WO2018208057A1 - 전도성 노이즈 억제 장치, 전력 변환 장치 및 모터 장치 - Google Patents

전도성 노이즈 억제 장치, 전력 변환 장치 및 모터 장치 Download PDF

Info

Publication number
WO2018208057A1
WO2018208057A1 PCT/KR2018/005264 KR2018005264W WO2018208057A1 WO 2018208057 A1 WO2018208057 A1 WO 2018208057A1 KR 2018005264 W KR2018005264 W KR 2018005264W WO 2018208057 A1 WO2018208057 A1 WO 2018208057A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
coil
noise
coupling coil
voltage
Prior art date
Application number
PCT/KR2018/005264
Other languages
English (en)
French (fr)
Inventor
오사코세이사쿠
시무라타츠히사
야마다야스유키
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to US16/612,234 priority Critical patent/US11088614B2/en
Publication of WO2018208057A1 publication Critical patent/WO2018208057A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/123Suppression of common mode voltage or current

Definitions

  • the present invention relates to a conductive noise suppression device, a power converter, and a motor device.
  • a power converter composed of a converter, an inverter, or the like using semiconductor elements such as a diode bridge or a switching element is used for controlling a motor (motor).
  • the electric motor controlled by the power converter is used for an air conditioner, a refrigerator, and the like.
  • Conductive noise includes conductive noise (conductive normal mode noise) in normal mode (differential mode and differential mode) reciprocating between power lines, and conductive noise in common mode (conductive common mode noise) transmitted between power line and ground (ground). There is).
  • Patent document 1 discloses the leakage current reduction apparatus inserted and connected between a 1st electrical apparatus and a 2nd electrical apparatus through a connection line.
  • a leakage current reducing device includes a voltage detecting means, an input side filter, a voltage amplifier and a voltage applying means.
  • the voltage detecting means here comprises a main winding and a winding for detecting leakage current.
  • the main winding is inserted and connected between the first electric device and the second electric device through the connection line, and detects the leakage current flowing through the connection line as the detection voltage by the leakage current detecting winding.
  • the input side filter inputs a detection voltage, and adjusts the magnitude and phase of each detection voltage for output.
  • the voltage amplifier amplifies the output of the input side filter and outputs it as an output voltage.
  • the voltage application means generates an applied voltage for reducing the leakage current on the connection line based on the output voltage of the voltage amplifier.
  • Patent Document 1 Japanese Patent No. 5528543
  • the level of the conductive noise is regulated by the standards of the CISPR (Comite International Special des Perturbations Radio etc.). For this reason, the technique which suppresses conductive noise below an allowable value is calculated
  • An object of the present invention is to provide a conductive noise suppression apparatus in which noise deterioration due to frequency of conductive common mode noise is suppressed.
  • the conductive noise suppression apparatus to which the present invention is applied is provided with current detecting means for detecting a noise current in a common mode flowing through a power supply line for supplying alternating current. And a power supply coil inserted in series with the power supply line, and a coupling coil magnetically coupled to the power supply coil, and noise suppression means for suppressing the noise current by the current supplied to the coupling coil. And a current supply means for supplying a coupling coil with a current set by the noise current detected by the current detection means and a voltage generated in the coupling coil in the noise suppression means.
  • the current supply means supplies a current in which the dependency of the connection point of the resistor connected in series with the coupling coil and the coupling coil is suppressed to the coupling coil through the resistance. Can be.
  • the noise suppression means may be characterized in that the current induced in the power supply line coil by the current flowing through the coupling coil changes the impedance of the power supply line so as to reduce the noise current in the common mode.
  • the current detecting means may include another power supply line coil inserted in series with the power supply line, and a detection coil that magnetically couples to the other power supply line coil to detect the noise current in a common mode.
  • the power conversion apparatus to which this invention is applied is equipped with the suppression part which suppresses the noise current of the common mode which flows through the power supply line which supplies alternating current.
  • a rectifier is further provided for rectifying the supplied alternating current to output a pulse flow, and a smoothing unit for smoothing the output pulse flow of the rectifier to generate a direct current.
  • the inverter part which switches the direct current output by the said smoothing part, and outputs the alternating current supplied to the connected load is provided.
  • the suppressing section includes current detecting means for detecting the noise current in a common mode flowing through the power supply line. And a power supply coil inserted in series with the power supply line, and a coupling coil magnetically coupled to the power supply coil, and noise suppression means for suppressing the noise current by the current supplied to the coupling coil. And a current supply means for supplying a coupling coil with a current set by the noise current detected by the current detection means and a voltage generated in the coupling coil in the noise suppression means.
  • the motor apparatus to which this invention is applied is equipped with the suppression part which suppresses the noise current of the common mode which flows through the power supply line which supplies alternating current.
  • a rectifier is further provided for rectifying the supplied alternating current to output a pulse flow, and a smoothing unit for smoothing the output pulse flow of the rectifier to generate a direct current.
  • the inverter part which switches the direct current output by the said smoothing part, outputs alternating current, and the motor connected to the said inverter part, and is driven by the alternating current output by the inverter part is provided.
  • the suppressing section includes current detecting means for detecting the noise current in a common mode flowing through the power supply line. And a power supply coil inserted in series with the power supply line, and a coupling coil magnetically coupled to the power supply coil, and noise suppression means for suppressing the noise current by the current supplied to the coupling coil. And a current supply means for supplying a coupling coil with a current set by the noise current detected by the current detection means and a voltage generated in the coupling coil in the noise suppression means.
  • a conductive noise suppression apparatus or the like for suppressing noise deterioration due to frequency of conductive common mode noise can be provided.
  • FIG. 1 is a diagram showing an example of a motor device according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of a circuit configuration of a suppressor.
  • 3 is a diagram for explaining the suppression effect of the common mode noise.
  • FIG. 4 is a diagram illustrating a motor device according to a second embodiment.
  • FIG. 5 is a diagram illustrating a motor device according to a third embodiment.
  • the motor device described in the embodiment of the present invention can be provided in a compressor such as an air conditioner or a refrigerator.
  • FIG. 1 is a diagram showing an example of the motor device 1 according to the first embodiment.
  • the motor device 1 can be connected to a three-phase four-wire AC power supply 2 having a neutral phase (N phase).
  • the 3rd phase is described as R phase, S phase, and T phase in a 1st phase.
  • a power line for supplying R phase, S phase, T phase, and N phase from the AC power source 2 is connected to the R phase power line 141, the S phase power line 142, and the T phase power line 143; N-phase power supply line 144 is indicated.
  • power lines 140 are referred to.
  • the coil in the 1st coil part 110 and the 2nd coil part 120 mentioned later are inserted in series, it expresses like the power supply line 140 similarly.
  • the motor device 1 includes a power converter 10 and a motor (motor) 20.
  • the motor 20 may be driven by three-phase alternating current supplied by the inverter unit 400 of the power converter 10 as described below.
  • Motor 20 may be, for example, a DC brushless motor.
  • the motor 20 may be another kind of three-phase AC motor.
  • the power converter 10 includes a suppressor 100 that suppresses conductive noise and a rectifier 200 that rectifies AC supplied from an AC power source 2 into DC.
  • the power converter 10 includes a smoothing unit 300 for smoothing the direct current output from the rectifying unit 200, and an inverter unit 400 for converting the smoothed direct current into three-phase alternating current and supplying the motor 20 to the motor 20. It includes.
  • the ground means that the potential is set to the reference potential.
  • the suppressing unit 100, the rectifying unit 200, the smoothing unit 300, and the inverter unit 400 are sequentially connected from the AC power supply 2 side.
  • the inverter unit 400 is connected to the motor 20.
  • the suppressor 100 mainly suppresses conductive common mode noise (hereinafter, referred to as common mode noise), but also suppresses conductive normal mode noise. That is, the suppressor 100 suppresses the conductive noise.
  • common mode noise conductive common mode noise
  • conductive normal mode noise conductive normal mode noise
  • the suppression part 100 is an example of a conductive noise suppression apparatus.
  • the rectifier 200 includes, for example, a diode bridge composed of six rectifier diodes D1 to D6.
  • the six rectifier diodes D1 to D6 rectify the alternating current supplied from the alternating current power source 2 into direct current.
  • the rectifying diodes D1 to D6 are not distinguished from each other, the rectifying diodes D are referred to.
  • the smoothing unit 300 includes a smoothing capacitor (smooth capacitor Cs).
  • the smoothing capacitor Cs is connected between the high voltage side wiring (upper wiring in FIG. 1) of the direct current rectified by the rectifier 200 and the reference voltage wiring (lower wiring in FIG. 1). .
  • the inverter unit 400 includes six switching circuits SC1 to SC6 each having a switching element St and a feedback diode Df. In addition, when not distinguishing switching circuits SC1-SC6, it describes with switching circuit SC.
  • the switching circuit SC1 of the upper arm and the switching circuit SC2 of the lower arm are connected in series, and a connection point is connected to the terminal of the motor 20.
  • the switching circuit SC1 of the upper arm and the switching circuit SC2 of the lower arm connected in series are provided between the wiring on the high voltage side and the wiring on the reference voltage side.
  • the other switching circuits SC3 to SC6 are similarly connected.
  • the switching element St may be a power field effect transistor or an insulated gate bipolar transistor (IGBT).
  • IGBT insulated gate bipolar transistor
  • the commercial AC power supply 2 supplies an AC voltage to the rectifying part 200 through the suppression part 100 which suppresses conductive noise.
  • the rectifier 200 rectifies the alternating voltage supplied from the alternating current power supply 2 into a direct current voltage to generate a pulse flow by the rectifying diodes D1 to D6 connected in a bridge shape.
  • the smoothing unit 300 generates a direct current by smoothing the pulse flow from the rectifying unit 200 using the smoothing capacitor Cs.
  • the inverter unit 400 converts the direct current smoothed by the smoothing unit 300 into alternating current and supplies the motor 20 to the on / off control of the switching element St of the switching circuit SC.
  • the suppressor 100 is an active conductive noise suppression circuit which suppresses common mode noise by detecting common mode noise flowing through the power supply line 140 and feeding back based on a signal corresponding to the detected common mode noise.
  • the AC power supply 2 side is described as an upstream side
  • the rectification part 200 side is described as a downstream side.
  • the suppressor 100 includes a first coil unit 110, a second coil unit 120, and a current supply unit 130.
  • the 1st coil part 110 and the 2nd coil part 120 are connected in series with the power supply line 140 in order from the AC power supply 2 side. That is, the 1st coil part 110 is connected to the AC power supply 2, and the 2nd coil part 120 is connected to the rectification part 200.
  • FIG. 1st coil part 110 is connected to the AC power supply 2
  • the 2nd coil part 120 is connected to the rectification part 200.
  • the current supply unit 130 is connected to the first coil unit 110 (detection coil L1 A to be described later) and the second coil unit 120 (coupling coil L2 A to be described later). It is connected to two coil parts.
  • the current supply part 130 of FIG. 1 is a conceptual diagram for demonstrating operation
  • the first coil unit 110 is an example of the current detection means
  • the second coil unit 120 is an example of the noise suppression means
  • the current supply unit 130 is an example of the current supply means.
  • the first coil unit 110 is a coil (that is, a winding) L1 R , L1 S , L1 T , L1 N connected in series to each of the power lines 141 to 144 of the R phase, S phase, T phase, and N phase, respectively. ).
  • the first coil unit 110 includes a detection coil L1 A that is magnetically coupled (that is, magnetically coupled) with the coils L1 R , L1 S , L1 T , L1 N , and detects common mode noise. do.
  • coils L1 R , L1 S , L1 T , L1 N when not distinguishing each of the coils L1 R , L1 S , L1 T , L1 N , they are referred to as coils L1.
  • coil (L1) comprising a detection coil (L1 A).
  • the coil refers to a conductive wire that is wound in a spiral (loop) shape to constitute an inductor.
  • the coils L1 R , L1 S , L1 T , L1 N are examples of power line coils.
  • the coils L1 R , L1 S , L1 T , L1 N are conducting wires (wires) constituting a part of the power supply lines 141 to 144, and may be wound, for example, on one toroidal core.
  • the toroidal core includes a magnetic body such as an annular (donut) ferrite having a circular cross section.
  • the toroidal core is sometimes called an iron core.
  • the toroidal core may be provided in a frame shape of a polygon such as a rectangle or a triangle in addition to the annular shape.
  • the toroidal core may be provided in a cross section, such as a square or triangle.
  • the coils L1 R , L1 S , L1 T , L1 N are wound so as to be adjacent to one toroidal core. Therefore, the coils L1 R , L1 S , L1 T , L1 N may be magnetically coupled to each other. In addition, the coils L1 R , L1 S , L1 T , L1 N can also be wound with a polarity indicated by ".&Quot;
  • the detection coil L1 A may be installed to be magnetically coupled to the coils L1 R , L1 S , L1 T , L1 N.
  • the detection coil L1 A can be wound, for example, in one toroidal core to be adjacent to the coils L1 R , L1 S , L1 T , L1 N.
  • coils L1 R , L1 S , L1 T , L1 N are wound around each other in one toroidal core, and detection coil L1 A is coils L1 R , L1 S , L1 T , L1 N. It is also possible to be rolled up to overlap.
  • the detection coil L1 A may be wound so that it may become the polarity shown by "*" in FIG.
  • the terminal on one side of the detection coil L1 A is connected to the current supply unit 130 described later.
  • the terminal on the other side of the detection coil L1 A is grounded.
  • the coils L1 R , L1 S , L1 T , and L1 N may be part of the power lines 141 to 144 through which the current of the AC power source 2 flows.
  • the coils L1 R , L1 S , L1 T , L1 N may be composed of conductive wires (wires) having a thickness corresponding to the flowing current.
  • the current induced by the common mode noise flowing through the coils L1 R , L1 S , L1 T , L1 N flows through the detection coil L1 A as described later.
  • the detection coil L1 A may be composed of a conductive wire (wire) of a thickness capable of flowing (that is, detecting) a current induced by common mode noise.
  • Common mode noise flowing through the coils L1 R , L1 S , L1 T , L1 N is referred to as a common mode noise current. In addition, it may be described as a noise current.
  • the coil (L1 R, S L1, L1 T, N L1) can have the same inductance.
  • the common mode noise current is a high frequency current leaking to ground through stray capacitance of the motor 20 or the like by switching of the switching element St of the inverter unit 400.
  • the common mode noise current flows in the same direction and in the same phase between the power supply lines 141 to 144 of the R phase, S phase, T phase, and N phase and ground (ground).
  • the coils L1 R , L1 S , L1 T , L1 N serving as inductors act as a resistance to the common mode noise current which is a high frequency signal. Therefore, the coils L1 R , L1 S , L1 T , L1 N suppress (reduce) the common mode noise. Such coils L1 R , L1 S , L1 T , L1 N cannot suppress all common mode noise.
  • the first coil unit 110 and the detection coil L1 A perform a function as a current transformer, and perform a function as a detection transformer for detecting a common mode noise current.
  • the second coil unit 120 includes coils L2 R , L2 S , L2 T , and L2 N connected in series to the power lines 141 to 144 of the R, S, T, and N phases, respectively.
  • the second coil part 120 includes a coupling coil L2 A magnetically coupled to the coils L2 R , L2 S , L2 T , L2 N.
  • the coils L2 R , L2 S , L2 T , and L2 N are not distinguished from each other, the coils L2 are referred to. In addition, it may also be referred to as a coil (L2) including a coupling coil (L2 A ).
  • the coils L2 R , L2 S , L2 T , L2 N are examples of other power line coils.
  • Coil (L2 R, L2 S, L2 T, L2 N) is a coil (L1 to the conductive wire (wires) forming a part of the power line (141 to 144), the first coil portion (110), R, L1 S, L1 T , L1 N ).
  • the coils L2 R , L2 S , L2 T , L2 N may be magnetically coupled to each other.
