WO2019214540A1 - 一种用于光固化3d打印的料池及其制造工艺 - Google Patents

一种用于光固化3d打印的料池及其制造工艺 Download PDF

Info

Publication number
WO2019214540A1
WO2019214540A1 PCT/CN2019/085470 CN2019085470W WO2019214540A1 WO 2019214540 A1 WO2019214540 A1 WO 2019214540A1 CN 2019085470 W CN2019085470 W CN 2019085470W WO 2019214540 A1 WO2019214540 A1 WO 2019214540A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerization inhibitor
cell
film
photocuring
printing according
Prior art date
Application number
PCT/CN2019/085470
Other languages
English (en)
French (fr)
Inventor
姚志锋
郭琰辉
王虎
Original Assignee
宁波市石生科技有限公司
北京清锋时代科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810422438.7A external-priority patent/CN108456385A/zh
Priority claimed from CN201810422437.2A external-priority patent/CN108515693A/zh
Application filed by 宁波市石生科技有限公司, 北京清锋时代科技有限公司 filed Critical 宁波市石生科技有限公司
Priority to CN201980020806.8A priority Critical patent/CN111989209A/zh
Publication of WO2019214540A1 publication Critical patent/WO2019214540A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Definitions

  • the invention relates to the field of three-dimensional molding, and in particular to a material pool for photocuring 3D printing and a manufacturing process thereof.
  • the technical principle of light-cured 3D printing is to first layer the three-dimensional model in one direction to obtain the contour information or image information of each layer, and then realize the data information of each layer through the light source, and the polymer monomer and prepolymer.
  • the photoinitiator photosensitizer
  • the photoinitiator is composed, and after UV light irradiation, a polymerization (curing) reaction is caused, the curing of each layer is completed, the iteration is repeated, and finally a three-dimensional solid model is formed.
  • a general photo-curing 3D printing device with a lower light source shown in FIG.
  • the build platform includes a material for holding a polymerizable material.
  • the material pool, the polymerizable material is solidified after being irradiated with UV light at the bottom of the tank. Since each layer is printed, the 3D printed matter being constructed needs to be separated from the bottom surface of the tank, and the material pool and the cured resin are adhered. Large, the separation is difficult, and after separation, it needs to be left for a few seconds to make the liquid level stable. It takes a dozen seconds to print a layer, which is inefficient.
  • the method is to use a mechanical step to peel the 3D printed matter being constructed from the bottom surface of the material pool.
  • Such mechanical steps not only require high precision for the mechanical structure, but also the peeling step increases the overall time of manufacture.
  • the application number is 201480008529.6, and the application method is the method and device for 3D printing using the feed by the carrier.
  • the patent discloses that the bottom surface of the 3D printed matter curing region passes through the semi-permeable element and the polymerization. The liquid film is detached from the layer and acts as a barrier to solidification. The new solidified layer is separated from the bottom surface of the solidified area (the bottom surface of the cell), so that it is not necessary to separate the two by complicated mechanical steps, which improves the efficiency of 3D printing.
  • the technical problem to be solved by the present invention is to provide a cell and a manufacturing process capable of rapid release, high manufacturing efficiency, and stability of a 3D printed matter during a curing process.
  • the present invention provides a cell for photocuring 3D printing and a manufacturing process thereof, comprising: a material pool for holding a liquid polymerizable material, the bottom of the material pool It is permeable to light, and the bottom of the tank is covered with a polymerization inhibitory layer.
  • the polymerization inhibitor layer is a polymerization inhibitor.
  • the polymerization inhibitor can be directly covered on the inner bottom surface of the tank by spraying or coating, or Other materials that are incompatible with the polymerizable material are fixed, and the polymerization layer maintains a liquid release layer on the bottom surface of the cell, which is a polymerizable material that does not undergo polymerization.
  • the present invention has the following advantages compared with the prior art: the polymerization inhibitor makes the polymerizable material not polymerize, so when the UV light irradiates the polymerizable material in the cell, the bottom of the cell The polymerizable material does not undergo polymerization due to the action of the polymerization inhibitor, so that the bottom of the cell has a liquid polymerizable material, and the polymerizable material which does not function as a polymerization inhibitor is polymerized after receiving UV light, and the polymerizable material is polymerized.
  • the formed 3D printed matter is in contact with the liquid polymerizable material, so the 3D printed matter can be directly separated from the liquid polymerizable material, thereby increasing the speed of 3D printing, and the polymerization inhibitor fixed at the bottom of the tank is gradually consumed as long as The polymerization inhibitor of the timing tank can be used.
  • the polymerization inhibitor consists of a polymerization inhibitor having a thickness of 0.01 mm to 10 mm.
  • the polymerization inhibitor comprises a polymerization inhibitor layer having a thickness of from 0.5 mm to 10 mm.
  • the polymerization inhibitor consists of a polymerization inhibitor having a thickness of from 0.5 mm to 1 mm.
  • the bottom surface of the cell is rough.
  • the polymerization inhibitor layer is composed of a solid polymerization inhibitor.
  • the polymerization inhibitor is any one of o-nitrophenol, hydroquinone, p-hydroxyanisole, p-phenylenediamine, p-tert-butyl catechol and phenothiazine or a random combination.
  • the polymerization inhibitor is fixed by an organic film, and a polymerization inhibitor is attached to the surface of the organic film to form a release film, and the polymerization inhibitor maintains a liquid release layer on the surface of the release film.
  • the type layer is a polymerizable material that does not undergo polymerization.
  • the organic film is a polychlorotrifluoroethylene film, a polytetrafluoroethylene film, a polyvinylidene fluoride film, a polyvinyl fluoride film, a polytrichloroethylene film, a vinylidene fluoride-chlorotrifluoroethylene copolymer film, Tetrafluoroethylene-perfluoroalkyl ether copolymer film, tetrafluoroethylene-hexafluoropropylene copolymer film, vinylidene fluoride-hexafluoropropylene copolymer film, ethylene-tetrafluoroethylene copolymer film, ethylene-trifluoro Any one of a vinyl chloride copolymer film, a fluorine-containing acrylate copolymer film, and a fluorinated ethylene propylene film.
  • the above structure can be achieved by directly fixing the polymerization inhibitor to the bottom of the cell, or by using an auxiliary fixing member, that is, fixing the polymerization inhibitor to the surface of the organic film, and then covering the bottom of the organic film with the organic film.
  • the process steps for directly fixing the polymerization inhibitor to the bottom of the cell include:
  • step (c) cooling the cell treated in step (b) to solidify the liquid polymerization inhibitor on the bottom surface of the cell.
  • the thickness of the polymerization inhibitor layer does not exceed 10 mm.
  • the inner surface of the cell is subjected to a sanding treatment before the step (a), and the bottom surface of the cell is rough.
  • Another process step of achieving direct immobilization of the polymerization inhibitor to the bottom of the cell includes:
  • step (b) attaching the polymerization inhibitor solution after the step (a) to the inner bottom surface of the tank by spraying or coating;
  • step (c) heating the bottom surface of the cell treated in the step (b) to a certain temperature until the organic solvent in the polymerization inhibitor solution volatilizes, and the polymerization inhibitor solution solidifies to form a certain thickness of the polymerization inhibitor layer.
  • the heating temperature in the step (c) is 60-70 °C.
  • the thickness of the polymerization inhibitor layer does not exceed 10 mm.
