WO2019210588A1 - 一种轻质阻燃pa工程塑料填料及制备方法 - Google Patents

一种轻质阻燃pa工程塑料填料及制备方法 Download PDF

Info

Publication number
WO2019210588A1
WO2019210588A1 PCT/CN2018/096474 CN2018096474W WO2019210588A1 WO 2019210588 A1 WO2019210588 A1 WO 2019210588A1 CN 2018096474 W CN2018096474 W CN 2018096474W WO 2019210588 A1 WO2019210588 A1 WO 2019210588A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
engineering plastic
powder
plastic filler
carbon nanotubes
Prior art date
Application number
PCT/CN2018/096474
Other languages
English (en)
French (fr)
Inventor
倪利锋
刘国
钱阳
Original Assignee
江苏弘盛新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏弘盛新材料股份有限公司 filed Critical 江苏弘盛新材料股份有限公司
Publication of WO2019210588A1 publication Critical patent/WO2019210588A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Definitions

  • the invention relates to the technical field of engineering plastics, in particular to the technical field of engineering plastics preparation, and more particularly to a lightweight flame-retardant engineering plastic filler and a preparation method thereof.
  • Engineering plastics can be used as engineering materials and plastics that replace metal parts for machine parts.
  • Engineering plastics have excellent comprehensive performance, high rigidity, small creep, high mechanical strength, good heat resistance, good electrical insulation, long-term use in harsh chemical and physical environments, and can be used as an alternative structural material for metal. But the price is more expensive and the output is smaller.
  • Engineering plastics can be divided into general engineering plastics and special engineering plastics.
  • the former main varieties are polyamide, polycarbonate, polyoxymethylene, modified polyphenylene ether and thermoplastic polyester five general engineering plastics; the latter mainly refers to engineering plastics with heat resistance up to 150 ° C, the main varieties are polyimide , polyphenylene sulfide, polysulfone, aromatic polyamide, polyarylate, polyphenyl ester, polyaryl ether ketone, liquid crystal polymer and fluororesin.
  • Polyamide is a commonly used one in engineering plastics. PA engineering plastics have won people's attention because of its unique low specific gravity, high tensile strength, wear resistance, good self-lubricating properties, excellent impact toughness and both rigid and soft performance. In addition, it is easy to process, high in efficiency, light in weight (only 1/7 of metal), can be processed into various products instead of metal, and is widely used in the automobile and transportation industries. Typical products include pump impellers, fan blades, valve seats, bushings, bearings, various instrument panels, automotive electrical instruments, hot and cold air conditioning valves, etc., each of which consumes 3.6 to 4 kg of nylon products. Polyamide has the largest consumption ratio in the automotive industry, followed by electrical and electronic.
  • PN flame retardant the structural formula is Wherein R1 is a benzyl or aryl functional group, R2, R3 is an alkyl group or hydrogen, and R4, R5 is an alkyl group or hydrogen, wherein n ⁇ 2, preferably 2-6, m represents a degree of polymerization of the polymer, which is greater than or An integer equal to 1, the flame retardant masterbatch provided by the invention comprises the above flame retardant, and the glass fiber reinforced flame retardant nylon engineering plastic provided by the invention comprises the above flame retardant masterbatch.
  • CN201710007971.2 discloses a special material for injection molding of nylon 6 and a preparation method thereof, and the special material for injection molding of nylon 6 in the application comprises nylon 6, nucleating agent, mold release agent, polyhexamethylene hydrazine, plasticizer, ultrafine filler and Light stabilizer.
  • the nucleating agent comprises a polyethylene 2 acrylic ionomer and a talc powder
  • the preparation method of the nylon 6 injection special material comprises: synthesizing a polyethylene 2 acrylic acid graft; preparing a polyethylene 2 acrylic ionomer; and molding the component nylon 6
  • the components of the special material are melt-blended by a twin-screw extruder, and the raw materials after the step S1 are subjected to granulation processing and vacuum drying.
  • the application improves the tensile elongation and toughness of the material, improves the tensile and bending mildness, reduces the light scattering intensity, improves the aging resistance, and has a strong effect of bacteria, sterilization and mildew resistance.
  • PA engineering plastics can obtain stable PA engineering plastics through the preparation and modification of fillers in the preparation process, which can make PA engineering plastics have better performance, better quality and better performance after modification. .
  • the invention is directed to the existing problems of the above PA engineering plastics, PA engineering plastics have large shrinkage ratio and poor dimensional stability; 2 high water absorption rate, easy to absorb moisture, increase in size, easy to hydrolyze; 3 pyrolysis is easy to oxidize and yellow.
  • PA engineering plastics have large shrinkage ratio and poor dimensional stability; 2 high water absorption rate, easy to absorb moisture, increase in size, easy to hydrolyze; 3 pyrolysis is easy to oxidize and yellow.
  • various raw materials and additives are added in the preparation of PA engineering plastics.
  • the addition of different additives will lead to an increase in the proportion of PA engineering plastics, while PA is realized in various functions, engineering plastics.
  • the present invention develops a lightweight flame-retardant engineering plastic filler and a preparation method for the above-mentioned shortcomings of PA engineering plastics, which can effectively solve the above problems of PA engineering plastics.
  • the invention discloses a lightweight flame-retardant engineering plastic filler and a preparation method thereof, and the technical problem to be solved by the invention is achieved by the following technical solutions:
  • a lightweight flame-retardant engineering plastic filler comprising the following parts: 6-7 parts of sulfamate, 20-23 parts of carbon nanotubes, N,N'-dicyclohexyl 0.3-0.4 parts of carbonimide, 4-5 parts of hexachlorocyclotriphosphazene, 0.2-0.4 parts of sodium hydroxide, 3-7 parts of N,N-dimethylformamide, 17-20 parts of nylon, hard acid 0.1-0.2 parts of zinc acid, 0.5-1 part of nano sepiolite powder, 0.5-1 part of triisopropanolamine, 0.5-1 part of 8-hydroxyquinoline, 1-5 parts of calcium stearate, and 1 original molecular sieve powder - 2 parts, polyvinylpyrrolidone 0.5-1 part, terpene resin modified glass fiber powder 0.3-0.5 part.
  • the terpene resin-modified glass fiber powder is prepared by modifying a glass fiber powder with a terpene resin and an auxiliary agent, and the specific modification method is: first heating the glass fiber powder to a temperature of 5 ° C / min to 100- Grinding at 105 °C for 5-10min, then adding terpene resin and magnesium aluminum silicate, continue to heat up to 125-130 °C at 10 °C / min for 10-15min, then cool at 5 °C / min.
  • the mass ratio of the glass fiber powder, terpene resin, magnesium aluminum silicate, asbestos wool, hexamethylol melamine hexamethyl ether and N-methylol acrylamide is 40-45:1-2:0.5-1:0.5 -1: 0.5-1: 0.2-0.3.
