WO2019212258A1 - 전력선에 추가 소자가 없는 절연형 능동 emi 필터 - Google Patents

전력선에 추가 소자가 없는 절연형 능동 emi 필터 Download PDF

Info

Publication number
WO2019212258A1
WO2019212258A1 PCT/KR2019/005268 KR2019005268W WO2019212258A1 WO 2019212258 A1 WO2019212258 A1 WO 2019212258A1 KR 2019005268 W KR2019005268 W KR 2019005268W WO 2019212258 A1 WO2019212258 A1 WO 2019212258A1
Authority
WO
WIPO (PCT)
Prior art keywords
cap
emi
common mode
line
transformer
Prior art date
Application number
PCT/KR2019/005268
Other languages
English (en)
French (fr)
Inventor
김진국
정상영
신동일
Original Assignee
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산과학기술원 filed Critical 울산과학기술원
Priority to CN201980029888.2A priority Critical patent/CN112262523A/zh
Priority to JP2020561711A priority patent/JP7141623B2/ja
Priority to DE112019002248.2T priority patent/DE112019002248T5/de
Publication of WO2019212258A1 publication Critical patent/WO2019212258A1/ko
Priority to US17/087,340 priority patent/US20210058070A1/en
Priority to JP2022135908A priority patent/JP7475720B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/28Current transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H1/0007Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network of radio frequency interference filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/04Frequency selective two-port networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/09Filters comprising mutual inductance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/42Networks for transforming balanced signals into unbalanced signals and vice versa, e.g. baluns
    • H03H7/425Balance-balance networks
    • H03H7/427Common-mode filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F2017/0093Common mode choke coil