  • the organic solvent is ethanol, styrene, perchloroethylene, trichloroethylene or ethylene glycol ether.
  • the bottom surface of the tank is subjected to a sanding treatment, and the bottom surface of the tank is rough.
  • step (c) may be replaced by: vacuuming the cell treated by the step (b), volatilizing the organic solvent on the bottom surface of the cell, and solidifying the polymerization inhibitor solution to form a certain thickness of the polymerization inhibitor.
  • floor vacuuming the cell treated by the step (b)
  • volatilizing the organic solvent on the bottom surface of the cell and solidifying the polymerization inhibitor solution to form a certain thickness of the polymerization inhibitor.
  • the process steps of using the auxiliary fixture polymerization inhibitor to enable the polymerization inhibitor to be indirectly fixed to the bottom of the cell include:
  • the attaching in the step (a) comprises the steps of: firstly heating and melting the solid polymerization inhibitor to a liquid state, and then spraying or coating the liquid polymerization inhibitor to the upper surface of the organic film until the liquid state Step (b) is carried out after the polymerization inhibitor is cooled and solidified.
  • the attaching in the step (a) comprises the steps of first dissolving the solid polymerization inhibitor in an organic solvent to form a polymerization inhibitor solution, and then attaching the polymerization inhibitor solution to the organic film by spraying or coating.
  • the upper surface is then subjected to a heating or vacuum treatment until the organic solvent is volatilized, and after the polymerization inhibitor is solidified, the step (b) is carried out.
  • the organic film is a polychlorotrifluoroethylene film, a polytetrafluoroethylene film, a polyvinylidene fluoride film, a polyvinyl fluoride film, a polytrichloroethylene film, a vinylidene fluoride-chlorotrifluoroethylene copolymer film, Tetrafluoroethylene-perfluoroalkyl ether copolymer film, tetrafluoroethylene-hexafluoropropylene copolymer film, vinylidene fluoride-hexafluoropropylene copolymer film, ethylene-tetrafluoroethylene copolymer film, ethylene-trifluoro Any one of a vinyl chloride copolymer film, a fluorine-containing acrylate copolymer film, and a fluorinated ethylene propylene film.
  • the polymerization inhibitor and the auxiliary fixing member that is, the polymer material of the above organic film, may be blended and extruded into a film to realize the fixing of the polymerization inhibitor.
  • the specific process steps include:
  • step (c) The product subjected to the step (b) is added to a casting machine for cooling and stretched to form a film.
  • the mass percentage of the solid polymerization inhibitor is 30% to 70% of the total mass of the mixture.
  • polymer mass percentage is from 30% to 70% of the total mass of the mixture.
  • the extruder screw heating temperature is 220 ° C - 270 ° C
  • the casting machine heating temperature is 200 ° C - 250 ° C.
  • the polymerization inhibitor is any one of o-nitrophenol, hydroquinone, p-hydroxyanisole, p-phenylenediamine, p-tert-butyl catechol and phenothiazine or a random combination.
  • polymer particles are any one of polychlorotrifluoroethylene, polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, polytrichloroethylene or a random combination.
  • a photocuring 3D printing device comprising a forming table, a material pool, a curing light source, and a cell having a polymerization inhibitor fixed at the bottom thereof, and the polymerization inhibitor maintains a polymerizable material on the bottom surface of the cell that does not undergo polymerization (That is, the liquid release layer), that is, in the photocuring 3D printing process, the solidified 3D printed matter is separated from the liquid release layer, so that the release efficiency is high, and the printing rate can be improved.
  • FIG. 1 is a schematic structural view of a photocured 3D printing apparatus
  • Figure 2 is a schematic view showing the structure of the material pool in the use state of the present invention.
  • Figure 3 is a schematic view showing the structure of the material pool and the release film in use in the present invention.
  • Figure 4 is a schematic cross-sectional view showing the release film of the present invention.
  • a light-curing 3D printing apparatus down to a light source includes a molding table 4 for supporting a 3D printed matter, the molding table 4 is connected with a mechanical driving device, and the mechanical driving device drives the molding table.
  • a forming platform is arranged below the forming table 4, and the forming platform is provided with a light-permeable material pool 1 for containing liquid polymerizable Material 2;
  • a UV light source 5 is provided below the cell 1, the UV light source 5 providing UV light for polymerizing the polymerizable material 2, the UV light source 5 penetrating the cell 1, for the polymerizable material in the cell 1 2, the polymerizable material 2 is polymerized and solidified in the cell 1, and then the 3D printed matter 3 (after curing of the polymerizable material) is pulled up from the bottom surface of the cell 1 through the forming table 4, and the liquid polymerizable material 2 is returned to the material.
  • the bottom surface of the pool 1 it continues to receive light for curing, so that it is printed layer by layer to form a completed 3D print.
  • a polymerization inhibitor 6 is fixed at the bottom of the cell 1. Specifically, the polymerization inhibitor 6 has a solid crystal structure, and the small crystals of the polymerization inhibitor 6 adhere to each other on the bottom surface of the cell 1 to form a resistance.
  • the layer of the polymerization agent, the thickness of the polymerization inhibitor layer is 0.01 mm to 10 mm, and preferably, the thickness of the polymerization inhibitor layer may be 0.5 mm to 10 mm, and preferably, the thickness of the polymerization inhibitor layer may be 0.5 mm to 1 mm. .
  • the polymerization inhibitor 6 can block the polymerization of the layer in which the polymerizable material 2 is in contact with the polymerization inhibitor 6, so that a liquid polymerizable material 2 is maintained on the bottom surface of the cell 1.
  • the liquid polymerizable material is referred to as a liquid release layer 21, and the polymerizable material 2 is separated from the bottom of the cell 1 by a liquid release layer 21, after the UV light source 5 is polymerizable, the polymerizable material 2 is in a liquid state.
  • Polymerization solidification occurs on the surface of the release layer 21, and then the 3D printed matter 3 (after curing of the polymerizable material 2) is pulled up from the surface of the liquid release layer 21 through the molding table 4, since this pulling action occurs in the solid matter and Between the liquid substances, the adhesion is small, the 3D printed matter 3 can be directly pulled away from the liquid release layer 21, and the pulling action does not cause mechanical damage to the 3D printed matter 3 and the pool 1. Therefore, the presence of the liquid release layer 21 improves the efficiency of the release step, and the precision of the 3D print molding is improved.
  • the above polymerization inhibitor 6 may be any one of o-nitrophenol, hydroquinone, p-hydroxyanisole, p-phenylenediamine, p-tert-butyl catechol and phenothiazine or a random combination.
  • the polymerization agent 6 is a relatively common substance capable of terminating radical polymerization, and is easily available, and can be easily purchased on the market.
  • the specific component of the polymerization inhibitor 6 is not limited, and those skilled in the art
  • the ratio of the polymerization inhibitor 6 can be freely adjusted according to the ratio of the polymerizable material.
  • the bottom of the tank 1 can be sanded to make the surface rough, but the degree of sanding should not be too high and the surface should be evenly distributed. Affects the light transmittance of UV light.
  • the bottom surface of the material pool 1 is directly covered with a solid polymerization inhibitor 6, which can be realized by the following process:
  • step (c) cooling the cell treated in step (b) to solidify the liquid polymerization inhibitor on the bottom surface of the cell;