  • the glass fiber powder can not only significantly increase its specific surface area and enrich its internal pore structure, but also enhance its blending phase with the rest of the aggregate and small molecule preparation materials. Capacitance, promote the uniform mixing of the preparation of raw materials, enhance its high temperature and flame retardant properties.
  • the nano sepiolite fine powder is prepared from the following raw materials by weight: 5-10 parts of sepiolite fiber, 2-3 parts of asbestos powder, 2-3 parts of ceramic micropowder, poly- ⁇ -methylstyrene resin 1- 2 parts, 0.5-1 parts of hexamethylol melamine hexamethyl ether and 0.1-0.3 parts of nano zinc oxide, the preparation method is as follows: adding ceramic micro powder and poly- ⁇ -methyl styrene resin to sepiolite fiber, after fully mixing Microwave treatment at microwave frequency 2450MHz, output power 700W for 10min, then add hexamethylol melamine hexamethyl ether and nano zinc oxide, mix well and continue microwave treatment for 5min, then add asbestos powder while hot, the mixture is plasma treated, and then sent Into the nano-grinder, nano-sepiolite fine powder is obtained by grinding.
  • the addition of the above nano sepiolite composite powder can effectively enhance the flame retardancy of the three-dimensional elastic filler prepared by the modified plastic particles.
  • the plasma surface treatment machine has a working high frequency of 18-60 Hz, an output power of 350-1000 W, a working pressure range of 0.05-0.5 MPa, and a gas source requirement of 0.3-1.0 MPa.
  • the preparation method of the light-duty flame-retardant engineering plastic filler comprises the following steps:
  • the molten nylon condition in the above step 3 is a temperature of 110-130 ° C, a pressure of 1.0-1.5 MPa, and a melt index of 35-65 g/min.
  • the light-duty flame-retardant engineering plastic filler of the invention has good flame-retardant and fire-retardant properties, and the invention firstly blends carbon nanotubes grafted with sulfamate sulfamate and chlorocyclotriphosphazene respectively, and is hydroxylated by formaldehyde.
  • the nylon after the material has good compatibility with the grafted carbon nanotubes, and further improves the flame retardancy of the filler.
  • the flame retardant mechanism of the filler is: when the filler is in the combustion process, the carbon nanotubes are in the polymer The surface of the melt aggregates and forms a carbon layer of a network structure. These networked carbon layers are dense and almost non-porous, effectively preventing the entry of external heat and oxygen during combustion, thereby effectively reducing heat release rate and mass loss. rate;
  • the grafted bismuth sulfamate can be coated on the surface of the carbon nanotubes, and the decomposition products thereof help the carbon nanotubes to form a denser network structure carbon layer.
  • the sulfamate sulfamate decomposes itself to produce ammonia gas and ammonia. Gas can react with nylon to promote the degradation of nylon. The two together produce a large amount of non-combustible gases such as ammonia, water vapor and carbon dioxide, and dilute the oxygen and combustible gas in the combustion zone to achieve the effect of gas phase flame retardation;
  • the lightweight flame-retardant engineering plastic filler of the invention has high surface strength, good toughness, high impact strength, strong weather resistance and superior comprehensive performance.
  • Figure 1 is a flow chart for preparing a lightweight flame retardant engineering plastic filler
  • Example 1 A lightweight flame retardant engineering plastic filler
  • a lightweight flame-retardant engineering plastic filler comprising the following components: 7 parts of sulfamate, 20 parts of carbon nanotubes, N,N'-dicyclohexylcarbimide 0.3 parts, 4 parts of hexachlorocyclotriphosphazene, 0.4 parts of sodium hydroxide, 6 parts of N,N-dimethylformamide, 17 parts of nylon, 0.2 parts of zinc hard acid, 1 part of nano-sepiolite fine powder, three 0.8 parts of isopropanolamine, 0.5 part of 8-hydroxyquinoline, 4 parts of calcium stearate, 1 part of molecular sieve raw powder, 0.5 part of polyvinylpyrrolidone, and 0.5 part of terpene resin-modified glass fiber powder.
  • the terpene resin modified glass fiber powder is modified from glass fiber powder by terpene resin with auxiliary agent, and the specific modification method is: firstly, the glass fiber powder is heated to 100 ° C at a heating rate of 5 ° C / min. Insulation grinding for 5min, then adding terpene resin and magnesium aluminum silicate, continue to heat up to 125 ° C at 15 ° C / min for 15 min, then cool down to 0 - 5 ° C at 5 ° C / min. Set for 15min, and add asbestos, hexamethylol melamine hexamethyl ether and N-methylol acrylamide, and then heat up to 130 ° C at 25 ° C for 25 min, and then cool the mixture to room temperature. It is sent to a vacuum dryer, and the obtained solid is dried to obtain a fine powder by an ultrafine pulverizer, thereby obtaining a terpene resin-modified glass fiber powder.
  • the mass ratio of the glass fiber powder, terpene resin, magnesium aluminum silicate, asbestos wool, hexamethylol melamine hexamethyl ether and N-methylol acrylamide is 45:1.5:0.5:1:0.6:0.2.
  • the nano sepiolite fine powder is prepared from the following raw materials by weight: 5 parts of sepiolite fiber, 3 parts of asbestos powder, 2 parts of ceramic micropowder, 2 parts of poly- ⁇ -methylstyrene resin, hexamethylol melamine 0.5 parts of hexamethyl ether and 0.3 parts of nano-zinc oxide are prepared by adding ceramic micro-powder and poly- ⁇ -methylstyrene resin to sepiolite fiber, fully mixing, and microwave treatment at microwave frequency of 2450 MHz and output power of 700 W for 10 min.
  • hexamethylol melamine hexamethyl ether and nano zinc oxide mix uniformly, continue microwave treatment for 5 min, then add asbestos powder while hot, and the mixture is subjected to plasma treatment, and then sent to a nano-grinding machine to obtain nano-sea by grinding. Foam fine powder.
  • the plasma surface treatment machine has a working high frequency of 60 Hz, an output power of 800 W, a working pressure range of 0.25 MPa, and a gas source requirement of 0.8 MPa.
  • the preparation method of the light-duty flame-retardant engineering plastic filler comprises the following steps:
  • the above carbon nanotubes were added to a mixed acid solution 80 times its weight, 3:1 of 96% sulfuric acid and 87% hydrochloric acid were ultrasonicated at 50 ° C for 20 minutes, filtered, and the precipitated water was washed twice, at 75 ° C Drying in a vacuum for 30 minutes to obtain acidified carbon nanotubes;
  • the above 8-hydroxyquinoline was added to its weight 18 times of absolute ethanol, stirred evenly, adding zinc hard acid, calcium stearate, 40% of the weight of the above acidified carbon nanotubes, sent to 86 ° C In the water bath, the mixture is stirred for 30 minutes, discharged, and the ethanol is distilled off, and dried at room temperature to obtain modified acidified carbon nanotubes;
  • the mixed acid in the above step 1a is 96-98% sulfuric acid and 87-90% hydrochloric acid in a mass ratio of 3-4:1.
  • the filtration in the step 1a is performed using a screen of 200-300 mesh.