Definitions

  • the present invention relates to EMI filters, and more particularly to isolated active EMI filters without additional elements in the power line.
  • a filter composed of common mode choke and Y-cap is usually used.
  • the noise saturation of the common mode choke results in a reduction in noise reduction.
  • a multistage filter or an expensive high-performance choke must be used. Size and price will increase very much. Therefore, there have been attempts to use active EMI filters that can overcome the limitations of passive EMI filters and effectively increase performance, and it is desirable that there is no choke added to the power lines due to active EMI filters.
  • the active EMI filter has a feedback circuit structure that senses a noise voltage or current with a capacitor or a transformer, and applies a compensation voltage or current to the transformer or a capacitor to cancel out.
  • a noise is sensed and compensated by adding a transformer to a power line in an active EMI filter, in a high power / high current electric system, the performance is greatly degraded by transformer magnetic saturation. That is, conventionally, an active EMI filter without a transformer added to a power line allows noise sensing and noise compensation through a capacitor.
  • the problem to be solved by the present invention is to provide an active active EMI filter without an additional element in the power line, the active circuit elements are isolated from the power line without any additional element to the power line.
  • Another problem to be solved by the present invention is to provide an EMI noise reduction method using an insulated active EMI filter having no additional element in the power line, without active element added to the power line, but active circuit elements are isolated from the power line.
  • an active active EMI filter having no additional element in the power line is disposed on a power supply side to which power is supplied and is connected to a live line and a neutral line connected to an EMI source.
  • CM common mode
  • a Y-cap disposed at an EMI source side generating EMI, the two capacitors being connected in series, the two capacitors being connected in parallel between the live line and the neutral line and commonly connected to ground;
  • a first coil receiving the signal amplified by the amplifier, and a secondary coil connected to the ground connected to the Y-cap and insulated from the power line.
  • a transformer for injecting a coil signal into the Y-cap as a compensation signal.
  • an isolated active EMI filter having no additional element in a power line is disposed on a power supply side to which power is supplied and is connected to a live line and a neutral line connected to an EMI source.
  • CM common mode
  • a Y-cap disposed at an EMI source side generating EMI, the two capacitors being connected in series, the two capacitors being connected in parallel between the live line and the neutral line and commonly connected to ground;
  • a transformer unit installed at the front end of the Y-cap, the primary coil sensing the noise voltage of the Y-cap, transforming the secondary coil through the secondary coil, and insulated from the power line;
  • An amplifier for amplifying the transformed noise voltage detected by the transformer;
  • an active active EMI filter having no additional element in the power line is disposed at an EMI source generating EMI, and includes a live line and a neutral line connected to the EMI source.
  • Common mode (CM) chokes each of which is wound around a winding;
  • a Y-cap disposed at the power supply side, the two capacitors being connected in series, the two capacitors being connected in parallel between the live line and the neutral line, and commonly connected to the ground;
  • An amplifier for amplifying the noise current sensed by the sensing winding;
  • a first coil to receive a signal amplified by the amplifier, and a secondary coil to be insulated from a power line by being connected to ground connected to the Y-cap, and to isolate the secondary coil.
  • a transformer for injecting the transformed signal through the Y-cap as a compensation signal.
  • an isolated active EMI filter having no additional element in a power line is disposed on an EMI source side generating EMI, and includes a live line and a neutral line connected to an EMI source.
  • Common mode (CM) chokes each of which is wound around a winding
  • a Y-cap disposed at the power supply side, the two capacitors being connected in series, the two capacitors being connected in parallel between the live line and the neutral line, and commonly connected to the ground
  • a transformer installed at the front end of the Y-cap, wherein the primary coil senses the noise voltage of the Y-cap, transforms it through the secondary coil, and is insulated from the power line;
  • the EMI noise reduction method using an insulated active EMI filter having no additional element in the power line according to the first embodiment of the present invention for achieving the other object is disposed on the power supply side, the live line connected to the EMI source ( A common mode (CM) choke in which a live line and a neutral line are wound by windings, respectively; And an EMI source disposed on an EMI source side generating EMI, comprising two capacitors connected in series, the Y capacitors being connected in parallel between the live wire and the neutral wire and commonly connected to ground.
  • CM common mode
  • a method for reducing EMI noise by adding an active element to the method comprising: sensing a noise current of the common mode choke through a sensing winding formed by coiling the common mode choke; Amplifying the noise current sensed by the sensing winding; And transforming the amplified signal received through the primary coil of the transformer installed at the front end of the Y-cap through the secondary coil and injecting the amplified signal into the Y-cap, wherein the secondary coil of the transformer is It is connected to the ground connected to the Y-cap is characterized in that it is isolated from the power line (isolated).
  • CM common mode
  • Y-cap disposed on an EMI source side to generate EMI, the two capacitors being connected in series, the two capacitors being connected in parallel between the live line and the neutral line, and commonly connected to the ground;
  • the primary coil of the transformer installed in front of the Y-cap senses the noise voltage by using the Y-cap as a sensing capacitor Transforming through the secondary coil of the transformer; Amplifying the transformed noise voltage through the secondary coil; And injecting the amplified noise signal into the common mode choke through a compensation winding formed by coiling the common mode choke, wherein the secondary coil of the transformer is
  • EMI noise reduction method using an insulated active EMI filter having no additional element in the power line is disposed on the EMI source side generating the EMI, live line connected to the EMI source
  • a common mode (CM) choke in which a live line and a neutral line are wound in windings, respectively;
  • a Y-cap disposed on a power supply side to which power is supplied, the two capacitors being connected in series, the two capacitors being connected in parallel between the live line and the neutral line, and commonly connected to the ground;
  • a method for reducing EMI noise by adding an active element to a passive EMI filter comprising: detecting a noise current of the common mode choke through a sensing winding formed by coiling the common mode choke; Amplifying the noise current sensed by the sensing winding; And transforming the amplified signal input through the primary coil of the transformer installed in front of the Y-cap through the secondary coil of the transformer and injecting the amplified signal into the Y-cap as
  • EMI noise reduction method using an insulated active EMI filter having no additional element in the power line for achieving the above another object is disposed on the EMI source side generating the EMI, live line connected to the EMI source A common mode (CM) choke in which a live line and a neutral line are wound in windings, respectively; And a Y-cap disposed on a power supply side to which power is supplied, the two capacitors being connected in series, the two capacitors being connected in parallel between the live line and the neutral line, and commonly connected to the ground;
  • CM common mode
  • the primary coil of the transformer installed in front of the Y-cap senses the noise voltage of the Y-cap and transforms it through the secondary coil.
  • the addition of an isolated active EMI filter without additional elements to the power line according to the present invention can reduce the number of stages of the filter, and most of the electrical and electronic The size and cost of the device can be reduced.
  • FIG. 1 is a circuit diagram showing a configuration of a first embodiment of an insulated active EMI filter without additional elements in a power line according to the present invention.
  • Figure 2 shows an example of the proposed transformer insulation AEF installed as an add-on to the CM L-C EMI filter as an example of the AEF configuration according to the present invention.
  • FIG 3 illustrates a circuit model of an AEF according to an embodiment of the present invention.
  • FIG. 5 shows a CM choke equivalent circuit model in a power line including the influence of a sensing winding.
  • 6A, 6B, and 6C illustrate changes in the capacitor effect (C Y, eff (s)) of the current path and Y-cap by the active EMI filter for each frequency region.
  • FIG. 7 shows a power line impedance (Z line ) curve when viewed from the Y-cap position in the power direction, (a) when N sen violates Equation 19, (b) when N sen expresses Equation 19 When you are satisfied.
  • Figure 9 shows a circuit diagram of a second embodiment of an insulated active EMI filter without additional elements in the power line according to the present invention.
  • Figure 10 shows a circuit diagram of a third embodiment of an insulated active EMI filter without additional elements in the power line according to the present invention.
  • Figure 11 shows a circuit diagram of a fourth embodiment of an insulated active EMI filter without additional elements in the power line according to the present invention.
  • FIG. 12 is a flowchart illustrating a method for reducing EMI noise by adding an active element to a passive EMI filter, corresponding to the first embodiment of the insulated active EMI filter having no additional element in the power line according to the present invention.
  • FIG. 13 is a flowchart illustrating a method of reducing EMI noise by adding an active element to a passive EMI filter, corresponding to the second embodiment of the insulated active EMI filter having no additional element in the power line according to the present invention.
  • FIG. 14 is a flowchart illustrating a method of reducing EMI noise by adding an active element to a passive EMI filter, corresponding to the third embodiment of the insulated active EMI filter having no additional element in the power line according to the present invention.
  • FIG. 15 is a flowchart illustrating a method of reducing EMI noise by adding an active element to a passive EMI filter, corresponding to the fourth embodiment of the insulated active EMI filter having no additional element in the power line according to the present invention.
  • the present invention relates to an insulated active EMI filter having no additional element in a power line and a method for reducing EMI noise using the insulated active EMI filter, the insulated active EMI filter being disposed on a power supply side, the common mode (CM) choke; Y-cap; A sensing winding wound on the common mode choke with a coil and sensing a noise current of the common mode choke; An amplifier for amplifying the noise current sensed by the sensing winding; And it is installed in front of the Y-cap, the primary coil receives the amplified signal from the amplifier, the secondary coil is insulated from the power line is connected to the ground connected to the Y-cap, and the signal of the secondary coil It includes a transformer that injects a compensation signal into the Y-cap.
  • CM common mode
  • the first embodiment of the present invention includes a passive EMI filter including a common mode (CE) choke 110 and a Y-cap 120, a sensing winding 130, an amplifier 140, and a transformer 150.
  • EMI filter 100 is included.
  • the common mode (CE) choke 110 is disposed on the power supply side to which power is supplied, and a live line and a neutral line connected to an EMI source are wound around windings, respectively.
  • the Y-cap 120 is disposed on the EMI source side generating EMI, and is composed of two capacitors connected in series, and the two capacitors are connected in parallel between the live line (L) and the neutral line (N), and Are commonly connected.
  • the sensing winding 130 is coiled on the common mode choke 130 and senses a noise current flowing through the common mode choke 130.
  • N sen the number of windings (N sen ) of the sensing winding (130) is the coffee capacitance of the parasitic circuit of the common mode (CM) choke 110 is C cm
  • the capacitance of the parasitic circuit of the sensing winding 130 is C sen .
  • the amplifier 140 amplifies the noise current sensed through the sensing winding 130.
  • Transformer 150 is installed in front of the Y-cap 120, the primary coil receives the signal amplified by the amplifier, the secondary coil is connected to the ground connected to the Y-cap 120 is insulated from the power line (isolated) and injects the signal of the secondary coil to the Y-cap 120 as a compensation signal.
  • Figure 2 shows an example of the proposed transformer insulation AEF installed as an add-on to the CM L-C EMI filter as an example of the AEF configuration according to the present invention.
  • 3 illustrates a circuit model of an AEF according to an embodiment of the present invention.
  • the isolated active EMI filter without additional elements in the power line according to the present invention may further include a low pass filter to prevent stability problems caused by sensing winding resonance in the high frequency range.
  • the low pass filter includes a resistor R f and a capacitor C f .
  • One end of the resistor R f is connected to the sensing winding and the other end thereof is connected to the + input terminal of the amplifier.
  • the impedance (Z in, AEF ) seen from the input terminal of the amplifier 140 toward the low pass filter is preferably set higher than the parasitic RC component impedance (Z sen, para ) of the sensing winding 130 in the frequency range of interest. .
  • Cutoff frequency of the low pass filter (1/2) R f C f ) is greater than the maximum operating frequency (f op, max )
  • k sen is the coupling coefficient of the sensing winding 130
  • N sen is the winding number of the sensing winding 130
  • L cm is the inductance of the common mode choke 110
  • C sen is the capacitance of the parasitic circuit of the sensing winding 130
  • the insulated active EMI filter having no additional element in the power line according to the present invention has a performance as a result of stability as a bypass and damping circuit and a resonance between the EMI source impedance and the Y-cap to avoid resonance in the transformer.
  • the bypass branch may further include a bypass branch (refer to FIG. 3).
  • the bypass branch may include a first resistor R d1 , a capacitor C d , and a second resistor. R d2 ).
  • One end of the first resistor R d1 is connected to the Y-cap, the other end is connected to the secondary coil of the transformer, and one end of the capacitor C d is connected to one end of the resistor.
  • One end of the second resistor R d2 is connected in series with the other end of the capacitor and the other end is connected with the ground.
  • the isolated active EMI filter having no additional element in the power line according to the present invention may further include a phase compensator for stability in the low frequency range (see FIG. 3).
  • the phase compensator includes a resistor (Rc) and a capacitor (Cc) connected in parallel, one end of the parallel-connected resistor (Rc) and the capacitor (Cc) is connected to the negative (-) input terminal of the amplifier and the parallel-connected resistor (Rc) ) And the other end of the capacitor (Cc) are connected in parallel to the output terminal of the amplifier.
  • the present invention proposes a new structure of fully transformer isolated AEF. 2
  • the AEF according to an embodiment of the present invention is installed (add-on) to the existing CM L-C EMI filter consisting of the CM choke and Y-cap.
  • the AEF structure according to the embodiment of the present invention is similar to the existing CSCC AEF topology, but an injection transformer is added between the amplifier output and the compensation Y-cap. Since no injection transformer is installed on the mains line, only a small compensating signal current flows through the transformer. Injection transformers are small because the current is small regardless of the operating current of the application, reducing the risk of magnetic saturation and thermal issues.
  • the sensing portion of the AEF does not require an additional transformer, but a thin noise-sensing wire is additionally wound around existing commercial CM chokes. Attempts have been made to add sensing windings directly onto commercial CM chokes, but the adverse effects of the sensing windings and the maximum allowable turns have not been investigated.
  • a major new feature of the AEF according to one embodiment of the present invention is fully transformer-isolated and characterized by a compact sized design without the use of separate components for the mains line. Can lose. Thanks to these characteristics, the AEF according to the present invention is smaller in size and better than other transformer insulation CSVC AEF.
  • the present invention provides many useful explicit design guidelines for the complete design of an AEF in accordance with one embodiment of the present invention.
  • the transformer isolated AEF is analyzed to evaluate noise attenuation performance, and based on the analysis, provide appropriate design guidelines for the performance and stability of the AEF, and the filter insertion loss and loop gain of the AEF are evaluated using a vector network analyzer ( Measured and verified using Vector Network Analyzer (VNA).
  • VNA Vector Network Analyzer
  • the reduction of CM CE noise by AEF is also seen in actual product SMPS boards.
  • measure the leakage current to ground to ensure the safety of the AEF.
  • CY represents a capacitance of Y-cap.
  • CM chokes are modeled as L cm and M cm , which represent the magnetic and mutual inductance of the winding on the power line.
  • the AEF consists mainly of a sensing winding, an amplifier and an injection transformer wound on the CM choke.
  • the winding ratio of the winding on the power line to the sensing winding is set to 1: N sen , and the self-inductance of the sensing winding is given by approximately N sen 2 L cm .
  • M sen represents the mutual inductance between the winding of the power line and the sensing winding of the AEF input.
  • M inj represents the mutual inductance of the injection transformer, and the turns ratio of the primary and secondary windings is set to 1: N inj .
  • the magnetic inductance in each plane is given by L inj and N inj 2 L inj , respectively.
  • M cm , M sen and M inj are calculated as k cm L cm , k sen N sen L cm and k inj N inj L inj , respectively.
  • k cm , k sen and k inj represent the respective coupling coefficients.
  • the values of k cm , k sen and k inj generally range from 0.99 to 1 in the actual design.
  • the amplifier is implemented in a non-inverting op amp configuration with resistors R 1 and R 2 .
  • R f and C f form a low pass filter in the op amp to avoid stability problems caused by sense winding resonances in the high frequency range.
  • R d1 , C d and R d2 work for stability as a bypass and damping circuit to avoid resonance in the injection transformer to further mitigate the performance degradation due to resonance between the noise source impedance and the Y-cap.
  • R c and C c are phase compensators for stability in the low frequency range.
  • CM chokes parasitic circuit parameters of CM chokes, sensing windings and injection transformers are also modeled for more precise representations, with R cm , C cm , R sen , C sen , R inj1 , C inj1 , R inj2 and C inj2 . Each is included.
  • the CM noise sources of the equipment under test (EUT) are modeled with the Thevenin equivalent circuits V n and Z n , respectively, to represent the CM noise source voltage and impedance.
  • Z LISN represents the impedance of a line impedance stabilization network (LISN).
  • Z line , Z in , AEF and Z Y , eff represent the impedance viewed in each direction with respect to ac zero potential, respectively.
  • L cm, eff represents the effective inductance of the CM choke, where the inductance offset term X (s) appears.
  • X (s) is defined as (2M sen I sen ) / (L cm I cm ), where I cm and I sen are the inductance branches of (L cm + M cm ) and 2N sen 2 L cm in FIG. 4, respectively. current flowing through the branch).
  • Z sen, para represents the parasitic RC component impedance of the sensing winding.
  • Z in and AEF represent the impedance seen from the input side of the amplifier towards the lowpass filter. The op amp input impedance is assumed to be large in the frequency range of interest and is ignored in equation (5).
  • FIG. 5 shows a CM choke equivalent circuit model in a power line including the influence of a sensing winding.
  • the effect of the sensing winding on the CM choke inductance is summarized in FIG. 5.
  • the right box shows a CM choke equivalent circuit model on a power supply line considering the voltage induced by 2M sen .
  • the induced voltage of 2sM sen I sen has a polarity opposite to the voltage drop of s (L cm + M cm ) I cm .
  • X (s) 2M sen I sen ) / (L cm I cm )
  • the total voltage of the choke inductance can be simplified to s (1 + k cm -X (s)) L cm I cm . Therefore, the effective inductance L cm, eff of the CM choke is expressed as (1 + k cm -X (s)) L cm as given in equation (2).
  • ⁇ ( s ) and ( s ) may be understood as physically a boosting factor and a bypass factor as described below, respectively.
  • G 1 (S) is the voltage gain from V in to V in, amp
  • G amp (s) is the gain of the amplifier from V in, amp to V out, amp . It is assumed that the frequency bandwidth of the op amp is sufficiently higher than the frequency range of interest.
  • the expression of Z Y, eff in Equation 6 can be understood as the impedance of the effective capacitance C Y, eff (s) and is defined as in Equation 12.
  • FIG. 6A, 6B and 6C show the change of C Y, eff (s) as the frequency is changed, FIG. 6A is an AEF operation in the frequency range, and FIG. 6B is an ⁇ (s) and The plot of (s), FIG. 6C shows the impedance curve of Z Y, eff .
  • FIGS. 6A, 6B and 6C The change in C Y, eff (s) with varying frequency is summarized in FIGS. 6A, 6B and 6C.
  • the effect of AEF and current path variation on the Y-cap branch is illustrated in FIG. 6A.
  • the dashed box shows the effect of AEF on C Y, eff . f op, min and f op, max are the minimum and maximum target operating frequencies of the AEF, which can be designed as circuit parameters for the AEF, respectively.
  • ⁇ (s) of AEF The magnitude of (s) is plotted according to frequency in FIG. 6B.
  • the impedance Z Y, eff of the Y -cap branch is also plotted in FIG. 6C.
  • ⁇ (s) and at frequencies sufficiently lower than f op, min (s) are all much smaller than 1 and Z Y, eff in Equation 6 is simply approximated by 1 / sC Y. This means that the bypass circuit and injection transformer are negligible compared to the impedance of CY, and the noise voltage compensated from the AEF is also very small.
  • ⁇ (s) is mainly maintained at N sen N inj (1 + R 2 / R 1 ), which is the product of the voltage gains of the sensing winding, amplifier and injection transformer in the operating frequency range.
  • the CM current flowing through the Y-cap branch is amplified by (1 + N sen N inj (1 + R 2 / R 1 )) so that the effective capacitance is plotted as (1 + N sen N inj ( 1 + R 2 / R 1 )) C Y increases.
  • max ⁇ (s) begins to decrease, indicating that the compensation voltage from AEF decreases.
  • the noise attenuation performance of a filter is generally quantified as the insertion loss (IL) defined as the ratio of the noise voltage received by the LISN in the absence of the filter to the noise voltage of the LISN with the filter installed.
  • IL insertion loss
  • the IL of the entire EMI filter is derived as shown in Equation 13.
  • the insertion loss IL of Equation 13 starts to increase mainly at the frequency point where Z Y, eff becomes smaller than the Z line .
  • the low frequency boundary of the filter action Can be approximated.
  • the proposed AEF greatly reduces Z Y, eff in the target frequency range as shown in Fig. 6c, which increases the IL of the entire filter. AEF also allows the entire filter to start operating at lower frequencies.
  • the sensing winding is wound directly on the CM choke, so no additional sense transformer is added. In terms of size and cost, it is desirable not to use a separate sense transformer.
  • the CM choke inductance L cm, eff and the power line impedance Z line can be reduced by an additional sensing winding.
  • the AEF according to the present invention increases the Y-cap C Y, eff well, the reduced power line impedance Z line may degrade the noise attenuation performance of the entire CM EMI filter. Therefore, proper design guidelines for sensing windings are needed to prevent the reduction of Z line .
  • Z line is the first magnetic resonant frequency f r, cm of CM choke ( Is largely determined by parasitic capacitance. Therefore , after the frequency f r, cm , the inductance rejection term X (s) has no significant effect on the size of Z line . Also, X (s) in Equation 3 is meaningful only when sN sen 2 L cm is higher than (Z in, AEF
  • R f and C f are chosen to be equal to equation (15) and equation (16).
  • Equation 14 If the inequality condition in Equation 14 is sufficient, (Z in, AEF
  • Equation 19 The design guideline for the number of turns of the sensing winding is extracted as shown in Equation 19.
  • Equation 19 L cm, eff is (1 + k cm ) L cm Approximate to 2 L cm .
  • the design guideline in Equation 19, which ensures a maintained Z line is derived from the maximum permissible winding ratio of the sensing winding.
  • the exact values of the parasitic capacitances of CM choke and C cm , C sen in Equation 19 are not actually known before design, but Equation 19 can still provide useful guidelines for the number of turns of the sensing winding.
  • Z line, w / AEF is significantly reduced compared to Z line, w / o AEF in Figure 7 (a), while Z line, w / AEF hardly changes in Figure 7 (b).
  • the use of AEF showed another resonance on the Z line in the high frequency region.
  • the resonance is frequency as shown in Figs. 7 (a) and (b).
  • a low pass filter consisting of R f and C f is required at the op amp input to suppress resonance.
  • the cutoff frequency of the filter should be greater than the maximum operating frequency f op, max but less than the resonance frequency of Equation 20.
  • Equations 15, 16, and 20 may be guidelines for low pass filter design.
  • the design of the injection transformer and amplifier element mainly determines the main performance parameters f op , min , f op, max and C Y, eff of the AEF of FIG. 6.
  • Capacitor C o at the amplifier output is used to block unwanted signals at frequencies below the target operating frequency range.
  • L C o is connected in series with the inj constitutes pilteoeul high frequency, and the cut-off frequency determines the minimum operating frequency of the AEF is derived as Equation (21).
  • the maximum operating frequencies f op and max of the AEF are determined by the frequency boundary at which the impedance of the bypass branch is lower than the impedance of the injection transformer path. Similar to the resonance due to the sensing winding shown in FIG. 7, the resonance in the secondary winding of the injection transformer can cause feedback instability, so the bypass branch should begin to operate at frequencies below the resonance frequency. Resonance in the secondary winding is higher than f op, max as in Equation 22 Is generated from
  • Equation 23 the resonance between the inductance part (1-k inj 2 ) N inj 2 L inj of the injection transformer and the capacitance C d of the bypass branch.
  • Equation 23 Substituting Equation 23 into Equation 22 extracts the relationship between C d and C inj 2 as follows.
  • damping resistors R d1 and R d2 are required for stability at high frequencies. Tens of ohms of R d2 are recommended to mitigate the resonance between the Y-cap and CM noise source impedances in the high frequency range, which will be shown experimentally in Section IV.
  • Equation 24 is Equation (7) - in the frequency range of the equation (11) to f op, max It can be approximated as in Equation 25.
  • Equation 12 Y-cap, effective capacitance C Y, eff (s) is simplified to Equation 26.
  • Equation 26 is further simplified to a value that is not dependent on frequency as shown in FIG. 6.
  • N sen is limited by Equation 19, in Equation 27, C Y and eff can be designed to be multiplied by C Y by increasing N inj and amplification gain (1 + R 2 / R 1 ).
  • N inj increases, the maximum operating frequency f op, max is decreased by Equation 23.
  • High amplifier gain also requires a large output voltage swing and large gain bandwidth for the op amp. Therefore, the appropriate values of N inj and (1 + R 2 / R 1 ) should be chosen considering the cost of OP-amp and the f op and max of AEF.
  • Equation 22 means that f op, max of AEF can be adjusted by N inj , L inj, and C inj 2 of the injection transformer. Since parasitic capacitance C inj2 is not an independent design parameter, N inj and L inj must be designed small to achieve high f op and max . However, a small N inj increases C op and min from Equation 21 by decreasing C Y and eff and lowering L inj . As a result, we propose the following design process for optimized performance of AEF. First, C o is designed to be as large as possible in a physical package of a given size, and L inj is lowered to the limit of Equation 21 for the target f op min . Next, in order to achieve the largest C Y, eff , N inj is increased to the limit of Equation 22 for the target f op max .
  • AEF is basically a feedback system with analog inputs and analog outputs, and stability must be carefully designed and guaranteed. If the system is unstable, the system may oscillate without the EUT noise source applied. Feedback stability can be determined by the phase and gain margin of the loop gain.
  • disconnect the feedback loop at the op amp output apply a test voltage source V t from the isolated node to the injection transformer, and apply noise source voltage V n
  • the ratio of the voltage V in at the CM choke front end node to the test voltage V t can be calculated as shown in Equation 28.
  • Equation 30 The voltage gains of (V in, amp / V in ) and (V out, amp / V in, amp ) have been derived as G 1 (s) and G amp (s) in Equations 9 and 10, respectively. . Therefore, the loop gain of the system can be expressed as Equation 30.
  • R c and C c The purpose of using R c and C c is to use the G loop (for stability in the low frequency range because the resonance between the effective inductance L cm, eff of the choke and the effective capacitance C Y, eff of the Y-cap branch poses a risk of instability. It is to increase the phase margin of s).
  • Resonant frequency Determines the low frequency boundary of the filter operation and must be below the low frequency limits of the CE standard in the appropriate EMI filter design.
  • the maximum amount of phase compensation due to R c and C c is calculated as shown in Equation 31.
  • Equation 31 is the frequency
  • phase compensation frequency By setting to the resonant frequency of, other expressions on R c and C c are extracted as in Eq.
  • Equations 31 and 32 provide design guidelines for R c and C c .
  • Equation 28 depends on the EUT noise source impedance Z n , and so is the loop gain in Equation 30.
  • Equation 30 it can be seen that as the size of Z n increases, the gain margin tends to decrease by increasing the size of the loop gain. Therefore, designing stability with Z n as an infinite value generally provides stability under worst-case conditions. Therefore, in this specification, the loop gain of the designed AEF is calculated or measured with an infinite Z n condition to ensure stability in any EUT application.
  • the G loop (s) of the filter with AEF can be represented by using Equation 30 as shown in FIG.
  • the bypass branch and phase correctors R d1 , C d , R d2 , R c , and C c are not provided in FIG. 8 (a) but are provided in FIG. 8 (b).
  • the effect on their stability is clearly shown.
  • the instability due to the sudden phase shift in the vicinity of 10 MHz in Fig. 8 (a) is due to the secondary winding of the injection transformer, in the case of Fig. 8 (b) is eliminated by the bypass branch.
  • the resonance between L cm, eff and C Y, eff causes excessive phase shift and also risks of instability.
  • the use of phase compensators R c and C c greatly increases the gain margin.
  • the high frequency limit f OPamp must be higher than the high frequency limit f CE, max of the CE standard.
  • the voltage and current capacity of the op amp must be sufficient for noise compensation.
  • the voltages V out, amp (s) and currents I out, amp (s) at the OP amplifier output are calculated from Equations 34 and 35, respectively, from the circuit model of FIG.
  • V in (s) is determined by Z n and V n (s) as well as filter impedance, including AEF
  • the information in the noise source model can be used to estimate V out, amp (s) and I out, amp (s). It is necessary to Noise source models of SMPS, Z n and V n (s) in operation can be extracted by various measurement methods already developed. Once Z n and V n (s) are extracted, the time-domain waveforms of OP-amp output voltage v out, amp (t) and output current i out, amp (t) are given by V out given in Eqs. , amp (s) and I out, amp. Can be calculated from the spectrum. Therefore, the voltage capacity v OPamp, max and current capacity i OPamp, max of the op amp output must be sufficient to provide the calculated v out, amp (t) and i out, amp (t), respectively.
  • Equation 35 As in Equation 35, increasing N in j greatly increases I out and amp (s) in the operating frequency range of AEF.
  • the voltage gain of the injection transformer due to N inj can reduce the OP amplifier output voltage instead of increasing the output current as described above.
  • the injection transformer not only isolates the AEF ground from the SMPS ground but also provides additional design flexibility for the gain and op amp circuits.
  • FIG. 9 illustrates a second embodiment of the insulated active EMI filter without additional elements in the power line according to the present invention.
  • a circuit diagram is shown.
  • the second embodiment of the insulated active EMI filter without additional elements in the power line according to the present invention is a common mode (CM) choke 1710, Y-cap 1720, transformer 1730, amplifier 1740 and Compensation winding 1750 is included.
  • CM common mode
  • the common mode (CM) choke 1710 is disposed on a power supply side to which power is supplied, and a live line and a neutral line connected to an EMI source are wound around windings, respectively.
  • the Y-cap 1720 is disposed on the EMI source side generating EMI, and is composed of two capacitors connected in series, and the two capacitors are connected in parallel between the live line and the neutral line and are commonly connected to the ground.
  • the transformer 1730 is installed in front of the Y-cap 1720, and the primary coil senses the noise voltage of the Y-cap, transforms it through the secondary coil, and is insulated from the power line.
  • the amplifier 1740 amplifies the transformed noise voltage detected by the transformer 1730.
  • the compensation winding 1710 is coiled on the common mode choke 1710 and injects the noise signal amplified by the amplifier into the common mode choke 1710.
  • FIG. 10 is a circuit diagram of a third embodiment of an insulated active EMI filter without additional elements in a power line according to the present invention.
  • CM common mode
  • a common mode choke 1810 is disposed on an EMI source side that generates EMI, and a live line L and a neutral line N connected to the EMI source are wound by windings, respectively.
  • the Y-cap 1820 is disposed on the power supply side to which power is supplied, and is composed of two capacitors connected in series, and the two capacitors are connected in parallel between the live line L and the neutral line N, and are separated from the ground. It is connected in common.
  • the sensing winding 1830 coils the common mode choke 1810 with a coil and senses a noise current of the common mode choke 1810.
  • the amplifier 1840 amplifies the noise current detected through the sensing winding 1830.
  • the transformer 1850 is installed at the front end of the Y-cap 1820, the primary coil receives the signal amplified by the amplifier 1840, and the secondary coil is connected to the ground connected to the Y-cap 1820. Insulated from the power line, the transformed signal through the secondary coil is injected into the Y-cap 1820 as a compensation signal.
  • FIG. 11 is a circuit diagram of a fourth embodiment of an insulated active EMI filter having no additional element in a power line according to the present invention, and includes a common mode (CM) choke 1910, a Y-cap 1920, and a transformer unit. 1930, amplifier 1940 and compensation winding 1950.
  • CM common mode
  • the common mode choke 1910 is disposed on an EMI source side that generates EMI, and a live line L and a neutral line N connected to the EMI source are wound around a winding, respectively.
  • the Y-cap 1920 is disposed on a power supply side to which power is supplied, and is composed of two capacitors connected in series, and the two capacitors are connected in parallel between the live line and the neutral line and are commonly connected to the ground.
  • the transformer 1930 is installed in front of the Y-cap 1920, and the primary coil senses the noise voltage of the Y-cap 1920, transforms it through the secondary coil, and is insulated from the power line. .
  • the amplifier 1940 amplifies the noise voltage transformed by the transformer 1930.
  • the compensation winding 1950 coils the common mode choke 1910 with a coil, and injects the noise signal amplified by the amplifier 1940 into the common mode choke 1910 as a compensation signal.
  • FIG. 12 is a flowchart illustrating a method for reducing EMI noise by adding an active element to a passive EMI filter, corresponding to the first embodiment of the insulated active EMI filter having no additional element in the power line according to the present invention.
  • the common mode choke 110 includes a passive EMI filter on the power supply side and the Y-cap 120 on the EMI source side (step S2010), that is, the common mode choke 110. ) Is placed on the power supply side, and a live line and a neutral line connected to the EMI source are wound by windings, respectively.
  • the Y-cap 120 is disposed on the EMI source side generating EMI, and is composed of two capacitors connected in series, and the two capacitors are connected in parallel between the live line (L) and the neutral line (N), and Are connected in common.
  • the common mode choke 110 senses the EMI noise current of the common mode choke 110 through a coil wound on the coil 130 (step S2020).
  • the amplification unit 140 detects the sensing winding 130. Amplifies the EMI noise current (step S2030).
  • the signal amplified by the amplifier 140 is received through the primary coil of the transformer 150 installed at the front end of the Y-cap 120 (step S2040). Then, the transformer is transformed through the secondary coil of the transformer 50. To the Y-cap 120. Here, the secondary coil of the transformer 150 is connected to the ground connected to the Y-cap 120 and is insulated from the power line.
  • FIG. 13 is a flowchart illustrating a method of reducing EMI noise by adding an active element to a passive EMI filter, corresponding to the second embodiment of the insulated active EMI filter having no additional element in the power line according to the present invention.
  • a common mode choke 1710 includes a passive EMI filter in which a common mode choke 1710 is disposed at a power supply side and a Y-cap 1720 is disposed at an EMI source side.
  • the mode choke 1710 is disposed on a power supply side to which power is supplied, and a live line (L) and a neutral line (N) connected to an EMI source are wound around windings, respectively.
  • the Y-cap 1720 is disposed on the EMI source side generating EMI, and is composed of two capacitors connected in series, and the two capacitors are connected in parallel between the live line (L) and the neutral line (N), and Are commonly connected.
  • the primary coil of the transformer 1730 installed in front of the Y-cap 1720 senses the noise voltage using the Y-cap 1720 as a sensing capacitor.
  • the secondary coil of the transformer 1730 is used.
  • the secondary coil of the transformer 1730 is connected to the ground connected to the Y-cap 1720 and is insulated from the power line.
  • the amplifier 1740 amplifies the voltage transformed by the secondary coil of the transformer 1730. (S2140)
  • the amplified signal is amplified through the compensation winding 1750 formed by winding a coil around the common mode choke. Inject into the mode choke (step S2150).
  • FIG. 14 is a flowchart illustrating a method of reducing EMI noise by adding an active element to a passive EMI filter, corresponding to the third embodiment of the insulated active EMI filter having no additional element in the power line according to the present invention.
  • the common mode choke 1810 includes a passive EMI filter having an EMI source side and a Y-cap 1820 arranged on a power source side (step S2210).
  • the mode choke 1810 is disposed on an EMI source side that generates EMI, and a live line (L) and a neutral line (N) connected to the EMI source are wound by windings, respectively.
  • the Y-cap 1820 is disposed on the power supply side to which power is supplied, and is composed of two capacitors connected in series, and the two capacitors are connected in parallel between the live line L and the neutral line N, and are separated from the ground. Commonly connected.
  • the sensing winding 1830 formed by coiling the common mode choke 1810 detects a noise current of the common mode choke 1810.
  • the amplifying unit 1840 detects noise detected by the sensing winding 1830. Amplify the current (step S2230).
  • the signal amplified by the amplifier 1840 is input to the primary coil of the transformer 1850 installed in front of the Y-cap 1820 (step S2240).
  • the signal input to the primary coil is then converted into a transformer (
  • the secondary coil of 1850 is transformed and injected into the Y-cap 1820 as a compensation signal (step S2250).
  • the secondary coil of the transformer 1850 is connected to the ground connected to the Y-cap 1820 and It is isolated from the power line.
  • FIG. 15 is a flowchart illustrating a method of reducing EMI noise by adding an active element to a passive EMI filter, corresponding to the fourth embodiment of the insulated active EMI filter having no additional element in the power line according to the present invention.
  • the common mode choke 1910 includes a passive EMI filter in which an EMI source and a Y-cap 1920 are disposed in a power source (step S2310). More specifically, the common mode choke 1910 is disposed on the EMI source side that generates EMI, and a live line (L) and a neutral line (N) connected to the EMI source are wound by windings, respectively.
  • the Y-cap 1920 is disposed on the power supply side to which power is supplied, and is composed of two capacitors connected in series, and the two capacitors are connected in parallel between the live line L and the neutral line N and are separated from the ground. It is connected in common.
  • the primary coil of the transformer 1930 installed in front of the Y-cap 1920 senses the noise voltage of the Y-cap 1920 (step S2320).
  • the noise voltage sensed by the primary coil is transformed through the secondary coil of the transformer 1930 (step 2330).
  • the secondary coil of the transformer 1930 is connected to the ground connected to the Y-cap 1920, and the power line It is insulated from.
  • the amplifier 1940 amplifies the noise voltage transformed from the secondary coil (Step 2340).
  • the amplified noise signal is converted into the common mode choke through a compensation winding 1950 formed by coiling the common mode choke 1910 with a coil.
  • the signal is injected into the compensation signal.
  • the isolated active EMI filter having no additional element in the power line is an active filter of an additional type installed in the existing passive EMI filter composed of common mode choke and Y-cap.
  • the present invention proposes a choke device added to a power line by adding a noise sensing or compensation wire to a common mode choke present in a passive EMI filter.
  • the Y-cap present in the passive EMI filter is used as a compensation or sensing capacitor, and there is an advantage that the active circuit is insulated from the power line by installing a small transformer in front of the compensation or sensing capacitor, and insulated from the power line without adding elements to the power line. .
  • the insulated active EMI filter according to the present invention superimposes the sensing and compensation wires with an optimal number of turns so as not to degrade the noise attenuation performance of the passive EMI filter itself.
  • the transformer turn ratio is adjusted and the gain of the active filter amplifier is optimized to optimize noise sensing and compensation performance through the Y-cap and the small transformer in front of it.
  • Various stability compensation circuits can be added to ensure feedback stability of the overall feedback circuit structure of noise sensing and compensation.
  • the active EMI filter of the present invention is a feedback circuit structure for injecting a compensation signal by sensing the noise.
  • low frequency band conductive noise is reduced by 11 dB when using only a passive filter, but 26 dB is reduced when an active EMI filter (AEF) of the present invention is additionally installed. If only passive filters are used, expensive common-mode chokes should be used or the overall number of stages of the filter should be increased for sufficient attenuation of low frequency band noise.
  • AEF active EMI filter