  • the coils L2 R , L2 S , L2 T , L2 N may be wound so as to have a polarity indicated by " ⁇ " in FIG. 1.
  • the coupling coil L2 A may be installed to be magnetically coupled to the coils L2 R , L2 S , L2 T , L2 N.
  • the coupling coil L2 A may be provided similarly or identically to the detection coil L1 A of the first coil unit 110.
  • the coupling coil L2 A may be wound to be adjacent to the coils L2 R , L2 S , L2 T , and L2 N on the other toroidal core.
  • coils L2 R , L2 S , L2 T , and L2 N may be wound around each other in the toroidal core, and the coupling coil L2 A may be coils L2 R , L2 S , L2 T ,. it is also possible to be wound so as to overlap the N L2).
  • the coupling coil L2 A can be wound so as to have a polarity indicated by ".&Quot;
  • One side of the terminal of the coupling coil (L2 A) may be connected to the current supply unit 130 to be described later, the other side of the terminal of the coupling coil (L2 A) may be grounded.
  • the coils L2 R , L2 S , L2 T , and L2 N may be part of the power lines 141 to 144 through which current flows from the AC power source 2. Therefore, the coils L2 R , L2 S , L2 T , and L2 N may be formed of conductive wires (wires) having a thickness corresponding to the flowing current.
  • the coupling coil L2 A may be formed of a conductive wire (wire) having a thickness capable of flowing the current amplified by the current supply unit 130.
  • the coils L2 R , L2 S , L2 T , L2 N may have the same inductance.
  • Coils L2 R , L2 S , L2 T , and L2 N which are inductors, may be implemented in the same or similar manner as coils L1 R , L1 S , L1 T , L1 N of the first coil unit 110. That is, the coils L2 R , L2 S , L2 T , L2 N as inductors can act as a resistance to the common mode noise current. Therefore, the coils L2 R , L2 S , L2 T , L2 N can suppress (reduce) the common mode noise. In addition, like the first coil unit 110, the second coil unit 120 cannot suppress all common mode noise.
  • the current supply unit 130 includes amplifying circuits 131 and 132, an adding circuit 133, and a resistor R 0 .
  • An input terminal of the amplifying circuit 131 may be connected to a terminal of one side of the detection coil L1 A.
  • the terminal on the other side of the detection coil L1 A may be grounded.
  • An input terminal of the amplifying circuit 132 may be connected to a terminal of one side of the coupling coil L2 A. Also, the terminal on the other side of the coupling coil L2 A may be grounded.
  • the adding circuit 133 includes two input terminals. An output terminal of the amplifying circuit 131 and an output terminal of the amplifying circuit 132 may be connected to each of the two input terminals of the adding circuit 133.
  • the output terminal of the adding circuit 133 may be connected to a terminal of one side of the resistor R 0 .
  • the terminal on the other side of the resistor R 0 may be connected to the terminal on one side of the coupling coil L2 A.
  • the suppressor 100 sets a current for flowing through the coupling coil L2 A based on the common mode noise current detected by the detection coil L1 A.
  • a current is induced in the coupling coil (L2 A), coupling coil (L2 A) and the coil (L2 R, L2 S, L2 T, L2 N) of the second coil portion 120 that are magnetically coupled by a current flowing in. That is, the current flows through the coupling coil L2 A , so that the current flows through the power lines 141 to 144 through the coils L2 R , L2 S , L2 T , and L2 N of the second coil unit 120. do.
  • the current induced by the coupling coil L2 A overlaps the current of the AC power supply 2 on the power supply lines 141 to 144. That is, the impedance of the power supply lines 141 to 144 changes. At this time, the common mode noise current can be suppressed by causing the direction of the current induced by the coupling coil L2 A to be reverse to the common mode noise current.
  • the voltage generated in the coupling coil (L2 A ) is fed back to the current supply unit 130, the coil (L2 R , L2 S of the second coil unit 120 by the coupling coil L2 A ).
  • current induced on T L2, L2 N) is capable of tracking the common mode noise current.
  • the current guided by the coupling coil L2 A to the coils L2 R , L2 S , L2 T , L2 N of the second coil unit 120 follows the magnitude, frequency, and phase of the common mode noise current. do.
  • the current induced in the coils L2 R , L2 S , L2 T , L2 N of the second coil part 120 by the coupling coil L2 A is less likely to generate a phase difference between the common mode noise current. Frequency dependence is suppressed (small). Therefore, the common mode noise current is efficiently suppressed, and it is difficult to inhibit currents other than the common mode noise current.
  • a process for flowing a current for suppressing the common mode noise current through the coupling coil L2 A is as follows.
  • the common mode noise currents of the power lines 141 to 144 of the R phase, the S phase, the T phase, and the N phase are detected by using the detection coil L1 A of the first coil part 110.
  • a detection coil (L1 A) voltage (V CT) (hereinafter, the detection voltage (V CT)) detected in is input to the input terminal of the amplifier circuit 131 of the current supply unit 130.
  • the amplifying circuit 131 outputs, through the output terminal, an output ⁇ ⁇ V CT obtained by ⁇ times (amplification factor ⁇ ) input to the detection voltage V CT input to the input terminal.
  • the voltage VL (hereinafter referred to as the coupling voltage V L ) detected at both ends of the coupling coil L2 A is input to the input terminal of the amplifying circuit 132.
  • the amplifying circuit 132 outputs, through the output terminal, the output ⁇ ⁇ V L obtained by ⁇ times (amplification factor ⁇ ) the combined voltage V L input to the input terminal.
  • the addition circuit 133 adds the output ⁇ ⁇ V CT of the amplifier circuit 131 and the output ⁇ ⁇ V L of the amplifier circuit 132 to output the output V 0 . That is, the output V 0 is represented by formula (1).
  • equation 3 can be expressed by equation 4.
  • the current I 0 does not depend on the coupling voltage V L. That is, the current I 0 may be a current (constant current) output from the current source. That is, the current supply unit 130 may perform a function as a current source (constant current source).
  • the impedance of the power supply lines 141 to 144 is less likely to be lowered, and the impedance of the power supply lines 141 to 144 is less likely to be affected. That is, even if the coupling voltage V L varies, the variation of the current flowing through the coupling coil L2 A can be suppressed. Therefore, the fluctuation of the current induced in the coils L2 R , L2 S , L2 T , L2 N can be suppressed.
  • the coupling coil L2 A may be alternatingly grounded, thereby reducing the impedance of the power supply lines 141 to 144.
  • the suppression unit 100 is provided, and the common mode noise current is detected by the detection coil L1 A of the first coil unit 110.
  • the common mode noise current is suppressed by flowing a current for suppressing the common mode noise current through the coupling coil L2 A of the second coil unit 120.
  • the current supply unit 130 of the suppressor 100 performs a function as a current source, thereby allowing the current I 0 to flow without depending on the coupling voltage V L induced to the coupling coil L2 A. Can be.
  • FIG. 2 is a diagram illustrating an example of a circuit configuration of the suppressor 100.
  • the suppressor 100 includes a resistor R 1 provided between both terminals of the detection coil L1 A of the first coil unit 110.
  • the suppressor 100 converts a current flowing through the detection coil L1 A into a voltage by using the resistor R 1 .
  • the suppressor 100 is provided between both terminals of the coupling coil L2 A of the second coil unit 120 and has a snubber circuit having a resistor R 2 and a capacitor C 1 connected in series. Snubber circuit).
  • the snubber circuit removes noise in the frequency band higher than the frequency band of the common mode noise current which is suppressed by the suppressor 100.
  • the voltage supply unit (+ V) and the voltage ( ⁇ V) of ⁇ are supplied to the current supply unit 130 from a power supply circuit (not shown). That is, the current supply unit 130 operates by supplying a voltage of + (+ V) and a voltage of-(-V).
  • the voltage of + (+ V) is denoted by the power supply (+ V)
  • the current supply unit 130 includes an amplifier circuit 134 including an amplifier circuit 131 and an amplifier circuit 132 of FIG. 1, a resistor R 0 , and operational amplifiers OP1 and OP2.
  • the amplifier circuit 134 further includes a current output circuit 135.
  • An inverting input terminal (hereinafter referred to as -input terminal) indicated by-of the operational amplifier OP1 is connected to the output terminal of the operational amplifier OP1.
  • the non-inverting input terminal indicated by + is connected to a terminal of one side of the coupling coil (L2 A). That is, the coupling voltage V L generated by the coupling coil L2 A is input to the operational amplifier OP1.
  • the operational amplifier OP1 includes a voltage follower circuit having an amplification factor 1, increases the input impedance, and separates the circuits.
  • the output of the operational amplifier OP1 is also referred to as the coupling voltage V L.
  • the negative input terminal of the operational amplifier OP2 is connected to the output terminal of the operational amplifier OP2.
  • the + input terminal is connected to a terminal on one side of the detection coil L1 A. That is, the detection voltage V CT generated by the detection coil L1 A is input to the operational amplifier OP2.
  • the operational amplifier OP2 includes a voltage follower circuit having an amplification factor 1, increases the input impedance, and separates the circuits.
  • the output of the operational amplifier OP2 is also referred to as the detection voltage V CT .
  • the amplifier circuit 134 includes an operational amplifier OP3, resistors R 3 to R 6 , and a current output circuit 135.
  • the + input terminal of the operational amplifier OP3 is connected to the output terminal of the operational amplifier OP2 via a resistor R 3 , and is connected to the output terminal of the operational amplifier OP1 via a resistor R 4 .
  • the negative input terminal of the operational amplifier OP3 is grounded through the resistor R 5 and connected to the output terminal of the operational amplifier OP3 through the resistor R 6 .
  • the operational amplifier OP3 functions as a non-inverting amplifier, and the output of the operational amplifier OP1 (combination voltage V L ) and the output of the operational amplifier OP2 (detection voltage V CT ) at the + input terminal.
  • the signal to which)) is added can be input.
  • the amplification factor ⁇ in FIG. 1 can be expressed by equation (5), and the amplification rate beta can be expressed by equation (6). Then, the resistors R 2 , R 3 , R 4 , R 5 and R 6 are set so that the amplification factor ⁇ becomes 1.
  • the current output circuit 135 includes an operational amplifier OP4, a plurality of switch elements, and resistors R 7 to R 16 .
  • the plurality of switch elements include pnp bipolar transistors Tr1 and Tr2 (hereinafter referred to as transistors ppnTr1 and pnpTr2), and npn bipolar transistors Tr1 and Tr2 (hereinafter referred to as transistors npnTr1 and npnTr2). .
  • the + input terminal of the operational amplifier OP4 may be connected to the output terminal of the operational amplifier OP3.
  • the ⁇ input terminal of the operational amplifier OP4 may be connected to an output terminal of the current output circuit 135 (a connection point of the resistor R 15 and the resistor R 16 described later). That is, the operational amplifier OP4 includes a voltage follower circuit and outputs a voltage output from the operational amplifier OP4 at an amplification factor of 1. That is, the operational amplifier OP4 increases the input impedance and separates the circuits.
  • the collector of the transistor ppnTr1 is connected to the collector of the transistor npnTr1.
  • the emitter of the transistor npnTr2 is connected to the emitter of the transistor ppnTr2.
  • the base of the transistor (pnpTr1) is, as soon via the resistor (R 7) connected to the output terminal of the operational amplifier (OP4) is connected to at the same time, the power source (+ V) through a resistor (R 8).
  • the base of the transistor (npnTr1) is connected to the power source (-V) via a connection at the same time as the output terminal of the operational amplifier (OP4) through a resistor (R 9), a resistance (R 10).
  • the emitter resistor (R 11) of the transistor (pnpTr1) connected to the base of the transistor (npnTr2) it is connected to the power supply (+ V) through a resistor (R 12).
  • the emitter of the transistor npnTr1 is connected to the base of the transistor pnpTr2 through the resistor R 13 and to the power supply -V through the resistor R 14 .
  • the emitter of the transistor npnTr2 is connected to the emitter of the transistor ppnTr2 through the resistors R 15 and R 16 .
  • the collector of the transistor npnTr2 is connected to the power supply (+ V).
  • the collector of the transistor pnpTr2 is connected to the power supply (-V).
  • the terminal on one side of the resistor R 0 is connected to the connection point of the resistor R 15 and the resistor R 16 and is connected to the ⁇ input terminal of the operational amplifier OP4.
  • the other side terminal of the resistor R 0 is connected to the terminal on one side of the coupling coil L2 A.
  • the detection voltage V CT generated by the detection coil L1 A due to the common mode noise current flowing through the power supply line 140 is input to the operational amplifier OP2 of the amplification factor 1.
  • the coupling voltage V L generated by the coupling coil L2 A is input to the operational amplifier OP1 of the amplification factor 1.
  • the output of the operational amplifier (OP1) is also denoted as a combined voltage (V L).
  • the output of the operational amplifier OP3 is input to the + input terminal of the operational amplifier OP4.
  • the output of the operational amplifier OP4 is input to the base of each of the transistors pnpTr1 and npnTr1. Then, each of the transistors pnpTr1 and npnTr1 is always in the on state.
  • each on state (on resistance) may be set according to the output of the operational amplifier OP4.
  • the circuit consisting of a transistor (pnpTr1), transistor (npnTr1), resistors (R 7, R 8, R 9, R 10) is disposed in order to improve the output waveform distortion of the operational amplifier (OP4).
  • the output waveform distortion of the operational amplifier OP4 is not a problem, the provision of a circuit for improving the output waveform distortion of the operational amplifier OP4 can be omitted.
  • the transistor npnTr2 and the transistor ppnTr2 constitute a push-pull circuit. Therefore, when both the base of the transistor npnTr2 and the base of the transistor ppnTr2 become +, the transistor npnTr2 is turned on and the transistor ppnpr2 is turned off. As a result, the current I 0 flows from the power supply + V to ground via the transistor npnTr2, the resistor R 15 , the resistor R 0 , and the coupling coil L2 A.
  • circuit configuration of the current supply unit 130 shown in FIG. 2 is an example, and may be implemented in other circuit configurations. That is, the circuit of the current supply section 130, the configuration can be implemented as a circuit for supplying a current from a current source coupled to the coil (L2 A) at the same time, the coupling coil (L2 A) the voltage is generated in feedback.
  • 3 is a diagram for explaining the suppression effect of the common mode noise.
  • FIG. 3 shows the effect of suppressing common mode noise when the suppressing unit 100 shown in FIG. 2 is provided (with suppressing unit) and when the suppressing unit 100 is not provided (without suppressing unit).
  • the horizontal axis represents frequency and the vertical axis represents noise level.
  • the suppression unit 100 was simulated and the suppression effect of the common mode noise was investigated. At this time, a circuit for generating a 300 kHz signal was used as the noise source.
  • a noise level of 300 kHz can be reduced by 25.8 dB.
  • the motor device 1 of the first embodiment shown in FIG. 1 receives alternating current from an AC power supply 2 of a three-phase four-wire system. However, the motor device 1 of 2nd Embodiment receives alternating current from the three-phase three-wire alternating current power supply 2.
  • FIG. 4 is a diagram showing the motor device 1 according to the second embodiment.
  • the motor device 1 of the second embodiment does not include the N-phase power supply line 144 in the motor device 1 of FIG. 1. That is, the three-phase three-wire AC power supply 2 is included.
  • the suppression portion 100 can be provided to suppress the conductive noise.
  • the motor device 1 according to the first embodiment and the motor device 1 according to the second embodiment were supplied with alternating current from the three-phase AC power supply 2.
  • the motor device 1 can receive alternating current from the single-phase two-wire AC power supply 2.
  • FIG. 5 is a diagram showing the motor device 1 according to the third embodiment.
  • the motor device 1 includes the X phase and the Y phase instead of the R phase and the S phase like the motor device 1 of FIG. 1, and the T phase. And N phase is not provided.
  • the rectifier 200 includes four rectifier diodes D1 to D4. That is, the single-phase two-wire AC power supply 2 is supplied.
  • the motor device 1 and the power converter 10 according to the third embodiment from the first embodiment include a suppression unit 100 provided between the AC power supply 2 and the rectifier 200.
  • a suppression unit 100 provided between the inverter unit 400 and the motor 20.
  • the suppressor 100 may be provided on a power line for supplying alternating current between the inverter unit 400 and the motor 20.
  • the motor apparatus 1 can also be comprised including the electronic member (resistance, a capacitor
  • the suppressor 100 for suppressing the conductive noise in the motor device 1 and the power converter 10 has been described.
  • the suppressing unit 100 that suppresses the conductive noise may be applied to a device that generates conductive noise other than the motor device 1 or the power converter 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)