  • the distillation conditions in the above step 1b are: temperature 120-180 ° C, pressure 1.5-2.5 MPa, time 2-5 h.
  • the working conditions of the reactor described in the above step 1c are: a temperature of 120-127 ° C, a pressure of 1.0-2.5 MPa, and a rotation speed of 1000-2000 rpm / min.
  • the working conditions of the reaction kettle in the above step 1d are: a temperature of 68-70 ° C, a pressure of 1.0-2.5 MPa, and a rotation speed of 1000-2000 rpm / min.
  • step 1c the suction filtration is performed, and the quantitative filter paper is selected, and the quantitative filter paper has a pore size range of 30-50 ⁇ m.
  • the nitrogen gas in the above step 1 is used in a concentration range of 90-98%.
  • the molten nylon condition in the above step 3 is a temperature of 125 ° C, a pressure of 1.0-1.5 MPa, and a melt index of 55-60 g/min.
  • Example 2 A lightweight flame retardant engineering plastic filler
  • a lightweight flame-retardant engineering plastic filler comprising the following parts: 7 parts of sulfamate, 23 parts of carbon nanotubes, N,N'-dicyclohexylcarbimide 0.4 parts, 5 parts of hexachlorocyclotriphosphazene, 0.4 parts of sodium hydroxide, 7 parts of N,N-dimethylformamide, 20 parts of nylon, 0.2 parts of zinc hard acid, 1 part of nano-sepiolite fine powder, three 0.8 parts of isopropanolamine, 1 part of 8-hydroxyquinoline, 5 parts of calcium stearate, 2 parts of molecular sieve raw powder, 0.8 parts of polyvinylpyrrolidone, and 0.5 part of terpene resin-modified glass fiber powder.
  • the terpene resin modified glass fiber powder is modified from glass fiber powder by terpene resin with auxiliary agent, and the specific modification method is: firstly, the glass fiber powder is heated to 105 ° C at a heating rate of 5 ° C / min. Insulation grinding for 10min, then adding terpene resin and magnesium aluminum silicate, continue to heat up to 130 ° C for 15 min at 5 ° C / min, then reduce the temperature to 0 - 5 ° C at 5 ° C / min.
  • the mass ratio of the glass fiber powder, terpene resin, magnesium aluminum silicate, asbestos wool, hexamethylol melamine hexamethyl ether and N-methylol acrylamide is 42:2:0.5:0.5:0.5:0.3.
  • a lightweight flame-retardant engineering plastic filler comprising the following components: 6 parts of sulfamate, 22 parts of carbon nanotubes, N,N'-dicyclohexylcarbimide 00.4 parts, 4.5 parts of hexachlorocyclotriphosphazene, 0.4 parts of hydrogen peroxide, 6 parts of N,N-dimethylformamide, 17 parts of nylon, 0.2 parts of zinc hard acid, 1 part of nano-sepiolite fine powder, three different 0.8 parts of propanolamine, 0.6 parts of 8-hydroxyquinoline, 4 parts of calcium stearate, 2 parts of molecular sieve raw powder, 1 part of polyvinylpyrrolidone, and 0.3 parts of terpene resin-modified glass fiber powder.
  • the nano sepiolite fine powder is prepared from the following parts by weight of raw materials: 8 parts of sepiolite fiber, 2 parts of asbestos powder, 2.5 parts of ceramic micropowder, 1.5 parts of poly- ⁇ -methylstyrene resin, hexamethylol melamine 1 part of hexamethyl ether and 0.2 parts of nano-zinc oxide are prepared by adding ceramic micro-powder and poly- ⁇ -methylstyrene resin to sepiolite fiber, fully mixing, and microwave treatment at microwave frequency of 2450 MHz and output power of 700 W for 10 min.
  • hexamethylol melamine hexamethyl ether and nano zinc oxide mix uniformly, continue microwave treatment for 5 min, then add asbestos powder while hot, and the mixture is subjected to plasma treatment, and then sent to a nano-grinding machine to obtain nano-sea by grinding. Foam fine powder.
  • the addition of the above nano sepiolite composite powder can effectively enhance the flame retardancy of the three-dimensional elastic filler prepared by the modified plastic particles.
  • the plasma surface treatment machine has a working high frequency of 60 Hz, an output power of 1000 W, a working pressure range of 0.45 MPa, and a gas source requirement of 0.8 MPa.
  • An engineering plastic filler the lightweight flame-retardant engineering plastic filler comprises the following parts: 17 parts of nylon, 0.1 parts of hard acid zinc, 0.5 parts of nano-elpholite powder, 1 part of 8-hydroxyquinoline, stearic acid 4 parts of calcium acid, 1 part of molecular sieve raw powder, 0.5 part of terpene resin-modified glass fiber powder, 0.6 part of triisopropanolamine, and 0.8 part of polyvinylpyrrolidone.
  • the nano sepiolite fine powder is prepared from the following parts by weight of raw materials: 5 parts of sepiolite fiber, 3 parts of asbestos powder, 2.5 parts of ceramic micropowder, 2 parts of poly- ⁇ -methylstyrene resin, hexamethylol melamine 0.5 parts of hexamethyl ether and 0.3 parts of nano-zinc oxide are prepared by adding ceramic micro-powder and poly- ⁇ -methylstyrene resin to sepiolite fiber, fully mixing, and microwave treatment at microwave frequency of 2450 MHz and output power of 700 W for 10 min.
  • hexamethylol melamine hexamethyl ether and nano zinc oxide mix uniformly, continue microwave treatment for 5 min, then add asbestos powder while hot, and the mixture is subjected to plasma treatment, and then sent to a nano-grinding machine to obtain nano-sea by grinding. Foam fine powder.
  • the preparation method of the light-duty flame-retardant engineering plastic filler comprises the following steps:
  • An engineering plastic filler the lightweight flame-retardant engineering plastic filler comprises the following parts: 20 parts of nylon, 0.1 parts of zinc hard acid, 0.5 parts of 8-hydroxyquinoline, 1 part of calcium stearate, and original molecular sieve powder 1 part, 0.3 parts of terpene resin-modified glass fiber powder, 0.5 part of triisopropanolamine, and 0.9 part of polyvinylpyrrolidone.
  • the terpene resin modified glass fiber powder is modified from glass fiber powder by terpene resin with auxiliary agent, and the specific modification method is: firstly, the glass fiber powder is heated to 105 ° C at a heating rate of 5 ° C / min. Insulation grinding for 10min, then adding terpene resin and magnesium aluminum silicate, continue to raise the temperature to 5 °C / min to 125 ° C heat preservation grinding for 10min, then cool down to 0-5 ° C at 5 ° C / min cooling temperature Set for 25min, and add asbestos, hexamethylol melamine hexamethyl ether and N-methylol acrylamide, and again heat up to 125 ° C at a heating rate of 5 ° C / min for 30 min, after natural cooling to room temperature, the resulting mixture It is sent to a vacuum dryer, and the obtained solid is dried to obtain a fine powder by an ultrafine pulverizer, thereby obtaining a terpene resin-modified glass fiber powder.
  • the preparation method of the light-duty flame-retardant engineering plastic filler comprises the following steps:
  • An engineering plastic filler the lightweight flame-retardant engineering plastic filler comprises the following parts: 19 parts of nylon, 0.2 parts of hard acid zinc, 0.5 parts of nano sepiolite powder, 0.5 parts of 8-hydroxyquinoline, and hard fat 3 parts of calcium acid, 2 parts of molecular sieve raw powder, 1 part of triisopropanolamine, and 0.5 part of polyvinylpyrrolidone.
  • the preparation method of the light-duty flame-retardant engineering plastic filler comprises the following steps:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fireproofing Substances (AREA)