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Filters And Equalizers (AREA)
  • Networks Using Active Elements (AREA)

Abstract

본 발명은 전력선 케이블에서 방출되는 노이즈를 막기 위한 EMI필터에 관한 것으로, 전력선에 추가되는 소자가 없는 절연형 능동 EMI 필터는: 전원쪽에 배치된 공통모드 초크; EMI 소스 쪽에 배치된 Y-cap; 전류를 감지하는 센싱권선; 노이즈 전류를 증폭하는 증폭부; 및 2차코일의 신호를 Y-cap으로 보상 신호로 주입하는 변압기를 포함한다.

Description

전력선에 추가 소자가 없는 절연형 능동 EMI 필터
본 발명은 EMI 필터에 관한 것으로서, 특히 전력선에 추가 소자가 없는 절연형 능동 EMI 필터에 관한 것이다.
대부분의 가전용/산업용 전기시스템에는, 전력선 케이블을 통해 방출되는 전도성 EMI 노이즈를 막기 위해 EMI 필터를 장착하게 된다.
공통모드 전도성 노이즈를 막기 위해서는 통상 공통모드 초크와 Y-cap으로 구성된 필터를 사용한다. 고전력/고전류 전기시스템에서는, 공통모드 초크의 자기 포화 현상에 의해 노이즈 저감 성능이 떨어지게 되는데, 이를 막기 위해 충분한 감쇄 성능을 얻기 위해서는 다단 필터를 사용하거나 고가의 고성능 초크를 사용해야 하며, 이로 인해 EMI 필터의 크기와 가격이 매우 증가하게 된다. 따라서, 수동 EMI 필터의 한계를 극복하고 성능을 효과적으로 높일 수 있는 능동 EMI 필터를 이용하고자 하는 시도가 있어 왔고 능동 EMI 필터로 인해 전력선에 추가되는 초크가 없는 것이 바람직하다.
능동 EMI 필터는 노이즈 전압이나 전류를 커패시터나 변압기로 센싱하여, 보상 전압이나 전류를 다시 변압기나 커패시터로 인가하여 상쇄시키는 피드백 회로 구조를 가진다. 그런데 능동 EMI 필터에서 전력선에 변압기를 추가하여 노이즈를 센싱 및 보상을 하면, 고전력/고전류 전기 시스템에서는 변압기 자기포화에 의해 성능이 크게 떨어진다. 즉, 종래에는 전력선에 추가되는 변압기가 없는 형태의 능동 EMI 필터는 노이즈 센싱 및 노이즈 보상을 커패시터를 통해서 하도록 하였다.
하지만 능동 EMI 필터에서 전력선에 커패시터를 연결하여 노이즈 센싱 및 보상을 하게 되면, 능동회로 소자들이 전력선에서 절연되지 않게 되어, 전기적 과부하(electrical overstress, EOS)에 대한 신뢰성과 안정성이 크게 떨어지는 문제점이 있다. 즉, 능동 EMI 필터에 의해 전력선에 추가되는 초크가 없으면서도, 능동 회로 소자들이 전력선으로부터 절연되는 구조가 필요하다.
본 발명이 해결하고자 하는 과제는 전력선에 추가되는 소자가 없으면서도 능동 회로 소자들이 전력선으로부터 절연이 되는, 전력선에 추가 소자가 없는 절연형 능동 EMI 필터를 제공하는 것이다.
본 발명이 해결하고자 하는 다른 과제는 전력선에 추가되는 소자가 없으면서도 능동 회로 소자들이 전력선으로부터 절연이 되는, 전력선에 추가 소자가 없는 절연형 능동 EMI 필터를 이용하여 EMI 잡음 저감 방법을 제공하는 것이다.
상기 과제를 이루기 위한 본 발명의 제1실시예에 의한 전력선에 추가 소자가 없는 절연형 능동 EMI 필터는, 전력이 공급되는 전원 쪽에 배치되며, EMI 소스와 연결된 라이브선(Live line)과 중성선(Neutral line)이 각각 권선으로 감겨 있는 공통모드(CM) 초크; EMI를 발생시키는 EMI 소스 쪽에 배치되며, 직렬 연결된 두 개의 커패시터로 이루어지고, 상기 두 개의 커패시터가 상기 라이브선과 중성선 사이에서 병렬로 연결되고 접지와는 공통으로 연결되는 Y-cap; 상기 공통모드 초크에 코일로 덧 감기고, 상기 공통모드 초크의 노이즈 전류를 감지하는 센싱 권선; 상기 센싱 권선에서 감지된 노이즈 전류를 증폭하는 증폭부; 및 상기 Y-cap 앞 단에 설치되며, 1차코일은 상기 증폭부에서 증폭된 신호를 받아들이고, 2차 코일은 상기 Y-cap과 연결된 접지와 연결되어 전력선으로부터 절연(isolated)되며, 상기 2차코일의 신호를 상기 Y-cap으로 보상 신호로 주입하는 변압기를 포함한다.
상기 과제를 이루기 위한 본 발명의 제2실시예에 의한 전력선에 추가 소자가 없는 절연형 능동 EMI 필터는, 전력이 공급되는 전원 쪽에 배치되며, EMI 소스와 연결된 라이브선(Live line)과 중성선(Neutral line)이 각각 권선으로 감겨 있는 공통모드(CM) 초크; EMI를 발생시키는 EMI 소스 쪽에 배치되며, 직렬 연결된 두 개의 커패시터로 이루어지고, 상기 두 개의 커패시터가 상기 라이브선과 중성선 사이에서 병렬로 연결되고 접지와는 공통으로 연결되는 Y-cap; 상기 Y-cap 앞 단에 설치되며, 1차코일이 상기 Y-cap의 노이즈 전압을 센싱하여 2차코일을 통해 변압하고, 전력선으로부터 절연(isolated)되는 변압부; 상기 변압부에서 감지되 변압된 노이즈 전압을 증폭하는 증폭부; 및 상기 공통모드 초크에 코일로 덧 감기고, 상기 증폭부에서 증폭된 노이즈 신호를 상기 공통모드 초크로 주입하는 보상 권선을 포함한다.
상기 과제를 이루기 위한 본 발명의 제3실시예에 의한 전력선에 추가 소자가 없는 절연형 능동 EMI 필터는, EMI를 발생시키는 EMI 소스 쪽에 배치되며, EMI 소스와 연결된 라이브선(Live line)과 중성선(Neutral line)이 각각 권선으로 감겨 있는 공통모드(CM) 초크; 전력이 공급되는 전원 쪽에 배치되며, 직렬 연결된 두 개의 커패시터로 이루어지고, 상기 두 개의 커패시터가 상기 라이브선과 중성선 사이에서 병렬로 연결되고 접지와는 공통으로 연결되는 Y-cap; 상기 공통모드 초크에 코일로 덧 감기고, 상기 공통모드 초크의 노이즈 전류를 감지하는 센싱 권선; 상기 센싱 권선에서 감지된 노이즈 전류를 증폭하는 증폭부; 및 상기 Y-cap 앞 단에 설치되며, 일차코일은 상기 증폭부에서 증폭된 신호를 받아들이고, 이차 코일은 상기 Y-cap과 연결된 접지와 연결되어 전력선으로부터 절연(isolated)되며, 상기 2차코일을 통해 변압된 신호를 상기 Y-cap으로 보상 신호로 주입하는 변압기를 포함한다.
상기 과제를 이루기 위한 본 발명의 제4실시예에 의한 전력선에 추가 소자가 없는 절연형 능동 EMI 필터는, EMI를 발생시키는 EMI 소스 쪽에 배치되며, EMI 소스와 연결된 라이브선(Live line)과 중성선(Neutral line)이 각각 권선으로 감겨 있는 공통모드(CM) 초크; 전력이 공급되는 전원 쪽에 배치되며, 직렬 연결된 두 개의 커패시터로 이루어지고, 상기 두 개의 커패시터가 상기 라이브선과 중성선 사이에서 병렬로 연결되고 접지와는 공통으로 연결되는 Y-cap; 상기 Y-cap 앞 단에 설치되며, 1차코일이 상기 Y-cap의 노이즈 전압을 센싱하여 2차코일을 통해 변압하고, 전력선으로부터 절연(isolated)되는 변압기; 상기 변압기에서 변압된 노이즈 전압을 증폭하는 증폭부; 및 상기 공통모드 초크에 코일로 덧 감기고, 상기 증폭부에서 증폭된 노이즈 신호를 상기 공통모드 초크로 보상신호로 주입하는 보상 권선을 포함한다.
상기 다른 과제를 이루기 위한 본 발명의 제1실시예에 의한 전력선에 추가 소자가 없는 절연형 능동 EMI 필터를 이용한 EMI 잡음 저감방법은, 전력이 공급되는 전원 쪽에 배치되며, EMI 소스와 연결된 라이브선(Live line)과 중성선(Neutral line)이 각각 권선으로 감겨 있는 공통모드(CM) 초크; 및 EMI를 발생시키는 EMI 소스 쪽에 배치되며, 직렬 연결된 두 개의 커패시터로 이루어지고, 상기 두 개의 커패시터가 상기 라이브선과 중성선 사이에서 병렬로 연결되고 접지와는 공통으로 연결되는 Y-cap으로 이루어지는 수동 EMI 필터에 능동소자를 부가하여 EMI 잡음을 저감하는 방법에 있어서, 상기 공통모드 초크에 코일로 덧 감아 이루어진 센싱권선을 통해 상기 공통모드 초크의 노이즈 전류를 감지하는 단계; 상기 센싱 권선에서 감지된 노이즈 전류를 증폭하는 단계; 및 상기 Y-cap 앞 단에 설치된 변압기의 1차코일을 통해 받아들인 상기 증폭된 신호를 2차코일을 통해 변압하여 상기 Y-cap로 주입하는 단계를 포함하고, 상기 변압기의 2차 코일은 상기 Y-cap과 연결된 접지와 연결되어 전력선으로부터 절연(isolated)되는 것을 특징으로 한다.
상기 다른 과제를 이루기 위한 본 발명의 제2실시예에 의한 전력선에 추가 소자가 없는 절연형 능동 EMI 필터를 이용한 EMI 잡음 저감방법은, 전력이 공급되는 전원 쪽에 배치되며, EMI 소스와 연결된 라이브선(Live line)과 중성선(Neutral line)이 각각 권선으로 감겨 있는 공통모드(CM) 초크; 및 EMI를 발생시키는 EMI 소스 쪽에 배치되며, 직렬 연결된 두 개의 커패시터로 이루어지고, 상기 두 개의 커패시터가 상기 라이브선과 중성선 사이에서 병렬로 연결되고 접지와는 공통으로 연결되는 Y-cap; 으로 이루어지는 수동 EMI 필터에 능동소자를 부가하여 EMI 잡음을 저감하는 방법에 있어서, 상기 Y-cap 앞 단에 설치된 변압기의 1차코일이 상기 Y-cap을 센싱 커패시터로 사용하여 노이즈 전압을 센싱하여 상기 변압기의 2차코일을 통해 변압하는 단계; 상기 2차코일을 통해 변압된 노이즈 전압을 증폭하는 단계; 및 상기 공통모드 초크에 코일로 덧 감아 이루어진 보상권선을 통해 상기 증폭된 노이즈 신호를 상기 공통모드 초크로 주입하는 단계를 포함하고, 상기 변압기의 2차 코일은 상기 Y-cap과 연결된 접지와 연결되어 전력선으로부터 절연(isolated)되는 것을 특징으로 한다.
상기 다른 과제를 이루기 위한 본 발명의 제3실시예에 의한 전력선에 추가 소자가 없는 절연형 능동 EMI 필터를 이용한 EMI 잡음 저감방법은, EMI를 발생시키는 EMI 소스 쪽에 배치되며, EMI 소스와 연결된 라이브선(Live line)과 중성선(Neutral line)이 각각 권선으로 감겨 있는 공통모드(CM) 초크; 및 전력이 공급되는 전원 쪽에 배치되며, 직렬 연결된 두 개의 커패시터로 이루어지고, 상기 두 개의 커패시터가 상기 라이브선과 중성선 사이에서 병렬로 연결되고 접지와는 공통으로 연결되는 Y-cap; 으로 이루어지는 수동 EMI 필터에 능동소자를 부가하여 EMI 잡음을 저감하는 방법에 있어서, 상기 공통모드 초크에 코일로 덧 감아 이루어진 센싱권선을 통해 상기 공통모드 초크의 노이즈 전류를 감지하는 단계; 상기 센싱 권선에서 감지된 노이즈 전류를 증폭하는 단계; 및 상기 Y-cap 앞 단에 설치된 변압기의 1차코일을 통해 입력된 상기 증폭된 신호를 상기 변압기의 2차코일을 통해 변압하여 상기 Y-cap으로 보상 신호로 주입하는 단계를 포함하고, 상기 변압기의 2차 코일은 상기 Y-cap과 연결된 접지와 연결되어 전력선으로부터 절연(isolated)되는 것을 특징으로 한다.
상기 다른 과제를 이루기 위한 본 발명의 제4실시예에 의한 전력선에 추가 소자가 없는 절연형 능동 EMI 필터를 이용한 EMI 잡음 저감방법은, EMI를 발생시키는 EMI 소스 쪽에 배치되며, EMI 소스와 연결된 라이브선(Live line)과 중성선(Neutral line)이 각각 권선으로 감겨 있는 공통모드(CM) 초크; 및 전력이 공급되는 전원 쪽에 배치되며, 직렬 연결된 두 개의 커패시터로 이루어지고, 상기 두 개의 커패시터가 상기 라이브선과 중성선 사이에서 병렬로 연결되고 접지와는 공통으로 연결되는 Y-cap; 으로 이루어지는 수동 EMI 필터에 능동소자를 부가하여 EMI 잡음을 저감하는 방법에 있어서, 상기 Y-cap 앞 단에 설치된 변압기의 1차코일이 상기 Y-cap의 노이즈 전압을 센싱하여 2차코일을 통해 변압하는 단계; 상기 변압된 노이즈 전압을 증폭하는 단계; 및 상기 공통모드 초크에 코일로 덧 감겨 이루어진 보상권선을 통해 상기 증폭된 노이즈 신호를 상기 공통모드 초크로 보상신호로 주입하는 단계를 포함하고, 상기 변압기의 2차 코일은 상기 Y-cap과 연결된 접지와 연결되어 전력선으로부터 절연(isolated)되는 것을 특징으로 한다.
대부분의 가전용/산업용 전기전자 장치에서는 전력선 케이블을 통해 방출되는 전도성 EMI 노이즈를 막기 위해 EMI 필터를 필수적으로 장착하여야 하는데, 본 발명에 따른 전력선에 추가 소자가 없는 절연형 능동 EMI 필터 및 그를 이용한 EMI 잡음 저감 방법에 의하면 수동 필터만 사용하는 경우보다 작은 크기와 낮은 가격으로 동일한 노이즈 감쇄 성능을 얻을 수 있다.
또한 본 발명에 의하면, 기존에 충분한 노이즈 감쇄를 위해 다단 수동 EMI 필터를 사용한 경우, 본 발명에 의한 전력선에 추가 소자가 없는 절연형 능동 EMI 필터를 추가하면 필터의 단수를 줄일 수 있고, 대부분 전기전자 장치의 크기와 비용을 줄일 수 있다.
도 1은 본 발명에 의한 전력선에 추가 소자가 없는 절연형 능동 EMI 필터의 제1실시예에 대한 구성을 회로도로 나타낸 것이다.
도 2는 본 발명에 의한 AEF 구성의 일 예로서, CM L-C EMI 필터에 추가적으로(add-on) 설치된 제안된 변압기 절연 AEF의 구성을 나타낸 것이다.
도 3은 본 발명의 일실시예에 따른 AEF의 회로 모델을 나타낸 것이다.
도 4는 기생 성분을 포함하는 절반 부분(half portion)에 대한 등가회로를 나타낸 것이다.
도 5는 센싱권선의 영향을 포함한 전원선에서의 CM 초크 등가회로 모델을 나타낸 것이다.
도 6a, 도 6b 및 도 6c는 주파수 영역별로 능동 EMI 필터에 의한 전류 경로 및 Y-cap의 커패시터 효과(CY, eff (s)) 의 변화를 나타낸 것이다.
도 7은 Y-cap 위치에서 전원 방향으로 보았을 때의 전력선 임피던스 (Zline)곡선을 나타낸 것으로서, (a)는 Nsen이 수힉식 19를 위반할 때, (b)는 Nsen이 수학식 19를 만족할 때를 나타낸 것이다.
도 8은 루프이득을 비교한 것으로서, (a)는 댐핑성분 Rd1, Cd, Rd2 및 위상 보상기 Rc, Cc 가 없는 불안정한 상황에서의 루프이득을, (b)는 이러한 성분이 있는 안정된 상황에서의 루프이득을 나타낸 것이다.
도 9는 본 발명에 따른 전력선에 추가 소자가 없는 절연형 능동 EMI 필터의 제2실시예에 대한 회로도를 나타낸 것이다.
도 10은 본 발명에 따른 전력선에 추가 소자가 없는 절연형 능동 EMI 필터의 제3실시예에 대한 회로도를 나타낸 것이다.
도 11은 본 발명에 따른 전력선에 추가 소자가 없는 절연형 능동 EMI 필터의 제4실시예에 대한 회로도를 나타낸 것이다.
도 12는 본 발명에 따른 전력선에 추가 소자가 없는 절연형 능동 EMI 필터의 제1실시예에 상응하는, 수동 EMI 필터에 능동소자를 부가하여 EMI 잡음을 저감하는 방법을 흐름도로 나타낸 것이다.
도 13은 본 발명에 따른 전력선에 추가 소자가 없는 절연형 능동 EMI 필터의 제2실시예에 상응하는, 수동 EMI 필터에 능동소자를 부가하여 EMI 잡음을 저감하는 방법을 흐름도로 나타낸 것이다.
도 14는 본 발명에 따른 전력선에 추가 소자가 없는 절연형 능동 EMI 필터의 제3실시예에 상응하는, 수동 EMI 필터에 능동소자를 부가하여 EMI 잡음을 저감하는 방법을 흐름도로 나타낸 것이다.
도 15는 본 발명에 따른 전력선에 추가 소자가 없는 절연형 능동 EMI 필터의 제4실시예에 상응하는, 수동 EMI 필터에 능동소자를 부가하여 EMI 잡음을 저감하는 방법을 흐름도로 나타낸 것이다.
본 발명은 전력선에 추가 소자가 없는 절연형 능동 EMI 필터 및 그를 이용한 EMI 잡음 저감방법에 관한 것으로서, 그 절연형 능동 EMI 필터는 전력이 공급되는 전원 쪽에 배치되며, 공통모드(CM) 초크; Y-cap; 공통모드 초크에 코일로 덧 감기고, 공통모드 초크의 노이즈 전류를 감지하는 센싱 권선; 센싱 권선에서 감지된 노이즈 전류를 증폭하는 증폭부; 및 Y-cap 앞 단에 설치되며, 1차코일은 증폭부에서 증폭된 신호를 받아들이고, 2차 코일은 Y-cap과 연결된 접지와 연결되어 전력선으로부터 절연(isolated)되며, 2차코일의 신호를 Y-cap으로 보상 신호로 주입하는 변압기를 포함한다.
