215881A1 (ja) 2018-05-10 2018-05-10 冷凍サイクル装置

Country Status (5)

Country Link
US (2) US11435119B2 (ja)
EP (1) EP3792568B1 (ja)
JP (1) JP6937899B2 (ja)
ES (1) ES2936235T3 (ja)
WO (1) WO2019215881A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114674096B (zh) * 2022-05-20 2022-08-12 海尔(深圳)研发有限责任公司 冷媒分配装置、换热器及空调器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012107857A (ja) * 2010-11-18 2012-06-07 Lg Electronics Inc 空気調和機
JP2015102311A (ja) * 2013-11-27 2015-06-04 三星電子株式会社Samsung Electronics Co.,Ltd. 空気調和機
WO2018047331A1 (ja) * 2016-09-12 2018-03-15 三菱電機株式会社 空気調和装置
WO2018047330A1 (ja) * 2016-09-12 2018-03-15 三菱電機株式会社 空気調和装置
WO2018055741A1 (ja) * 2016-09-23 2018-03-29 三菱電機株式会社 冷凍サイクル装置
WO2018055740A1 (ja) * 2016-09-23 2018-03-29 三菱電機株式会社 熱交換器および冷凍サイクル装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003276427A (ja) 2002-03-25 2003-09-30 Denso Corp 空調装置の凝縮器まわりの配管付属品
JP5084903B2 (ja) * 2008-03-31 2012-11-28 三菱電機株式会社 空調給湯複合システム
JP5625691B2 (ja) 2010-09-30 2014-11-19 ダイキン工業株式会社 冷凍装置
EP3088809A4 (en) * 2013-12-25 2017-08-09 Mitsubishi Electric Corporation Air conditioner
JP6218944B2 (ja) 2014-06-30 2017-10-25 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和機
US10830502B2 (en) 2016-09-13 2020-11-10 Mitsubishi Electric Corporation Air conditioner
JP6723887B2 (ja) * 2016-09-28 2020-07-15 東芝キヤリア株式会社 熱源装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012107857A (ja) * 2010-11-18 2012-06-07 Lg Electronics Inc 空気調和機
JP2015117936A (ja) 2010-11-18 2015-06-25 エルジー エレクトロニクス インコーポレイティド 空気調和機
JP2015102311A (ja) * 2013-11-27 2015-06-04 三星電子株式会社Samsung Electronics Co.,Ltd. 空気調和機
WO2018047331A1 (ja) * 2016-09-12 2018-03-15 三菱電機株式会社 空気調和装置
WO2018047330A1 (ja) * 2016-09-12 2018-03-15 三菱電機株式会社 空気調和装置
WO2018055741A1 (ja) * 2016-09-23 2018-03-29 三菱電機株式会社 冷凍サイクル装置
WO2018055740A1 (ja) * 2016-09-23 2018-03-29 三菱電機株式会社 熱交換器および冷凍サイクル装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3792568A4

Also Published As

Publication number Publication date
ES2936235T3 (es) 2023-03-15
US20220214082A1 (en) 2022-07-07
JPWO2019215881A1 (ja) 2021-02-12
US20200400350A1 (en) 2020-12-24
EP3792568A4 (en) 2021-05-19
US11435119B2 (en) 2022-09-06
JP6937899B2 (ja) 2021-09-22
EP3792568A1 (en) 2021-03-17
EP3792568B1 (en) 2022-12-28

Similar Documents

Publication Publication Date Title
JP4803199B2 (ja) 冷凍サイクル装置
KR101762244B1 (ko) 축적된 코일 구간들을 갖는 열교환기
WO2018047330A1 (ja) 空気調和装置
WO2018055741A1 (ja) 冷凍サイクル装置
JP7034272B2 (ja) 冷凍サイクル装置
US11578898B2 (en) Air conditioning apparatus
JP6972348B2 (ja) 冷凍サイクル装置
WO2022264348A1 (ja) 熱交換器および冷凍サイクル装置
US20220214082A1 (en) Refrigeration cycle apparatus
JP6169199B2 (ja) 熱交換器及び冷凍サイクル装置
JP5968540B2 (ja) 冷媒回路および空気調和装置
JP4647512B2 (ja) 空気調和機
JPWO2020090015A1 (ja) 冷媒分配器、熱交換器および空気調和装置
CN113272598B (zh) 空调机
WO2019225005A1 (ja) 熱交換器及び冷凍サイクル装置
JP6413692B2 (ja) 空気調和装置
JP7146077B2 (ja) 熱交換器及び空気調和装置
US11397015B2 (en) Air conditioning apparatus
EP4431843A1 (en) Air conditioner
JP2008281254A (ja) 冷凍サイクル装置、および車両用空調装置
JP2010190541A (ja) 空気調和装置
JP5588397B2 (ja) 流路切換弁、及びそれを備えた空気調和機
JPWO2018066025A1 (ja) 空気調和装置
JP2001336859A (ja) 熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918248

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020517709

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018918248

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018918248

Country of ref document: EP

Effective date: 20201210