Abstract

本发明公开了一种轻质阻燃工程塑料填料,涉及工程塑料相关技术领域,包括如下组分:氨基磺酸胍、碳纳米管、N,N'-二环己基碳酰亚胺、六氯环三磷腈、氢氧化钠、N,N-二甲基甲酰胺、尼龙、硬酸酸锌、纳米海泡石微粉、三异丙醇胺、8-羟基喹啉、硬脂酸钙、分子筛原粉、聚乙烯吡咯烷酮、萜烯树脂改性玻纤粉。本发明轻质阻燃工程塑料填料,表面强度高,韧性好,抗冲击强度高,耐候性强,综合性能优越、比重轻。

Description

一种轻质阻燃PA工程塑料填料及制备方法 技术领域:
本发明涉及工程塑料相关技术领域,具体涉及工程塑料制备技术领域,更具体为一种轻质阻燃工程塑料填料及制备方法。
背景技术:
工程塑料可作工程材料和代替金属制造机器零部件等的塑料。工程塑料具有优良的综合性能,刚性大,蠕变小,机械强度高,耐热性好,电绝缘性好,可在较苛刻的化学、物理环境中长期使用,可替代金属作为工程结构材料使用,但价格较贵,产量较小。工程塑料又可分为通用工程塑料和特种工程塑料两类。前者主要品种有聚酰胺、聚碳酸酯、聚甲醛、改性聚苯醚和热塑性聚酯五大通用工程塑料;后者主要是指耐热达150℃以上的工程塑料,主要品种有聚酰亚胺、聚苯硫醚、聚砜类、芳香族聚酰胺、聚芳酯、聚苯酯、聚芳醚酮、液晶聚合物和氟树脂等。
聚酰胺是工程塑料中常用的一种,PA工程塑料由于它独特的低比重、高抗拉强度、耐磨、自润滑性好、冲击韧性优异、具有刚柔兼备的性能而赢得人们的重视,加之其加工简便、效率高、比重轻(只有金属的1/7)、可以加工成各种制品来代替金属,广泛用于汽车及交通运输业。典型的制品有泵叶轮、风扇叶片、阀座、衬套、轴承、各种仪表板、汽车电器仪表、冷热空气调节阀等零部件,大约每辆汽车消耗尼龙制品达3.6~4千克。聚酰胺在汽车工业的消费比例最大,其次是电子电气。
但是在PA工程塑料中也存在其缺点,①收缩率比较大,尺寸稳定性差;②吸水率高,易吸湿,尺寸增大,易水解;③热解易氧化变黄。
[根据细则26改正16.08.2018] 
在现有技术中,PA工程塑料的制备中公开CN201210555188.7一种P-N型阻燃剂,阻燃母粒,阻燃尼龙工程塑料及其制备方法,其解决的是阻燃尼龙工程塑料的阻燃性和力学性能较差的缺陷,在该申请中通过公开一种P-N阻燃剂,其结构通式为
Figure WO-DOC-FIGURE-f
其中R1为苄基或芳基官能团,R2,R3为烷基或氢,R4,R5为烷基或氢,其中n≥2,优选为2-6,m表示聚合物的聚合度,为大于或等于1的整数,该发明提供的阻燃母粒包括上述阻燃剂,该发明提供的玻纤增强阻燃尼龙工程塑料包括上述阻燃母粒。
CN201710007971.2公开一种尼龙6注塑专用料及其制备方法,该申请中尼龙6注塑专用料包括尼龙6、成核剂、脱模剂、聚六亚甲基胍、增塑剂、超细填料及光稳定剂。其中成核剂包括聚乙烯2丙烯酸离聚物及滑石粉,尼龙6注塑专用料的制备方法包括:合成聚乙烯2丙烯酸接枝物;制备聚乙烯2丙烯酸离聚物;将组分尼龙6注塑专用料的各组分通过双螺杆挤出机熔融共混,将步骤S1共混后的原料进行造粒加工,真空干燥。该申请提高了材料的断裂拉伸率及韧性,提高了拉伸及弯曲轻度,降低了光散射强度,提高耐老化性能,同时具有强效一直细菌、灭菌和防霉的作用。
针对上述问题和技术领域,PA工程塑料在制备过程中通过填料的制备和改性,可以得到稳定PA工程塑料的作用,可以使PA工程塑料更具有优异性能,改性后质量更加,性能更好。
发明内容:
本发明针对上述PA工程塑料现存的问题,PA工程塑料因为①收缩率比较大,尺寸稳定性差;②吸水率高,易吸湿,尺寸增大,易水解;③热解易氧化变黄。且为了得到功能各异的优质PA工程塑料,在制备PA工程塑料时添加各种原材料及添加剂,不同添加剂的大量添加会导致PA工程塑料的比重增加,PA在各种功能实现的同时,工程塑料的比重大的缺点,本发明针对PA工程塑料的上述缺点而开发一种轻质阻燃工程塑料填料及制备方法,可以有效解决上述PA工程塑料的问题。
本发明公开一种轻质阻燃工程塑料填料及制备方法,本发明所要解决的技术问题采用以下技术方案来实现:
一种轻质阻燃工程塑料填料,所述轻质阻燃工程塑料填料包括如下份数组分:氨基磺酸胍6-7份、碳纳米管20-23份、N,N'-二环己基碳酰亚胺0.3-0.4份、六氯环三磷腈4-5份、氢氧化钠0.2-0.4份、N,N-二甲基甲酰胺3-7份、尼龙17-20份、硬酸酸锌0.1-0.2份、纳米海泡石微粉0.5-1份、三异丙醇胺0.5-1份、8-羟基喹啉0.5-1份、硬脂酸钙1-5份、分子筛原粉1-2份、聚乙烯吡咯烷酮0.5-1份、萜烯树脂改性玻纤粉0.3-0.5份。
所述萜烯树脂改性玻纤粉由玻纤粉经萜烯树脂辅以助剂改性而成,具体改性方法为:先将玻纤粉以5℃/min的升温速度升温至100-105℃保温研磨5-10min,再加入萜烯树脂和硅酸镁铝,继续以5℃/min的升温速度升温至125-130℃保温研磨10-15min,然后以5℃/min的降温速度降温至0-5℃密封保温静置15-30min,并加入石棉绒、六羟甲基三聚氰胺六甲醚和N-羟甲基丙烯酰胺,再次以5℃/min的升温速度升温至125-130℃保温研磨15-30min,待自 然冷却至室温后将所得混合物送入真空干燥机中,干燥所得固体经超微粉碎机制成微粉,即得萜烯树脂改性玻纤粉。
所述玻纤粉、萜烯树脂、硅酸镁铝、石棉绒、六羟甲基三聚氰胺六甲醚和N-羟甲基丙烯酰胺的质量比为40-45:1-2:0.5-1:0.5-1:0.5-1:0.2-0.3。
玻纤粉经萜烯树脂和助剂改性后,不仅能显著增大其比表面积和丰富其内部孔道结构,还能增强其与骨料其余高分子和小分子制备原料之间的共混相容性,促进制备原料的均匀混合,增强其耐高温阻燃性能。
所述纳米海泡石微粉由如下重量份数的原料制成:海泡石纤维5-10份、石棉粉2-3份、陶瓷微粉2-3份、聚α-甲基苯乙烯树脂1-2份、六羟甲基三聚氰胺六甲醚0.5-1份、纳米氧化锌0.1-0.3份,其制备方法为:向海泡石纤维中加入陶瓷微粉、聚α-甲基苯乙烯树脂,充分混合后于微波频率2450MHz、输出功率700W下微波处理10min,再加入六羟甲基三聚氰胺六甲醚和纳米氧化锌,混合均匀后继续微波处理5min,然后趁热加入石棉粉,所得混合物进行等离子处理,后送入纳米研磨机中,经研磨制得纳米海泡石微粉。
上述纳米海泡石复合粉的加入,能有效增强经所制改性塑料颗粒制成的立体弹性填料的阻燃性能。
所述等离子表面处理机的工作高频频率18-60Hz、输出功率350-1000W、工作气压范围0.05-0.5MPa、气源要求0.3-1.0MPa。
轻质阻燃工程塑料填料制备方法包括如下步骤:
(1)环三磷腈接枝碳纳米管制备:
(2)向萜烯树脂改性玻纤粉中加入三异丙醇胺、环三磷腈接枝碳纳米管,并加热至 80-85℃保温混合15-30min,即得物料I;