  • step (b) attaching the polymerization inhibitor solution after the step (a) to the inner bottom surface of the tank by spraying or coating;
  • step (c) heating the bottom surface of the cell treated in the step (b) to 60-70 ° C until the organic solvent in the polymerization inhibitor solution volatilizes, and the polymerization inhibitor solution solidifies to form a certain thickness of the polymerization inhibitor layer.
  • step (b) attaching the polymerization inhibitor solution after the step (a) to the inner bottom surface of the tank by spraying or coating;
  • step (c) vacuuming the cell treated in the step (b) until the organic solvent on the bottom surface of the cell volatilizes, and the polymerization inhibitor solution solidifies to form a certain thickness of the polymerization inhibitor layer.
  • the organic solvent in Processes 2 and 3 may be ethanol, styrene, perchloroethylene, trichloroethylene or ethylene glycol ether.
  • the present invention can also fix the polymerization inhibitor by using an auxiliary fixing member so that the polymerization inhibitor can be indirectly fixed to the bottom of the cell.
  • the specific material pool 1 is structured to cover a bottom of the material pool 1 with a release film 61.
  • the release film 61 is an organic film, and the surface of the organic film is adhered to a polymerization inhibitor 6, a release film.
  • the overall thickness of 61 is from 0.01 mm to 10 mm, and preferably, the release film may have a thickness of from 0.5 mm to 10 mm, and preferably, the release film may have a thickness of from 0.5 mm to 1 mm.
  • the polymerization inhibitor 6 is fixed on the organic film, and then the organic film is covered to the bottom of the cell 1.
  • the manner of fixing the polymerization inhibitor has the following advantages:
  • the distribution density of the polymerization inhibitor is more controllable, and the distribution of the polymerization inhibitor on the organic film can be more sparse than that on the bottom of the cell, making the method more applicable;
  • the organic film material may be selected from a polychlorotrifluoroethylene film, a polytetrafluoroethylene film, a polyvinylidene fluoride film, a polyvinyl fluoride film, a polytrichloroethylene film, a vinylidene fluoride-chlorotrifluoroethylene copolymer film.
  • tetrafluoroethylene-perfluoroalkyl ether copolymer film tetrafluoroethylene-hexafluoropropylene copolymer film, vinylidene fluoride-hexafluoropropylene copolymer film, ethylene-tetrafluoroethylene copolymer film, ethylene-three
  • any of the above-mentioned materials such as a fluorovinyl chloride copolymer film, a fluorine-containing acrylate copolymer film, and a fluorinated ethylene propylene film, are relatively common organic film materials, and are easily obtained in the present embodiment.
  • the composition of the polymerization inhibitor 6 is defined.
  • the bottom of the cell 1 is sanded to make the surface rough, and the degree of sanding should not be too high, and does not affect Light transmittance of UV light, preferably XX.
  • the polymerization inhibitor 6 is fixed on the surface of the release film 61, and the release film 61 is covered on the bottom of the material pool 1, and the following process can be used:
  • the organic solvent in the process 5 may be ethanol, styrene, perchloroethylene, trichloroethylene or ethylene glycol ether.
  • the polymerization inhibitor and the auxiliary fixing member may be blended and extruded into a film. As shown in FIG. 4, the polymer material and the polymerization inhibitor 6 are blended and extruded. After the film-forming release film 61, the polymer material is wrapped and fixed by the polymerization inhibitor, and a polymerization inhibitor is fixedly distributed on the surface of the release film, thereby realizing the fixation of the polymerization inhibitor at the bottom of the cell.
  • the advantage of the fixing method is that the amount of the polymerization inhibitor is small, the distribution in the auxiliary fixing member is uniform, and a longer-lasting polymerization inhibition effect can be achieved.
  • This fixed method can be implemented by the following process:
  • the screw heating temperature of the extruder is 220 ° C - 270 ° C;
  • step (c) The product subjected to the step (b) is fed to a casting machine, and the casting machine is heated at a temperature of from 200 ° C to 250 ° C, and then cooled to form a film.
  • the manufacturing process of the cell for photocuring 3D printing specifically includes:
  • step (c) cooling the cell treated in step (b) to room temperature (25 ° C), and the polymerization inhibitor mixture at the bottom of the cell solidifies;
  • the manufacturing process of the cell for photocuring 3D printing specifically includes:
  • step (c) cooling the cell treated in step (b) to room temperature (25 ° C), and the polymerization inhibitor mixture at the bottom of the cell solidifies;
  • step (c) cooling the cell treated in step (b) to room temperature (25 ° C), and the polymerization inhibitor mixture at the bottom of the cell solidifies;
  • step (c) cooling the cell treated in step (b) to room temperature (25 ° C), and the polymerization inhibitor mixture at the bottom of the cell solidifies;
  • the manufacturing process of the cell for photocuring 3D printing specifically includes:
  • step (b) the bottom surface of the tank is frosted, the bottom surface of the tank is rough, and the polymerization inhibitor mixture after the step (a) is attached to the bottom of the tank by a coating method;
  • step (c) The cell treated in the step (b) is evacuated until the ethanol in the mixture is volatilized, and the polymerization inhibitor mixture at the bottom of the cell solidifies and forms a polymerization inhibitor layer having a thickness of 1 mm ⁇ 0.5 mm.
  • the manufacturing process of the cell for photocuring 3D printing specifically includes:
  • step (b) the bottom surface of the tank is frosted, the bottom surface of the tank is rough, and the polymerization inhibitor mixture after the step (a) is attached to the bottom of the tank by a coating method;
  • step (c) heating and venting the cell treated in step (b) at a heating temperature of 65 ° C ⁇ 5 ° C until the ethanol in the mixture is volatilized, and the mixture of the B inhibitor 6 at the bottom of the cell solidifies and forms a thickness of 1 mm. ⁇ 0.5 mm layer of polymerization inhibitor.
  • the extruder screw heating temperature is 220 ° C;
  • step (c) adding the mixture of step (b) to a casting machine for stretching into a film, the temperature of the casting machine is 200 ° C, cooling to 80 ° C, biaxial stretching, the film thickness is 2 mm ⁇ 0.5 mm, and then cooling , cutting.
  • the extruder screw heating temperature was 270 ° C;
  • step (c) adding the mixture of step (b) to a casting machine for stretching into a film, the temperature of the casting machine is 200 ° C, cooling to 80 ° C, biaxial stretching, the film thickness is 2 mm ⁇ 0.5 mm, and then cooling , cutting.
  • the extruder screw heating temperature was 270 ° C;
  • step (c) adding the mixture of step (b) to a casting machine for stretching into a film, the temperature of the casting machine is 200 ° C, and after cooling to 80 ° C, the film is biaxially stretched to have a film thickness of 2 mm ⁇ 0.5 mm.
  • the surface was sprayed and the spray material was a mixture of 1 part hydroquinone and 1 part hydroquinone solid, which was then cooled and cut.
  • the extruder screw heating temperature is 250 ° C;
  • step (c) adding the mixture of step (b) to a casting machine for stretching into a film, the temperature of the casting machine is 200 ° C, cooling to 80 ° C, biaxial stretching, the film thickness is 2 mm ⁇ 0.5 mm, and then cooling , cutting.
  • the extruder screw heating temperature was 270 ° C;
  • step (c) adding the mixture of step (b) to a casting machine for stretching into a film, the temperature of the casting machine is 220 ° C, and after cooling to 80 ° C, the film is biaxially stretched to a thickness of 2 mm ⁇ 0.5 mm, and then cooled. , cutting.
  • the extruder screw heating temperature is 250 ° C;
  • step (c) adding the mixture of step (b) to a casting machine for stretching into a film, the temperature of the casting machine is 200 ° C, cooling to 80 ° C, biaxial stretching, the film thickness is 2 mm ⁇ 0.5 mm, and then cooling , cutting.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