이하, 첨부된 도면을 참조로 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원 시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1은 본 발명에 의한 전력선에 추가 소자가 없는 절연형 능동 EMI 필터의 제1실시예에 대한 구성을 회로도로 나타낸 것이다. 상기 본 발명의 제1실시예는 공통모드(CE) 초크(110) 및 Y-cap(120)으로 이루어지는 수동 EMI 필터와, 센싱권선(130), 증폭부(140) 및 변압기(150)으로 이루어지는 EMI 필터(100)를 포함하여 이루어진다.
공통모드(CE) 초크(110)는 전력이 공급되는 전원 쪽에 배치되며, EMI 소스와 연결된 라이브선(Live line)과 중성선(Neutral line)이 각각 권선으로 감겨 있다.
Y-cap(120)은 EMI를 발생시키는 EMI 소스 쪽에 배치되며, 직렬 연결된 두 개의 커패시터로 이루어지고, 상기 두 개의 커패시터가 상기 라이브선(L)과 중성선(N) 사이에서 병렬로 연결되고 접지와는 공통으로 연결된다.
센싱 권선(130)은 공통모드 초크(130)에 코일로 덧 감기고, 공통모드 초크(130)에 흐르는 노이즈 전류를 감지한다. 센싱 권선(130)의 권수(Nsen)는 공통모드(CM) 초크(110)의 기생회로의 커피시턴스를 Ccm 이라 하고, 센싱권선(130)의 기생회로의 커패시턴스를 Csen 이라 할 때, 2Ccm / Csen 의 제곱근보다 작은 것이 바람직하다.
증폭부(140)는 센싱 권선(130)을 통해 감지된 노이즈 전류를 증폭한다.
변압기(150)는 Y-cap(120) 앞 단에 설치되며, 1차코일은 상기 증폭부에서 증폭된 신호를 받아들이고, 2차 코일은 Y-cap(120)과 연결된 접지와 연결되어 전력선으로부터 절연(isolated)되며, 2차코일의 신호를 Y-cap(120)으로 보상 신호로 주입한다.
도 2는 본 발명에 의한 AEF 구성의 일 예로서, CM L-C EMI 필터에 추가적으로(add-on) 설치된 제안된 변압기 절연 AEF의 구성을 나타낸 것이다. 도 3은 본 발명의 일실시예에 따른 AEF의 회로 모델을 나타낸 것이다.
본 발명에 의한 전력선에 추가 소자가 없는 절연형 능동 EMI 필터는 고주파 범위에서 센싱 권선 공진에 의해 야기되는 안정성 문제를 방지하기 위해 저역통과필터(Low pass filter)를 더 포함할 수 있다.(도 3 참조) 상기 저역통과필터는 저항(Rf) 및 커패시터(Cf)를 포함하여 이루어진다.
상기 저항(Rf)은 일단이 상기 센싱권선과 연결되고 타단이 상기 증폭부의 +입력 단자에 연결되어 있다. 상기 커패시터(Cf)는 일단이 상기 저항(Rf)의 타단 및 상기 증폭부의 + 입력 단자에 연결되고 타단이 접지와 연결되는 커패시터(Cf)를 포함하고, 상기 증폭부의 입력단에 위치한다.
또한 증폭부(140) 입력단에서 상기 저역통과 필터 쪽으로 바라본 본 임피던스(Zin, AEF)는 관심 주파수 범위에서 센싱권선(130)의 기생 RC 성분 임피던스(Zsen, para ) 보다 높게 설정되는 것이 바람직하다.
상기 저역통과필터의 차단 주파수(1/2
Figure PCTKR2019005268-appb-I000001
RfCf)는 최대 동작주파수(fop, max) 보다 크고 주파수
Figure PCTKR2019005268-appb-I000002
( ksen은 센싱권선(130)의 결합계수, Nsen은 센싱권선(130)의 권수, Lcm 은 공통모드 초크(110)의 인덕턴스, Csen은 센싱권선(130)의 기생회로의 커패시턴스) 보다 작은 것이 바람직하다.
그리고 본 발명에 의한 전력선에 추가 소자가 없는 절연형 능동 EMI 필터는, 상기 변압기에서의 공진을 피하기 위해 바이패스 및 댐핑 회로로서의 안정성 및 상기 EMI 소스 임피던스와 상기 Y-cap 사이의 공진으로 인한 성능 저하를 완화하는, 바이패스 브랜치(Bypass branch)를 더 포함할 수 있다.(도 3 참조) 상기 바이패스 브랜치(Bypass branch)는 제1저항(Rd1), 커패시터(Cd) 및 제2저항(Rd2)을 포함하여 이루어질 수 있다.
제1저항(Rd1)은 일단이 상기 Y-cap과 연결되고 타단이 상기 변압기의 2차코일에 연결되고, 커패시터(Cd)는 일단이 상기 저항의 일단과 연결된다. 제2저항(Rd2)은 일단이 상기 커패시터의 타단과 직렬로 연결되고 타단이 접지와 연결된다.
또한 본 발명에 의한 전력선에 추가 소자가 없는 절연형 능동 EMI 필터는, 저주파수 범위에서 안정성을 위한 위상보상기를 더 포함할 수 있다.(도 3 참조)
위상보상기는 병렬 연결된 저항(Rc)과 커패시터(Cc)를 포함하고, 상기 병렬연결된 저항(Rc)과 커패시터(Cc)의 일단이 상기 증폭부의 (-) 입력단자에 연결되고 상기 병렬연결된 저항(Rc)과 커패시터(Cc)의 타단이 상기 증폭부의 출력단자에 병렬로 연결된다.
본 발명은 완전(fully) 변압기 절연 AEF의 새로운 구조를 제안한다. 도 2를 참조하면, 본 발명의 일 실시예에 의한 AEF는 CM 초크와 Y-cap으로 구성된 기존의 CM L-C EMI 필터에 추가적으로(add-on) 설치된다. 본 발명에 일 실시예에 의한 AEF 구조는 기존의 CSCC AEF 토폴로지와 유사하지만 증폭부 출력과 보상 Y-cap 사이에 주입(injection) 변압기가 추가된다. 주입 변압기가 주전원선에 설치되어 있지 않기 때문에 변압기에는 작은 보상 신호 전류만 흐른다. 주입 변압기는 응용 프로그램의 동작 전류에 관계없이 전류가 작기 때문에 소형으로 구현할 수 있어 자기 포화 및 열 문제의 위험이 낮다. 또한 AEF의 센싱 부분에는 추가 변압기가 필요하지 않지만 얇은 노이즈 감지 선이 기존의 상용 CM 초크에 추가로 감겨 있다. 상업용 CM 초크 상에 센싱 권선(sensing winding)을 직접 추가하려는 시도가 있었지만, 센싱 권선의 악영향과 최대 허용 턴(turn) 수는 조사되지 않았다. 요약하면, 본 발명의 일 실시예에 의한 AEF의 주요한 새로운 특징은 주전원선에 별도의 부품을 사용하지 않고도 완전히 변압기 절연(fully transformer-isolated)이 이루어지고, 소형 설계(compact sized design)로 특징 지어질 수 있다. 이러한 특성 덕분에 본 발명에 의한 AEF는 다른 변압기 절연 CSVC AEF보다 크기가 작고 성능이 우수하다.
본 발명에서는 본 발명의 일실시예에 의한 AEF의 완전한 설계를 위한 많은 유용한 명시적 설계 가이드 라인을 제공하고 있다. 후술되는 바와 같이, 변압기 절연 AEF를 분석하여 잡음 감쇠 성능을 평가하고, 분석에 기초하여 AEF의 성능과 안정성을 위한 적절한 설계 가이드 라인을 제공하고, AEF의 필터 삽입 손실 및 루프 이득을 벡터 네트워크 분석기(Vector Network Analyzer, VNA)를 사용하여 측정하여 검증한다. AEF에 의한 CM CE 잡음의 감소는 실제 제품 SMPS 보드에서도 나타나고 있다. 또한, AEF 사용의 안전성을 확인하기 위해 접지로의 누설 전류 양을 측정한다.
본 발명의 일실시예에 따른 AEF를 분석하기로 한다. 도 3을 참조하면, CY는 Y-cap의 커패시턴스를 나타낸다. CM 초크는 Lcm 및 Mcm으로 모델링 되며, 이는 전력선 상의 권선의 자기 인덕턴스 및 상호 인덕턴스를 나타낸다.
AEF는 주로 CM 초크에 감긴 센싱 권선(sensing winding), 증폭부 및 주입 변압기로 구성된다. 전력선 상의 권선과 센싱 권선의 권선비는 1 : Nsen으로 설정되며, 센싱 권선의 자체 인덕턴스는 대략 Nsen 2Lcm으로 주어진다. Msen은 전원선의 권선과 AEF 입력의 센싱 권선 사이의 상호 인덕턴스를 나타낸다. 마찬가지로 Minj는 주입 변압기의 상호 인덕턴스를 나타내며, 1 차 권선과 2 차 권선의 권선비는 1 : Ninj로 설정된다. 각 면에서의 자기 인덕턴스는 각각 Linj와 Ninj 2Linj로 주어진다. Mcm, Msen 및 Minj는 각각 kcmLcm, ksenNsenLcm 및 kinjNinjLinj로 계산된다. 여기서 kcm, ksen 및 kinj는 각 결합 계수를 나타낸다. kcm, ksen 및 kinj의 값은 일반적으로 실제 설계에서 0.99에서 1의 값을 갖는다. 증폭부는 저항 R1 및 R2가 있는 비 반전 OP 앰프 구성으로 구현된다.
AEF의 피드백 안정성을 고려할 때, 도 3에 나타나 있는 바와 같이 저역 통과 필터, 바이 패스 브랜치 및 위상 보상기와 같은 몇 가지 추가 부품이 필요하다. Rf 및 Cf는 고주파수 범위에서 센싱 권선 공진에 의해 야기되는 안정성 문제를 방지하기 위해 OP 앰프에서 저역 통과 필터를 구성한다. Rd1, Cd 및 Rd2는 주입 변압기에서의 공진을 피하기 위해 바이 패스 및 댐핑 회로로서의 안정성을 위해 작동하여 잡음 소스 임피던스와 Y-cap 사이의 공진으로 인한 성능 저하를 추가적으로 완화한다. Rc와 Cc는 저주파수 범위에서의 안정성을 위한 위상 보상기이다.
AEF의 접지 기준 전압이 접지와 다르게 설정 되더라도 AEF는 AC 제로 전위에 관하여 대칭이며 회로를 양분하여 분석 할 수 있다. 도 4는 기생 성분을 포함하는 절반 부분(half portion)에 대한 등가회로를 나타낸 것이다. 도 4를 참조하면, 보다 정확하게 나타내기 위해 CM 초크, 센싱 권선 및 주입 변압기의 기생 회로 파라미터도 모델링되어 Rcm, Ccm, Rsen, Csen, Rinj1, Cinj1, Rinj2 및 Cinj2로 각각 포함된다. 피시험장비(Equipment under Test, EUT)의 CM 잡음 소스는 각각 테브난 등가회로 Vn과 Zn으로 모델링되어 CM 잡음 소스 전압과 임피던스를 나타낸다. ZLISN은 라인 임피던스 안정화 네트워크(LISN)의 임피던스를 나타낸다. Zline, Zin,AEF 및 ZY,eff 는 각각 ac 제로 전위와 관련하여 각 방향으로 바라본 임피던스를 나타낸다.
CM 초크의 유효 인덕턴스 및 Y-cap 분기의 유효 커패시턴스의 표현식에 기초하여 AEF의 동작 원리를 분석한다. CM 초크의 유효 인덕턴스를 설명한다.
CM 초크 앞에서 전력선으로 바라 본 임피던스는 Kirchhoff의 법칙을 이용하면 다음과 같다.
Figure PCTKR2019005268-appb-M000001
여기서,
Figure PCTKR2019005268-appb-M000002
Figure PCTKR2019005268-appb-M000003
Figure PCTKR2019005268-appb-M000004
Figure PCTKR2019005268-appb-M000005
Lcm,eff는 CM 초크의 유효 인덕턴스를 나타내며, 여기서 인덕턴스 상쇄항 X (s)가 나타난다. X(s)는 (2MsenIsen)/(LcmIcm)으로 정의되고, 여기서 Icm과 Isen은 각각 도 4에서 (Lcm + Mcm)과 2Nsen 2Lcm의 인덕턴스 브랜치(branch)를 통해 흐르는 전류를 나타낸다. Zsen,para는 센싱 권선의 기생 RC 성분 임피던스를 나타낸다. Zin,AEF는 증폭부 입력단에서 저역통과 필터 쪽으로 바라본 임피던스를 나타낸다. OP 앰프 입력 임피던스는 관심있는 주파수 범위에서 큰 것으로 가정하고 수학식 5에서는 무시된다.
도 5는 센싱권선의 영향을 포함한 전원선에서의 CM 초크 등가회로 모델을 나타낸 것이다. CM 초크 인덕턴스에 대한 센싱 권선의 영향은 도 5에 요약되어 나타나 있다. 도 5를 참조하면, 오른쪽 박스는 2Msen에 의해 유도된 전압을 고려한 전원선에서의 CM 초크 등가 회로 모델을 나타낸다. 2sMsenIsen의 유도 전압은 s (Lcm + Mcm) Icm의 전압 강하와 반대 극성을 갖는다. X (s)를 (2MsenIsen) / (LcmIcm)로 정의하면, 초크 인덕턴스의 전체 전압은 s (1 + kcm-X (s)) LcmIcm으로 단순화 할 수 있다. 따라서 CM 초크의 유효 인덕턴스 Lcm,eff는 수학식 2에서 주어진 것처럼 (1 + kcm-X (s)) Lcm으로 표현된다.
센싱 권선이 없는 경우에는, ksen = X (s) = 0 이 되고, 따라서 Lcm, eff 는 단순하게 (1 + kcm) Lcm으로 주어진다. 그러나 수학식 3에서 sNsen 2Lcm 이 (Zin, AEF || Zsen, para)보다 훨씬 높을 때는 kcm와 ksen이 1에 매우 근접하기 때문에 X (s)
Figure PCTKR2019005268-appb-I000003
2ksen 2 이 되고 Lcm, eff
Figure PCTKR2019005268-appb-I000004
Lcm (1+ kcm-2ksen 2) 이 된다. 이것은 초크 인덕턴스가 센싱 권선에 흐르는 전류에 의해 결정적으로 영향을 받을 수 있음을 의미한다. 따라서 초크 인덕턴스를 유지하려면 센싱 권선의 턴 수 Nsen을 제한해야 한다.
다음으로, Y-cap의 유효 커패시턴스를 설명한다. Y- cap 브랜치 ZY, eff 방향으로 바라 본 임피던스는 수학식 6 ~ 수학식 11으로 나타낼 수 있다.
Figure PCTKR2019005268-appb-M000006
여기서,
Figure PCTKR2019005268-appb-M000007
Figure PCTKR2019005268-appb-M000008
Figure PCTKR2019005268-appb-M000009
Figure PCTKR2019005268-appb-M000010
Figure PCTKR2019005268-appb-M000011
여기서, α(s) 및
Figure PCTKR2019005268-appb-I000005
(s) 는 각각 후술하는 바와 같이 물리적으로 부스팅 인자(boosting factor) 및 바이패스 인자로 이해 될 수 있다. G1(S) 는 Vin에서 Vin,amp 까지의 전압 이득이며, Gamp (s)는 Vin, amp에서 Vout,amp 까지의 증폭부 이득이다. OP 앰프의 주파수 대역폭은 관심있는 주파수 범위보다 충분히 높다고 가정한다. 수학식 6에서의 ZY, eff의 표현은 유효 커패시턴스 CY, eff (s)의 임피던스로 이해 될 수 있으며 수학식 12와 같이 정의된다.
Figure PCTKR2019005268-appb-M000012
도 6a, 도 6b 및 도 6c는 주파수를 변화시킴에 따른 CY,eff(s)의 변화를 나타낸 것으로서, 도 6a는 주파수 범위에서의 AEF 동작, 도 6b는 α(s) 및
Figure PCTKR2019005268-appb-I000006
(s)의 plot, 도 6c는 ZY,eff의 임피던스 커브를 나타낸다.
주파수를 변화시킴에 따른 CY,eff(s)의 변화는 도 6a, 도 6b 및 도 6c에 요약되어 있다. Y-cap 브랜치에서의 AEF의 효과와 전류 경로 변화는 도 6a에 설명되어 있다. 점선 박스는 CY,eff.에 대한 AEF의 효과를 나타낸다. fop,min과 fop,max 는 각각 AEF의 회로 파라미터로 설계 할 수 있는 AEF의 최소 및 최대 목표 동작 주파수이다.
예를 들어, 적절하게 설계된 AEF의 α(s)와
Figure PCTKR2019005268-appb-I000007
(s)의 크기가 도 6b에 주파수에 따라 그려져 있다. Y- cap 브랜치의 임피던스 ZY,eff,도 도 6c에 그려져 있다. fop,min 보다 충분히 낮은 주파수에서 α(s)와
Figure PCTKR2019005268-appb-I000008
(s)는 모두 1보다 훨씬 작고 수학식 6의 ZY,eff,는 간단히 1 / sCY 로 근사된다. 이는 바이패스 회로와 주입 변압기가 CY의 임피던스에 비해 무시할 만하며, AEF로부터 보상된 노이즈 전압도 매우 작다는 것을 의미한다. fop,min 에서 fop,max 까지의 AEF의 동작 주파수 범위에서 α(s)는 1보다 커지지만
Figure PCTKR2019005268-appb-I000009