Abstract

전도성 공통 모드 노이즈의 주파수에 의한 노이즈 악화가 억제된 전도성 노이즈 억제 장치 등을 제공한다. 억제부(100)는, 교류를 공급하는 전원선에 흐르는 공통 모드의 노이즈 전류를 검출하는 제1 코일부(110), 전원선(140)에 직렬로 삽입된 코일(L2R, L2S, L2T, L2N)과, 이들에 자기 결합하는 결합 코일(L2A)을 갖는 제2 코일부(120) 및 제1 코일부(110)에 의해 검출된 노이즈 전류와, 결합 코일(L2A)에 발생하는 전압으로 설정되는 전류를 결합 코일(L2A)에 공급하는 전류 공급부(130)를 구비한다.

Description

전도성 노이즈 억제 장치, 전력 변환 장치 및 모터 장치
본 발명은, 전도성 노이즈 억제 장치, 전력 변환 장치 및 모터 장치에 관한 것이다.
다이오드 브리지나 스위칭 소자 등의 반도체 소자를 사용한 컨버터나 인버터 등으로 구성되는 전력 변환 장치는, 모터(전동기)의 제어에 사용되고 있다. 그리고, 전력 변환 장치에 의해 제어되는 전동기는, 공조기, 냉장고 등에 사용되고 있다.
이러한 전력 변환 장치는, 스위칭 소자의 동작 등에 기인하여 전원선을 타고 전파되어 다른 전자 기기에 영향을 주는 전도성 노이즈를 발생시킨다. 전도성 노이즈에는, 전원선 사이에서 왕복하는 노멀 모드(차동 모드, 디퍼런셜 모드)의 전도성 노이즈(전도성 노멀 모드 노이즈)와, 전원선과 접지(그라운드) 사이에서 전해지는 공통 모드의 전도성 노이즈(전도성 공통 모드 노이즈)가 있다.
특허문헌 1은, 제1 전기 장치와 제2 전기 장치 사이에 접속선을 통하여 삽입되어 연결되는 누설 전류 저감 장치를 개시한다. 이러한 누설 전류 저감 장치는 전압 검출 수단, 입력측 필터, 전압 증폭기 및 전압 인가 수단을 포함한다.
여기서 전압 검출 수단은 주 권선과 누설 전류 검출용 권선을 포함한다. 그리고 주 권선은 접속선을 통하여 제1 전기 장치와 제2 전기 장치 사이에 삽입되어 연결되고, 누설 전류 검출용 권선에 의해 접속선을 흐르는 누설 전류를 검출 전압으로서 검출한다.
입력측 필터는 검출 전압이 입력되고, 검출 전압의 주파수별 크기와 위상을 조정해서 출력한다.
전압 증폭기는 입력측 필터의 출력을 증폭해서 출력 전압으로서 출력한다.
전압 인가 수단은 전압 증폭기의 출력 전압에 기초하여 접속선에 누설 전류를 저감하기 위한 인가 전압을 발생시킨다.
[특허문헌1]일본 특허 제 5528543호 공보
전도성 노이즈의 레벨은, 국제 무선 장해 특별위원회CISPR(Comite International Special des Perturbations Radioelectriques)의 규격에 의해 규제되고 있다. 이 때문에, 전도성 노이즈를 허용값 이하로 억제하는 기술이 요구되고 있다.
그러나, 전원선에 직렬로 삽입된 코일에 전류를 흘려서 전도성 공통 모드 노이즈를 억제할 경우, 코일에 전류를 흘리는 증폭 회로의 지연에 의한 위상차에 의해, 고주파 성분에서 전도성 공통 모드 노이즈를 반대로 악화시킬 우려가 있다.
본 발명의 목적은, 전도성 공통 모드 노이즈의 주파수에 의한 노이즈 악화가 억제된 전도성 노이즈 억제 장치를 제공하는 데 있다.
이러한 목적 하에, 본 발명이 적용되는 전도성 노이즈 억제 장치는, 교류를 공급하는 전원선에 흐르는 공통 모드의 노이즈 전류를 검출하는 전류 검출 수단을 구비한다. 또한, 상기 전원선에 직렬로 삽입된 전원선 코일과, 전원선 코일에 자기 결합하는 결합 코일을 갖고, 결합 코일에 공급되는 전류에 의해 상기 노이즈 전류를 억제하는 노이즈 억제 수단을 구비한다. 그리고, 상기 전류 검출 수단에 의해 검출된 상기 노이즈 전류와, 상기 노이즈 억제 수단에 있어서의 상기 결합 코일에 발생하는 전압으로 설정되는 전류를 결합 코일에 공급하는 전류 공급 수단을 구비한다.
이러한 전도성 노이즈 억제 장치에 있어서, 상기 전류 공급 수단은, 상기 결합 코일과 결합 코일에 직렬 접속된 저항의 접속점의 전압에 대한 의존성이 억제된 전류를, 저항을 통하여 결합 코일에 공급하는 것을 특징으로 할 수 있다.
또한, 상기 노이즈 억제 수단은, 상기 결합 코일에 흐르는 전류에 의해 상기 전원선 코일에 유도되는 전류가, 공통 모드의 노이즈 전류를 저감시키도록 상기 전원선의 임피던스를 변화시키는 것을 특징으로 할 수 있다.
그리고, 전류 검출 수단은, 상기 전원선에 직렬로 삽입된 다른 전원선 코일과, 다른 전원선 코일에 자기 결합해서 공통 모드의 상기 노이즈 전류를 검출하는 검출 코일을 구비하는 것을 특징으로 할 수 있다.
또한, 다른 관점에서 보면, 본 발명이 적용되는 전력 변환 장치는, 교류를 공급하는 전원선에 흐르는 공통 모드의 노이즈 전류를 억제하는 억제부를 구비한다. 또한, 공급되는 교류를 정류해서 맥류를 출력하는 정류부와, 상기 정류부의 출력하는 맥류를 평활화시켜서 직류를 생성하는 평활화부를 구비한다. 또한, 상기 평활화부의 출력하는 직류를 스위칭하여, 접속되는 부하에 공급하는 교류를 출력하는 인버터부를 구비한다.
그리고, 상기 억제부는, 상기 전원선에 흐르는 공통 모드의 상기 노이즈 전류를 검출하는 전류 검출 수단을 구비한다. 또한, 상기 전원선에 직렬로 삽입된 전원선 코일과, 전원선 코일에 자기 결합하는 결합 코일을 갖고, 결합 코일에 공급되는 전류에 의해 상기 노이즈 전류를 억제하는 노이즈 억제 수단을 구비한다. 또한, 상기 전류 검출 수단에 의해 검출된 상기 노이즈 전류와, 상기 노이즈 억제 수단에 있어서의 상기 결합 코일에 발생하는 전압으로 설정되는 전류를 결합 코일에 공급하는 전류 공급 수단을 구비한다.
또 다른 관점으로부터 보면, 본 발명이 적용되는 모터 장치는, 교류를 공급하는 전원선에 흐르는 공통 모드의 노이즈 전류를 억제하는 억제부를 구비한다. 또한, 공급되는 교류를 정류해서 맥류를 출력하는 정류부와, 상기 정류부의 출력하는 맥류를 평활화시켜서 직류를 생성하는 평활화부를 구비한다. 또한, 상기 평활화부의 출력하는 직류를 스위칭하여, 교류를 출력하는 인버터부와, 상기 인버터부에 접속되고, 인버터부가 출력하는 교류에 의해 구동되는 모터를 구비한다.
그리고, 상기 억제부는, 상기 전원선에 흐르는 공통 모드의 상기 노이즈 전류를 검출하는 전류 검출 수단을 구비한다. 또한, 상기 전원선에 직렬로 삽입된 전원선 코일과, 전원선 코일에 자기 결합하는 결합 코일을 갖고, 결합 코일에 공급되는 전류에 의해 상기 노이즈 전류를 억제하는 노이즈 억제 수단을 구비한다. 또한, 상기 전류 검출 수단에 의해 검출된 상기 노이즈 전류와, 상기 노이즈 억제 수단에 있어서의 상기 결합 코일에 발생하는 전압으로 설정되는 전류를 결합 코일에 공급하는 전류 공급 수단을 구비한다.
본 발명에 따르면, 전도성 공통 모드 노이즈의 주파수에 의한 노이즈 악화를 억제하기 위한 전도성 노이즈 억제 장치 등을 제공할 수 있다.
도 1은 제1 실시 예에 따른 모터 장치의 일례를 도시하는 도면이다.
도 2는 억제부의 회로 구성의 일례를 도시하는 도면이다.
도 3은 공통 모드 노이즈의 억제 효과를 설명하는 도면이다.
도 4는 제2 실시 예에 따른 모터 장치를 도시하는 도면이다.
도 5는 제3 실시 예에 따른 모터 장치를 도시하는 도면이다.
이하, 첨부 도면을 참조하여, 본 발명의 실시 형태에 대해서 상세하게 설명한다. 본 발명의 실시 형태에서 설명하는 모터 장치는, 예를 들어 에어컨이나 냉장고 등의 압축기에 마련될 수 있다.
[제1 실시 형태]
(모터 장치)
도 1은, 제1 실시 예에 따른 모터 장치 1의 일례를 도시하는 도면이다.
모터 장치(1)는, 중성상(N상)을 구비한 삼상 4선식 교류 전원(2)에 접속될 수 있다.
여기에서는, 제1상에서 제3상을, R상, S상, T상으로 표기한다. 또한, 교류 전원(2)으로부터 R상, S상, T상 및 N상을 공급하는 전원선을, R상의 전원선(141), S상의 전원선(142), T상의 전원선(143) 및 N상의 전원선(144)으로 표기한다. 상을 구별하지 않는 경우에는 전원선(140)으로 표기한다. 또한, 후술하는 제1 코일부(110) 및 제2 코일부(120)에 있어서의 코일이 직렬로 삽입되어 있어도 마찬가지로 전원선(140)으로 표기한다.
모터 장치(1)는 전력 변환 장치(10)와 모터(전동기)(20)를 포함한다.
모터(20)는 후술하는 바와 같이 전력 변환 장치(10)의 인버터부(400)가 공급하는 삼상 교류에 의해 구동될 수 있다.
모터(20)는 예를 들어 DC 브러시리스 모터일 수 있다. 또한, 모터(20)는 다른 종류의 삼상 교류 모터일 수도 있다.
전력 변환 장치(10)는 전도성 노이즈를 억제하는 억제부(100), 교류 전원(2)으로부터 공급되는 교류를 직류로 정류하는 정류부(200)를 포함한다.
또한, 전력 변환 장치(10)는, 정류부(200)로부터 출력된 직류를 평활화하는 평활화부(300)와, 평활화된 직류를 삼상 교류로 변환하여, 모터(20)에 공급하는 인버터부(400)를 포함한다.
도 1에 도시한 바와 같이, 억제부(100), 정류부(200), 평활화부(300) 및 인버터부(400)의 일부 단자는 접지되어 있다. 여기서, 접지란, 전위가 기준 전위로 설정되는 것을 말한다.
전력 변환 장치(10)는 교류 전원(2)측으로부터 억제부(100), 정류부(200), 평활화부(300), 인버터부(400)가 순서대로 접속되어 있다. 그리고, 인버터부(400)가 모터(20)에 접속되어 있다.
억제부(100)는 주로 전도성 공통 모드 노이즈(이하, 공통 모드 노이즈로 기재함)를 억제하지만, 전도성 노멀 모드 노이즈도 억제한다. 즉, 억제부(100)는 전도성 노이즈를 억제한다. 억제부(100)에 대해서는, 나중에 상세하게 설명한다.
또한, 억제부(100)는, 전도성 노이즈 억제 장치의 일례이다.
정류부(200)는, 예를 들어 6개의 정류 다이오드(D1 내지 D6)로 구성되는 다이오드 브리지를 포함한다. 6개의 정류 다이오드(D1 내지 D6)는, 교류 전원(2)으로부터 공급되는 교류를 직류로 정류한다. 정류 다이오드(D1 내지 D6)를 각각 구별하지 않을 때는, 정류 다이오드(D)로 표기한다.