本发明公开了一种用于光固化3D打印的料池及其制造工艺,包括:料池,该料池用于盛放液态的可聚合材料,所述料池的底部可透光,该料池的底部覆有阻聚层,该阻聚层为阻聚剂,通过将加热融化后的液态阻聚剂喷涂、涂覆或是通过其他辅助件固定到料池底部的表面上,冷却后得到底面覆有阻聚剂的料池,阻聚剂使得料池底面上维持有一层液态离型层,该液态离型层为不发生聚合反应的可聚合材料,可聚合材料聚合后的3D打印物与液态可聚合材料接触,故3D打印物能够与其直接脱离,从而提高了3D打印的速度,而且阻聚剂所组成的阻聚层为固定结构,实现上述效果的工艺较为简便。

Description

一种用于光固化3D打印的料池及其制造工艺 技术领域
本发明涉及技术领域为三维成型领域,特别涉及一种用于光固化3D打印的料池及其制造工艺。
背景技术
光固化3D打印的技术原理是先将三维模型通过一个方向进行分层,从而获取每层的轮廓信息或者图像信息,然后通过光源来实现每层的数据信息,将聚合物单体与预聚体组成光引发剂(光敏剂),经过UV光照射后,引起聚合(固化)反应,完成每一层的固化,重复迭代,最后形成一个三维实体模型。一般的下置光源的光固化3D打印设备(如图1所示)在竖直方向上从上至下包括成型台、构建平台以及UV光机,构建平台上设有用于盛放可聚合材料的料池,可聚合材料在料池的底部收到UV光照射后发生固化,由于每打印一层,需要将正在构造的3D打印物从料池的底面分离出来,料池与固化的树脂粘力大,分离难度大,而且分离后还需要静置几秒钟使得液面能够平稳,打印一层往往需要十几秒钟,效率低。
现有技术中,采用的方式是利用机械步骤将正在构造的3D打印物剥离料池底面,这样的机械步骤不仅对于机械结构的精度要求高,而且剥离步骤增加了制造的整体时间。另外申请号为201480008529.6,申请日为2014-02-10的《通过承载体利用进料的3D打印的方法和设备》专利中公开了:3D打印物固化发生区域的底面通过半渗透性元件与聚合液膜脱离层,起到了隔绝固化的作用,新的固化层与固化发生区域的底面分离(料池底面),那么无需通过复杂的机械步骤将其二进行分离,这样提高了3D打印的效率。但是要实现上述的技术方案,需要将抑制剂流体保持在固化发生区域的底面上,抑制剂抑制可聚合材料固化,并始终维持一定厚度的可聚合材料液膜等以上要求。在实际操作过程中,抑制剂供给的流速,半渗透性元件对于抑制剂渗透效果与可聚合材料液膜的厚度等变量均会对于固化造成影响,进一步影响3D打印物最后的成型效果,该设备在实际应用时由于变量多,所以制造工艺难度较大,成本高。故需要研发一种新的控制设备简便、造价成本低的抑制剂补给方式。
发明内容
本发明所要解决的技术问题是,提供一种3D打印物在固化过程中能够快速离型,制造效率高且稳定的料池以及制造工艺。
为解决上述技术问题,本发明提供的一种用于光固化3D打印的料池及其制造工艺,包括: 料池,该料池用于盛放液态的可聚合材料,所述料池的底部可透光,该料池的底部覆有阻聚层,该阻聚层为阻聚剂,阻聚剂可以是通过喷涂或是涂覆等手段直接覆盖在料池的内底表面上,或者通过其他与可聚合材料不相溶的材料进行固定,阻聚层使得料池底面上维持有一层液态离型层,该液态离型层为不发生聚合反应的可聚合材料。
采用以上所述的结构后,本发明与现有技术相比,具有以下的优点:阻聚剂使得可聚合材料不发生聚合反应,所以当UV光照射料池内可聚合材料时,料池底部的可聚合材料由于阻聚剂的作用不发生聚合反应,所以料池的底部有一层液态的可聚合材料,而阻聚剂无法作用的可聚合材料收到UV光照后发生聚合反应,可聚合材料聚合后形成的3D打印物与液态可聚合材料接触,故3D打印物能够与液态可聚合材料直接脱离,从而提高了3D打印的速度,而且固定在料池底部的阻聚剂是逐渐消耗的,只要定时补充料池的阻聚剂即可。
进一步的,所述阻聚剂所组成的阻聚层的厚度为0.01mm-10mm。
作为优选,所述阻聚剂所组成的阻聚层的厚度为0.5mm-10mm。
作为优选,所述阻聚剂所组成的阻聚层的厚度为0.5mm-1mm。
进一步地,所述料池底部表面毛糙。
进一步地,所述阻聚层由固体阻聚剂组成。
进一步地,所述阻聚剂为邻硝基苯酚、对苯二酚、对羟基苯甲醚、对苯二胺、对叔丁基邻苯二酚和吩噻嗪任一或是随机组合。
进一步地,所述阻聚剂通过有机薄膜固定,该有机薄膜的表面上附着有阻聚剂,形成离型膜,阻聚剂使得离型膜表面上维持有一层液态的离型层,该离型层为不发生聚合反应的可聚合材料。
进一步地,所述有机薄膜为聚三氟氯乙烯薄膜、聚四氟乙烯薄膜、聚偏氟乙烯薄膜、聚氟乙烯薄膜、聚三氯乙烯薄膜、偏氟乙烯-三氟氯乙烯共聚物薄膜、四氟乙烯-全氟烷基醚共聚物薄膜、四氟乙烯-六氟丙稀共聚物薄膜、偏氟乙烯-六氟丙稀共聚物薄膜、乙烯-四氟乙烯共聚物薄膜、乙烯-三氟氯乙烯共聚物薄膜、含氟丙烯酸脂共聚物薄膜、氟化乙丙烯薄膜中的任一种。
具体的可以通过将阻聚剂直接固定在料池底部,或者是利用辅助固定件,即将阻聚剂固定到有机薄膜的表面,再将该有机薄膜覆盖料池底部,可实现上述结构。
实现将阻聚剂直接固定在料池底部的工艺步骤包括:
(a)将一定数量的固体阻聚剂加热融化至液态;
(b)采取喷涂或者涂覆的方式将经过步骤(a)处理后的液态阻聚剂附着在料池的内底表面;
(c)将经过步骤(b)处理的料池冷却,至料池内底表面的液态阻聚剂凝固。
(d)重复(b)与(c)步骤,直至料池内底表面形成达到一定厚度的阻聚剂层。
进一步地,所述阻聚剂层的厚度不超过10mm。
进一步地,所述料池内底表面在进行(a)步骤之前经过磨砂处理,该料池内底部表面毛糙。
进一步地,实现将阻聚剂直接固定在料池底部的另一种工艺步骤包括:
(a)将一定数量的固体阻聚剂用有机溶剂溶解形成阻聚剂溶液;
(b)采取喷涂或者涂覆的方式将经过步骤(a)处理后的阻聚剂溶液附着在料池的内底表面;
(c)将经过步骤(b)处理过的料池底表面加热至一定温度,直至阻聚剂溶液中的有机溶剂挥发,阻聚剂溶液凝固形成一定厚度的阻聚剂层。
进一步地,所述步骤(c)中加热温度为60-70℃。
进一步地,所述阻聚剂层的厚度不超过10mm。
进一步地,所述有机溶剂为乙醇、苯乙烯、全氯乙烯、三氯乙烯或乙烯乙二醇醚。
进一步地,所述料池内底部表面经过磨砂处理,该料池内底部表面毛糙。
进一步地,所述步骤(c)可以替换为:将经过步骤(b)处理的料池进行抽真空处理,至料池内底表面的有机溶剂挥发,阻聚剂溶液凝固形成一定厚度的阻聚剂层。
利用辅助固定件阻聚剂,使得阻聚剂能够间接地固定在料池底部的工艺步骤包括:
(a)将一定数量的固体阻聚剂附着至一有机薄膜上表面;
(b)经过步骤(a)处理后的有机薄膜放置于料池中,使其下表面与料池的内底表面接触。
进一步地,所述步骤(a)中的附着包含下列步骤:首先将固体阻聚剂加热融化至液态,随后采取喷涂或者涂覆的方式将液态阻聚剂附着至有机薄膜上表面,待至液态阻聚剂冷却凝固后进行步骤(b)。
进一步地,所述步骤(a)中的附着包含下列步骤:首先将固体阻聚剂用有机溶溶剂溶解形成阻聚剂溶液,随后采取喷涂或者涂覆的方式将阻聚剂溶液附着至有机薄膜上表面;随后采取加热或抽真空的处理至有机溶剂挥发,待阻聚剂凝固后进行步骤(b)。
进一步地,所述有机薄膜为聚三氟氯乙烯薄膜、聚四氟乙烯薄膜、聚偏氟乙烯薄膜、聚氟乙烯薄膜、聚三氯乙烯薄膜、偏氟乙烯-三氟氯乙烯共聚物薄膜、四氟乙烯-全氟烷基醚共聚物薄膜、四氟乙烯-六氟丙稀共聚物薄膜、偏氟乙烯-六氟丙稀共聚物薄膜、乙烯-四氟乙烯共聚物薄膜、乙烯-三氟氯乙烯共聚物薄膜、含氟丙烯酸脂共聚物薄膜、氟化乙丙烯薄膜中的 任一种。
另外,还可以采用将阻聚剂与辅助固定件,即上述的有机薄膜的高聚物材料,共混挤出成膜,来实现阻聚剂的固定,具体的工艺步骤包括:
(a)将一定数量的固体阻聚剂与一定数量的聚合物颗粒搅拌均匀;
(b)将经过步骤(a)处理后的混合物加入挤出机进行熔融塑化;
(c)将经过步骤(b)处理后的产物加入流延机进行冷却,拉伸成膜。