(s)는 여전히 1보다 훨씬 작다. 즉, AEF는 도 6a에 -αVin 으로 표시된 것처럼 Y-cap 브랜치에 보상 전압을 제공하고, 반면에 바이패스 회로는 여전히 무시할 만하다.
α(s)의 크기는 동작 주파수 범위에서 센싱 권선, 증폭부 및 주입 변압기의 전압 이득의 곱셈인 NsenNinj(1+R2/R1)에서 주로 유지된다. 따라서, Y- cap 브랜치를 통해 흐르는 CM 전류는 (1+NsenNinj(1+R2/R1))에 의해 증폭되어 실효 커패시턴스가 도 6c에 그려진 바와 같이 (1+NsenNinj(1+R2/R1))CY로 증가한다. 주파수가 fop,max 가까이로 증가함에 따라, α(s)는 감소하기 시작하며, 이는 AEF로부터의 보상 전압이 감소함을 나타낸다. 동시에,
Figure PCTKR2019005268-appb-I000010
(s)는 1과 유사해지는데, 이는 바이패스 브랜치의 임피던스 (Rd2+1/sCd)가 주입 변압기 경로의 임피던스보다 낮아짐을 의미한다. 그러므로 CM 노이즈 전류는 주로 바이패스 브랜치를 통해 흐르고, ZY,eff 의 임피던스는 (1/sCY+2(Rd2+1/sCd))로 근사된다.
도 6c는 fop,max 이후의 주파수 범위에서 Cd 와 Rd2가 전류 경로에 더해지기 때문에 ZY,eff 의 크기가 1/sCY 의 크기보다 크게 증가함을 보여준다. 그러나 댐핑 저항 Rd2 는 Y-cap 와 CM 노이즈 소스 임피던스 사이의 공진을 완화하는 데 중요한 역할을 한다. 종종 공진에 의해 전체 CM 필터의 성능이 크게 저하되므로 공진을 피해야 한다.
다음으로, 필터 전체의 삽입손실을 설명한다. 필터의 노이즈 감쇠 성능은 필터가 없는 상태에서 LISN으로 수신된 노이즈 전압과 필터가 설치된 상태에서 LISN의 노이즈 전압의 비율로 정의되는 삽입 손실(IL)로서 일반적으로 정량화 된다. 도 4에서 전체 EMI 필터의 IL은 수학식 13과 같이 유도된다.
Figure PCTKR2019005268-appb-M000013
주파수가 증가함에 따라 수학식 13의 삽입손실 IL은 ZY,eff 가 Zline 보다 작아지는 주파수 지점에서 주로 증가하기 시작한다. 필터 동작의 저주파 경계는
Figure PCTKR2019005268-appb-I000011
에 근사 될 수 있다. 제안된 AEF는 도 6c와 같이 목표 주파수 범위에서 ZY,eff 를 크게 감소 시키며, 이는 전체 필터의 IL을 증가시킨다. 또한 AEF는 전체 필터가 더 낮은 주파수에서 작동을 시작하도록 한다.
한편, 본 발명에서 제공하는 AEF의 설계 가이드 라인을 설명하기로 한다. 성능 및 안정성을 고려하여 AEF에 대한 실제 설계 가이드라인을 개발한다. 먼저, 센싱권선 및 입력 저주파 통과 필터의 설계를 설명한다.
센싱 권선은 CM 초크에 직접 권선되어 있어, 별도의 감지 변압기가 추가되지 않는다. 크기와 비용 측면에서 별도의 감지 트랜스포머를 사용하지 않는 것이 바람직하다. 그러나 전술한 바와 같이, CM 초크 인덕턴스 Lcm,eff 및 전력선 임피던스 Zline은 추가 센싱 권선에 의해 감소 될 수 있다. 본 발명에 의한 AEF가 Y-cap CY,eff 를 잘 증가시킨다 하더라도, 감소된 전력선 임피던스 Zline은 전체 CM EMI 필터의 잡음 감쇠 성능을 저하시킬 수 있다. 따라서 Zline 의 감소를 막기 위해서는 센싱 권선에 대한 적절한 설계 가이드 라인이 필요하다.
Zline 은 CM 초크의 첫 번째 자기 공진 주파수 fr,cm (
Figure PCTKR2019005268-appb-I000012
로 주어지는) 이후에는 주로 기생 커패시턴스에 의해 결정된다. 따라서 주파수 fr,cm 후에 인덕턴스 제거항 X(s)는 Zline 의 크기에 큰 영향이 없다. 또한, 수학식 3의 X(s)는 sNsen 2Lcm이 (Zin,AEF||Zsen,para) 보다 높을 때만 의미가 있다. 따라서 sNsen 2Lcm이 (Zin,AEF||Zsen,para) 보다 커지기 시작하는 주파수 포인트가 fr,cm 보다 높으면 Zline은 센싱 권선의 영향을 거의 받지 않는다. 이러한 조건은 다음의 설계 절차에 의해 만족 될 수 있다. 첫째, Zin,AEF 는 모든 관심 주파수 범위 (예 : 10kHz ~ 30MHz)에서 Zsen,para 보다 높게 설계된다. 즉, 수학식 14의 조건과 같이 나타낼 수 있다.
Figure PCTKR2019005268-appb-M000014
보다 간단하게, Rf 와 Cf 는 수학식 15 및 수학식 16과 같이 되도록 선택된다.
Figure PCTKR2019005268-appb-M000015
Figure PCTKR2019005268-appb-M000016
수학식 14의 부등 조건이 충분히 성립하면 (Zin,AEF||Zsen,para)
Figure PCTKR2019005268-appb-I000013
Zsen,para이다. 그러면, sNsen 2Lcm 이 (Zin,AEF||Zsen,para)보다 커지기 시작하는 주파수 포인트는 Nsen 2Lcm와 Csen 사이의 공진 주파수에 수학식 17과 같이 근사 된다.
Figure PCTKR2019005268-appb-M000017
다음으로, fr,sen 은 fr,cm 보다 수학식 18과 같이 높아야 하기 때문에,
Figure PCTKR2019005268-appb-M000018
센싱 권선의 권수에 대한 설계 가이드 라인은 수학식 19와 같이 추출된다.
Figure PCTKR2019005268-appb-M000019
여기서 Lcm,eff 는 (1+kcm)Lcm
Figure PCTKR2019005268-appb-I000014
2Lcm 로 근사화 된다. 유지된 Zline 을 보장하는 수학식 19의 설계 가이드 라인은 센싱 권선의 최대 허용 권선 비율로 유도된다. 수학식 19의 CM 초크와 Ccm , Csen 의 기생 커패시턴스의 정확한 값은 실제로 설계 전에 알려지지 않지만, 수학식 19는 여전히 센싱 권선의 턴 수에 대한 유용한 가이드 라인을 제공 할 수 있다.
도 7은 Y-cap 위치에서 전원 방향으로 보았을 때의 전력선 임피던스 (Zline)의 곡선을 나타낸 것으로서, (a)는 Nsen이 수힉식 19를 위반할 때, (b)는 Nsen이 수학식 19를 만족할 때를 나타낸 것이다. 수치들의 예들이 도 7에 나타나 있다. Nsen의 두 가지 다른 값은 간단한 분석을 위해 Ccm과 Csen을 동일한 고정 값으로 설정하여 설계된 AEF로 테스트 된다. AEF가 없는 경우와 있는 경우 각각의 Zline 의 크기, 즉 Zline w/o, AEF 와 Zline w/, AEF가 비교되어 있다. 도 7 (a)에서, 조건 수학식 19은 Nsen = 2로서 위반되고, fr, sen은 fr, cm보다 낮다. 반대로, 도 7 (b)에서 수학식 19는 Nsen = 0.5로 만족되고, fr, sen은 fr, cm보다 높다. 결과적으로, 도 7 (a)에서 Zline, w / AEF는 Zline, w/o AEF에 비해 현저하게 감소한 반면, 도 7 (b)에서는 Zline, w / AEF가 거의 변하지 않는다.
또한 AEF를 사용하면 고주파 영역에서 Zline에 또 다른 공진이 발생하는 것으로 나타났다. 공진은 도 7 (a)와 (b)에 표시된 것처럼 주파수
Figure PCTKR2019005268-appb-I000015
에서 센싱 권선으로 인해 발생한다. 이 공진은 고주파 범위에서 시스템 피드백 안정성에 악영향을 미치므로 공진을 억제하기 위해 OP 앰프 입력단에 Rf 및 Cf로 구성된 저역 통과 필터가 필요하다. 동작 주파수 범위에서 AEF 성능에 영향을 미치지 않는 저역 통과 필터의 경우, 필터의 차단 주파수는 최대 동작 주파수 인 fop, max보다는 커야 하지만 수학식 20의 공진 주파수보다는 작아야 한다.
Figure PCTKR2019005268-appb-M000020
수학식 15, 수학식 16 및 수학식 20은 저역 통과 필터 설계의 가이드라인이 될 수 있다.
다음으로 주입변압기 및 증폭부 설계를 설명하기로 한다.
주입 변압기와 증폭부 소자의 설계는 주로 도 6의 AEF의 주요 성능 파라미터 fop,min, fop,max 및 CY,eff 를 결정한다. 증폭부 출력에서의 캐패시터 Co는 목표 동작 주파수 범위보다 낮은 주파수에서 원하지 않는 신호를 차단하는데 이용된다. Linj 와 직렬로 연결된 Co는 고주파 필터을 구성하고, 그 차단 주파수는 수학식 21과 같이 유도되어 AEF의 최소 동작 주파수를 결정한다.
Figure PCTKR2019005268-appb-M000021
fop, min 주파수에서 Linj 와 직렬로 연결된 Co의 임피던스는 급격하게 감소하여 OP 앰프의 출력 전류를 증가시킨다. 따라서 Ro 가 공진 주파수에서 임피던스를 제한하기 위해 OP 앰프 출력에 추가되지만 모든 동작 주파수 범위에서 sLinj 보다는 충분히 작아야 한다.
한편, 도 6a에서 설명한 것처럼, 바이패스 브랜치의 임피던스가 주입 변압기 경로의 임피던스보다 낮아지는 주파수 경계에 의해 AEF의 최대 동작 주파수 fop, max가 결정된다. 도 7에 도시된 센싱 권선으로 인한 공진과 유사하게, 주입 변압기의 2차 권선에서의 공진은 피드백 불안정성을 야기할 수 있으므로, 바이패스 브랜치는 공진 주파수보다 낮은 주파수에서 작동하기 시작해야 한다. 2차 권선에서의 공진은 수학식 22와 같이 fop, max보다 높은 주파수
Figure PCTKR2019005268-appb-I000016
에서 발생된다.
Figure PCTKR2019005268-appb-M000022
fop, max 는 주입 변압기의 인덕턴스 파트 (1-kinj 2) Ninj 2Linj와 바이패스 브랜치의 커패시턴스 Cd 사이의 공진에 의해 수학식 23과 같이 결정된다.
Figure PCTKR2019005268-appb-M000023
수학식 22에 수학식 23을 대입하면 Cd와 Cinj 2의 관계가 다음과 같이 추출된다.
Figure PCTKR2019005268-appb-M000024
약간의 댐핑 저항Rd1과 Rd2 이 고주파에서의 안정성을 위해 필요하다. 수십 오옴(ohm)의 Rd2은 고주파 범위에서 Y-cap 과 CM 잡음 소스 임피던스 사이의 공진을 완화 시키는데 권장되며, 이는 IV장에서 실험으로 보여질 것이다.
공진 지점을 제외하고 AEF 동작에서 저항 Rd1, Rd2 및 Rinj 2의 영향을 무시할 수 있다고 가정하면, 수학식 24의 조건은 수학식 7 - 수학식 11을 fop, max 까지의 주파수 범위에서 수학식 25와 같이 근사화 할 수 있다.
Figure PCTKR2019005268-appb-M000025
수학식 12에서 Y- cap, 유효 커패시턴스 CY, eff (s)는 수학식 26으로 단순화 된다.
Figure PCTKR2019005268-appb-M000026
Gamp (s)의 위상 보상 요소 Rc와 Cc는 AEF 동작에 거의 영향을 주지 않아야 하며, 수학식 26은 도 6에서와 같이 주파수에 의존하지 않는 값으로 더 단순화 된다.
Figure PCTKR2019005268-appb-M000027
마지막으로, AEF에 대한 몇 가지 유용한 설계 가이드라인은 다음과 같이 도출 될 수 있다. 비록 Nsen이 수학식 19에 의해 제한 되더라도, 수학식 27에서 CY, eff 은 Ninj와 증폭부 이득 (1 + R2 / R1)을 증가시킴으로써 CY의 여러 배가 되도록 설계 될 수 있다. 그러나 Ninj가 증가함에 따라, 최대 동작 주파수 fop, max 는 수학식 23에 의해 감소된다. 또한 높은 앰프 이득은 OP 앰프에 대해 큰 출력 전압 스윙과 큰 이득 대역폭을 필요로 한다. 그러므로 Ninj 와 (1 + R2 / R1)의 적절한 값은 OP-amp의 비용과 AEF의 fop, max를 고려하여 선택되어야 한다.
또한 수학식 22의 조건은 AEF의 fop, max가 주입 변압기의 Ninj, Linj 및 Cinj 2에 의해 조정될 수 있음을 의미한다. 기생 커패시턴스 Cinj2는 독립적인 설계 파라미터가 아니므로, Ninj와 Linj는 높은 fop, max를 달성하기 위해 작게 설계되어야 한다. 그러나 작은 Ninj는 CY, eff를 작게 하고 Linj를 낮추면 수학식 21로부터 fop min 를 높인다. 결과적으로, AEF의 최적화된 성능을 위해 다음과 같은 설계 프로세스를 제안한다. 첫째, Co 는 주어진 크기의 물리적 패키지에서 가능한 한 커지도록 설계되며, Linj는 타겟 fop min 을 위해 수학식 21의 한도까지 낮춰진다. 다음으로, 가장 큰 CY, eff 를 달성하기 위해, Ninj는 타겟 fop max 을 위해 수학식 22의 한도까지 증가된다.
다음으로 안정성 체크를 설명하기로 한다.
AEF는 기본적으로 아날로그 입력 및 아날로그 출력이 있는 피드백 시스템이며 안정성은 신중하게 설계되고 보장되어야 한다. 시스템이 불안정한 경우, EUT 잡음 소스가 적용되지 않아도 시스템이 발진할 수 있다. 피드백 안정성은 루프 이득의 위상 및 이득 마진으로 확인할 수 있다. 도 4의 회로 모델로부터 루프 이득을 도출하기 위해, OP 앰프 출력에서 피드백 루프를 분리하고, 분리된 노드로 부터 테스트 전압 소스 Vt 를 주입 변압기에 인가하고, 잡음 소스 전압 Vn은 적용되지 않은 상태에서, 테스트 전압 Vt 에 대한 CM 초크 전단 노드에서의 전압 Vin 비율은 수학식 28과 같이 계산 될 수 있다.
Figure PCTKR2019005268-appb-M000028
여기서,
Figure PCTKR2019005268-appb-M000029
(Vin, amp / Vin)과 (Vout, amp / Vin, amp)의 전압 이득은 각각 수학식 9와 수학식 10에서 G1 (s)와 Gamp (s)로 유도된 바 있다. 따라서 시스템의 루프 이득은 수학식 30과 같이 나타낼 수 있다.
Figure PCTKR2019005268-appb-M000030
Rc와 Cc를 사용하는 목적은 초크의 유효 인덕턴스 Lcm, eff와 Y-cap 브랜치의 유효 커패시턴스 CY, eff 사이의 공진이 불안정성의 위험을 초래하기 때문에 저주파 범위에서 안정성을 위해 Gloop (s)의 위상 마진을 증가시키는 것이다. 공진 주파수
Figure PCTKR2019005268-appb-I000017
는 필터 동작의 저주파 경계를 결정하며, 적절한 EMI 필터 설계에서 CE 규격의 저주파 한계보다 낮아야 한다. Rc 및 Cc로 인한 위상 보상의 최대량은 수학식 31과 같이 계산된다.
Figure PCTKR2019005268-appb-M000031
수학식 31은 주파수
Figure PCTKR2019005268-appb-I000018
에서 일어난다.
Figure PCTKR2019005268-appb-I000019
는 위상 보상기가 있는 Gloop (s)의 위상을 나타내고,
Figure PCTKR2019005268-appb-I000020
는 위상 보상기가 없는 Gloop (s)의 위상을 나타낸다. 최대 위상 보상 주파수를
Figure PCTKR2019005268-appb-I000021
의 공진 주파수로 설정함으로써, Rc 및 Cc 상의 다른 표현이 수학식 32와 같이 추출된다.
Figure PCTKR2019005268-appb-M000032
수학식 31과 수학식 32의 표현은 Rc와 Cc의 설계 가이드라인을 제공한다.
수학식 28의 G2(s)는 EUT 잡음 소스 임피던스 Zn 에 따라 달라 지므로 수학식 30의 루프 이득도 마찬가지인 것을 주목할 필요가 있다. 수학식 30에서 Zn의 크기가 클수록 루프 이득의 크기를 증가시켜 이득 마진이 작아지는 경향이 있음을 알 수 있다. 따라서 Zn를 무한대(infinite) 값으로 하여 안정성을 설계를 하는 것은 일반적으로 최악의 조건에서 안정성을 제공하는 것이다. 따라서 본 명세서에서는 설계된 AEF의 루프 이득을 어떠한 EUT 어플리케이션에서도 안정성을 보장하기 위해 무한값의 Zn 조건으로 계산하거나 측정한다.