평활화부(300)는 평활 콘덴서(평활 캐패시터, Cs)를 포함한다.
평활 콘덴서(Cs)는 정류부(200)에서 정류된 직류의 고전압측의 배선(도 1에 있어서의 상측의 배선)과 기준 전압측의 배선(도 1에 있어서의 하측의 배선) 사이에 접속되어 있다.
인버터부(400)는 스위칭 소자(St)와 귀환 다이오드(Df)를 각각 갖는 6개의 스위칭 회로(SC1 내지 SC6)를 포함한다. 또한, 스위칭 회로(SC1 내지 SC6)를 구별하지 않을 경우에는, 스위칭 회로(SC)로 표기한다.
이러한 스위칭 회로는, 상부 아암의 스위칭 회로(SC1)와 하부 아암의 스위칭 회로(SC2)가 직렬 접속되어 있고, 접속점이 모터(20)의 단자에 접속되어 있다.
그리고, 직렬 접속된 상부 아암의 스위칭 회로(SC1)와 하부 아암의 스위칭 회로(SC2)는, 고전압측의 배선과 기준 전압측의 배선 사이에 설치되어 있다. 다른 스위칭 회로(SC3 내지 SC6)도 마찬가지로 접속되어 있다.
또한, 스위칭 소자(St)는, 전력용 전계 효과 트랜지스터, 절연 게이트 바이폴라 트랜지스터(IGBT(Insulated Gate Bipolar Transistor))일 수 있다.
제1 실시 예에 따른 모터 장치(1)의 동작을 설명한다.
상용 교류 전원(2)은, 전도성 노이즈를 억제하는 억제부(100)를 통하여, 교류 전압을 정류부(200)에 공급한다. 정류부(200)는 브리지 형상으로 접속된 정류 다이오드(D1 내지 D6)에 의해, 교류 전원(2)으로부터 공급된 교류 전압을 직류 전압으로 정류해서 맥류를 생성한다. 평활화부(300)는 평활 콘덴서(Cs)를 이용하여 정류부(200)로부터의 맥류를 평활화한 직류를 생성한다. 인버터부(400)는 스위칭 회로(SC)의 스위칭 소자(St)의 온·오프 제어에 의해, 평활화부(300)에서 평활화된 직류를 교류로 변환하여 모터(20)에 공급한다.
도 1에는, 스위칭 소자(St)의 온·오프를 제어하는 제어부의 도시가 생략되어 있다.
(억제부100)
억제부(100)는 전원선(140)에 흐르는 공통 모드 노이즈를 검출하고, 검출된 공통 모드 노이즈에 대응하는 신호를 기초로 피드백함으로써, 공통 모드 노이즈를 억제하는 액티브형 전도성 노이즈 억제 회로이다. 또한, 억제부(100)를 기준으로, 교류 전원(2)측을 상류측으로 표기하고, 정류부(200)측을 하류측으로 표기한다.
억제부(100)는 제1 코일부(110), 제2 코일부(120) 및 전류 공급부(130)를 포함한다.
제1 코일부(110)와 제2 코일부(120)는, 교류 전원(2)측으로부터 순서대로 전원선(140)에 직렬로 접속되어 있다. 즉, 제1 코일부(110)가 교류 전원(2)에 접속되어 있고, 제2 코일부(120)가 정류부(200)에 접속되어 있다.
전류 공급부(130)는 제1 코일부(110)(후술하는 검출 코일(L1A))와 제2 코일부(120)(후술하는 결합 코일(L2A))에 접속되도록 제1코일부와 제2코일부에 연결되어 있다. 또한, 도 1의 전류 공급부(130)는, 전류 공급부(130)의 동작을 설명하기 위한 개념도이다.
제1 코일부(110)는 전류 검출 수단의 일 예이고, 제2 코일부(120)는 노이즈 억제 수단의 일 예이며, 전류 공급부(130)는 전류 공급 수단의 일 예이다.
제1 코일부(110)는 R상, S상, T상, N상의 각 전원선(141 내지 144)에 각각 직렬로 접속된 코일(즉 권선)(L1R, L1S, L1T, L1N)을 포함한다. 또한, 제1 코일부(110)는 코일(L1R, L1S, L1T, L1N)과 자기적으로 결합(즉 자기 결합)되고, 공통 모드 노이즈를 검출하는 검출 코일(L1A)을 포함한다.
여기에서는, 코일(L1R, L1S, L1T, L1N)을 각각 구별하지 않을 때는, 코일(L1)로 표기한다. 또한, 검출 코일(L1A)를 포함하는 코일(L1)로 표기하는 경우도 있다.
여기서 코일이란, 인덕터를 구성하는 것으로 나선(루프) 형상으로 감긴 도선을 말한다.
코일(L1R, L1S, L1T, L1N)은, 전원선 코일의 일 예이다.
코일(L1R, L1S, L1T, L1N)은 전원선(141 내지 144)의 일부를 구성하는 도선(와이어)으로, 예를 들어 1개의 토로이달 코어에 권회되어 구성될 수 있다.
토로이달 코어는 단면이 원형인 원환 형상(도넛 형상)의 페라이트 등의 자성체를 포함한다. 토로이달 코어는 철심으로 불리는 경우도 있다.
또한, 토로이달 코어는 원환 형상 이외에 사각형이나 삼각형 등 다각형의 프레임 형상으로 마련될 수도 있다. 아울러, 토로이달 코어는 단면이 사각형이나 삼각형 등의 형상으로 마련되는 것도 가능하다.
그리고, 코일(L1R, L1S, L1T, L1N)은, 1개의 토로이달 코어에 서로 인접하도록 권회되어 있다. 따라서, 코일(L1R, L1S, L1T, L1N)은, 서로 자기 결합될 수 있다. 또한, 코일(L1R, L1S, L1T, L1N)은, 도 1에 "ㆍ" 으로 나타내는 극성으로 권회되는 것도 가능하다.
그리고, 검출 코일(L1A)은 코일(L1R, L1S, L1T, L1N)에 자기 결합되도록 설치될 수 있다. 검출 코일(L1A)은, 예를 들어 1개의 토로이달 코어에 코일(L1R, L1S, L1T, L1N)과 인접하도록 권회될 수 있다. 또한, 1개의 토로이달 코어에 코일(L1R, L1S, L1T, L1N)이 서로 인접하도록 권회되고, 검출 코일(L1A)이 코일(L1R, L1S, L1T, L1N)에 겹치도록 권회되는 것도 가능하다. 또한, 검출 코일(L1A)은 도 1에 "ㆍ" 로 나타내는 극성으로 되도록 권회될 수도 있다.
검출 코일(L1A)의 일 측의 단자는, 후술하는 전류 공급부(130)에 접속되어 있다. 그리고, 검출 코일(L1A)의 다른 측의 단자는 접지되어 있다.
코일(L1R, L1S, L1T, L1N)은 전술한 바와 같이, 교류 전원(2)의 전류가 흐르는 전원선(141 내지 144)의 일부일 수 있다.
코일(L1R, L1S, L1T, L1N)은 흐르는 전류에 대응하는 굵기의 도선(와이어)으로 구성될 수 있다. 한편, 검출 코일(L1A)에는 후술하는 바와 같이, 코일(L1R, L1S, L1T, L1N)에 흐르는 공통 모드 노이즈에 의해 유도(유기)된 전류가 흐른다. 따라서, 검출 코일(L1A)은, 공통 모드 노이즈에 의해 유도되는 전류를 흘릴 수 있는(즉 검출할 수 있는) 굵기의 도선(와이어)으로 구성될 수 있다.
코일(L1R, L1S, L1T, L1N)에 흐르는 공통 모드 노이즈를, 공통 모드 노이즈 전류라 표기한다. 또한, 노이즈 전류로 표기하는 경우도 있다.
또한, 코일(L1R, L1S, L1T, L1N)은, 동일한 인덕턴스를 가질 수 있다.
공통 모드 노이즈 전류는 인버터부(400)의 스위칭 소자(St)의 스위칭에 의해, 모터(20)등의 부유 용량을 통하여, 접지로 누설되는 고주파 전류이다.
따라서, 공통 모드 노이즈 전류는 R상, S상, T상, N상의 전원선(141 내지 144)과 접지(접지) 사이에서 동일한 방향으로, 동일한 위상으로 흐른다.
인덕터인 코일(L1R, L1S, L1T, L1N)은 고주파 신호인 공통 모드 노이즈 전류에 대하여 저항으로서 작용한다. 따라서, 코일(L1R, L1S, L1T, L1N)은 공통 모드 노이즈를 억제(저감)한다. 이러한 코일(L1R, L1S, L1T, L1N)은 공통 모드 노이즈를 모두 억제할 수 없다.
공통 모드 노이즈 전류가 코일(L1R, L1S, L1T, L1N)에 흐르면, 토로이달 코어를 통하여 검출 코일(L1A)에는 공통 모드 노이즈 전류에 비례하는 전류가 유도된다.
즉, 제1 코일부(110)와 검출 코일(L1A)은 전류 트랜스로서의 기능을 수행하고, 공통 모드 노이즈 전류를 검출하는 검출 트랜스로서의 기능을 수행한다.
제2 코일부(120)는 R상, S상, T상, N상의 각 전원선(141 내지 144)에 각각 직렬로 접속된 코일(L2R, L2S, L2T, L2N)을 포함한다. 또한, 제2코일부(120)는 코일(L2R, L2S, L2T, L2N)과 자기 결합된 결합 코일(L2A)을 포함한다.
코일(L2R, L2S, L2T, L2N)을 각각 구별하지 않을 때는, 코일(L2)로 표기한다. 또한, 결합 코일(L2A)을 포함하는 코일(L2)로 표기하기도 한다.
코일(L2R, L2S, L2T, L2N)은, 다른 전원선 코일의 일 예이다.
코일(L2R, L2S, L2T, L2N)은, 전원선(141 내지 144)의 일부를 구성하는 도선(와이어)으로, 제1 코일부(110)의 코일(L1R, L1S, L1T, L1N)과 마찬가지이다.
즉, 다른 1개의 토로이달 코어에 권회되어 구성될 수 있다. 따라서, 코일(L2R, L2S, L2T, L2N)은 서로 자기 결합될 수 있다. 또한, 코일(L2R, L2S, L2T, L2N)은, 도 1에 "ㆍ" 로 나타내는 극성으로 되도록 권회될 수 있다.
결합 코일(L2A)은 코일(L2R, L2S, L2T, L2N)에 자기 결합되도록 설치될 수 있다.
결합 코일(L2A)은, 제1 코일부(110)의 검출 코일(L1A)과 유사 또는 동일하게 마련될 수 있다.
즉 결합 코일(L2A)은 다른 1개의 토로이달 코어에 코일(L2R, L2S, L2T, L2N)과 인접하도록 권회될 수 있다. 또한, 다른 1개의 토로이달 코어에 코일(L2R, L2S, L2T, L2N)이 서로 인접하도록 권회될 수 있고, 결합 코일(L2A)이 코일(L2R, L2S, L2T, L2N)에 겹치도록 권회되는 것도 가능하다. 또한, 결합 코일(L2A)은 도 1에 "ㆍ" 로 나타내는 극성으로 되도록 권회될 수 있다.
결합 코일(L2A)의 일 측의 단자는 후술하는 전류 공급부(130)에 접속될 수 있고, 결합 코일(L2A)의 다른 측의 단자는 접지될 수 있다.
코일(L2R, L2S, L2T, L2N)은 전술한 바와 같이, 교류 전원(2)으로부터 전류가 흐르는 전원선(141 내지 144)의 일부일 수 있다. 따라서 코일(L2R, L2S, L2T, L2N)은 흐르는 전류에 대응하는 굵기의 도선(와이어)으로 구성될 수 있다.