进一步地,所述固体阻聚剂质量百分比为混合物总质量的30%—70%。
进一步地,所述聚合物质量百分比为混合物总质量的30%—70%。
进一步地,所述挤出机螺杆加热温度为220℃—270℃,流延机加热温度为200℃—250℃。
进一步地,所述阻聚剂为邻硝基苯酚、对苯二酚、对羟基苯甲醚、对苯二胺、对叔丁基邻苯二酚和吩噻嗪中的任一或是随机组合。
进一步地,所述聚合物颗粒为聚三氟氯乙烯、聚四氟乙烯、聚偏氟乙烯、聚氟乙烯、聚三氯乙烯中的任一或是随机组合。
一种光固化3D打印设备,包括成型台、料池、固化光源,以及上述底部固定有阻聚剂的料池,阻聚剂使得料池底面上维持有一层不发生聚合反应的可聚合材料(即为液态离型层),即光固化3D打印过程中,固化后的3D打印物与液态离型层发生离型,故其离型效率高,可实现打印速率的提升。
附图说明
图1是光固化3D打印设备的结构示意图;
图2是本发明中料池在使用状态下的结构示意图;
图3是本发明中料池与离型膜在使用状态下的结构示意图;
图4是本发明中离型膜的剖面结构示意图。
其中:1、料池;2、可聚合材料;21、液态离型层;3、3D打印物;4、成型台;5、UV光源;6、阻聚剂;61、离型膜。
具体实施方式
下面结合具体实施方式对发明作进一步详细地说明。
要理解的是,当一个元件被提到在另一元件“上”、“附着到”另一元件上、“连接到”另一元件上、与另一元件“结合”、“接触”另一元件等时,其可以直接在另一元件上、附着到另一元件上、连接到另一元件上、与另一元件结合和/或接触另一元件或也可存在中间元件。 相反,当一个元件被提到“直接在另一元件上”、“直接附着到”另一元件上、“直接连接到”另一元件上、与另一元件“直接结合”或“直接接触”另一元件时,不存在中间元件。本领域技术人员还会理解,提到与另一构件“相邻”布置的一个结构或构件可具有叠加在该相邻构件上或位于该相邻构件下的部分。
空间相关术语,如“下方”、“低于”、“下部”、“上方”、“上部”等在本文中可为易于描述而使用以描述如附图中所示的元件或构件与另外的一个或多个元件或构件的关系。要理解的是,空间相关术语除附图中描绘的取向外还意在包括器件在使用或运行中的不同取向。例如,如果倒转附图中的器件,被描述为在其它元件或构件“下方”或“下面”的元件则将取向在其它元件或构件“上方”。因此,示例性术语“下方”可包括上方和下方的取向两者。器件可以以其它方式取向(旋转90度或其它取向)并相应地解释本文所用的空间相关描述词。类似地,除非明确地另行指示,术语“向上”、“向下”、“垂直”、“水平”等在本文中仅用于解释说明。
由图1所示的本发明构示意图可知,一种下至光源的光固化3D打印设备包括用于支撑3D打印物的成型台4,成型台4连有机械驱动装置,机械驱动装置带动成型台4与3D打印物在竖直方向上位移;在成型台4的下方设有构建平台,该构建平台上设有可透光的料池1,所述料池1用于盛放液态的可聚合材料2;在料池1的下方设有UV光源5,UV光源5提供使可聚合材料2发生聚合反应的UV光,该UV光源5穿透料池1,对于料池1内的可聚合材料2进行照射,可聚合材料2在料池1内聚合固化,然后通过成型台4将3D打印物3(可聚合材料固化后)向上拉离料池1底面,液态的可聚合材料2回流到料池1底面后,再继续收到光照进行固化,这样逐层打印,形成完成的3D打印件。
由于3D打印物3与料池1都是固态状态,二者之间的表面附着力大,如果直接将两者分离,对于料池1底部和3D打印物3都会有一定的机械损坏。如图2所示,在料池1的底部固定有阻聚剂6,具体的,阻聚剂6呈固态晶体结构,阻聚剂6小晶体互相贴附在料池1底部的表面形成一阻聚剂层,该阻聚剂层的厚度为0.01mm至10mm,作为优选,该阻聚剂层的厚度可以为0.5mm至10mm,作为优选,该阻聚剂层的厚度可以为0.5mm至1mm。阻聚剂6与可聚合材料接触后,阻聚剂6能够阻碍可聚合材料2与阻聚剂6接触的一层发生聚合反应,从而使得料池1底面上维持有一层液态可聚合材料2,将该层液态可聚合材料称之为液态离型层21,可聚合材料2与料池1底部之间通过液态离型层21间隔,UV光源5可聚合材料2后,可聚合材料2在液态离型层21的表面上发生聚合固化,然后通过成型台4将3D打印物3(可聚合材料2固化后)向上拉离液态离型层21的表面,由于这个拉离动作发生在固态物质和液态物质之间,所以产生的附着力较小,3D打印物3能够直接被拉离液态离型层21,且并拉离 动作不会对3D打印物3与料池1产生机械性的损坏,所以液态离型层21的存在,提高了离型步骤的效率,而且对于3D打印件成型的精度有了一定的提高。
上述的阻聚剂6可以是邻硝基苯酚、对苯二酚、对羟基苯甲醚、对苯二胺、对叔丁基邻苯二酚和吩噻嗪中的任一或是随机组合,这些阻聚剂6均为比较常见的能够终止自由基聚合的物质,且容易获得,在市场上可以很容易购买到,本实施方式中并不对阻聚剂6的具体组份进行限定,本领域技术人员可以根据可聚合材料配比对阻聚剂6的配比进行自由的调节。
为了阻聚剂6能够更好的附着在料池1底部,将可以通过对料池1底部进行磨砂处理,使其表面毛糙,但是磨砂程度不应过高且应保证表面的毛糙程度均匀,不影响UV光的透光率。
其中,对于料池1底部表面直接覆有固态的阻聚剂6,可以采用以下工艺流程实现:
工艺流程一
(a)将一定数量的固体阻聚剂6加热融化至液态;
(b)采取喷涂或者涂覆的方式将经过步骤(a)处理后的液态阻聚剂附着在料池的内底表面;
(c)将经过步骤(b)处理的料池冷却,至料池内底表面的液态阻聚剂凝固;
(d)重复(b)与(c)步骤,直至料池内底表面形成达到一定厚度的阻聚剂层。
工艺流程二
(a)将一定数量的固体阻聚剂用有机溶剂溶解形成阻聚剂溶液;
(b)采取喷涂或者涂覆的方式将经过步骤(a)处理后的阻聚剂溶液附着在料池的内底表面;
(c)将经过步骤(b)处理过的料池底表面加热至60-70℃,直至阻聚剂溶液中的有机溶剂挥发,阻聚剂溶液凝固形成一定厚度的阻聚剂层。
工艺流程三
(a)将一定数量的固体阻聚剂用有机溶剂溶解形成阻聚剂溶液;
(b)采取喷涂或者涂覆的方式将经过步骤(a)处理后的阻聚剂溶液附着在料池的内底表面;
(c)将经过步骤(b)处理的料池进行抽真空处理,至料池内底表面的有机溶剂挥发,阻聚剂溶液凝固形成一定厚度的阻聚剂层。
具体的,工艺流程二和三中的有机溶剂可以是乙醇、苯乙烯、全氯乙烯、三氯乙烯或乙烯乙二醇醚。
本发明还可以通过利用辅助固定件固定阻聚剂,使得阻聚剂能够间接地固定在料池底部。如图3所示具体料池1结构是,在料池1的底部覆盖一离型膜61,该离型膜61为有机薄膜,且该有机薄膜上的表面附着阻聚剂6,离型膜61的整体的厚度为0.01mm至10mm,作为优选,该离型膜的厚度可以为0.5mm至10mm,作为优选,该离型膜的厚度可以为0.5mm至1mm。先将阻聚剂6固定在有机薄膜上,然后再把有机薄膜覆盖到料池1的底部,此固定阻聚剂的方式具有以下优点:
1、阻聚剂的分布密度更加可控,阻聚剂在有机薄膜上的分布相对于在料池底部上可以更加稀疏,使得该种方式适用性更广;
2、阻聚剂和有机薄膜的结合力好;
3、便于阻聚剂的补充,由于阻聚剂在光固化3D打印过程中是一直在消耗的,所以需要定期补充,那么将阻聚剂固定在有机薄膜上,只要定期对料池1的底部覆膜进行更换即可。
对于有机薄膜材料的选择可以是,聚三氟氯乙烯薄膜、聚四氟乙烯薄膜、聚偏氟乙烯薄膜、聚氟乙烯薄膜、聚三氯乙烯薄膜、偏氟乙烯-三氟氯乙烯共聚物薄膜、四氟乙烯-全氟烷基醚共聚物薄膜、四氟乙烯-六氟丙稀共聚物薄膜、偏氟乙烯-六氟丙稀共聚物薄膜、乙烯-四氟乙烯共聚物薄膜、乙烯-三氟氯乙烯共聚物薄膜、含氟丙烯酸脂共聚物薄膜、氟化乙丙烯薄膜中的任一种,以上材料均是比较常见的有机薄膜材料,均是很容易获得的,本实施方式中并不对阻聚剂6的组份进行限定,为了离型膜2能够更好的附着在料池1底部,将料池1底部进行磨砂处理,使其表面毛糙,且磨砂程度不应过高,不影响UV光的透光率,优选的XX。