도 8은 루프이득을 비교한 것으로서, (a)는 댐핑성분 Rd1, Cd, Rd2 및 위상 보상기 Rc, Cc 가 없는 불안정한 상황에서의 루프이득을, (b)는 이러한 성분이 있는 안정된 상황에서의 루프이득을 나타낸 것이다.
예를 들어, AEF가 있는 필터의 Gloop(s) 가 도 8에 도시된 바와 같이 수학식 30을 사용하여 나타낼 수 있다. 바이패스 브랜치 및 위상 보정기 Rd1, Cd, Rd2, Rc, Cc는 도 8 (a)에서는 설치되어 있지 않지만 도 8 (b)에는 설치되어 있다. 이들의 안정성에 미치는 영향이 명확하게 나타나 있다. 도 8 (a)에서 10MHz 부근의 급격한 위상 변이로 인한 불안정성은 주입 변압기의 2차 권선에 기인하며, 도 8 (b)의 경우 바이패스 브랜치에 의해 해소된다. 도 8 (a)의 100 kHz 미만의 저주파에서 Lcm, eff 및 CY, eff 사이의 공진은 과도한 위상 이동 또한 불안정의 위험을 초래한다. 도 8 (b)에서 알 수 있듯이 위상 보상기 Rc와 Cc를 사용하면 이득 마진이 크게 증가한다.
다음으로 OP 앰프 선택 및 전반적인 설계 절차를 설명하기로 한다. 비 반전 증폭부에서 OP 앰프의 동작 고주파 한계 fOPamp 는 CE 규격의 고주파수 한계 fCE, max보다 높아야 한다.
Figure PCTKR2019005268-appb-M000033
또한 OP 앰프의 전압 및 전류 용량은 노이즈 보상에 충분해야 한다. 필요한 OP 앰프 용량을 산정하기 위해 OP 앰프 출력에서의 전압 Vout, amp (s) 과 전류 Iout, amp (s)는 도 4의 회로 모델로부터 각각 수학식 34 및 수학식 35와 같이 계산된다.
Figure PCTKR2019005268-appb-M000034
Figure PCTKR2019005268-appb-M000035
여기서,
Figure PCTKR2019005268-appb-M000036
Vin (s)는 AEF를 포함한 필터 임피던스 뿐만 아니라 Zn 및 Vn (s)에 의해 결정되기 때문에 잡음 소스 모델의 정보는 Vout, amp (s) 및 Iout, amp (s)를 추정하는 데 필요하다. 동작 중인 SMPS, Zn 및 Vn (s)의 잡음 소스 모델은 이미 개발된 다양한 측정 방법에 의해 추출될 수 있다. 일단 Zn과 Vn (s)를 추출하면 OP-amp 출력 전압 vout, amp (t) 과 출력 전류 iout, amp (t)의 시간 영역 파형은 수학식 34 - 수학식 36에 주어진 Vout, amp (s) 및 Iout, amp. 의 스펙트럼으로부터 계산될 수 있다. 그러므로 OP 앰프 출력의 전압 용량 vOPamp, max 및 전류 용량 iOPamp, max 는 각각 계산된 vout, amp (t) 및 iout, amp (t)를 제공하기에 충분해야 한다.
Figure PCTKR2019005268-appb-M000037
Figure PCTKR2019005268-appb-M000038
Iout, amp(s)가 half-circuit 모델에서 정의 되어 있기 때문에 OP 앰프에 흐르는 실제 전류는 수학식 38에 나타나 있는 바와 같이 계산된 전류의 두 배이다.
수학식 35에서와 같이 Iout, amp(s)에 영향을 미치는 다양한 설계 요소 중에서, Ninj를 증가시키면 AEF의 동작 주파수 범위에서 Iout, amp(s)가 크게 증가한다. Ninj로 인한 주입 변압기의 전압 이득은 상술한 바와 같이 출력 전류를 증가시키는 대신에 OP 앰프 출력 전압을 줄일 수 있다. 주입 변압기는 AEF 접지를 SMPS 접지로부터 절연할 뿐만 아니라 이득 및 OP 앰프 회로에 대한 또 다른 설계 유연성을 제공한다.
본 발명에 따른 전력선에 추가 소자가 없는 절연형 능동 EMI 필터의 다른 실시예들을 설명하기로 한다.도 9는 본 발명에 따른 전력선에 추가 소자가 없는 절연형 능동 EMI 필터의 제2실시예에 대한 회로도를 나타낸 것이다. 본 발명에 따른 전력선에 추가 소자가 없는 절연형 능동 EMI 필터의 제2실시예는 공통모드(CM) 초크(1710), Y-cap(1720), 변압부(1730), 증폭부(1740) 및 보상 권선(1750)을 포함하여 이루어진다.
도 9를 참조하면, 공통모드(CM) 초크(1710)는 전력이 공급되는 전원 쪽에 배치되며, EMI 소스와 연결된 라이브선(Live line)과 중성선(Neutral line)이 각각 권선으로 감겨 있다.
Y-cap(1720)은 EMI를 발생시키는 EMI 소스 쪽에 배치되며, 직렬 연결된 두 개의 커패시터로 이루어지고, 상기 두 개의 커패시터가 상기 라이브선과 중성선 사이에서 병렬로 연결되고 접지와는 공통으로 연결된다.
변압부(1730)는 Y-cap(1720) 앞 단에 설치되며, 1차코일이 상기 Y-cap의 노이즈 전압을 센싱하여 2차코일을 통해 변압하고, 전력선으로부터 절연(isolated) 된다.
증폭부(1740)는 변압부(1730)에서 감지되 변압된 노이즈 전압을 증폭한다.
보상권선(1710)은 공통모드 초크(1710)에 코일로 덧 감기고, 상기 증폭부에서 증폭된 노이즈 신호를 공통모드 초크(1710)로 주입한다.
도 10은 본 발명에 따른 전력선에 추가 소자가 없는 절연형 능동 EMI 필터의 제3실시예에 대한 회로도를 나타낸 것으로서, 공통모드(CM) 초크(1810), Y-cap(1820), 센싱 권선(1830), 증폭부(1840) 및 변압부(1850)를 포함하여 이루어진다.
도 10을 참조하면, 공통모드 초크(1810)는 EMI를 발생시키는 EMI 소스 쪽에 배치되며, EMI 소스와 연결된 라이브선(Live line, L)과 중성선(Neutral line, N)이 각각 권선으로 감겨 있다.
Y-cap(1820)은 전력이 공급되는 전원 쪽에 배치되며, 직렬 연결된 두 개의 커패시터로 이루어지고, 상기 두 개의 커패시터가 상기 라이브선(L)과 중성선(N) 사이에서 병렬로 연결되고 접지와는 공통으로 연결되어 있다.
센싱권선(1830)은 공통모드 초크(1810)에 코일로 덧 감기고, 공통모드 초크(1810)의 노이즈 전류를 감지한다.
증폭부(1840)는 센싱권선(1830)을 통해 감지된 노이즈 전류를 증폭한다.
변압부(1850)는 Y-cap(1820) 앞 단에 설치되며, 1차코일은 증폭부(1840)에서 증폭된 신호를 받아들이고, 2차 코일은 Y-cap(1820)과 연결된 접지와 연결되어 전력선으로부터 절연(isolated)되며, 상기 2차코일을 통해 변압된 신호를 Y-cap(1820)으로 보상 신호로 주입한다.
도 11은 본 발명에 따른 전력선에 추가 소자가 없는 절연형 능동 EMI 필터의 제4실시예에 대한 회로도를 나타낸 것으로서, 공통모드(CM) 초크(1910), Y-cap(1920), 변압부(1930), 증폭부(1940) 및 보상 권선(1950)을 포함하여 이루어진다
도 11을 참조하면, 공통모드 초크(1910)는 EMI를 발생시키는 EMI 소스 쪽에 배치되며, EMI 소스와 연결된 라이브선(Live line, L)과 중성선(Neutral line, N)이 각각 권선으로 감겨 있다.
Y-cap(1920)은 전력이 공급되는 전원 쪽에 배치되며, 직렬 연결된 두 개의 커패시터로 이루어지고, 상기 두 개의 커패시터가 상기 라이브선과 중성선 사이에서 병렬로 연결되고 접지와는 공통으로 연결된다.
변압기(1930)는 Y-cap(1920) 앞 단에 설치되며, 1차코일이 Y-cap(1920)의 노이즈 전압을 센싱하여 2차코일을 통해 변압하고, 전력선으로부터는 절연(isolated) 되어 있다.
증폭부(1940)는 변압기(1930)에서 변압된 노이즈 전압을 증폭한다.
보상권선(1950)은 공통모드 초크(1910)에 코일로 덧 감기고, 증폭부(1940)에서 증폭된 노이즈 신호를 공통모드 초크(1910)로 보상신호로 주입한다.
도 12는 본 발명에 따른 전력선에 추가 소자가 없는 절연형 능동 EMI 필터의 제1실시예에 상응하는, 수동 EMI 필터에 능동소자를 부가하여 EMI 잡음을 저감하는 방법을 흐름도로 나타낸 것이다.
도 1 및 도 12를 참조하면, 먼저 공통모드초크(110)가 전원 쪽에, Y-cap(120)이 EMI소스 쪽에 배치된 수동 EMI 필터를 구비한다.(S2010단계) 즉, 공통모드 초크(110)가 전력이 공급되는 전원 쪽에 배치되며, EMI 소스와 연결된 라이브선(Live line)과 중성선(Neutral line)이 각각 권선으로 감겨 있다. Y-cap(120)은 EMI를 발생시키는 EMI 소스 쪽에 배치되며, 직렬 연결된 두 개의 커패시터로 이루어지고, 상기 두 개의 커패시터가 상기 라이브선(L)과 중성선(N) 사이에서 병렬로 연결되고 접지와는 공통으로 연결되어 있다.
공통모드 초크(110)에 코일로 덧 감아 이루어진 센싱권선(130)을 통해 공통모드 초크(110)의 EMI 노이즈 전류를 감지한다.(S2020단계) 증폭부(140)는 센싱 권선(130)에서 감지된 EMI 노이즈 전류를 증폭한다.(S2030단계)
Y-cap(120) 앞 단에 설치된 변압기(150)의 1차코일을 통해 증폭부(140)에서 증폭된 신호를 받아들인다.(S2040단계) 그리고 나서 변압기(50)의 2차코일을 통해 변압하여 Y-cap(120)으로 주입한다. (S2050단계) 여기서, 변압기(150)의 2차 코일은 Y-cap(120)과 연결된 접지와 연결되고 전력선으로부터는 절연(isolated)되어 있다.
도 13은 본 발명에 따른 전력선에 추가 소자가 없는 절연형 능동 EMI 필터의 제2실시예에 상응하는, 수동 EMI 필터에 능동소자를 부가하여 EMI 잡음을 저감하는 방법을 흐름도로 나타낸 것이다. 도 9와 도 13을 참조하면, 먼저 공통모드초크(1710)가 전원쪽에, Y-cap(1720)이 EMI소스 쪽에 배치된 수동 EMI 필터를 구비한다.(S2110단계) 보다 구체적으로 설명하면, 공통모드 초크(1710)는 전력이 공급되는 전원 쪽에 배치되며, EMI 소스와 연결된 라이브선(Live line, L)과 중성선(Neutral line, N)이 각각 권선으로 감겨 있다. Y-cap(1720)은 EMI를 발생시키는 EMI 소스 쪽에 배치되며, 직렬 연결된 두 개의 커패시터로 이루어지고, 상기 두 개의 커패시터가 상기 라이브선(L)과 중성선(N) 사이에서 병렬로 연결되고 접지와는 공통으로 연결된다.
Y-cap(1720) 앞 단에 설치된 변압기(1730)의 1차코일이 Y-cap(1720)을 센싱 커패시터로 사용하여 노이즈 전압을 센싱한다.(S2120단계) 변압기(1730)의 2차코일을 통해 상기 센싱된 노이즈 전압을 변압한다.(S2130단계) 여기서, 변압기(1730)의 2차 코일은 Y-cap(1720)과 연결된 접지와 연결되고 전력선으로부터는 절연(isolated)되어 있다.
증폭부(1740)가 변압기(1730)의 2차코일에서 변압된 전압을 증폭한다.(S2140단계) 상기 공통모드 초크에 코일로 덧 감아 이루어진 보상권선(1750)을 통해 상기 증폭된 신호를 상기 공통모드 초크로 주입한다 (S2150단계).
도 14는 본 발명에 따른 전력선에 추가 소자가 없는 절연형 능동 EMI 필터의 제3실시예에 상응하는, 수동 EMI 필터에 능동소자를 부가하여 EMI 잡음을 저감하는 방법을 흐름도로 나타낸 것이다.
도 10과 도 14를 참조하면, 먼저 공통모드초크(1810)가 EMI소스 쪽에, Y-cap(1820)이 전원 쪽에 배치된 수동 EMI 필터를 구비한다.(S2210단계) 보다 구체적으로 설명하면, 공통모드초크(1810)가 EMI를 발생시키는 EMI 소스 쪽에 배치되며, EMI 소스와 연결된 라이브선(Live line, L)과 중성선(Neutral line, N)이 각각 권선으로 감겨 있다. Y-cap(1820)은 전력이 공급되는 전원 쪽에 배치되며, 직렬 연결된 두 개의 커패시터로 이루어지고, 상기 두 개의 커패시터가 상기 라이브선(L)과 중성선(N) 사이에서 병렬로 연결되고 접지와는 공통으로 연결된다.
공통모드 초크(1810)에 코일로 덧 감아 이루어진 센싱권선(1830)이 공통모드 초크(1810)의 노이즈 전류를 감지한다.(S2220단계) 증폭부(1840)가 센싱 권선(1830)에서 감지된 노이즈 전류를 증폭한다.(S2230단계)
Y-cap(1820) 앞 단에 설치된 변압기(1850)의 1차코일에 증폭부(1840)에 의해 증폭된 신호를 입력한다.(S2240단계) 그리고 나서 상기 1차코일에 입력된 신호를 변압기(1850)의 2차코일을 통해 변압하여 Y-cap(1820)으로 보상 신호로 주입한다.(S2250단계) 여기서, 변압기(1850)의 2차 코일은 Y-cap(1820)과 연결된 접지와 연결되고 전력선으로부터는 절연(isolated)되어 있다.
도 15는 본 발명에 따른 전력선에 추가 소자가 없는 절연형 능동 EMI 필터의 제4실시예에 상응하는, 수동 EMI 필터에 능동소자를 부가하여 EMI 잡음을 저감하는 방법을 흐름도로 나타낸 것이다. 도 11과 도 15를 참조하면, 먼저 공통모드초크(1910)가 EMI소스 쪽에, Y-cap(1920)이 전원 쪽에 배치된 수동 EMI 필터를 구비한다 (S2310단계). 보다 구체적으로 설명하면, 공통모드초크(1910)가 EMI를 발생시키는 EMI 소스 쪽에 배치되며, EMI 소스와 연결된 라이브선(Live line, L)과 중성선(Neutral line, N)이 각각 권선으로 감겨 있다. Y-cap(1920)은 전력이 공급되는 전원 쪽에 배치되며, 직렬 연결된 두 개의 커패시터로 이루어지고, 상기 두 개의 커패시터가 상기 라이브선(L)과 중성선(N) 사이에서 병렬로 연결되고 접지와는 공통으로 연결되어 있다.
Y-cap(1920) 앞 단에 설치된 변압기(1930)의 1차코일이 Y-cap(1920)의 노이즈 전압을 센싱한다 (S2320단계). 상기 1차코일에서 센싱된 노이즈 전압을 변압기(1930)의 2차코일을 통해 변압한다 (2330단계) 여기서 변압기(1930)의 2차 코일은 Y-cap(1920)과 연결된 접지와 연결되고, 전력선으로부터는 절연(isolated)되어 있다.
증폭부(1940)가 상기 2차코일에서 변압된 노이즈 전압을 증폭한다 (2340단계) 공통모드 초크(1910)에 코일로 덧 감겨 이루어진 보상권선(1950)을 통해 상기 증폭된 노이즈 신호를 공통모드 초크(1910)로 보상신호로 주입한다 (2350단계).
이상에서, 본 발명에 따른 전력선에 추가 소자가 없는 절연형 능동 EMI 필터는 공통모드 초크와 Y-cap으로 구성되어 있는 기존 수동 EMI 필터에 추가적으로 설치하는 형태의 능동필터이다. 본 발명에서는 수동 EMI 필터에 존재하는 공통모드 초크에 노이즈 센싱 또는 보상 와이어를 덧 감아서 전력선에 추가되는 초크 소자를 제안한다. 수동 EMI 필터에 존재하는 Y-cap을 보상 또는 센싱 커패시터로 사용하며, 보상 또는 센싱 커패시터 앞단에 작은 변압기를 설치하여 능동회로가 전력선으로부터 절연되고, 전력선에 추가되는 소자 없이 전력선으로부터 절연되는 장점들이 있다.
본 발명에 의한 절연형 능동 EMI 필터는 수동 EMI 필터 자체의 노이즈 감쇄 성능을 저하시키지 않도록 센싱 및 보상 와이어를 최적 턴(turn) 수로 덧 감는다. Y-cap과 그 앞단의 작은 변압기를 통한 노이즈 센싱 및 보상 성능이 최적화 되도록 변압기 턴(turn) 비(ratio)를 조절하고, 능동필터 증폭부의 이득을 최적화한다. 노이즈 센싱 및 보상의 전체 피드백 회로 구조의 피드백 안정성을 확보하기 위해, 각종 안정성 보상 회로가 부가될 수 있다. 본 발명의 능동 EMI 필터는 노이즈 센싱하여 보상 신호를 주입하는 피드백 회로 구조이다.
본 발명의 실시예에 의하면, 수동 필터만 사용할 경우에는 저주파 대역 전도성 노이즈가 11dB 감소하나, 본 발명의 능동 EMI 필터 (AEF, active EMI filter)를 추가적으로 장착하면 26dB가 감소한다. 수동 필터만 사용하는 경우에는, 저주파 대역 노이즈의 충분한 감쇄를 위해 고가의 공통모드 초크를 사용하거나 필터의 전체 단수를 늘려야 한다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 등록청구범위의 기술적 사상에 의해 정해져야 할 것이다.