한편, 결합 코일(L2A)에는 후술하는 바와 같이, 전류 공급부(130)에서 증폭된 전류가 흐른다. 따라서, 결합 코일(L2A)은 전류 공급부(130)에서 증폭된 전류를 흘릴 수 있는 굵기의 도선(와이어)으로 구성될 수 있다.
또한, 코일(L2R, L2S, L2T, L2N)은 동일한 인덕턴스를 가질 수 있다.
인덕터인 코일(L2R, L2S, L2T, L2N)은 제1 코일부(110)의 코일(L1R, L1S, L1T, L1N)과 동일 또는 유사하게 구현될 수 있다. 즉, 인덕터인 코일(L2R, L2S, L2T, L2N)은 공통 모드 노이즈 전류에 대하여 저항으로서 작용할 수 있다. 따라서, 코일(L2R, L2S, L2T, L2N)은, 공통 모드 노이즈를 억제(저감)할 수 있다. 아울러, 제1 코일부(110)와 같이 제2 코일부(120)에서도, 공통 모드 노이즈를 모두 억제할 수 없다.
전류 공급부(130)는 증폭 회로(131, 132), 가산 회로(133) 및 저항(R0)을 포함한다.
증폭 회로(131)의 입력 단자는 검출 코일(L1A)의 일 측의 단자에 접속될 수 있다. 또한, 검출 코일(L1A)의 다른 측의 단자는 접지될 수 있다.
증폭 회로(132)의 입력 단자는 결합 코일(L2A)의 일 측의 단자에 접속될 수 있다. 또한, 결합 코일(L2A)의 다른 측의 단자는 접지될 수 있다.
가산 회로(133)는 두 개의 입력 단자를 포함한다. 가산 회로(133)의 두 개의 입력 단자의 각각에는 증폭 회로(131)의 출력 단자와 증폭 회로(132)의 출력 단자가 접속될 수 있다.
그리고 가산 회로(133)의 출력 단자는 저항(R0)의 일 측의 단자에 접속될 수 있다. 그리고, 저항(R0)의 다른 측의 단자는 결합 코일(L2A)의 일 측의 단자에 접속될 수 있다.
이하 억제부(100)의 동작을 설명한다.
억제부(100)는 검출 코일(L1A)에서 검출된 공통 모드 노이즈 전류에 기초하여, 결합 코일(L2A)에 흘리기 위한 전류를 설정한다.
결합 코일(L2A)에 흐르는 전류에 의해, 결합 코일(L2A)과 자기 결합하는 제2 코일부(120)의 코일(L2R, L2S, L2T, L2N)에 전류가 유도된다. 즉, 결합 코일(L2A)에 전류가 흐름으로써, 제2 코일부(120)의 코일(L2R, L2S, L2T, L2N)을 통하여, 전원선(141 내지 144)에 전류가 흐르게 된다.
따라서, 전원선(141 내지 144)에는 교류 전원(2)의 전류에, 결합 코일(L2A)에 의해 유도된 전류가 중첩된다. 즉, 전원선(141 내지 144)의 임피던스가 변화하게 된다. 이때, 결합 코일(L2A)에 의해 유도되는 전류의 방향이, 공통 모드 노이즈 전류에 대하여 역방향이 되도록 함으로써 공통 모드 노이즈 전류가 억제되도록 할 수 있다.
그리고, 후술하는 바와 같이, 결합 코일(L2A)에서 발생하는 전압이 전류 공급부(130)에 피드백됨으로써, 결합 코일(L2A)에 의해 제2 코일부(120)의 코일(L2R, L2S, L2T, L2N)에 유도되는 전류는, 공통 모드 노이즈 전류를 추종할 수 있다.
즉, 결합 코일(L2A)에 의해 제2 코일부(120)의 코일(L2R, L2S, L2T, L2N)에 유도되는 전류는, 공통 모드 노이즈 전류의 크기, 주파수 및 위상을 추종한다. 결합 코일(L2A)에 의해 제2 코일부(120)의 코일(L2R, L2S, L2T, L2N)에 유도되는 전류는, 공통 모드 노이즈 전류와의 사이에 있어서 위상차가 발생하기 어렵고, 주파수 의존성이 억제된다(작다). 따라서, 공통 모드 노이즈 전류가 효율적으로 억제되고, 공통 모드 노이즈 전류 이외의 전류를 저해하기 어렵다.
한편, 제2 코일부(120)의 코일(L2R, L2S, L2T, L2N)에 유도되는 전류와 공통 모드 노이즈 전류 간에 위상차가 발생하면, 주파수에 의해 노이즈를 반대로 악화시킨다. 특히 고주파 성분에 있어서, 노이즈를 반대로 악화시킨다.
즉, 제2 코일부(120)의 코일(L2R, L2S, L2T, L2N)에 유도되는 전류와 공통 모드 노이즈 전류 간 위상차 발생을 어렵게 함으로써, 주파수에 의한 노이즈 악화를 억제시킨다.
결합 코일(L2A)에 공통 모드 노이즈 전류를 억제하는 전류를 흘리기 위한 과정은 다음과 같다.
먼저, 제1 코일부(110)의 검출 코일(L1A)을 이용하여 R상, S상, T상, N상의 전원선(141 내지 144)의 공통 모드 노이즈 전류를 검출한다.
검출 코일(L1A)에서 검출되는 전압(VCT)(이하, 검출 전압(VCT))은, 전류 공급부(130)의 증폭 회로(131)의 입력 단자에 입력된다. 증폭 회로(131)는 입력 단자에 입력된 검출 전압(VCT)을 α배(증폭률(α))한 출력(αㆍVCT)을 출력 단자를 통해 출력한다.
한편, 결합 코일(L2A)의 양단에서 검출되는 전압(VL)(이하, 결합 전압(VL))은 증폭 회로(132)의 입력 단자에 입력된다. 증폭 회로(132)는 입력 단자에 입력된 결합 전압(VL)을 β배(증폭률(β))한 출력(βㆍVL)을 출력 단자를 통해 출력한다.
가산 회로(133)는 증폭 회로(131)의 출력(αㆍVCT)과 증폭 회로(132)의 출력(βㆍVL)을 가산하여, 출력(V0)을 출력한다. 즉, 출력(V0)은, 식(1)로 표현된다.
여기서, 저항(R0)에 전류(I0)가 흐른다고 가정한다. 이때 전류(I0)는, 식(2)로 표현된다.
식(1)과 식(2)로부터, 전류(I0)는, 식(3)으로 표현될 수 있다.
Figure PCTKR2018005264-appb-I000001
-(식1)
Figure PCTKR2018005264-appb-I000002
-(식2)
Figure PCTKR2018005264-appb-I000003
-(식3)
여기서, β=1로 하면, 식3은, 식4로 표현할 수 있다. 전류(I0)는 결합 전압(VL)에 의존하지 않는다. 즉, 전류(I0)는 전류원으로부터 출력되는 전류(정전류)일 수 있다. 즉, 전류 공급부(130)는 전류원(정전류원)으로서 기능을 수행할 수 있다.
Figure PCTKR2018005264-appb-I000004
-(식4)
이와 같이 전류 공급부(130)가 전류원의 기능을 수행함으로써, 결합 코일(L2A)은 전원선(141 내지 144)의 부하로 작용하지 않는다.
따라서, 전원선(141 내지 144)의 임피던스가 저하되기 어렵고, 전원선(141 내지 144)의 임피던스에 영향을 주기 어렵다. 즉, 결합 전압(VL)이 변동해도 결합 코일(L2A)에 흐르는 전류의 변동이 억제될 수 있다. 따라서, 코일(L2R, L2S, L2T, L2N)에 유도되는 전류의 변동이 억제될 수 있다.
이에 대해, 전압원에 의해 결합 코일(L2A)에 전류를 흘릴 때, 결합 코일(L2A)의 임피던스를 작게 해야 한다. 따라서, 결합 코일(L2A)은 교류적으로 접지됨으로써, 전원선(141 내지 144)의 임피던스를 저하시킬 수 있다.
이상 설명한 바와 같이, 제1 실시 예에서는, 억제부(100)를 설치하고, 제1 코일부(110)의 검출 코일(L1A)에 의해 공통 모드 노이즈 전류를 검출한다. 그리고, 제2 코일부(120)의 결합 코일(L2A)에 공통 모드 노이즈 전류를 억제하기 위한 전류를 흘림으로써, 공통 모드 노이즈 전류를 억제한다.
그리고, 억제부(100)의 전류 공급부(130)는 전류원으로서 기능을 수행함으로써, 결합 코일(L2A)에 유도되는 결합 전압(VL)에 의존하지 않고, 전류(I0)을 흘리도록 할 수 있다.
도 2는 억제부(100)의 회로 구성의 일례를 도시하는 도면이다.
억제부(100)는 제1 코일부(110)의 검출 코일(L1A)의 양쪽 단자 사이에 설치된 저항(R1)을 포함한다. 억제부(100)는 저항(R1)을 이용하여 검출 코일(L1A)에 흐르는 전류를 전압으로 변환한다.
또한, 억제부(100)는 제2 코일부(120)의 결합 코일(L2A)의 양쪽 단자 사이에 설치되고, 직렬 접속된 저항(R2)과 콘덴서(C1)를 갖는 스너버 회로(Snubber circuit)를 포함한다. 여기서 스너버 회로는 억제부(100)가 억제 대상으로 하는 공통 모드 노이즈 전류의 주파수 대역보다 높은 주파수 대역의 노이즈를 제거한다.
또한, 전류 공급부(130)에는 전원 회로(미도시)로부터, +의 전압(+V)과 -의 전압(-V)이 공급된다. 즉, 전류 공급부(130)는, +의 전압(+V)과 -의 전압(-V)이 공급됨으로써 동작한다. 이하에서는, +의 전압(+V)을 전원(+V)으로, -의 전압(-V)을 전원(-V)으로 표기한다.
전류 공급부(130)는 도 1 의 증폭 회로(131)와 증폭 회로(132)를 포함하는 증폭 회로(134), 저항(R0) 및 연산증폭기(OP1, OP2)를 포함한다. 또한, 증폭 회로(134)는 전류 출력 회로(135)을 더 포함한다.
연산증폭기(OP1)의 -로 나타내는 반전 입력 단자(이하 - 입력 단자라 함)는 연산증폭기(OP1)의 출력 단자에 접속되어 있다. 또한, +로 나타내는 비반전 입력 단자(이하 + 입력 단자라 함)는 결합 코일(L2A)의 일 측의 단자에 접속되어 있다. 즉, 연산증폭기(OP1)에는 결합 코일(L2A)에서 발생된 결합 전압(VL)이 입력된다.
연산증폭기(OP1)는 증폭률 1의 전압 추종 회로를 포함하고, 입력 임피던스를 높게 하고, 회로 사이를 분리한다. 여기에서는, 연산증폭기(OP1)의 출력도 결합 전압(VL)으로 표기한다.
연산증폭기(OP2)의 - 입력 단자는 연산증폭기(OP2)의 출력 단자에 접속되어 있다. 또한, + 입력 단자는, 검출 코일(L1A)의 일 측의 단자에 접속되어 있다. 즉, 연산증폭기(OP2)에는 검출 코일(L1A)에서 발생된 검출 전압(VCT)이 입력된다. 연산증폭기(OP2)는 증폭률 1의 전압 추종 회로를 포함하고, 입력 임피던스를 높게 하고, 회로 사이를 분리한다. 여기에서는 연산증폭기(OP2)의 출력도 검출 전압(VCT)으로 표기한다.
증폭 회로(134)는 연산증폭기(OP3), 저항(R3 내지 R6) 및 전류 출력 회로(135)를 포함한다.