其中,对于离型膜61表面固定有阻聚剂6,将该离型薄膜61覆盖在料池1底部,可以采用以下工艺流程实现:
工艺流程四
(a)将固体阻聚剂加热融化至液态,随后采取喷涂或者涂覆的方式将液态阻聚剂附着至有机薄膜上表面;
(b)待至液态阻聚剂冷却凝固后,将有机薄膜放置于料池中,使其下表面与料池的内底表面接触。
工艺流程五
(a)将固体阻聚剂用有机溶溶剂溶解形成阻聚剂溶液,随后采取喷涂或者涂覆的方式将阻聚剂溶液附着至有机薄膜上表面;
(b)采取加热或抽真空的处理至有机溶剂挥发,待阻聚剂凝固后,将有机薄膜放置于料池中,使其下表面与料池的内底表面接触。
具体的,工艺流程五中的有机溶剂可以是乙醇、苯乙烯、全氯乙烯、三氯乙烯或乙烯乙二醇醚。
本发明还可以采用将阻聚剂与辅助固定件,即上述的有机薄膜的高聚物材料,共混挤出成膜,如图4所示,高聚物材料与阻聚剂6共混挤出成膜后的离型膜61,高聚物材料将阻聚剂包裹固定,且在离型膜的表面分布固定有阻聚剂,这样来实现阻聚剂在料池底部的固定,这种固定方式的优点是阻聚剂用量小,在辅助固定件中的分布均匀,能够实现更加长效的阻聚效果。
该固定方式可以采用以下工艺流程实现:
工艺流程六
(a)将一定数量的固体阻聚剂与一定数量的聚合物颗粒搅拌均匀,其中固体阻聚剂质量百分比为混合物总质量的30%—70%,聚合物质量百分比为混合物总质量的30%—70%;
(b)将经过步骤(a)处理后的混合物加入挤出机进行熔融塑化,挤出机螺杆加热温度为220℃—270℃;
(c)将经过步骤(b)处理后的产物加入流延机,流延机加热温度为200℃—250℃,然后进行冷却,拉伸成膜。
实施例1
用于光固化3D打印的料池的制造工艺,具体包括:
(a)将1份邻硝基苯酚与1份对羟基苯甲醚固体混合均匀后加热融化,加热温度为58℃—60℃;
(b)料池底部表面经过磨砂处理,该料池底部表面毛糙,采取喷涂方式将经过步骤(a)处理后的液态阻聚剂混合物附着在料池的底部;
(c)将经过步骤(b)处理的料池冷却至室温(25℃),料池底部的阻聚剂混合物凝固;
(d)重复(b)与(c)步骤2至3次,直至料池底部均匀布满阻聚剂混合物并形成厚度为1mm±0.5mm的阻聚剂层。
实施例2
用于光固化3D打印的料池的制造工艺,具体包括:
(a)将1份对苯二酚与1份对苯二胺固体混合均匀后加热融化,加热温度为172℃—175℃;
(b)料池底部表面经过磨砂处理,该料池底部表面毛糙,采取喷涂方式将经过步骤(a)处理后的液态阻聚剂混合物附着在料池的底部;
(c)将经过步骤(b)处理的料池冷却至室温(25℃),料池底部的阻聚剂混合物凝固;
(d)重复(b)与(c)步骤2至3次,直至料池底部均匀布满阻聚剂混合物并形成厚度为1mm±0.5mm的阻聚剂层。
实施例3
(a)将1份邻硝基苯酚与1份对羟基苯甲醚固体混合均匀后加热融化,加热温度为58℃—60℃;
(b)料池底部表面经过磨砂处理,该料池底部表面毛糙,采取涂覆方式将经过步骤(a)处理后的液态阻聚剂6混合物附着在料池1的底部;
(c)将经过步骤(b)处理的料池冷却至室温(25℃),料池底部的阻聚剂混合物凝固;
(d)重复(b)与(c)步骤2至3次,直至料池底部均匀布满阻聚剂混合物,并形成厚度为1mm±0.5mm的阻聚剂层。
实施例4
(a)将1份对苯二酚与1份对苯二胺固体混合均匀后加热融化,加热温度为172℃—175℃;
(b)料池底部表面经过磨砂处理,该料池底部表面毛糙,采取涂覆方式将经过步骤(a)处理后的液态阻聚剂混合物附着在料池的底部;
(c)将经过步骤(b)处理的料池冷却至室温(25℃),料池底部的阻聚剂混合物凝固;
(d)重复(b)与(c)步骤2至3次,直至料池底部均匀布满阻聚剂混合物,并形成厚度为1mm±0.5mm的阻聚剂层。
实施例5
用于光固化3D打印的料池的制造工艺,具体包括:
(a)将1份邻硝基苯酚与1份对羟基苯甲醚固体混合均匀后,加入10份的乙醇进行溶解;
(b)料池底部表面经过磨砂处理,该料池底部表面毛糙,采取涂覆方式将经过步骤(a)处理后的阻聚剂混合物附着在料池的底部;
(c)将经过步骤(b)处理的料池进行抽真空,直至混合物中乙醇挥发,料池底部的阻聚剂混合物凝固,并形成厚度为1mm±0.5mm的阻聚剂层。
实施例6
用于光固化3D打印的料池的制造工艺,具体包括:
(a)将1份对苯二酚与1份对苯二胺固体混合均匀后,加入20份的乙醇进行溶解;
(b)料池底部表面经过磨砂处理,该料池底部表面毛糙,采取涂覆方式将经过步骤(a)处理后的阻聚剂混合物附着在料池的底部;
(c)将经过步骤(b)处理的料池进行加热并通风,加热温度为65℃±5℃,至混合物中乙醇挥发,料池底部的乙阻聚剂6混合物凝固,并形成厚度为1mm±0.5mm的阻聚剂层。
实施例7
(a)将1.5份邻硝基苯酚与1.5份对羟基苯甲醚固体和7份聚三氟氯乙烯混合均匀,通过高速搅拌机混合,混合3次,混合时间为3min/次,密封保存后备用;
(b)将经过步骤(a)处理后混合物加入挤出机进行熔融塑化,挤出机螺杆加热温度为220℃;
(c)将经过步骤(b)混合物加入流延机进行拉伸成膜,流延机摸头温度为200℃,冷却至80℃后双向拉伸,使薄膜厚度为2mm±0.5mm,然后进行冷却、切割。
实施例8
(a)将1.5份对苯二酚与1.5份对苯二酚固体和3份聚四氟乙烯混合均匀,通过高速搅拌机混合,混合3次,混合时间为3min/次,密封保存后备用;
(b)将经过步骤(a)处理后混合物加入挤出机进行熔融塑化,挤出机螺杆加热温度为270℃;
(c)将经过步骤(b)混合物加入流延机进行拉伸成膜,流延机摸头温度为200℃,冷却至80℃后双向拉伸,使薄膜厚度为2mm±0.5mm,然后进行冷却、切割。
实施例9
(a)将1.5份对苯二酚与1.5份对苯二酚固体和3份聚偏氟乙烯与4份聚四氟乙烯混合均匀,通过高速搅拌机混合,混合3次,混合时间为3min/次,密封保存后备用;
(b)将经过步骤(a)处理后混合物加入挤出机进行熔融塑化,挤出机螺杆加热温度为270℃;
(c)将经过步骤(b)混合物加入流延机进行拉伸成膜,流延机摸头温度为200℃,冷却至 80℃后双向拉伸,使薄膜厚度为2mm±0.5mm,对该薄膜的表面进行喷涂,喷涂物料为1份对苯二酚与1份对苯二酚固体的混合物,然后进行冷却、切割。
实施例10
(a)将1.5份对叔丁基邻苯二酚与1.5份吩噻嗪固体和3份聚氟乙烯与4份聚三氯乙烯混合均匀,通过高速搅拌机混合,混合3次,混合时间为3min/次,密封保存后备用;
(b)将经过步骤(a)处理后混合物加入挤出机进行熔融塑化,挤出机螺杆加热温度为250℃;
(c)将经过步骤(b)混合物加入流延机进行拉伸成膜,流延机摸头温度为200℃,冷却至80℃后双向拉伸,使薄膜厚度为2mm±0.5mm,然后进行冷却、切割。
实施例11
(a)将2份对叔丁基邻苯二酚与1份吩噻嗪固体和2份聚氟乙烯与5份聚偏氟乙烯混合均匀,通过高速搅拌机混合,混合3次,混合时间为3min/次,密封保存后备用;
(b)将经过步骤(a)处理后混合物加入挤出机进行熔融塑化,挤出机螺杆加热温度为270℃;
(c)将经过步骤(b)混合物加入流延机进行拉伸成膜,流延机摸头温度为220℃,冷却至80℃后双向拉伸,使薄膜厚度为2mm±0.5mm,然后进行冷却、切割。
实施例12
(a)将2份对叔丁基邻苯二酚与1份吩噻嗪固体和7份聚四氟乙烯混合均匀,通过高速搅拌机混合,混合3次,混合时间为3min/次,密封保存后备用;
(b)将经过步骤(a)处理后混合物加入挤出机进行熔融塑化,挤出机螺杆加热温度为250℃;
(c)将经过步骤(b)混合物加入流延机进行拉伸成膜,流延机摸头温度为200℃,冷却至80℃后双向拉伸,使薄膜厚度为2mm±0.5mm,然后进行冷却、切割。
以上所述,仅是本发明较佳可行的实施示例,不能因此即局限本发明的权利范围,对熟悉本领域的技术人员来说,凡运用本发明的技术方案和技术构思做出的其他各种相应的改变都应属于在本发明权利要求的保护范围之内。