Claims (6)

  1. 전력이 공급되는 전원 쪽에 배치되며, EMI 소스와 연결된 라이브선(Live line)과 중성선(Neutral line)이 각각 권선으로 감겨 있는 공통모드(CM) 초크;
    EMI를 발생시키는 EMI 소스 쪽에 배치되며, 직렬 연결된 두 개의 커패시터로 이루어지고, 상기 두 개의 커패시터가 상기 라이브선과 중성선 사이에서 병렬로 연결되고 접지와는 공통으로 연결되는 Y-cap;
    상기 공통모드 초크에 코일로 덧 감기고, 상기 공통모드 초크의 노이즈 전류를 감지하는 센싱 권선;
    상기 센싱 권선에서 감지된 노이즈 전류를 증폭하는 증폭부; 및
    상기 Y-cap 앞 단에 설치되며, 1차코일은 상기 증폭부에서 증폭된 신호를 받아들이고, 2차 코일은 상기 Y-cap과 연결된 접지와 연결되어 전력선으로부터 절연(isolated)되며, 상기 2차코일의 신호를 상기 Y-cap으로 보상 신호로 주입하는 변압기를 포함하는 것을 특징으로 하는 전력선에 추가되는 소자가 없는 절연형 능동 EMI 필터.
  2. 제1항에 있어서,
    일단이 상기 Y-cap과 연결되고 타단이 상기 변압기의 2차코일에 연결되는 제1저항(Rd1);
    일단이 상기 저항의 일단과 연결되는 커패시터(Cd);
    일단이 상기 커패시터의 타단과 직렬로 연결되고 타단이 접지와 연결되는 제2저항(Rd2)을 구비하고, 상기 변압기에서의 공진을 피하기 위해 바이패스 및 댐핑 회로로서의 안정성 및 상기 EMI 소스 임피던스와 상기 Y-cap 사이의 공진으로 인한 성능 저하를 완화하는, 바이패스 브랜치를 더 포함하는 것을 특징으로 하는 전력선에 추가되는 소자가 없는 절연형 능동 EMI 필터.
  3. 제1항에 있어서, 상기 센싱 권선의 권수(Nsen)는
    상기 공통모드(CM) 초크의 기생회로의 커피시턴스를 Ccm 이라 하고, 상기 센싱권선의 기생회로의 커패시턴스를 Csen 이라 할 때, 2Ccm / Csen 의 제곱근보다 작은 것을 특징으로 하는 전력선에 추가되는 소자가 없는 절연형 능동 EMI 필터.
  4. 전력이 공급되는 전원 쪽에 배치되며, EMI 소스와 연결된 라이브선(Live line)과 중성선(Neutral line)이 각각 권선으로 감겨 있는 공통모드(CM) 초크;
    EMI를 발생시키는 EMI 소스 쪽에 배치되며, 직렬 연결된 두 개의 커패시터로 이루어지고, 상기 두 개의 커패시터가 상기 라이브선과 중성선 사이에서 병렬로 연결되고 접지와는 공통으로 연결되는 Y-cap;
    상기 Y-cap 앞 단에 설치되며, 1차코일이 상기 Y-cap의 노이즈 전압을 센싱하여 2차코일을 통해 변압하고, 전력선으로부터 절연(isolated)되는 변압부;
    상기 변압부에서 감지되 변압된 노이즈 전압을 증폭하는 증폭부; 및
    상기 공통모드 초크에 코일로 덧 감기고, 상기 증폭부에서 증폭된 노이즈 신호를 상기 공통모드 초크로 주입하는 보상 권선을 포함하는 것을 특징으로 하는 전력선에 추가되는 소자가 없는 절연형 능동 EMI 필터.
  5. EMI를 발생시키는 EMI 소스 쪽에 배치되며, EMI 소스와 연결된 라이브선(Live line)과 중성선(Neutral line)이 각각 권선으로 감겨 있는 공통모드(CM) 초크;
    전력이 공급되는 전원 쪽에 배치되며, 직렬 연결된 두 개의 커패시터로 이루어지고, 상기 두 개의 커패시터가 상기 라이브선과 중성선 사이에서 병렬로 연결되고 접지와는 공통으로 연결되는 Y-cap;
    상기 공통모드 초크에 코일로 덧 감기고, 상기 공통모드 초크의 노이즈 전류를 감지하는 센싱 권선;
    상기 센싱 권선에서 감지된 노이즈 전류를 증폭하는 증폭부; 및
    상기 Y-cap 앞 단에 설치되며, 일차코일은 상기 증폭부에서 증폭된 신호를 받아들이고, 이차 코일은 상기 Y-cap과 연결된 접지와 연결되어 전력선으로부터 절연(isolated)되며, 상기 2차코일을 통해 변압된 신호를 상기 Y-cap으로 보상 신호로 주입하는 변압기를 포함하는 것을 특징으로 하는 전력선에 추가되는 소자가 없는 절연형 능동 EMI 필터.
  6. EMI를 발생시키는 EMI 소스 쪽에 배치되며, EMI 소스와 연결된 라이브선(Live line)과 중성선(Neutral line)이 각각 권선으로 감겨 있는 공통모드(CM) 초크;
    전력이 공급되는 전원 쪽에 배치되며, 직렬 연결된 두 개의 커패시터로 이루어지고, 상기 두 개의 커패시터가 상기 라이브선과 중성선 사이에서 병렬로 연결되고 접지와는 공통으로 연결되는 Y-cap;
    상기 Y-cap 앞 단에 설치되며, 1차코일이 상기 Y-cap의 노이즈 전압을 센싱하여 2차코일을 통해 변압하고, 전력선으로부터 절연(isolated)되는 변압기;
    상기 변압기에서 변압된 노이즈 전압을 증폭하는 증폭부; 및
    상기 공통모드 초크에 코일로 덧 감기고, 상기 증폭부에서 증폭된 노이즈 신호를 상기 공통모드 초크로 보상신호로 주입하는 보상 권선을 포함하는 것을 특징으로 하는 전력선에 추가되는 소자가 없는 절연형 능동 EMI 필터.
PCT/KR2019/005268 2018-05-02 2019-05-02 전력선에 추가 소자가 없는 절연형 능동 emi 필터 WO2019212258A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980029888.2A CN112262523A (zh) 2018-05-02 2019-05-02 一种在电源线上无附加元件的隔离型有源emi滤波器
JP2020561711A JP7141623B2 (ja) 2018-05-02 2019-05-02 電力線への素子の追加がない絶縁型アクティブemiフィルタ
DE112019002248.2T DE112019002248T5 (de) 2018-05-02 2019-05-02 Isolierter aktiver emi-filter ohne zusätzliche elemente auf der stromleitung
US17/087,340 US20210058070A1 (en) 2018-05-02 2020-11-02 Isolated type active emi filter having no additional elements on power line
JP2022135908A JP7475720B2 (ja) 2018-05-02 2022-08-29 電力線への素子の追加がない絶縁型アクティブemiフィルタ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180050717A KR101945463B1 (ko) 2018-05-02 2018-05-02 전력선에 추가 소자가 없는 절연형 능동 emi 필터 및 그를 이용한 emi 잡음 저감 방법
KR10-2018-0050717 2018-05-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/087,340 Continuation-In-Part US20210058070A1 (en) 2018-05-02 2020-11-02 Isolated type active emi filter having no additional elements on power line