연산증폭기(OP3)의 + 입력 단자는 저항(R3)을 통하여 연산증폭기(OP2)의 출력 단자에 접속됨과 동시에, 저항(R4)을 통하여 연산증폭기(OP1)의 출력 단자에 접속되어 있다. 연산증폭기(OP3)의 - 입력 단자는 저항(R5)을 통하여 접지됨과 동시에, 저항(R6)을 통하여 연산증폭기(OP3)의 출력 단자에 접속되어 있다.
즉, 연산증폭기(OP3)는 비반전 증폭기로서의 기능을 수행하고, + 입력 단자에 연산증폭기(OP1)의 출력(결합 전압(VL))과 연산증폭기(OP2)의 출력(검출 전압(VCT))이 가산된 신호가 입력될 수 있다.
또한, 도 1에 있어서의 증폭률(α)은 식(5)로 표현될 수 있고, 증폭률(β)은 식(6)으로 표현될 수 있다. 그리고 증폭률(β)이 1로 되도록 하는 저항(R2, R3, R4, R5, R6)이 설정되어 있다.
Figure PCTKR2018005264-appb-I000005
-(식5)
Figure PCTKR2018005264-appb-I000006
-(식6)
전류 출력 회로(135)는 연산증폭기(OP4), 복수 개의 스위치 소자 및 저항(R7 내지 R16)을 포함한다. 여기서 복수 개의 스위치 소자는 pnp 바이폴라 트랜지스터(Tr1, Tr2)(이하, 트랜지스터(pnpTr1, pnpTr2)라 함), npn 바이폴라 트랜지스터(Tr1, Tr2)(이하, 트랜지스터(npnTr1, npnTr2)라 함)를 포함한다.
연산증폭기(OP4)의 + 입력 단자는 연산증폭기(OP3)의 출력 단자에 접속될 수 있다. 연산증폭기(OP4)의 - 입력 단자는 전류 출력 회로(135)의 출력 단자(후술하는 저항(R15)과 저항(R16)의 접속점)에 접속될 수 있다. 즉, 연산증폭기(OP4)는 전압 추종 회로를 포함하고, 연산증폭기(OP4)로부터 출력되는 전압을 증폭률 1로 출력한다. 즉, 연산증폭기(OP4)는, 입력 임피던스를 높게 하고, 회로 사이를 분리한다.
트랜지스터(pnpTr1)의 콜렉터는 트랜지스터(npnTr1)의 콜렉터에 접속되어 있다. 또한, 트랜지스터(npnTr2)의 이미터는 트랜지스터(pnpTr2)의 이미터에 접속되어 있다.
트랜지스터(pnpTr1)의 베이스는, 저항(R7)을 통하여 연산증폭기(OP4)의 출력 단자에 접속됨과 동시에, 저항(R8)을 통하여 전원(+V)에 접속되어 있다. 트랜지스터(npnTr1)의 베이스는 저항(R9)을 통하여 연산증폭기(OP4)의 출력 단자에 접속됨과 동시에, 저항(R10)을 통하여 전원(-V)에 접속되어 있다.
트랜지스터(pnpTr1)의 이미터는 저항(R11)을 통하여 트랜지스터(npnTr2)의 베이스에 접속됨과 동시에, 저항(R12)을 통하여 전원(+V)에 접속되어 있다. 트랜지스터(npnTr1)의 이미터는 저항(R13)을 통하여 트랜지스터(pnpTr2)의 베이스에 접속됨과 동시에, 저항(R14)을 통하여 전원(-V)에 접속되어 있다.
트랜지스터(npnTr2)의 이미터는 저항(R15, R16)을 통하여, 트랜지스터(pnpTr2)의 이미터와 접속되어 있다. 트랜지스터(npnTr2)의 콜렉터는 전원(+V)에 접속되어 있다. 트랜지스터(pnpTr2)의 콜렉터는 전원(-V)에 접속되어 있다.
저항(R0)의 일 측의 단자는 저항(R15)과 저항(R16)의 접속점에 접속됨과 동시에, 연산증폭기(OP4)의 - 입력 단자에 접속되어 있다. 저항(R0)의 다른 측 단자는 결합 코일(L2A)의 일 측의 단자에 접속되어 있다.
이하 전류 공급부(130)의 동작을 설명한다.
전원선(140)에 공통 모드 노이즈 전류가 흐름으로써 검출 코일(L1A)에서 발생된 검출 전압(VCT)은, 증폭률 1의 연산증폭기(OP2)에 입력된다.
한편, 결합 코일(L2A)에서 발생된 결합 전압(VL)은, 증폭률 1의 연산증폭기(OP1)에 입력된다. 여기에서, 연산증폭기(OP1)의 출력도 결합 전압(VL)으로 표기한다.
증폭 회로(134)에는 검출 전압(VCT)과 결합 전압(VL)이 저항(R3, R4)을 통하여 인가된 검출 전압(VCT)과 결합 전압(VL)이 가산되고, 가산된 전압이 연산증폭기(OP3)에 입력된다.
그리고, 연산증폭기(OP3)의 출력이 연산증폭기(OP4)의 + 입력 단자에 입력된다. 연산증폭기(OP4)의 출력이 트랜지스터(pnpTr1) 및 트랜지스터(npnTr1) 각각의 베이스에 입력된다. 그러면, 트랜지스터(pnpTr1) 및 트랜지스터(npnTr1) 각각은, 항상 온 상태가 된다. 여기서, 각각의 온 상태(온저항)는 연산증폭기(OP4)의 출력에 따라 설정될 수 있다.
따라서, 저항(R12), 트랜지스터(pnpTr1), 트랜지스터(npnTr1), 저항(R14)을 경유하는 전류 패스가 형성된다. 그리고, 저항(R12)과 트랜지스터(pnpTr1)의 이미터의 접속점의 전압 및 트랜지스터(npnTr1)의 이미터와 저항(R14)의 접속점의 전압이 설정된다.
즉, 트랜지스터(pnpTr1), 트랜지스터(npnTr1), 저항(R7, R8, R9, R10)로 구성되는 회로는, 연산증폭기(OP4)의 출력 파형 왜곡을 개선하기 위해서 설치되어 있다. 또한, 연산증폭기(OP4)의 출력 파형 왜곡이 문제가 되지 않는 경우에는, 연산증폭기(OP4)의 출력 파형 왜곡을 개선하기 위한 회로의 설치가 생략될 수 있다.
그리고, 트랜지스터(npnTr2)와 트랜지스터(pnpTr2)는, 푸시풀 회로를 구성한다. 따라서, 트랜지스터(npnTr2)의 베이스 및 트랜지스터(pnpTr2)의 베이스가 모두 +가 되면, 트랜지스터(npnTr2)가 온으로 되고, 트랜지스터(pnpTr2)가 오프로 된다. 이에 의해, 전류(I0)가 전원(+V)으로부터 트랜지스터(npnTr2), 저항(R15), 저항(R0) 및 결합 코일(L2A)을 경유해서 접지에 흐른다.
반대로, 트랜지스터(npnTr2)의 베이스 및 트랜지스터(pnpTr2)의 베이스가 모두 -가 되면, 트랜지스터(npnTr2)가 오프로 되고, 트랜지스터(pnpTr2)가 온으로 된다. 이에 의해, 접지부터 결합 코일(L2A), 저항(R0), 저항(R16), 트랜지스터(pnpTr2)를 경유하여, 전원(-V)으로 흐르는 전류 패스가 형성된다.
또한, 도 2에 도시된 전류 공급부(130)의 회로 구성은 일 예이며, 다른 회로 구성으로 구현 가능하다. 즉, 전류 공급부(130)의 회로 구성은 결합 코일(L2A)에서 발생된 전압이 피드백되는 동시에, 결합 코일(L2A)에 전류원으로부터 전류를 공급하는 회로로 구현 가능하다.
도 3은, 공통 모드 노이즈의 억제 효과를 설명하는 도면이다.
도 3에는, 도 2에 도시된 억제부(100)를 구비하는 경우(억제부 유)와, 억제부(100)를 구비하지 않는 경우(억제부 무)의 공통 모드 노이즈의 억제 효과를 도시하고 있다. 횡축은, 주파수, 종축은 노이즈 레벨이다.
도 2에 도시된 바와 같이 억제부(100)를 시뮬레이션하고, 공통 모드 노이즈의 억제 효과를 조사했다. 이때 노이즈원으로서, 300kHz의 신호를 생성하는 회로를 사용했다.
도 3에 도시된 바와 같이, 억제부(100)를 구비함으로써, 300kHz의 노이즈 레벨을 25.8dB 저감시킬 수 있다.
[제2 실시 형태]
도 1에 도시한 제1 실시 형태의 모터 장치(1)는, 삼상 4선식의 교류 전원(2)으로부터 교류를 공급받는다. 하지만 제2 실시 형태의 모터 장치(1)는, 삼상 3선식의 교류 전원(2)으로부터 교류를 공급받는다.
도 4는, 제2 실시 예에 따른 모터 장치(1)을 도시하는 도면이다.
도 4에 도시한 바와 같이, 제2 실시 예의 모터 장치(1)는 도 1의 모터 장치(1)에 있어서, N상의 전원선(144)을 구비하지 않는다. 즉, 삼상 3선식의 교류 전원(2)을 포함한다.
다른 구성은, 도 1에 도시된 제1 실시 예에 따른 모터 장치(1)와 동일한 도면 부호를 부여하고 설명을 생략한다.
삼상 3선식의 교류 전원(2)을 사용하는 모터 장치(1)라도, 제1 실시 예에서 설명한 바와 같이, 억제부(100)를 구비함으로써, 전도성 노이즈를 억제할 수 있다.
[제3 실시 형태]
제1 실시 예에 따른 모터 장치(1) 및 제2 실시 예에 따른 모터 장치(1)는, 삼상의 교류 전원(2)으로부터 교류를 공급받았다.
제3 실시 예에 따른 모터 장치(1)는, 단상 2선식의 교류 전원(2)으로부터 교류를 공급받을 수 있다.
도 5는, 제3 실시 예에 따른 모터 장치(1)을 도시하는 도면이다.
도 5에 도시한 바와 같이, 제3 실시 예에 따른 모터 장치(1)는, 도 1의 모터 장치(1)와 같이 R상, S상을 대신하여 X상, Y상을 포함하고, T상, N상을 구비하지 않는다. 그리고, 정류부(200)는, 4개의 정류 다이오드(D1 내지 D4)를 포함한다. 즉, 단상 2선식의 교류 전원(2)를 공급받는다.
다른 구성은, 도 1에 도시된 제1 실시 예에 따른 모터 장치(1)와 동일하다. 이에 따라 동일한 부호를 부여하고 설명을 생략한다. 아울러, R을 X로, S를 Y로 치환하고 있다.
단상 2선식의 교류 전원(2)을 사용하는 모터 장치(1)라도, 제1 실시 예에서 설명한 바와 같이, 억제부(100)를 구비함으로써, 전도성 노이즈를 억제할 수 있다.
제1 실시 예로부터 제3 실시 예에 따른 모터 장치(1)나 전력 변환 장치(10)는, 교류 전원(2)과 정류부(200) 사이에 설치된 억제부(100)를 포함한다. 아울러 인버터부(400)와 모터(20) 사이에 설치된 억제부(100)를 포함하는 것도 가능하다.
또한, 억제부(100)는 인버터부(400)와 모터(20) 사이의 교류를 공급하는 전원선에 설치하는 것도 가능하다.
제1 실시 예, 제2실시 예 제3 실시 예의 모터 장치(1) 및 전력 변환 장치(10)는, 일례이다. 따라서, 모터 장치(1)는, 설명한 이외의 전자 부재(저항, 콘덴서, 코일 등)나 회로를 포함하여 구성되는 것도 가능하다.
제1 실시 예, 제2실시 예, 제3 실시 예에서는, 모터 장치(1) 및 전력 변환 장치(10)에 있어서, 전도성 노이즈를 억제하는 억제부(100)를 설명하였다. 그러나, 전도성 노이즈를 억제하는 억제부(100)는 모터 장치(1) 또는 전력 변환 장치(10) 이외의 전도성 노이즈를 발생하는 장치에 적용되는 것도 가능하다.
기타, 본 발명의 취지에 어긋나지 않는 한, 다양한 변형이나 실시 형태의 조합을 행해도 좋다.