(3)向物料I中加入甲醛共混合熔融尼龙,加热至75-80℃保温混合5-10min,再加热至120-125℃保温混合10-15min,所得混合物转入-25-10℃环境中冷冻3-5h,然后再次加热至120-125℃保温混合10-15min,即得物料II;
(4)向物料II中加入纳米海泡石微粉、分子筛原粉和聚乙烯吡咯烷酮,并加热至回流状态保温混合5-10min,充分混合,所得混合物转入球磨机中,球磨至细度小于10μm,即为轻质阻燃工程塑料填料。
其中上述步骤3中所述熔融尼龙条件为温度在110-130℃,压力1.0-1.5MPa,熔融指数在35-65g/min。
本发明轻质阻燃工程塑料填料优点和有益效果是:
1、本发明的轻质阻燃工程塑料填料具有很好的阻燃防火性能,本发明先用氨基磺酸胍、氯环三磷腈分别接枝的碳纳米管共混,经过甲醛羟基化出料后的尼龙与接枝后的碳纳米管有很好的相容性,也进一步提高该填料阻燃性,该填料的阻燃机理为:当填料在燃烧过程中,碳纳米管在聚合物熔体表面聚集,并形成网状结构的炭层,这些网状碳层致密且几乎无孔洞,有效的防止了在燃烧时外部热量和氧气的进入,从而可以有效的降低热释放速率和质量损失速率;
2、接枝的氨基磺酸胍可以包覆在碳纳米管表面,其分解产物有助于碳纳米管形成更为致密的网状结构炭层,氨基磺酸胍自身分解可产生氨气,氨气又能与尼龙反应促进尼龙的降解,两者共同产生大量的氨气、水蒸气和二氧化碳等不燃气体,稀释燃烧区中的氧气和可燃气体,起到气相阻燃的效果;
3、制备填料使用的原材料经过改性及制备方法的处理后,制备的填料比重降低,进一步优化了工程塑料的质量。
3、本发明的轻质阻燃工程塑料填料表面强度高,韧性好,抗冲击强度高,耐候性强,综合性能优越。
附图说明
图1轻质阻燃工程塑料填料制备流程图;
具体实施方式:
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施例,进一步阐述本发明。
实施例1:一种轻质阻燃工程塑料填料
本发明所要解决的技术问题采用以下技术方案来实现:
一种轻质阻燃工程塑料填料,所述轻质阻燃工程塑料填料包括如下份数组分:氨基磺酸胍7份、碳纳米管20份、N,N'-二环己基碳酰亚胺0.3份、六氯环三磷腈4份、氢氧化钠0.4份、N,N-二甲基甲酰胺6份、尼龙17份、硬酸酸锌0.2份、纳米海泡石微粉1份、三异丙醇胺0.8份、8-羟基喹啉0.5份、硬脂酸钙4份、分子筛原粉1份、聚乙烯吡咯烷酮0.5份、萜烯树脂改性玻纤粉0.5份。
所述萜烯树脂改性玻纤粉由玻纤粉经萜烯树脂辅以助剂改性而成,具体改性方法为:先将玻纤粉以5℃/min的升温速度升温至100℃保温研磨5min,再加入萜烯树脂和硅酸镁铝, 继续以5℃/min的升温速度升温至125℃保温研磨15min,然后以5℃/min的降温速度降温至0-5℃密封保温静置15min,并加入石棉绒、六羟甲基三聚氰胺六甲醚和N-羟甲基丙烯酰胺,再次以5℃/min的升温速度升温至130℃保温研磨25min,待自然冷却至室温后将所得混合物送入真空干燥机中,干燥所得固体经超微粉碎机制成微粉,即得萜烯树脂改性玻纤粉。
所述玻纤粉、萜烯树脂、硅酸镁铝、石棉绒、六羟甲基三聚氰胺六甲醚和N-羟甲基丙烯酰胺的质量比为45:1.5:0.5:1:0.6:0.2。
所述纳米海泡石微粉由如下重量份数的原料制成:海泡石纤维5份、石棉粉3份、陶瓷微粉2份、聚α-甲基苯乙烯树脂2份、六羟甲基三聚氰胺六甲醚0.5份、纳米氧化锌0.3份,其制备方法为:向海泡石纤维中加入陶瓷微粉、聚α-甲基苯乙烯树脂,充分混合后于微波频率2450MHz、输出功率700W下微波处理10min,再加入六羟甲基三聚氰胺六甲醚和纳米氧化锌,混合均匀后继续微波处理5min,然后趁热加入石棉粉,所得混合物进行等离子处理,后送入纳米研磨机中,经研磨制得纳米海泡石微粉。
所述等离子表面处理机的工作高频频率60Hz、输出功率800W、工作气压范围0.25MPa、气源要求0.8MPa。
轻质阻燃工程塑料填料制备方法包括如下步骤:
(1)环三磷腈接枝碳纳米管制备:
a、将上述碳纳米管加入到其重量80倍的混酸溶液中,3:1的96%的硫酸和87%的盐酸在50℃下超声20分钟,过滤,将沉淀水洗2次,75℃下真空干燥30分钟,得酸化碳纳米管;
b、将上述8-羟基喹啉加入到其重量18倍的无水乙醇中,搅拌均匀,加入硬酸酸锌、硬脂酸钙、上述酸化碳纳米管重量的40%,送入86℃的水浴中,保温搅拌30分钟,出料,蒸 馏除去乙醇,常温干燥,得改性酸化碳纳米管;
c、取上述改性酸化碳纳米管,与氨基磺酸胍、N,N'-二环己基碳酰亚胺混合,再加入N,N-二甲基甲酰胺,超声100分钟,送入反应釜中,通入氮气,保温反应5-8小时出料,将产物抽滤,用丙酮洗涤3次,置于70℃的烘箱中干燥至恒重,得磺酸胍接枝碳纳米管;
d、将剩余的酸化碳纳米管、六氯环三磷腈、氢氧化钠混合,加入到混合料重量60倍的四氢呋喃中,超声100分钟,送入反应釜中,通入氮气,升高温度为68℃,保温反应3小时,出料,将产物抽滤,用丙酮洗涤3次,置于75℃的烘箱中干燥至恒重,得环三磷腈接枝碳纳米管;
(2)向萜烯树脂改性玻纤粉中加入三异丙醇胺、环三磷腈接枝碳纳米管,并加热至80-85℃保温混合15min,即得物料I;
(3)向物料I中加入甲醛共混合熔融尼龙,加热至75℃保温混合5min,再加热至125℃保温混合15min,所得混合物转入-25℃环境中冷冻3h,然后再次加热至120℃保温混合15min,即得物料II;
(4)向物料II中加入纳米海泡石微粉、分子筛原粉和聚乙烯吡咯烷酮,并加热至回流状态保温混合10min,充分混合,所得混合物转入球磨机中,球磨至细度小于10μm,即为轻质阻燃工程塑料填料。
其中上述步骤1a中所述混酸是由质量比为3-4:1的96-98%的硫酸和87-90%的盐酸。
进一步的,步骤1a中所述过滤,选用筛网200-300目。
其中上述步骤1b中所述蒸馏条件为:温度120-180℃,压力1.5-2.5MPa,时间2-5h。
其中上述步骤1c中所述反应釜工作条件为:温度为120-127℃,压力1.0-2.5MPa,旋转 速度1000-2000rpm/min。
其中上述步骤1d中所述反应釜工作条件为:温度为68-70℃,压力1.0-2.5MPa,旋转速度1000-2000rpm/min。
其中上述步骤1c中所述抽滤,选用定量滤纸,定量滤纸孔径范围30-50μm。
其中上述步骤1中所述氮气,其使用浓度范围为90-98%。
其中上述步骤3中所述熔融尼龙条件为温度在125℃,压力1.0-1.5MPa,熔融指数在55-60g/min。
实施例2:一种轻质阻燃工程塑料填料
本发明所要解决的技术问题采用以下技术方案来实现:
一种轻质阻燃工程塑料填料,所述轻质阻燃工程塑料填料包括如下份数组分:氨基磺酸胍7份、碳纳米管23份、N,N'-二环己基碳酰亚胺0.4份、六氯环三磷腈5份、氢氧化钠0.4份、N,N-二甲基甲酰胺7份、尼龙20份、硬酸酸锌0.2份、纳米海泡石微粉1份、三异丙醇胺0.8份、8-羟基喹啉1份、硬脂酸钙5份、分子筛原粉2份、聚乙烯吡咯烷酮0.8份、萜烯树脂改性玻纤粉0.5份。
所述萜烯树脂改性玻纤粉由玻纤粉经萜烯树脂辅以助剂改性而成,具体改性方法为:先将玻纤粉以5℃/min的升温速度升温至105℃保温研磨10min,再加入萜烯树脂和硅酸镁铝,继续以5℃/min的升温速度升温至130℃保温研磨15min,然后以5℃/min的降温速度降温至0-5℃密封保温静置20min,并加入石棉绒、六羟甲基三聚氰胺六甲醚和N-羟甲基丙烯酰胺,再次以5℃/min的升温速度升温至125℃保温研磨15min,待自然冷却至室温后将所 得混合物送入真空干燥机中,干燥所得固体经超微粉碎机制成微粉,即得萜烯树脂改性玻纤粉。
所述玻纤粉、萜烯树脂、硅酸镁铝、石棉绒、六羟甲基三聚氰胺六甲醚和N-羟甲基丙烯酰胺的质量比为42:2:0.5:0.5:0.5:0.3。
上述原材料制备及轻质阻燃工程塑料填料制备同于实施例1。
实施例3:
一种轻质阻燃工程塑料填料,所述轻质阻燃工程塑料填料包括如下份数组分:氨基磺酸胍6份、碳纳米管22份、N,N'-二环己基碳酰亚胺00.4份、六氯环三磷腈4.5份、氢氧化0.4份、N,N-二甲基甲酰胺6份、尼龙17份、硬酸酸锌0.2份、纳米海泡石微粉1份、三异丙醇胺0.8份、8-羟基喹啉0.6份、硬脂酸钙4份、分子筛原粉2份、聚乙烯吡咯烷酮1份、萜烯树脂改性玻纤粉0.3份。
所述纳米海泡石微粉由如下重量份数的原料制成:海泡石纤维8份、石棉粉2份、陶瓷微粉2.5份、聚α-甲基苯乙烯树脂1.5份、六羟甲基三聚氰胺六甲醚1份、纳米氧化锌0.2份,其制备方法为:向海泡石纤维中加入陶瓷微粉、聚α-甲基苯乙烯树脂,充分混合后于微波频率2450MHz、输出功率700W下微波处理10min,再加入六羟甲基三聚氰胺六甲醚和纳米氧化锌,混合均匀后继续微波处理5min,然后趁热加入石棉粉,所得混合物进行等离子处理,后送入纳米研磨机中,经研磨制得纳米海泡石微粉。
上述纳米海泡石复合粉的加入,能有效增强经所制改性塑料颗粒制成的立体弹性填料的阻燃性能。
所述等离子表面处理机的工作高频频率60Hz、输出功率1000W、工作气压范围0.45MPa、气源要求0.8MPa。
上述原材料制备及轻质阻燃工程塑料填料制备同于实施例1。
对照例1:
一种工程塑料填料,所述轻质阻燃工程塑料填料包括如下份数组分:尼龙17份、硬酸酸锌0.1份、纳米海泡石微粉0.5份、8-羟基喹啉1份、硬脂酸钙4份、分子筛原粉1份、萜烯树脂改性玻纤粉0.5份、三异丙醇胺0.6份、聚乙烯吡咯烷酮0.8份。
所述纳米海泡石微粉由如下重量份数的原料制成:海泡石纤维5份、石棉粉3份、陶瓷微粉2.5份、聚α-甲基苯乙烯树脂2份、六羟甲基三聚氰胺六甲醚0.5份、纳米氧化锌0.3份,其制备方法为:向海泡石纤维中加入陶瓷微粉、聚α-甲基苯乙烯树脂,充分混合后于微波频率2450MHz、输出功率700W下微波处理10min,再加入六羟甲基三聚氰胺六甲醚和纳米氧化锌,混合均匀后继续微波处理5min,然后趁热加入石棉粉,所得混合物进行等离子处理,后送入纳米研磨机中,经研磨制得纳米海泡石微粉。
轻质阻燃工程塑料填料制备方法包括如下步骤:
(1)向萜烯树脂改性玻纤粉中加入三异丙醇胺,并加热至80-85℃保温混合15-30min,即得物料I;
(2)向物料I中加入甲醛共混合熔融尼龙、硬酸酸锌,加热至75-80℃保温混合5-10min,再加热至120-125℃保温混合10-15min,所得混合物转入-25-10℃环境中冷冻3-5h,然后再次加热至120-125℃保温混合10-15min,即得物料II;
(3)向物料II中加入纳米海泡石微粉、分子筛原粉和聚乙烯吡咯烷酮,并加热至回流状态保温混合5-10min,充分混合,所得混合物转入球磨机中,球磨至细度小于10μm,即为轻质阻燃工程塑料填料。
对照例2:
一种工程塑料填料,所述轻质阻燃工程塑料填料包括如下份数组分:尼龙20份、硬酸酸锌0.1份、8-羟基喹啉0.5份、硬脂酸钙1份、分子筛原粉1份、萜烯树脂改性玻纤粉0.3份、三异丙醇胺0.5份、聚乙烯吡咯烷酮0.9份。
所述萜烯树脂改性玻纤粉由玻纤粉经萜烯树脂辅以助剂改性而成,具体改性方法为:先将玻纤粉以5℃/min的升温速度升温至105℃保温研磨10min,再加入萜烯树脂和硅酸镁铝,继续以5℃/min的升温速度升温至125℃保温研磨10min,然后以5℃/min的降温速度降温至0-5℃密封保温静置25min,并加入石棉绒、六羟甲基三聚氰胺六甲醚和N-羟甲基丙烯酰胺,再次以5℃/min的升温速度升温至125℃保温研磨30min,待自然冷却至室温后将所得混合物送入真空干燥机中,干燥所得固体经超微粉碎机制成微粉,即得萜烯树脂改性玻纤粉。
轻质阻燃工程塑料填料制备方法包括如下步骤:
(1)向萜烯树脂改性玻纤粉中加入三异丙醇胺,并加热至80-℃保温混合15min,即得物料I;
(2)向物料I中加入甲醛共混合熔融尼龙,加热至80℃保温混合10min,再加热至125℃保温混合15min,所得混合物转入-25℃环境中冷冻3h,然后再次加热至125℃保温混合10 min,即得物料II;
(3)向物料II中加入纳米海泡石微粉、分子筛原粉和聚乙烯吡咯烷酮,并加热至回流状态保温混10min,充分混合,所得混合物转入球磨机中,球磨至细度小于10μm,即为轻质阻燃工程塑料填料。
对照例3:
一种工程塑料填料,所述轻质阻燃工程塑料填料包括如下份数组分:尼龙19份、硬酸酸锌0.2份、纳米海泡石微粉0.5份、8-羟基喹啉0.5份、硬脂酸钙3份、分子筛原粉2份、三异丙醇胺1份、聚乙烯吡咯烷酮0.5份。
轻质阻燃工程塑料填料制备方法包括如下步骤:
(1)向萜烯树脂改性玻纤粉中加入三异丙醇胺,并加热至85℃保温混合20min,即得物料I;
(2)向物料I中加入甲醛共混合熔融尼龙,加热至80℃保温混合5min,再加热至120℃保温混合10min,所得混合物转入-25℃环境中冷冻5h,然后再次加热至120℃保温混合15min,即得物料II;
(3)向物料II中加入纳米海泡石微粉、分子筛原粉和聚乙烯吡咯烷酮,并加热至回流状态保温混合10min,充分混合,所得混合物转入球磨机中,球磨至细度小于10μm,即为轻质阻燃工程塑料填料。
分别对实施例和对照例制备的轻质阻燃工程塑料填料进行考察其结果如表1所示;
表1考察结果
Figure PCTCN2018096474-appb-000002
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (11)