Publications (1)

Publication Number Publication Date
WO2019212258A1 true WO2019212258A1 (ko) 2019-11-07

Family

ID=65366962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005268 WO2019212258A1 (ko) 2018-05-02 2019-05-02 전력선에 추가 소자가 없는 절연형 능동 emi 필터

Country Status (6)

Country Link
US (1) US20210058070A1 (ko)
JP (2) JP7141623B2 (ko)
KR (1) KR101945463B1 (ko)
CN (1) CN112262523A (ko)
DE (1) DE112019002248T5 (ko)
WO (1) WO2019212258A1 (ko)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102500177B1 (ko) * 2019-03-25 2023-02-15 이엠코어텍 주식회사 전류 보상 장치
KR102242048B1 (ko) * 2019-03-25 2021-04-19 이엠코어텍 주식회사 전류 보상 장치
WO2020197334A1 (ko) * 2019-03-28 2020-10-01 이엠코어텍 주식회사 분리형 능동 emi 필터 모듈
KR102345290B1 (ko) * 2019-05-23 2022-01-03 이엠코어텍 주식회사 독립 능동 emi 필터 모듈 및 그 제조방법
US11949393B2 (en) 2019-03-28 2024-04-02 Em Coretech Co., Ltd. Divided active electromagnetic interference filter module and manufacturing method thereof
US11901832B2 (en) 2019-04-17 2024-02-13 Em Coretech Co., Ltd. Device for compensating for voltage or current
KR102129578B1 (ko) * 2019-05-16 2020-07-02 울산과학기술원 전류 보상 장치
CN113906660B (zh) * 2019-04-17 2024-05-07 Em考尔泰克公司 补偿电压或电流的装置
KR102366321B1 (ko) * 2019-04-17 2022-02-23 이엠코어텍 주식회사 독립 능동 emi 필터 모듈 및 그 제조방법
KR102268163B1 (ko) * 2020-03-02 2021-06-24 이엠코어텍 주식회사 전압 및 전류를 보상하는 능동형 보상 장치
KR102208533B1 (ko) * 2019-05-03 2021-01-28 울산과학기술원 능동형 전류 보상 장치
KR102208534B1 (ko) * 2019-05-07 2021-01-28 울산과학기술원 Vscc 능동 emi 필터
KR102071480B1 (ko) * 2019-04-23 2020-03-02 이엠코어텍 주식회사 전류 보상 장치
KR102377534B1 (ko) * 2019-04-23 2022-03-23 이엠코어텍 주식회사 전류 보상 장치
KR102131263B1 (ko) * 2019-04-17 2020-07-07 울산과학기술원 전류 보상 장치
KR102580800B1 (ko) * 2019-05-03 2023-09-21 이엠코어텍 주식회사 능동형 전류 보상 장치
KR102607200B1 (ko) * 2019-05-07 2023-11-29 이엠코어텍 주식회사 Vscc 능동 emi 필터
KR102258200B1 (ko) * 2019-10-07 2021-06-02 이엠코어텍 주식회사 태양광 발전기용 전류 보상 시스템
CN114788152A (zh) * 2019-10-07 2022-07-22 Em考尔泰克公司 用于太阳能发电机的电流补偿系统、品质测量装置、其测量方法及其记录介质
KR102453661B1 (ko) * 2020-01-10 2022-10-12 이엠코어텍 주식회사 전류 보상 장치
CN111769564B (zh) * 2020-06-22 2021-11-09 中国舰船研究设计中心 一种有源电力滤波器及差模与共模输出信号的合成方法
KR102503798B1 (ko) * 2021-03-08 2023-02-27 이엠코어텍 주식회사 독립 능동 emi 필터 모듈 및 그 제조방법
KR102477114B1 (ko) 2021-03-24 2022-12-14 동국대학교 산학협력단 3상 농형 유도 전동기의 베어링 전압 특성 예측 방법 및 장치
KR102611381B1 (ko) * 2021-04-09 2023-12-08 이엠코어텍 주식회사 전류 보상 장치
CN113188432B (zh) * 2021-06-25 2021-09-14 西安联飞智能装备研究院有限责任公司 一种lvdt传感器及其绕组方法
WO2024008311A1 (en) * 2022-07-08 2024-01-11 Abb Schweiz Ag Bidirectional active filter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010070924A (ko) * 2001-06-22 2001-07-27 김동림 전원용 써지 보호기
KR20050013647A (ko) * 2002-06-25 2005-02-04 인터내쇼널 렉티파이어 코포레이션 능동 emi 필터
KR20120053606A (ko) * 2010-11-18 2012-05-29 (주) 디지털파워 능동형 영상고조파 필터가 구비된 수배전반
CN102714469A (zh) * 2010-01-13 2012-10-03 株式会社东芝 系统联合逆变器
WO2013008925A1 (ja) * 2011-07-13 2013-01-17 国立大学法人北海道大学 アクティブコモンモードフィルタ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244770A (ja) 2000-12-27 2001-09-07 Mitsubishi Electric Corp ノイズフィルター
JP2002280876A (ja) 2001-03-16 2002-09-27 Toshiba Corp 半導体集積回路
JP2004274161A (ja) * 2003-03-05 2004-09-30 Tdk Corp ノイズ抑制回路
JP2007274026A (ja) 2006-03-30 2007-10-18 Tdk Corp ノイズフィルタ
CN1851973B (zh) * 2006-04-30 2010-05-12 西安交通大学 宽频带高衰减共模传导电磁干扰并联混合型滤波器
JP5454001B2 (ja) * 2009-08-21 2014-03-26 株式会社デンソー 電流抑制装置
US9099945B2 (en) 2010-08-26 2015-08-04 Mitsubishi Electric Corporation Leakage current reducing apparatus
JP6037609B2 (ja) 2011-11-30 2016-12-07 パラマウントベッド株式会社 電動ベッドおよび身体ずり落ち防止制御方法
KR101598259B1 (ko) * 2013-12-30 2016-02-26 강원대학교산학협력단 Emi필터 장치 및 그 동작방법
JP5993886B2 (ja) 2014-03-04 2016-09-14 株式会社豊田中央研究所 ノイズフィルタ
CN104202013B (zh) * 2014-08-21 2017-03-08 华为技术有限公司 一种有源emi滤波器和电源管理装置
JP6568743B2 (ja) 2015-08-12 2019-08-28 三星電子株式会社Samsung Electronics Co.,Ltd. 伝導性ノイズ抑制回路及びインバータ装置
JP6769170B2 (ja) 2015-09-01 2020-10-14 富士電機株式会社 アクティブノイズ抑制装置
KR101858430B1 (ko) * 2016-08-09 2018-05-16 경상대학교산학협력단 Emi 필터 및 이를 이용한 emi의 저감 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010070924A (ko) * 2001-06-22 2001-07-27 김동림 전원용 써지 보호기
KR20050013647A (ko) * 2002-06-25 2005-02-04 인터내쇼널 렉티파이어 코포레이션 능동 emi 필터
CN102714469A (zh) * 2010-01-13 2012-10-03 株式会社东芝 系统联合逆变器
KR20120053606A (ko) * 2010-11-18 2012-05-29 (주) 디지털파워 능동형 영상고조파 필터가 구비된 수배전반
WO2013008925A1 (ja) * 2011-07-13 2013-01-17 国立大学法人北海道大学 アクティブコモンモードフィルタ

Also Published As

Publication number Publication date
JP7475720B2 (ja) 2024-04-30
KR101945463B1 (ko) 2019-02-07
JP2021524182A (ja) 2021-09-09
US20210058070A1 (en) 2021-02-25
DE112019002248T5 (de) 2021-02-18
JP7141623B2 (ja) 2022-09-26
JP2022174125A (ja) 2022-11-22
CN112262523A (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
WO2019212258A1 (ko) 전력선에 추가 소자가 없는 절연형 능동 emi 필터
WO2018208057A1 (ko) 전도성 노이즈 억제 장치, 전력 변환 장치 및 모터 장치
US6670799B1 (en) Optical current measuring for high voltage systems
WO2012064063A2 (ko) 전기적 잡음을 상쇄시키는 자기에너지전달소자 및 전원장치
JP2811632B2 (ja) 分離経路増幅及び絶縁装置並びに方法
US4584622A (en) Transient voltage surge suppressor
US20030201873A1 (en) High current inductive coupler and current transformer for power lines
WO2013048034A1 (en) Wireless power transmitter, wireless power receiver and impedence control method
WO2012064064A2 (ko) 전기적 잡음을 상쇄시키는 평형된 컨버터 및 자기에너지전달소자
JPH01265168A (ja) 電流測定装置
EP3871314A1 (en) Wireless power relaying device and display system that distributes power wirelessly
WO2015020432A1 (ko) 무선전력 송신장치
WO2019078602A1 (ko) 부분방전 처리 장치 및 방법
US5369355A (en) Compensation circuit for transformer linearization
WO2021215696A1 (ko) 과전압 보호 동작을 수행하는 전자 장치 및 그 제어 방법
WO2020213997A1 (ko) 전압 또는 전류를 보상하는 장치
WO2021071241A1 (ko) 태양광 발전기용 전류 보상 시스템, 품질 측정 장치, 이의 측정 방법 및 이의 기록매체
Jeong et al. A transformer-isolated common-mode active EMI filter using a low-cost BJT amplifier with feedforward structure
US4032836A (en) Transformer circuit
US6121857A (en) AC power passing RF choke with a 15 gauge wire
WO2021118071A2 (ko) 보호 계전기 및 그 보호 계전기의 단선 검출 방법
WO2023055156A1 (ko) 전자파 노이즈 데이터를 제공하는 능동형 보상 장치
US4135064A (en) Impedance compensation of transmission line
WO2023055063A1 (ko) 고조파를 저감하는 소형화 된 인버터를 포함하는 무선 전력 송신기
US7079773B2 (en) Power feeding for an optical transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19797137

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561711

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19797137

Country of ref document: EP

Kind code of ref document: A1