Claims (17)

  1. 교류 전원의 교류를 정류 및 평활화하여 직류를 생성하고 스위칭 동작을 수행하여 상기 생성된 직류를 교류로 변환하고 변환된 교류를 모터에 출력하는 전력 변환 장치; 및
    상기 교류 전원과 상기 전력 변환 장치 사이에 마련되고 상기 교류 전원의 교류를 공급하는 전원선에 흐르는 공통 모드의 노이즈 전류를 감소시키고 상기 공통 모드의 노이즈 전류가 감소된 교류를 상기 전력 변환 장치에 공급하는 전도성 노이즈 억제 장치를 포함하고,
    상기 전도성 노이즈 억제 장치는, 상기 전원선에 흐르는 노이즈 전류를 검출하는 전류 검출 수단과, 상기 노이즈 전류를 감소시키기 위한 전류를 공급하는 노이즈 억제 수단과, 상기 검출된 상기 노이즈 전류와 상기 노이즈 억제 수단의 양단의 전압에 기초하여 상기 노이즈 억제 수단에 공급하기 위한 전류를 설정하고 상기 설정된 전류를 상기 노이즈 억제 수단에 공급하는 전류 공급 수단을 포함하는 모터 장치.
  2. 제 1항에 있어서,
    상기 전류 검출 수단은, 교류 전원의 전원선에 직렬로 연결된 제1코일부와, 상기 제1코일부와 자기 결합된 검출 코일을 포함하고,
    상기 노이즈 억제 수단은, 상기 전원선에 직렬로 연결된 제2코일부와, 상기 제2코일부에 자기 결합된 결합 코일을 포함하고, 상기 결합 코일에 공급되는 전류가 상기 제2코일부에 유도되도록 하여 상기 전원선에 흐르는 상기 노이즈 전류를 감소시키는 것을 포함하는 모터 장치.
  3. 제2항에 있어서,
    상기 전류 검출 수단은, 상기 검출 코일의 양 단 사이에 연결되고 상기 검출 코일에 흐르는 전류를 전압으로 변환하는 저항을 더 포함하고,
    상기 노이즈 억제 수단은, 상기 결합 코일의 양단 사이에 설치되고 상기 결합 코일에 흐르는 전류를 전압으로 변환하는 저항을 더 포함하는 모터 장치.
  4. 제2항에 있어서,
    상기 전류 검출 수단은, 상기 검출 코일의 양 단 사이에 연결되고 상기 검출 코일에 흐르는 전류를 전압으로 변환하는 저항을 더 포함하고,
    상기 노이즈 억제 수단은, 상기 결합 코일의 양단 사이에 설치된 스너버 회로를 더 포함하고, 상기 결합 코일과 상기 스너버 회로 사이의 접속점의 전압에 대응하는 전류를 상기 결합 코일에 공급하고,
    상기 스너버 회로는, 상기 결합 코일의 양단 사이에 직렬로 설치된 저항과 콘덴서를 포함하는 모터 장치.
  5. 제 1 항에 있어서, 상기 전력 변환 장치는,
    상기 전도성 노이즈 억제 장치를 통해 공급되는 교류를 정류하여 맥류를 출력하는 정류부와,
    상기 정류부에 연결되고 상기 맥류를 평활화하여 직류를 생성하는 평활화부와,
    상기 평활화부에 연결되고 스위칭 동작을 수행하여 상기 직류를 교류로 변환시키고 변환된 교류를 부하에 출력하는 인버터부를 포함하는 모터 장치.
  6. 제 1 항에 있어서, 상기 교류 전원은,
    삼상 4선, 삼성 3선 또는 단상 2선의 교류 전원인 모터 장치.
  7. 교류를 공급하는 전원선에 흐르는 노이즈 전류를 검출하는 전류 검출 수단;
    상기 전원선에 직렬로 연결된 코일과, 상기 코일에 자기 결합된 결합 코일을 가지고, 상기 결합 코일에 공급되는 전류가 상기 코일에 유도되도록 하여 상기 전원선에 흐르는 상기 노이즈 전류를 감소시키는 노이즈 억제 수단; 및
    상기 전류 검출 수단에서 검출된 상기 노이즈 전류에 대응하는 전압과 상기 결합 코일의 양단의 전압에 기초하여 상기 결합 코일에 공급하기 위한 전류를 설정하고 상기 설정된 전류를 상기 결합 코일에 공급하는 전류 공급 수단을 포함하는 전도성 노이즈 억제 장치.
  8. 제7항에 있어서,
    상기 노이즈 억제 수단은, 상기 결합 코일의 양단 사이에 설치된 스너버 회로를 더 포함하고, 상기 결합 코일과 상기 스너버 회로 사이의 접속점의 전압에 대응하는 전류를 상기 결합 코일에 공급하고,
    상기 스너버 회로는, 상기 결합 코일의 양단 사이에 직렬로 설치된 저항과 콘덴서를 포함하는 전도성 노이즈 억제 장치.
  9. 제7항에 있어서, 상기 노이즈 억제 수단은,
    상기 코일에 의해 유도되는 전류가 상기 전원선에 흐르는 교류 전원의 전류에 중첩되도록 하여 상기 전원선의 임피던스를 변화시키는 것을 포함하는 전도성 노이즈 억제 장치.
  10. 제7항 내지 제9항 중 어느 한 항에 있어서, 상기 전류 검출 수단은,
    교류 전원과 인접하게 연결되고 상기 전원선에 직렬로 연결된 코일을 포함하고,
    상기 전류 검출 수단의 코일에 자기 결합되고 공통 모드의 상기 노이즈 전류를 검출하는 검출 코일을 더 포함하는 전도성 노이즈 억제 장치.
  11. 제10항에 있어서, 상기 전류 검출 수단은,
    상기 검출 코일의 양 단 사이에 연결되고 상기 검출 코일에 흐르는 전류를 전압으로 변환하는 저항을 더 포함하는 전도성 노이즈 억제 장치.
  12. 제10항에 있어서, 상기 전류 공급 수단은,
    상기 검출 코일의 양 단의 전압과 상기 결합 코일의 양단의 전압을 가산하는 연산 증폭기를 더 포함하는 전도성 노이즈 억제 장치.
  13. 제7항에 있어서, 상기 전류 공급 수단은,
    상기 결합 코일에서 발생된 전압이 인가되도록 하는 전류 패스와, 상기 결합 코일에 전류를 공급하기 위한 전류 패스를 형성하는 복수 개의 스위치 소자를 가지는 전류 출력 회로를 더 포함하는 전도성 노이즈 억제 장치.
  14. 교류를 공급하는 전원선에 흐르는 공통 모드의 노이즈 전류를 감소시키는 억제부;
    상기 억제부를 통해 공급되는 교류를 정류하여 맥류를 출력하는 정류부;
    상기 정류부에 연결되고 상기 맥류를 평활화하여 직류를 생성하는 평활화부;
    상기 평활화부에 연결되고 스위칭 동작을 수행하여 상기 직류를 교류로 변환시키고 변환된 교류를 부하에 출력하는 인버터부를 포함하고,
    상기 억제부는, 상기 전원선에 흐르는 노이즈 전류를 검출하는 전류 검출 수단과, 상기 노이즈 전류를 감소시키기 위한 전류를 공급하는 노이즈 억제 수단과, 상기 검출된 상기 노이즈 전류와 상기 노이즈 억제 수단의 양단의 전압에 기초하여 상기 노이즈 억제 수단에 공급하기 위한 전류를 설정하고 상기 설정된 전류를 상기 노이즈 억제 수단에 공급하는 전류 공급 수단을 포함하는 전력 변환 장치.
  15. 제 14항에 있어서,
    상기 전류 검출 수단은, 교류 전원의 전원선에 직렬로 연결된 제1코일부와, 상기 제1코일부와 자기 결합된 검출 코일을 포함하고,
    상기 노이즈 억제 수단은, 상기 전원선에 직렬로 연결된 제2코일부와, 상기 제2코일부에 자기 결합된 결합 코일을 포함하고, 상기 결합 코일에 공급되는 전류가 상기 제2코일부에 유도되도록 하여 상기 전원선에 흐르는 상기 노이즈 전류를 감소시키는 것을 포함하는 전력 변환 장치.
  16. 제15항에 있어서,
    상기 전류 검출 수단은, 상기 검출 코일의 양 단 사이에 연결되고 상기 검출 코일에 흐르는 전류를 전압으로 변환하는 저항을 더 포함하고,
    상기 노이즈 억제 수단은, 상기 결합 코일의 양단 사이에 설치된 스너버 회로를 더 포함하고, 상기 결합 코일과 상기 스너버 회로 사이의 접속점의 전압에 대응하는 전류를 상기 결합 코일에 공급하고,
    상기 스너버 회로는, 상기 결합 코일의 양단 사이에 직렬로 설치된 저항과 콘덴서를 포함하는 전력 변환 장치.
  17. 제15항에 있어서, 상기 전류 공급 수단은,
    상기 결합 코일에서 발생된 전압이 인가되도록 하는 전류 패스와, 상기 결합 코일에 전류를 공급하기 위한 전류 패스를 형성하는 복수 개의 스위치 소자를 가지는 전류 출력 회로를 더 포함하는 전력 변환 장치.
PCT/KR2018/005264 2017-05-08 2018-05-08 전도성 노이즈 억제 장치, 전력 변환 장치 및 모터 장치 WO2018208057A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/612,234 US11088614B2 (en) 2017-05-08 2018-05-08 Conductive noise suppressor, power converter, and motor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-092623 2017-05-08
JP2017092623A JP6858070B2 (ja) 2017-05-08 2017-05-08 伝導性ノイズ抑制装置、電力変換装置及びモータ装置