  1. 一种轻质阻燃工程塑料填料,其特征在于,包括如下份数组分:氨基磺酸胍6-7份、碳纳米管20-23份、N,N'-二环己基碳酰亚胺0.3-0.4份、六氯环三磷腈4-5份、氢氧化钠0.2-0.4份、N,N-二甲基甲酰胺3-7份、尼龙17-20份、硬酸酸锌0.1-0.2份、纳米海泡石微粉0.5-1份、三异丙醇胺0.5-1份、8-羟基喹啉0.5-1份、硬脂酸钙1-5份、分子筛原粉1-2份、聚乙烯吡咯烷酮0.5-1份、萜烯树脂改性玻纤粉0.3-0.5份。
  2. 根据权利要求1所述的轻质阻燃工程塑料填料,其特征在于,所述萜烯树脂改性玻纤粉由玻纤粉经萜烯树脂辅以助剂改性而成,具体改性方法为:先将玻纤粉以5℃/min的升温速度升温至100-105℃保温研磨5-10min,再加入萜烯树脂和硅酸镁铝,继续以5℃/min的升温速度升温至125-130℃保温研磨10-15min,然后以5℃/min的降温速度降温至0-5℃密封保温静置15-30min,并加入石棉绒、六羟甲基三聚氰胺六甲醚和N-羟甲基丙烯酰胺,再次以5℃/min的升温速度升温至125-130℃保温研磨15-30min,待自然冷却至室温后将所得混合物送入真空干燥机中,干燥所得固体经超微粉碎机制成微粉,即得萜烯树脂改性玻纤粉。
  3. 根据权利要求1或2所述的轻质阻燃工程塑料填料,其特征在于:所述玻纤粉、萜烯树脂、硅酸镁铝、石棉绒、六羟甲基三聚氰胺六甲醚和N-羟甲基丙烯酰胺的质量比为40-45:1-2:0.5-1:0.5-1:0.5-1:0.2-0.3。
  4. 根据权利要求1所述的轻质阻燃工程塑料填料,其特征在于:所述纳米海泡石微粉由如下重量份数的原料制成:海泡石纤维5-10份、石棉粉2-3份、陶瓷微粉2-3份、聚α-甲基苯乙烯树脂1-2份、六羟甲基三聚氰胺六甲醚0.5-1份、纳米氧化锌0.1-0.3份,其制备方法为:向海泡石纤维中加入陶瓷微粉、聚α-甲基苯乙烯树脂,充分混合后于微波频率2450 MHz、输出功率700W下微波处理10min,再加入六羟甲基三聚氰胺六甲醚和纳米氧化锌,混合均匀后继续微波处理5min,然后趁热加入石棉粉,所得混合物进行等离子处理,后送入纳米研磨机中,经研磨制得纳米海泡石微粉。
  5. 根据权利要求4所述的轻质阻燃工程塑料填料,其特征在于,所述等离子表面处理机的工作高频频率18-60Hz、输出功率350-1000W、工作气压范围0.05-0.5MPa、气源要求0.3-1.0MPa。
  6. 一种轻质阻燃工程塑料填料的制备方法,其特征在于,如下步骤:
    (1)环三磷腈接枝碳纳米管制备:
    (2)向萜烯树脂改性玻纤粉中加入三异丙醇胺、环三磷腈接枝碳纳米管,并加热至80-85℃保温混合15-30min,即得物料I;
    (3)向物料I中加入甲醛共混合熔融尼龙,加热至75-80℃保温混合5-10min,再加热至120-125℃保温混合10-15min,所得混合物转入-25-10℃环境中冷冻3-5h,然后再次加热至120-125℃保温混合10-15min,即得物料II;
    (4)向物料II中加入纳米海泡石微粉、分子筛原粉和聚乙烯吡咯烷酮,并加热至回流状态保温混合5-10min,充分混合,所得混合物转入球磨机中,球磨至细度小于10μm,即为轻质阻燃工程塑料填料。
  7. 根据权利要求6所述的轻质阻燃工程塑料填料的制备方法,其特征在于,环三磷腈接枝碳纳米管制备步骤包括:
    a、将上述碳纳米管加入到其重量80倍的混酸溶液中,3:1的96%的硫酸和87%的盐酸在50℃下超声20分钟,过滤,将沉淀水洗2次,75℃下真空干燥30分钟,得酸化碳纳米管;
    b、将上述8-羟基喹啉加入到其重量18倍的无水乙醇中,搅拌均匀,加入硬酸酸锌、硬脂酸钙、上述酸化碳纳米管重量的40%,送入86℃的水浴中,保温搅拌30分钟,出料,蒸馏除去乙醇,常温干燥,得改性酸化碳纳米管;
    c、取上述改性酸化碳纳米管,与氨基磺酸胍、N,N'-二环己基碳酰亚胺混合,再加入N,N-二甲基甲酰胺,超声100分钟,送入反应釜中,通入氮气,保温反应5-8小时出料,将产物抽滤,用丙酮洗涤3次,置于70℃的烘箱中干燥至恒重,得磺酸胍接枝碳纳米管;
    d、将剩余的酸化碳纳米管、六氯环三磷腈、氢氧化钠混合,加入到混合料重量60倍的四氢呋喃中,超声100分钟,送入反应釜中,通入氮气,升高温度为68℃,保温反应3小时,出料,将产物抽滤,用丙酮洗涤3次,置于75℃的烘箱中干燥至恒重,得环三磷腈接枝碳纳米管。
  8. 根据权利要求6~7所述的轻质阻燃工程塑料填料的制备方法,其特征在于,其中上述步骤1a中所述混酸是由质量比为3-4:1的96-98%的硫酸和87-90%的盐酸。
  9. 根据权利要求6~7所述的轻质阻燃工程塑料填料的制备方法,其特征在于,步骤1a中所述过滤,选用筛网200-300目。
  10. 根据权利要求6~7所述的轻质阻燃工程塑料填料的制备方法,其特征在于,其中上述步骤1b中所述蒸馏条件为:温度120-180℃,压力1.5-2.5MPa,时间2-5h。
  11. 根据权利要求6~7所述的轻质阻燃工程塑料填料的制备方法,其特征在于,其中上述步骤1c中所述反应釜工作条件为:温度为120-127℃,压力1.0-2.5MPa,旋转速度1000-2000rpm/min。
PCT/CN2018/096474 2018-05-04 2018-07-20 一种轻质阻燃pa工程塑料填料及制备方法 WO2019210588A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810420963.5 2018-05-04
CN201810420963.5A CN108587134A (zh) 2018-05-04 2018-05-04 一种轻质阻燃pa工程塑料填料及制备方法