Claims (26)

  1. 一种用于光固化3D打印的料池,其特征在于,包括:料池,该料池用于盛放液态的可聚合材料,所述料池的底部可透光,该料池的底部覆有阻聚层,该阻聚层为阻聚剂,阻聚剂使得料池底面上维持有一层液态离型层,该离型层为不发生聚合反应的可聚合材料。
  2. 根据权利要求1所述的一种用于光固化3D打印的料池,其特征在于:所述阻聚层厚度为0.01mm-10mm。
  3. 根据权利要求2所述的一种用于光固化3D打印的料池,其特征在于:所述阻聚层厚度为0.5mm-10mm。
  4. 根据权利要求3所述的一种用于光固化3D打印的料池,其特征在于:所述阻聚层厚度为0.5mm-1mm。
  5. 根据权利要求1所述的一种用于光固化3D打印的料池,其特征在于:所述料池底部表面毛糙。
  6. 根据权利要求1所述的一种用于光固化3D打印的料池,其特征在于:所述阻聚层由固体阻聚剂组成。
  7. 根据权利要求1所述的一种用于光固化3D打印的料池的制造工艺,其特征在于:所述阻聚剂为邻硝基苯酚、对苯二酚、对羟基苯甲醚、对苯二胺、对叔丁基邻苯二酚和吩噻嗪中的任一或是随机组合。
  8. 根据要求1-7中任一权利要求所述的用于光固化3D打印的料池的制造工艺包括:
    (a)将一定数量的固体阻聚剂加热融化至液态;
    (b)采取喷涂或者涂覆的方式将经过步骤(a)处理后的液态阻聚剂附着在料池的内底表面;
    (c)将经过步骤(b)处理的料池冷却,至料池内底表面的液态阻聚剂凝固。
    (d)重复(b)与(c)步骤,直至料池内底表面形成达到一定厚度的阻聚剂层。
  9. 根据要求1-7中任一权利要求所述的用于光固化3D打印的料池的制造工艺包括:
    (a)将一定数量的固体阻聚剂用有机溶剂溶解形成阻聚剂溶液;
    (b)采取喷涂或者涂覆的方式将经过步骤(a)处理后的阻聚剂溶液附着在料池的内底表面;
    (c)将经过步骤(b)处理过的料池底表面加热至一定温度,直至阻聚剂溶液中的有机溶剂挥发,阻聚剂溶液凝固形成一定厚度的阻聚剂层。
  10. 根据权利要求9所述的一种用于光固化3D打印的料池的制造工艺,其特征在于:所述步骤(c)中加热温度为60-70℃.
  11. 根据权利要求9所述的一种用于光固化3D打印的料池的制造工艺,其特征在于:所 述有机溶剂为乙醇、苯乙烯、全氯乙烯、三氯乙烯或乙烯乙二醇醚。
  12. 根据权利要求9所述的一种用于光固化3D打印的料池的制造工艺,其特征在于:所述步骤(c)可以替换为:将经过步骤(b)处理的料池进行抽真空处理,至料池内底表面的有机溶剂挥发,阻聚剂溶液凝固形成一定厚度的阻聚剂层。
  13. 一种用于光固化3D打印的料池,该料池的底部覆有离型膜,所述料池内填充有液态可聚合材料,该离型膜与可聚合材料相接触,所述离型膜为有机薄膜,其特征在于,该有机薄膜的表面上附着有阻聚剂,阻聚剂使得离型膜表面上维持有一层液态的离型层,该离型层为不发生聚合反应的可聚合材料。
  14. 根据权利要求13所述的一种用于光固化3D打印的料池,其特征在于:所述有机薄膜为聚三氟氯乙烯薄膜、聚四氟乙烯薄膜、聚偏氟乙烯薄膜、聚氟乙烯薄膜、聚三氯乙烯薄膜、偏氟乙烯-三氟氯乙烯共聚物薄膜、四氟乙烯-全氟烷基醚共聚物薄膜、四氟乙烯-六氟丙稀共聚物薄膜、偏氟乙烯-六氟丙稀共聚物薄膜、乙烯-四氟乙烯共聚物薄膜、乙烯-三氟氯乙烯共聚物薄膜、含氟丙烯酸脂共聚物薄膜、氟化乙丙烯薄膜中的任一种。
  15. 根据权利要求13所述的一种用于光固化3D打印的料池,其特征在于:所述阻聚剂为邻硝基苯酚、对苯二酚、对羟基苯甲醚、对苯二胺、对叔丁基邻苯二酚和吩噻嗪任一或是随机组合。
  16. 根据要求13-15中任一权利要求所述的用于光固化3D打印的料池的制造工艺包括:
    (a)将一定数量的固体阻聚剂附着至一有机薄膜膜上表面;
    (b)经过步骤(a)处理后的有机薄膜放置于料池中,使其下表面与料池的内底表面接触。
  17. 根据权利要求16所述的一种用于光固化3D打印的料池的制造工艺,其特征在于:所述步骤(a)包含下列步骤:首先将固体阻聚剂加热融化至液态,随后采取喷涂或者涂覆的方式将液态阻聚剂附着至有机薄膜膜上表面,待至液态阻聚剂冷却凝固后进行步骤(b)。
  18. 根据权利要求16所述的一种用于光固化3D打印的料池的制造工艺,其特征在于:所述步骤(a)包含下列步骤:首先将固体阻聚剂用有机溶剂溶解形成阻聚剂溶液,随后采取喷涂或者涂覆的方式将阻聚剂溶液附着至有机薄膜膜上表面;随后采取加热或抽真空的处理至有机溶剂挥发,待阻聚剂凝固后进行步骤(b)。
  19. 一种用于光固化3D打印的离型膜的制造工艺包括:
    (a)将一定数量的固体阻聚剂与一定数量的聚合物颗粒搅拌均匀;
    (b)将经过步骤(a)处理后的混合物加入挤出机进行熔融塑化;
    (c)将经过步骤(b)处理后的产物加入流延机进行冷却,拉伸成膜。
  20. 根据权利要求19所述的一种用于光固化3D打印的离型膜的制造工艺,其特征在于:所述固体阻聚剂质量百分比为混合物总质量的30%—70%。
  21. 根据权利要求19所述的一种用于光固化3D打印的离型膜的制造工艺,其特征在于:所述聚合物质量百分比为混合物总质量的30%—70%。
  22. 根据权利要求19所述的一种用于光固化3D打印的离型膜的制造工艺,其特征在于:所述挤出机螺杆加热温度为220℃—270℃,流延机加热温度为200℃—250℃。
  23. 根据权利要求19所述的一种用于光固化3D打印的离型膜的制造工艺,其特征在于:所述阻聚剂为邻硝基苯酚、对苯二酚、对羟基苯甲醚、对苯二胺、对叔丁基邻苯二酚和吩噻嗪中的任一或是随机组合。
  24. 根据权利要求19所述的一种用于光固化3D打印的离型膜的制造工艺,其特征在于:所述聚合物颗粒为聚三氟氯乙烯、聚四氟乙烯、聚偏氟乙烯、聚氟乙烯、聚三氯乙烯中的任一或是随机组合。
  25. 一种用于光固化3D打印的料池的制造工艺包括:将权利要求19-24中任一项权利要求所述的离型膜放置于料池中,使其下表面于料池的内底表面接触。
  26. 一种光固化3D打印设备,包括成型台、料池、固化光源,其特征在于,所述料池为如权利要求1-18,或25中任一项权利要求所述的料池。
PCT/CN2019/085470 2018-05-05 2019-05-05 一种用于光固化3d打印的料池及其制造工艺 WO2019214540A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980020806.8A CN111989209A (zh) 2018-05-05 2019-05-05 一种用于光固化3d打印的料池及其制造工艺