Publications (1)

Publication Number Publication Date
WO2018208057A1 true WO2018208057A1 (ko) 2018-11-15

Family

ID=64104556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/005264 WO2018208057A1 (ko) 2017-05-08 2018-05-08 전도성 노이즈 억제 장치, 전력 변환 장치 및 모터 장치

Country Status (3)

Country Link
US (1) US11088614B2 (ko)
JP (1) JP6858070B2 (ko)
WO (1) WO2018208057A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020119108A1 (de) 2020-07-21 2022-01-27 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Gleichstrom-Filtervorrichtung

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3079688B1 (fr) * 2018-03-30 2021-10-08 Inst Vedecom Convertisseur npc quatre bras pour les vehicules electriques et chargeur bidirectionnel comprenant un tel convertisseur
KR102580432B1 (ko) * 2020-12-24 2023-09-20 이엠코어텍 주식회사 단일 칩 집적회로를 포함하는 능동형 전류 보상 장치
US11949393B2 (en) 2019-03-28 2024-04-02 Em Coretech Co., Ltd. Divided active electromagnetic interference filter module and manufacturing method thereof
WO2020255247A1 (ja) * 2019-06-18 2020-12-24 三菱電機株式会社 漏れ電流低減装置
JP7363599B2 (ja) * 2020-03-09 2023-10-18 トヨタ自動車株式会社 車両用電源システム
EP4181371A4 (en) * 2020-07-13 2023-08-02 Mitsubishi Electric Corporation NOISE FILTER
EP4270752A1 (en) 2020-12-23 2023-11-01 EM Coretech Co., Ltd. Active current compensation apparatus capable of detecting malfunction
EP4280440A1 (en) * 2021-06-04 2023-11-22 EM Coretech Inc. Active compensation device providing electromagnetic wave noise data

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008289240A (ja) * 2007-05-16 2008-11-27 Sanken Electric Co Ltd 能動フィルタ装置及び電力変換装置
JP2010057268A (ja) * 2008-08-28 2010-03-11 Fuji Electric Systems Co Ltd 伝導性ノイズフィルタ
CN202798437U (zh) * 2012-05-04 2013-03-13 广西地凯科技有限公司 一种复合式逆变器输出滤波器
WO2016208762A1 (en) * 2015-06-26 2016-12-29 Mitsubishi Electric Corporation Common mode filter device and electrical equipment
JP2017038500A (ja) * 2015-08-12 2017-02-16 三星電子株式会社Samsung Electronics Co.,Ltd. 伝導性ノイズ抑制回路及びインバータ装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5530396A (en) * 1994-09-19 1996-06-25 Center For Innovative Technology Damped EMI input filter power factor correction circuits
EP1220432A3 (en) * 2000-12-19 2003-01-29 Fuji Electric Co., Ltd. Noise reduction apparatus for electric power conversion apparatus
US8115444B2 (en) * 2006-05-31 2012-02-14 Honeywell International, Inc. Common mode filter for motor controllers
US9270159B2 (en) * 2012-08-07 2016-02-23 Hamilton Sundstrand Corporation EMI filter using active damping with frequency dependant impedance
US9595881B2 (en) * 2012-10-25 2017-03-14 Mitsubishi Electric Corporation Common mode noise reduction apparatus
US10177702B2 (en) 2015-08-12 2019-01-08 Samsung Electronics Co., Ltd. Conduction noise filtering circuit, inverting device, and compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008289240A (ja) * 2007-05-16 2008-11-27 Sanken Electric Co Ltd 能動フィルタ装置及び電力変換装置
JP2010057268A (ja) * 2008-08-28 2010-03-11 Fuji Electric Systems Co Ltd 伝導性ノイズフィルタ
CN202798437U (zh) * 2012-05-04 2013-03-13 广西地凯科技有限公司 一种复合式逆变器输出滤波器
WO2016208762A1 (en) * 2015-06-26 2016-12-29 Mitsubishi Electric Corporation Common mode filter device and electrical equipment
JP2017038500A (ja) * 2015-08-12 2017-02-16 三星電子株式会社Samsung Electronics Co.,Ltd. 伝導性ノイズ抑制回路及びインバータ装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020119108A1 (de) 2020-07-21 2022-01-27 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Gleichstrom-Filtervorrichtung
US11664777B2 (en) 2020-07-21 2023-05-30 Dr. Ing. H.C. F. Porsche Aktiengesellschaft DC filter device

Also Published As

Publication number Publication date
US20200321857A1 (en) 2020-10-08
US11088614B2 (en) 2021-08-10
JP2018191443A (ja) 2018-11-29
JP6858070B2 (ja) 2021-04-14

Similar Documents

Publication Publication Date Title
WO2018208057A1 (ko) 전도성 노이즈 억제 장치, 전력 변환 장치 및 모터 장치
WO2019212258A1 (ko) 전력선에 추가 소자가 없는 절연형 능동 emi 필터
WO2015020416A1 (en) Apparatus and method for wireless power reception
WO2020171663A1 (ko) 무선 전력 전송 장치 및 이를 구비하는 전자 기기
WO2016052865A1 (ko) 무선전력전송 시스템
WO2013162336A1 (ko) 무선전력 수신장치 및 그의 전력 제어 방법
WO2012064063A2 (ko) 전기적 잡음을 상쇄시키는 자기에너지전달소자 및 전원장치
WO2012064064A2 (ko) 전기적 잡음을 상쇄시키는 평형된 컨버터 및 자기에너지전달소자
WO2016052827A1 (en) Wireless power transmission apparatus
WO2015020432A1 (ko) 무선전력 송신장치
WO2020046048A1 (en) Induction heating device and method of controlling the same
WO2014098279A1 (ko) 수신단의 유효 로드저항 변조를 이용하여 효율과 전달전력을 향상시키는 무선전력수신 장치
WO2017034290A1 (ko) 무선 전력 송신 장치
WO2017069522A1 (ko) 플리커리스 led 드라이버 장치
WO2013151290A1 (ko) 전력 공급 장치, 무선전력 송신장치 및 전력 공급 방법
WO2021215696A1 (ko) 과전압 보호 동작을 수행하는 전자 장치 및 그 제어 방법
WO2017023008A1 (ko) 유도 가열 장치 및 그 제어 방법
EP3776808A1 (en) Electronic apparatus
WO2018124467A1 (ko) 모터 제어 장치 및 모터 제어 장치의 제어 방법
WO2016035982A1 (ko) 인버터 회로 및 이를 이용한 공기조화기 및 냉장고
WO2021071241A1 (ko) 태양광 발전기용 전류 보상 시스템, 품질 측정 장치, 이의 측정 방법 및 이의 기록매체
WO2015026096A1 (ko) 전원 장치
WO2018236087A1 (ko) 전원 공급 장치 및 부하에 전원을 공급하는 방법
WO2021071076A1 (ko) 유도 가열 장치 및 유도 가열 장치의 제어 방법
JP2002051570A (ja) 変換器のノイズ低減装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18798427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18798427

Country of ref document: EP

Kind code of ref document: A1