Publications (1)

Publication Number Publication Date
WO2019210588A1 true WO2019210588A1 (zh) 2019-11-07

Family

ID=63620836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096474 WO2019210588A1 (zh) 2018-05-04 2018-07-20 一种轻质阻燃pa工程塑料填料及制备方法

Country Status (2)

Country Link
CN (1) CN108587134A (zh)
WO (1) WO2019210588A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113526936A (zh) * 2021-07-08 2021-10-22 上海神洁环保科技股份有限公司 一种新型防火堵料

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113150385B (zh) * 2021-04-13 2022-09-02 中联重科股份有限公司 处理碳纳米管的方法、聚氨酯组合物和聚氨酯活塞及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105936714A (zh) * 2016-06-22 2016-09-14 安徽电信器材贸易工业有限责任公司 一种轻质阻燃光缆料及其制备方法
CN106009383A (zh) * 2016-06-22 2016-10-12 安徽电信器材贸易工业有限责任公司 一种尼龙塑料阻燃光缆料及其制备方法
CN106084547A (zh) * 2016-06-22 2016-11-09 安徽电信器材贸易工业有限责任公司 一种碳纳米管改性阻燃光缆料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106745695A (zh) * 2017-01-23 2017-05-31 和县伊迈炭业有限责任公司 一种塔式生物滤池构建用纸蜂窝滤料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105936714A (zh) * 2016-06-22 2016-09-14 安徽电信器材贸易工业有限责任公司 一种轻质阻燃光缆料及其制备方法
CN106009383A (zh) * 2016-06-22 2016-10-12 安徽电信器材贸易工业有限责任公司 一种尼龙塑料阻燃光缆料及其制备方法
CN106084547A (zh) * 2016-06-22 2016-11-09 安徽电信器材贸易工业有限责任公司 一种碳纳米管改性阻燃光缆料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113526936A (zh) * 2021-07-08 2021-10-22 上海神洁环保科技股份有限公司 一种新型防火堵料

Also Published As

Publication number Publication date
CN108587134A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
WO2015020020A1 (ja) ポリイミド樹脂組成物及びポリイミド樹脂-繊維複合材
CN104098802B (zh) 一种氢氧化铝阻燃胶
WO2019210588A1 (zh) 一种轻质阻燃pa工程塑料填料及制备方法
CN108559172A (zh) 一种碳纤维增强复合材料及其制备方法
CN106566239A (zh) 一种含有机酸镧盐的碳纤维增强型pa66/pp电力金具材料及其制备方法
CN111423723A (zh) 用于5g的增强聚苯硫醚组合物及其制备方法
JP2007217449A (ja) 耐熱樹脂組成物およびその製造法
CN104130527A (zh) 一种高韧性pvc排水管材料及其制备方法和应用
CN112574503A (zh) 一种丝状外观高性能阻燃椰壳纤维改性聚丙烯复合材料、制备方法及其应用
CN108659251A (zh) 聚醚酰亚胺发泡粒子的制备方法
CN113956607B (zh) 一种基于玻璃纤维布增强的透明模压板及其加工工艺
CN115304836B (zh) 一种低硫橡塑海绵制品及其制备方法
CN113637202B (zh) 一种生物基聚酰亚胺-埃洛石纳米管复合薄膜及其制备方法
Wang et al. Aluminium borate whiskers grafted with boric acid containing poly (ether ether ketone) as a reinforcing agent for the preparation of poly (ether ether ketone) composites
CN113463213A (zh) 一种白石墨烯超高分子量聚乙烯复合纤维及其制备方法
JPH05179139A (ja) ポリベンズイミダゾールと芳香族ポリアミド、芳香族ポリアミドーヒドラジド又は複素環式結合を含む芳香族ポリアミドとのブレンド
CN109438972B (zh) 一种fdm专用石墨烯改性尼龙及其制备方法和应用
Gong et al. Reinforcement of high impact polystyrene by aramid nanoparticle fillers prepared via an in situ bottom-up approach
CN109852045A (zh) 一种微孔发泡长碳纤维增强pa11材料及其制备方法
CN104130525A (zh) 一种低温增韧pvc排水管材料及其制备方法和应用
CN106589926A (zh) 一种含改性氢氧化镁的碳纤维增强阻燃型pa66/pp电力金具材料及其制备方法
CN116265529B (zh) 一种偶联剂改性杂萘联苯聚芳醚树脂基复合材料及其制备方法
CN101760006A (zh) 不露纤的玻纤增强高温尼龙及其制作工艺
CN116041901B (zh) 一种peek合金及其制备方法
CN109852056B (zh) 一种耐磨阻燃的碳纤增强聚苯硫醚组合物及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18917522

Country of ref document: EP

Kind code of ref document: A1