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810422438.7A CN108456385A (zh) 2018-05-05 2018-05-05 一种用于光固化3d打印的离型膜及其制造工艺
CN201810422438.7 2018-05-05
CN201810422437.2A CN108515693A (zh) 2018-05-05 2018-05-05 一种用于光固化3d打印的料池及其制造工艺
CN201810422437.2 2018-05-05

Publications (1)

Publication Number Publication Date
WO2019214540A1 true WO2019214540A1 (zh) 2019-11-14

Family

ID=68467742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085470 WO2019214540A1 (zh) 2018-05-05 2019-05-05 一种用于光固化3d打印的料池及其制造工艺

Country Status (2)

Country Link
CN (1) CN111989209A (zh)
WO (1) WO2019214540A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113276485A (zh) * 2021-02-03 2021-08-20 河北禾采翔新材料科技有限公司 一种多功能复合内衬桶及其制备方法
CN113429947B (zh) * 2021-07-01 2022-03-04 本时智能技术发展(上海)有限公司 一种阻聚功能化导热粒子及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016161194A1 (en) * 2015-03-31 2016-10-06 Dentsply Sirona Inc. Three-dimensional fabricating systems rapidly producing objects
CN106976230A (zh) * 2016-01-13 2017-07-25 中国科学院福建物质结构研究所 一种3d打印设备和方法
CN108456385A (zh) * 2018-05-05 2018-08-28 宁波市石生科技有限公司 一种用于光固化3d打印的离型膜及其制造工艺
CN108515693A (zh) * 2018-05-05 2018-09-11 宁波市石生科技有限公司 一种用于光固化3d打印的料池及其制造工艺

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9073287B2 (en) * 2008-12-15 2015-07-07 Industrial Technology Research Insititute Organic/inorganic multi-layered gas barrier film
CN104804151A (zh) * 2015-05-06 2015-07-29 华东理工大学 一种3d打印用光固化树脂材料的制备方法
CN106042389B (zh) * 2016-07-27 2019-04-19 厦门达天电子科技有限公司 一种光固化快速成型装置及其成型方法
JP6801303B2 (ja) * 2016-08-30 2020-12-16 富士ゼロックス株式会社 三次元造形物の製造方法、三次元造形装置、及び、造形台用部材
CN106426915B (zh) * 2016-10-26 2019-01-11 青岛理工大学 一种高速连续光固化3d打印装置及其工作方法
CN106832149B (zh) * 2017-01-11 2019-01-08 杭州龙勤新材料科技有限公司 一种用于3d打印的易离型光敏树脂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016161194A1 (en) * 2015-03-31 2016-10-06 Dentsply Sirona Inc. Three-dimensional fabricating systems rapidly producing objects
CN106976230A (zh) * 2016-01-13 2017-07-25 中国科学院福建物质结构研究所 一种3d打印设备和方法
CN108456385A (zh) * 2018-05-05 2018-08-28 宁波市石生科技有限公司 一种用于光固化3d打印的离型膜及其制造工艺
CN108515693A (zh) * 2018-05-05 2018-09-11 宁波市石生科技有限公司 一种用于光固化3d打印的料池及其制造工艺

Also Published As

Publication number Publication date
CN111989209A (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
US20180243976A1 (en) Method and Apparatus for Producing Three- Dimensional Objects
US11376786B2 (en) Methods and apparatus for additive manufacturing
WO2019214540A1 (zh) 一种用于光固化3d打印的料池及其制造工艺
US20210221048A1 (en) Fabrication of solid materials or films from a polymerizable liquid
CN106414039B (zh) 三维物体及其形成方法
EP3295246B1 (en) Method for making an object
CN108456385A (zh) 一种用于光固化3d打印的离型膜及其制造工艺
US20180304541A1 (en) 3d lattice supports for additive manufacturing
CN108515693A (zh) 一种用于光固化3d打印的料池及其制造工艺
CN114103106A (zh) 使用可变温度控制的树脂的增材制造
JP5895465B2 (ja) 細胞培養容器の製造方法
US10933619B2 (en) Shaping plate and method for shaping three-dimensional object by using the same
US20200347199A1 (en) Method of producing porous molded body
JPH0768647A (ja) 積層造形方法および装置
JPH0970897A (ja) 光造形法
US11787915B2 (en) Method of producing porous molded body
JPH04249149A (ja) 複合成形体およびその製造方法
CN110520298A (zh) 可用于通过增材制造来制造物体的唇缘支撑物
JP3370391B2 (ja) レンズシートの製造方法
JP2000301557A (ja) エポキシ系樹脂シートの連続製造法
JPH06118205A (ja) レンズシートの製造方法
JP2007321088A (ja) エポキシ樹脂組成物シートの製造方法
TW202330046A (zh) 使用電鍍的有益劑遞送系統
JP2003202632A (ja) 光学物品の製造方法
JPH04337335A (ja) 熱硬化性樹脂成形品の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19799030

Country of ref document: EP

Kind code of ref document: A1